
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Elisabeth Enerhaug
Algorithm

s For Solving The Learning W
ith Errors Problem

Elisabeth Enerhaug

Algorithms For Solving The Learning
With Errors Problem

Master’s thesis in Mathematical Sciences
Supervisor: Professor Kristian Gjøsteen
June 2021

M
as

te
r’s

 th
es

is

Elisabeth Enerhaug

Algorithms For Solving The Learning
With Errors Problem

Master’s thesis in Mathematical Sciences
Supervisor: Professor Kristian Gjøsteen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

This thesis looks at four different algorithms for solving the Learning with

Errors (LWE) problem.

The first algorithm, BKW, is comparable to Gaussian elimination. Then,

we show that LWE can be reduced to a Closest Vector Problem (CVP)

in a lattice. Consequently, we look at two algorithms for lattice basis

reduction: LLL and BKZ. For all these three algorithms we investigate

how they work, their complexity and some properties that come as a result.

Lastly, we look at how we can use lattices and CVP to solve a problem in

the ring version of LWE. We use the round-off algorithm for CVP to find

a short generator of a principal ideal, given a long generator.

Samandrag

Denne avhandlinga ser p̊a fire ulike algoritmar for å løyse “Learning with

Errors” (LWE, Læring med Feil) problemet.

Den første, BKW-algoritmen, kan samanliknas med gaussisk eliminasjon.

Deretter viser vi at LWE kan reduserast til eit “Closest Vector Problem”

(CVP, Nærmaste Vektor Problem) i eit gitter. Derfor ser vi p̊a to basisre-

duksjonsalgoritmar for gitter: LLL og BKZ. For alle desse tre algoritmane

ser vi p̊a korleis dei fungerer, kompleksiteten og eventuelle eigenskapar

som skulle følgje.

Til sist ser vi korleis vi kan bruke gitter til å løyse eit problem i ringver-

sjonen av LWE. Vi bruker avrundingsalgoritmen for CVP for å finne ein

kort generator for eit hovudideal, gitt ein lang generator.

i

Acknowledgements

Writing a thesis in the middle of a pandemic is certainly not an easy

undertaking. And the fact that it has been such a challenge means there

is a lot of people I owe a lot of gratitude to, and who deserve the (albeit

small) honour of being mentioned at the beginning of this thesis.

First and foremost, thank you to my supervisor, Professor Kristian Gjøsteen,

for suggesting this topic, and for providing me with guidance and advice

every step of the way.

Next, I want to thank the madhouse that was study room 393c. Thank

you for the laughter, the coffee breaks and the support to Endre, Christina,

Katrine, Johannes, Kristoffer, and Ole.

Thesis writing can be disheartening at times. Therefore, I would like to

thank all of my friends who doubled as armchair psychologists and private

cheerleading squad this year. Especially thanks to Johanna Magdalena

Husebye for the phone calls, to Anna Bakkebø for the walks, and to Ailsa

Robertson for the rants. It has kept me sane.

Lastly, I owe the biggest of thanks to my parents, Jakob and Møyfrid, and

sisters, Hanna and Solveig, for simply being my family. Although little of

what follows will make sense to you, I could not have done it without all

of your unwavering support. I love you.

iii

CONTENTS

Contents

1 Introduction 3

2 Notation 5

3 Learning With Errors and Regev’s Cryptosystem 7

3.1 Cryptography Basics . 7

3.1.1 Alice, Bob and Eve - The Basic Idea 7

3.1.2 Public Key Encryption 8

3.2 The Learning With Errors Problem 9

3.3 Regev’s Cryptosystem . 11

4 BKW - Gaussian elimination for LWE 15

4.1 The Algorithm . 17

4.1.1 Sample Reduction 17

4.1.2 Hypothesis Testing 23

4.1.3 Back Substitution 24

4.1.4 Proof That arg maxv∈Zdq Re(f̂(v)) = s′ Is A Reason-

able Assumption 25

4.2 Analysis . 33

5 Lattices and The Closest Vector Problem 37

5.1 Lattice Basics . 38

5.1.1 The Closest Vector Problem 39

5.1.2 Gram-Schmidt . 40

5.2 The Lattice Attack . 41

5.3 Enumeration . 41

6 LLL - A More Orthogonal Basis 45

6.1 The algorithm . 47

6.1.1 Outline . 47

6.1.2 The Algorithm Steps 48

1

CONTENTS

6.1.3 Proof That Swapping The Basis Vectors Satisfies

The Lovász Condition 51

6.2 Analysis . 54

6.2.1 Termination . 55

6.2.2 Runtime . 56

6.3 Bounds . 57

7 Block Korkin-Zolotarev - Expanding LLL 63

7.1 Korkin-Zolotarev Reduced Basis 63

7.2 BKZ - Block Korkin-Zolotarev 65

7.3 The Algorithm . 67

7.3.1 Outline . 67

7.3.2 Block reduction . 68

7.4 Analysis . 69

7.5 Bounds . 69

8 LWE in Rings 73

8.1 The Round-Off Algorithm 74

8.2 Group Notation . 75

8.3 G-Circulant Matrices . 75

8.4 Characters . 77

8.4.1 Dirichlet Characters and L-series 80

8.5 Primitive Roots and Cyclotomic Number Fields 83

8.5.1 The Logarithmic Embedding 85

8.5.2 Cyclotomic Units 86

8.5.3 The Lattice Problem 87

8.6 Bounds On The Dual Basis 88

8.7 The Algorithm . 95

8.8 Distributions . 96

List of Abbreviations 103

References 105

2

1 Introduction

As quantum computers are threatening to break more classical public key

encryption schemes, like RSA and Diffie-Hellman, we are looking to find

cryptosystems that are harder to break for such machines. Over the past

several years, more and more cryptosystems are relying on lattices. One

reason for this is that lattices are thought to be robust against quantum

computers. In 2005, Regev introduced the Learning with Errors (LWE)

problem and a public key encryption scheme based on it ([Reg05]). Regev

proved that solving the LWE problem, and hence breaking his cryptosys-

tem, is as hard as certain worst-case lattice problems, which implies it is

difficult for quantum computers to break.

The idea behind LWE can be explained using a matrix equation. Put

simply, let A ∈ Zn×mq and s ∈ Znq be randomly sampled where q is a prime

and n ≤ m. From some error distribution χ, sample ν = (ν1, ..., νn)← χ.

Then, given (A, t = AT s + ν (mod q)), can we find s? This is called the

search-LWE problem. In Regev’s public key encryption scheme, (A, t) is

the public key and s is the secret key.

In this thesis we will look at four different algorithms that aims to solve the

LWE problem. The standard way of trying to solve the LWE problem is

by using lattices. However, we begin by analysing a non-lattice algorithm,

BKW, to show that it is possible to solve LWE using a non-lattice based

algorithm. The BKW algorithm uses an approach similar to Gaussian

elimination in order to eliminate blocks in the rows of A.

In Chapter 5, we introduce the concept of lattices and show that the

LWE problem for s can be reduced to a Closest Vector Problem (CVP).

There are several algorithms for solving a CVP in a lattice, but they work

best on lattice bases that have short vectors, ordered roughly according to

length and that are as close to orthogonal as possible. The LLL algorithm

(Chapter 6) and BKZ algorithm (Chapter 7) are both algorithm that

3

1 INTRODUCTION

aims to reduce a basis to achieve this. The LLL algorithm is incredibly

versatile, and have applications far beyond basis reduction. The BKZ

algorithm is in many ways a generalisation for the LLL algorithm and

gives a better search bound. However, while the LLL algorithm can be

proven to terminate in polynomial time, this can not be proved for BKZ.

For all of these three algorithms we look at how and why they work, study

their complexity and potential trade-offs to be considered. For the lattice

algorithms, we also look at some nice properties of the reduced basis they

return.

Up until this point, we will have looked at lattices with very little assumed

properties. In Chapter 8, we will look at lattices with a lot more algebraic

structure; principal ideal lattices. These are used in the ring version of

LWE, called Ring-LWE og RLWE. We will not go into detail about Ring-

LWE, but instead look at a common problem within Ring-LWE, called

the Short Generator Principal Ideal Problem, or SG-PIP for short. The

SG-PIP, put simply is: For a ring R and a principal ideal (g), where g

is a short generator. If we are given a long generator g′, can we find a

generator that is short enough? This might not look like an LWE problem,

but we will show how it can be transformed into a CVP for lattice and

how we can apply the round-off algorithm to solve it.

4

2 Notation

This thesis follows the standard convention of denoting vectors as bold

lower case letters, e.g. a, and matrices as bold upper case letters, e.g. A.

Vectors are treated as column vectors.

The rounding function bae for a ∈ R refers to the closest integer to a. I.e.

bae = ba+ 1
2
c. For a vector a = (a1, ..., ak) ∈ Rk, bae = (ba1e , ..., bake.

We will also use standard notation for inner products and norm. That is,

〈a,b〉 =
∑k

i=1 aibi. Note that for real vectors, this is equivalent to the

dot product. The norm ‖a‖ = 〈a,a〉 12 will denote the standard Euclidean

norm. Any other norm will be denoted by a subscript, e.g. ‖a‖1.

5

3 Learning With Errors and Regev’s Cryp-

tosystem

3.1 Cryptography Basics

This project assumes the reader has a good understanding of the cryptog-

raphy basics. Still, in order to quickly grasp the ideas, a short summary

of public key encryption is given here. It is based on Gjøsteen’s lecture

notes in Cryptography ([Gjø19a] and [Gjø19b]).

3.1.1 Alice, Bob and Eve - The Basic Idea

The fundamental idea behind cryptography is this: Two people, Alice

and Bob, wants to exchange messages without a third person, Eve - the

adversary, being able to read them. In order to do this, they encrypt their

messages using a cryptosystem. A cryptosystem encrypts a message, m,

creating a cipher, c, before sending it. It also decrypts c back to m. The

goal is that only Alice and Bob can encrypt and decrypt messages, and

make it as hard as possible for Eve to do the same.

Definition 3.1. A symmetric cryptosystem consist of

• a set K of keys,

• a set P of plaintexts,

• a set C of ciphertexts,

• an encryption algorithm E(k,m) that takes a key k ← K and a

message m← P as input and outputs a ciphertext c,

• a decryption algorithm D(k, c) that takes a key k ← K and a cipher-

text c and outputs either a plaintext or ⊥.

For any key k and any plaintext m we have that D(k, E(k,m)) = m.

For a cryptosystem to work, it is essential that the key used for encryption

7

3 LEARNING WITH ERRORS AND REGEV’S CRYPTOSYSTEM

and decryption is kept secret from Eve. As long as a secret key is estab-

lished, Alice and Bob can send encrypted messages to each other with a

low probability of Eve being able to read them.

3.1.2 Public Key Encryption

Establishing a shared secret between two people takes time and space.

For various reasons it might not be practical, or even possible. Consider

a situation where Bob wants to receive messages from multiple people,

not just Alice. It is unpractical to keep track of all the individual keys.

Instead of a key exchange protocol, he can use public key encryption.

Definition 3.2. A public key encryption scheme consists of three algo-

rithms (K, E ,D):

• The key generation algorithm K takes no input and outputs an en-

cryption key ek and a decryption key, dk. To each encryption key

ek there is an associated message set, Mek.

• The encryption algorithm E takes an encryption key ek and a mes-

sage m ∈Mek as input and outputs a ciphertext c.

• The decryption algorithm D takes the decryption key dk and ci-

pher text c as input and outputs either the message m or ⊥, which

indicates encryption failure.

We require for any key pair (ek, dk) ← K and for any message m ∈ Mek

that D(dk, E(ek,m)) = m.

Put simply, Bob generates a key set (ek, dk) ← K and makes the en-

cryption key ek public. Alice use the public key to encrypt her message

c = E(ek,m) and send it to Bob. Bob then decrypts the message using

his secret key m = D(dk, c). See Figure 1.

8

3.2 The Learning With Errors Problem

Figure 1: Public Key Encryption.

3.2 The Learning With Errors Problem

The Learning with Errors (LWE) problem was first introduced by Regev

in 2005 ([Reg05]). It is a natural extension of the Learning Parity with

Noise(LPN) problem that has existed in Computer Science and Cryptog-

raphy for a long time. The LPN problem is simply LWE for q = 2 (we will

see what this means below). In fact, algorithms like BKW (see Chapter

4) were first invented for LPN and then extended to LWE. This section is

loosely based on [Gjø19b, Sec 7.2] and [LP11, Section 2].

For a large prime q, sample uniformly randomly ai’s from Znq for i =

1, ...,m. Then, for a secret vector s ∈ Znq , calculate ti = 〈ai, s〉 (mod q)

for 1 ≤ i ≤ m. This system can be expressed in terms of the matrix

equation t = AT s (mod q), where A = (a1,a2, ...,am) ∈ Zn×mq and t =

(t1, ...tm) ∈ Zmq . As long as m ≥ n this system is clearly solvable for s by

simply using Gaussian elimination.

To make this system hard to solve, we add an error νi to each calculation:

ai ← Znq , ti = 〈s,ai〉+ νi ∈ Zq

The error is sampled randomly from some error distribution χ, e.g. the

discrete Gaussian distribution. The updated matrix equation is now

t = AT s + ν,

9

3 LEARNING WITH ERRORS AND REGEV’S CRYPTOSYSTEM

where νT = (ν1, ..., νm) ← χ. Then the two types of the LWE problem

reads as follows:

Definition 3.3. Let q be a large prime. Sample A ← Zn×mq and s ←
Znq uniformly randomly, where m ≥ n. From some error distribution χ,

sample ν ← χ. Calculate t = AT s + ν (mod q). Then the two different

LWE problems are:

• The search-LWE problem: Given (A, t), can we find s?

• The decision-LWE problem: Given (A, t) constructed as described,

can we distinguish between this pair and a uniformly random (Ã, t̃)?

In this thesis we will be focusing on the search version and simply refer

to it as the LWE problem throughout this thesis. Regev showed in his

paper that the two problems are equivalent as long as q is bounded above

by some polynomial in n. He also showed that for appropriately chosen

q and χ, solving the LWE was as hard as solving a worst-case lattice

problems∗. Based on the LWE problem, Regev also constructed a public

key encryption scheme, which we will discuss in the next section. Note

that part of what we mean by choosing an appropriate error distribution is

that the error ν should not be “too large”. We will explain what we mean

by this later. In his paper, Regev used the wrapped rounded Gaussian

centred at zero to show his results.

Lastly, before we move on to the next section, we will note that in this

thesis we will be working over Zq, for a prime q which is standard. But

it can be generalised to work on Fq, a finite field of size q, since Fq ∼= Zq
[See e.g. BJN94, Theorem 16.4.2].

∗Specifically the quantum hardness of worst case lattice problems such as GapSVP

and SIVP.

10

3.3 Regev’s Cryptosystem

3.3 Regev’s Cryptosystem

In order to construct Regev’s cryptosystem, we assume we have unre-

stricted access to an LWE oracle:

Definition 3.4. Let n, q be positive integers where q is a prime. A Learn-

ing with Errors oracle Πs,χ for a secret vector s ∈ Znq and a probability

distribution χ is an oracle returning(
a

U←− Znq , 〈a, s〉+ ν
)
,

where ν ← χ.

Now we describe Regev’s public key encryption scheme.

Key generation algorithm

A public key encryption scheme requires two keys, ek and dk. First,

start by sampling a random vector s ← Znq . This will be Bob’s secret

key, that is dk = s. We use this to construct the public key. Since

we have unrestricted access to an LWE oracle Πs,χ, the key generation

algorithm samples m samples (a, t)← Πs,χ such that there are n linearly

independent a’s. As described earlier, these samples can be combined into

a matrix equation

t = AT s + ν (mod q).

where Bob then outputs the public key ek = (A, t).

Encryption algorithm

Alice now wants to send a message to Bob. The message τ is limited to

τ ∈ {0, 1}. To encrypt her message, she first samples a short, random

vector r ← Zmq , then she uses the public key to calculate her ciphertext

thus:

x = Ar, w = rT t+ τ
⌊q

2

⌋
Encryption outputs the ciphertext c = (x, w).

11

3 LEARNING WITH ERRORS AND REGEV’S CRYPTOSYSTEM

Decryption algorithm

Bob receives the ciphertext c = (x, w). He uses his secret key s to calcu-

late:

η = w − x · s = rT t+ τ
⌊q

2

⌋
− (Ar)T s

= rT (AT s + ν) + τ
⌊q

2

⌋
− rTAT s

= rTν + τ
⌊q

2

⌋
Bob does not know r, but he does know that both r and ν are short

vectors, while q is a large prime. We assume 〈r,ν〉 <
⌊
q
2

⌋
. This means

that if |η| >
⌊
q
2

⌋
, τ = 1 and if |η| <

⌊
q
2

⌋
, τ = 0.

Alice and Bob have now established a way to encrypt and decrypt mes-

sages, but what does Eve see? Obviously, Eve sees the public key (A, t),

she also sees Alice’s ciphertext (x, w). Is there a way for her to break this

system by finding s?

From the adversary’s perspective this is clearly a LWE problem. So the

security of Regev’s system relies on the hardness of LWE, i.e. quantum-

hard. It is also a nice cryptosystem in other ways, like being much more

efficient than previous lattice based cryptosystems. Before, public keys

were of size O(n4) and encrypting messages increased its size with a factor

of O(n2). For Regev’s cryptosystem it is O(n2) and O(n) respectively,

which is a lot less Lindner and Peikert have later described a modified

LWE cryptosystem that requires even smaller keys ([LP11]).

Now that we have an understanding of the problem and cryptosystem at

the core of this thesis, we can start to look at algorithms that aims to solve

the LWE problem. The standard approach is to use lattices. This makes

sense since lattices are thought to be robust against quantum computers

and the hardness of LWE is linked closely to worst-case lattice problems.

Therefore, most of this thesis will be centred around lattices and lattice

algorithms. However, we start of with the BKW algorithm, which is a

12

3.3 Regev’s Cryptosystem

non-lattice algorithm that uses Gaussian elimination. This shows that it

is possible to take a non-lattice approach.

13

4 BKW - Gaussian elimination for LWE

Named, like so many other algorithms, after its creators, the Blum-Kalai-

Wasserman (BKW) algorithm was first developed as a tool to solve the

LPN problem but has since been expanded as a method for solving LWE.

This chapter we will follow Duc, Tramèr, and Vaudenay’s article ([DTV15]),

and also use some material from Albrecht et al. ([Alb+15]).

Note that several times in this chapter, we will refer to only a part, or

block, of a vector. That is for a = (a1, ..., ak), a[i,j] = (ai, ..., aj) for

1 ≤ i < j ≤ k.

We will start with going through the basic idea behind the algorithm.

Assume A is an n × n invertible matrix. t = AT s + ν is the system of

equations: 
t1
...

tn

 =


∗ . . . ∗
...

. . .
...

∗ . . . ∗



s1

...

sn

+


ν1

...

νn

 . (4.1)

If ν = 0, we could solve this as a system of linear equations by using

Gaussian elimination. That is, (1.) use row operations on AT to reduce

the coefficient matrix into row echelon form, (2.) recover one unknown

value in s, and lastly (3.) substitute this back up the system.

The idea is similar for for BKW. Imagine, for ν 6= 0, we used row reduc-

tions to get the system (4.1) in the form:
t′1
...

t′n

 =


∗ . . . ∗
...

. . .
...

0 . . . ∗



s1

...

sn

+


ν ′1
...

ν ′n

 ,

where AT is now in row echelon form. If νn is sufficiently small, it is

possible to have a reasonably good guess at what sn is. This guess could

be made better by having more systems of equations of this form for the

same s (since we have unlimited access to the LWE oracle). This way we

15

4 BKW - GAUSSIAN ELIMINATION FOR LWE

could check that our guess for sn is gives the desired result in more than

one instance. However, it is not a given that we will be able to find a good

guess for sn. Each row operation, say t1 + t2 = 〈a1 +a2, s〉+ (ν1 +ν2), has

an error term potentially twice as big as those previously. If we multiplied

any of rows with a scalar this would increase the error even more. Seeing

as the nth row is most likely what requires most row operations, each

reduction significantly decreases the likelihood of distinguishing sn, if not

rendering it completely impossible.

The BKW algorithm aims to minimize the number of row operations per-

formed (and hence minimize the noise increase) by taking advantage of

our unlimited access to the LWE oracle Πs,χ (see Definition 3.4). For

some integer 1 ≤ β < n, the idea is to find samples (a, t), (a∗, t∗)← Πs,χ

where a[1,β] = ±a∗[1,β], which means a[1,β] ∓ a∗[1,β] = 0. This way we have

eliminated β elements, by only one “row operation”, but the new error

term is only the sum of two terms: ν ∓ ν∗. Repeating this for the next

block of non-zero elements, and so on until we only have a small number

of non-zero elements left, say d ≤ β elements. On these elements we can

perform an exhaustive search over Zq to find the last d elements of s,

granted the noise is sufficiently small. Again, creating several systems like

this on which we can test our hypothesis for the last elements of s will

increase the probability of finding it.

There is clear trade-off to be considered in this algorithm. In order to

reduce the increase of noise, we want to make as few block reductions as

possible, meaning we want large blocks and a small number of reductions.

This, however, requires a lot more computational power. Seeing as the

worst case scenario for getting two samples a1,a2 where the first β block

of elements match, is sampling qβ−1
2

elements from Πs,χ (this is shown

in Lemma 4.2). Clearly, for large q, a large β will increase the number

of searches and samples considerably. On the other hand, having small

blocks and lots of repetition, will reduce the number of samples required

16

4.1 The Algorithm

from the oracle, but will significantly increase our error term rendering

our exhaustive search at the end of the reduction a lot more difficult, if

not impossible.

4.1 The Algorithm

Now that we have an idea how what the algorithm aims to do, we will go

through the different stages in more detail. We will also give an estimate

of how many samples r that is required for a “reasonably good” guess of

s.

The three stages of BKW are:

1. Sample reduction

2. Hypothesis testing

3. Back substitution

The algorithm takes two positive integers as input, α, β, where αβ ≤ n.

Where β is the size of the blocks of the elements we want reduce for each

round of row operations and α is the number of times we do this reduction.

Let d = n− (α − 1)β ≤ β be the size of the very last block. Now we are

going to look at the three stages of the BKW algorithm.

4.1.1 Sample Reduction

The first stage of the BKW algorithm is called sample reduction. Sample

reduction is comparable to row reduction in solving a system of linear

equations.

The sample reduction algorithm is set up as a system of BKW-oracles

As,χ,l, 0 < l < α. As,χ,l outputs samples (a, t = 〈a, s〉+ ν) where a ∈ Znq ,

and the first lβ elements of a is zero and ν ← 2lχ. We will now look at

how we construct such oracles.

17

4 BKW - GAUSSIAN ELIMINATION FOR LWE

Clearly, As,χ,0 = Πs,χ. We exploit this and our unlimited access to Πs,χ to

create As,χ,1 (and consequently the other As,χ,l’s).

Because we have unlimited access to samples from Πs,χ, the aim is to ob-

tain two samples (a, t), (a∗, t∗)← As,χ,0 = Πs,χ such that a[1,β] = ±a∗[1,β].

In order to do this, we construct a table, T1, that stores samples from

As,χ,0. When we call As,χ,1, the oracle samples (a, t)← As,χ,0 and checks

if there exist a match (a∗, c∗) ∈ T1 such that a[1,β] = ±a∗[1,β]. If such

a match exist in T1, As,χ,1 outputs (a ∓ a∗, t ∓ t∗). Clearly, t ∓ t∗ =

〈a∓ a∗, s〉+ (ν ∓ ν∗) where (ν ∓ ν∗)← 21χ. If not, the oracle puts (a, t)

into the table and obtains a new sample from As,χ,0 to check for a new

match. It repeats this until a match is found.

The procedure is the same for a general l, 1 ≤ l ≤ α − 1. Each oracle

As,χ,l has a corresponding table Tl in which it stores samples from As,χ,l−1.

Then, when we want to obtain a sample from As,χ,l, As,χ,l recursively calls

the oracles As,χ,i, for i = l− 1, ..., 1, 0, to obtain a sample (a, t) where the

first β(l − 1) entries of a is zero. Then we check for a match (a∗, t∗) ∈ Tl
such that a[(l−1)β+1,lβ] = ±a∗[(l−1)β+1,lβ]. If this match exist, As,χ,l outputs

(a ∓ a∗, t ∓ t∗), with an error from 2lχ. If not, (a, t) is stored in Tl and

As,χ,l recursively calls As,χ,i again.

An easier way to understand this might be the more mechanical descrip-

tion: We start by sampling a sample (a, t) from As,χ,0 = Πs,χ. Then we

check for a match in T1 and calculate the new value, then then the same

for T2, T3 all the way up to Tl−1. If, at any point, we do not find a match

in one of the tables, we add that sample to the table and start over again

with a new sample from Πs,χ. Note that if one of the β-blocks are only

zeros, we do not need a match for it, it goes straight to “the next level.”

As,χ,α−1 outputs samples (a, t), where a = (0, . . . , 0, a(α−1)β+1, . . . , an).

The final block has size n− (α− 1)β ≤ β. For how we approach the final

oracle As,χ,α of the sample reductions the approaches differ.

18

4.1 The Algorithm

• In the original BKW algorithm, designed for LPN, the final oracle

As,χ,a would sample from As,χ,a−1 reducing so that only one element,

an, is non-zero.

• In the updated version for the BKW algorithm for LWE, [Alb+15],

generalises this by choosing a parameter d ≤ n − (α − 1)β. Then

sample from As,χ,a−1 such that only the d last elements of a are

non-zero. They note that the best results are obtained for d = 1 or

2 (d = 1 being the same as the original BKW).

• In [DTV15], they completely skip the last oracle, and perform the

hypothesis test on the entire last block, putting d = n − (α − 1)β.

This, they argue, will decrease run-time as they only make 2α−1

recursive calls, not 2α, which will reduce the error summation by a

half.

For our description, we will follow [DTV15], although we will note some

differences to [Alb+15]. In the rest of this section, we will go through

an analysis of the cost of constructing each table Tl. Since there is a

lot of variables to be considered, we will define them all in the following

definition and refer back to them in the consequent lemmas.

Definition 4.1. Let n, q be positive integers and Πs,χ be an LWE oracle,

where s ∈ Znq is the secret vector and χ the error distribution on Zq.
Let the integers α and β be such that 1 ≤ α ≤ n and αβ ≤ n. For

1 ≤ l ≤ α − 1, As,χ,l is the BTW-oracle outputting samples (a, t) where

the first lβ elements of a is zero. For each As,χ,l we have a corresponding

table Tl that stores samples from As,χ,l−1. The details for As,χ,l and Tl are

discussed above. Lastly, define d = n− (α− 1)β ≤ β to be size of the last

block.

We begin by show the maximum number of samples each table Tl must

store.

Lemma 4.2. Let n, q, α, β, l and Tl be as in Definition 4.1. Then the

19

4 BKW - GAUSSIAN ELIMINATION FOR LWE

maximum number of samples each table Tl need to store is(
qβ − 1

2

)
.

Proof. There are qβ possible combinations of β elements from Zq. Next,

we note that we do not need to store the case where the whole block is

zero, as this will be directly outputted by the oracle As,χ,l, therefore we

are down to qβ − 1 possible combinations.

Lastly, for each LWE sample, there are two possible matches, the positive

and negative. By the symmetry of Zq, this means we only need half of

the possible combinations. Hence we are left with the required(
qβ − 1

2

)
.

This means that in order to get r samples from As,χ,l, we make at most
qβ−1

2
+ r calls to As,χ,l−1.

It is also worth noting that when storing samples in Tl, we do not need to

store the first (l − 1)β elements as these are zero by construction. Hence

the length of each entry is n− (l−1)β+1 (the +1 value is for the t value).

Now we prove an upper bound on the number of ring operations required

to fill Tl.

Lemma 4.3. Let n, q, α, β, l and Tl be as in Definition 4.1. If all tables

Tj for 1 ≤ j < l have been filled with
(
qβ−1

2

)
samples. Then the number

of ring operations in Zq required to fill Tl is upper bounded by(
qβ − 1

2

)
(l − 1)

(
(n+ 1)− l

2
β

)
.

Proof. T1 has no blocks that needs to be cancelled, so this requires zero

ring operations.

20

4.1 The Algorithm

To construct T2, we first draw a sample from the oracle Πs,χ and match

it to a vector in T1, cancelling out the first β elements, meaning we have

to perform (n+ 1−β) additions on the remaining elements. Hence, to fill

the table, we perform
(
qβ−1

2

)
(n+ 1− β) additions in Zq.

The same argument goes for T3: Draw a sample from Πs,χ and perform

(n + 1 − β) ring operations with a vector from T1. Then we match this

new vector with a vector from T2, making a further β elements zero, and

performing n+1−2β ring operations on the remaining elements. Meaning

that, in total, we perform
(
qβ−1

2

)
((n + 1 − β) + (n + 1 − 2β)) additions

in Zq to fill T3.

By now, a pattern is emerging. For a general 1 ≤ l ≤ α − 1, assume we

have filled all the tables for indexes less than l. Then, to fill Tl, we have

to perform(
qβ − 1

2

) l−1∑
j=1

(n+ 1− jβ) =

(
qβ − 1

2

)(
(l − 1)(n+ 1)− l

2
(l − 1)β

)
,

=

(
qβ − 1

2

)
(l − 1)

(
n+ 1− l

2
β

)
,

operations, as required.

Lastly, we look at the cost of obtaining r different samples from a BKW-

oracle As,χ,l.

Lemma 4.4. Let n, q, α, β, l and As,χ,l be as in Definition 4.1. The

worst case cost of obtaining r samples from As,χ,α−1 is upper bounded by(
qβ − 1

2

)(
(α− 1)(α− 2)

2
(n+ 1)− αβ(α− 1)(α− 2)

6

)
+r

(
α− 1

2
(n+ 1)

)
,

(4.2)

additions in Zq and (α− 1)
(
qβ−1

2

)
+ r calls to Πs,χ.

Proof. Worst case scenario for obtaining r samples from As,χ,α−1 occurs

when we have to fill each table Tl, 1 ≤ l ≤ α−1, with qβ−1
2

samples for all

21

4 BKW - GAUSSIAN ELIMINATION FOR LWE

l = 2, . . . , α − 1. The number of operations it takes to fill one table Tl is

given in Lemma 4.3. Hence, we sum up these operations for l = 2, ..., α−1

to get the total number of additions in Zq required to fill all the tables:(
qβ − 1

2

) α−1∑
l=2

(
(l − 1)(n+ 1)− βl

2
(l − 1)

)
.

Note that

α−1∑
l=2

(l − 1) =
(α− 1)(α− 2)

2
and

α−1∑
l=2

l(l − 1) =
2α(α− 1)(α− 2)

6
.

Hence, it takes(
qβ − 1

2

)(
(α− 1)(α− 2)

2
(n+ 1)− αβ(α− 1)(α− 2)

6

)
(4.3)

operations to fill all α− 1 tables.

To obtain a sample from As,χ,α−1, where only the last d elements can be

non-zero, we sample a random tuple (a, t) from Πs,χ and match it with

vectors in T1, T2, . . . , Tα−1 in turn. The number of additions done in Zq is

upper bounded by

α−1∑
i=1

(n+ 1− iβ) ≤ (α− 1)
(

(n+ 1)− n

2

)
=

(
α− 1

2

)
(n+ 2).

Therefore, to sample r independent samples from As,χ,α−1, the number of

additions in Zq is upper bounded by

r

(
α− 1

2

)
(n+ 2). (4.4)

Adding this with Equation (4.3) completes the first part of the proof.

The second part follows from the fact that it takes (α − 1)
(
qβ−1

2

)
calls

to Πs,χ to fill all (α− 1) tables, and then a further r calls to obtain the r

samples.

22

4.1 The Algorithm

4.1.2 Hypothesis Testing

After the reduction step, we are left with r samples of the form (ai, ti),

1 ≤ i ≤ r, where only the d last elements of ai are non-zero. Let s′ =

s[n−d,n] ∈ Zdq be the last d entries of the secret vector s.

Note that

ti = 〈ai, s〉+ νi = 〈ai,[n−d,n], s
′〉+ νi ⇒ νi = ti − 〈ai,[n−d,n], s

′〉

Since the first n−d elements of a are zero, we will drop the block notation

ai,[n−d,n] for ease of writing, and simply treat the ai’s as vectors in Zdq for

the remainder of this section.

Now we want to find s′. We know what ai and ti are, and we also know that

νi is the sum of 2α−1 error samples uniformly and independently sampled

from χ. The procedure of hypothesis testing is then an exhaustive search

over Zdq where for each v ∈ Zdq we set the hypothesis v = s′. The exhaustive

search is done in the following way: Define the function f : Zdq 7→ C by

f(x) =
r∑
j=1

πj(x)e
2π
q
itj , where πj(x) =

1 if x = aj

0 otherwise
,

where r is the number of samples. For ease of writing, put ξ = 2πi
q

. The

Discrete Fourier Transform (DFT) of f is,

f̂(v) =
∑
x∈Zdq

f(x)e−ξ〈x,v〉,

=
∑
x∈Zdq

r∑
j=1

πj(x)eξtje−ξ〈x,v〉,

=
r∑
j=1

e−ξ(〈aj ,v〉−tj).

Note here that f̂(s′) =
∑r

j=1 e
−ξ(〈aj ,s〉−tj) =

∑r
j=1 e

−ξνj where νj is the sum

of 2α−1 independent samples from χ; νj = νj,1 ± · · · ± νj,2α−1 . Meaning

23

4 BKW - GAUSSIAN ELIMINATION FOR LWE

that

f̂(s′) =
r∑
j=1

eξ(νj,1±···±νj,2α−1). (4.5)

In Section 4.1.4, we will show that as long as we choose the values α and

the number of samples r appropriately, there is a high probability that

arg maxv∈Zdq Re(f̂(v)) = s′. We also show how many independent samples

r of this form we should obtain in order to get the correct result. This is an

important, but lengthy result, so for now we simply claim that this is the

case and focus on the algorithm. Hence, the hypothesis testing algorithm

computes the real part of f̂(v) for all v ∈ Zdq and return the v for which

the real value has a maximum.

4.1.3 Back Substitution

Back substitution was not part of the original BKW algorithm, but was

added on as a last step later on. It is similar to the back substitution we

do when solving a system of linear equation with Gaussian elimination.

After Hypthesis testing, we have hopefully recovered s′ with high prob-

ability. Then we go back to the tables Tl, l = 1, . . . , α − 1. For every

(a, t) ∈ Tl, let a′ = a[n−d,n]. Then update the values

a← a− (0, . . . , 0,a′)

t← t− 〈a′, s′〉.

For each pair (ai, ti) it takes 2d operations to update each row, and since

there is in total (α− 1)
(
qβ−1

2

)
rows in all the tables Tl, back substitution

requires 2d(α− 1)
(
qβ−1

2

)
operations.

When this is done, we repeat the algorithm on the next block of values

until all elements of s are found.

24

4.1 The Algorithm

4.1.4 Proof That arg maxv∈Zdq Re(f̂(v)) = s′ Is A Reasonable As-

sumption

Returning to Equation (4.5) and using Euler’s formula, eix = cosx+i sinx,

we see that we get a sum of multiplications of 2α−1 factors of the form(
cos
(

2π
q
ν
)

+ i sin
(

2π
q
ν
))

where ν ← χ. We want to calculate what we

expect the values of random variables of this form to be, when χ is the

rounded Gaussian distribution Ψ̄σ,q or the discrete Gaussian distributions

Dσ,q. Both of these are widely used for the LWE problem. The aim is to

prove that that the argmax of f̂(v) is s′ with a high probability. We also

want to use this value to find a lower bound on how big the sample size r

needs to be.

This will be quite a lengthy result. We start of, in Lemmas 4.5 and 4.7,

by finding expected values for cos
(

2π
q
χ
)

and sin
(

2π
q
χ
)

. Then, in Lemma

4.8, we use this to find a lower bound for the real part of f̂(s′). Lastly, in

Lemma 4.11 we show that the probability that arg maxv∈Zdq Re(f̂(v)) 6= s′

gets smaller the higher number of samples we have, and use this to find a

lower bound on what r should be.

Before we start, we briefly explain the rounded Gaussian distribution Ψ̄σ,q.

Let N(0, σ2) denote the continuous Gaussian distribution with mean 0 and

standard deviation σ. If we wrap this distribution around a circle with

circumference q ≥ 0, we obtain the wrapped Gaussian distribution Ψσ,q.

The rounded Gaussian distribution can be obtained by sampling from Ψσ,q

and rounding the result to the nearest integer in the interval (− q
2
, q

2
]. This

is the distribution used in Regev’s original result ([Reg05]).

Lemma 4.5. For an odd integer q, let X = Ψ̄σ,q or Dσ,q and let Y = 2π
q
X.

Then

E[cos(Y)] ≥


q
π

sin
(
π
q

)
e
− 2π2σ2

q2 if X = Ψ̄σ,q

1− 2π2σ2

q2
if X = Dσ,q

(4.6)

25

4 BKW - GAUSSIAN ELIMINATION FOR LWE

Proof. Case 1: X = Dσ,q: This is Lemma 11 in [DTV15], the proof if

which is pretty straight forward, but it uses material slightly beyond the

scope of this thesis.

Case 2: X = Ψ̄σ,q.

Let Sl be the set of integers in (lq− q
2
, lq+ q

2
]. We start of with some basic

statistics formulas and properties needed for this proof.

The expected value E for a random variable X with a finite number of

possible outcomes x1, . . . , xn, with the associated probabilities p1, . . . , pn

respectively, is given by

E[X] =
n∑
i=1

xipi.

In our case, the possible outcomes of cosY are cos
(

2π
q
x
)

for x ∈ S0.

The probability density function for N(0, σ2) is given by

p(θ;σ) =
1

σ
√

2π
e
θ2

2σ2 .

And the probability density function for the wrapped Gaussian Ψσ,q is

given by:

g(θ;σ, q) =
∞∑

l=−∞

1

σ
√

2π
e
−(θ+lq)2

2σ2 ,

for θ ∈
(
− q

2
, q

2

]
. Note that

g(θ;σ, q) =
∞∑

l=−∞

p(θ + lq;σ). (4.7)

The probability mass function of the rounded wrapped Gaussian distribu-

tion Ψ̄σ,q is given by

Pr(x← Ψ̄σ,q) =

∫ x+ 1
2

x− 1
2

g(θ;σ, q) dθ. (4.8)

for the integer x in the interval
(
− q

2
, q

2

]
.

26

4.1 The Algorithm

Returning to our expected value for cos(Y), we note that the probability

for cos
(

2π
q
x
)

is simply equal to the probability of x, which is given by

Equations (4.7) and (4.8). Hence, the expected value of cos(Y) is

E[cos(Y)] =
∑
x∈S0

cos

(
2π

q
x

) ∞∑
l=−∞

∫ x+ 1
2

x− 1
2

p(θ + lq;σ) dθ,

=
∞∑

l=−∞

∑
x∈S0

cos

(
2π

q
x+ 2πl

)∫ x+ 1
2

x− 1
2

p(θ + lq;σ) dθ.

Use the substitution u(θ) = θ + lq in the integration and put x′ = x+ lq,

then we get:

E[cos(Y)] =
∞∑

l=−∞

∑
x′∈Sl

cos

(
2π

q
x′
)∫ x′+ 1

2

x′− 1
2

p(θ;σ) dθ,

=
∞∑

x′=−∞

cos

(
2π

q
x′
)∫ x′+ 1

2

x′− 1
2

p(θ;σ) dθ.

At this point we state the Poisson summation formula, which is Lemma

25 in [DTV15].

Lemma 4.6 (Poisson summation formula). Let f : R→ C be a function

of the Schwart space and F(f) its continuous Fourier transform, then

∞∑
l=−∞

f(l) =
∞∑

k=−∞

F(f)(k).

Recall that the Continuous Fourier transform (CFT) of a function f : R→
C is given by F(f)(k) =

∫∞
−∞ f(x)e−2πkxidx. Applying Poisson summation

formula to our expression for E[cos(Y)] gives:

E[cos(Y)] =
∞∑

k=−∞

F

(
cos

(
2π

q
x′
)∫ x′+ 1

2

x′− 1
2

p(θ;σ) dθ

)
(k),

=
∞∑

k=−∞

(
F
(

cos

(
2π

q
x′
))
∗ F

(∫ x′+ 1
2

x′− 1
2

p(θ;σ) dθ

))
(k),

(4.9)

27

4 BKW - GAUSSIAN ELIMINATION FOR LWE

where ∗ denotes the convolution operator †. We want to find the two

Fourier transform of the convolution. Straight forward calculations gives

F
(

cos
(

2π
q
x
))

(k) = 1
2

(
δ
(
k − 1

q

)
+ δ

(
k + 1

q

))
, where δ is the Dirac

delta function. The second transform requires a little more computations

(we omit to write (k) after each Fourier transform for ease of reading):

F

(∫ x′+ 1
2

x′− 1
2

p(θ;σ) dθ

)
= F

(∫ x+ 1
2

−∞
p(θ;σ) dθ

)
−F

(∫ x− 1
2

−∞
p(θ;σ) dθ

)
,

= F
(∫ x

−∞
p(θ − 1

2
;σ) dθ

)
−F

(∫ x

−∞
p(θ +

1

2
;σ) dθ

)
,

=
(
eπki − e−πki

)
F
(∫ x

−∞
p(θ;σ) dθ

)
, (4.10)

by the translation property of CFT‡. Now we have the integration prop-

erty:

F
(∫ x

−∞
f(y) dy

)
(k) =

1

2iπk
F(f)(k) +

1

2
F(f)(0)δ(k)

Note also, from straight forward calculations, that F (p(θ;σ)) (k) = e−2π2σ2k2 .

That means Equation (4.10) becomes

2i sin (πk)

(
1

2iπk
F(p(θ;σ))(k) +

1

2
F(p(θ;σ))(0)δ(k)

)
,

= 2i sin(πk)

(
1

2iπk
e−2π2σ2k2 +

1

2
δ(k)

)
.

Returning to Equation (4.9), we get

F
(

cos

(
2π

q
x′
))
∗ F

(∫ x′+ 1
2

x′− 1
2

p(θ;σ) dθ

)

=
1

2

((
δ

(
k − 1

q

)
+ δ

(
k +

1

q

))
∗
(

2i sin(πk)

(
1

2iπk
e−2π2σ2k2 +

1

2
δ(k)

)))
.

Note that δ(k) ∗ δ(k ± 1
q
) = 0 for k ∈ Z (which is the case here). This

means we get the convolution

1

2

(
δ

(
k − 1

q

)
+ δ

(
k +

1

q

))
∗
(

sin(πk)

(
1

πk
e−2π2σ2k2

))
. (4.11)

†Convolution: (u ∗ v)(x) :=
∫∞
−∞ u(y)v(x− y)dy

‡Translation: F(f(x− y))(k) = e−2πykiF(f)(k)

28

4.1 The Algorithm

Recall that convolution is distributive, put h(k) = sin(πk)
(

1
πk
e−2π2σ2k2

)
,

and calculate

δ

(
k ± 1

q

)
∗ h(k) =

∫ ∞
−∞

δ

(
y ± 1

q

)
h(k − y) dy,

= h

(
k ∓ 1

q

)
.

Note also that sin
(
πk ± π

q

)
= ±(−1)k sin

(
π
q

)
. Equation (4.11) then

becomes

q

2π
sin

(
π

q

)
(−1)k

e−2π2σ2 (qk+1)2

q

qk + 1
− e−2π2σ2 (qk−1)2

q

qk − 1

 .

It is easy to check that this is an even function. Hence, going all the way

back to Equation (4.9) we get that E[cos(Y)] is equal to

q

π
sin

(
π

q

)
e

2π2σ2

q2 +
∞∑
k=1

q

π
sin

(
π

q

)
(−1)k

e−2π2σ2 (qk+1)2

q

qk + 1
− e−2π2σ2 (qk−1)2

q

qk − 1

 .

(4.12)

Note that the first term in the summation is positive and that the absolute

value is clearly decreasing as k increases. Hence deduce

E[cos(Y)] ≥ q

π
sin

(
π

q

)
e
− 2π2σ2

q2 .

Next, we find the expected value for sin
(

2π
q
χ
)

. It might come as a relief

that this result is a lot more straight forward.

Lemma 4.7. For an odd integer q, let X =∼ Ψ̄σ,q or Dσ,q and let Y =
2π
q
X. Then

E[sin(Y)] = 0.

Proof. For both distributions, note that for odd q, the distributions are

perfectly symmetric around 0. The result follows trivially from the sym-

metry of the sine function.

29

4 BKW - GAUSSIAN ELIMINATION FOR LWE

Here we define the variable

Rσ,q,χ :=


q
π

sin
(
π
q

)
e
− 2π2σ2

q2 if χ = Ψ̄σ,q,

1− 2π2σ2

q2
if χ = Dσ,q.

(4.13)

Now we derive a lower bound on E[Re(f̂(s′)] that we will use when calcu-

lating the probability of failure in the next lemma.

Lemma 4.8. E[Re(f̂(s′)] ≥ r · (Rσ,q,χ)2α−1
.

Proof. Recall from Equation (4.5) that f̂(s′) =
∑r

j=1 e
ξ(νj,1±···±νj,2α−1). Us-

ing Lemmas 4.5 and 4.7, and the independence of the samples from χ we

get that

E
[
Re
(
f̂(s)

)]
= Re

(
r∑
j=1

E
[
eξ(νj,1±···±νj,2α−1)

])
,

= Re

(
r∑
j=1

E
[
e−ξνj,1

]
. . .E

[
e−ξνj,2α−1

])
,

= Re

(
r∑
j=1

E
[
cos

(
2π

q
νj,1

)]
. . .E

[
cos

(
2π

q
νj,2α−1

)])
,

≥
r∑
j=1

R2α−1

σ,q,χ,

= r ·R2α−1

σ,q,χ.

Next, we are going to quote one result from [DTV15] and one result from

statistics that we will use further on, but not prove in this thesis.

Lemma 4.9 ([DTV15, Lemma 14]). Let G ⊂ Zq be a subgroup of Zq, let

X
U←− G and let z ∈ Zq be independent from X. Then E

[
e

2π
q

(X+z)s
]

= 0.

30

4.1 The Algorithm

Theorem 4.10 (Hoeffding’s Inequality, [Hoe63]). Let X1, . . . , Xn be n

independent random variables such that Pr(Xj ∈ [αj, βj]) = 1 for 1 ≤ j ≤
n. Define X =

∑n
j=1Xn, then

Pr(X − E[X] ≥ R) ≤ exp

(
−2R2∑n

j=1(βj − αj)

)
(4.14)

and

Pr(X − E[X] ≤ −R) ≤ exp

(
−2R2∑n

j=1(βj − αj)

)
(4.15)

for any R > 0.

In the next lemma, we prove an upper bound on the probability that

arg maxv∈Zdq Re(f̂(v)) is not s′. We will use this upper bound in Theorem

4.12 to bound the number of samples required to find s′ with a certain

probability.

Lemma 4.11. Let f̂ be as defined in Equation (4.5). Let ε denote the

probability that arg maxv∈Zdq Re(f̂(v)) 6= s′. Then

ε ≤ qde−
r
8

(Rσ,q,χ)2
α

(4.16)

Proof. Define the two cases:

• A: ∃ v ∈ Zdq\{s′} such that Re(f̂(s′)) ≤ Re(f̂(v)).

• B: Re(f̂(s′)) ≤ Re(f̂(v)) for some fixed v ∈ Zdq\{s′}.

Note that ε = Pr(A). We know there is qd unique vectors in Zdq . So

the probability that there exist one vector v ∈ Zdq such that Re(f̂(s′)) ≤
Re(f̂(v)) is bounded above by all the possible vectors in Zdq times the

probability that one of them might satisfy Re(f̂(s′)) ≤ Re(f̂(v)). Hence

Pr(A) ≤ qd Pr(B).

Next we observe that Pr(B) = Pr(Re(f̂(s′))−Re(f̂(v)) ≤ 0). Which is the

probability that
∑r

j=1

(
Re
(
eξ(〈aj ,s

′〉−tj)
)
− Re

(
eξ(〈aj ,v〉−tj)

))
≤ 0. Define

31

4 BKW - GAUSSIAN ELIMINATION FOR LWE

x = v− s′ and note that 〈aj,v〉− tj = 〈aj,x〉+ νj. Thus, the summation

becomes

X =
r∑
j=1

(
Re
(
eξ(〈aj ,s

′〉−tj)
)
− Re

(
eξ(〈aj ,x〉+νj)

))
≤ 0.

Define Xj = uj+vj where uj = Re
(
eξ(〈aj ,s

′〉−tj)
)

and vj = Re
(
eξ(〈aj ,v〉−tj)

)
.

Since aj and νj are sampled uniformly and independently from each other,

and because x is fixed and non-zero, 〈aj,x〉 is uniformly distributed in a

subgroup of Zq and so is 〈aj,v〉 − tj. Hence, by Lemma 4.9, E[vj] = 0.

Therefore we can find a lower bound on E[X] thus:

E[X] =
r∑
j=1

E[Xj] =
r∑
j=1

E[uj],

=
r∑
j=1

E
[
Re
(
eξ(〈aj ,s

′〉−tj)
)]
,

≥ r · (Rσ,q,χ)2α−1

,

by Lemma 4.8. Now, using Equation (4.15) from Theorem 4.10, putting

R = E[X] and observing that −2 ≤ Xj ≤ 2, we get

Pr(B) = Pr(X ≤ 0) = Pr(X − E[X] ≤ −E[X]),

≤ exp

(
−2E[X]2∑n

j=1(2− (−2))

)
,

≤ exp

(
−2r2(Rσ,q,χ)2α

r · 42

)
,

= exp

(
−r
8

(Rσ,q,χ)2α
)
.

Putting this all together gives

ε ≤ qde
r
8
·(Rσ,q,χ)2

α

32

4.2 Analysis

Note that Pr
(

arg maxv

(
Re(f̂(v))

)
= s′

)
= 1 − ε ≥ 1 − qde r8 ·(Rσ,q,χ)2

α

is

the probability of success.

From this, we can derive the number of samples we need in order to derive

the correct value for s′ with high probability.

Theorem 4.12. Let n, q, l, s, χ, Πs,χ, α, β, As,χ,α−1 and d be as described

in Definition 4.1. Let s′ ∈ Zdq be equal to the last d elements of s. Let

ε ∈ (0, 1) denote the probability that we fail to recover s′.

Then the number of independent samples r∗ required from As,χ,α−1 to re-

cover s′ is

r∗ ≥ 8d log
(q
ε

)
(Rσ,q,χ)−2α (4.17)

where Rσ,q,χ is given by Lemma 4.5.

Proof. Using Lemma 4.11, considering ε and solving for r yields the re-

quired result.

4.2 Analysis

Now we want to calculate the complexity of BKW with multidimensional

DFT. This result follows Theorem 17 in [DTV15]. We also follow their

choice of choosing α ·β = n for ease of notation, but note that the general

case for n = (α− 1)β + d follows similarly.

When calculating the time complexity of the BKW algorithm we need to

add together:

• γ1 := The number of additions in Zq to produce all α− 1 Tl tables.

• γ2 := The number of additions in Zq to produce the samples required

to recover all blocks of s with probability ε.

• γ3 := The number of operations in C to prepare and compute the

DFT’s.

• γ4 := The number of operations in Zq for the back substitution

33

4 BKW - GAUSSIAN ELIMINATION FOR LWE

We will go through them in turn:

Producing the tables: γ1

We showed this in the proof of Lemma 4.4, in Equation (4.3), i.e.

γ1 =

(
qβ − 1

2

)(
(α− 1)(α− 2)

2
(n+ 1)− αβ(α− 1)(α− 2)

6

)
.

Recovering the blocks: γ2

Next we look at how many additions in Zq it takes to recover all α − 1

blocks of s assuming all tables Tl, l = 1, . . . , α − 1 have been filled. For

this we must first calculate the number of operations required to reduce

one sample such that only the last few elements are non-zero, and then

multiply this with the number of samples required (similar to what we

did in Equation (4.4)). Note that when we want to obtain a sample from

As,χ,α−2, we do not sample anything from As,χ,α−1 and hence we don not

make use of the table Tα−1 at all. Hence, to obtain one sample from

As,χ,α−1−j we must perform

α−1−j∑
i=1

(n+ 1− iβ) = (α− 1− j)(n+ 1)− β (α− 1− j)(α− j)
2

,

= (α− 1− j)
(

(n+ 1)− β

2
(α− j)

)
,

= (α− 1− j)
(

(n+ 1)− n

2
+
βj

2

)
,

additions in Zq. Let

r∗j,ε = 8β log
(q
ε

)
(Rσ,q,χ)−2α−j

and define ε′ = ε
α

. Then

γ2 =
α−1∑
j=0

r∗j,ε′
(α− 1− j)

2
(n+ 2 + βj) .

34

4.2 Analysis

Prepare and compute the DFT: γ3

As DFT and Fast Fourier Transform (FFT) is not the focus of this thesis,

we will simply state the result from Theorem 17 [DTV15]. The number

of operations in C to prepare and compute the DFT’s is

γ3 = 2
α−1∑
j=0

r∗j,ε′ + CFFT · n · qβ · log(q),

where CFFT is a small constant in the complexity of DFT.

Back substitution: γ4

Lastly, we look at the number of operations in Zq for back substitution.

Note that for the first block, d ≤ β. And for each block we look at after

α − 1, i.e. α − 2, α − 3, . . . , 1 we back substitute blocks of a size upper

bounded by β. Hence, by the same argument as in Section 4.1.3, the

number of operations done per row is upper bounded by 2β. For each

table, there are
(
qβ−1

2

)
rows and for the (α − 1 − j)th block, we have to

back substitute in α − 2 − j tables. Hence, in total, back substitution

requires

α4 = 2β

(
qβ − 1

2

) α−2∑
j=1

j = β

(
qβ − 1

2

)
(α− 1)(α− 2).

operations in Zq. All of this can be combined into a theorem:

Theorem 4.13. Let n, q be positive integers, where s ∈ Znq . Let α, β

be positive integers such that αβ = n. Let CFFT be the small constant

in the complexity of the Fast Fourier Transform computation. Let 0 <

ε < 1 be the probability of failure define ε′ = ε
α

. For 0 ≤ j ≤ α − 1,

let r∗j,ε = 8β log
(
q
ε

)
(Rσ,q,χ)−2α−j where Rσ,q,χ is given in Equation(4.13).

Assuming that all the samples after reduction are independent, the time

complexity of the BKW algorithm to recover s with probability at least 1−ε

35

4 BKW - GAUSSIAN ELIMINATION FOR LWE

is γ1 + γ2 + γ3 + γ4 where

γ1 =

(
qβ − 1

2

)(
(α− 1)(α− 2)

2
(n+ 1)− αβ(α− 1)(α− 2)

6

)

γ2 =
α−1∑
j=0

r∗j,ε
(α− 1− j)

2
(n+ 2 + βj)

γ3 = 2
α−1∑
j=0

r∗j,ε′ + CFFT · n · qβ · log(q)

γ4 = β

(
qβ − 1

2

)
(α− 1)(α− 2)

where γ1 is the number of additions in Zq to produce all tables Tj, γ2 is

the number of additions in Zq to produce the samples required to recover

all blocks of s with probaility 1− ε, γ3 is the number of operations in C to

prepare and compute the DFT’s, and γ4 is the number of operations in Zq
for back substitution.

Proof. Follows from discussion above.

36

5 Lattices and The Closest Vector Problem

Now we turn our attention to lattices. Lattices are becoming more and

more prevalent in cryptography. This is because research suggest that

lattice problems are robust against quantum computation. Regev showed

that breaking his cryptosystem was as hard as a worst case lattice problem.

Hence, it makes sense for us to look at how lattices can be used to solve

LWE.

First, we will look at some basic lattice properties, before showing how

the Learning with Errors problem can be reduced to a Closest Vector

Problem (CVP) in a lattice. There exists several CVP algorithms, like

enumeration, nearest plane and the round-off algorithms. Common for

all of them is that they work best for a lattice with a “nice” basis. By

“nice” we mean that the basis consist of short vectors ordered roughly

according to length and that they are as orthogonal as possible. This will

not automatically be the case. However, there has been a lot of research

done on creating algorithms that reduces a lattice basis to a nice basis, we

will look at two of them. In Chapter 6, we will look at the LLL algorithm,

and and in Chapter 7, we will look at a generalisation for LLL, the BKZ

algorithm.

For the LLL and BKZ algorithm we do not make many assumption about

the lattices we use. However, in the last chapter, Chapter 8, we will look at

lattices with a lot more algebraic structure, called principal ideal lattices.

These are lattices generated by principal ideals in rings, and which provide

us with some nice properties. Specifically, we will use algebraic number

theory to “build” a lattice based on the cyclotomic units. Then we will

use this structure to show how we can apply the round-off algorithm on

a common problem in the ring version of LWE (Ring-LWE), called the

Shortest Generator Principal Ideal Problem (SG-PIP).

First, however, we will review some lattice basics.

37

5 LATTICES AND THE CLOSEST VECTOR PROBLEM

5.1 Lattice Basics

Here we will only go through some basic properties of lattices that are

essential for this thesis. Most of the material here is based on the lecture

notes in Cryptography on Public Key Encryption by Gjøsteen ([Gjø19b]).

Definition 5.1. A lattice Λ is a subgroup of Rm

Λ =

{
n∑
i=1

aibi

∣∣∣ ai ∈ Z

}
,

where b1, ...,bn ∈ Rm are linearly independent vectors.

The vectors bi form the basis of the lattice. We can construct a n × m
basis matrix B = (b1, ...,bn). Then

Λ = Λ(B) = {Ba |a ∈ Zn} .

If n = m, Λ is full rank.

The dual basis B∨ = {b∨1 , ...,b∨n} ⊂ span(B) and dual lattice Λ(B∨) of

Λ(B), are defined to satisfy 〈b∨i ,bj〉 = δij where δ is the Kronecker delta.

Hence, BT ·B∨ = I.

Note that from here until Chapter 8, Λ will be a lattice of rank n with a

basis B = (b1, ...,bn) ∈ Rm×n.

Definition 5.2. The determinant of a lattice Λ with basis matrix B is

defined by

det(Λ) =

√
det(BTB).

Note that the determinant does not depend on the choice of basis.

For our reduction algorithms, we will work with particularly with one

specific type of lattice:

Definition 5.3. The lattice Λ is q-ary if qZn ⊆ Λ ⊆ Zn

38

5.1 Lattice Basics

5.1.1 The Closest Vector Problem

Here we will give some basic definitions that are essential for understand-

ing how LWE and lattices relate.

Definition 5.4. Let Λ be a lattice. The ith-succesive minimum λi(Λ) of

Λ is the minimal real number such that there are i linearly independent

vectors of length λi(Λ) in Λ.

Note that as long as it is clear what lattice we are talking about, we will

not write the brackets, that is, λi = λi(Λ). For the most part, we will be

concerned with the shortest vector in the lattice. Therefore we let λ(Λ)

denote the length of the shortest vector in the lattice. That is,

λ = λ(Λ) = λ1(Λ) = min
x∈Λ
‖x‖ .

The only exception to this is in the last chapter, where λ will denote the

eigenvalues of a matrix. We chose to use the same notation since we will

not use the shortest vector in Chapter 8 and λ is standard notation for

both the shortest vector in a lattice and the eigenvalues of a matrix. It

will be very clear from context what is meant, and should not cause any

confusion.

Now we can define two problems, where the latter is very relevant in this

thesis:

Definition 5.5 (Shortest Vector Problem - SVP). The shortest vector

problem for a lattice Λ ⊆ Rm is to find a vector x ∈ Λ such that ‖x‖ =

λ(Λ).

Definition 5.6 (Closest Vector Problem - CVP). The closest vector prob-

lem for a lattice Λ ⊆ Rm and a point z ∈ Rm, is to find x ∈ Λ such that

for all y ∈ Λ, ‖z − x‖ ≤ ‖z − y‖.

That is, given a point in Rm, we want to find the closest possible point

in the lattice. If we can assume the point z is less than λ(Λ)
2

distance

away from x, the closest vector problem is also called a Bounded Distance

39

5 LATTICES AND THE CLOSEST VECTOR PROBLEM

Decoding problem, or BDD. Although we will make this assumption, we

will mostly refer to this as a CVP.

As mentioned in the introduction, there are several algorithms developed

to solve CVP in lattices. In this chapter, we will look closer at enumera-

tion (see Section 5.3), which will motivate our look at the LLL and BKZ

algorithms in the following chapters. In Chapter 8 we will look at the

round-off algorithm, which will be central for solving the SG-PIP. Com-

mon for these algorithms, however, are that they work best for a lattice

basis that consist of short vectors, ordered according to length and that

are as orthogonal as possible.

5.1.2 Gram-Schmidt

The Gram-Schmidt algorithm is a natural response when we state we want

an orthogonal basis. However, it is not a given that the Gram-Schmidt

basis itself lies in the lattice. Still, the Gram-Schmidt basis of a lattice

can still be very useful when trying to find a nice basis in a lattice, and

we will use it extensively in the reduction algorithms.

Here we define The Gram Schmidt basis b∗1, ...,b
∗
n of b1, ...,bn as follows:

b∗1 = b1, then for 1 ≤ j < i < n;

b∗i = bi −
i−1∑
j=1

µijb
∗
j where µij =

〈bi,b∗j〉
〈b∗j ,b∗j〉

. (5.1)

In matrix form this can be written
bT1
...

bTn

 =


1 0

. . .

µij 1




b∗T1
...

b∗Tn

 , (5.2)

or BT=QB∗T , where Q is the lower triangular matrix with 1 in the diag-

onal and µij elsewhere.

40

5.2 The Lattice Attack

From the orthogonality of the Gram-Schmidt basis and the fact that the

determinant of a lattice does not depend on choice of basis, it follows that

det(Λ) =
n∏
i=1

‖b∗i ‖ .

5.2 The Lattice Attack

Recall, the LWE problem is, given (A, t = AT s +ν (mod q)), can we find

s? Here we will show that the LWE problem can be reduced to CVP in a

q-ary lattice.

Define the lattice:

Λq(A
T) =

{
x ∈ Zm | ∃ y ∈ Zn s.t. ATy ≡ x (mod q)

}
It is easy to see that this is a q-ary lattice: For any qx ∈ qZn, 0 ∈ Zm is

such that AT0 ≡ qx ≡ 0 (mod q), hence qx ∈ Λq(A
T). So qZ ⊆ Λq(A

T).

A nice property of a q-ary lattice is that it is periodic for q. In Figure 2a

we have given a simple example of what we mean by this in 2 dimensions.

Obviously, AT s ∈ Λq(A
T). We assume ‖ν‖ < λ

2
, then the closest lattice

point to t in Λq(A
T) is AT s, see Figure 2b. Hence, if we can find x ∈

Λq(A
T) such that x is the closest vector to t in Λq(A

T). Then x − t =

ν (mod q), and we can easily find s. Hence, we are left with a CVP.

Next we will be looking at the enumeration algorithm, which is both a

useful tool in finding the closest vector, but is also used in lattice reduction

algorithms such as BKZ.

5.3 Enumeration

One approach to finding short vectors is to set some upper bound R > 0

and go through all linear combinations of the basis vectors to find the

ones with a norm less than or equal to R. That is, we want to find

a = (a1, ..., an) ∈ Z such that ‖Ba‖ ≤ R. This is called enumeration.

41

5 LATTICES AND THE CLOSEST VECTOR PROBLEM

(a) q-ary lattice (b) Closest vector problem

Figure 2: (a) A q-ary lattice is repetitive around q. That means we can

divide the lattice into q-“boxes” and limit our search to one box. (b) We

assume t lies within a λ1/2 radius to a lattice point (illustrated by the

circle). The aim is to find x ∈ Λq(A
T).

We can also use enumeration for solving a CVP. If x is the closest vector

to the point t, then, if we have an estimate for what the closest vector

is and an upper bound R for how far x is from the estimate, we can use

enumeration of short vectors to find x. We also use enumeration in the

BKZ method in order to find short vectors in smaller “blocks” of the input

lattice.

Let b1, ...,bn be the basis of the lattice Λ ⊂ Rm and let b∗1, ...,b
∗
n be the

corresponding Gram-Schmidt basis. Every vector x ∈ Λ can be written

as a linear combination of the bases:

x =
n∑
i=1

aibi =
n∑
i=1

αib
∗
i , (5.3)

where ai ∈ Z and αi ∈ R for all i = 1, ..., n.

Writing each bi in terms of the Gram-Schmidt vectors, and rearranging

42

5.3 Enumeration

in terms of b∗i gives the expression

x =
n∑
i=1

(
ai +

n∑
j=i+1

ajµji

)
b∗i =

n∑
i=1

αib
∗
i . (5.4)

Clearly, an = αn ∈ Z. Hence, we start by enumerating all vectors where

‖αnb∗n‖ ≤ R, which is equivalent to all the an ∈ Z that satisfies |an| ≤
R/ ‖b∗n‖. For each of these an, we move on to find an−1 that satisfy∥∥αn−1b

∗
n−1 + αnb

∗
n

∥∥2 ≤ |αn−1|2
∥∥b∗n−1

∥∥2
+ |αn|2 ‖b∗n‖

2 ≤ R2.

Using Equation (5.4), this is equivalent to

|an−1 + anµn,n−1|2
∥∥b∗n−1

∥∥2
+ |an|2 ‖b∗n‖

2 ≤ R2.

Since an−1 ∈ Z is the only unknown value, we can find all possible options

that satisfies Equation (5.4). And in this manner, the algorithm continues

until we have found all a1, ..., an such that ‖a1b1 + ...+ anbn‖ ≤ R.

We see how this algorithm is equivalent to a tree search were the ith level

searches for an integer ai’s that satisfy(
ai +

n∑
j=i+1

ajµji

)2

‖b∗i ‖
2 +

n∑
j=i+1

(
aj +

n∑
k=j+1

asµkj

)2 ∥∥b∗j∥∥2 ≤ R2, (5.5)

for given ai+1, ..., an.

Note that, if at some point there does not exist an ai such that Equation

(5.5) hold, we simply put ai = 0 and move on to ai−1.

The possible options for the ith coordinate, that is, the number of branches

at the ith level in our search, is upper bounded by

|ai| ≤
R

‖b∗i ‖
.

Which means that the total number of coordinates that are being enu-

merated is bounded above by

n∏
i=1

R

‖b∗i ‖
=

Rn

det(Λ)
. (5.6)

43

5 LATTICES AND THE CLOSEST VECTOR PROBLEM

To enumerate all points in a lattice is time consuming and requires a

large amount of space, especially for large lattices (which is usually the

case). There are several ways of improving this search. For example, we

could update R to be the length of the shortest vector as we go along. In

Computer Science terms, this is called pruning. It is clear, however, that

the enumeration algorithm works best when it has a good upper bound

and basis vectors that are short and do not grow too rapidly in size. Now

we will look at two basis reduction algorithms that aims to find this for a

given lattice.

44

6 LLL - A More Orthogonal Basis

The first lattice basis reduction algorithm we will look at is the LLL algo-

rithm. It was introduced in 1982 and is named after its inventors; Arjen

Lenstra, Hendrik Lenstra and László Lovász ([LLL82]). We will be fo-

cusing on its application to SVP and CVP. However, it a very versatile

algorithm and its use is not limited to lattice problems. For example, it

can also be used for factoring polynomials over the integers or rational

numbers, or, given a good enough approximation, finding the minimal

polynomial of an algebraic number. Both because of its wide applicability

and its apparent simplicity, it has been recognised as one of the most im-

portant algorithmic achievements of the twentieth century ([NV10, p. v]).

This chapter is based on Lenstra, Lenstra, and Lovász’s original arti-

cle ([LLL82]), with supplementary material from [Gal12, Chapter 17],

[Gjø19b] and [Reg04].

As stated in the previous chapter, the aim of a basis reduction algorithm

is to find a basis b1, ...,bn for the lattice Λ ⊂ Rm that consist of short

vectors ordered roughly according to size. We also want them to be as

orthogonal as possible. This is what we hope to achieve with a basis that

is δ-LLL-reduced:

Definition 6.1. A lattice basis b1, ...bn is δ-LLL reduced if its corre-

sponding Gram-Schmidt basis b∗1, ...,b
∗
n satisfies

• (Size-reduced)

|µij| ≤
1

2
for 1 ≤ j < i ≤ n, (6.1)

and

• (Lovász condition)

δ
∥∥b∗i−1

∥∥2 ≤
∥∥b∗i + µi,i−1b

∗
i−1

∥∥2
for 1 < i ≤ n, (6.2)

where 1
4
< δ < 1.

45

6 LLL - A MORE ORTHOGONAL BASIS

Why does this define a “nice” lattice as we described above? To answer

this, first note that a lattice basis is “close to orthogonal” if the Gram-

Schmidt vectors do not grow too rapidly [Gal12, Chapter 17.2]. We can

write the length of the Gram-Schmidt vectors thus:

(‖b1‖ , ..., ‖bn‖) ≤


‖b∗1‖ |µ21| ‖b∗2‖ . . . |µn1| ‖b∗1‖

0 ‖b∗2‖ . . . |µn2| ‖b∗2‖
...

...
. . .

...

0 0 . . . ‖b∗n‖

 .

For a size reduced basis, the Euclidean norm of any off-diagonal element

is at most half the value of the element in the diagonal of the same row.

Next, we note that the Lovász condition can be written (δ−|µ2
i,i−1|)

∥∥b∗i−1

∥∥2 ≤
‖b∗i ‖

2. From this, we gather that the Lovász condition implies that bi is

not much longer than bi−1, and hence implies basis vectors of an δ-LLL-

reduced lattice do not grow too rapidly and are ordered roughly according

to length with the shortest one in the beginning.

Another way to look at the Lovász condition is by considering the 2 × 2

submatrix from the diagonal:(∥∥b∗i−1

∥∥ |µi,i−1|
∥∥b∗i−1

∥∥
0 ‖b∗i ‖

)
.

The Lovász condition requires that the first column of this matrix is

shorter than its second column by a factor of δ. In our next chapter,

we will see how Schnorr’s BKZ algorithm is a generalisation of this for

β × β blocks.

In Example (6.2) we see how both conditions are important to get a nice

basis. Note that a common choice for δ is 3
4
.

In this chapter we will start in Section 6.1, where we go through the

algorithm in detail, showing how and why it works. Then, in Section 6.2,

we will prove that it does, in fact, terminate, and what its runtime is. And

46

6.1 The algorithm

lastly, in Section 6.3, we will prove that an 3
4
-LLL-reduced lattice basis

has some nice properties for our enumeration algorithm.

6.1 The algorithm

Here we will go through the LLL algorithm in detail. First, we outline the

steps of the algorithm, then we look at an example in R2 to get an idea of

how it works. After this example, we will go through each step in detail.

6.1.1 Outline

Input: A lattice basis b1, ...,bn, 1
4
< δ < 1

1. Compute the Gram-Schmidt basis and coefficients. Put k := 1.

2. If k = 1, b1 = b∗1, hence, put k := k+ 1 and continue (on this Step).

If 2 ≤ k ≤ n, use row operations to ensure |µk,k−1| ≤ 1
2
.

3. If the Lovász condition is not satisfied for k, swap bk−1 and bk, and

calculate the new Gram-Schmidt vectors and other affected coeffi-

cients. Put k := k − 1 and go back to Step 2.

4. Use row operations to ensure that |µkj| ≤ 1
2

for 1 ≤ j < k. Put

k:=k+1.

5. If k = n+ 1, the algorithm terminates. Else go to Step 2.

Output: A δ-LLL-reduced basis.

Now, we demonstrate the algorithm for a simple example in R2.

Example 6.2. Define the full rank lattice Λ ⊂ R2 by the basis vectors:

b1 =

(
3

5

)
and b2 =

(
−2

−1

)
.

As we see in Figure 3a, the vectors are not particularly orthogonal. Still,

calculating |µ21| =
∣∣−11

34

∣∣ ≤ 1
2

shows that the basis is size reduced. How-

47

6 LLL - A MORE ORTHOGONAL BASIS

ever,

‖b∗2 + µ21b
∗
1‖

2 = ‖b2‖2 = 5 < δ · 34 = δ ‖b∗1‖

for all 1
4
< δ < 1. Hence, the Lovász condition is not satisfied and the

basis is therefore not LLL-reduced.

To get an LLL-reduced basis we swap the basis vectors:

b1 =

(
−1

−2

)
and b2 =

(
3

5

)
.

For this new basis, |µ21| =
∣∣−13

5

∣∣ = | − 2.2| > 1
2
, so we reduce the basis:

b2 := b2 − bµ21eb1 = b2 + 2b1 = (−1, 3)T . The new |µ21| is equal to∣∣2−3
5

∣∣ = 0.2, which is size reduced.

Then we check that the Lovász condition is satisfied:

‖b∗2 + µ21b
∗
1‖

2 = ‖b2‖2 = 10 ≥ δ · 5 = δ ‖b∗1‖ ,

for all 1
4
< δ < 1. Hence, the basis {(−1,−2)T , (−1, 3)T} is a LLL-

reduced basis for the lattice Λ and any δ. From Figure 3b, it is clearly

more orthogonal than the original basis. Observe also that the vectors are

ordered according to length and are shorter than their original basis (at

least for b2). It is a very basic example (we could have found the same

result by simple observation), but it is still worth noting that we achieved

all we hoped for with the algorithm.

6.1.2 The Algorithm Steps

Here we will go through the steps of the algorithm, outlined above, in

detail. As stated earlier, the input parameters are the basis vectors of

the lattice, b1, ...,bn, and a number 1
4
< δ < 1 for how much we want it

reduced.

Step 1: Calculate the Gram-Schmidt basis

We start by finding the Gram Schmidt basis for the lattice as described in

Section 5.1.2. We now have two bases for the lattice Λ. The relationship

48

6.1 The algorithm

(a) Size-reduced (b) LLL-reduced

Figure 3: Two different basis for the same lattice Λ ⊂ R2. The figure

illustrates the importance of both conditions for the LLL algorithm.

between the two bases can be represented by the matrix system B∗T =

QBT shown in Equation (5.2). It might be helpful to think of the steps

of this algorithm as row operations on the augmented matrix:
1 0 bT1

. . .
...

µij 1 bTn

 . (6.3)

Note here that the algorithm does not need to keep track of all the vectors,

but simply ‖b∗i ‖ and µij, for 1 ≤ j < i ≤ n.

When the set-up is done, the algorithm starts to iterate over a variable

1 ≤ k ≤ n. Initially k := 1. For each k, we want to ensure that the

conditions for a δ-LLL-reduced basis is satisfied. That is, for each k we

want the following conditions to hold:

|µkj| ≤
1

2
for 1 ≤ j < k, (6.4)

and

δ
∥∥b∗k−1

∥∥2 ≤
∥∥b∗k + µk,k−1b

∗
k−1

∥∥2
. (6.5)

49

6 LLL - A MORE ORTHOGONAL BASIS

Step 2: Ensuring |µk,k−1| ≤ 1
2

If k = 1; b1 = b∗1, so the conditions holds trivially. Hence we put k := k+1

and continue (on this step).

If 2 ≤ k ≤ n; the algorithm check if |µk,k−1| ≤ 1
2

is satisfied. If not, we

assign the new value bk := bk−bµk,k−1ebk−1. This is equivalent to making

the row operation rk 7→ rk−bµk,k−1e rk−1 to the matrix in Equation (6.3).

Clearly, |µk,k−1| ≤ 1
2

is now satisfied. So we move on to Step 3.

Note that we check that the Lovász condition hold, before ensuring that

the rest of the Gram-Schmidt basis is size reduced for the current k. This is

because if the Lovász condition is not satisfied, the algorithm manipulates

the basis in a way that changes the Gram-Schmidt coefficients. Therefore,

we check the Lovász condition first to avoid making any computations

twice.

Step 3: The Lovász Condition

If Equation (6.5) is satisfied for k ≥ 2 we move on to Step 4. However, if

δ
∥∥b∗k−1

∥∥2
>
∥∥b∗k + µk,k−1b

∗
k−1

∥∥2

the Lovász condition does not hold and we need to manipulate the ba-

sis. We do this by swapping bk and bk−1, while leaving the other bi’s

unchanged. This swap means that everything connected with bk−1 and

bk also changes. Hence, we have to calculate new values for what was

b∗k−1, b∗k, µk,k−1, µk−1,j, µkj, µi,k−1 and µi,k for j < k − 1 and i > k. In

Section 6.1.3, we show how these calculations are done and why swapping

the basis vectors means the Lovász condition is satisfied for the new b∗k−1

and b∗k. But for now, we will focus on the algorithm. Since b∗k−1 has a

new value, we are no longer sure that b∗k−2 and b∗k−1 satisfies the Lovász

condition, nor are we sure that the new µk,k−1 is size reduced. Therefore

we put k := k − 1 and go to Step 2.

50

6.1 The algorithm

Step 4: Size reduction

At this point in the algorithm we can assume Equation (6.5) holds for

all positive integers less than or equal to k. Hence we move on to ensure

the basis is size reduced, i.e. that Equation (6.4) holds for the current

k. This is done in a similar way to what we did for µk,k−1. Iterate over

µkj for j in reverse order from k − 1 down to 1. If |µkj| > 1
2
, calculate

and assign the new value bk := bk − bµkjebj. This is equivalent to the

row operation rk 7→ rk − bµkje rj to the augmented matrix in Equation

(6.3) (meaning only µkl with l < j gets modified). At the end of this step,

both Equation (6.4) and (6.5) holds for the current k. Lastly, increment

k := k + 1 continue to Step 5.

Step 5: Check for termination

If k ≤ n, go to Step 2. Else, if k > n, the algorithm terminates and returns

an δ-LLL-reduced basis. In Section 6.2.1, we prove that the algorithm

always terminates.

6.1.3 Proof That Swapping The Basis Vectors Satisfies The

Lovász Condition

Here we will spend some time on the finer details of Step 3 in the LLL

algorithm. We will look at why swapping bk−1 and bk leads to the Lovász

condition being satisfied, and also what the updated values for b∗k−1, b∗k,

µk,k−1, µk−1,j, µkj, µi,k−1 and µi,k, for j < k − 1 and i > k, are. Recall

that for Step 3, we know 2 ≤ k ≤ n.

The algorithm works as follows; define a new set of basis vectors ci where

ci = bi for i 6= k − 1, k and

ck−1 = bk and ck = bk−1

Also let

ηij =
〈ci, c∗j〉
〈c∗j , c∗j〉

51

6 LLL - A MORE ORTHOGONAL BASIS

denote the new Gram-Schmidt coefficients.

We begin by calculating new Gram-Schmidt vectors c∗k−1 and c∗k in order

to check that the Lovász condition is satisfied:

c∗k−1 = ck−1 −
k−2∑
j=1

ηk−1,jc
∗
j ,

= bk −
k−2∑
j=1

µkjb
∗
j . (6.6)

Because, for 1 ≤ j < k−1, ηk−1,j =
〈ck−1, c

∗
j〉

〈c∗j , c∗j〉
=
〈bk,b∗j〉
〈b∗j ,b∗j〉

= µkj. Similarly,

ηk,j = µk−1,j. Then, note that

b∗k = bk − µk,k−1b
∗
k−1 −

k−2∑
j=1

µkjb
∗
j . (6.7)

Using Equation (6.7) to substitute for the summation in Equation (6.6)

we get

c∗k−1 = b∗k + µk,k−1b
∗
k−1. (6.8)

In a similar way, we find that

c∗k = b∗k−1 − ηk,k−1c
∗
k−1. (6.9)

With these new Gram-Schmidt basis vectors we can check that the Lovász

condition hold for k:∥∥b∗k + µk,k−1b
∗
k−1

∥∥2
< δ

∥∥b∗k−1

∥∥2
, (6.10)∥∥c∗k−1

∥∥2
< δ

∥∥c∗k + ηk,k−1c
∗
k−1

∥∥2
,

δ
∥∥c∗k−1

∥∥2
<
∥∥c∗k + ηk,k−1c

∗
k−1

∥∥2
,

for 1
4
< δ < 1, as required. Since we now know that the Lovász condition

hold for k, we want to calculate the new Gram-Schmidt coefficients. Ob-

viously, ηij = µij as long as neither i and j are equal to k or k−1. Above,

52

6.1 The algorithm

we showed that ηk,j = µk−1,j and ηk−1,j = µk,j for 1 ≤ j < k − 1. Next,

ηk,k−1 =
〈ck, c∗k−1〉
〈c∗k−1, c

∗
k−1〉

,

=
〈bk−1,b

∗
k + µk,k−1b

∗
k−1〉

〈c∗k−1, c
∗
k−1〉

,

= µk,k−1

∥∥b∗k−1

∥∥2∥∥c∗k−1

∥∥2 .

For i > k we calculate ηi,k−1 and ηik;

ηi,k−1 =
〈ci, c∗k−1〉
〈c∗k−1, c

∗
k−1〉

,

=
〈bi,b∗k〉
〈c∗k−1, c

∗
k−1〉

+ µk,k−1

〈bi,b∗k−1〉
〈c∗k−1, c

∗
k−1〉

,

=
〈bi,b∗k〉
〈b∗k,b∗k〉

〈b∗k,b∗k〉
〈c∗k−1, c

∗
k−1〉

+ µk,k−1

〈bi,b∗k−1〉
〈b∗k−1,b

∗
k−1〉
〈b∗k−1,b

∗
k−1〉

〈c∗k−1, c
∗
k−1〉

,

= µik
‖b∗k‖

2∥∥c∗k−1

∥∥2 + µi,k−1ηk,k−1.

To calculate ηik, we note that we can use Equations (6.8) in (6.9) to get

an expression for c∗k in terms of b∗k−1 and b∗k:

c∗k = (1− µk,k−1ηk,k−1)b∗k−1 − ηk,k−1b
∗
k =

‖b∗k‖
2∥∥c∗k−1

∥∥2 b∗k−1 − ηk,k−1b
∗
k

An immediate consequence of this is that

‖c∗k‖
2 =
‖b∗k‖

2
∥∥b∗k−1

∥∥2∥∥c∗k−1

∥∥4 (‖b∗k‖
2 + µ2

k,k−1

∥∥b∗k−1

∥∥2
) =
‖b∗k‖

2
∥∥b∗k−1

∥∥2∥∥c∗k−1

∥∥2 .

(6.11)

53

6 LLL - A MORE ORTHOGONAL BASIS

Use this to calculate ηik;

ηik =
〈ci, c∗k〉
〈c∗k, c∗k〉

,

=
‖b∗k‖

2∥∥c∗k−1

∥∥2

〈bi,b∗k−1〉
〈c∗k, c∗k〉

− ηk,k−1
〈bi,b∗k〉
〈c∗k, c∗k〉

,

=
‖b∗k‖

2∥∥c∗k−1

∥∥2

〈bi,b∗k−1〉
〈b∗k−1,b

∗
k−1〉
〈b∗k−1,b

∗
k−1〉

〈c∗k, c∗k〉
− ηk,k−1

〈bi,b∗k〉
〈b∗k,b∗k〉

〈b∗k,b∗k〉
〈c∗k, c∗k〉

,

=

∥∥b∗k−1

∥∥2 ‖b∗k‖
2∥∥c∗k−1

∥∥2 ‖c∗k‖
2

(µi,k−1 − µk,k−1µik) ,

= µi,k−1 − µk,k−1µik.

Now we have a new system of equations:
cT1
...

cTn

 =


1

. . .

ηij 1



c∗T1

...

c∗Tn


Or, in terms of the old basis vectors, we see where we keep the old values

and where we have calculated new values:

bT1
...

bTk−2

bTk

bTk−1

bTk+1

bTk+2
...

bn



=



1 . . . 0 0 0 0 0 . . . 0
...

. . .
...

...
...

...
...

...

µk−2,1 . . . 1 0 0 0 0 . . . 0

µk,1 . . . µk,k−2 1 0 0 0 . . . 0

µk−1,1 . . . µk−1,k−2 ηk,k−1 1 0 0 . . . 0

µk+1,1 . . . µk+1,k−2 ηk+1,k−1 ηk+1,k 1 0 . . . 0

µk+2,1 . . . µk+2,k−2 ηk+2,k−1 ηk+2,k µk+2,k+1 1 . . . 0
...

...
...

...
...

...
. . .

...

µn1 . . . µn,k−2 ηn,k−1 ηnk µn,k+1 µn,k+2 . . . 1





b∗T1
...

b∗Tk−2

c∗Tk−1

c∗Tk

b∗Tk+1

b∗Tk+2
...

c∗Tn


6.2 Analysis

In this section we will prove that the algorithm terminates and what its

runtime is.

54

6.2 Analysis

6.2.1 Termination

Theorem 6.3. Let Λ ⊆ Zm be a lattice with basis b1, ..., bn, where n ≤ m.

Let 1
4
< δ < 1. Then, when inputting b1, ..., bn and δ, the LLL algorithm

will terminate.

This proof follows the arguments used in [LLL82] and in the proof of

Theorem 17.5.1 in [Gal12]. Note here that Lenstra, Lenstra, and Lovász

proved that the LLL algorithm terminates for any lattice Λ ⊆ Rm. The

proof here is equivalent to that, except for in the last argument, where

we use the fact that bi ∈ Zm. Since, for the LWE problem, we are only

concerned with integer lattices, we choose to just prove the special case.

Proof. Step 4 of the algorithm run a maximum of k − 1 times more than

Step 3. Hence it is enough to show that Step 3 will only happen a finite

number of times. We introduce the quantities

di = det(b1, ...,bi) =
i∏

j=1

∥∥b∗j∥∥
and

D =
n−1∏
i=1

di =
n−1∏
i=1

‖b∗i ‖
n−i .

D is called the potential of Λ and maps the length of the lattice basis to

a positive number. The lower D is, the shorter our Gram-Schmidt basis

is. Note how it gives more weight to the first basis vectors than to the

last, which means having shorter Gram-Schmidt vectors at the beginning

means more than at the end of the basis. Also note that D is bounded

above for ρ ≥ maxi ‖bi‖ by

D =
n−1∏
i=1

‖b∗i ‖
n−i ≤

n−1∏
i=1

ρn−i = ρ
n(n−1)

2 .

D only changes if the Gram-Schmidt basis of the lattice changes, which

only happens in Step 3. Let d̃i denote the value of di after swapping basis

55

6 LLL - A MORE ORTHOGONAL BASIS

vectors as described in Step 3. Clearly, d̃i = di for all i < k−1, and recall,

from Equation (6.10), that
∥∥c∗k−1

∥∥ ‖c∗k‖ =
∥∥b∗k−1

∥∥ ‖b∗k‖. This implies that

d̃i = di for all i 6= k − 1. Next calculate

d̃k−1 =
k−1∏
j=1

∥∥c∗j∥∥ =

(
k−1∏
j=1

∥∥b∗j∥∥
)∥∥c∗k−1

∥∥ ≤ √δdk−1

by the Lovász condition (see Equation (6.11)). This implies that for each

swap, D decreases with a factor of
√
δ, that is D̃ ≤

√
δD. Since D only

changes when we swap the basis, we have proved that D is bounded above

and is strictly decreasing throughout the algorithm. If we can prove D

bounded below by a positive value, we prove that the LLL algorithm

terminates.

Since Λ ∈ Zm, it follows that di ∈ Z and also that di ≥ 1. This again

implies that D ≥ 1 and hence we have a lower bound on D and the

algorithm terminates.

6.2.2 Runtime

We have now showed how the algorithm works and that it does, in fact,

terminate. Lastly in this analysis section, we will look at its running time.

Proposition 6.4. Let Λ ⊂ Zn be a lattice with basis , b1, .., bn and let ρ ∈
R, be such that ρ ≥ max

(
2, maxi ‖bi‖

)
. Then the number of arithmetic

operations needed by the LLL algorithm is O(n4 log ρ).

Proof. The initialisation of the algorithm, that is Step 1 (finding the

Gram-Schmidt basis vectors), requires O(n3) arithmetic operations, but

only occurs once throughout the run of the algorithm.

We will now look at how many times we run through Step 3 and 4 and

how many arithmetic operation each instance require. From the fact that

D ≤ ρ
n(n−1)

2 , it follows that 0 ≤ logD ≤ n(n−1)
2

log ρ. Hence, the number

of times we run through Step 3 is upper bounded by O(n2 log ρ). Also,

56

6.3 Bounds

since we run through Step 4 a maximum of k − 1 times more than Step

3, the number of times we run through Step 4 is also bounded above by

O(n2 log ρ).

Now we look at how many arithmetic operation each step requires. Both

Step 2 and 3 are bounded above by O(n) operations. For Step 4, each

time we reduce µkj for 1 ≤ j ≤ k − 1, we do a maximum of n operations,

and we have to perform a maximum of n of these reduction, hence Step 2

requires O(n2) operations.

Putting it all together, we get that the algorithm is O(n4 log ρ).

6.3 Bounds

A good measure of how good our basis reduction is, is how close the

length of our shortest basis vector b1 is to the shortest lattice length λ.

This is because the closer b1 is to λ, the better bound R we have on our

enumeration process that aims to find short vectors around a point in the

lattice. This entire section is devoted to prove the following bound on a
3
4
-LLL reduced basis:

Theorem 6.5. Let b1, ..., bn be a 3
4
-LLL-reduced basis for the lattice Λ ⊂

Rm. λi is the ith successive minimum of Λ. Then

2
1−i
2 λi ≤ ‖bi‖ ≤ 2

n−1
2 λi,

for 1 ≤ i ≤ n.

We begin by finding a bound on the basis vectors of an LLL-reduced basis:

Proposition 6.6. Let b1, ..., bn be an 3
4
-LLL-reduced basis for a lattice

Λ ⊂ Rm and let b∗1, ..., b
∗
n be the corresponding Gram-Schmidt basis. Then

‖bj‖2 ≤ 2i−1 ‖b∗i ‖
2

for 1 ≤ j ≤ i ≤ n.

57

6 LLL - A MORE ORTHOGONAL BASIS

Proof. By definition, a 3
4
-LLL-reduced basis will satisfy∥∥b∗i−1

∥∥2 ≤ 2 ‖b∗i ‖
2∥∥b∗i−2

∥∥2 ≤ 22 ‖b∗i ‖
2

...∥∥b∗j∥∥2 ≤ 2i−j ‖b∗i ‖
2 (6.12)

for 1 ≤ j ≤ i ≤ n. By the fact that the Gram-Schmidt vectors are

orthogonal to each other we know

‖bj‖2 ≤
∥∥b∗j∥∥2

+

j−1∑
k=1

µ2
jk ‖b∗k‖

2 ,

≤
∥∥b∗j∥∥2

+

j−1∑
k=1

1

4
2j−k

∥∥b∗j∥∥2
,

=
∥∥b∗j∥∥2

(
1 +

(
2j

4

) j−1∑
k=1

2−k

)
,

=
∥∥b∗j∥∥2

(
1 +

2j

4

(
1− 2−j

1− 2−1
− 1

))
,

=
∥∥b∗j∥∥2

(
1 +

1

4

(
2j − 2

))
,

≤ 2j−1
∥∥b∗j∥∥2

.

Now, using Equation (6.12), we get

‖bj‖ ≤ 2j−12i−j ‖b∗i ‖
2 = 2i−1 ‖b∗i ‖

2 .

Here we will briefly remark on a result that follows immediately from the

proposition above and the fact that ‖b∗i ‖ ≤ ‖bi‖.

Corollary 6.7. Let b1, ..., bn be an 3
4
-LLL-reduced basis for a lattice Λ ⊂

Rm and let b∗1, ..., b
∗
n be the corresponding Gram-Schmidt basis. Then we

58

6.3 Bounds

have

| det(Λ)| ≤
n∏
i=1

‖bi‖ ≤ 2
n(n−1)

4 | det(Λ)|, (6.13)

‖b1‖ ≤ 2
n−1
4 | det(Λ)|

1
rb . (6.14)

Since we assume b1 is roughly the shortest vector in the basis it makes

sense to put the enumeration bound R to be ‖b1‖. Recall that the number

of enumerations we have to do for an upper bound R is Rn/ det(Λ). For

a 3
4
-LLL-reduced basis, we can use use Equation (6.14) to give a new

estimate, that only depend on n, on the upper bound on the number of

enumerations:
Rn

det(Λ)
=
‖b1‖n

det(Λ)
≤ 2

n(n−1)
4 .

Returning to Theorem 6.5, we will see in the proof of the theorem that

Proposition 6.6 is enough to prove the lower bound. We therefore turn

our attention to proving the upper bound in the theorem. By definition,

there exist some linearly independent set of vectors x1, ...,xi ∈ Λ such

that λi = max(‖x1‖ , ..., ‖xi‖). Hence we aim to bound the basis vectors

b1, ...,bn above by any linearly independent set of vectors in the lattice,

and use this to prove the upper bound in Theorem 6.5.

First, we prove a bound on b1:

Proposition 6.8. Let b1, ..., bn be the 3
4
-LLL-reduced basis for the lattice

Λ ⊂ Rm. Then

‖b1‖2 ≤ 2n−1 ‖x‖2 ,

for every non-zero x ∈ Λ.

Proof. Every x ∈ Λ can be written as a linear combination of the basis

vectors b1, ...,bn. Let b∗1, ...,b
∗
n be the corresponding Gram-Schmidt basis.

Then for all x ∈ Λ there exists ai ∈ Z and αi ∈ R such that

x =
n∑
i=1

aibi =
n∑
i=1

αib
∗
i .

59

6 LLL - A MORE ORTHOGONAL BASIS

Let k be the largest index for which ak 6= 0. Then ak = αk. This implies

that

‖x‖2 ≥ α2
k ‖b∗k‖

2 ≥ ‖b∗k‖
2 , (6.15)

2k−1 ‖x‖2 ≥ 2k−1 ‖b∗k‖
2 ,

2n−1 ‖x‖2 ≥ ‖b1‖2 ,

by Proposition 6.6.

Proposition 6.9. Let b1, ..., bn be a 3
4
-LLL-reduced basis for the lattice

Λ ⊂ Rm. Let x1, ...,xt ∈ Λ be linearly independent vectors. Then

‖bj‖2 ≤ 2n−1 max{‖x1‖2 , ..., ‖xt‖2},

for j = 1, ..., t.

Proof. Let x1, ...,xt be t ≤ n linearly independent vectors in the lattice.

For each xj, we can write

xi =
n∑
j=1

aijbj

for some coefficients aij ∈ Z for 1 ≤ i ≤ t.

For fixed i, denote k(i) as the index of the largest non-zero coefficient such

that ai,k(i) 6= 0. Renumber the xi’s such that k(1) ≤ k(2) ≤ ... ≤ k(t).

Observe that for all 1 ≤ i ≤ t, i ≤ k(i). This is because if i > k(i), then

x1, ...,xj ∈ span(b1, ...,bj−1), which contradicts the linear independence

of xi. From this and Proposition 6.6, it follows that

‖bi‖2 ≤ 2k(i)−1
∥∥b∗k(i)

∥∥2
,

≤ 2n−1
∥∥b∗k(i)

∥∥2
,

≤ 2n−1 ‖xi‖2 .

by Equation (6.15).

60

6.3 Bounds

Now we have all the bounds we need to put a bound on bi in terms of the

successive minima λi.

Proof of Theorem 6.5. We know λi = max(‖x1‖ , ..., ‖xi‖) for some set

of linearly independent vectors x1, ...,xi ∈ Λ, the upper bound follows

immediately from Proposition 6.9.

For the lower bound, note that

λi ≤ max
1≤j≤i

‖bi‖ ≤ 2
i−1
2 ‖b∗i ‖ ≤ 2

i−1
2 ‖bi‖ ,

by Proposition 6.6. The result follows.

It follows that λ ≤ ‖b1‖ ≤ 2n−1λ.

61

7 Block Korkin-Zolotarev - Expanding LLL

In the LLL algorithm we looked at 2× 2-blocks of the lattice Λ and made

sure the first basis vector was (within a factor of δ) shorter than the next

vector. The BKZ, or Block Korkin-Zolotarev, algorithm, generalises this

idea to blocks of size β ≥ 2.

The concept of a Korkin-Zolotarev reduced basis was coined as early

as 1873 by the Russian mathematicians Aleksandr Korkin and Yegor

Ivanovich Zolotarev ([KZ73]). A Korkin-Zolotarev reduced basis has bet-

ter properties than an LLL-reduced basis, such as better bounds on ‖b1‖,
but there is no known polynomial time algorithm to compute it. In

1987 Schnorr introduced an algorithm for the block version of a Korkin-

Zolotarev reduced basis, the BKZ algorithm.

The material in this chapter is mainly based on [Sch87], [SE94] and [CN11].

7.1 Korkin-Zolotarev Reduced Basis

Before we define the block version, we will look at what we mean by a

Korkin-Zolotarev reduced basis. In order to to this, we need to introduce

some notation. First, let the map πi : Rn 7→ span(b1, ...,bi−1)⊥ denote the

orthogonal projection such that that b− πi(b) ∈ span(b1, ...,bi−1). That

is, πi(b) ”removes” the parts of b that lies in span(b1, ...,bi−1), leaving

only the orthogonal parts. Note that

πi(bi) = b∗i ,

πi(bi+1) = µi+1,ib
∗
i + b∗i+1,

πi(bi+2) = µi+2,ib
∗
i + µi+2,i+1b

∗
i+1 + b∗i+2.

...

63

7 BLOCK KORKIN-ZOLOTAREV - EXPANDING LLL

In general,

πi(bk) =


∑k−1

j=i µk,jb
∗
j + b∗k if i ≤ k ≤ n

0 if 1 ≤ k < i

.

Note that π1 of the basis vectors of a lattice will give the vector in terms

of the Gram-Schmidt basis.

Define Λi = πi(Λ) to be the lattice orthogonal to span(b1, ...,bi−1). Or,

in other words, Λi is the lattice spanned by {πi(bi), ..., πi(bn)}. Note that

Λ1 = Λ. In Figure 4 we have illustrated the different spans for Λi for a

lattice of rank 5. As we see there, this is simply a decreasing blocks of the

Gram-Schmidt basis.

b∗1 µ21b
∗
1 µ31b

∗
1 µ41b

∗
1 µ51b

∗
1

0 b∗2 µ32b
∗
2 µ42b

∗
2 µ52b

∗
2

0 0 b∗3 µ43b
∗
3 µ52b

∗
3

0 0 0 b∗4 µ54b
∗
4

0 0 0 0 b∗5





Λ1

Λ2

Λ3

Λ4

Λ5

Figure 4: Illustration indicating which columns that span each Λi for a

lattice of rank n = 5.

Now we are ready to state what is meant by a Korkin-Zolotarev reduced

basis.

Definition 7.1. An ordered basis b1, ...,bn is Korkin-Zolotarev reduced

if it is size-reduced and if

‖b∗i ‖ = λ(Λi)

for all i = 1, ..., n.

The idea is to put the shortest vector of each lattice Λi as the first basis

vector. Clearly, this implies that ‖b1‖ = λ(Λ). In general, for a Korkin-

Zolotarev reduced basis we have this bound:

64

7.2 BKZ - Block Korkin-Zolotarev

Theorem 7.2 ([LLS90, Theorem 2.1]). Every Korkin-Zolotarev reduced

basis b1, ..., bn satisfies

4

(i+ 3)
≤ ‖bi‖

2

λ2
i

≤ (i+ 3)

4

for i = 1, ..., n.

This bound is a lot stronger than the bound we found for the LLL algo-

rithm in Theorem 6.5. However, reducing a basis to a Korkin-Zolotarev

basis is the same as searching through the whole lattice for the shortest

vector, which is what we are trying to avoid by basis reduction.

According to [SE94, Section 5], the fastest known algorithm for Korkin-

Zolotarev reduction of a basis b1, ...,bn ∈ Zm with ρ = maxi(‖bi‖2) has a

theoretic worst case time bound of m
m+o(m)

2 +O(m4 log ρ) arithmetic steps

on O(m log ρ)-bit integers. Hence, trying to break the LWE problem by

Korkin-Zolotarev reducing the basis will not be very effective. Instead, we

will look at Schnorr’s block version of a Korkin-Zolotarev reduced basis.

7.2 BKZ - Block Korkin-Zolotarev

Schnorr introduced a block version of a Korkin-Zolotarev reduced basis in

1987 and an algorithm to achieve it. A BKZ reduction can be thought of

as a generalisation of the LLL algorithm. Where, for the LLL algorithm,

we compared blocks of size 2, while for the BKZ algorithm we look at

blocks of size β ≥ 2.

However, before we can look at what we mean by block reduced basis, we

must define what we mean by a block.

Definition 7.3. Let b1, ...,bn be the basis of a lattice Λ ⊂ Rm and let πi

denote the orthogonal projection on span(b1, ...,bi−1). Then, for β ≥ 2

and k = min(j + β − 1, n), a block B[j,k] is defined to be

B[j,k] = (πj(bj), ..., πj(bk))

for j = 1, ..., n, and Λ[j,k] is the lattice spanned by B[j,k].

65

7 BLOCK KORKIN-ZOLOTAREV - EXPANDING LLL

A more intuitive way of thinking about this might be to look at the Gram-

Schmidt basis of b1, ...,bn and draw up the blocks B[j,k] that span the

lattices Λ[j,k], like we have done in Figure 5.

b∗1 µ2,1b
∗
1 . . . µβ,1b

∗
1 µβ+2,1b

∗
1 . . . µn,1b

∗
1

0 b∗2 . . . µβ,2b
∗
2 µβ+1,2b

∗
2 . . . µn,2b

∗
2

...
...

. . .
...

...
...

0 0 . . . b∗β µβ+1,βb
∗
β . . . µn,β

0 0 . . . 0 b∗β+1 . . . µn,β+1b
∗
β

...
...

...
...

...
. . .

...

0 0 0 b∗n




Figure 5: Illustration of the blocks of a basis

Now that we have an idea of what a block is, we can define a Block

Korkin-Zolotarev reduced basis:

Definition 7.4. A basis b1, ...,bn is β-reduced for β ≥ 2 where k =

min(j + β − 1, n) if it is size reduced and if∥∥b∗j∥∥ = λ(Λ[j,k]), (7.1)

for j = 1, ..., n.

That is, a lattice Λ is BKZ-reduced for β ≥ 2 if b∗j is the shortest vector of

Λ[j,k]. In a block reduction, we look at β-blocks around the diagonal of the

Gram-Schmidt basis, like in Figure 5. If β = n we get a Korkin-Zolotarev

reduced basis, and if β = 2 the BKZ is equivalent to an LLL-reduction.

From Theorem 7.2, we observe that a larger block size will lead to a more

accurate result. However, a larger β also requires more computational

power and longer running time.

In the next section, we will look at Schnorr’s algorithm for achieving a

BKZ reduced basis of a lattice. He was, however, unable to prove that it

66

7.3 The Algorithm

terminates.

7.3 The Algorithm

In this section we will look Schnorr’s algorithm for achieving a BKZ-

reduced basis.

For this algorithm, we extend the LLL algorithm to also remove any linear

dependency of its input vectors. That is, if we input a set of vectors that

are not linearly independent, the LLL algorithm will still return a linearly

independent, LLL-reduced set of basis vectors that span the same space.

We will not discuss the details of this extension here, but it is well-defined

(see e.g. [SE94, Section 4]).

There are two counters, j and z in this algorithm. j is the iteration

constant and increases cyclically in the interval j = 1, ..., n. z keeps track

of how many consecutive blocks that are β-reduced. If the algorithm

encounters a block where Equation (7.1) is not satisfied, it fixes this, but

puts z := 0. As opposed to the LLL algorithm, this algorithm does not

terminate when j = n + 1, but rather when z = n. That is, when all the

blocks are β-reduced.

7.3.1 Outline

Input: The LLL reduction factor δ, the lattice basis b1, ...,bn, and the

size of the blocks β ≥ 2.

1. Set j := 0, z := 0 and δ-LLL reduce the basis b1, ...,bn.

2. Put j := j (mod n − 1) + 1, k := min(j + β − 1, n) and h :=

min(k + 1, n). Enumerate to find bnew =
∑k

j=i vibi, vi ∈ Z not all

zero, such that ‖πj(bnew)‖ = λ(Λ[j,k]).

(a) If λ(Λ[j,k]) = ‖πj(bnew)‖ <
∥∥b∗j∥∥, then a new shortest vector is

found. Set z := 0 and insert the new vector at the beginning

of the current block; (b1, ...,bj−1,b
new,bj, ...,bh). LLL reduce

67

7 BLOCK KORKIN-ZOLOTAREV - EXPANDING LLL

this set of vectors to remove dependency, update the Gram-

Schmidt basis, and get new LLL-reduced, linearly independent

basis b1, ...,bh.

(b) Else, if λ(Λ[j,k]) =
∥∥b∗j∥∥, no new shortest vector is found, set

z := z + 1 and LLL reduce the truncated basis (b1, ...,bh).

3. If z = n output b1, ...,bn, else if z < n go to Step 2.

Output: A β-reduced basis for Λ.

7.3.2 Block reduction

Both Step 1 and 3 in the algorithm are pretty straight forward, so we will

only go into slightly more detail about Step 2.

Step 2 focuses on a block B[j,k] for j ∈ {1, ..., n − 1} and k = min(j +

β− 1, n). The aim is to ensure that the shortest vector of the lattice Λ[j,k]

is at the beginning of the block. To do this we also define the variable

h = min(k + 1, n) to keep track of the end of the block.

First, we search to find the shortest vector in Λ[j,k]. Practically, this is

done by enumeration, as described in Section 5.3, with
∥∥b∗j∥∥ as an initial

upper bound and updating this if it finds a shorter vector. At the end, we

have a non-zero v = (vj, ..., vj+k) ∈ Zk such that∥∥∥∥∥πj
(

k∑
i=j

vibi

)∥∥∥∥∥ = λ(Λ[j,k])

Otherwise, if
∥∥b∗j∥∥ = λ(Λ[j,k]), LLL is called on the truncated basis

b1, ...,bh and we increment z by 1.

At the end of each iteration of j, the basis B = b1, ...,bn is such that

b1, ...,bh is LLL reduced. When z = n, we have gone through all the

blocks without having to alter the basis once, hence the basis is β-reduced,

the algorithm terminates and returns B.

68

7.4 Analysis

7.4 Analysis

Schnorr was not able to prove that his algorithm terminates, and in fact,

there no good upper bound known for the complexity of BKZ. In practice,

it has proved itself to work well for β = 20 while becoming problematic

for β = 25. The method uses enumeration, which for β ≥ 30 starts to

dominate the algorithm and is too expensive for β ≥ 40 ([SE94],[CN11]).

In recent years there has been a lot of work done on improving this al-

gorithm, one of them being the BKZ 2.0 algorithm by Chen and Nguyen

([CN11]). They propose four modification to BKZ, rendering it more ap-

plicable to block sizes larger than 30. In short, these improvements are:

(1.) Early-abort, that is, simply adding a parameter specifying how many

iterations that should be performed. (2.) Pruning when enumerating§.

(3.) Preprocessing the block so that the projected basis is more reduced

than LLL. And lastly, (4.) optimizing choice of initial lower bound on the

enumeration radius. According to [CN11], this is the best lattice reduction

in practice.

7.5 Bounds

Now we want to investigate some properties of a BKZ reduced basis:

At this stage we define the Korkin-Zolotarev constant to be

αβ = max
1≤j≤β

‖b1‖2∥∥b∗j∥∥2

For a Korkin-Zolotarev reduced basis b1, ...,bβ.

Theorem 7.5 ([Sch87, Theorem 2.3]). Every β-reduced basis b1, ..., bn

satisfies

‖b1‖2 ≤ α
n−1
β−1

β λ(Λ)2,

provided β − 1 divides n− 1.

§Specifically Gama-Nguyen-Regev pruning introduced in [GNR10].

69

7 BLOCK KORKIN-ZOLOTAREV - EXPANDING LLL

Proof. Let v be a vector in the lattice where ‖v‖ = λ(Λ). Similar to

earlier, we know we can write v in terms of the basis vectors:

v =
n∑
i=1

vibi =
n∑
i=1

ṽib
∗
i

where vi ∈ Z and ṽi ∈ R. Let k be the largest integer for which vi 6= 0.

Then vk = ṽk and λ(Λ)2 = ‖v‖2 ≥ ‖b∗k‖
2.

Every β-reduced basis satisfies:

‖b∗i ‖ ≤ αβ
∥∥b∗i+j∥∥2

for j ≤ β − 1, i+ j ≤ n.

By the same argument, if r = i+j, then ‖b∗r‖ ≤ αβ
∥∥b∗r+s∥∥ where s ≤ β−1

and r + s ≤ n. Then ‖b∗i ‖
2 ≤ αβ

∥∥b∗i+j∥∥ ≤ α2
β

∥∥b∗i+j+s∥∥ where j + s ≤
2(β − 1) and i + j + s ≤ n. That is, ‖b∗i ‖ ≤ α2

β

∥∥b∗i+j∥∥ for j ≤ 2(β − 1)

and i+ j ≤ n. Repeated applications of this argument gives:

‖b∗i ‖ ≤ ατβ
∥∥b∗i+j∥∥2

for j ≤ τ(β − 1), i+ j ≤ n. (7.2)

where τ is an integer. Note that j ≤ τ(β − 1) ≤ (n − 1), which implies

τ ≤ n−1
β−1

. Also, for v, b∗k will be the longest Gram-Schmidt basis vector in

the basis since the basis is β-reduced. Hence we get

‖b1‖2 = ‖b∗1‖
2 ≤ α

n−1
β−1

β ‖b∗k‖
2 ≤ α

n−1
β−1

β λ(Λ)2,

as required.

Note that α2 = 4
3
, which implies that for an 2-reduced basis ‖b1‖ ≤(

2√
3

)n−1

λ(Λ), which is a better bound than what we found in Theorem

6.5.

However, αβ is not something that will be readily available. In his article,

Schnorr shows how this can be bounded above by the Hermite constant.

Note also that if β = n, we get αn = 1 and we return to our our upper

bound for a Korkin-Zolotarev reduced basis for ‖b1‖.

70

7.5 Bounds

In any case, the BKZ algorithm gives a better basis for enumeration than

LLL, however, it does take a lot more computation and for β ≥ 30 it is

not sure to terminate in polynomial time.

71

8 LWE in Rings

As we have seen already, lattices are an attractive tool for cryptography.

So far in this thesis we have tried to solve the LWE problem using algo-

rithms with Gaussian elimination or q-ary lattices without any assumed

structure. However, the most efficient lattice-based cryptosystems are re-

lated to ideal lattices, which correspond to ideals in certain families of

rings (e.g. Z[X]/(X2k + 1)). In this chapter, we will look at how we can

use the algebraic structure of a principal ideal lattice to solve a common

problem in Ring-LWE.

Several recent cryptosystems rely on principal ideals that have “relatively

short” generators that act as secret keys. Then the problem, put simply,

is; given the ring R and a principal ideal (g) = gR, can we find the secret

g ([Ber14])? Or, in more formal terms: Given some Z-basis of an ideal

that is guaranteed to have a “short” generator g, find a sufficiently short

generator. An attack consist of two main parts:

1. Given a Z-basis, find some arbitrary generator g′ for the ideal gen-

erated by the short generator g; g′ does not need to be short.

2. From g′ find a sufficiently short generator g.

The first part is known as the Principal Ideal Problem (PIP) and will not

be discussed in this project, [Cra+16] mentions several efficient algorithms

to this purpose. Instead, we will focus on the second part of the attack.

This is called the Short Generator of a Principal Ideal Problem, or SG-

PIP for short. The SG-PIP might not look like the LWE problem we are

familiar with, but it will become apparent, as we start constructing our

lattice, that it is in fact such a system we are solving.

In this last chapter, a lot more algebra is required than in the previous

chapters. This is in order to both define the lattice and understand why

the algorithm works. Because of this though, this chapter will have some-

what of a different structure compared to the preceding ones. We will not

73

8 LWE IN RINGS

spend time on run-time or computations, but focus solely on understand-

ing the lattice and why the algorithm works. This chapter is based on and

follows closely [Cra+16].

We begin, in Section 8.1, by presenting the round-off algorithm. We have

mentioned this earlier as a potential algorithm for solving a CVP, and it

is the algorithm we will base our main result on. In Section 8.2 we will

introduce the group notation used in this chapter. Then, in Sections 8.3

and 8.4, we go through some material on circulant matrices and characters.

Understanding these concepts lays the foundation for proving that our

lattice basis has the necessary properties for decoding. Following this, in

Section 8.5, we will use a primitive nth root of unity ζ to the define the

cyclotomic number field Q(ζ) and its ring of integers R = Z[ζ]. For this

ring we define our full rank lattice; the log-unit-lattice. Our main results,

however, will focus on a sublattice of the log-unit-lattice, using the log

embedding on the cyclotomic units. Having introduced our sublattice and

its basis, we devote all of Section 8.6 to proving an upper bound on the

dual basis vectors of the sublattice, which is crucial for constructing and

proving the main algorithm in Section 8.7. In the last section, Section

8.8, we prove that the algorithm works well for a continuous Gaussian

distribution.

8.1 The Round-Off Algorithm

The round-off algorithm is a standard approach to solving BDD (CVP

with an assumption that the error is bounded).

Theorem 8.1 ([Cra+16, Claim in Section 2.1]). Let Λ ⊆ Rm be a lattice

with basis B = (b1, ..., bn) where n ≤ m. Let t = x + ν ∈ Rm for some

x ∈ Λ and ν ∈ Rm. If 〈b∨j ,ν〉 ∈ [−1
2
, 1

2
) for all j = 1, ..., n. Then, on

input t and basis B, the round-off algorithm outputs x.

Recall from Section 5.1 that B∨ denotes the dual of a lattice basis B.

74

8.2 Group Notation

Proof. x ∈ Λ implies there exists z ∈ Zn such that x = Bz. Then

(B∨)T t = (B∨)Tx+ (B∨)Tν

= z + (B∨)Tν.

Then
⌊
(B∨)T t

⌉
=
⌊
z + (B∨)Tν

⌉
= z because z ∈ Zm and because

〈b∨j ,ν〉 ∈ [−1
2
, 1

2
) for all j (so it will not affect the round-off algorithm).

So B
⌊
(B∨)T t

⌉
= Bz = x as desired.

8.2 Group Notation

Following Cramer et al. [Cra+16], we will use group notation for indexing.

That is, instead of i = 1, ..., n, we have i ∈ G for some group G. That

means, if we refer to i ∈ G, i is the group element. However, we will at

times also refer to iα ∈ G for α = 1, ..., |G|, which refers to the αth group

element in G. We break with the convention only when deemed necessary

to make proofs as clear as possible and we will endeavour to make it

clear when we do so. Note however, that the order of the elements is not

important and the enumeration is arbitrary.

In this project, G will always be a finite abelian group of integers, and the

relevant groups for our results will be Z∗n and Z∗n/{±1}, where ∗ denotes

the unit group.

8.3 G-Circulant Matrices

For this section, we assume G = (G, ∗) is a finite abelian group. We start

of by defining a G-circulant matrix and looking at a few examples, before

associating it to characters and character groups in Section 8.4.

Definition 8.2 (Circulant Matrix). For a vector a = (ai)i∈G indexed by

G, the G-circulant matrix associated with a is the G-by-G matrix whose

(i, j)th entry is ai∗j−1 (where i, j ∈ G).

75

8 LWE IN RINGS

In order to get a better understanding of the group notation and G-

circulant matrices, we will look at a few examples.

Example 8.3. Let G = (Zm,+). Then a = (a0, a1, ..., am−1) and j−1

is −j (mod m). The (i, j)th entry is therefore ai∗j−1 = ai−j (mod n). The

G-circulant matrix associated with a is:
a0 am−1 . . . a2 a1

a1 a0 . . . a3 a2

...
...

...
...

am−1 am−2 . . . a1 a0

 .

This first example is perhaps the definition of circulant matrices most of

us are familiar with. However, when dealing with unit groups, which we

will be later on, the indexing will not necessarily be as intuitive, as we

will see in the following example.

Example 8.4. Let G = (Z∗5, ·). Then a = (a1, a2, a3, a4) and 1−1 =

1, 2−1 = 3, 3−1 = 2, 4−1 = 4. Then the G-circulant matrix of a is
a1 a3 a2 a4

a2 a1 a4 a3

a3 a4 a1 a2

a4 a2 a3 a1

 .

For example, the (2, 3) entry of the matrix is a2·3−1 = a2·2 = a4.

Example 8.5. Because 5 is prime, there are no gaps in the indexing. If

n is not a prime number, say G = Z∗9, then a = (a1, a2, a4, a5, a7, a8) and

the G-circulant matrix associated with a is

a1 a5 a7 a2 a4 a8

a2 a1 a5 a4 a8 a7

a4 a2 a1 a8 a7 a5

a5 a7 a8 a1 a2 a4

a7 a8 a4 a5 a1 a2

a8 a4 a2 a4 a5 a1


.

76

8.4 Characters

Notice how, when using group notation, we do not make any rows or

columns zero when an index is not in G. For example, the element in the

3rd row and 4th column is not 0 because 3 /∈ G. Instead, it will be the 3rd

element in G times the inverse of the 4th element in G, i.e. 4·5−1 = 4·2 = 8.

8.4 Characters

We will now go through some basic properties of characters and character

groups. The proofs will be given briefly or not at all. The reader is referred

to Chapter 6 in [Apo76] for details.

Definition 8.6 (Character). A character κ is a group morphism κ : G 7→
{u ∈ C : |u| = 1}. i.e. κ(ij) = κ(i)κ(j) ∀i, j ∈ G.

Definition 8.7 (Character group). The character group (Ĝ, ·) is the set of

characters of G, with the group operation being the usual multiplication

of functions. i.e. (κ · η)(i) = κ(i) · η(i) for i ∈ G and κ, η ∈ Ĝ.

The principal character of a character group is the character κ ∈ Ĝ such

that κ(i) = 1 for all i ∈ G. We will denote this to be the first element

in Ĝ. That means Ĝ\{1} is the group of characters except the principal

character.

Now note that |Ĝ| = |G| = m ([Apo76, Theorem 6.8]). Also note that

for all κ ∈ Ĝ, κ(1G) = 1 ([Apo76, Theorem 6.7]), hence κ(i) = κ(i)−1 =

κ(i−1).

Now identify the character κ ∈ Ĝ with the vector κ = (κ(i))i∈G ∈ Cm.

From the fact that 〈κ,κ〉 =
∑

i∈G κ(i) · κ(i) =
∑

i∈G 1 = |G|, it is clear

that all characters have equal Euclidean norm; ‖κ‖ =
√
|G|. In fact,

distinct characters κ, η ∈ Ĝ are orthogonal:

〈κ,η〉 =
∑
i∈G

κ(i) · η(i) =
∑
i∈G

(κη−1)(i) = 0. (8.1)

This follows from [Apo76, Theorem 6.10], where, for all κ ∈ Ĝ\{1},∑
i∈G κ(i) = 0. Combining this with a similar result:

∑
κ∈Ĝ κ(i) = 0

77

8 LWE IN RINGS

for all i ∈ G\{1} ([Apo76, Theorem 6.13]) implies that the the complex

G-by-Ĝ matrix PG = |G|− 1
2 (κ(i))i∈G,κ∈Ĝ is unitary. Let κα(iβ) denote the

αth character in Ĝ on the βth group element in G. Then for |G| = m, PG

looks like:

PG = |G|−
1
2


κ1(i1) κ2(i1) . . . κm(i1)

κ1(i2) κ2(i2) . . . κm(i2)
...

...
. . .

...

κ1(im) κ2(im) . . . κm(im)

 . (8.2)

Next, we prove that for a finite abelian group G, the concepts of a G-

circulant matrix A and the character matrix PG are very much connected,

and the eigenvalues of A are defined by the characters of G.

Lemma 8.8 ([Cra+16, Lemma 1]). A complex matrix A is G-circulant

if and only if the Ĝ × Ĝ-matrix P−1
G APG is diagonal; equivalently, the

columns of PG are the eigenvectors of A. If A is the G-circulant matrix

associated with a = (ai)i∈G, its eigenvalue corresponding to κ ∈ Ĝ is

λκ = 〈a,κ〉 =
∑

i∈G ai · κ(i).

Proof. (⇐) Assume A is G-circulant associated with the vector a.

It is a well known result in linear algebra that a matrix is diagonalisable

if there exists a non-singular square matrix P such that P−1AP = D,

where D is a diagonal matrix consisting of the eigenvalues of A in its

diagonal and the corresponding eigenvectors are the columns of P. Hence

it suffices to prove that κ, for κ ∈ Ĝ, are the eigenvectors of A. For i ∈ G
the ith element in Aκ is

(Aκ)i =
∑
j∈G

aij−1κ(j) =

(∑
k∈G

akκ(k)

)
κ(i) = 〈a,κ〉κ(i) = λκκ(i),

where k = ij−1. Hence, Aκ = λκκ. As there are there are |G| distinct

κ’s, these are all the eigenvectors. That means that A is diagonalisable

with eigenvectors κ as the columns in P, which is equal to PG, and hence

we have our result.

78

8.4 Characters

(⇒) Now we assume P−1
G APG is diagonal and we want to show A is G-

circulant. That is, P−1
G APG = D. We can write D =

∑
κ∈Ĝ λκDκ where

Dκ is the zero matrix except for 1 in the diagonal entry in the κth row.

The sum of circulant matrices is circulant. It is therefore enough to prove

that PGDκP
−1
G is G-circulant.

DκP
−1
G leaves the κth row of P−1

G unchanged, and all other entries are

zero. Hence the κth row of DκP
−1
G consists of elements of the form κ(i)

for i ∈ G. To show this explicitly, let καβ = κα(iβ), where κα is the αth

element in Ĝ and iβ the βth element in G. Then

PGDκαP
−1
G = |G|−1


κ11 κ21 . . . κm1

κ12 κ22 . . . κm2

...
...

. . .
...

κ1m κ2m . . . κmm




. . . 0

1αα

0
. . .



κ11 κ12 . . . κ1m

κ21 κ22 . . . κ2m

...
...

. . .
...

κm1 κm2 . . . κmm

 ,

= |G|−1


κ11 κ21 . . . κm1

κ12 κ22 . . . κm2

...
...

. . .
...

κ1m κ2m . . . κmm




0 0 . . . 0

κα1 κα2 . . . καm

0 0 . . . 0

 ,

= |G|−1


κα1κα1 κα1κα2 . . . κα1καm

κα2κα1 κα2κα2 . . . κα2καm
...

...
. . .

...

καmκα1 καmκα2 . . . καmκαm

 ,

= |G|−1


κα(i1i

−1
1) κα(i1i

−1
2) . . . κα(i1i

−1
m)

κα(i2i
−1
1) κα(i2i

−1
2) . . . κα(i2i

−1
m)

...
...

. . .
...

κα(imi
−1
1) κα(imi

−1
2) . . . κα(imi

−1
m)

 .

So the (α, β)th entry depends only on iαi
−1
β as required. Hence PGDκαP

−1
G

is a G-circulant matrix, and therefore, by linearity, so is PGDP−1
G .

79

8 LWE IN RINGS

It follows that every row and column of A has squared Euclidean norm:

‖a‖2 = ‖P∗Ga‖
2 = |G|−1

∑
κ∈Ĝ

|λκ|2. (8.3)

Where the first equality follows from the fact that PG is unitary and

therefore does not change the Euclidean norm of a vector when multiplied

with it. The second equality follows by simple calculation:

P∗Ga = |G|−
1
2


∑

j ajκ1j∑
j ajκ2j

...∑
j ajκmj

 = |G|−
1
2


〈a,κ1〉
〈a,κ2〉

...

〈a,κm〉

 = |G|−
1
2


λκ1

λκ2
...

λκm

 .

8.4.1 Dirichlet Characters and L-series

Now we will look at a special type of characters, called Dirichlet characters.

Again, the properties and statements will be given in brief. The reader is

encouraged to look at Chapter 3 in [Was97] for further details. Instead, we

will look at some helpful examples to aid our understanding of characters

further on.

Definition 8.9 (Dirichlet character). A Dirichlet character κ is a char-

acter of the unit group Z∗k for some positive integer k. That is, a multi-

plicative homomorphism κ : Z∗k → {u ∈ C : |u| = 1}.

We say a character κ of the group Z∗l is defined modulo l. If l|k, κ induces

a character Z∗k → {u ∈ C : |u| = 1} by composition of the natural

homomorphism Z∗k → Z∗l , z 7→ z (mod k) and κ. In which case, κ is

defined both modulo l and modulo k, since they are essentially the same

map. See Example 8.10 below to get a better understanding of what we

mean by this.

If κ is defined modulo k, and there does not exist any other positive integer

l|k such that κ is also defined modulo l, then k is minimal and is called

the conductor of κ. We denote the conductor of κ as fκ, or just f . When

a character is defined modulo its conductor, it is called primitive.

80

8.4 Characters

We can extend κ to a map κ : Z → C where κ(a) = 0 if gcd(a, fκ) 6= 1.

We shall only consider primitive characters as this makes κ(a) = 0 happen

as little as possible.

To get a better understanding of Dirichlet characters, and characters in

general, we will now look at some basic examples.

Example 8.10 ([Was97, Chapter 3, Example 1]). Define the Dirichlet

character κ : Z∗8 → {u ∈ C : |u| = 1} by

κ(1) = 1, κ(5) = 1,

κ(3) = −1, κ(7) = −1.

Note that 4|8, that 5 ≡ 1 (mod 4) and 7 ≡ 3 (mod 4), and that

κ(5) = 1 = κ(1),

κ(7) = −1 = κ(3).

Therefore, κ is also defined modulo 4, but is 4 minimal? The only positive

integer less than 4 that divides 8 is 2 (and 1, but 1 obviously does not

define κ). However, since 3 ≡ 1 (mod 2) but κ(1) 6= κ(3), 2 does not

define κ. Therefore 4 is minimal and the conductor of κ is fκ = 4.

A character is called even if κ(−1) = 1 and odd if κ(−1) = −1. The

example above is an odd character. Note that the even characters of Z∗n
correspond to the characters of Z∗n/{±1}. To understand this, we will

take a closer at Z∗n/{±1} and the characters of Z∗n:

Example 8.11. Some examples of Z∗n/{±1}:

81

8 LWE IN RINGS

n ϕ(n) Z∗n Z∗n/{±1}

3 2 {1, 2} {1}

4 2 {1, 3} {1}

5 4 {1, 2, 3, 4} {1, 2}

9 6 {1, 2, 4, 5, 7, 8} {1, 2, 4}

For example, for n = 5, 3 ∈ Z∗5 is equal to 3 = −2 = 2 in Z∗5/{±1} as

Z∗n/{±1} is essentially the group where positive and negative values are

equal. We also see that the order of Z∗n/{±1} is equal to |Z∗n|/2 = ϕ(n)
2

.

Now, we look at another example to get a better idea of what we mean

when we say that the even characters of Z∗n correspond with the characters

of Z∗n/{±1}?.

Example 8.12. The Dirichlet characters of Z∗5 is:

κ\a 1 2 3 4

κ1(a) 1 1 1 1

κ2(a) 1 i −i −1

κ3(a) 1 −1 −1 1

κ4(a) 1 −i i −1

(Table from [Apo76, p.139].) We see that κ1 and κ3 are even characters.

In Z∗n/{±1}, 3 = 2 and 4 = 1, and note that κ1/3(3) = κ1/3(2) and

κ1/3(4) = κ1/3(1). So the even characters could be defined as

κ\a 1 2

κ1(a) 1 1

κ3(a) 1 −1

These are all the characters of Z∗5\{±1}. And from this table we can

gather that κ3(3) = κ3(2) = −1, which corresponds with the first table.

So any character of Z∗n/{±1} will be even when mapped from Z∗n, and

82

8.5 Primitive Roots and Cyclotomic Number Fields

since there are at most |Z∗n|/2 even characters in Z∗n and |Z∗n|/2 characters

in Z∗n/{±1}, these will have a 1− 1 correspondence.

We say that a Dirichlet character is quadratic if all its values are real and

it is not the principal character. For example, κ3, in Example 8.11, is

quadratic, while κ2 and κ4 are non-quadratic.

Definition 8.13 (Dirichlet L-series). For a Dirichlet character κ, the

Dirichlet L-function is defined as the formal series

L(s, κ) =
∞∑
n=1

κ(n)

ns

For any Dirichlet character κ, L(s, κ) is absolutely convergent for all s ∈ C
with Re(s) > 1. It is also known that L(s, κ) converges and is non-zero

for any non-principal Dirichlet character (κ 6= 1 for all a ∈ Zn). For our

purposes, we will only need L(1, κ), and for that we have the following

bound, which we will not prove in this thesis:

Theorem 8.14 ([Cra+16, Theorem 1]). There exist a constant c > 0 such

that, for any non-quadratic character κ of conductor fκ > 1,

1

`(fκ)
≤ L(1, κ) ≤ `(fκ), (8.4)

where `(fκ) = c ln(fκ). Moreover, for any quadratic character κ,

|L(1, κ)| ≥ 1

c
√
fκ
. (8.5)

8.5 Primitive Roots and Cyclotomic Number Fields

In this section, we begin by building up the basic theory and define the

field and ring that we will use in the remainder of this chapter. Then,

in Section 8.5.1, we define the logarithmic embedding that, when working

on our ring, will define a full rank lattice; the log-unit-lattice. In Section

8.5.2 we introduce the cyclotomic units that define a sublattice of the log-

unit lattice, this sublattice is what we will use in our main algorithm. At

83

8 LWE IN RINGS

the end of this section, we will have built up enough theory to relate the

SG-PIP to a CVP and we do this in Section 8.5.3.

Definition 8.15. An algebraic number field F is an extension field of Q
such that its dimension [F : Q] is finite.

An algebraic number field is Galois if the order of its automorphism group

equal its dimension.

Definition 8.16. Let F be a field. ζ ∈ F is a nth root of unity if ζn = 1.

If, in addition, ζk 6= 1 for any integer k < n, then n is the order of ζ and

ζ is called a primitive nth root of unity.

If ζ ∈ F is a nth a primitive root of unity, then the complete set of primitive

nth roots of unity in F consists of powers ζj for j ∈ Z∗n.

Definition 8.17. A number field F is cyclotomic if F = Q(ζ) for some

nth root of unity ζ ∈ F. Its degree is ϕ(n) where n is the order of ζ and

ϕ is the Euler totient function.

For this project we define our field to be the cyclotomic number field Q(ζ)

for some primitive nth root of unity ζ ∈ Q(ζ). Then [Q(ζ) : Q] = ϕ(n)

where ζ’s minimal polynomial is
∏

j∈Z∗n
(x − ζj) ∈ Z[x]. That means a

typical element x ∈ Q(ζ) looks like

x =

ϕ(n)−1∑
i=0

aiζ
j,

where ai ∈ Q. In this project we will work with the ring R = Z[ζ]¶. Let

U denote the cyclic group of nth roots of unity with multiplication as its

group operation, that is U = 〈ζ〉. Define the automorphism σj : Q(ζ) →

¶R is the ring of integers of Q(ζ), that means the ring of roots of monic, irreducible

polynomials with integer coefficients Q(ζ)[x].

84

8.5 Primitive Roots and Cyclotomic Number Fields

Q(ζ) as the identity on Q and σj(ζ) = ζj where j ∈ Z∗n‖. That is,

σj(x) = σj

ϕ(n)−1∑
i=0

aiζ
i

 =

ϕ(n)−1∑
i=0

aiσj(ζ
i)

ϕ(n)−1∑
i=0

aiζ
ij.

The concatenation of these embeddings is known as the canonical em-

beddings and is defined by σ(x) = (σj(x))j∈Z∗n . This gives the norm

‖x‖ = ‖σ(x)‖ for all x ∈ Q(ζ).

We will also define the algebraic norm N : R→ Z of R by

N(a) =
∏
j∈Z∗n

σj(a).

It is easy to verify that N satisfies the definition of a norm. It follows

directly that

N(u) = ±1. (8.6)

for any unit u ∈ R. This is because if u is a unit in R, then there exist

a v ∈ R such that uv = 1, which implies that 1 = N(1) = N(uv) =

N(u)N(v).

A concrete example of such a cyclotomic field is Q(ω) where ω is the nth

primitive root of unity in the complex numbers e
2π
n
i.

8.5.1 The Logarithmic Embedding

The mapping σj(x) comes in conjugate pairs, that is, σj(x) = σ−j(x) where

|σj(x)| = |σ−j(x)|. Since we, for the most part, will be concerned with the

magnitudes, we look at the multiplicative quotient group G = Z∗n/{±1}.
Note that |Z∗n| = ϕ(n) and |Z∗n/{±1}| = ϕ(n)

2
.

Next, for G = Z∗n/{±1}, define the logarithmic embedding:

Log : Q(ζ)→ R
ϕ(n)
2

Log(a) = (log |σj(a)|)j∈G.

‖In fact G(Q(ζ)|Q) = {σj}j∈Z∗
n
.

85

8 LWE IN RINGS

The Log embedding defines a group morphism, mapping the multiplica-

tive group Q(ζ)∗ to an additive subgroup of Rϕ(n)/2. That is Log(a · b) =

Log(a) + Log(b).

When restricting Log to R∗, the Dirichlet Unit Theorem ([See e.g. Sam72,

Chapter 4.4, Theorem 1]) implies that ±U = ±〈ζ〉 defines the kernel of

Log and that LogR∗ is a lattice of rank ϕ(n)
2
− 1. Ideally we want our

lattice to be full rank, so next we show that LogR∗ is orthogonal to the

all-one vector 1:

〈Log(u),1〉 =
∑
j∈G

log |σj(u)| = log (|N(u)|) = 0.

This follows from the fact that N(u) = ±1 for all u ∈ R∗ as shown in

Equation (8.6). That means LogR∗ is a full rank lattice in the linear

subspace of R
ϕ(n)
2 orthogonal to 1. We refer to it as the log-unit lattice.

8.5.2 Cyclotomic Units

Next, we will define a subgroup of R∗ called the cyclotomic units. This

will define a sublattice to LogR∗ with some nice basis properties, as we

will see.

Define

zj := ζj − 1 (8.7)

for j ∈ Zn\{0}. Note that

z−j = ζ−j − 1,

ζjz−j = 1− ζj,

zj = −ζjz−j,

which means Log(zj) = Log(z−j). Define A to be a multiplicative sub-

group of Q(ζ)∗ generated by ζ and zj for j = 1, ..., n− 1. Then the group

of cyclotomic units, C, is defined by

C = A ∩R∗.

86

8.5 Primitive Roots and Cyclotomic Number Fields

We want to find a generating set for C, which is given by a Lemma in

[Was97] and which we will only state here:

Lemma 8.18 ([Was97, Lemma 8.1]). Let n be a prime power, and define

bj :=
zj
z1

=
ζj − 1

ζ − 1
. (8.8)

The group C of cyclotomic units is generated by ±ζ and bj for j = G\{1}
(G = Z∗n/{±1})

Note that LogC is a sublattice of LogR∗. Discussion following Theorem

2 in [Cra+16] shows that it is reasonable to assume [LogR∗ : LogC] is

quite small. Here, [LogC : LogR∗] is the index of the subgroup LogC

over LogR∗. Recall that this is equal to the number of left (or right)

cosets of LogC in LogR∗. So when [LogR∗ : LogC] is small, there

are very few cosets of LogC in LogR∗, and the two groups are not too

different.

8.5.3 The Lattice Problem

We have now established enough algebraic theory to relate the SG-PIP to

a CVP in a lattice. Recall that the SG-PIP states: If we know that the

principal ideal (g) in a ring is generated by a short generator g, and we

are given a long generator g′ for the same ideal, can we find a sufficiently

short generator?

We will assume the long generator is of the form g′ = ug where g is the

short lattice and u is a cyclotomic unit. Then we can apply the logarithmic

embedding to g′ and get:

Log(g′) = Log(ug) = Log(u) + Log(g).

Since Log(u) is in the lattice LogC, we see how this translates to a CVP

of the form t = x + ν where x = Log(u) is the lattice point closest to

the target t = Log(g′) and ν = Log(g) is the noise term. Since we also

assume g is short, this is, in fact, a BDD problem.

87

8 LWE IN RINGS

As stated earlier, we wish to apply the round-off algorithm on this lattice

(to find Log(u)), but in order to do this, we need to show that the basis

of LogC is well suited for the round-off algorithm. Hence, we will use the

entire next section to study the basis of LogC and find an upper bound on

the dual basis. After that, in Section 8.7, we will finally be ready to show

how we can solve the SG-PIP using the log-unit lattice and the round-off

algorithm.

8.6 Bounds On The Dual Basis

From now on we will define n, the cyclotomic index, to be a prime power

and also G = Z∗n/{±1}. For concreteness, we will situate the cyclotomic

number field in the complex numbers and define the primitive nth root of

unity to be ω = ωn = e
2πi
n . That means Q(ω) is our cyclotomic number

field and σj(ω) = ωj. This follows the convention of [Cra+16]. Although

they tend to switch between ω and ζ, to keep things as general as possible,

we choose to keep to ω to avoid any confusion. Still, it is worth noting

that many of the following results holds for the general primitive nth root

of unity ζ.

The aim of this section is to show that the canonical generators bj of C

are geometrically well suited for bounded distance decoding. That means

we want to find an upper bound on the dual basis of the lattice LogC.

In Lemma 8.18, we defined the canonical generators of C to be bj =

(ωj − 1)/(ω − 1). Associate bj for j ∈ G\{1} with the log-embeddings:

bj = Log(bj).

By Lemma 8.18 we know bj together with ±ω generate the cyclotomic

units C. Since LogC is a sublattice of LogR∗, then bj for j ∈ G\{1}
forms a basis for LogC, because±ω defines the kernel of Log, as discussed

in Section 8.5.1.

This is the basis we want to apply the round-off algorithm to, hence we

88

8.6 Bounds On The Dual Basis

need to bound the dual basis. This whole section will lead up to proving

that
∥∥b∨j ∥∥2 ≤ O(n−1 log3 n) for all j ∈ G\{1}. We do this by first proving

that the dual basis vectors all have equal Euclidean norm, and then find

an upper bound for them in terms of the Dirichlet L-series L(1, κ) where

κ is the even characters of Z∗n.

First, we prove that the Euclidean norm of b∨j are all equal to each other.

Lemma 8.19 ([Cra+16, Lemma 3]). For all j ∈ G\{1} we have

∥∥b∨j ∥∥2
= |G|−1

∑
κ∈Ĝ\{1}

|λκ|−2.

Proof. Since we know the rows and columns of a G-circulant matrix have

the same Euclidean norm, we want to try to relate the bj to a G-circulant

matrix. Recall that zj = ωj − 1 and define

zj := Log(zj).

Since zj = bjz1, it follows that zj = bj + z1. Now define the matrix Z to

be the matrix with zj−1 in its jth column. Then the (i, j)th entry of Z (for

i, j ∈ G) is defined by log |σj−1(zi)| = log |ωij−1 − 1|. So the (i, j)th entry

of Z is only dependent on ij−1, hence Z is a G-circulant matrix associated

with z1 = (log |ωi − 1|)i∈G.

Let z∨j denote the dual to zj. Since 〈z∨i , zj〉 = δij, z
∨
j make out the

columns of Z−T . Note that Z−1 is well defined because the eigenvalues of

Z are λκ = 〈z1,κ〉 (as shown in Lemma 8.8).

Now we claim that b∨j = z∨j − |G|−1〈z∨j ,1〉1 (i.e. the projection of z∨j

orthogonal to 1). For this to be the dual basis, we need to prove two

things:

1. That b∨j ∈ span(bi)i∈G\{1}.

2. That 〈b∨j ,bi〉 = δji for all i, j ∈ G\{1}.

89

8 LWE IN RINGS

We start by proving b∨j ∈ span(bi)i∈G\{1}. Since span(bi)i∈G\{1} defines

the space orthogonal to the all-one vector 1, b∨j ∈ span(bi)i∈G\{1} is equiv-

alent to proving that b∨j is orthogonal to 1 for all j ∈ G\{1}:

〈b∨j ,1〉 = 〈z∨j ,1〉 − |G|−1〈z∨j ,1〉 〈1,1〉︸ ︷︷ ︸
|G|

= 0,

as desired. Next we check the second condition:

〈b∨j ,bi〉 = 〈z∨j − |G|−1〈z∨j ,1〉1,bi〉 = 〈z∨j ,bi〉 = 〈z∨j , zi − z1〉 = δji,

where the second equality holds because 〈bj,1〉 = 0 for all j ∈ G\{1},
and the third follows from the fact that bi = zi − z1. Hence b∨j =

z∨j − |G|−1〈z∨j ,1〉1.

Now we want to calculate the Euclidean norm of b∨j :

∥∥b∨j ∥∥2
= 〈b∨j ,b∨j 〉,

= 〈z∨j + |G|−1〈z∨j ,1〉1, z∨j + |G|−1〈z∨j ,1〉1〉,

=
∥∥z∨j ∥∥2 − |G|−1〈z∨j ,1〉2. (8.9)

Therefore, we want to calculate
∥∥z∨j ∥∥2

and 〈z∨j ,1〉. We begin by finding∥∥z∨j ∥∥. By Lemma 8.8, the eigenvalues of Z are defined to be λκ = 〈z1,κ〉 =∑
j∈G zj · κ(j), for the eigenvectors κ ∈ Ĝ. Hence, the eigenvalues of Z−T

are 〈z∨1 ,κ〉 = λ−1
κ . Since all rows and columns of a G-circulant matrix

have the same Euclidean norm, and by Equation (8.3), we know

∥∥z∨j ∥∥2
= ‖z∨1 ‖

2
= |G|−1

∑
κ∈Ĝ

|λκ|−2. (8.10)

Lastly, we want to find the value of 〈z∨j ,1〉. From the fact that zj =

bj + z1, we get

〈z∨j ,1〉 = 〈z∨1 ,1〉 = 〈z∨j ,κ1〉 = λ−1
κ1
, (8.11)

90

8.6 Bounds On The Dual Basis

where κ1 is the principal character in Ĝ. Substituting Equations (8.10)

and (8.11) into Equation (8.9) gives the desired result∥∥b∨j ∥∥2
= |G|−1

∑
κ∈Ĝ\{1}

|λκ|−2.

Now we have proved that all dual basis vectors b∨j have the same Euclidean

norm. Clearly, finding an upper bound for the eigenvectors λκ of Z gives

us an upper bound on the dual basis vectors b∨j . Recall G = Z∗n/{±1} and

that the characters in Ĝ correspond to the even characters of Z∗n. That

means the eigenvectors of Z are

λκ = 〈z1,κ〉 =
∑
a∈G

κ(a) log |1− ωan|,

=
1

2

∑
a∈Z∗n

κ(a) log |1− ωan|, (8.12)

because |1− ωan| = |1− ω−an | (since (|σj(x)| = |σ−j(x)|).

Theorem 4 in [Cra+16], which is a combination of Lemma 4.8 and Theo-

rem 4.9 in [Was97], states that:

Theorem 8.20 ([Cra+16, Theorem 4]). Let κ be an even Dirichlet char-

acter of conductor f > 1. and let ωf = e
2π
f
i ∈ C. Then∣∣∣∣∣∣

∑
a∈Z∗f

κ(a) · log |1− ωaf |

∣∣∣∣∣∣ =
√
f |L(1, κ)|. (8.13)

We will not prove this theorem here. We note, however, that if we can

get the summation in Equation (8.12) on the form of the left hand side of

Equation (8.13), we can consequently use Theorem 8.14 to get an upper

bound for the b∨j ’s.

Since f is the conductor of an even character κ ∈ Z∗n, f divides n. Let

ψ : Z∗n → Z∗f be given by reduction modulo f . Hence, for a ∈ Z∗f , we

91

8 LWE IN RINGS

have κ(bi) = κ(a) for all bi ∈ Z∗n that are such that bi ≡ a (mod f). That

means we can put κ(a) in Equation (8.12) outside a parenthesis and get:∑
a∈Z∗n

κ(a) · log |1− ωan| =
∑
a∈Z∗f

κ(a)

(∑
b∈Z∗n
ψ(b)=a

log |1− ωbn|

)
,

=
∑
a∈Z∗f

κ(a) · log

(∏
b∈Z∗n
ψ(b)=a

|1− ωbn|

)
. (8.14)

(We disregard the 1
2

term for now.) For a primitive kth root of unity ω

of a field F, the polynomial xk − 1 ∈ F[x] can be factorised as xk − 1 =∏k−1
j=0(x − ωj). Divide both sides by xk and let y = x−1, then we get the

equality 1− yk =
∏k−1

j=0(1− yωj). Now, for each a ∈ Z∗f there are n/f b’s

in Z∗n such that ψ(b) = a. That means

∏
b∈Z∗n
ψ(b)=a

|1− ωbn| =

n
f
−1∏
r=0

|1− (ωan)r| = |1− ω
n
f
a

n | = |1− ωaf |.

Note that ωan is a primitive root of unity as a is coprime to n by definition.

Put this into Equation (8.14) and use Theorem 8.20 to get∑
a∈Z∗n

κ(a) · log |1− ωan| =
∑
a∈Z∗f

κ(a) · log |1− ωaf |,

=
√
f |L(1, κ)|,

Hence, we have proven the Corollary to Theorem 8.20:

Corollary 8.21 ([Cra+16, Cororllary 1]). Suppose f > 1 divides a prime

power n. For any even Dirichlet character κ of conductor f .∣∣∣∣∣∣
∑
a∈Z∗n

κ(a) · log |1− ωan|

∣∣∣∣∣∣ =
√
f |L(1, κ)|

Next, we state the clear result of relating this back to the norm of the

dual basis:

92

8.6 Bounds On The Dual Basis

Lemma 8.22. Let n = pk for a prime p, and let {b∨j }j∈G\{1} denote the

basis dual to {bj}j∈G\{1}. Then the Euclidean norms
∥∥b∨j ∥∥ are all equal,

and ∥∥b∨j ∥∥2
= 4|G|−1

∑
κ∈Ĝ\{1}

f−1
κ |L(1, κ)|−2.

Proof. From Equation (8.12) and Corollary 8.21 we deduce |λκ| =
∣∣1

2

√
fκ L(1, κ)

∣∣ .
By Lemma 8.19 the result follows:∥∥b∨j ∥∥2

= |G|−1
∑

κ∈Ĝ\{1}

|λκ|−2 = 4|G|−1
∑

κ∈Ĝ\{1}

f−1
κ |L(1, κ)|−2. (8.15)

Finally, we can find an upper bound on the b∨j ’s in terms of n.

Theorem 8.23 ([Cra+16, Theorem 3]). Let n = pk for a prime p, and

let {b∨j }j∈G\{1} denote the basis dual to {bj}j∈G\{1}. Then∥∥b∨j ∥∥2 ≤ 2k|G|−1 · (c+ `(n)2) ≤ O(n−1 · log3 n),

for some constant c > 0.

Proof. By Lemma 8.22 we have∥∥b∨j ∥∥2
= 4|G|−1

∑
κ∈Ĝ\{1}

f−1
κ |L(1, κ)|−2. (8.16)

To find an upper bound on
∥∥b∨j ∥∥2

we will use Theorem 8.14.

First we consider contributions coming from quadratic characters. For all

primes p, there are no more than three quadratic characters (with finite

conductor) [MV06, Chapter 9.3]. Hence, by Equation (8.5) from Theorem

8.14 there exist some constant cκ > 0 such that f−1
κ |L(1, κ)|−2 ≤ c2

κ.

∑
κ∈Ĝ\{1}
quad κ

f−1
κ |L(1, κ)|−2 ≤

∑
κ∈Ĝ\{1}
quad κ

c2
κ = c.

93

8 LWE IN RINGS

Where c is some positive constant.

Now we move on to the non-quadratic characters. Here we use Equation

(8.4) to first bound |L(1, κ)|−2 ≤ `(fκ)
2 ≤ `(n)2. Then we want to find an

upper bound for
∑

κ∈Ĝ\{1} fκ.

The fact that fκ|n means fκ = pl for some l = 1, .., k (since fκ > 1). The

maximum number of Dirichlet characters with conductor f = pl is pl. At

most half of these are even (and we are only looking at even characters

when working with G = Z∗n/{±1}). So we can bound each fκ above by

the number of possible even characters times its conductor:∑
κ∈Ĝ\{1}

f−1
κ ≤

∑
κ∈Ĝ\{1}

pl

2

1

pl
=
k

2
.

This means we can bound the sum of non-quadratic character thus:∑
κ∈Ĝ\{1}

non-quad κ

f−1
κ |L(1, κ)|−2 ≤ `(n)2k

2
.

Now we plug this into Equation (8.15) to prove our theorem:∥∥b∨j ∥∥2
= 4|G|−1

∑
κ∈Ĝ\{1}

f−1
κ |L(1, κ)|−2,

≤ 4|G|−1

(
c1 +

k

2
`(n)2

)
,

= 4|G|−1

(
c1 + c2

k

2
ln2(n)

)
,

≤ 2k|G|−1(c3 + c1 ln2(n)),

≤ 2|G|−1 ln(n)(c3 + c2 ln2(n)),

where ci > 0 are constants. Lastly, we recall that |G| = ϕ(n)
2

. In the words

of Hardy and Wright ([HW54, Chapter 18.4]), the order of ϕ(n) is almost

always “nearly n”. Hence we obtain our desired result:∥∥b∨j ∥∥2 ≤ O(n−1 log3(n)).

94

8.7 The Algorithm

8.7 The Algorithm

Now that we have a bound on the dual basis of LogC, we are ready to

prove our main result in this chapter; the round-off algorithm applied to

the log-unit-lattice in order to solve the SG-PIP problem.

Theorem 8.24 ([Cra+16, Theorem]). Let χ be a distribution over Q(ω)

with the property that for any tuple of vectors v1, ..., vϕ(n)/2−1 ∈ Rϕ(n)/2 of

Euclidean norm 1 that are orhtogonal to the all-1 vector 1, the probability

that |〈Log(g), vi〉| < cn
1
2 · (log n)−

3
2 holds for all i = 1, ..., ϕ(n)

2
− 1 is at

least some P > 0. Then there is an efficient algorithm that given g′ = ug

where g is chosen from χ and u ∈ C is a cyclotomic unit, outputs an

element of the form ±ωjg with probability at least P .

Proof. The input is g′, a generator. We want to prove that the output of

the algorithm is the sufficiently short generator ±ωjg.

As described in Section 8.5.3 we can apply the logarithmic embedding to

the long generator g′ = ug to get a closest vector problem:

Log(g′) = Log(u) + Log(g).

Since u ∈ C, Log(u) ∈ LogC which is in our lattice with basis bj dis-

cussed in the previous section. We can apply the round-off algorithm from

the beginning of this chapter (see Section 8.1) by putting x = Log(u) and

ν = Log(g), but only if 〈Log(g),b∨j 〉 ∈ [−1
2
, 1

2
) for all j ∈ G\{1}.

With probability P , we can assume |〈Log(g),vi〉| < cn
1
2 · (log n)−

3
2 for

any tupple of vectors v1, ...,vϕ(n)/2−1 ∈ Rϕ(n)/2 where ‖vi‖ = 1 and

〈vi,1〉 = 0 for all i = 1, ..., ϕ(n)
2
− 1. The b∨j ’s are already orthog-

onal to 1 and they all have equal Euclidean norm, albeit not neces-

sarily 1. However, in Lemma 8.22 we found that
∥∥b∨j ∥∥2

= α2, where

α2 = 4|G|−1
∑

κ∈Ĝ\{1} f
−1
κ |L(1, κ)|−2, which means we can scale the norm

of the b∨j ’s thus:

α−1
∥∥b∨j ∥∥ = 1

95

8 LWE IN RINGS

(we can safely assume α > 0). Note that α−1b∨j is still orthogonal to

1. By Theorem 8.23 c′n
1
2 (log n)−

3
2 < α−1 for some constant c′ > 0. By

assumption, with probability P , we get;

|〈Log(g), α−1b∨j 〉| < cn
1
2 (log n)−

3
2

α−1|〈Log(g),b∨j 〉| < cn
1
2 (log n)−

3
2

c′n
1
2 (log n)−

3
2 |〈Log(g),b∨j 〉| < cn

1
2 (log n)−

3
2

|〈Log(g),b∨j 〉| <
c

c′

for all j’s. So if c ≤ c′

2
we have our desired upper bound on the dual basis

of LogC, with a probability P . Hence, with probability P , when we input

B∨ and Log(g′) into the round-off algorithm, it outputs Log(u) ∈ LogC.

Then we can find integer coefficients aj such that Log(u) =
∑

j∈G\{1} ajbj

and compute v =
∏

j∈G\{1} b
aj
j . Then

Log(v) =
∑

j∈G\{1}

ajLog(bj) =
∑

j∈G\{1}

ajbj = Log(u),

which means v = ±ωku for some integer k. Hence g′/v = ±ωjg as desired.

8.8 Distributions

We end our chapter, and in fact, this thesis, by showing how choosing χ

to be the continuous Gaussian distribution gives a good bound on P in

Theorem 8.24.

For χ to be a good distribution, we need to show that the probability

that |〈Log(g),a〉| < cn
1
2 (log n)−

3
2 , for any a = (aj)j∈G ∈ Rϕ(n)/2 that is

orthogonal to 1 and has Euclidean norm 1, is high.

Note that for any b ∈ Q(ω), σ(b) = x + iy for some x, y ∈ R. Hence, if

g is sampled by χ , and we say |σj(g)| = (Xj + Y 2
j)

1
2 , Xj, Yj ∈ R, then

96

8.8 Distributions

Xj and Yj is also sampled by χ. Hence, in this chapter, we will consider

χ to be a distribution on the real numbers. We want to show that for

X1, ..., Xn and Y1, ..., Yn sampled by χ, and for any collection of vectors

a1, ...,al ∈ Rn, where ‖ai‖ = 1 and 〈a,1〉 = 0, the probability that

|〈Log(g),aj〉| =

∣∣∣∣∣
n∑
i=1

log((X2
i + Y 2

i)
1
2aji

∣∣∣∣∣ ≥ t

for just one j, where t is some tail bound, is very small.

We will show in Lemma 8.28 that this is true for χ = N(0, r), the con-

tinuous Gaussian distribution. However, the results should be possible to

extend to other distributions.

Before we begin to prove anything, we introduce a concept that will be

used in both the proofs of this section:

Definition 8.25. For α, β > 0, a random variableX is (α, β)-subexponential

if

E[cosh(αX)] ≤ β.

We begin by proving a tail bound for the sum of some independently

sampled (α, β)-subexponential variables multiplied by any real number

ai. Note that this result is independent of distribution.

Lemma 8.26 ([Cra+16, Lemma 4]). Let X1, ..., Xk be independent centred

(i.e. E[Xi] = 0) (α, β)-subexponential random variables. Then, for any

a = (a1, ..., ak) ∈ Rk and every t ≥ 0,

Pr

[∣∣∣∣∣
k∑
i=0

aiXi

∣∣∣∣∣ ≥ t

]
≤ 2e−η,

where

η = min

(
α2t2

8β ‖a‖2 ,
αt

2 ‖a‖∞

)
.

Proof. We claim that f(x) = e−δx + δx − 1 ≥ 0 for all x, δ ∈ R. (This

can easily be verified by checking that of f(x) has a minima for x = 0 for

97

8 LWE IN RINGS

both positive and negative values of δ). Hence we have the inequality

eδx − δx− 1 ≤ (eδx − δx− 1) + (e−δx − δx− 1),

= eδx + e−δx − 2,

= 2 cosh(δx)− 2,

= 2(cosh(δx)− 1),

≤ 2δ2(cosh(x)− 1), (8.17)

where the last inequality holds for |δ| ≤ 1. By scaling, we can assume

without loss of generality that α = 1. Let X be (1, β)-subexponential

variable. Then applying the inequality in Equation (8.17) to E[f(X)]

gives

E[eδX]− δE[X]− 1 ≤ +2δ2E[cosh(δX)− 1],

E[eδX] ≤ 1 + 2δ2(β − 1),

≤ 1 + 2δ2β,

≤ e2δ2β, (8.18)

where the last inequality follows from the Taylor series. First note that

for µ > 0

Pr
[∑

aiXi ≥ t
]

= Pr
[
eµ

∑
aiXi ≥ eµt

]
. (8.19)

where Xi are independently sampled (1, β)-subexponential variables. Here

we state Markov’s inequality:

Theorem 8.27 (Markov’s Inequality). If X is a nonnegative random vari-

able and a > 0, then

Pr(X ≥ a) ≤ E[X]

a
.

98

8.8 Distributions

Applying this to Equation (8.19) gives

Pr
[
eµ

∑
aiXi ≥ eµt

]
≤

E
[
eµ

∑
aiXi
]

eµt
,

= e−µt
∏

E
[
eµaiXi

]
.

Now, put δ = µai and assume µ||a||∞ < 1. Then apply Equation (8.18)

to each i, we get

Pr
[∑

aiXi ≥ t
]
≤ e−µte2µ2β

∑
a2i ,

= e−µt+2µ2β||a||22 .

Putting µ = min
(

t
4β‖a‖2 ,

1
‖a‖∞

)
makes the above bound

Pr
[∑

aiXi ≥ t
]
≤ e−

µt
2 = e−η.

The theorem deals with the absolute value, so we note that the same

argument can be applied to −a and hence the proof is completed.

This theorem tells us that for any a ∈ Rk and independently sampled

(1, β)-subexponential variables Xi, the probability that the |
∑

i aiXi| does

not lie inside a tail bound, i.e. that the absolute value is greater than t,

is in fact quite small.

If we can prove that forXj, Yj independently sampled from χ, that log((X2
j +

Y 2
j)

1
2) are centred (1, β)-subexponential variables. Then we can apply this

theorem to our assumption that |〈Log(g),a〉| < cn
1
2 (log(n)−

3
2 for one a

(where ‖a‖ = 1 and 〈a,1〉 = 0). If we can also prove that for several sums

of this form, the probability that just one of them is greater than the tail

bound is still low, then we have proved that χ is a good distribution for

Theorem 8.24.

As stated at the beginning, we will prove this for the continuous Gaussian

distribution χ = N(0, r).

99

8 LWE IN RINGS

Lemma 8.28 ([Cra+16, Lemma 5]). Let X1, ..., Xk, Y1, ..., Yk be indepen-

dent and identically distributed N(0, r) variables for some r > 0, and let

X̂i = (X2
i + Y 2

i)
1
2 Then, for any vectors a(1),,a(l) ∈ Rk of Euclidean

norm 1 that are orthogonal to the all-1 vector, and every t ≥ c for some

universal constant c,

Pr

[
∃j,

∣∣∣∣∣
k∑
i=0

a
(j)
i log(X̂i)

∣∣∣∣∣ ≥ t

]
≤ 2le−

t
2 .

Proof. The union bound states that for a countable set of events A1, A2, ...,

Pr[∪iAi] ≤
∑

i Pr[Ai]. Therefore, we define the event

Aj =

∣∣∣∣∣
k∑
i=0

a
(j)
i log X̂i

∣∣∣∣∣ ≥ t.

Then Pr
[
∃j,
∣∣∣∑k

i=0 a
(j)
i log X̂i

∣∣∣ ≥ t
]

= Pr [∪jAj], i.e the probability that

at least one Aj occurs. Assume that Pr(Aj) is the same for all j = 1, .., l.

Then, by the union bound:

Pr

[
∃j ;

∣∣∣∣∣
k∑
i=0

a
(j)
i log X̂i

∣∣∣∣∣ ≥ t

]
= Pr [∪jAj] ,

≤
l∑

i=1

Pr(Ai),

= lPr(A1). (8.20)

Hence we only need to find an upper bound for Pr(A1). For simplicity, we

denote a(1) = a and recall that, by assumption,
∑k

i=0 ai = 〈a,1〉 = 0 and

‖a‖ = 1.

We can assume, without loss of generality, that r = 1. The X̂i’s in

the theorem is a Chi distribution with 2 degrees of freedom, also known

as a Rayleigh distribution. The probability density function is given by

p(θ, 2) = θe−
θ2

2 and

E[X̂i] =

∫ ∞
−∞

θp(θ, 2) dθ =

∫ ∞
−∞

θ2e−
θ2

2 dθ =

√
π

2
.

100

8.8 Distributions

In fact, E[X̂−1
i] = E[X̂i], so both are finite. This implies that

E[cosh(log X̂i)] =
E
[
elog X̂i

]
+ E

[
e− log X̂i

]
2

=
1

2
(E[X̂i + E[X̂−1

i]) ≤ β′,

for some β′ > 0. Hence, log X̂i is a (1, β′)-subexponential random variable.

From this it follows that the variables Zi = log X̂i − E[log X̂i] are centred

(1, β)-subexponential random variables for some constant β > 0. Hence,

we can apply Lemma 8.26 to the Zi’s and get:

Pr

[∣∣∣∣∣
k∑
i=0

aiZi

∣∣∣∣∣ ≥ t

]
= Pr

[∣∣∣∣∣
k∑
i=0

ai log X̂i −
k∑
i=0

aiE[log X̂i]︸ ︷︷ ︸
=0

∣∣∣∣∣ ≥ t

]
,

≤ 2e−η.

Where
∑k

i=0 aiE[log X̂i] = 0 follows from the fact that because log(X̂) are

independently and identically distributed, they all have the same expected

value. Hence we can move the expected value outside the summation, and

we know
∑

i ai = 0.

Note that ‖a‖2 = 1 and this also implies that ‖a‖∞ ≤ 1. So, here,

η = min
(
t2

8β
, t

2‖a‖∞

)
≥ t

2
for t ≥ 4β. We therefore get

Pr

[∣∣∣∣∣
k∑
i=0

ai log X̂i

∣∣∣∣∣ ≥ t

]
≤ 2e−

t
2 .

Putting this into Equation (8.20), proves the Lemma.

Hence, if we sample the short generator g from the continuous Gaussian

distribution N(0, r), the probability that for all i, |〈Log(g),vi〉| ≤ ĉ, for all

tuples of vectors v1, ...,vϕ(n)/2−1 ∈ Rϕ(n)/2 that are such that ‖vi‖ = 1 and

〈vi,1〉 = 0, and where ĉ is the bound given in Theorem 8.24, is bounded

above by 2e−
ĉ
2 . That is, the probability of the algorithm returning the

correct result for this distribution is high.

Cramer et al. shows in [Cra+16, Lemma 5] that small perturbations in the

continuous Gaussian distribution still satisfy the conditions of Theorem

101

8 LWE IN RINGS

8.24. They also show they can apply this Lemma to show that a discrete

Gaussian distribution with greater than a certain bound, see discussion at

the end of Section 5 in [Cra+16].

102

Abbreviations

Abbreviations

BDD Bounded Distance Decoding. 40

BKW Blum-Kalai-Wasserman algorithm. 15

BKZ Block Korkin-Zolotarev. 66

CFT Continuous Fourier Transform. 27

CVP Closest Vector Problem. 39

DFT Discrete Fourier Transform. 23

LLL Lenstra-Lenstra-Lovász algorithm. 45

LPN Learning Parity with Noise. 9

LWE Learning With Errors. 9

PIP Principal Ideal Problem. 73

SG-PIP Shortest Generator Principal Ideal Problem. 73

SVP Shortest Vector Problem. 39

103

REFERENCES

References

[Alb+15] Martin Albrecht et al. “On the complexity of the BKW algo-

rithm on LWE”. In: Designs, Codes and Cryptography 74 (Feb.

2015). doi: 10.1007/s10623-013-9864-x.

[Apo76] Tom M. Apostol. Introduction to Analytic Number Theory.

New York, NY: Springer New York, 1976, pp. 129–145. isbn:

978-1-4757-5579-4. doi: 10.1007/978-1-4757-5579-4_7.

url: https://doi.org/10.1007/978-1-4757-5579-4_7.

[Ber14] Daniel J. Bernstein. A subfield-logarithm attack against ideal

lattices. [retrieved 12.06.2021]. 2014. url: https://blog.cr.

yp.to/20140213-ideal.html.

[BJN94] Phani Bhushan Bhattacharya, Surender Kumar Jain, and SR

Nagpaul. Basic abstract algebra. Cambridge University Press,

1994.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lat-

tice Security Estimates”. In: Advances in Cryptology – ASI-

ACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–20.

isbn: 978-3-642-25385-0.

[Cra+16] Ronald Cramer et al. “Recovering Short Generators of Princi-

pal Ideals in Cyclotomic Rings”. In: Advances in Cryptology –

EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien

Coron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,

pp. 559–585. isbn: 978-3-662-49896-5.

[DTV15] Alexandre Duc, Florian Tramèr, and Serge Vaudenay. “Bet-

ter Algorithms for LWE and LWR”. In: Advances in Cryptol-

ogy – EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc

Fischlin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,

pp. 173–202. isbn: 978-3-662-46800-5.

105

https://doi.org/10.1007/s10623-013-9864-x
https://doi.org/10.1007/978-1-4757-5579-4_7
https://doi.org/10.1007/978-1-4757-5579-4_7
https://blog.cr.yp.to/20140213-ideal.html
https://blog.cr.yp.to/20140213-ideal.html

REFERENCES

[Gal12] Stephen Galbraith. Mathematics of Pulic Key Encryption. ch17.

Cambridge University Press, 2012.

[Gjø19a] Kristian Gjøsteen. A Brief Introduction to Symmetric Cryp-

tography - Lecture Notes. NTNU, Oct. 2019.

[Gjø19b] Kristian Gjøsteen. Pulic Key encryption - Lecture Notes. NTNU,

Oct. 2019.

[GNR10] Nicolas Gama, Phong Q Nguyen, and Oded Regev. “Lattice

enumeration using extreme pruning”. In: Annual International

Conference on the Theory and Applications of Cryptographic

Techniques. Springer. 2010, pp. 257–278.

[Hoe63] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded

Random Variables”. In: Journal of the American Statistical As-

sociation 58.301 (1963), pp. 13–30. issn: 01621459. url: http:

//www.jstor.org/stable/2282952.

[HW54] Godfrey Harold Hardy and Edward Maitland Wright. An intro-

duction to the theory of numbers. 3rd. Oxford university press,

1954.

[KZ73] Aleksandr Korkine and G Zolotareff. “Sur les formes quadra-

tiques”. In: Mathematische Annalen 6.3 (1873), pp. 366–389.

[LLL82] A.K Lenstra, H.W. Lenstra, and L Lovász. “Factoring polyno-

mials with rational coefficients”. In: Mathematische Annalen

261.4 (1982), pp. 515–534. doi: 10.1007/BF01457454. url:

https://doi.org/10.1007/BF01457454.

[LLS90] J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. “Korkin-

Zolotarev bases and successive minima of a lattice and its re-

ciprocal lattice”. In: Combinatorica 10 (1990), pp. 333–338.

doi: 10.1007/BF02128669. url: https://doi.org/10.

1007/BF02128669.

106

http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF02128669
https://doi.org/10.1007/BF02128669
https://doi.org/10.1007/BF02128669

REFERENCES

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and

Attacks) for LWE-Based Encryption”. In: Topics in Cryptology

– CT-RSA 2011. Ed. by Aggelos Kiayias. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 319–339. isbn: 978-3-

642-19074-2.

[MV06] Hugh L. Montgomery and Robert C. Vaughan. Multiplicative

Number Theory I : Classical Theory. Cambridge Studies in

Advanced Mathematics Vol. 97. Cambridge University Press,

2006. isbn: 9780521849036. url: http://search.ebscohost.

com/login.aspx?direct=true&db=nlebk&AN=178884&site=

ehost-live.

[NV10] Phong Q Nguyen and Brigitte Vallée. The LLL algorithm.

Springer, 2010.

[Reg04] Oded Regev. Lattices in Computer Science: Lecture 2 - LLL

Algorithm. [Tel Aviv University, retrieved 27.06.21]. 2004. url:

https://cims.nyu.edu/~regev/teaching/lattices_fall_

2004/ln/lll.pdf.

[Reg05] Oded Regev. “On Lattices, Learning with Errors, Random Lin-

ear Codes, and Cryptography”. In: Proceedings of the Thirty-

Seventh Annual ACM Symposium on Theory of Computing.

STOC ’05. Baltimore, MD, USA: Association for Comput-

ing Machinery, 2005, pp. 84–93. isbn: 1581139608. doi: 10.

1145/1060590.1060603. url: https://doi.org/10.1145/

1060590.1060603.

[Sam72] Pierre Samuel. Algebraic Theory of Numbers. Trans. by Al-

lan J. Sillberger. London: Kershaw Publishing Company LTD,

1972.

[Sch87] C.P. Schnorr. “A hierarchy of polynomial time lattice basis

reduction algorithms”. In: Theoretical Computer Science 53

107

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=178884&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=178884&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=178884&site=ehost-live
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

REFERENCES

(1987), pp. 201–224. url: https://doi.org/10.1016/0304-

3975(87)90064-8.

[SE94] C.P. Schnorr and M. Euchner. “Lattice baisis reduction: Im-

proved practical algorithms and solving subset sum problems”.

In: Mathematical Programming 66 (1994), pp. 181–199. doi:

10.1007/BF01581144. url: https://doi.org/10.1007/

BF01581144.

[Was97] Lawrence C. Washington. Introduction to Cyclotomic Fields.

New York, NY: Springer New York, 1997. isbn: 978-1-4612-

1934-7. doi: 10.1007/978-1-4612-1934-7_3. url: https:

//doi.org/10.1007/978-1-4612-1934-7_3.

108

https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-1-4612-1934-7_3
https://doi.org/10.1007/978-1-4612-1934-7_3
https://doi.org/10.1007/978-1-4612-1934-7_3

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Elisabeth Enerhaug
Algorithm

s For Solving The Learning W
ith Errors Problem

Elisabeth Enerhaug

Algorithms For Solving The Learning
With Errors Problem

Master’s thesis in Mathematical Sciences
Supervisor: Professor Kristian Gjøsteen
June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Notation
	Learning With Errors and Regev's Cryptosystem
	Cryptography Basics
	Alice, Bob and Eve - The Basic Idea
	Public Key Encryption

	The Learning With Errors Problem
	Regev's Cryptosystem

	BKW - Gaussian elimination for LWE
	The Algorithm
	Sample Reduction
	Hypothesis Testing
	Back Substitution
	Proof That argmaxvZqdRe((v))=s' Is A Reasonable Assumption

	Analysis

	Lattices and The Closest Vector Problem
	Lattice Basics
	The Closest Vector Problem
	Gram-Schmidt

	The Lattice Attack
	Enumeration

	LLL - A More Orthogonal Basis
	The algorithm
	Outline
	The Algorithm Steps
	Proof That Swapping The Basis Vectors Satisfies The Lovász Condition

	Analysis
	Termination
	Runtime

	Bounds

	Block Korkin-Zolotarev - Expanding LLL
	Korkin-Zolotarev Reduced Basis
	BKZ - Block Korkin-Zolotarev
	The Algorithm
	Outline
	Block reduction

	Analysis
	Bounds

	LWE in Rings
	The Round-Off Algorithm
	Group Notation
	G-Circulant Matrices
	Characters
	Dirichlet Characters and L-series

	Primitive Roots and Cyclotomic Number Fields
	The Logarithmic Embedding
	Cyclotomic Units
	The Lattice Problem

	Bounds On The Dual Basis
	The Algorithm
	Distributions

	List of Abbreviations
	References

