
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f C

iv
il

an
d

En
vi

ro
nm

en
ta

l E
ng

in
ee

rin
g

M
artin Berrum

 and H
åvard Skaar

Martin Berrum and Håvard Skaar

Identification of quick clay using
cone penetration tests and machine
learning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Priscilla Paniagua
Co-supervisor: Gudmund Eiksund

June 2021

M
as

te
r’s

 th
es

is

Martin Berrum and Håvard Skaar

Identification of quick clay using cone pene-
tration tests and machine learning

Trondheim, June 2021

MASTER THESIS: TBA4900
Main supervisor: Priscilla Paniagua

Co-supervisor: Gudmund Eiksund

Department of Civil and Environmental Engineering

Norwegian University of Science and Technology (NTNU)

i

Preface

This Master thesis in geotechnics is part of the MSc in Civil and Environmental Engineering at

the Norwegian University of Science and Technology (NTNU) in Trondheim. It is a mandatory

part of the course TBA4900 carried out in the spring of 2021 by the Department of Civil and

Environmental Engineering.

This study aims to investigate the applicability of machine learning techniques to identify quick

clay layers from CPTu.

The Master thesis is a continuation of the Project thesis "Applications of correlations and ma-

chine learning on CPTu" by Martin Berrum and Håvard Skaar from course TBA4510 during the

autumn semester 2020. Ana Priscilla Paniagua Lopez at NGI supplied the idea for both the

Project thesis and Master thesis, with inputs from the students.

Trondheim, 2021-06-11

Martin Berrum Håvard Skaar

ii

Acknowledgment

We would like to specially thank our supervisor Priscilla Paniagua. Firstly for supplying us with

the idea for this Master thesis, and secondly for all the feedback and guidance throughout this

work.

Thanks to Ivan Depina at SINTEF and Zhongqiang Liu at NGI for their time and inputs to this

thesis.

Thanks to Sigurdur Mãr Valsson for sharing information regarding machine learning and CPTu.

Thanks to R&D Program Norwegian Geo-Test Sites – NGTS supported by The Research Council

of Norway Infrastructure program for supplying CPTu data.

iii

Abstract

Quick clay occurrence is a vital part of the geotechnical engineering field in Norway. Its pres-

ence affects the way forward for completion of ground surveys, design engineering, control and

quality routines regarding the project work.

Identification of quick clay relies on a combination of field testing, sampling and laboratory test-

ing, together with the interpretation from the geotechnical engineer. Sampling and subsequent

laboratory testing is the only unmistakable classification method of quick clay, however due to

its expense it is often limited to certain projects and to relatively small depths. Field methods

today, such as the cone penetration test, can in many cases give good indication of quick clay,

although sampling and laboratory tests are required to verify the occurrences. The in-situ field

tests provides a quick way to obtain continuous information about the soil profile.

Techniques of classifying soils with CPTu data are traditionally done through interpretations

from geotechnical engineers and classification charts. However, these charts have shown to

have difficulties in detection of Norwegian quick clays. Newly proposed methods using machine

learning on CPTu have shown promising results in detecting quick clay.

This thesis will work further with testing out machine learning algorithms to classify quick clay

by CPTu. Seven algorithms and three datasets will be analyzed for training and testing purposes.

NGTS Tiller-Flotten dataset consists of 32 CPTus and functions as a benchmark to test the differ-

ent algorithms on the same dataset. Both performance and training speed will be measured to

compare which algorithm achieve the best results. Two new datasets are implemented in order

to analyze how the machine learning algorithms performs when trained and tested on different

datasets. The data are divided into two classes, respectively quick clay and other material. Visu-

alization of the models are done in two and three dimensions to understand how the algorithms

separate the classes.

The results show that neural networks generally works well, and that adding convolutional lay-

ers to the network can make for more generalizable models. Algorithms using a decision tree

architecture struggle with classifying quick clay when the tested CPTus are not part of the train-

ing dataset, while the support vector machines tend to not have this problem.

iv

In the case where the training and testing dataset are the same, all algorithms show accuracy

scores of at least 97 %. In other cases the performances of the models have higher variances,

where random forest and extreme gradient boost suffers the most.

v

Sammendrag

Forekomst av kvikkleire er en viktig del av geoteknisk ingeniørarbeid i Norge. Dens tilstede-

værelse påvirker måten grunnundersøkelser, dimensjonering, kontroll og kvalitetssikring blir

utført på i et prosjekt.

Identifisering av kvikkleire avhenger av en kombinasjon av feltundersøkelser, prøvetaking og

laboratorieundersøkelser, sammen med tolkning av geotekniske ingeniører. Prøvetaking og påføl-

gende laboratorieundersøkelse er den eneste metoden som gir sikker påvisning av kvikkleire,

men på grunn av dens kostnader er det ofte begrenset til bestemte prosjekter og til relativt

få dybder. Feltundersøkelsesmetoder som trykksondering kan i mange tilfeller gi en god in-

dikasjon på kvikkleire, men laboratorieundersøkelser er nødvendig for å verifisere forekomsten.

In-situ feltundersøkelser gir en rask måte å anskaffe kontinuerlig informasjon om løsmassepro-

filet.

Metoder for å klassifisere løsmasser med data fra trykksondering er tradisjonelt sett utført ved

tolking av geotekniske ingeniører og klassifiseringsdiagrammer. Disse klassifiseringsdiagrammene

har derimot vanskeligheter til å detektere norske kvikkleirer. Nylig foreslåtte metoder som bruker

maskinlæring og trykksondering har vist lovende resultater innen detektering av kvikkleire.

Denne avhandlingen vil arbeide videre med å teste ut maskinlæringsalgoritmer til å klassifisere

kvikkleire ved trykksondering. Sju algoritmer og tre datasett blir analysert og brukt for trening og

testing. NGTS Tiller-Flotten datasettet består av 32 trykksonderinger og virker som standard for

måling av ytelse for å teste de ulike algoritmene på samme datasettet. Både prestasjon og tids-

bruk vil bli målt for å sammenligne hvilke algoritmer som oppnår best resultat. To nye datasett

blir implementert for å analysere hvordan maskinlæringsalgoritmene presterer når de blir trent

og testet på ulike datasett. Dataen er inndelt i to klasser, følgende kvikkleire og annet materi-

ale. Visualisering av modellene er utført i to og tre dimensjoner for å forstå hvordan de ulike

algoritmene separerer disse to klassene.

Resultatene viser at nevrale nettverk generelt virker bra. Når man legger til et konvolusjonsfilter

til nettverket kan modellene bli enda mer generaliserbare. Algoritmer med beslutningstre som

arkitekturtype har problemer med å klassifisere kvikkleire når trykksonderingene som blir testet

vi

ikke er del av datasettet algoritmen ble trent på. Det virker ikke som "support vector machines"

har dette problemet.

Når algoritmene blir trent og testet på samme datasett viser resultatene en nøyaktighet på min-

imum 97 %. I andre tilfeller varierer resultatene til modellene mer, der spesielt "random forest"

og "extreme gradient boost" får størst unøyaktigheter.

Contents

Preface . i

Acknowledgment . ii

Abstract . iii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 3

1.3 Limitations . 4

1.4 Approach . 4

1.5 Structure of the Report . 5

2 Machine learning 7

2.1 Machine learning concept . 7

2.2 Neural network algorithms . 10

2.2.1 DNN . 14

2.2.2 CNN . 15

2.2.3 ELM . 16

vii

CONTENTS viii

2.3 Decision tree algorithms . 17

2.3.1 RF . 18

2.3.2 XGB . 19

2.4 Nearest neighbor algorithms . 20

2.4.1 KNN . 21

2.4.2 SVM . 21

3 Presentation of datasets 24

3.1 Dataset I: NGTS Tiller-Flotten . 24

3.2 Dataset II: Multiple sites located in Norway. 29

3.3 Dataset III: Saksvik . 33

3.4 Data preparation . 36

3.4.1 Parameter choice and normalization . 36

3.5 The impact of faulty CPTu reading and errors in dataset 39

3.6 Implementation in Python . 42

4 Results 43

4.1 ML models trained and tested on dataset I . 44

4.2 ML models trained on dataset II and tested on dataset I 65

4.3 Validation of trained models on a third dataset . 71

5 Summary and Recommendations for Further Work 78

5.1 Summary and Conclusions . 78

CONTENTS ix

5.2 Discussion . 80

5.3 Recommendations for Further Work . 81

Bibliography 82

A CPTu raw data graphs 88

B Saksvik total soundings 134

C Index testing profiles 140

D Saksvik piezometer 148

E 2D plots from NGTS dataset not included in the text 150

F 3D plots from dataset II not included in the text 158

Chapter 1

Introduction

1.1 Background

A critical task in geotechnical engineering is to determine the ground conditions for a project.

Several factors have an impact on the degree of difficulty of this task, spanning from economical

reasons to whether there is access for the boring rig at the given site. Determining the ground

conditions incorrectly may lead to catastrophic events, especially if highly sensitive material

such as quick clay is present, which often is the case below the marine limit in Norway.

Classification of soils are commonly done by interpreting different geotechnical field tests, soil

sampling and laboratory testing, all of which need the judgment of a geotechnical engineer.

In-situ field tests does in many cases give good indications on brittle material behavior, al-

though soil sampling and subsequent laboratory testing is necessary to verify this. Determi-

nation of quick clay is mainly restricted to the laboratory, where the falling cone test on a re-

molded sample is the standard procedure. Quick clay is defined as clay with remolded shear

strength cu,r < 0.5kPa (Sandven et al., 2019). Significant work has been made in creating ways

to characterize soil by CPTu, typically by the use of classification charts such as Robertson charts

(Robertson, 2016). Studies however show that the reliability of classification charts are often un-

derwhelming when predicting highly sensitive soils as the characteristic properties of the soil

may vary substantially from one site to another.

1

CHAPTER 1. INTRODUCTION 2

Recent research have looked at the use of machine learning techniques to more accurately char-

acterize and identify quick clay soil layering based on CPTu soundings ((Valsson, 2019), (Godoy

et al., 2020), (Berrum and Skaar, 2020), (Erharter et al., 2021)). These studies have mainly fo-

cused on a limited amount of machine learning methods. In this work, a further research into

several machine learning methods such as deep neural networks, decision tree models and

nearest neighbor algorithms will be performed.

Problem Formulation

This thesis will be a research on the applicability of machine learning techniques to detect quick

clay from CPTu. The method for detecting quick clay is heavily reliant on laboratory testing

as other methods only gives indications of its presence. The main purpose of this thesis is to

determine which algorithm is best suited to predict quick clay soil layering. Provided that a

machine learning algorithm can accurately classify quick clay layering from CPTu, it can give

an early indication to the geotechnical engineer and lead to better design decisions, resulting in

safer projects and smaller project costs.

Literature Survey

The use of machine learning for detecting quick clay from CPTu is a mostly new topic which isn’t

widely researched. However, some articles have been published in this area in recent years.

The most prominent researcher on the topic is S. M. Valsson, who at the moment works on a

PhD regarding soil classification by the use of machine learning. In 2018 he released an article

where CPTus from 50 projects around Norway were gathered in a database to be used for train-

ing ML models, (Valsson et al., 2018). In the study Valsson focuses on selecting the best pair of

features (parameters) which best predict three classes. In addition to quick clay, he also include

a class for brittle soil material defined by high sensitivity and low remoulded shear strength.

The results showed that the machine learning models performed better than existing charts,

especially regarding the amount of points incorrectly classified as quick clay.

A followup article where a diverse dataset of 240 CPTus were analyzed was released a year later,

CHAPTER 1. INTRODUCTION 3

(Valsson, 2019). Here he found that using three parameters when training outperformed models

with two parameters. Normalized values for Bq , R f and qe were found to be the best combina-

tion for the K-nearest neighbor model. Techniques for visualizing the data in two and three

dimensions were shown to give the reader a intuitive understanding of how the model separate

the classes.

In 2019, Christian Godoy Leiva wrote a master thesis on the topic, (Godoy, 2019). A year later

he released an article summarizing the findings, (Godoy et al., 2020). Two testing sites with

several CPTus were trained with three machine learning algorithms. The performance of the

models were plotted as a function of how many CPTus were used during training, showing how

fast each algorithm manage to learn. The performance of the models were compared against

classification charts to show which did better. While the models performed very well on one of

the datasets, lower accuracy scores were found on the second dataset. One of the datasets used

in his article will also be applied to this thesis.

Lastly it is worth mentioning that a lead up to this master thesis is a specialization project

Berrum and Skaar (2020), where KNN was used for classification of quick clay. A modified edi-

tion of the dataset used in this project will be used as a part of this thesis.

1.2 Objectives

The main objectives of this project are

1. Describe the theoretical framework behind different machine learning algorithms and its

application in Python.

2. Compare the performance of the different algorithms prediction of soil layering and dis-

tinguish between quick and other material layering.

3. Study the influence that different datasets has on the performance of each ML algorithms.

4. Analyze the effect of changing the amount of input parameters on each ML algorithms

ability to accurately predict quick-clay layering.

CHAPTER 1. INTRODUCTION 4

1.3 Limitations

This work will only focus on the separation of two classes, respectively quick clay and other

material (other material), as the main goal is to evaluate which machine learning algorithm

most accurately can predict the occurrence of quick clay. For other types of soil, classification

by methods such as classification charts have previously been thoroughly researched and will

not be included.

CPTus from NGTS Tiller-Flotten site are limited to 20 meters depth as data below show a lot

more variance. Therefore, less noise and random fluctuations of the data are included in the

training of the machine learning algorithms. This can possibly result in a higher accuracy score

than if all depths were used.

Qt , Fr and Bq were chosen as the only input parameters to facilitate the comparison of the

machine learning algorithms. These are included since they are well-known derived CPTu pa-

rameters in geotechnical engineering. As Valsson (2019) already has done work on optimizing

the parameter selection, this will not be a focus in this thesis.

While the dataset analyzed in this thesis involve CPTus from all over Norway, the overall diver-

sity of the points are relatively low as the datasets consist of total 45 CPTus with 32 of them

coming from one site and seven of the remaining are only used for testing purposes. The rela-

tively low amount of CPTus in the datasets makes it difficult to say that the models trained are

truly generalizable.

1.4 Approach

When approaching the problem, an insight into different machine learning techniques is re-

quired. Therefore the project starts with a literature study of the theoretical background of dif-

ferent machine learning models. One such technique, namely K nearest neighbor, is already

used in a project leading up to this thesis. Publicly released lectures from Massachusetts Insti-

tute of Technology (Winston, 2015) are a vital source for understanding the theoretical frame-

work of different machine learning models. Google Scholar is used to find relevant articles.

CHAPTER 1. INTRODUCTION 5

Informative videos have been very helpful in order to give a visual understanding of machine

learning algorithms.

To implement the different machine learning algorithms, the programming language Python is

used (Van Rossum and Drake Jr, 1995). A total of seven machine learning techniques is to be

studied and compared, which in turn mean that several parameters needs to be tuned and ex-

perimented with. A code is developed to illustrate where the border between the classes are set

after training to visualize how the models separates the data. Implementation of the machine

learning algorithms is done using available libraries and include the following: scikit-learn (Pe-

dregosa et al., 2011), HP-ELM (Akusok et al., 2015), XGBoost (Chen and Guestrin, 2016a) and

keras (Chollet et al., 2015). Scikit-learn is a wide machine learning library and the following

three will be used: K nearest neighbor (KNN), support vector machine (SVM) and random for-

est (RF) classifiers. The Keras library is built upon the Tensorflow architecture developed by

Google (Abadi et al., 2015), and give a simple interface for the deep learning algorithms (DNN

and CNN). HP-ELM and XGBoost contains the algorithms their names suggest.

Three datasets are used to evaluate the different models. One dataset is solely used for training,

one is used only for testing and one is used for both training and testing. All points in the CPTus

used in the datasets are given labels whether they are quick or not based on laboratory tests at

their respective sites, however some points have been labeled unknown due to a lack of data or

testing. The prediction of the algorithms are compared to the labels from the lab which indicates

how accurate they are.

1.5 Structure of the Report

The rest of the report is structured as follows. Chapter 2 is an introductory literary study to basic

machine learning concepts. Models such as neural networks, decision tree and nearest neighbor

will briefly be presented. A representation of the sites used as basis for the datasets is presented

in chapter 3. Soil layering profiles and basic soil parameters of each site are shown. Chapter 3

also describes how the CPTu data is prepared, which parameters are chosen and how the data is

processed in Python.

CHAPTER 1. INTRODUCTION 6

Results are discussed and presented in chapter 4 and are structured into several sections. Sec-

tion 4.1 describes the results of training and testing the algorithms on the NGTS Tiller-Flotten

dataset. Section 4.2 shows results when the models are trained on six sites around Norway and

tested on the NGTS dataset. The models trained on six CPTus will be further validated on a third

dataset consisting of seven CPTus in section 4.3.

The report is concluded with chapter 5 which gives a summary and conclusion of the work done,

with some discussion about the validity of the results. Recommendations for further work on the

topic are included. At the end, the Appendix contains plots, figures and diagrams that were not

chosen to be added to the main text, but in some way give a good insight into further results for

the discussion as well as background data.

Chapter 2

Machine learning

As the level of computational capability of computers has increased drastically over the years,

new ways of solving problems have been possible. More and more machine learning techniques

have been developed to interpret and evaluate data (Ayodele, 2010). These techniques are part

of a cutting edge technology in several areas of knowledge such as business, medicine and engi-

neering. Each machine learning technique has been implemented in a huge range of problems,

and new research is carried out continuously. A diverse range of machine learning algorithms

may be implemented to the same problem with varying results. Therefore it is of interest to

compare how different machine learning algorithms solve a given problem.

In this chapter the concept of machine learning will be described before going into detail of the

different algorithms applied in this thesis.

2.1 Machine learning concept

Machine learning algorithms are based on a computational process where input data is given in

order to obtain particular output data without directly specifying how to achieve this. The algo-

rithms are able to adapt the way they learn through experience so they can perform their tasks

better and better. In his textbook Alpaydin (2020) defines machine learning as "Programming

computers to optimize a performance criterion using example data or past experience".

7

CHAPTER 2. MACHINE LEARNING 8

Figure 2.1: Relationship between AI, ML and Deep Learning

To adapt or train the algorithms, input data is given together with desired output data. There-

after the machine learning algorithms learn how to produce the desired outcome from the train-

ing inputs, and furthermore generalize to produce desired outcomes from data which the algo-

rithms have not yet been trained on. This is referred to the "learning" part of machine learning.

The learning process will continue as long as the algorithm has new input data available.

A terminology used in machine learning about how well a model learns and generalizes data

is overfitting and underfitting. These are the two biggest causes as to why a machine learning

algorithm may experience poor performance. An overfitting model learns the noise and ran-

dom fluctuations in a training data as concepts by the model which do not apply to new data.

Overfitting negatively impacts the models complexity and the ability to generalize. A model ex-

periencing underfitting struggles to model the training data which in turn negatively affect the

performance on new data (Dietterich, 1995).

CHAPTER 2. MACHINE LEARNING 9

As the goal of this work is to apply machine learning techniques to classify soils as quick or other

material by using CPTu, the methods will use classification tools. In general, classification is a

process in which data points are predicted to form a class. Classification predictive modeling is

the task of approximating a mapping function (f) from input variables (X) into output variables

(y) (Yuan et al., 2012).

There are several ways to measure how well the machine learning models are performing on a

given dataset. The most common used metric is the accuracy score, which simply gives the ratio

between the amount of correct predictions and the total amount of predictions:

Accuracy Score = # of correct predictions

of total predictions
(2.1)

In some cases however the accuracy score might not be the best metric to describe the perfor-

mance. If one of the classes is significantly more represented than the other(s), the false positive

rate or the true positive rate might give a more reasonable representation of the performance:

False positive rate = # false positives

false positives+# true negatives
(2.2)

True positive rate = # true positives

true positives+# false negatives
(2.3)

Machine learning algorithms can be classified as supervised and unsupervised based on what

the purpose of the algorithm is. Most machine learning models is based on supervised learning.

This type of learning consists of input and output variables and a machine learning algorithm

which tries to learn the mapping function between these variables. The purpose is to map these

functions well enough to predict output variables for new input data (Love, 2002). Learning is

stopped as the algorithm achieves the desired performance. Among supervised learning algo-

rithms are regression and classification problems. Classification problem is based on output

variables put into categories, such as quick clay or other material. Regression problem predicts

continuous responses in data (Mohri et al., 2018).

CHAPTER 2. MACHINE LEARNING 10

Unsupervised learning on the other hand only consists of input data. Here the purpose is to

learn the underlying structure of the data without the solution. The algorithms are left alone

to discover structures in the data. Among unsupervised learning algorithms are clustering and

association problems. Clustering discovers how the data groups up based on certain attributes.

Association discover basic rules that describe the data (Mohri et al., 2018).

Ideally, machine learning will partly imitate the way human beings processes input to conclude

a task (Mohri et al., 2018). One task could be recognizing different patterns, for example us-

ing CPTu input data to distinguish different soil layering in the ground. Machine learning has

the potential to recognize more complex and complicated patterns than most humans do and

may therefore be a big asset in engineering practice. Following is a basic representation of the

different machine learning algorithms used in this thesis.

2.2 Neural network algorithms

Neural networks are one of the most used deep learning algorithms and is inspired by the struc-

ture of how biological neurons in a human brain signal each other. The structure consists of

node layers: an input layer, one or more hidden layers and an output layer. Every node in one

layers is connected to all the nodes in the next. (Winston, 2015).

Weights are initialized randomly and assigned to each connection between nodes in the net-

work. This is to highlight the importance of the different variables contribution to the output

layer. The weights are multiplied with each node and thereafter summed up. This sum plus a

bias is then put through an activation function which truncates the value of the node to a range

between 0 and 1. The bias is a number which controls the inactivity of a node where it is only

considered meaningfully active when the weighted sum is above a certain threshold (Winston,

2015).

In general the mathematical function that shows the connection between two layers (layer 0 and

CHAPTER 2. MACHINE LEARNING 11

1) in a neural network can be written in vector form as:
w0,0 w0,1 . . . w0,n

w1,0 w1,1 . . . w1,n

...
...

. . .
...

wk,0 wk,1 . . . wk,n

a0

0

a0
1
...

a0
n

+

b0

b1

...

bn

=

a1

0

a1
1
...

a1
n

In a more compact vectorized form:

a1 = w a0 +b (2.4)

where weights (w) are multiplied and summed with neurons from one layer (a0) and a bias (b)

to achieve the activation values in neurons in the next layer (a1). Figure 2.2 shows the structure

behind a basic neural network with one hidden layer.

In order to have the value of each neuron between 0 and 1 to imitate the biological analogy of

neurons being either active (1) or inactive (0), the sigmoid function is often used for hidden

layers and softmax function is used for the output layer (Winston, 2015).

σ(x) = 1

1+e−x
(2.5)

The sigmoid function acts as an activation function. It transforms very positive values into 1 and

very negative values into 0. Values close to 0 end up somewhere between 0 and 1.

σ(~z)i = ezi

K∑
j=1

ez j

(2.6)

The softmax function transforms a vector (~z) of real values into a vector of K real values that sum

up to 1. All input values are transformed into values between 0 and 1.

CHAPTER 2. MACHINE LEARNING 12

Qt

Fr

Bq

Input layer Hidden layer

Quick clay

Not quick clay

Output layer

Weights from input

w11

w36

w16

w21

w26

w31

Weights from hidden

w11

w16

w21

w26

Figure 2.2: A principal sketch of how a neural network classifying quick clay could be structured. In this scenario
the input layer consists of three nodes: Qt , Fr and Bq with associated weights to one hidden layer. Weights from
the hidden layer determine the output layer, if the clay is quick or not.

Inserting the sigmoid function into equation 2.4 gives the activation of the neuron in the last

layer (al):

al =σ
(
w l al−1 +bl

)
(2.7)

which is correlated to the weights of the last layer (w l), the activation of the previous layer (al−1)

and the bias of the last layer (bl).

If the determined output is within a preset threshold it activates the node and passes data to the

next layer of the network. A feedforward neural network is defined as data being passed from

one node to another in this specified manner.

CHAPTER 2. MACHINE LEARNING 13

A way to evaluate the accuracy of a neural network algorithm is by using a cost function. The

most commonly used cost function is the mean squared error (MSE).

C = (al − y)2 (2.8)

where C is the cost function, y is the true value and al is the predicted value. This cost function

takes all the weights and biases in the neural network as input and gives one number (the cost)

as output. Based on this number the algorithm gets an indication of how accurate those weights

and biases are by comparing the true and predicted value of the input and output.

By minimizing this cost function the algorithm can ensure higher accuracy of fit for any given

observation. The way a neural network algorithm learns is by adjusting the weights and bias to

minimize the cost function until it reaches a point of convergence.

A way of reaching this convergence or minimized error is by gradient descent. This method uti-

lizes the gradient in order to find the steepest decrease to the local minimum of the function,

as known from calculus. It is beneficial to perform this action step wise with step sizes propor-

tional to the slope to eliminate overshooting. In summary: compute the gradient descent, take

a small step in that direction, and repeat until convergence at minimum (Sanderson, 2017).

The core algorithm for how a neural network learn is named backpropagation. This algorithm

computes the gradient descent with calculating the derivative of the cost function with respect

to weights and biases by the chain rule from the last layer to the previous layers. In this way

the algorithm can calculate the error associated with each neuron from output to input (Ding

et al., 2011). The basic principles of backpropagation using the chain rule in a neural network is

shown below.

CHAPTER 2. MACHINE LEARNING 14

Equation 2.7 can be rewritten as:

al =σ(z l) (2.9)

where

z l = w l al−1 +bl

The partial derivative of the cost function with respect to the weights can be written as:

∂C

∂w l
= ∂z l

∂w l

∂al

∂z l

∂C

∂al
(2.10)

The partial derivative of the cost function with respect to the bias can be written as:

∂C

∂bl
= ∂z l

∂bl

∂al

∂z l

∂C

∂al
(2.11)

These partial derivatives of the cost function gives the gradient descent that nudges the weights

and biases in the right direction to converge at the lowest cost.

−→
W =−∇C (

−→
W) (2.12)

where
−→
W is a column of weights and biases and ∇ is the gradient (derivative). As the model gets

more and more training examples (input data), the parameters adjust to gradually converge at

the lowest error, resulting in weights and biases close to desired values (IBM, 2020).

2.2.1 DNN

Deep neural network (DNN) is a type of neural network which consists of two or more hidden

layers between the input and output layers, and uses backpropagation algorithms to learn.

CHAPTER 2. MACHINE LEARNING 15

This architecture is able to model complex non-linear relationships. The additional hidden lay-

ers enable values from previous layers, giving the model a chance to address more complex data

than a shallow network. According to Rolnick and Tegmark (2018) a deeper network has more

power than a shallower one: "The total number of neurons m required to approximate natural

classes of multivariate polynomials of n variables grows only linearly with n for deep neural net-

works, but grows exponentially when merely a single hidden layer is allowed. When the number

of hidden layers is increased from 1 to k, the neuron requirement grows exponentially not with n

but with n1/k , suggesting that the minimum number of layers required for practical expressibility

grows only logarithmically with n."

2.2.2 CNN

Convolutional neural networks (CNN) is built up with with an approximately similar architec-

ture as DNN. They differ from each other as CNN includes convolutional layers which employs

the the mathematical operation convolution. In reality, convolution layers determines the out-

put of neurons that are connected to local regions of the input neurons. Each convolutional

neuron processes data only from its receptive field. Determination of the output is based on

calculation of the dot product between the weights and the connected region of the input. ReLU

(rectified linear unit) is applied to the output on similar grounds as the sigmoid function in or-

der to find the activation from the previous layer. A pooling layer can be added to downsample

the given input to reduce the number of parameters in that activation. The reader is referred to

(O’Shea and Nash, 2015) for a more in depth introduction to CNN.

CHAPTER 2. MACHINE LEARNING 16

Figure 2.3: Principle of a CNN model for classification of images. The model consists of an input layer, convolution
and pooling layer, hidden layers and output layer. Figure extracted from (Shyamel and Pingel, 2017).

2.2.3 ELM

The extreme learning machine (ELM) randomly sets the weight and biases for the input layer

which are not changed. By randomly choosing weights to the input layer, an improvement of

the generalization properties of the solution may be obtained as they produce weakly corre-

lated features for the hidden layer. As weights and biases are randomly set, the output weights

and input weights are independent of each other and gives a direct solution without iteration,

unlike backpropagation. Since no iteration is performed, the calculation time is greatly reduced

compared to other neural networks (Lai et al., 2020).

The architecture of an ELM model can be looked at as a single hidden layer feedforward neural

network. Figure 2.2 gives the principal foundation of how this might look like. A description can

be formulated as:

For N distinct training samples (xi ,ti), i ∈ [[1, N]] and L hidden neurons, the formula for the

estimated outputs with ELM is considered to be:

yi =
L∑

j=1

β jσ(w j xi +b j) = ti +εi , i ∈ [[1, N]] (2.13)

where yi are the estimated outputs, ti the true outputs, xi inputs, σ the activation function

sigmoid, w j the input weights, b j the biases, β j the output weights and εi the noise.

CHAPTER 2. MACHINE LEARNING 17

Neurons in the hidden layer transform data from the input layer in two steps. By using the

weights and biases from the input layer, data is first projected onto the hidden layer. Then the

data is transformed by an activation function. A non-linear activation function is preferred as

it increases the learning capability of the ELM algorithm (Akusok et al., 2015). The transformed

data is thereafter used to find weights for the output layer. The algorithm only includes nodes

that reduce the cost function.

ELM is a regression model which can be adapted to a classification model (Akusok et al., 2015).

A target is created for each class if they are categorical and independent of each other. The

targets are set to 1 if it is correct, and 0 if it is incorrect. Prediction of which class is correct is set

accordingly to what target has the largest ELM output. The hidden layer output weights are the

global optimal solution solved by the least square method to avoid falling into the dilemma of

local optimum (Lai et al., 2020).

Selecting the correct model structure can prevent overfitting and accumulation of noise by lim-

iting the ELM learning ability. A model with overfitting gives a worse generalized performance.

An optimal generalized performance can be obtained by tuning model parameters or adding a

regularization to the model.

2.3 Decision tree algorithms

Decision tree are part of supervised learning algorithms and are commonly used in classifica-

tion problems and regression problems. Through learning simple decision rules from training

data, the goal is to create a training model that can predict class or value of the desired target.

These models aim to divide a search space into a number of subsets in a top-down recursive

way (Zhong, 2016). Classes are achieved through sorting from the root node to the leaf nodes

where the classification is provided. Figure 2.4 gives a basic understanding of the decision tree

structure.

The nodes are divided into a subset of nodes by determining which way of separation is best

through the Gini index. Gini index can be understood as a cost function that evaluates splits in

the data set, and can be calculated by subtracting the sum of the squared probabilities of each

CHAPTER 2. MACHINE LEARNING 18

Root node

Decision node Decision node

Decision nodeLeaf node

Leaf node Leaf node

Leaf node Leaf node

Figure 2.4: A principal sketch of how a decision tree algorithm can be structured. The model starts at the root
node which represents the entire sample base and is divided into two or more internal nodes. These represent an
attribute, the branches represent a decision rule and each leaf node represents outcomes.

class from one (Raileanu and Stoffel, 2004):

Gi ni = 1−
C∑

i=1
(pi)2 −

C∑
i=1

(qi)2 (2.14)

where pi is the probability of success and qi is the probability of failure.

2.3.1 RF

Random Forests are made out of decision trees. Combining the simplicity of these trees with

flexibility gives a huge improvement in accuracy. A large number of these decision trees operat-

ing as an ensemble forms the Random Forest. The basic idea for class prediction is to let each

tree in the forest predict a class, where the class with the majority of votes is chosen (Pal, 2005).

The general architecture behind a Random Forest algorithm can be described as follows. A boot-

strapped data set is created from the original full dataset. The bootstrapped dataset is the same

size as the original and consists of randomly selected samples from the original dataset. The

same sample can be picked more than once. Each bootstrapped dataset is grown into a tree like

the decision trees are, but with one important modification: instead of choosing the best split

from each node among all the variables, a random subset of the variables are chosen and the

CHAPTER 2. MACHINE LEARNING 19

best split is made among those sampled variables. As the bootstrapped datasets are randomly

generated and only a subset of the variables are considered at each step, the trees will vary from

each other. This process is known as bagging (Liaw et al., 2002). The feature randomness this

gives results in higher variation and diversification among the trees generated.

Commonly, 1/3 of the data from the original dataset does not end up in the bootstrapped dataset

(Breiman, 2001). This is called the "out-of-bag" dataset. By running these "out-of-bag" datasets

through each bootstrap tree, an estimation of the error rate may be obtained and an accuracy

of the Random Forest algorithm can be estimated. For more in depth information regarding

Random Forests, see (Breiman, 2001).

2.3.2 XGB

Similar to Random Forests, extreme gradient boost (XGB) is based on an ensemble of decision

trees. Decision tree based algorithms are considered to perform really good when it comes to

small and medium structured or tabular data.

Making an initial prediction is the first step in order to fit a XGB model to the dataset. The initial

prediction is by default set to 0.5, meaning that for soil classification the probability of a sam-

ple in the data set being classified as quick clay is 50 %, but can in fact be set to any desirable

value. Samples in the dataset that are labeled as quick clay and other material, will have ob-

served values of 1 and 0 respectively. Residuals measures how good the initial prediction is, and

are defined as the differences between the observed and predicted values (Chen and Guestrin,

2016a).

Furthermore, an XGB tree is fit to these residuals. A XGB classification tree starts out as a single

leaf containing the calculated similarity score of the residuals. For classification purposes the

similarity score can be calculated by

(
∑

Resi duali)2∑
[Pr evi ousPr obabi l i t yi × (1−Pr evi ousPr obabi l i t yi)]+λ (2.15)

CHAPTER 2. MACHINE LEARNING 20

where λ is a regularization parameter which reduces the prediction’s sensitivity to an individual

observation (Chen and Guestrin, 2016a).

Similarity scores are calculated for each node and added in order to determine the gain. The gain

value controls the manner of which the tree is built. XGB trees are always grown to max depth

first. The algorithms limits the tree afterwards by pruning. Nodes are pruned if the splitting of a

node leads to negative gain due to the regularization.

Output values of each tree is calculated in the same manner as similarity scores in equation

2.15, although the numerator (sum of residuals) are not squared. New predictions are made by

implementing gradient boost for classification (Chen and Guestrin, 2016a). The new predictions

are thereafter used to grow new decision trees based on the new residuals. This process repeats

until the residuals (difference between observed and predicted values) are very small, or the

maximum number of trees are reached.

Tianqi Chen and Carlos Guestrin presented a paper on XGB in 2016 (Chen and Guestrin, 2016a).

A number of explanatory sites have been made since then, for example the YouTube channel

StatQuest with Josh Starmer (Starmer, 2020). For a more detailed review of the model, see these

references.

2.4 Nearest neighbor algorithms

One of the earliest made machine learning classification algorithms is nearest neighbor classifi-

cation. It can be applied in a broad way while still achieving a highly accurate score. The method

aims to label unknown objectives while distinguishing two or more destination classes. Classi-

fication in general requires some sort of training data with given labels, making it a supervised

learning method. The simplest variant is based upon an objective that inherits the label from

the closest sample in the training set (Seidl et al., 2009).

CHAPTER 2. MACHINE LEARNING 21

2.4.1 KNN

K-nearest neighbor (KNN) is a variant of this classification algorithm, but unlike nearest neigh-

bor it’s extended to make a decision from the k closest neighboring points for any k > 1. The

rule of decision combines labels from these k samples by simple majority voting or by weighting

closer points more than more distant points in order to decide the predicted label for the new

object. Figure 2.5 illustrates how the KNN method classifies a new point.

Figure 2.5: Graphic illustration of the KNN method with k = 3. Illustration extracted from (Berrum and Skaar, 2020).

KNN was the machine learning algorithm used in the project thesis Berrum and Skaar (2020),

and a deeper understanding of the model can be found there, or in the book "Encyclopedia of

Database Systems" (Seidl et al., 2009).

2.4.2 SVM

Support vector machines (SVM) is another algorithm regularly used for classification problems.

The main objective of the algorithm is to determine a hyperplane that distinctly classifies the

data points.

There are several ways to distinguish two classes of data points. SVM constructs hyperplanes (a

CHAPTER 2. MACHINE LEARNING 22

seperating threshold) to seperate the classes. The hyperplane is determined based on a maxi-

mal margin classifier. The margin is defined as the shortest distance between the data point of

each class and the hyperplane. Implementation of the maximum margin provides some rein-

forcement so that future data points can be classified with more confidence. However, maximal

margin classifiers are very sensitive to outliers in the data set. To handle faulty data points, SVM

algorithms are modified by a "soft margin" that allow some data points to cross the separating

hyperplane without affecting the final result (Noble, 2006). The hinge loss function on a training

set (xi , yi) is implemented:

max
(
0,1− yi

(
w T xi −b

))
(2.16)

where:

yi = [-1,1] and indicates which class xi belongs to

xi = p-dimensional vector

w = normal vector to the hyperplane

b = bias

If xi lies on the correct side of the margin, the function equals 0. Data on the wrong side of the

margin gives a value proportional to the distance from the margin (Zhang et al., 2004). Cross

validation is implemented to determine what soft margin results in the best classification. Im-

plementing this soft margin is called a support vector classifier. The data points on the edge and

within the soft margin are called support vectors. Optimization is achieved by minimizing the

expression:

[
1

n

n∑
i=1

max
(
0,1− yi

(
w T xi −b

))]+λ‖w‖ (2.17)

where:

λ= parameter which ensures xi lies on the correct side of the margin

CHAPTER 2. MACHINE LEARNING 23

In situations where the dataset has a lot of variation and overlap, the separation of the classes

based on hyperplanes might be problematic as the number of misclassifications increases. The

kernel function provides a solution to this problem by moving the data into a higher dimension

(Zhang et al., 2004) where the support vector classifier easier can separate the data.

Chapter 3

Presentation of datasets

Three datasets are used to train, test and compare the machine learning algorithms to the in-

situ layering decided by sampling and laboratory investigations. Dataset I consists of 32 CPTus

from the NGTS Tiller-Flotten site. Dataset II consists of six CPTu soundings from six different lo-

cations in Norway. Dataset III consists of seven CPTus from Saksvik in Trøndelag. The database

has three different sounding methods, namely SCPTu (CPTu with recorded shear waves), RCPTu

(CPTu with recorded resistivity) and CPTu. Raw data graphs from each individual sounding can

be found in the appendix, see A. All three datasets has highly sensitive to quick clay and other

material present. In this Master’s thesis only two groups of materials are considered in order to

put emphasize on quick clay detection rather than predicting all types of soil.

3.1 Dataset I: NGTS Tiller-Flotten

NGTS (Norwegian Geo-Test Site) located at Tiller-Flotten is one of five established test sites

involved in the R&D Program Norwegian Geo-Test Sites – NGTS supported by The Research

Council of Norway Infrastructure. NGTS is lead by NGI together with NTNU, SINTEF/UNIS and

Statens Vegvesen with the intention of testing and verifying new methods for ground investiga-

tions and field procedures. Tiller-Flotten was chosen as a testing site for the program due to the

presence of highly sensitive quick clay located close to Trondheim.

24

CHAPTER 3. PRESENTATION OF DATASETS 25

Figure 3.1 shows a quaternary map from the area surrounding the NGTS test site at Tiller-Flotten

(NGU, 2021). The map indicates mostly marine deposits together with fluvial deposits and bogs.

Marine sediments emerged in the area as a result of the glacio-isostatic uplift where melting ice

caps relieved weight on land. After the marine clay was raised above sea level its been exposed

to fresh groundwater flow leaching the salt ions, resulting in a sensitive clay. Soundings at the

research site shows a sedimentation thickness of more than 50 m (L’Heureux et al., 2019).

Figure 3.1: Quaternary map from NGU at the location of NGTS test site at Tiller-Flotten (NGU, 2021)

The layering of the site shows that the top 2 m consists of a desiccated and weathered clay. From

2 to 7.5 m depth lies a low to medium sensitive clay. 7.5 to 20 m consists of a very sensitive clay.

Groundwater level in the area is located between 1 to 2 m below ground level and is underhy-

drostatic (approximately 20% of hydrostatic pore pressure) as a result of a downwards gradient

due to groundwater flow and differences in elevation. The water content varies between 30-50

% and the bulk unit weight varies between 17-19 kN /m3. Research shows that the layering at

the test site is relatively homogeneous, and therefore mean values of the soil profile, stratigra-

phy and index properties have been used. The reader is referred to (L’Heureux et al., 2019) for a

CHAPTER 3. PRESENTATION OF DATASETS 26

more thorough representation of the soil characteristics at the NGTS Tiller-Flotten site.

Figure 3.2: Location of the CPTU-soundings at Tiller-Flotten NGTS test site. Figure extracted from the NGTS quick-
clay project, http://www.geocalcs.com/datamap.

Figure 3.2 shows the location of the CPTu tests at NGTS Tiller-Flotten site. The dataset consists

of 33 CPTu tests. As is evident, the majority of the tests are located in a cluster to the south-east,

while three tests are farther north-west. CPTu test TILC18 has been discarded from this data set

as the test showed an elevated sleeve friction compared to the rest. Figure 3.3 shows a summary

of the recorded values for the 32 CPTu tests used in the Tiller-Flotten dataset, the in-situ pore

pressure u0 and the soil layering at the site. The entirety of the data set has been limited to 20 m

depth as the recorded CPTu values farther down showed more variance.

CHAPTER 3. PRESENTATION OF DATASETS 27

Figure 3.3: Summary of 32 CPTu tests at Tiller-Flotten NGTS test site. The diagrams show corrected tip resistance
qt , sleeve friction fs , pore pressure plotted versus depth and soil layering profile.

Table 3.1 and figure 3.4 shows the number of data points in the Tiller-Flotten data set and which

class they are labeled as. Even though there are more quick clay points, they are grouped in a

smaller area in figure 3.4 compared to the other material material. Around 60 % of the dataset

are labeled as quick clay due to the Tiller-Flotten site having a large quick clay layer starting

at approximately 7.5 m depth. The ground conditions are rather homogeneous, which can be

illustrated by the low variance in the quick clay data. The majority of the quick clay points are

found in an area with boundaries Qt < 10 and Fr < 0.05.

CHAPTER 3. PRESENTATION OF DATASETS 28

Table 3.1: Number of data points labeled as either quick clay or other material from NGTS Tiller-Flotten CPTus.
The majority of data points are labeled as quick clay, as the site layering shows a surplus of quick clay compared to
other material.

Quick clay Other
N points 68926 40113
Portion 63.2 % 36.8 %

Figure 3.4: 3D plot of all CPTu data points from Tiller-Flotten with parameters Qt , Fr , Bq . Red points are quick clay
(points below 7.5 meters) and blue points are other material (points above 7.5 meters).

CHAPTER 3. PRESENTATION OF DATASETS 29

3.2 Dataset II: Multiple sites located in Norway.

Dataset II consists of CPTu soundings from six different sites around Norway. The sites con-

cerned are Onsøy, Koa, Skatval, Nybakk-Slomarka, E6 Kvithammer-Åsen and FRE16 (Ringeriks-

banen and E16 - the joint railway & road project). This is the same dataset used in the project

thesis TBA4510 (Berrum and Skaar, 2020). Each site consists solely of one CPTu. Figure 3.5

shows the approximate location of each site used in the dataset.

Figure 3.5: Overview of the approximate site locations that forms dataset II. The map is from Norgeskart (Kartverket,
2021).

CHAPTER 3. PRESENTATION OF DATASETS 30

Table 3.2: Summary of basic site properties at the six different locations in dataset II used in training the ML models.

Parameter Onsøy Koa Fre16 E6 Skatval Nybakk-
Slomarka

Unit weight γ (kN /m3) 16-18 19.4 18-20 19-20 19.4 18.5

Water content (%) 65 30 27-38 25-38 32 35

Sensitivity 5-10 13-63 240-510 4-11 5-50 5-150

Plasticity index IP 25-45 8-25 6-18 11-24 11-17 8-17

Overconsolidation ratio OCR 1.2-1.7 3-4 2-4.2 1.2-1.8 2-4 2-6

Clay content (%) 50-65 50-53 (-) (-) 35-43 40-47

Unlike the Tiller-Flotten dataset which have quite homogeneous soil layering and properties,

dataset II consist of heterogeneous soil layering profiles and properties as its made up of six sites

located at different parts of Norway. Table 3.2 summarize the variance of the soil parameters at

the different sites which make up dataset II.

Onsøy is part of NGTS program similar to Tiller-Flotten, however it is classified as a soft clay site

with no recorded quick clay present. The E6 site also lack presence of quick clay, and consists

of soft to medium firm clay. The remaining sites in dataset II however have presence of quick

clay. Soil layering are determined by sampling and laboratory investigations from each site and

is visualized in figure 3.6.

Figure 3.6: Soil layering with depth for each site in dataset II.

CHAPTER 3. PRESENTATION OF DATASETS 31

Figure 3.7: Summary of six CPTu tests from dataset II. The diagrams show recorded tip resistance qt , sleeve friction
fs and pore pressure u2 plotted versus depth.

A presentation of the recorded values qt , fs and u2 for the six CPTu tests in dataset II is shown in

Figure 3.7. It can clearly be seen that dataset II have CPTu raw data with more variance than the

dataset from NGTS Tiller-Flotten.

Dataset II are split into two different approaches in order to get a more complete understand-

ing of how the different machine learning models work. Approach 1 uses all data points from

dataset II as basis for training the machine learning algorithms. Table 3.3 shows the total num-

ber of points and the portion ratio between the two classes. Approach 2 uses a reduced number

of data points from dataset II where only one point per meter of CPTu data is included. Figure

3.8 visualizes the total number of data points in dataset II and which class they are labeled as.

Unlike the Tiller-Flotten site, a more heterogeneous dataset will usually give more generalizable

models.

CHAPTER 3. PRESENTATION OF DATASETS 32

Figure 3.8: 3D representation of all CPTu data points from dataset II. Parameters Qt , Fr and Bq are normalized and
plotted in a range from -1 to 1, see chap 3.4.1 for how the normalization are done.

Table 3.3: Approach 1 consists of all data points labeled as either quick clay or other material from CPTus in dataset
II. Approach 2 consists of a reduced number of data points labeled either as quick clay or other material.

Full dataset Quick clay Other
N points 3810 6471
Portion 37.1 % 62.9 %

Reduced dataset Quick clay Other
N points 50 64
Portion 43.8 % 56.1 %

For further information regarding the different sites in dataset II, the reader is referred to the

following articles: Skatval and Koa (Paniagua et al., 2019), Nybakk-Slomarka (L’Heureux et al.,

2018) and Onsøy (Gundersen et al., 2019). Boring profiles for E6 Kvithammar-Åsen and Fre16

are included in the appendix, see figures C.1 and C.2 respectively.

CHAPTER 3. PRESENTATION OF DATASETS 33

3.3 Dataset III: Saksvik

Dataset III consists of seven CPTu soundings from Saksvik in Malvik kommune, Norway. The

geotechnical ground investigations have been carried out by NGI and Rambøll and are con-

nected to a new treatment plant that will partly be founded on a quick clay zone. Soil layering is

varying, although a common profile is a stiff upper layer consisting of sand, silt and weathered

clay. Below is a soft to medium firm clay. Only borehole 2 have confirmed presence of quick

clay from sampling and laboratory testing, although there might also be quick clay in other ar-

eas. There is also brittle material present. Groundwater level is located 1 to 2 m below ground

level and shows slightly over hydrostatic values with depth. Pore pressure measurements can

be found in the appendix D.1. Water content in the clay is approximately 30 %, with plasticity

index at 10 %. Sensitivity varies from 2 to 98.

Figure 3.9: Map of Saksvik site shows the approximate area of CPTu soundings, quick clay zone and a nearby rock
surface. The map is modified from attachment M page 2 in (L’Heureux, 2013).

Quaternary maps from NGU indicates mostly marine sea deposits and thick ocean deposits,

which is an indication that quick clay can occur. Figure 3.9 shows a map from the surrounding

CHAPTER 3. PRESENTATION OF DATASETS 34

Figure 3.10: Map over geotechnical investigations at the Saksvik site.

area at Saksvik. There is a quick clay zone in Saksvik with medium degree of danger. The lo-

cations of the CPTus at Saksvik is given in Figure 3.10, and a summary of the seven CPTu tests

used in dataset III are given in Figure 3.12. As seen from the map, many of the CPTu in the area

is located in the quick clay zone.

Sampling have not been continuous, as some boreholes only have bag samples or no samples

at all. A complete soil layering profile are therefore hard to produce, and some assumptions in

the interpretation have been made, see Figure 3.11. CPTu 8R, 9 and S9 all consists of soil from

depths where there are no samples. Quick or brittle clay may be present, however it haven’t been

determined by laboratory testing and it is therefore not possible to know for certain. Available

total soundings from Saksvik are given in appendix B and index testing data are given in ap-

pendix C. In section 4.3 the depths with unknown lab data will be analyzed as if they were either

completely quick clay or completely non quick clay.

Figure 3.12 gives a summary of the raw CPTu data from Saksvik and show high variance in both

sounding depth and recorded values. Compared to Tiller-Flotten it is a more heterogeneous site

CHAPTER 3. PRESENTATION OF DATASETS 35

Figure 3.11: Soil layering of the CPTus at Saksvik.

and should make it more difficult for the models to predict correctly.

Figure 3.12: Summary of the seven CPTu tests from dataset III. The diagrams show corrected tip resistance qt ,
sleeve friction fs and pore pressure u2 plotted versus depth.

CHAPTER 3. PRESENTATION OF DATASETS 36

3.4 Data preparation

The CPTu performs a continues measurement of pore pressure, tip resistance and side friction

through the soil and the data is gathered into raw data files. It is normally not possible to detect

brittle or quick clay from the measured data alone, therefore the data is further processed to di-

mensionless, derived values which account for the overburden pressure at each depth (Sandven

et al., 2015). Using these values combined with additional normalization and filtering should

make it easier for the models to classify the soil.

3.4.1 Parameter choice and normalization

The raw data was initially stored in Microsoft Excel files, so a script was made to read it into

Python before converting it to a comma separated value format (csv). The Excel files contained

CPTu data about depth, tip resistance qc , side friction fs , pore pressure u0 and u2 and the value

of the area ratio α. The tip resistance is corrected by the effects of pore pressure on the conical

tip:

qt = qc + (1−α) ·u2 (3.1)

Four parameters were initially considered as candidates to be used as input for the machine

learning models. Qt , Fr and Bq are commonly used in existing soil classification methods, and

were naturally good candidates. Godoy (2019) adopted U2 which is another pore pressure pa-

rameter, so this was also considered. After initial testing however, the three first parameters

were preferred as it is easier to visualize three parameters than four, and the additional param-

eter didn’t prove to increase accuracy. Valsson (2019) performed a parameter selection study

which shows that three parameters performed best, and using more parameters did not add

value to the interpretation, but instead confuses the models. Since Bq seems to be the more

popular of the pore pressure parameters it was preferred over U2.

Qt =
qt −p ′

0

p0
(3.2)

CHAPTER 3. PRESENTATION OF DATASETS 37

Fr = fs

qt −p ′
0

(3.3)

Bq = u2 −u0

qt −p ′
0

(3.4)

U2 = u2 −u0

p0
(3.5)

where:

qt = corrected cone resistance

p0 = total overburden stress

p ′
0 = effective overburden stress

fs = side friction

u0 = in-situ pore pressure

u2 = measured pore pressure

When training the models it is beneficial to truncate the parameter space to a suitable range

such as 0 to 1 or -1 to 1. The parameters will in this case contribute more equally to the decision

of the model which is a desirable feature. The visualization of the training data also becomes

simpler and negates the need for logarithmic scaling. The normalization of the parameters was

chosen as follows:

Qt ,nor mali zed = Qt −Q∗
t

Q∗
t

= Qt −7.224

7.224
(3.6)

Fr,nor mali zed = Fr −F∗
r

F∗
r

= Fr −0.0194

0.0194
(3.7)

Bq,nor mali zed =
Bq −B∗

q

B∗
q

= Bq −0.82

0.82
(3.8)

CHAPTER 3. PRESENTATION OF DATASETS 38

Q∗
t , F∗

r and B∗
q can be looked at as some typical values found in soft clays and are calculated

from the average values in dataset II. While the normalization doesn’t force every point in the

dataset into a -1 to 1 range, it is assumed that the vast majority of quick clay points should exist

in this range. Table 3.4 shows how the normalized values transforms back to the actual Qt , Fr

and Bq parameters.

Table 3.4: Conversion table from normalized values back to the actual parameters. Note that when the normalized
value is 0, Qt = Q∗

t and similar for the others. A normalized value of 1 gives Qt = 2∗Q∗
t etc.

Normalized values -1 -0.5 0 0.5 1
Qt 0 3.6 7.2 10.8 14.4
Fr 0 % 0.97 % 1.94 % 2.91 % 3.88 %
Bq 0 0.41 0.82 1.43 1.64

For the training data, it was used a smoothing filter to reduce unwanted noise from the raw

data. Both a running median filter and a running average filter was considered. As seen in

figures 3.13a and 3.13b, the moving median filter is more able to filter out the sudden spikes

which made it preferable over the moving average filter.

(a) Moving average filter. (b) Moving median filter.

Figure 3.13: Comparison on how a moving average and a moving median in orange filters out unwanted noise from
the original Qnor m

t plot from Saksvik CPTu 2 in blue.

CHAPTER 3. PRESENTATION OF DATASETS 39

3.5 The impact of faulty CPTu reading and errors in dataset

NGF (Norwegian Geotechnical Society) have developed a guide for performing CPTu sound-

ings. Equipment and procedures for CPTu are selected based on the desired application class.

There are four application classes, which depend on ground conditions and required accuracy.

The classes range from very soft soil profiles to mixed and layered soil profiles. Any source of

error are taken into account and must be less than the permitted minimum accuracy for the

respective application class (Bæverfjord et al., 2010).

According to (Sandven et al., 2015), a number of factors such as equipment selection, planning

and execution affect the measurement accuracy of CPTu:

• Probe measuring range and resolution

• Accuracy of calibration

• Temperature effect on probe and electric meters

• Zero point deviation for electric meters

• Saturation of pore pressure gauge

• Deviation in inclination

• Wear on equipment

Inaccuracies from CPTu data may lead to errors in machine learning models. Errors in raw data

can lead to data points in the dataset being misclassified and thus confuse the models, resulting

in a less accurate model prediction. An example is when the pore pressure gauge is not properly

saturated and suction occurs, which affect the pore pressure readings.

High variance in CPTu data can give uncertain results. Figure 3.14 shows an example CPTu that

have noisy data from an approximate depth of 24 m. Such noisy data may lead to difficulties

for the models to create a decision barrier and therefore affects if the models correctly classify

according to the desirable labels.

The machine learning models are also affected by the laboratory and in-situ data at each site.

Correct values of soil density and pore pressure are important for the accuracy of the models, as

CHAPTER 3. PRESENTATION OF DATASETS 40

Figure 3.14: Example of a noisy CPTu with high variance in recorded values. CPTu from Fre16 (Ringeriksbanen and
E16 - the joint railway & road project).

equations 3.2, 3.3 and 3.4 heavily rely on overburden stress and pore pressure. A slight deviation

in for example pore pressure interpretation may lead to a consequential error in the normal-

ized soil parameters. For example, piezometer recordings at NGTS Tiller-Flotten site show pore

pressure 20% (approximately 2 kPa per meter) of hydrostatic conditions as a result of down-

CHAPTER 3. PRESENTATION OF DATASETS 41

wards gradient flow. Assumptions of hydrostatic pore pressure would in this case result in huge

deviations.

Deficient laboratory data requires evaluation and engineering interpretation. Interpolation is

widely used in engineering practice where soil information is missing. Interpolation in itself is

a source of uncertainty, and deviation from real values might be large.

It is also worth noting that the ML algorithms in this thesis are supervised, meaning that the

label for each prediction is known beforehand. The predicted values from ML are compared to

the defined labels, or true values, which in this case is quick clay or other material. These "true

values" also have a possibility for errors, as they are engineering interpretations from field tests

and laboratory investigations and may deviate from the real values.

CHAPTER 3. PRESENTATION OF DATASETS 42

3.6 Implementation in Python

After the datasets were processed and ready to be used, a procedure to train and test the ML

models was developed in python. As a time saving measure, only algorithms that already had ex-

isting implementation were considered. Some models were suggested by the supervisor, while

some were included due to them being familiar beforehand.

Due to the amount of algorithms tested, significant work was put into understanding and tuning

parameters. Experimentation with different values was needed to improve the performance of

the models, however it was limited to the most important variables.

A procedure for training and testing the models on dataset I was developed inspired by the ap-

proach of a previous paper using this dataset (Godoy et al., 2020). Subsets of 5 CPTus picked

randomly from the entire set were selected as training data to test an individual CPTu. This was

repeated for all 32 CPTus with code ensuring that the testing CPTu was not a part of the testing

set.

To visualize how the different algorithms separate the two classes, the plot range was meshed

with points that were inputted to the trained machine learning models. In the 2D plots all points

which the models classified as quick clay were scattered and the border between the classes were

highlighted. For the 3D plots only the boundary were shown as plotting all the points would

block out other parts of the figure.

Chapter 4

Results

The result chapter in this thesis is divided into three sections. The first consists of training and

testing the algorithms on the NGTS Tiller-Flotten dataset (dataset I). Here the choice of model

parameters are discussed in detail before analyzing plots of how quickly the algorithms learn to

classify quick clay. The way each model separates the two classes are visualized through plots in

two and three dimensions, and their shapes are evaluated from a psychical standpoint. While

each algorithm have two 2D models, only one will be discussed in this section while the remain-

ing can be found in the appendix. The two dimensional plots in the text will be showing the

normalized parameters while the plots in the appendix E will show the parameters transformed

back to their original values.

The second section involve training the models on dataset II (described in section 3.2), and

testing them on dataset I. The most interesting results are plotted and discussed in detail, while

the performance of the different models are summarized in table format.

Lastly, the third section will be a validation of the trained models on the CPTus from Saksvik

(dataset III). The performance will be shown through tables and profiles, and will be discussed

in detail.

43

CHAPTER 4. RESULTS 44

4.1 ML models trained and tested on dataset I

When training and testing on the same dataset it is necessary to figure out a suitable number

for how many CPTus the models should be trained on. To solve this an analysis was performed

to evaluate how the accuracy depended on how many CPTus the algorithm were trained on.

Models trained with different amount of CPTus were tested on the CPTus not included in the

training sets and their performances were listed. The results were visualized in box plot, see fig-

ure 4.1. The bottom and top of the boxes represent the 25 % and 75 % percentiles respectively,

while the whiskers, which are the lines extending beyond the boxes, represent the 5 % and 95

% percentiles. The orange line inside the boxes are the median value of the performance. The

percentiles for the whiskers were set manually as it is common in engineering practice to de-

sign for data that is 95% certain, for example the characteristic strength of building materials

(CEN, 1992). The distance between the 75 % percentile and the 25 % percentiles is called the

interquartile range (IQR) and says how big the spread of the data is (Wickham and Stryjewski,

2012).

A problem that occurs when training models with a high amount of CPTus is that there is few

remaining CPTus to test them on. This would in practice mean that models trained on 30 CPTus

only can be tested on the two remaining. To obtain more samples the procedure was repeated

five times for each algorithm, increasing the sample size to ten for the models trained with 30

CPTus. This in turn resulted in the need to train 150 models for every algorithm which required

significant computational time. A summary of the run time of the algorithms is given in table

4.1. Note that it is only in this analysis that such high amounts of models are to be trained,

meaning that such a high time consumption in practical use will not occur. It does however

show how big the difference between the "fast" and "slow" algorithms can be.

Table 4.1: Total run time of each algorithm.

Algorithm Total run time [seconds]
ELM 16.9
XGB 47.5
RF 39.2

SVM 210.8
KNN 176.8
DNN 1072.8
CNN 3992.9

CHAPTER 4. RESULTS 45

Deep neural network

The deep neural network (DNN) model was implemented using the "sequential" class from the

Keras library (Chollet et al., 2015) with two hidden layers. As there is no theoretical answer to

how many layers and neurons to choose (Winston, 2015), some experimentation found that a

total of 50 neurons would be more than enough for the task at hand. The sigmoid function,

equation 2.5, was chosen as activation for the hidden layers while softmax, equation 2.6, was

used for the output layer. For the DNN algorithm, a compromise between accuracy and com-

putation time has to be made when choosing the learning rate of the network. The value for this

parameter was set to 0.1, meaning that the change in the weight vector is scaled down during

the back propagation. To prevent excess time use, early stoppage was configured to halt the

training when the accuracy didn’t improve within 50 iterations.

Figure 4.1: Performance of DNN depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

In figure 4.1 the performance of DNN can be seen converging after it is trained on four or more

CPTus. The 5 % percentiles seem to hover around the 90 % accuracy mark while both the median

and the 25 % percentiles end up above 95 % accuracy.

Figure 4.2 shows how DNN classifies the quick clay using the two parameters Qt and Fr normal-

ized. The training data consists of 5 CPTus, however all remaining points of the dataset is also

plotted to illustrate how it performs as a whole. The shape of the decision barrier suggests that

CHAPTER 4. RESULTS 46

Figure 4.2: Normalized Qt -Fr plot of a DNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model classi-
fies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

the model is less likely to classify points as quick clay when Fr increases.

The plot in figure 4.3 illustrates how DNN encapsulates the quick clay zone in a three dimen-

sional Qt -Fr -Bq normalized space. The green shape marks where the model starts classifying

points as quick clay. While it separates the dataset quite well, the direction of the left side of the

barrier seem to indicate that it is less likely to classify points as quick clay when Bq increases

and Qt decreases. This would in turn not make for a good generalized model.

CHAPTER 4. RESULTS 47

Figure 4.3: Normalized Qt -Fr -Bq plot of a DNN model trained on 5 CPTus from NGTS Tiller-Flotten site. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

Convolutional neural network

When training the convolutional neural network (CNN) it was decided to use a single hidden

layer structure. This was done in an attempt to answer whether it is more beneficial to increase

the layer count as was done with DNN, or to alternatively include convolution filters to the net-

work. 10 filters of length 1 were applied to the convolutional layer with the "Conv1D" function

(Chollet et al., 2015), while 32 neurons were included in the hidden layer. The remaining param-

eters such as the activation functions, learning rate and early stoppage were set to the same as

the DNN for a more direct comparison.

The number of CPTus vs accuracy score graph for the CNN model in figure 4.4 shows consis-

tently good performance from the very beginning and that there’s little to gain adding more than

3 CPTus. The IQR are almost constant throughout and the median hover around 97 % accuracy.

CHAPTER 4. RESULTS 48

Figure 4.4: Performance of CNN depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses all Qt , Fr and Bq normalized for classification.

Figure 4.5: Normalized Qt -Bq plot of a CNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model clas-
sifies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

The three dimensional plot of the CNN model can be seen in figure 4.6 and shows how the

algorithms separate the two classes. The shape allows classification of quick clay for low values

of Bq , however this requires low values for both Qt and Fr . For higher values of Bq the model

CHAPTER 4. RESULTS 49

Figure 4.6: Normalized Qt -Fr -Bq plot of a CNN model trained on 5 CPTus from NGTS Tiller-Flotten site. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

is more likely to classify points as quick clay, as can be seen by the shape extending outwards

at the top. From the plot some points are clearly misclassified, however this is an implication

of the algorithm attempting to prevent overfitting. Notice that the horizontal section of the

decision barrier in the top right occurs due to the plot range being -1 to 1. The overall impression

CNN gives is that it has the generalizability of DNN, but that the filters gives it an additional

perspective making it less likely to overfit the data.

CHAPTER 4. RESULTS 50

Extreme learning machine

Due to the amount of randomness involved when training models with the extreme learning

machine (ELM), tuning of the model parameters was mostly dependent on a try and failure ap-

proach. The activation function used in the hidden layer was set to the radial basis function with

the euclidean distance as kernel. A paper documenting the algorithm (Akusok et al., 2015), sug-

gests using this function for tasks where the dependency between input parameters (features)

and the output labels are complex. It was discovered that limiting the amount of neurons to

12 reduced the amount of noise in the solution. Since this dataset consists of points which are

clustered in certain locations of 3D space, the shape of the decision barrier in many situations

ended up being very senseless while still being able to separate the two classes.

Figure 4.7: Performance of ELM depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

The performance when training and testing ELM on NGTS Tiller-Flotten is shown in figure 4.7.

The accuracy starts converging somewhat after the models are trained with at least 5 CPTus,

however there still some visible variance remaining. While the 5th percentile is above 90 % for

the majority of the training, the 95th percentile fell below 99 % for the most of them as well.

Since the algorithm produced different solution for every run, several plots had to be considered

as potential candidates to be presented. One such run with normalized Qt and Bq as parameters

resulted in the plot in figure 4.8. One notable feature of this model is that it creates a hard

CHAPTER 4. RESULTS 51

Figure 4.8: Normalized Qt -Bq plot of a ELM model trained on 5 CPTus from NGTS Tiller-Flotten. The model classi-
fies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

cap (horizontal line) on quick clay around B nor m
q = -0.25. From the dataset it makes sense to

put a line here, as one CPTu goes from other material to quick at this value. The overall plot

suffers however from overfitting as the barrier above B nor m
q = 0.00 turn inwards, meaning that a

reduction in Qt and an increase in Bq would lead to this area being less likely to be classified as

quick clay.

In three dimension the algorithm creates an even bigger space for possible outcomes. Due to

the low variance in this dataset the model isn’t "penalized" for completely encapsulating either

of the two classes which could lead to bad generalization. Since ELM is originally made to solve

big and diverse datasets (Akusok et al., 2015), it is not expected that it would perform the best

on the NGTS Tiller-Flotten dataset. Figure 4.9 shows how one ELM model looks in 3D. While

it doesn’t necessary overfit the data in this case, the shape is very complex making it hard to

validate from a physical standpoint.

CHAPTER 4. RESULTS 52

Figure 4.9: Normalized Qt -Fr -Bq plot of a ELM model trained on 5 CPTus from NGTS Tiller-Flotten site. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

Random Forest

While many of the previously discussed algorithms required significant tuning of model pa-

rameters, the random forest (RF) classifier along with k-nearest neighbor and support vector

machine from the sci-kit learn library already had their parameters prefilled with appropriate

values. Since they performed well out of the box, time was spared researching how to optimize

them.

The performance of the random forest seem to cap out after being trained on 3 CPTus as seen

in figure 4.10. The variance is low throughout, however some inaccuracy is observed at the end.

When plotting how the algorithm divides the classes in figure 4.11, it becomes clear how the

use of decision trees impact the shape of the decision barrier. While previous plots showed

gradual transition between quick and other material, the use of decision trees makes for the

CHAPTER 4. RESULTS 53

Figure 4.10: Performance of RF depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

Figure 4.11: Normalized Qt -Fr plot of a RF model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies
all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

barrier consisting of straight lines. While this can be a limiting factor in accuracy, the psychical

implication of the decision barrier is easy to interpret. The plot essentially tells us that it is more

likely to classify quick clay as Bq increases, however the middle part of the plot shows the model

CHAPTER 4. RESULTS 54

Figure 4.12: Normalized Qt -Fr -Bq plot of a RF model trained on 5 CPTus from NGTS Tiller-Flotten. Blue points are
training data labeled as other material, red points are training data labeled as quick clay and the green points are
the decision barrier which marks where the algorithm starts classifying quick clay.

overfitting the points to obtain higher accuracies for the dataset.

The three dimensional version of the algorithm in figure 4.12 contain the same characteristics

as was seen in the 2D case with straight plane-like shapes. It can be observed that these planes

are almost exclusively vertical meaning that model doesn’t really make use of the Bq parameter

when separating the classes. For higher values of Fr it is less likely to classify quick clay which

can be observed by the barrier being shifted to the right here. It should however be noticed that

the dependency on Fr is very minor compared to Qt . The Qnor m
t range in which the barrier

exists is around -0.2 to 0.0, indicating that the model overwhelmingly relies on this parameter.

CHAPTER 4. RESULTS 55

Extreme gradient boost

The Extreme gradient boost (XGB) algorithm turned out to be quite complex one to work with.

Since it is built up of several optimization techniques and complex searching methods it con-

sists of a lot of parameters that has to be tuned. To not get too overwhelmed a handful were

considered while the remaining were left as default values. Since it is of interest to create mod-

els that can be generalized beyond the dataset it is trained on, model parameters that impact

how conservative it classifies points were tuned. The values that were chosen are summarized

in table 4.2. Detailed description of how they impact the training can be found in the toolbox

documentation (Chen and Guestrin, 2016b).

Table 4.2: Model parameters used to train XGB.

Parameter Values
Max search depth 6
Learning rate 0.3
Sub sample 0.8
Lambda 2.5
Minimum child weight 2
Number of boosting iterations 100

Figure 4.13: Performance of XGB depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

The performance plot in figure 4.13 shows that XGB is instantly able to predict the dataset ac-

curately, with the 25th percentile percentile starting at an accuracy of 95 %. Small increment in

performance is observed until 6 models trained with 6 CPTus where it eventually caps out. The

CHAPTER 4. RESULTS 56

Figure 4.14: Normalized Qt -Fr plot of a XGB model trained on 5 CPTus from NGTS Tiller-Flotten. The model clas-
sifies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

small IQR indicate that it performs very equal on all the CPTus in the set.

The two dimensional plot in figure 4.14 shows that it barely uses Fr when classifying. This is

clear when observing the range of Qnor m
t in which the decision barrier lays. For F nor m

r > -0.25,

Qt needs only to be slightly lower to be classified as quick clay. While this technique is able

to separate the training data very well, it is not done in a way that would not make sense for a

general model. Changing model parameters to make the model more conservative didn’t make a

significant difference because of the algorithms underlying structure and the homogeneousness

of the dataset.

The three dimensional case in figure 4.15 tells much of the same story with Qnor m
t being the

parameter of most significance. The barrier is slightly pushing outwards for lower values of Fr

and marginally for high Bq . Due to the fact that both XGB and RF are using decision trees they

end up giving very similar results. It is clear that the algorithm is good at predicting the dataset

it is trained on, however a more diverse dataset is required if the objective is make a model that

can be generalized.

CHAPTER 4. RESULTS 57

Figure 4.15: Normalized Qt -Fr -Bq plot of a XGB model trained on 5 CPTus from NGTS Tiller-Flotten. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

K-nearest neighbor

The simple logic behind the k nearest neighbor (KNN) algorithm make for a good initial test case

for the dataset. Realistically, only one model parameter is of significant importance, namely the

k number of neighbors that should be considered. It might sometimes also be of interest to

use a distance weighted sum instead of the highest number of points when deciding the class,

however it was found to not make a significant impact on the dataset so this was not applied.

Choosing a fixed value for k is often used as a starting point, though iterating through different

values could also be an option. The process of iterating could lead to overfitting (Seidl et al.,

2009), so it was ultimately decided to set the k =√
Nsamples

The dependency plot in figure 4.16 shows a very constant accuracy during the training. Due

to the algorithm only considering what the nearest neighbors classes are, it is expected that it

CHAPTER 4. RESULTS 58

Figure 4.16: Performance of KNN depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

Figure 4.17: Normalized Qt -Bq plot of a KNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model
classifies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

should be good at predicting a homogeneous dataset. Since the increased amount of CPTus

during training doesn’t better the performance significantly, more than 3 CPTus to train with

would only marginally increase accuracy.

CHAPTER 4. RESULTS 59

Figure 4.18: Normalized Qt -Fr -Bq plot of a KNN model trained on 5 CPTus from NGTS Tiller-Flotten. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

Looking at the 2D plot of the KNN algorithm in figure 4.17, an almost perfect separation of the

classes can be seen, considering the dataset at hand. The shape of the barrier indicate that it is

more likely to classify quick clay as Bq increases. In the middle however the points in the dataset

forces the barrier to follow them, resulting in overfitting.

The fact that points are classified dependent only on their nearest neighbors, it results in a bar-

rier that are very complex in figure 4.18. The shape is very irregular and difficult to interpret

from a physical standpoint. Avoiding overfitting with KNN might be difficult, however it seems

to reflect the importance of Bq when classifying quick clay. This can be seen by the barrier ex-

panding outwards for higher values of Bq .

CHAPTER 4. RESULTS 60

Support vector machine

For the implementation of the support vector machines (SVM), some tuning of model parame-

ters are generally possible. However, initial testing with the algorithm showed promising results,

and hence no further tuning of parameters were performed. This means that the default values

as described by the sci-kit learn library (Pedregosa et al., 2011) were used.

Figure 4.19: Performance of SVM depending on the number of CPTus from NGTS Tiller-Flotten it is trained on. The
model uses normalized Qt , Fr and Bq for classification.

The performance plot in figure 4.19 shows much of the same picture as with KNN, where it caps

out very quickly without much improvement after adding any more CPTus. The mean accuracy

is above 96% from the first CPTu trained and tested.

In the 2D plot in figure 4.20, the algorithm draws a straight line to separate the classes. While

this result in more misclassifications of points in the dataset, it doesn’t show the same overfitting

tendency some of the other models do. The shape of the decision barrier suggests that it it less

likely to classify quick clay as Fr increases.

While the 2D plot draws a straight line to separate the classes, the 3D plot, as can be seen in

figure 4.21, is represented by a plane surface. The shape of the plane suggest that it is more

likely to classify quick clay as Bq increases, while Fr and Qt decreases, which all makes sense

from a physical standpoint. As with the 2D case, the algorithm offers less accuracy when tested

on the dataset it is trained in exchange for a more generalizable model. While SVM suggests

CHAPTER 4. RESULTS 61

Figure 4.20: Normalized Qt -Fr plot of a SVM model trained on 5 CPTus from NGTS Tiller-Flotten. The model
classifies all points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

Figure 4.21: Normalized Qt -Fr -Bq plot of a SVM model trained on 5 CPTus from NGTS Tiller-Flotten. Blue points
are training data labeled as other material, red points are training data labeled as quick clay and the green points
are the decision barrier which marks where the algorithm starts classifying quick clay.

CHAPTER 4. RESULTS 62

one plane based on least square error terms, it would be possible to experiment with different

planes as it is easily described mathematically. This way it could be fine tuned to for example

reduce the amount of false positives it produces. Note that even though the algorithm ended

up with a plane separating the classes for this dataset, for other datasets, the radial basis kernal

will likely find more optimal margins when transforming the parameters into higher dimensions

(Aizerman, 1964).

CHAPTER 4. RESULTS 63

Comparison of models on Tiller-Flotten dataset

The performance of each CPTu based on the chosen models are shown below in table 4.3.

Table 4.3: Table showing how each algorithm trained on 5 CPTus from Tiller perform on each individual CPTu.
Models are trained using all three features Qt -Fr -Bq normalized.

CPTu number ELM XGB RF SVM KNN DNN CNN
1 98 % 98 % 98 % 99 % 98 % 99 % 98 %
2 92 % 91 % 91 % 93 % 93 % 87 % 93 %
3 96 % 99 % 99 % 98 % 99 % 100 % 100 %
4 96 % 98 % 97 % 96 % 99 % 98 % 97 %
5 91 % 99 % 99 % 96 % 100 % 99 % 99 %
6 95 % 98 % 97 % 96 % 99 % 99 % 99 %
7 96 % 95 % 99 % 97 % 99 % 96 % 96 %
8 100 % 99 % 99 % 99 % 99 % 100 % 100 %
9 97 % 98 % 98 % 96 % 98 % 99 % 98 %

10 96 % 99 % 99 % 97 % 99 % 98 % 99 %
11 99 % 98 % 98 % 97 % 98 % 98 % 98 %
12 98 % 96 % 96 % 95 % 96 % 98 % 97 %
13 99 % 99 % 99 % 98 % 100 % 98 % 99 %
14 99 % 99 % 99 % 96 % 99 % 99 % 100 %
15 93 % 98 % 97 % 95 % 99 % 97 % 98 %
16 98 % 100 % 100 % 97 % 99 % 100 % 100 %
17 95 % 97 % 97 % 99 % 94 % 99 % 98 %
19 91 % 99 % 99 % 98 % 97 % 100 % 99 %
20 99 % 99 % 100 % 98 % 99 % 100 % 99 %
22 90 % 93 % 93 % 90 % 94 % 93 % 95 %
23 99 % 94 % 96 % 99 % 96 % 94 % 97 %
24 99 % 94 % 94 % 99 % 94 % 94 % 96 %
25 97 % 97 % 98 % 97 % 96 % 97 % 97 %
26 96 % 99 % 99 % 96 % 99 % 99 % 99 %
27 95 % 98 % 96 % 96 % 98 % 99 % 97 %
28 96 % 98 % 98 % 97 % 99 % 97 % 99 %
29 100 % 99 % 96 % 99 % 96 % 99 % 99 %
30 100 % 99 % 99 % 99 % 99 % 100 % 100 %
31 90 % 91 % 91 % 89 % 91 % 90 % 91 %
32 99 % 98 % 98 % 97 % 98 % 98 % 99 %
33 98 % 98 % 97 % 98 % 96 % 97 % 96 %
34 99 % 99 % 98 % 99 % 99 % 99 % 98 %

Median 97.0 % 98.2 % 97.9 % 96.9 % 98.3 % 98.5 % 98.3 %
Mean error 3.6 % 2.7 % 2.7 % 3.3 % 2.7 % 2.5 % 2.2 %

From this analysis it can be observed that CNN has the most consistency with only a mean error

of 2.2 %. ELM performed overall worst with the lowest median accuracy and highest mean error.

CHAPTER 4. RESULTS 64

DNN had the highest median accuracy, however looking at the decimals only 0.2 % separated

CNN and DNN indicating that CNN slightly outperformed DNN overall. While some performed

better, all algorithms managed to clearly capture the separation of the two classes. The high per-

formance obtained here is mainly due to the homogeneity of the dataset having clear grouping

of the two classes as can be seen by the 3D plots shown earlier in this section.

A similar analysis was done where the models only used two parameters in the training. While all

three combinations of two parameters were tested, only models trained with Qt -Fr and Qt -Bq

(normalized) will be presented as they performed significantly better than Fr -Bq . The median

and mean error for the two parameter sets are summarized in table 4.4. The overall performance

of the models trained with two parameters tend to be somewhat worse, as is similar to the re-

sults found by Valsson (2019). ELM and SVM however, showed best accuracy when trained with

normalized Qt and Fr .

Table 4.4: Performance of the algorithms trained on 5 CPTus from NGTS Tiller-Flotten and tested on each individual
CPTu. The top table shows median and mean error performance of models trained with normalized Qt and Fr as
features while the bottom are trained with normalized Qt and Bq as features.

Qt -Fr ELM XGB RF SVM KNN DNN CNN
Median 97.5 % 96.7 % 97.2 % 97.5 % 97.8 % 97.1 % 98.0 %
Mean error 3.5 % 4.9 % 4.4 % 3.2 % 3.2 % 4.0 % 2.7 %

Qt -Bq ELM XGB RF SVM KNN DNN CNN
Median 97.1 % 98.2 % 98.3 % 97.0 % 98.4 % 98.8 % 98.2 %
Mean error 3.7 % 2.7 % 2.6 % 3.7 % 2.5 % 2.2 % 2.7 %

While the performance seem to be better when increasing the amount of features, getting a good

intuition of how the algorithms separates the classes become more difficult. Visualizing a two

parameter model requires only a single 2 dimensional chart. When dealing with models using

three parameters, an interactive 3D plot is needed to get a full perspective for how it classifies.

A snapshot of the 3D models as shown in this section should at least illustrate that the different

algorithms obtain very different decision boundaries, see for example figure 4.18 and 4.21.

CHAPTER 4. RESULTS 65

4.2 ML models trained on dataset II and tested on dataset I

From the previous section it is clear that similarities of the training and testing datasets impacts

the performance heavily. It would therefore be of interest to see how a secondary dataset would

perform on the CPTus from NGTS Tiller-Flotten. Since dataset I is not part of this dataset it

became a good candidate for testing the models. The characteristics of the sites in dataset II are

summarized in 3.2.

Figure 4.22: 3D plot of ELM trained on dataset II (full). Blue points are training data labeled as other material, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

Figure 4.22 illustrates the dataset in a normalized Qt , Fr and Bq plot. As can be seen in this fig-

ure, this dataset is more complicated making it more difficult to separate the two classes. When

training the machine learning algorithms on this dataset, two different approaches were con-

sidered. Approach 1 involved training models with the whole dataset where the algorithms have

to deal with points that might be misclassified. Approach 2 consist of only including points ev-

ery whole meter of the CPTu recordings, resulting in dataset with much less points. The second

approach makes it very easy to filter out bad behaving points, however the amount of remaining

CHAPTER 4. RESULTS 66

points become very slim.

When testing the models with the two different approaches, three of the algorithms performed

best with the complete dataset, while the rest performed better with the reduced dataset. Table

4.5 summarizes the median and mean error for the two approaches. In both approaches SVM

is outperforming the others, showing it’s strength in terms of generalization. XGB and RF, which

both uses decision trees, fail to separate the quick clay behaviour, showing the worst perfor-

mance overall when the training and testing data is from different sites. ELM shows quite good

results in both approaches and doesn’t seem to be negatively affected by the inclusion of bad

behaving points. CNN performs good in the second approach and decent in the first, outper-

forming KNN and DNN which both seem to suffer from overfitting.

Table 4.5: Performance of the algorithms for the two different approaches trained on dataset II with normalized Qt ,
Fr and Bq as parameters. The models are tested on dataset I

Approach 1 ELM XGB RF SVM KNN DNN CNN
Median 94 % 71 % 85 % 95 % 88 % 86 % 91 %
Mean error 6.5 % 26.5 % 17.3 % 6.2 % 15.4 % 13.9 % 9.7 %

Approach 2 ELM XGB RF SVM KNN DNN CNN
Median 93 % 51 % 73 % 97 % 95 % 94 % 94 %
Mean error 8.0 % 35.4 % 26.9 % 4.8 % 9.8 % 8.9 % 6.4 %

Looking at figure 4.22 it shows how the ELM model is able to create a smooth transition between

the classes despite the data being quite messy. Even though the model is clearly misclassifying

quite a lot of points, it can be seen as an advantage as it doesn’t suffer from overfitting. KNN and

DNN on the other hand will try to fit the training data as best they can, creating very compli-

cated decision borders, and as a result become less generalizable. The best performing model is

shown in figure 4.23, and shows how SVM separates the reduced dataset like a bowl shape. The

physical implication of it’s shape is quite intuitive as it shows a tendency to classify a point as

quick as Bq increases and Qt and Fr decreases. Figure 4.24 shows how the result of training the

SVM model on all the points in the dataset. The shape in this case is quite different and compli-

cated when compared to the model trained on the reduced dataset. It seems to classify points

as quick clay even for higher values of Qt which could lead to a high false positive rate in certain

cases.

CHAPTER 4. RESULTS 67

Figure 4.23: 3D plot of SVM trained on dataset II (reduced). Blue points are training data labeled as other material,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

Figure 4.24: 3D plot of SVM trained on dataset II (full). Blue points are training data labeled as other material, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

CHAPTER 4. RESULTS 68

To understand why XGB and RF are performing bad when the test and training datasets are

different, plots of their decision barriers and a testing CPTu are useful, see figure 4.25. While

the algorithm certainly separates the training dataset well, the decision boundary doesn’t make

for a good general model. The shape consists of sharp edges while the actual physical problem

would suggest that a more gradual transition between the classes would more likely be the case.

In the plot, CPTu number 32 from NGTS Tiller-Flotten is scattered in pink and green, and as

it is presented all off the points end up outside the quick clay zone that the algorithm suggest.

This means that the model predicts that none of these points are quick clay resulting in a true

positive score of 0 % for this CPTu.

Figure 4.25: 3D plot of XGB trained on dataset II (reduced). CPTu 32 from Tiller is shown in pink and green points.

Comparison of the different algorithms versus depth are given in figure 4.26. This shows how

the models trained on the reduced dataset (approach 2) classify each depth for a set of CPTus

from NGTS Tiller-Flotten. These graphs give a different view on how some models persistently

outperform others, while some models misclassify large parts of the profile in some cases. In

this particular set CNN and SVM are classifying almost identically and are performing best in

CHAPTER 4. RESULTS 69

almost all the profiles. ELM seem to do a solid job classifying the quick clay below 7.5 meters

however it seem to have a tendency to misclassify the very top. The reason for this stems from

the fact that the randomly generated neurons can get activated for points that are outside the -1

to 1 range. This is a problem that wasn’t noticed before observing plots of the ELM model which

had extended the plot range. As this fact was only observed for ELM, one proposed solution is

to make sure that points outside the -1 to 1 range never should be classified as quick clay.

Figure 4.26: Classification profiles of a set of CPTus from Tiller. The site layering is given in the column label LAB.
Models are trained on the reduced version of dataset II.

Figure 4.27: Classification profiles of a set of CPTus from Tiller. The site layering is given in the column label LAB.
Models are trained on the reduced version of dataset II.

CHAPTER 4. RESULTS 70

When training the models on a different dataset it is clear that the accuracy shown found in

section 4.1 aren’t reproducible, however the SVM algorithm come very close with a median up

to 97 %. RF and XGB, both based on decision trees, perform the worst when the testing and

trained set are different. While some algorithms prefer approach 1, the best performing models

are found using approach 2. In addition to performing better, approach 2 also result in less

complicated decision barriers, making it easier to understand why it does well or not. While it

happens to be that the filtered dataset perform overall better in this case, it is not necessarily a

general result.

CHAPTER 4. RESULTS 71

4.3 Validation of trained models on a third dataset

This section will focus on validation of the machine learning models. The models can be vali-

dated by training them on one dataset and testing them on an unaffiliated dataset. Dataset II

is basis for training the models, while the models are tested on dataset III. The difference be-

tween testing the models on this dataset vs NGTS Tiller-Flotten is that the Saksvik site has more

heterogeneous layering. It is of interest to see whether the machine learning models are able to

predict quick clay behavior in such a case.

Since the machine learning models trained on dataset II perform overall better with the second

approach, these will be used when testing the Saksvik set. The classification profiles for the

CPTus in the dataset are shown in figures 4.28 and 4.29.

Figure 4.28: Classifcation profiles for CPTus at Saksvik. The site layering is given in the column label LAB. Depths
marked with yellow have unknown layering. Models are trained on the reduced version of dataset II.

Due to a lack of laboratory testing for certain depths, parts of the profiles are marked as un-

known in yellow. The fact that only one of the CPTus profiles have proven quick clay means that

the likelihood of false positive that the models make are being tested. Giving accuracy scores for

each model becomes difficult where the layering are unknown, therefore it is given as a range

in table 4.6. The accuracy were calculated both as if the unknown layers were completely quick

clay or if they were completely other material. Note that the XGB model perform better if the

unknown layers are non-quick like at CPTu 9, however the rest obtain highest accuracy if the

CHAPTER 4. RESULTS 72

Figure 4.29: Classification profiles for CPTus at Saksvik. The site layering is given in the column label LAB. Depths
marked with yellow have unknown layering. Models are trained on the reduced version of dataset II.

Table 4.6: Performance of the models trained on dataset II (reduced) and tested on dataset III. The accuracy are
given as a range where the soil condition are unknown.

CPTu number ELM XGB RF SVM KNN DNN CNN
2 65 % 61 % 64 % 64 % 65 % 63 % 64 %

5R 74 % 100 % 97 % 87 % 99 % 98 % 91 %
7R 34 % 28 % 100 % 91 % 59 % 100 % 99 %
S3 100 % 100 % 100 % 100 % 100 % 100 % 100 %
8R 44 - 90 % 64 - 72 % 52 - 96 % 45 - 91 % 48 - 94 % 51 - 92 % 48 - 93 %
9 47 - 80 % 73 - 95 % 68 - 99 % 53 - 85 % 77 - 91 % 69 - 99 % 64 - 96 %

S9 16 - 69 % 37 - 71 % 30 - 73 % 30 - 75 % 28 - 75 % 39 - 78 % 30 - 75 %

unknown layers are determined to be quick clay.

From figures 4.28 and 4.29 it is clear that SVM, CNN and DNN seem to classify the profiles quite

similarly. However there is a pattern that suggest that SVM is more likely to classify quick clay

than CNN and that CNN is more likely to classify quick clay than DNN. While this should not

make a huge difference in a general case, it makes DNN the highest scoring algorithm for this

dataset. Both ELM and XGB seem to have a hard time predicting correctly due to the low friction

registered on some of the profiles, however assuming that CPTu 8R and 9 don’t have quick clay,

XGB would be outperforming the other algorithms on these profiles.

Laboratory data from CPTu profile 2 shows quick clay with cu,r about 0.1 kPa at around 7 meters

depth, which all the machine learning models are able to detect. At 14 meters depth however

CHAPTER 4. RESULTS 73

the lab shows that the clay is no longer quick, while the models suggests that this is not the case.

No more lab data is available below 15 meters so it is only assumed that the rest of the profile is

not quick clay. The total sounding shown in figure 4.30 give no clearer answer to what the soil

layering is as the response is very homogeneous between 5 and 20 meters depth.

Figure 4.30: Saksvik total sounding close to CPTu profile 2.

To understand why the models aren’t switching back to classifying the soil as other material

under 15 meters, a plot of the decision parameters versus depth in figure 4.31 shall be studied.

Between 6 and 7 meters there is a jump in Bq to about 0.9 combined with Qt and Fr falling

in value. Lower down in the profile the only sign that there’s a change in behavior is trough

CHAPTER 4. RESULTS 74

the slightly increasing Fr . The XGB model think there is a layer with other material below 11

meters as it requires Fr to be less than about 0.6 % to classify it as quick clay. In theory this

could mean that the XGB model can be used as a lower bound way of classifying quick clay,

however uncertainties in the friction response might lead to too low values being registered,

giving possibilities of false positives. The CPTu 7R from Saksvik show very low values for Fr ,

however the Bq response is low enough that most models don’t predict quick clay.

Figure 4.31: Derived values Qt , Fr and Bq for CPTu 2 from Saksvik plotted versus depth along with lab classification
and model predictions by CNN and XGB.

Another way of visualizing why the models doesn’t pick up on the other material layer below 14

meters can be done in a 3D plot. Figure 4.32 shows the CPTu scattered in colors compared to

the lab. The dark red points clustered around -0.4 F nor m
r corresponds to depths between 14 and

17 meters, while the cluster with F nor m
r less than -0.75 correspond to depths below 17 meters.

While the 14 to 17 meter cluster show slightly higher Fr , the Qt and Bq values are very similar to

those found in the quick clay layer. Below 17 meters the friction is even lower combined with Qt

CHAPTER 4. RESULTS 75

Figure 4.32: CPTu 2 from Saksvik scattered in a 3D plot. The CNN model classifying the points are shown in dark
green.

being at its lowest and Bq similar to what it was around 7 meters. If a model is supposed to be

able to classify the points at 7 meters as quick clay, it is therefore not a surprise that the points

below 17 meters also has to be classified as such.

Since 5R, 7R and S3 is assumed to not consist of quick clay and most of the algorithms predict

the profile correctly they will not be discussed in detail. However, a 3D plot summarizing the

CPTus can be found in the appendix in figure F.14.

In the profiles 8R, 9 and S9 almost all the models predict that there is quick clay, unfortunately

however due to the lack of laboratory testing at these depth only speculations about their cor-

rectness can be made. In figure 4.33, the CPTus with unknown layering are plotted in 3D, where

CHAPTER 4. RESULTS 76

the depths that are classified as quick by the CNN are scattered. CPTu 2 are also included to

show how they lay in relation to the three others. Here it is evident that there are similarities

between the quick clay layer at CPTu 2 and the response at the unknown layers in CPTu 8R, 9

and S9. Some of the points have slightly lower Fr values than the others, while one cluster shows

the lowest friction measured on the whole site. Also notable is that 8R and S9 end up quite deep

into the decision barrier, meaning that the CNN model is confident that there is quick clay.

Figure 4.33: 3D plot where CPTu 2, 8R, 9 and S9 are scattered. Only depths where the CNN model classify quick clay
are shown while the remaining points are hidden. Note that points marked as false positives are points with no lab
data. The light green cluster are the true quick clay points at CPTu 2.

CHAPTER 4. RESULTS 77

After testing the models on this dataset it is clear that they do not perform as well as on dataset

I. While they catch the quick clay behavior at the start on CPTu 2, most of them keep predicting

quick behavior even past the point where the lab suggest otherwise. The reason for the overpre-

diction problem is mostly due to the CPTu response not showing any clear difference between

the layers, at least for the parameter set used. If it turns out that the uncertain profiles have

quick clay it would suggest that the models could be useful for predicting quick clay where lab

data is missing, however more testing is required to confirm this. If the opposite is true however,

it would most likely mean that the models are too eager when classifying quick clay, and may

suffer from high false positive rates.

Chapter 5

Summary and Recommendations for

Further Work

5.1 Summary and Conclusions

In this thesis the applicability of machine learning to detect quick clay from CPTu data was

studied. Models were trained with seven machine learning algorithms on two different datasets.

The models were both tested in the case where the training and testing datasets were the same

and where the datasets differed.

The machine learning models were applied in python through open source libraries, while the

additional code for data processing, training procedures and visualization was created specifi-

cally for this thesis.

In the case where the training and testing sets were the same, all the algorithms performed well

due to the homogeneity of the dataset. The median performance of all the models were 97%

or higher with the worst being ELM and the overall best being SVM with a mean error of 2.2%.

Visualization of how the different algorithms separates the classes were done by plotting the

decision barriers in two and three dimensional plots. The tree based algorithms gave barriers

with straight edges while the neural networks resulted in smoother transitions. SVM separated

the data with a line in 2D and a plane in 3D, while KNN drew the boundary according to the

nearest points in the dataset.

78

CHAPTER 5. SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK 79

The difference in performance when using two parameters instead of three were not that big on

dataset I. Some models preferred two parameters while some did improve when increasing to

three parameters. The average performance seem to favor models with three parameters which

is why it was preferred when training the algorithms on dataset II.

When testing the models on a dataset not a part of the training set, the performance took an

expected hit. However, when testing the algorithms on dataset I, the performance is relatively

good since the site is very homogeneous. Neural networks such as CNN and DNN generally

performed well, with median scores between 86-94% and mean error between 6.4-13.9%. ELM

were one of the top performers in both approaches with a median performance of 94% and a

low mean error. Decision tree algorithms such as extreme gradient boost and random forest

were the least accurate, where XGB performed worst overall. SVM showed the best performance

overall with 95-97% median and mean error of 4.8-6.2% from both approaches.

The two different approaches used to train the models on dataset II showed that training on a

reduced version of the dataset where the labels were certain, resulted in a models with simpler

decision boundaries than for the full dataset. This ended up also giving higher accuracies which

is why it became the preferred approach.

Testing the algorithms on dataset III resulted in a much higher variance in performance. XGB

and ELM are the algorithms that seem to differ the most from the others, both overfitting and

underfitting. SVM, CNN and DNN all end with very similar classification profiles with SVM

being the most likely to classify quick clay and DNN being the least likely. RF struggle somewhat

to predict correctly on dataset I, but end up predicting very similar to CNN on dataset III, despite

having different architectures.

The results found in this thesis indicate that an approach using machine learning to detect quick

clay can give good accuracy. The observed performance is dependent on what algorithm is

used, parameter tuning and the dataset it is trained on. While it can give indication of the exis-

tence of quick clay, it is not able to prove it as this requires the measurement of remolded shear

strength. The machine learning models might be useful for the geotechnical engineer when

deciding where sampling are needed and where it can be skipped.

CHAPTER 5. SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK 80

5.2 Discussion

One of the factors that limits the scope of the results of this thesis are the relative small training

and testing datasets. To obtain models that can be applied in practice, more data has to be

gathered both for training and testing.

When expanding the datasets however it becomes difficult for the creator of the models to have

an overview of each individual CPTu in the set. This might increases the occurrence of faulty

and wrongly labeled points, which can influence the performance of the models.

While very high accuracy were found when training and testing the models on the same dataset,

the practicality of such an approach is quite limited. For an average project the time required

to perform the necessary training is probably too high, however for bigger projects where quick

clay is a concern it might be worthwhile. Especially in the case where field testing is done in

several rounds it might become useful to select where more sampling is required.

In the case where only a certain part of a clay layer is quick, it becomes difficult for the models to

single out the correct depths. The reason for this stems from the fact that the registrations from

the CPTu does not necessary show a clear change in behavior between the quick and non-quick

clay.

The measured Qt , Fr and Bq values in quick clay might be significantly different depending on

the site. Soft clays might in some cases show lower Qt and Fr values than found in quick clay.

As the CPTu tend to be limited by three measured parameters, it simply is not able to describe

all the necessary details of a soil to determine whether it is quick or not. The performance of

the machine learning models is naturally bounded by how distinguishable the CPTu data is, and

sometimes quick clay and other material points overlap each other, resulting in misclassifica-

tions.

In the practice of machine learning it is possible to do what is called parameter optimization to

obtain higher accuracy (Bergstra, 2012). This is often done by testing a wide range of different

values for the model parameters. This process requires the models to be cross validated on data

not part of the training set to avoid overfitting. Due the lack of a diverse testing dataset, model

parameters were set manually with emphasis on how they affected the decision boundaries.

CHAPTER 5. SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK 81

5.3 Recommendations for Further Work

Machine learning is a relatively new concept in geotechnical engineering and may with time

be broadly implemented in the field. Cone penetration testing is a good match with machine

learning since each CPTu sounding creates a lot of raw data ready for interpretation. Further

development of the methods however must be investigated more deeply in order to find all the

possibilities and increase the performance of the algorithms. Presented below is a list of recom-

mendations for further work on the topic of machine learning in geotechincal engineering:

1. Incorporate a bigger dataset for training the algorithms, containing CPTu data from all

across Norway, both sensitive and nonsensitive material, in order to get more generaliz-

able predicting models.

2. Test the different machine learning algorithms on sites with more complex soil layering

across Norway. It could also be interesting to research if the algorithms could detect thin

quick clay layers in between more solid material.

3. Extend the machine learning algorithms in this thesis to classification of other soil types

than quick and brittle clay, for example sand, silt and clay. Erharter et al. (2021) at Graz

University of Technology uses neural networks to classify six soil types. Other machine

learning algorithms such as SVM and CNN could be explored concerning this problem.

4. Extend the machine learning algorithms to other sounding methods. Total sounding is a

frequently used ground investigation method in Norway that produces a substantial amount

of data. If the database is big enough, it might be possible to adapt the machine learning

algorithms to make predictions based on the total sounding data. Although it might prove

itself difficult to create such models due to the rough nature of the sounding which includes

rotation, flushing and hammering. An useful parameter in detecting quick clay with total

sounding could be whether the tip resistance is decreasing with depth.

5. Use machine learning algorithm to determine undrained shear strength and overconsol-

idation ratio in the soil based on CPTu data. Raw data such as corrected cone resistance

qt , sleeve friction fs and pore pressure u2 together with laboratory tests such as oedome-

ter, uniaxial and triaxial tests can be gathered into datasets, with implementation of ML

CHAPTER 5. SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK 82

algorithms to derive correlations between the raw data, shear strength and OCR. Such cor-

relations based only on raw data from CPTu might be difficult to define as shear strength

and overconsolidation ratio often rely on variables such as plasticity index and water con-

tent.

6. Perform a parameter study on which CPTu parameters gives the best prediction perfor-

mance on a given site. This thesis used Qt , Bq and Fr , although there are many other de-

rived parameters from CPTu. Valsson (2019) researched which features provided the best

prediction. However, soil conditions vary from site to site and the best fit parameters might

change depending on the site.

7. Implement machine learning algorithms to the computer at the boring rig in order to ob-

tain in-situ information about soil layering in real time. The earlier the investigation indi-

cates quick clay the earlier the consulting engineers can adapt.

8. Create a global model or program that is able to determine in-situ soil layering from CPTu

soundings on new site investigations based on a database containing data from all around

Norway.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,

Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-

ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-

houcke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,

and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

https://www.tensorflow.org/.

Aizerman, M. A. (1964). Theoretical foundations of the potential function method in pattern

recognition learning. Automation and remote control, 25:821–837.

Akusok, A., Bjørk, K., Miche, Y., and Lendasse, A. (2015). High-performance extreme learning

machines: A complete toolbox for big data applications. Access, IEEE, 3:1011–1025.

Alpaydin, E. (2020). Introduction to machine learning Fourth edition. Cambridge, Massachusets:

The MIT Press, 2020.

Ayodele, T. O. (2010). Types of machine learning algorithms. New advances in machine learning,

3:19–48.

Bergstra, J. (2012). Random search for hyper-parameter optimization. Journal of machine learn-

ing research, 13(2).

Berrum, M. and Skaar, H. (2020). Application of correlations and machine learning on cptu.

Geotechinal engineering, Specialization Project TBA4510.

Breiman, L. (2001). Random Forests, chapter 1, pages 5–32. Kluwer Academic Publishers,

Netherlands. Statistics Department, University of California, Berkeley, CA 94720.

83

https://www.tensorflow.org/

BIBLIOGRAPHY 84

Bæverfjord, M. G., Døssland, T., Eknes, A., Hagberg, K., Handberg, A., Jønland, J., Nerland, O.,

Rundmo, O. E., and Sandven, R. (2010). Veiledning for utførelse av trykksondering. NGF meld-

ing 5.

CEN (1992). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for

building. NS-EN 1992-1-1:2004+A1:2014+NA:2018.

Chen, T. and Guestrin, C. (2016a). XGBoost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’16, pages 785–794, New York, NY, USA. ACM.

Chen, T. and Guestrin, C. (2016b). XGBoost documentation: Parameters. https://xgboost.

readthedocs.io/en/latest/parameter.html.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing

Surveys, 27.

Ding, S., Su, C., and Yu, J. (2011). An optimizing bp neural network algorithm based on genetic

algorithm. Artificial intelligence review, 36(2):153–162.

Erharter, G., Oberhollenzer, S., Fankhauser, A., Marte, R., and Marcher, T. (2021). Learning deci-

sion boundaries for cone penetration test classification. Comput Aided Civ, 36:489–503.

Godoy, C. (2019). Site characterization using kriging and machine learning approaches. Master’s

thesis in Geotechnics and Geohazards.

Godoy, C., Depina, I., and Thakur, V. (2020). Application of machine learning to the identification

of quick and highly sensitive clays from cone penetration tests. Journal of Zhejiang University-

SCIENCE A, 21(6):445–461.

Gundersen, A. S., Hansen, R. C., Lunne, T., L’Heureux, J. S., and Strandvik, S. O. (2019). Char-

acterization and engineering properties of the ngts onsøy soft clay site. AIMS Geosciences,

5(3):665–703.

IBM (2020). Neural networks. https://www.ibm.com/cloud/learn/neural-networks.

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://github.com/fchollet/keras
https://www.ibm.com/cloud/learn/neural-networks

BIBLIOGRAPHY 85

Kartverket (2021). Norgeskart. https://norgeskart.no/#!?project=norgeskart&layers=

1002&zoom=3&lat=7197864.00&lon=396722.00.

Lai, J., Wang, X., Li, R., Song, Y., and Lei, L. (2020). Bd-elm: A regularized extreme learning

machine using biased dropconnect and biased dropout. Hindawi, page 7.

L’Heureux, J.-S. (2013). Revurdering av faregraden for 20 kvikkleiresoner i strandsonen. NIFS,

page 161.

L’Heureux, J.-S., Gundersen, A. S., D’Ignazio, M., Smaavik, T., Kleven, A., Rømoen, M., Karlsrud,

K., Paniagua, P., and Hermann, S. (2018). Impact of sample quality on cptu correlations in clay

- example from rakkestad clay. NGI.

L’Heureux, J.-S., Lindgård, A., and Emdal, A. (2019). The tiller-flotten research site: Geotechnical

characterization of a very sensitive clay deposit. AIMS Geosciences.

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R news, 2(3):18–

22.

Love, B. C. (2002). Comparing supervised and unsupervised category learning. In Psychonomic

Bulletin & Review, volume 4, pages 829–835. Psychonomic Society, Inc.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT

press.

NGU (2021). Superficial deposits - national database. http://geo.ngu.no/kart/losmasse_

mobil/.

Noble, W. S. (2006). What is a support vector machine?, volume 24, pages 1565 – 1567. Nature

Biotechnology.

O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint

arXiv:1511.08458, page 11.

Pal, M. (2005). Random forest classifier for remote sensing classification. International journal

of remote sensing, 26(1):217–222.

Paniagua, P., L’Heureux, J.-S., Carroll, R., Kåsin, K., and Sjursen, M. (2019). Evaluation of sample

disturbance of three norwegian clays. Norwegian geotechnical institute.

https://norgeskart.no/#!?project=norgeskart&layers=1002&zoom=3&lat=7197864.00&lon=396722.00
https://norgeskart.no/#!?project=norgeskart&layers=1002&zoom=3&lat=7197864.00&lon=396722.00
http://geo.ngu.no/kart/losmasse_mobil/
http://geo.ngu.no/kart/losmasse_mobil/

BIBLIOGRAPHY 86

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-

tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830.

Raileanu, L. E. and Stoffel, K. (2004). Theoretical comparison between the gini index and in-

formation gain criteria. In Annals of Mathematics and Artificial Intelligense, volume 41, pages

77–93. Kluwer Academic Publishers.

Robertson, P. (2016). Cone penetration test (cpt)-based soil behaviour type (sbt) classification

system — an update. Canadian Geotechnical Journal, 53(12):1910–1927.

Rolnick, D. and Tegmark, M. (2018). The power of deeper networks for expressing natural func-

tions. ICLR, page 14.

Sanderson, G. (2017). Gradient descent, how neural networks learn | deep learning, chapter 2.

https://www.youtube.com/watch?v=IHZwWFHWa-w.

Sandven, R., Gylland, A., Montafia, A., Pfaffhuber, A., Kåsin, K., and Long, M. (2015). Detektering

av kvikkleire-sluttrapport. Norges Geologiske Undersøkelse.

Sandven, R., Gylland, A. S., Wangen, P. A., Solberg, I.-L., Montafia, A., Tørym, E., Kåsin, K., and

Valsson, S. M. (2019). Veiledning for detektering av sprøbruddmateriale. NGF melding 12,

page 17.

Seidl, T., Liu, L., and Tamer, M. (2009). Nearest Neighbor Classification, pages 1885–1890.

Springer US, Boston, MA.

Shyamel, P. and Pingel, J. (2017). Introduction to deep learning: What are convolutional neu-

ral networks? https://www.mathworks.com/videos/introduction-to-deep-learning-

what-are-convolutional-neural-networks--1489512765771.html.

Starmer, J. (2020). Xgboost part 2 (of 4): Classification. https://www.youtube.com/watch?v=

8b1JEDvenQU.

Valsson, S. (2019). Machine learning to detect sensitive materials with cptu in norway. ECSMGE-

2019 - Proceedings.

https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.youtube.com/watch?v=8b1JEDvenQU
https://www.youtube.com/watch?v=8b1JEDvenQU

BIBLIOGRAPHY 87

Valsson, S., Degago, S., and Haugen, E. (2018). Detecting highly sensitive materials with cptu in

norway using machine learning. 26th European Young Geotechnical Engineers Conference.

Van Rossum, G. and Drake Jr, F. L. (1995). Python tutorial. Centrum voor Wiskunde en Informat-

ica Amsterdam, The Netherlands.

Wickham, H. and Stryjewski, L. (2012). 40 years of boxplots. had.co.nz.

Winston, P. (2015). Lecture 12a: Neural nets. https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-034-artificial-intelligence-fall-

2010/lecture-videos/lecture-12a-neural-nets/.

Yuan, G.-X., Ho, C.-H., and Lin, C.-J. (2012). Recent advances of large-scale linear classification.

Proceedings of the IEEE, 100(9):2584–2603.

Zhang, L., Zhou, W., and Jiao, L. (2004). Wavelet support vector machine. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):34–39.

Zhong, Y. (2016). The analysis of cases based on decision tree. IEEE Xplore, pages 142–147.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/

Appendix A

CPTu raw data graphs

88

APPENDIX A. CPTU RAW DATA GRAPHS 89

Figure A.1: Raw data graphs of NGTS Tiller-Flotten CPTu 1, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 90

Figure A.2: Raw data graphs of NGTS Tiller-Flotten CPTu 2, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 91

Figure A.3: Raw data graphs of NGTS Tiller-Flotten CPTu 3, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 92

Figure A.4: Raw data graphs of NGTS Tiller-Flotten CPTu 4, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 93

Figure A.5: Raw data graphs of NGTS Tiller-Flotten CPTu 5, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 94

Figure A.6: Raw data graphs of NGTS Tiller-Flotten CPTu 6, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 95

Figure A.7: Raw data graphs of NGTS Tiller-Flotten CPTu 7, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 96

Figure A.8: Raw data graphs of NGTS Tiller-Flotten CPTu 8, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 97

Figure A.9: Raw data graphs of NGTS Tiller-Flotten CPTu 9, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 98

Figure A.10: Raw data graphs of NGTS Tiller-Flotten CPTu 10, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 99

Figure A.11: Raw data graphs of NGTS Tiller-Flotten CPTu 11, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 100

Figure A.12: Raw data graphs of NGTS Tiller-Flotten CPTu 12, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 101

Figure A.13: Raw data graphs of NGTS Tiller-Flotten CPTu 13, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 102

Figure A.14: Raw data graphs of NGTS Tiller-Flotten CPTu 14, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 103

Figure A.15: Raw data graphs of NGTS Tiller-Flotten CPTu 15, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 104

Figure A.16: Raw data graphs of NGTS Tiller-Flotten CPTu 16, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 105

Figure A.17: Raw data graphs of NGTS Tiller-Flotten CPTu 17, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 106

Figure A.18: Raw data graphs of NGTS Tiller-Flotten CPTu 19, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 107

Figure A.19: Raw data graphs of NGTS Tiller-Flotten CPTu 20, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 108

Figure A.20: Raw data graphs of NGTS Tiller-Flotten CPTu 22, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 109

Figure A.21: Raw data graphs of NGTS Tiller-Flotten CPTu 23, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 110

Figure A.22: Raw data graphs of NGTS Tiller-Flotten CPTu 24, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 111

Figure A.23: Raw data graphs of NGTS Tiller-Flotten CPTu 25, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 112

Figure A.24: Raw data graphs of NGTS Tiller-Flotten CPTu 26, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 113

Figure A.25: Raw data graphs of NGTS Tiller-Flotten CPTu 27, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 114

Figure A.26: Raw data graphs of NGTS Tiller-Flotten CPTu 28, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 115

Figure A.27: Raw data graphs of NGTS Tiller-Flotten CPTu 29, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 116

Figure A.28: Raw data graphs of NGTS Tiller-Flotten CPTu 30, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 117

Figure A.29: Raw data graphs of NGTS Tiller-Flotten CPTu 31, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 118

Figure A.30: Raw data graphs of NGTS Tiller-Flotten CPTu 32, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 119

Figure A.31: Raw data graphs of NGTS Tiller-Flotten CPTu 33, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 120

Figure A.32: Raw data graphs of NGTS Tiller-Flotten CPTu 34, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 121

Figure A.33: Raw data graphs of E6 Kvithammer-Åsen CPTu, displaying corrected cone resistance qt , sleeve friction
fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 122

Figure A.34: Raw data graphs of Fre16 (Ringeriksbanen and E16 - the joint railway & road project) CPTu, displaying
corrected cone resistance qt , sleeve friction fs and pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 123

Figure A.35: Raw data graphs of Koa CPTu, displaying corrected cone resistance qt , sleeve friction fs and pore
pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 124

Figure A.36: Raw data graphs of Nybakk-Slomarka, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2. No sleeve friction data was registered from this CPTu.

APPENDIX A. CPTU RAW DATA GRAPHS 125

Figure A.37: Raw data graphs of Onsøy CPTu, displaying corrected cone resistance qt , sleeve friction fs and pore
pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 126

Figure A.38: Raw data graphs of Skatval CPTu, displaying corrected cone resistance qt , sleeve friction fs and pore
pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 127

Figure A.39: Raw data graphs of Saksvik CPTu 2, displaying corrected cone resistance qt , sleeve friction fs and pore
pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 128

Figure A.40: Raw data graphs of Saksvik CPTu 5R, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 129

Figure A.41: Raw data graphs of Saksvik CPTu 7R, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 130

Figure A.42: Raw data graphs of Saksvik CPTu 8R, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 131

Figure A.43: Raw data graphs of Saksvik CPTu 9, displaying corrected cone resistance qt , sleeve friction fs and pore
pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 132

Figure A.44: Raw data graphs of Saksvik CPTu S9, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2.

APPENDIX A. CPTU RAW DATA GRAPHS 133

Figure A.45: Raw data graphs of Saksvik CPTu S3, displaying corrected cone resistance qt , sleeve friction fs and
pore pressure u2.

Appendix B

Saksvik total soundings

134

APPENDIX B. SAKSVIK TOTAL SOUNDINGS 135

Figure B.1: Total sounding 2 at Skatval site, Malvik.

APPENDIX B. SAKSVIK TOTAL SOUNDINGS 136

Figure B.2: Total sounding 5R at Skatval site, Malvik.

APPENDIX B. SAKSVIK TOTAL SOUNDINGS 137

Figure B.3: Total sounding 8R at Skatval site, Malvik.

APPENDIX B. SAKSVIK TOTAL SOUNDINGS 138

Figure B.4: Total sounding 9 at Skatval site, Malvik.

APPENDIX B. SAKSVIK TOTAL SOUNDINGS 139

Figure B.5: Total sounding S3 at Skatval site, Malvik.

Figure B.6: Total sounding S9 at Skatval site, Malvik.

Appendix C

Index testing profiles

140

APPENDIX C. INDEX TESTING PROFILES 141

Figure C.1: Index testing from E6 Kvithammer-Åsen.

APPENDIX C. INDEX TESTING PROFILES 142

Figure C.2: Index testing from Fre16 (Ringeriksbanen and E16 - the joint railway & road project).

APPENDIX C. INDEX TESTING PROFILES 143

Figure C.3: Index testing from Saksvik 2.

APPENDIX C. INDEX TESTING PROFILES 144

Figure C.4: Index testing from Saksvik 5R.

APPENDIX C. INDEX TESTING PROFILES 145

Figure C.5: Index testing from Saksvik 9

APPENDIX C. INDEX TESTING PROFILES 146

Figure C.6: Index testing from Saksvik S3

APPENDIX C. INDEX TESTING PROFILES 147

Figure C.7: Index testing from Saksvik S9

Appendix D

Saksvik piezometer

148

APPENDIX D. SAKSVIK PIEZOMETER 149

\ \ \ \ g \ \[g]

Dokumentnr.

20190898‐01‐R rev. 1

Resultater fra elektriske poretrykksmålere (PVT)

8R Dato Tegnet av

2,8 moh 22.05.2020 APP

Dato for installasjon: 2020‐01‐11

C1

Figurnr.

Terrengkote målere:

Saksvik renseanlegg

Borehull:

0

20

40

60

80

100

120

140

160

180

200

220

240

260

Po
re
 p
re
ss
u
re
 (
kP
a)

BP8R-15 m BP8R-20 m

0

5

10

15

20

25

30

D
ep

th
 (
m
)

Pore pressure (kPa)

12.05.2020

Average

10 kPa/m

12 kPa/m

Figure D.1: Pore pressure at 15 and 20 m depth, borehole 8R Saksvik.

Appendix E

2D plots from NGTS dataset not included in

the text

150

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 151

Figure E.1: Qt vs Bq plot of a DNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 152

Figure E.2: Qt vs Fr plot of a CNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 153

Figure E.3: Qt vs Fr plot of a ELM model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 154

Figure E.4: Qt vs Fr plot of a RF model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all points
in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 155

Figure E.5: Qt vs Bq plot of a XGB model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 156

Figure E.6: Qt vs Fr plot of a KNN model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

APPENDIX E. 2D PLOTS FROM NGTS DATASET NOT INCLUDED IN THE TEXT 157

Figure E.7: Qt vs Bq plot of a SVM model trained on 5 CPTus from NGTS Tiller-Flotten. The model classifies all
points in the shaded pink as quick clay. The edge of the quick clay zone is marked in green.

Appendix F

3D plots from dataset II not included in the

text

158

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 159

Figure F.1: 3D plot of DNN trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 160

Figure F.2: 3D plot of DNN trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 161

Figure F.3: 3D plot of CNN trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 162

Figure F.4: 3D plot of CNN trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 163

Figure F.5: 3D plot of RF trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 164

Figure F.6: 3D plot of RF trained on dataset II (reduced). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 165

Figure F.7: 3D plot of XGB trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 166

Figure F.8: 3D plot of XGB trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 167

Figure F.9: 3D plot of KNN trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 168

Figure F.10: 3D plot of KNN trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 169

Figure F.11: 3D plot of SVM trained on dataset II (full). Blue points are training data labeled as non-quick clay, red
points are training data labeled as quick clay and the green points are the decision barrier which marks where the
algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 170

Figure F.12: 3D plot of SVM trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 171

Figure F.13: 3D plot of ELM trained on dataset II (reduced). Blue points are training data labeled as non-quick clay,
red points are training data labeled as quick clay and the green points are the decision barrier which marks where
the algorithm starts classifying quick clay.

APPENDIX F. 3D PLOTS FROM DATASET II NOT INCLUDED IN THE TEXT 172

Figure F.14: 3D plot where CPTu 5r, 7r and s3 from Saksvik are scattered. The CNN model is trained on dataset II
(reduced)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f C

iv
il

an
d

En
vi

ro
nm

en
ta

l E
ng

in
ee

rin
g

M
artin Berrum

 and H
åvard Skaar

Martin Berrum and Håvard Skaar

Identification of quick clay using
cone penetration tests and machine
learning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Priscilla Paniagua
Co-supervisor: Gudmund Eiksund

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgment
	Abstract
	Introduction
	Background
	Objectives
	Limitations
	Approach
	Structure of the Report

	Machine learning
	Machine learning concept
	Neural network algorithms
	DNN
	CNN
	ELM

	Decision tree algorithms
	RF
	XGB

	Nearest neighbor algorithms
	KNN
	SVM

	Presentation of datasets
	Dataset I: NGTS Tiller-Flotten
	Dataset II: Multiple sites located in Norway.
	Dataset III: Saksvik
	Data preparation
	Parameter choice and normalization

	The impact of faulty CPTu reading and errors in dataset
	Implementation in Python

	Results
	ML models trained and tested on dataset I
	ML models trained on dataset II and tested on dataset I
	Validation of trained models on a third dataset

	Summary and Recommendations for Further Work
	Summary and Conclusions
	Discussion
	Recommendations for Further Work

	Bibliography
	CPTu raw data graphs
	Saksvik total soundings
	Index testing profiles
	Saksvik piezometer
	2D plots from NGTS dataset not included in the text
	3D plots from dataset II not included in the text

