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Executive Summary

Safety instrumented systems are important independent protection layers used to protect against

hazards and accidents associated with hazardous processes and to mitigate their consequences

to humans, machines and the environment. They generally consists of three sub components:

the sensors, the logic solvers and the final elements. It is important that these systems can carry

out their intended function when required. The shutdown valve is one of the most common

final element of the safety instrumented system used in the oil and gas and process industries.

They may be part of the process control system responsible for keeping the process parameters

within set limits or the process shutdown system responsible for isolating a particular section

of the plant or the emergency shutdown system responsible for shutting down the whole plant.

These systems operate in the so called low demand mode of operation, that is, demand for the

activation of the system is no more than once per year. This implies that the system remains in

an idle position for long periods of time until there is a demand. While in an idle position, fail-

ures may occur which could prevent the system from carrying out its intended function when

the need arises. This failure remains hidden until a demand occurs and the system is activated.

To detect hidden failures, the system is regularly tested. Proposing an optimal test interval is no

easy task. Cost and safety must be balanced. Too frequent testing may be too expensive and may

induce stress to the system speeding up the degradation of the valve. Too long interval between

test may increase the risk of the system failing before the next test.

In this thesis, the aim is to analyze condition data collected from different valves and use this

data to fit a degradation model for the valves to understand how the valves degrade. This under-

standing can be used to support decision making in maintenance planning and developing op-

timal testing strategy. The travel time of the valve is an important parameter that describes the

condition of the valve. It is required that the valve can close within a given number of seconds

less than the time required to achieve process safety. Longer travel time than what is normal

can give an indication of an underlying problems. The linear regression model is used to build

a predictive model that predicts the next travel time of the valve based on certain factors that

are identified to have effects on the travel time such as the time since last activation or mainte-

nance, the travel time during the last activation and the state of the valve at the last activation.

The linear model is then used to standardize degradation paths for the valves and degradation

models are fit to the path. The Wiener process and the Gamma process with noise are the cho-

sen models to model the degradation of the valves. The Wiener process is a suitable model for

modelling non-monotone increasing degradation. The Gamma process on the hand is popular

for modelling monotone increasing degradation. To apply the Gamma process to the modelling,

it is assumed that the true degradation is monotone increasing and the non-monotonicity ob-

served in the data is due to error in measurements and white noises. Parameters for the models
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are estimated from the data and the results are presented and discussed.
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Chapter 1

Introduction

1.1 Background

Industrial systems have been becoming more complex and expensive with less tolerance for per-

formance degradation, productivity decrease, and safety hazards, such as wind farms, aircraft

engines, petrochemical production, and metallurgical production. This leads to an ever increas-

ing requirement on reliability and safety of control systems subjected to faults and failures.Dai

and Gao [2013]. In the oil and gas and process industry, where safety is of utmost importance, it

is common to install additional layers of protection to mitigate the risk of occurrence of hazards

and accidents. Safety instrumented system (SIS) are often installed as independent protection

layers to reduce the risk associated with hazardous processes. These systems are often the last

layer of protection and kicks in when the basic process control system fails. Failure of this sys-

tem can often lead to disastrous consequences. For example, the fire and gas (F&G) detection

system which activates the fire deluge system to suppress the growth of fire in the event of start

of fire.

An SIS generally consists of three subsystem: sensors, logic solvers and final elements Rausand

and Høyland [2004]. Shutdown valves (ESVs) are the most commonly used final elements of SIS

in the process industries Controls [2017]. These ESVs or safety valves are normally operated in a

so-called low demand mode of operation. IEC 61508 :2010. This means that the valves are kept

idle in open position for long periods and are expected to close and keep tight in case a process

demand should occur. Failures may occur while in open position and may cause the valve to

"fail to close" or "close too slowly" in a demand situation Lundteigen and Rausand [2008]. Data

from OREDA (Offshore and Onshore Reliability Data),ore [2009], lists that as many as 50% of

failures within a SIF can be attributed to the final element.

To reduce the uncertainty surrounding the state of the valve, ESVs are periodically tested with

1
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tests ranging from routine inspections to full functional test and data relevant to describing the

state of the valve are collected, analysed and decisions are taken based on the results. There are

several performance measures and methods applied to assessing the performance and reliabil-

ity of SIS in general found in the literature. Some of these methods were reviewed in the autumn

semester in the specialization project report. Particularly popular amongst these methods were

the markovian models Srivastav et al. [2018], Hafver et al. [2019], Ariful et al. [2019], Srivastav

et al. [2020]. The markov models utilized failure rates which is based on historical data to asses

the performance of the system. According to Srivastav et al. [2020], in order to have a good

predictive model, one needs to use real condition monitoring data. In recent years, there has

been some efforts in the oil and gas industry to define, collect and analyze real-time condition

data to reveal both safe and dangerous failures related to ESD systems. However, some practical

challenges exist for such data-driven approaches. Unlike continuously operated systems, early

failures of low-demand systems can be rather difficult to be detected as they are not performing

their prime functions during normal operations Zhu et al. [2020]. Pengyu Zhu et al attempts

to address this problem by developing a logical data-driven approach to enhance the under-

standing and detectability of ESD system failures Zhu et al. [2020]. Using condition data such

as actuator pressure, stem torque and valve travel percentage, Zhu et al were able to identify

and link ESD failures to their root causes on different levels of taxonomy Zhu et al. [2020]. This

approach however does not attempt to predict the future condition or failure of the ESD.

1.2 Problem Definition

The problem to be addressed in this thesis is how to incorporate system specific data into perfor-

mance assessment of SIS in general and to build a predictive / degradation model for the system

based on real condition data in particular. The system under study is the shutdown valve. Shut-

down valve are critical component of the SIS and failures can most time go unnoticed until a

demand occurs. In assessing the performance of SIS, it is common to use data from handbooks

and expert judgment. This gives a generalized results for SISs. System specific data on the other

hand offer valuable information into the operating conditions of the system and is therefore a

valuable input to assessing the performance of the system. It is therefore necessary to be able

to use the collected data from the system to assess the performance of the system and make

predictions about its future performance.

1.3 Objectives

The main objective of this master thesis is to build a predictive model based on the recorded

travel time of shutdown valves to predict the travel time of the valves leading up to the delayed
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operation failure mode and also to fit a degradation model to capture the degradation pattern of

the shutdown valves based on the predictive model. The work is a continuation of the special-

ization project which was focused on analysing the travel time data to find correlation between

the travel time and factors affecting the travel time. To achieve the main objective, the following

tasks are identified:

1. Present the basic concepts of an SIS in general.

2. Present the structure, configuration and working principle of the shutdown valves.

3. Explore various statistical model used for data analysis.

4. Explore various models used in prognostics and health management.

5. Identify factors affecting the travel time of the valve.

6. Build a linear predictive model to predict the closing travel time for shutdown valves based

on identified factors.

7. Identify a suitable degradation indicator for the valves.

8. Estimate the parameters of the candidate models selected to model the degradation of the

valve.

9. Discuss the result.

10. Identify limitations and challenges to the analyses and propose recommendations for fu-

ture work.

1.4 Approach

Much of the work done in the master thesis involves practical implementation of statistical

methods and models. Review of relevant literature is also carried out to get familiarised with

state of the art in the field. The research platform used to access relevant literature include

ORIA and Google Scholar. Selection of relevant literature was done based on certain factors

such as keywords, date of publication, number of times the article was cited and so on. Some of

the keywords used to search for literature include: maintenance optimization, reliability of SIS,

stochastic degradation models. In addition weekly discussions and guidance from my supervi-

sor and inputs, suggestions and relevant materials from my co-supervisor contributed greatly to

achieving the outlined objectives. The primary tool used for programming was python. Minitab

was also used to carry out the analysis of variance to identify important factors affecting travel

time of the valve. The baseline code used for parameter estimation for the gamma process with

noise was provided by Xingheng Liu, a post-doc researcher in the RAMS research group.
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1.5 Limitations

The thesis focuses on incorporating condition data to assess the future performance of final ele-

ment of safety instrumented systems using regression analysis and stochastic models. To reduce

computational complexity and simplify calculations, an engineering approach is used to intro-

duce covariates into the degradation models. This approach is not verified theoretical. However

the result from the parameter estimation shows that the approach is reasonable and works well

for the data. This may not be the case with other data sets. The full approach is discussed also.

Due to limited time, remaining useful life (RUL) prediction and optimal maintenance/testing

strategy is not based on the RUL is not developed for the system.

1.6 Outline

The rest of the report is structured as follows: Chapter 2 presents the basic concepts of SIS

including the modes of operation, testings and failure classifications. Chapter 3 presents the

configuration, working principle and the failure modes associated with the operations of shut-

down valves. Chapter 4, 5, and 6 gives a presentation of the statistical framework and stochastic

processes implemented in this work. Chapter 7 presents the condition data used and the data

pre-processing techniques applied to prepare the data for analysis. Chapter 8 and 9 presents the

analysis carried out and Chapter 10 summarizes and discuses what has been done in the master

thesis. Recommendation for future work is also outlined in this chapter.



Chapter 2

Basic Concepts of SIS

This chapter gives a background of the basic concepts within safety instrumented systems. The

presentation in this chapter is largely based on Rausand and Høyland [2004] and Rausand [2014]

2.1 Safety-Instrumented Systems

A safety-instrumented system (SIS) is an independent protection layer that is installed to miti-

gate the risk associated with the operation of a specified hazardous system, which is referred to

as the equipment under control (EUC) Rausand and Høyland [2004]. A SIS generally consists of

at least three subsystems:

• Sensor subsystem - detects a potential danger and produces an appropriate electrical sig-

nal that is sent to the logic solver. Examples of sensors are pressure transmitters, level

transmitters, temperature gauges, and so on.

• Logic solver subsystem - detects the electrical signal and compares with a given thresh-

old. If the threshold is exceeded, sends signal to the final elements. Logic solvers can be

computers, programmable electronic controllers (PLCs) or relay circuits.

• Final elements subsystem - performs the safety function, bringing the protected system

to a safe state. Examples of final elements are shutdown valves, circuit breakers, motors,

fans, and so on.

These three systems have to work together to detect a deviation in a process variable (pressure,

flow or temperature) exceeding a given threshold and bring the EUC to a safe state. A sketch of

a SIS is given in Figure 2.1.

5
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Figure 2.1: Sketch of a simple SIS used as pressure protection system in a pipeline.

Source: Rausand [2014]

The above figure shows three pressure transmitters that monitor the pressure in the pipeline

and send this information to the logic solver subsystem. The logic solver compares the received

values with predefined set points and, when high pressure occurs, a signal is sent to the two

shutdown valves (SDVs) to close the flow in the pipeline. Rausand [2014].

2.2 Safety-Instrumented Function

A safety-instrumented function (SIF) is a function that has been intentionally designed to pro-

tect the EUC against a specific demand. The SIF is implemented by a SIS and given a specific

safety integrity level (SIL).

2.3 Safety Integrity Levels

Safety integrity level is used as a performance measure for a SIF by the IEC 61508 standard.

The standard defines safety integrity as "the probability of a SIS satisfactorily performing the

specified SIFs under all the stated conditions within a stated period of time” IEC 61508 :2010.

The standard also divides the safety integrity level into four levels, SIL 1, SIL 2, SIL 3 and SIL 4

with SIL 4 being the most reliable and SIL 1 being the least reliable.

2.4 Modes of Operation

IEC 61511 distinguishes between two modes of operation for a SIS:

• demanded mode and

• continuous mode
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A SIF in demanded mode is passive in the sense that it does not perform any active function

during normal operation but is an add-on to the EUC and is only called upon when something

goes wrong, or starts to go wrong.

A SIF operating in continuous mode, on the other hand, plays an active role in the control of the

EUC and a hazardous event will occur almost immediately when a dangerous failure of the SIF

occurs.

The IEC 61508 standard further splits the demanded mode into two sub-modes:

• Low-demand mode. For this mode, the demand for the SIS is no more than once per year.

• High-demand mode. For this mode, the demand is greater than once per year

2.5 Testing of SIS Functions

Many SISs operates under the low demand mode of operation and are thereby dormant until

a specified demand occurs in the EUC. The SIS may fail in the passive position and the failure

may remain hidden until the system is activated or tested. The following tests is often carried

out to check the status of the SIS:

2.5.1 Diagnostic Self-Testing

The logic solver of modern SISs are often programmable and may carry out diagnostic self-

testing during on-line operation. The logic solver may send frequent signals to the detectors

and to the actuating items and compare the responses with predefined values. The diagnostic

testing can reveal failures of input and output devices, and to an increasing degree, also failures

of detectors and actuating items. In many cases the logic solver consists of two or more redun-

dant computers that can carry out diagnostic self-testing of each other. The fraction of failures

that can be revealed by diagnostic self-testing is called the diagnostic coverage. The self-testing

may be carried out so often that failures are detected almost immediately.

2.5.2 Function Testing

The diagnostic self-testing cannot reveal all failure modes and failure causes, and the various

parts of the SIS are therefore often function tested at regular intervals. The objective of a func-

tion test is to reveal hidden failures, and to verify that the system is still able to perform the

required functions if a process demand should occur.
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2.6 Failure Classifications of SIS

The objective of the SIS is to protect the EUC in the event of a deviation in the process param-

eters. An SIS may perform one or several SIFs. Failure is said to occur when the SIS cannot

perform its intended SIF. The following classification based on IEC61508 may be used for an SIS

and the SIS subsystems:

1. Dangerous (D). The SIS does not fulfil its required safety-related functions upon demand.

These failures may be further split into:

(a) Dangerous undetected (DU). These dangerous failures prevents activation on demand

and are revealed only by testing or when a demands occurs. They are sometimes called

dormant failures.

(b) Dangerous detected (DD). These are dangerous failures that are detected immediately

when they occur, for example, by an automatic, built-in self-test.

2. Safe failures (S). These are failures which do not put the SIS in risk of not performing its

intended SIF but are nonetheless unwanted. These failures oftentimes lead to spurious

trip of the SIS. They may be further split into:

(a) Safe undetected (SU). Non-dangerous failures that are not detected by automatic self-

testing.

(b) Safe detected (SD). Non-dangerous failures that are detected by automatic self-testing.



Chapter 3

Shutdown Valves

The final element of the SIS (shutdown valve) is looked into in more details in this chapter. The

structure, configuration, working principles, possible failure modes and testing strategies are

discussed. The presentation is largely based on materials by Rausand and Høyland [2004], Ree-

son [2006], SAMSON :2017 and Controls [2017]

3.1 Valves

Valves are pressure containing mechanical devices that controls the flow of fluid and pressure

within a system Gokilakrishnan et al. [2014]. They are the most common final elements of SIS

used in the process control industries Controls [2017]. In the process industry, the safety sys-

tems are usually grouped into three categories:

• Process control (PC) system

• Process Shutdown (PSD) system

• Fire and gas detection (FGD) and emergency shutdown (ESD) system

The objective of the process control system is to keep an EUC process within preset limits. Var-

ious process control valves are used to control the process, based on signals from temperature,

pressure, level and other types of transmitter. When the process deviates from normal values,

the process shutdown system is activated and will close down the EUC. The required action for

each type of deviation is programmed into the logic solver. The actions may involve activation of

alarms, closure of shutdown vales, and opening of relief valves. The process control and process

shutdown are local systems that are related to a specific EUC. For some types of process de-

mands that have a potential for a major accident, the ESD system is activated. Several levels of

grouping the required ESD actions exist depending on the type of demand and where it occurs.

9
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The top ESD level often involves a total shutdown of the plant and evacuation. In some cases,

the same valve is used for both control and shutdown and is connected to all three systems,

process control, process shutdown and emergency shutdown as shown in Figure 3.1.

Figure 3.1: Configuration of valve control systems by three solenoids connected to valve actuator
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3.2 Valve Configuration

There are many possible physical configurations of shutdown valves depending on their pur-

pose and other factors. A common configuration comprises three main components, Figure 3.2:

• a solenoid (pilot) valve

• an actuator and

• a shutdown valve

Figure 3.2: Schematic diagram of a typical ESD system.

Source: Zhu et al. [2020]

3.2.1 Solenoid Valve

The solenoid valve is an electrically powered valve which is responsible for the activation of

the valve actuator by enabling/disabling air supply to pneumatic actuators. Solenoid valve is a

critical element in the pneumatic actuation circuits. In most cases, the solenoid valve always de-

energizes to vent air out of the actuator and drive the valve to the safe position with the action

of the spring force. In other words, the valve is normally energized. Figure 3.3 shows a solenoid

valve connected to an actuator.



CHAPTER 3. SHUTDOWN VALVES 12

Figure 3.3: Solenoid valve connected with actuator cylinder.

Source: O’Keefe [2018]

3.2.2 Valve actuator

An actuator is basically a control mechanism that is operated by an energy source. This energy

which could be hydraulic pressure, pneumatic pressure, or electric current, moves the internal

mechanical parts of the actuator to operate the shutdown valve. To obtain fail-safe design of

the actuator, so called spring-returns actuators are used. Spring-return actuators have air or

liquid supplied to one side of the piston, and the energy to move the mechanisms comes from a

spring on the opposite side. This configuration uses pneumatic or hydraulic pressure of the air

or liquid to open or close the valve, and a spring affects the opposite motion.

3.2.3 Shutdown valve

The shutdown valve may be a ball, globe or gate valve. The system under considerations uses a

ball valve similar to the one shown in Figure 3.4. The valve is made of a perforated and pivoting

ball to control flow through it. It is open when the ball’s hole is in line with the flow and closed

when it is pivoted 90-degrees by the valve stem. This kind of valve enables unrestricted flow of

the process fluid when the valve is opened and a tight shut off when in closed position. The

valve is moved as a result of the valve stem torque which in connected to the valve actuator and

activated by the actuator spring or pressurized air.
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Figure 3.4: Ball valve.

Source: Stewart [2016]

3.3 Working principle

During normal operation the electric power energizes the solenoid valve, keeping it in the posi-

tion which allows passage of pressurized air from the pressure supply to the valve actuator. This

pressurized air on one side of the actuator keeps the actuator’s spring compressed keeping the

ball valve fully open.

In case of a demand, the logic solver will send information to activate the ESV by cutting

of the electrical supply to the solenoid valve. This will cause the movement of solenoid valve

opening up the vent port in the actuator to bleed off the the pressurized air. The change of

pressure in the actuator cylinder will result in the decompression of the compressed spring.

This results in the linear movement of the actuator which is transformed to torque on the ball

valve through the valve stem. This leads to the closing of the valve.

3.3.1 Fail safe design

Shutdown valves are normally designed as fail-safe devices. This means that in case of an unpre-

dictable situation such as loss of power, the valve will move to and remain in the safest possible

position. In the case of shutdown valves there are usually two possible design options:

• valves which are opened during normal operation of a process plant and required to close

in the event of a demand and

• valves which are closed during normal operation and required to open during demand,

example pressure relief valves.
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The focus is on valves which are opened during normal operation allowing for the flow of the

process fluid. In this case the safe position is the closed position of the valve. Since SISs are

activated and powered by the means of electric power, in the event of loss of power, the valves

need to move to the safe state (closed position) to avoid danger while the power is out.

3.4 Failure Modes

This section describes the most common failure modes associated with shutdown valves based

on Rausand [2014].

Fail to close on command (FTC)

This is a DU failure that can only be detected during a function test or during a demand. This

failure mode may be caused by a broken spring, blocked return line for the hydraulic fluid, too

high friction between the stem and the stem seal, too high friction between the gate and the

seats, or by sand, debris, or hydrates in the valve cavity. The failure mode is observed either as

a failure event, "the valve does not close," or afterwards, as a failed state, "the valve is open, but

should have been in closed position."

Leakage (through the valve) in closed position (LCP)

This is a DU failure mainly caused by corrosion and/or erosion on the gate or the seat. It may

also be caused by misalignment between the gate and the seat. The failure mode cannot be

observed as a failure event and is only observed as a failed state: "the valve is leaking (more than

an acceptable amount)."

Spurious trip (ST)

This is a safe failure which occurs when the valve closes without a closing signal. It is caused

by a failure in the hydraulic system or a leakage in the supply line from the control system to

the valve. The failure mode is sometimes observed as a failure event, "valve is closing without

a signal," or afterwards as a failed state, "the valve is in closed position, but should have been

open."

Closing too slowly (CTS)

Also referred to as Delayed Operation, this dangerous undetected failure occurs when the pro-

cess requires the valve to close within a certain time interval (e.g., 10 seconds) after the ESD

signal has been given but fails to do so. Possible causes may be friction between the stem seal
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and the stem or a degraded or partly broken spring. If the closing time is monitored, the failure

event may be observed. Afterwards, the failure cannot be observed because the valve is found

in a normal, closed position after the shutdown action.

Fail to open on command (FTO)

This safe undetected failure occurs when the valve fails to reopen after it is closed. Possible

causes may be leakage in the control line, too high friction between the stem seals and the stem,

too high friction between the gate and the seats, and sand, debris, or hydrates in the valve cavity.

Both the failure event and the failed state can normally be observed.

3.5 Function Testing

Shutdown valves are operated in low demand mode. Thus, most of the dangerous failures re-

main undetected until tests are carried out or a demand occurs. Data from OREDA (Offshore

and Onshore Reliability Data), ore [2009], lists that as many as 50 % of failures within a SIF can

be attributed to the final element, Figure 3.5.

Figure 3.5: Percentage of failure causes of SIS by subsystems

Source: Controls [2017]

Functional testing is required to reveal potential DU failures and involves full stroke oper-

ation Lundteigen and Rausand [2008]. The full function test, described in section 2.5, involves

sending signal to the valve to close it down completely. This means shutting down the whole

process. This is sometimes undesirable as stop in production means loss of revenue. An alter-

native to the full function test is the partial stroke test. This is done by partially closing the valve,

and then returning it to the initial position. The valve movement is so small that the impact

on the process flow or pressure is negligible, but the valve movement may still be sufficient to

reveal several dangerous failure causes, such as sticking seals and broken signal paths Rausand

and Høyland [2004].
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Developing an optimal testing strategy often involves striking a balance between cost and achieved

safety level. Too frequent testing may be too costly as this involves several stops of the process.

Too long interval between test on the hand increases the risk of the valve failing between tests.



Chapter 4

Statistical Framework and Models

This chapter presents the statistical framework and models used in the analysis in this thesis.

The presentation is based on materials by Yan et al. [2009], Prokhorov [2020], Pardo [2020] and

Frost [2020]

4.1 Regression Analysis Fundamentals

Regression analysis models the relationship between a response variable and one or more pre-

dictor variables. It is one of the most commonly used statistical methods in practice. It is often

used to understand how changes in the predictor values are associated with changes in the mean

of the response. It can also be used to make predictions based on the values of the predictors.

Regression analysis often is the chosen method of analysis when there is not enough in-

formation to characterize the distributions of the variables under consideration. Suppose, for

instance, that there are reasons to assume that a random variable has a given probability distri-

bution at a fixed value of another variable, so that

E(Y |X ) = g (X ,β), (4.1)

whereβ is a set of unknown parameters determining the function, g (x), and that it is required to

determine the values of these parameters from results of observations. Depending on the nature

of the problem and the aims of the analysis, the results from a set of observations, [(x1, y1), ..., (xn , yn)],

are interpreted in different ways in relation to the variable X . To determine the connection be-

tween the variables in the data, it is common to use a model based on simplified assumptions:

that X is a controllable variable, whose values are known or can be determined in advance, and

the observed value y can be written in the form

Yi = g (Xi ,β)+εi , i = 1, ....,n, (4.2)

17
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where the variables εi characterize the errors in the observed value, which are independent for

various observations and identically distributed with mean zero and constant variance.

The purposes of regression analysis often is to:

1. Establish a causal relationship between response variable Y and regressors X1, X2, . . . , Xn .

2. Predict y based on a set of values x1, x2, . . . , xn

3. Screen variables X1, X2, . . . , Xn to identify which variables are more important than others

to explain the response variable Y so that the causal relationship can be determined more

efficiently and accurately.

4.2 Regression Models

There are generally two types of regression models: linear regression models and non-linear

regression models. Choice of a regression model often depends on the assumptions about the

dependence of the regression function, g (X ,β) on X and β, but also on the type of response

variable and the estimation method.

4.2.1 Linear Regression

Linear regression models are used when there is a suspected linear relationship between the

predictor variable(s) and the response variable. In the linear regression model, the function

g (X ,β) is a linear function that maps each value of the independent variable, X , to the response

variable, Y , using the vector of parameters, β. In its simplest form, the linear function is given

as:

Y = Xβ (4.3)

with the vector, β, containing the linear regression coefficients. The linear model can be further

split into simple linear regression and multiple linear regression.

The simple linear regression is used for modeling the linear relationship between two vari-

ables. One of them is the dependent variable, y and the other is the independent variable, x. For

example, the simple linear regression can model the relationship between people’s weight, y , as

a function of their height x. The simple regression model is often written in the following form:

y =β0 +β1x +ε (4.4)

where y is the dependent variable, β0 is y ’s intercept, β1 is the gradient or the slope of the re-

gression line, x is the independent variable, and ε is the random error assumed to be normally
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distributed with mean 0 and constant variance, σ2.

The multiple linear regression is a linear regression model with one dependent variable and

more than one independent variables. The multiple linear regression assumes that the response

variable is a linear function of the model parameters and there are more than one independent

variables in the model. The general form of the multiple linear regression model is as follows:

y =β0 +β1x1 + . . .+βp xp +ε, (4.5)

where y is dependent variable, β0,β1,β2, . . . ,βp are regression coefficients, and x1, x2, . . . , xp are

independent variables in the model, and ε is the random error. The multiple linear regression

usually involves more issues than the simple linear regression such as collinearity, variance in-

flation and so on.

4.2.2 Nonlinear Regression

Nonlinear regression assumes that the relationship between dependent variable and indepen-

dent variables is not linear in regression parameters. Example of a nonlinear regression model

is the growth model which may be written as:

y = α

1+eβt
+ε (4.6)

where y is the growth of a particular organism as a function of time t ,α and β are model param-

eters, and ε is the random error. Nonlinear regression model is more complicated than linear

regression model in terms of estimation of model parameters, model selection, model diagno-

sis, variable selection and so on. Nonlinear regression is out of the scope of this work and is not

discussed further.

4.3 Linear Regression Framework

4.3.1 Parameter Estimation - Regression Coefficients

The regression parameters or coefficients describes mathematically, the linear relationship be-

tween each independent variable and the dependent variable. The sign of a coefficient indi-

cates whether there is a positive or negative correlation between each independent variable and

the dependent variable and the value indicates how much the mean of the dependent variable

changes with one-unit shift in the independent variable while holding the other variables in the

model constant.

The ordinary least squares (OLS) method is commonly used to estimate the regression pa-

rameters or coefficients of the linear regression. OLS attempts to find values for the parameters
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that minimize the squared error, or difference, between the observed responses, y , and the pre-

dicted responses, Xβ. In matrix form the squared error for the linear regression model is given

as:

εT ε= (Y −Xβ)T (Y −Xβ) (4.7)

Expanding the terms, Equation 4.7 becomes:

εT ε= Y T Y −2βT X T Y +βT X T Xβ (4.8)

To minimize the square of the errors, the partial derivative of Equation 4.8 is taken with respect

to β and the resulting expression is set to equal 0. Solving for β gives the solution for the regres-

sion parameters:

β= [X T X ]−1X T Y (4.9)

4.3.2 Test for Significance - p-value

Hypothesis testing involves the process of formulating hypotheses about parameters, and then

using data to decide which of the two mutually exclusive hypotheses to believe Hoel [1971]. In

linear regression this usually involves the kind of relationship between the dependent variable

and the independent variable. The coefficients describes this relationship. However, the rela-

tionship could have occurred by chance and it is therefore important to test for the significance.

p-value

The p-value tests the significance of the relationship described by the coefficients for each vari-

able. Often the null hypothesis to be tested is that there is no correlation between the inde-

pendent variables and the dependent variable. The resulting p-value is then checked against

some pre-determined significance level, α, often 0.05. If the p-value for a variable is less than

the significance level, then the data provides enough evidence to reject the null hypothesis and

conclude that there is a non-zero correlation between the dependent variable and the indepen-

dent variable. On the other hand, a p-value greater than the significance level indicates that

there is insufficient evidence in the data to conclude that there is a non-zero correlation. The

null hypothesis can therefore not be rejected.

4.3.3 Goodness of Fit

The goodness of fit of a statistical model describes how well it fits a set of observations. For

linear regression, the coefficient of determination or R-squared and standard error of regression
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are often used in assessing the goodness-of-fit of the model. Both of these measures give a

numeric assessment of how well the model fits the data, however, there are differences between

the two statistics.

Standard Error

The standard error of the regression provides the absolute measure of the typical distance that

the data points fall from the regression line and is in the unit of the dependent variable. Conve-

niently, it indicates how wrong the regression model is on average using the units of the response

variable with smaller values being better because it indicates that the observations are closer to

the fitted line. Mathematically, it is given as

S = 1

N

N∑
i=1

∣∣yi − ŷi
∣∣ . (4.10)

R-squared

R-squared on the other hand, provides the relative measure of the percentage of the dependent

variable’s variance that the model explains. Mathematically it can be calculated as:

R2 = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳ)2

(4.11)

R2 ranges from 0 to 100% with higher values indicating a stronger relationship between the

model and the dependent variable. Usually, the larger the R2, the better the regression model

fits the observation. However, large R2 do not always imply a good model. One could obtain

a large R2 where the model overfits the data. In this case the model may explain most of the

variance in the dependent variable for the sample data but may not perform well in predicting

the values of the dependent variable for new data points of the independent variable(s).

Adjusted R-squared

R2 shows how well terms (data points) fit a curve or line. Adjusted R2 also indicates how well

terms fit a curve or line, but adjusts for the number of terms in a model. The formula is given as:

R2
ad j = 1− (1−R2)(N −1)

N −K −1
(4.12)

where N is the number of points in the data sample, k is the number of independent regressors

or variables in the model excluding the constant and R2 is the calculated R-squared.

Both R2 and the adjusted R2 gives an idea of how many data points fall within the line of

the regression equation. However, there is one main difference between R2 and the adjusted
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R2. R2 assumes that every single variable explains the variation in the dependent variable. The

adjusted R2, on the other hand, tells you the percentage of variation explained by only the inde-

pendent variables that actually affect the dependent variable. Adding more variables to a model

always seems like a good way to improve the model. Some of these extra variables may be signif-

icant, but one cannot be sure if the significance is just by chance. The adjusted R2 compensates

for this by penalizing those extra variables and is thus, a better indication of goodness of fit than

the normal R2.

The next chapter presents the modelling framework for the stochastic degradation models ap-

plied in the thesis



Chapter 5

Prognostics and Health Management

Increasing demand for functionality and quality causes modern systems to be designed with

overwhelming complexities. In addition to the increasing complexities of these modern sys-

tems, is the high requirement of reliability as failure could result in catastrophic consequences

Tsui et al. [2015]. In view of the high impact and extreme costs usually associated with system

failures, methods that can predict and prevent such catastrophes have long been investigated.

Applications of developed methods are not rare in domains such as electronics-rich systems,

aerospace industries, or even public health environment Finch [2009], Bowles [1992]. In gen-

eral, these methodologies can all be grouped under the framework of prognostics and health

management (PHM). Prognostics is used in the industry to manage businesses risks associated

with unexpected system failures Sikorska et al. [2011]. According to the international standard

for condition monitoring and diagnostics of machines, ISO 13381, prognostics is the "analysis of

the symptoms of faults to predict future condition and residual life within design parameters"

ISO 13381-1 :2015. Different authors have proposed different definitions for prognostics and

according to Sikorska, [Sikorska et al., 2011] these definitions imply that:

• prognostics is, or should be, performed at the component or sub-component

level;

• prognostics involves predicting the time progression of a specific failure mode

from its incipience to the time of component failure;

• an appreciation of future component operation is required; and

• prognostics is related to but not the same as diagnostics.

Sikorska et al. [2011]

In general, typical workflows in a PHM system can be illustrated, as shown in Figure 5.1. The

process generally begins with data collection and condition monitoring. The collected data is

then preprocessed and relevant features are extracted using various techniques such as princi-

pal component analysis (PCA) and other relevant statistical and engineering knowledge based

23
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methods. Then comes the statistical modelling which involves fitting a mathematical model to

the condition data. The model is then used for fault diagnosis, prognosis and condition-based

maintenance.

Figure 5.1: An illustration of typical flows of PHM systems.

Source: Tsui et al. [2015]

5.1 Relationship Between Diagnostics and Prognostics

There is a general consensus in the literature that prognostics is related to but not the same

thing as diagnostics. According to Sikorska et al. [Sikorska et al., 2011], diagnostics is concerned

with identifying and quantifying the damage that has occurred while prognostics involves the

prediction of the damage that is yet to occur and relies on the output of diagnostics Sikorska et al.

[2011]. The remaining useful life, (RUL), is a typical prediction indicator used within prognostics

and is defined as "the length from the current time to the end of the useful life" Si et al. [2011].

The RUL is typically a random variable which must be estimated from the available condition

monitoring information. A general definition can be formulated by letting the RU L(t j ) denote

a random variable that corresponds to the remaining useful life at time t j , such that;

RU L(t j ) = i n f {h : Y (t j +h) ∈ SL|Y (t j ) < L,Y (s)0≤s≤t j } (5.1)

where Y (t j ) denotes the condition of the unit at time t j , which is related to diagnosis. The

future health state is denoted by Y (t j +h), which is the part related to prognosis. Furthermore,

SL denotes a set of unacceptable states representing failure and L represents a fixed threshold

limit defining unit or system failure if exceeded.
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To properly predict the RUL, Sikorska et al. [Sikorska et al., 2011] suggests looking at a series

of questions:

i. Is a component in the degraded state?

ii. Which failure mode has initiated the degradation?

iii. How severe is the degradation?

iv. How quickly is degradation expected to progress from its current state to func-

tional failure?

v. What novel events will change this expected degradation behaviour?

vi. How may other factors (e.g. type of model, measurement noise) affect our RUL

prediction?

According to Sikorska et al, Questions (i. - iii.) can be considered as diagnostics questions while

the last three are related to prognostics Sikorska et al. [2011].

5.2 Degradation Modelling

Degradation modelling is an important prognostics task. It involves fitting a model to the avail-

able condition data to describe the deterioration pattern of the system. Different classification

of models used in modelling degradation of systems exists in literature [see for example Sikorska

et al. [2011], Tsui et al. [2015]]. The following section presents a some of these models.

5.2.1 Regression-based models

Regression-based methods are commonly used in industry and also in academic fields for life-

time estimation due to their simplicity Si et al. [2011]. Lu and Meeker [1993] present a general

nonlinear regression model to characterize the degradation path of a population of units. The

general degradation model, given the observed sample degradation Y (t ) at time t , can be rep-

resented as

Y (t ) = D(t ;φ,θ)+ε(t ), (5.2)

where D(t ;φ,θ) is the actual path at time t , φ is the fixed effect regression coefficients, common

for all units, θ is the random effect representing individual unit characteristics, and ε(t ) is the

random error term described by N (0,σε). Usually, θ and ε(t ) are assumed to be independent of

each other.

There have been several applications and extensions to this model in literature such as found

in Lu et al. [1997] and Meeker and Escobar [1998]. For a comprehensive review of the applica-

tions and extension of the regression-based degradation models in published literature, see Si

et al. [2011] and Tsui et al. [2015].
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5.2.2 Stochastic-based models

Stochastic-based models usually assume the Markov process Barlow [1965]. A Markov process

is a process with the Markov property. Given the value of X (t ), the values of X (s), where s > t

is independent of the values of X (u),u < t . In other words, the conditional distribution of the

future states of a system given the present state, is independent of the past states Rausand and

Høyland [2004]. Markov processes are usually classified into discrete time Markov processes

with finite and countable state space and continuous-time Markov processes with independent

increments.

Continuous-time stochastic processes with independent and stationary increments are called

Levy processes. A stochastic process has stationary increments if the probability distribution of

the increments X (t+h)−X (t ) depends only on h for all t ,h ≥ 0 van Noortwijk [2009]. Continuous-

time stochastic processes are discussed further in the next chapter.



Chapter 6

Stochastic Degradation Models

Selecting and building an appropriate model not only requires a mathematical understanding

of the proposed models but also a familiarization with the system under study. Models, gener-

ally are subject to specific assumptions and approximations some of which are mathematical

while others relate to practical implementation issues such as the amount of data required to

validate and verify a proposed model Sikorska et al. [2011]. Other practical considerations re-

lates to the computational complexity of estimating the design parameters of the model based

on observed data.

The following sections presents and overview of some of the popular stochastic models used

in literature for degradation modelling of engineering systems and structures.

6.1 Wiener Process

The Wiener process could be considered a type of regression model but with specific properties.

A process W is said to be a Wiener process with drift µ and variance σ2 if:

W (t ) =σB(t )+µt (6.1)

where µ is a defined drift parameter, σ> 0 is a diffusion coefficient and B(t ) is a standard Brow-

nian motion. The process W has the following properties:

1. W(0) = 0;

2. W has continuous sample paths;

3. W has independent increments;
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4. For any 0 ≤ s ≤ t , the random variable W(t) - W(s) has normal distribution with mean

µ(t − s) and variance σ2(t − s)

Figure 6.1 shows an illustration of a Wiener process with linear drift with the drift parameter,

µ= 0.05 and diffusion coefficient, σ= 0.48

Figure 6.1: Illustration of 5 paths of a wiener process.

Wiener processes for degradation modeling are appropriate for the case that the degradation

processes vary bi-directionally over time with Gaussian noises. Modeling degradation processes

with Wiener processes has certain mathematical advantages. The most important one is that

the distribution of the first passage time can be formulated analytically, known as the inverse

Gaussian distribution Si et al. [2011]. The drawback of the Wiener process however, is that it is

not suitable to model monotonically increasing degradation.

6.2 Gamma Process

The gamma process was originally proposed in 1975 by Abdel-Hameed [1975] in his two page

paper called "The gamma wear process", and have since attracted lots of interest and grown in

popularity amongst researchers in the area of degradation modelling and remaining useful life

estimation. The interest in the gamma process in the literature can be mainly attributed to its

suitability to model gradual monotonically accumulating damage and also to the tractability of

the required mathematical computations van Noortwijk [2009].

The gamma process is a special case of a Levy process where the increments are independent
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and monotonically increasing. Based on this definition, a stochastic process X is said to follow

the gamma process with parameters (c,u) if:

1. X (0) = 0;

2. X has independent increments;

3. For 0 ≤ s < t , X (t )−X (s) is gamma distributed with parameters (ct − cs ,u)

where c is the shape parameter governing the rate of arrival of jumps and u is the scale parame-

ter which determines the size of the jump in a given interval. Figure 6.2 illustrates the influences

of the shape and scale parameter on the gamma process.

Gamma Process: u=1, c=1,2,3,4. Gamma Process: c=1, u=1,2,3,4.

Figure 6.2: Illustration of the effect of shape and scale parameter on the Gamma Process.

The density function of the gamma process is given by:

fX (t )(x|c,u) = uct

Γ(ct )
· xct−1 ·exp−u · x (6.2)

where 0 ≤ x <∞ and Γ(x) = ∫ ∞
z=0 zx−1e−z d z is the Euler gamma function.

The mean of the gamma process is expressed as:

E [X (t )] = c

u
· t (6.3)

and the variance as:

Var[X (t )] = c

u2
· t (6.4)

Figure 6.3 shows different paths of a gamma process and the expected value of the process

with shape parameter, c = 0.04 and scale, u = 1.4.
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Figure 6.3: Illustration of 5 paths of a gamma process and the mean path.

The homogeneous gamma process has been successfully applied to model gradual degra-

dation phenomena, such as fatigue crack growth [Lawless and Crowder, 2004], thinning due to

corrosion [Kallen and van Noortwijk, 2005], corroded steel gates Frangopol et al. [2004], seal-

ing performance of O-rings [Sun et al., 2018]. Zhang et al. [2019] applies the gamma process

to model the gradual deterioration of the final elements of the SIS, independent of the damage

caused by random demands and high pressure.

6.2.1 Gamma Process with Covariates

In some cases, the degradation process depends on some characteristics of the monitored sys-

tem such as load, temperature and shock Nabila et al. [2019], the environment Bordes et al.

[2010] and individual unit heterogeneity Lawless and Crowder [2004]. This means that the

stochastic law that governs the degradation process changes. This has led to the introduction of

covariates and explanatory variables by different authors to account for the variations in oper-

ating conditions and individual heterogeneity.

A common approach to introduce covariates into the gamma process is to allow the covariates

to modify the time scale of the gamma process as in Bagdonavicius and Nikulin [2001]. That is,

the degradation at time, t given shape c and scale u, is given by the gamma process:

X (t ) ∼Ga(c ·
∫ t

0
eβzs d s, u), ∀ t ≥ 0 (6.5)
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Assuming constant covariates over time:

X (t ) ∼Ga(c ·eβzs t , u), ∀ t ≥ 0 (6.6)

where zT = (z(1), z(2), . . . , z(p)) is the vector of covariates and β = (β1,β2, . . . ,βp ) is a vector of

unknown parameters.

To illustrate this process, five degradation paths each were simulated with the assumption

that the covariates vector can take one of two possible values corresponding respectively to high

stress levels (HSL) and moderate stress levels (MSL), z ∈ (1,0), (0,0) and β= (0.5,0). This is based

on the work done by Nabila et al. [2019] in applying the gamma process to model the deteriora-

tion of an actuator exposed to different stress levels. Figure 6.4 shows this illustration.

Figure 6.4: Illustration of Degradation paths of a Gamma Process with covariates.

Other alternatives to introducing covariates into the gamma process can be seen in Lawless

and Crowder [2004] and Crowder and Lawless [2007]. Here the authors assume that the scale

parameter is proportional to a random effect and depends on covariates.

6.2.2 Noisy Gamma Process

The noisy gamma process is an extension of the gamma process incorporating Gaussian noise to

account for error in measurements and other sources of white noise. This process is applied to

model non-monotonous degradation process. The underlying assumption here is that the true

degradation is monotone increasing and follows the gamma process. The observed degradation

on the other hand is perturbed by noise which may be due to error in measurements, effects of
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minor maintenance actions and so on. The following presentation on the noisy gamma process

is based on Le Son et al. [2016]:

Let X (t ) be a gamma distributed random variable with a scale parameter u and shape c. The

process has the properties listed in section 6.2 with probability density function as given in

Equation 6.2.

It is supposed that the deterioration level is not directly observable. Let Yn = Y (tn),n = 1, . . . ,n,

be the degradation indicators observed at inspection times 0 < t1 < . . . < tn , and Xn = X (tn),n =
1, . . . ,n is the non-observable state at time tn modelled by a homogeneous gamma process, thus

the relation between Xn and Yn can be expressed as follows:

Yn = f (Xn ,εn) = Xn +εn (6.7)

where εn are independent Gaussian random variables with standard deviation σn and mean

equal to zero. It can also be expressed as a function of Xn and Yn as:

εn = g (Xn ,Yn) = Yn −Xn (6.8)

To carry out an efficient prognosis and maintenance planning, it is necessary to approximate

the non-observable states of the system from its marginal density. The non-observable states of

the system are approximated from the observed state using the conditional density of the non-

observable states X1, . . . , Xn with respect to the observations Y1, . . . ,Yn . The conditional density

is given as:

µX |Y1=y1,...,Yn=yn (x1, . . . , xn) = µX ,Y (x1, . . . , xn , y1, . . . , yn)∫
. . .

∫
µX ,Y (x1, . . . , xn , y1, . . . , yn)d x1 . . .d xn

(6.9)

with (x1, . . . , xn) and (y1, . . . , yn) a realisation of X and Y , respectively andµX ,Y (x1, . . . , xn , y1, . . . , yn)

is the joint density of the non-observable and observable state. To avoid the difficult calculation

of the marginal density of the non-observable state involving many integrals, the Gibbs sampler

algorithm is used. The Gibbs sampler algorithm, discussed in section 6.2.2, is a method used to

obtains samples from a marginal distributions given the conditional distributions. Through the

use of techniques like the Gibbs sampler, we are able to avoid difficult calculations, replacing

them instead with a sequence of easier calculations CASELLA and GEORGE [1992].

The Gibbs Sampler

This presentation of the Gibbs sampler algorithm is based on CASELLA and GEORGE [1992].

The Gibbs sampler is a technique for generating random variables from a marginal distribu-

tion indirectly, without having to calculate the density. Suppose we are given a joint density



CHAPTER 6. STOCHASTIC DEGRADATION MODELS 33

f (x1, . . . , xn , y1, . . . , yn) and the goal is to obtain characteristics of the marginal density

f (x) =
∫

. . .
∫

f (x1, . . . , xn , y1, . . . , yn)d y1 . . .d yn (6.10)

such as the mean and variance. A straight forward approach would be to calculate f (x) and

use it to obtain the desired characteristics. However, in some cases the integrations in Equa-

tion 6.10 may be difficult to perform, either analytically or numerically. In such cases the Gibbs

sampler provides an alternative method for obtaining f (x).

The following illustrates the workings of the Gibbs sampling algorithm: Given a pair of ran-

dom variables (X ,Y ), the Gibbs sampler generates a sample from f (x) by sampling instead from

the conditional distributions f (x|y) and f (y |x), distributions that are often known in statistical

models. This is done by generating a "Gibbs sequence" of random variables

Y ′
0, X ′

0,Y ′
1, X ′

1,Y ′
2, X ′

2, . . . ,Y ′
k , X ′

k .

The initial value Y ′
0 = y0 is specified, and the rest is obtained iteratively by alternately generating

values from
X ′

j ∼ f (x|Y ′
j = y j )

Y ′
j+1 ∼ f (y |X ′

j = x j )
(6.11)

The distribution of X ′
k converges to f (x), the true marginal of X , as k →∞. Thus for k large

enough, the final observation is effectively a sample point from f (x). To obtain iid from f (x),

m independent Gibbs sequences of length k can be generated and the final value X ′
k from each

sequence is used. If k is chosen to be large enough, this yields an approximate iid sample from

f (x). Methods for choosing k is discussed in CASELLA and GEORGE [1992].



Chapter 7

System Data and Data Pre-processing

The system under consideration is shutdown valves described in chapter 3. In this chapter,

condition data associated with the valves which is used for statistical analysis and degradation

modelling is presented.

7.1 Valve activation data

The valves are tested at different intervals and information from the tests are recorded on spread-

sheets. One of the collected data is the activation time data. The valve activation data, shown

in Figure C.1, contains information about the activations of ninety-two valves. The recorded

information include:

• Time stamp - the date and time of activation of the valve.

• Valve - the name tag of the valve that was activated.

• Operation - the kind of operation carried out on the valve, either open or close operation,

whether it was a partial stroke (PS) or not and which system initiated the operation, either

PCS (Process control system), PSD (Process shutdown) or ESD (Emergency shutdown).

• Group - the group the valve belongs to, whether ESD or PPS (Gas Pig launcher).

• Is To Safe State - whether the operation puts the valve in a safe state.

• Description - brief description of the valve with respect to the EUC.

• Operation Status - classification of the response of the valve with respect to the operation

carried out either as "OK" or "OK with warning" or "slow".

• Travel time - time taken to open or close the valve in seconds.
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• Max travel time - maximum allowed time in seconds for a particular operation.

• Have comment - whether an operation has an associated comment or not.

7.1.1 Raw Data

The raw data contains data for the valves collected over the period of three years between be-

tween January 2016 and December 2018. This data is recorded in spreadsheets with each month

of each year being stored in a separate file. Some months are split into two spreadsheets de-

pending on the volume of the data resulting in over 40 separate spreadsheet files for the 3 year

period. Each spreadsheet contains data for all 92 valves. The tests intervals are highly irregular

with no recognizable pattern across the valves. For instance, several strokes may be done on

the valve within a 10 minutes interval. Afterwards the valve will remain idle for periods ranging

from 1 day to 10 months across the valves.

7.1.2 Data Preprocessing

Data preprocessing is one of the fundamental steps involved in data analytics, independent of

the chosen modelling approach. Hence, in order to analyse the system data and build a degra-

dation model for the valves, the raw data needs to be filtered, sorted and down-scaled as much

as possible, such that noisy data impacting the performance of the models are reduced Chollet

[2018]. The following steps were taken to pre-process the data:

1. Appending files. All the separate spreadsheet files were appended together into one file

to have all the data in one place for sorting and filtering.

2. Filtering. The data was filtered to extract relevant data for the analysis. Majority of the

filtering was done in python during the analysis. Before that, the following preliminary

filtering was done in the spreadsheet:

• First the "Operation" column was used as a criteria to clean the data, removing en-

tries that either had no meaning with respect to the proposed analyses or had miss-

ing or incomplete information.

i. All entries having values of "Already in Safe State" or "Already RTN state" were

removed. It is understood that this was some sort of check done on the valves to

determine its current state. There was no activation of the valves and travel time

was recorded as 0.

ii. Similarly all entries with values of "ESD Close (Interf.)" or "PSD Close (Interf.)"

or "PCS Close (Cancelled)" or "PSD Open (Cancelled)" were removed. Although
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these entries have meaningful values of travel time, it is understood that opera-

tions with the former two values had some sort of interference with the record-

ing device. Operations with the latter two values were cancelled by the operator

meaning the activation was incomplete. The recorded travel time cannot then

be fully accepted as the true travel time for these operations. To achieve consis-

tency these entries were removed.

• Next the "Operation Status" column was used to remove entries with incomplete

information.

i. All the entries with values, "Error", were removed. This entries had no infor-

mation under "Timestamp", "Operation", "Travel time" and "Max travel time"

columns. It is assumed that these were not real operations and may have been

some sort of way to separate entries for different months as these kind of entries

were particularly seen just before the first entry of the next month in the data.

ii. Similarly, entries with values of "Response Missing" were removed. In this case,

travel time was not recorded for these operation although they had values for

the other columns. It is not fully understood why these values were missing but

for consistency in the analysis, these entries were removed.



Chapter 8

Linear Regression Analysis

This chapter presents the regression analysis carried out on the valve activation data. The main

aim of the analysis is to identify important factors or variables that can predict the travel time

of the valves leading up to delayed operation. This is a continuation of the work done in the

autumn semester, therefore, a brief summary of the results from the autumn semester is also

presented in this chapter. The following notations are used in this chapter:

Terms

• Closing operation. Operation of the valve to close the valve.

• Test day. A full calendar day in which a test is carried out. A change in date indicates a

separate test day.

Notations

Notations used in this note

COk
i closing operation i on test day k

TCOk
i

calendar time of closing operation i on test day k

C TCOk
i

Valve travel time for closing operation i on test day k

8.1 Preliminary Hypothesis

In the autumn semester, regression analysis was performed on the valve activation data to check

for correlation between the valve travel time for closing operations and some explanatory fac-

tors such as the elapsed time since the last operation/maintenance.
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The main assumption was that travel time will increase with longer intervals between opera-

tions. The proposed linear model was given as:

C TCOk
i
=β0 +β1 · (TCOk

i
−TCOk

i−1
)+ε (8.1)

where ε∼N (0,σ), is random error due to noise and β0 and β1 are the regression coefficients.

The result from the regression showed 55 valves having positive trend with 11 being signifi-

cant while the other 37 valves had negative trend with 2 being significant. Figure 8.1 shows

the regression results for all the valves are combined. From this result, it appears that there is

a general positive correlation, slope: 5.09e-06, between the travel time and elapsed time since

last operation for the valves although from the p-value, 0.3671, this correlation appears not to

be significant

Figure 8.1: Ratio of travel time vs time since last operation

Remark: Response variable used in the regression analysis is the ratio of the travel time to max-

imum travel time allowed for that operation and not the actual travel time. This allows to nor-

malize the travel time for all the valves so they could be combined for the analysis

8.2 Improved Linear Model

From the observed data, several operations were carried out few seconds apart on a test day.

This contributes to having many very short intervals between operations as seen in the scatter

plot in Figure 8.1. These subsequent operations offers no new information to the current anal-

ysis. As observed by Marvin Rausand, the failure mode "closing too slowly" or "delayed opera-

tion" in some cases cannot be observed after the valve has been closed in the first instance be-
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cause the movement of the valve has removed the sticking seal problem which normally causes

delayed operation Rausand [2014]. The subsequent operations on a test day are therefore as-

sumed to be maintenance actions and filtered out of the analysis. In the improved model only

the first, COk
1 , and last, COk

n , closing operation of the test day are considered. The first oper-

ation is used as the response variable while the last operation is used to calculate the elapsed

time until the next operation which is the first closing operation on the subsequent test day. The

improved linear model then becomes:

C TCOk
1
=β0 +β1 · (TCOk

1
−TCOk−1

n
)+ε (8.2)

assuming there are n closing operations on a test day k

The scatter plot, Figure 8.2, is similar to the one in the previous section but with improved

results.

Figure 8.2: Ratio of travel time vs time since last operation result

The p-value shows that there is a significant correlation between travel time and time since

last operation of the valves. However, the R-squared indicates that the interval between opera-

tions can only explain about 0.4% of the variance present in the travel time.

8.3 Multiple Regression

The plot in Figure 8.3 based on the model in Equation 8.2 shows that the model is not accurate

in predicting long travel time. In fact, the model cannot predict travel time for operations where

the travel time is greater than the maximum allowed travel time, that is operations with travel

time ratio greater than 1 (Maximum predicted travel time is 0.336). This could be as a result of

most long travel times occurring after relatively shorter intervals compared to the short travel

times as seen in Figure 8.2. An explanation for this could be that thorough maintenance actions,

even complete overhaul of parts or the whole valve, which takes longer period, are carried out on
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the valve after a slow operation resulting in shorter travel time on the next test day. Conversely,

minor or no maintenance actions are carried out on test days when the valve tested OK and thus

the valve continues to degrade leading to slower operations on the next test day which is usually

after a couple of days for some valves.

Figure 8.3: Actual vs Predicted Ratio

To study the effect of the interaction between test interval and the state of the valve in the

previous test day, an analysis of variance was carried out on a set of valves which showed delayed

operation. Valve operations were grouped into two categories:

• OK. operation where the travel time is below the maximum allowed travel time

• NOT OK. operations where the travel time exceeds the maximum allowed travel time

Interval between operations were grouped into three categories:

• short. less than 1 month

• medium. 1-3 months

• long. more than 3 months

The null hypothesis, H0 : the interaction between the state of the valve and the length of the

interval until the next operation has no effect on the change in travel time of the valve. In other

words the mean change in travel time is the same for all possible combinations of the various

categories of the operation status and the length of interval. The results from this analysis is

shown in Figure 8.4.
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(a) Analysis of variance.

(b) Interaction between status of previous operation
and interval.

Figure 8.4: Analysis of variance

As shown in Figure 8.4b, the travel time increases by about 46 seconds on average for long in-

tervals after the valves were tested OK, 31 seconds for medium interval and 21 seconds for short

intervals. For operations where the valves tested NOT OK, the travel time decreases by about 56

seconds on average for long interval, 35 seconds for medium interval and 13 seconds for shorter

interval. The p-value in Figure 8.4a, 0.017, for the interaction between the interval and state of

valve in previous operation suggests that this result is significant and the null hypothesis can be

rejected.

Based on the result from the analysis of variance, the linear model is updated to include the

travel time of the previous operation, that is the last operation of the previous test day. The

updated model also reflects the interaction between the status of the previous operation and

the length of the interval between the operation. To further improve the model, a second step

travel time lag was included corresponding to the first travel time of the previous test day. The

improved multiple regression model is as shown in Equation 8.3
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C TCOk
1
=β0 +β1 · (TCOk

1
−TCOk−1

n
) · I0,0(COk−1

n )+
β2 · (TCOk

1
−TCOk−1

n
) · I0,1(COk−1

n )+β3 · (TCOk
1
−TCOk−1

n
) · I0,2(COk−1

n )+
β4 · (TCOk

1
−TCOk−1

n
) · I1,0(COk−1

n )+β5 · (TCOk
1
−TCOk−1

n
) · I1,1(COk−1

n )+
β6 · (TCOk

1
−TCOk−1

n
) · I1,2(COk−1

n )+β7 ·C TCOk−1
n

+β8 ·C TCOk−1
1

+ε

(8.3)

where Ii , j (x) = 1 if x is categorized by i and j and

Ii , j (x) = 0 otherwise.

i represents the category of the operation status

(0 for OK and 1 for NOT OK) and

j represents the category of the length of the interval

(0 for long, 1 for medium and 2 for short).

The improved model allows the use of the actual closing time as the response variable as op-

posed to the ratio of travel time to maximum travel time. The previous travel time in the ex-

planatory variable serves as a normalization factor so all valves can be merged to estimate the

regression coefficients. The regression coefficients are estimated using ordinary least squares al-

gorithm and the results are shown in Table 8.1. The R-squared and adjusted R-squared are 58.8%

and 58.7% respectively. The python codes used in the analysis is explained in Appendix B.

Table 8.1: OLS Regression Results.

Term Coefficients p-Value

constant 1.4813 0.000

OK-Long 7.981e-05 0.586

OK-Medium 0.0202 0.325

OK-Short -0.0002 0.612

Not OK-Long -0.0157 0.000

Not OK-Medium -0.0075 0.000

Not OK-Short -0.0498 0.000

previous test day last travel time 0.3050 0.000

previous test day first travel time 0.5292 0.000



Chapter 9

Degradation Modelling

In this chapter, we attempt to fit degradation models to the valve activation data using the results

from the regression analysis.

9.1 Condition monitoring

Condition monitoring is the process of observing certain parameters or variables of a system

giving an indication of the current health or status of the system. One of the failure modes asso-

ciated with shut down valves is delayed operation (DOP) and this failure mode can be observed

by monitoring the travel time for closing operation of the valve. The travel time which is mea-

sured in seconds gives the time taken from when signal is received to activate the valve to when

the valve is in full closed position. For safety reasons, the closing operations are allocated maxi-

mum allowed travel time depending on the valve usage and the valve can be said to have failed

with failure mode DOP when the travel time exceeds this maximum allowed travel time NOG

GL-070 :2018.

In Table 9.1 the maximum allowed travel time, identified usage category based on descrip-

tion, number of valves in the usage category, the average travel time recorded for OK operations

and the number of critical faults observed is given. Critical faults here refer to the number of

operations where the travel time exceeds the maximum allowed travel time for that operation.
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Table 9.1: Maximum allowed travel time and valve usage

Max al-

lowed

travel

time

(sec-

onds)

Usage
No of

valves

Average

travel

time

(OK)

(sec-

onds)

Total no

of safety

opera-

tions

No of

critical

faults

9
Production wing 11 2.34 982 0

Other usage 1 6.75 82 1

30

Gas lift 11 1.62 719 0

Chemical injection 10 6.43 640 69

Upper master valve 11 2.28 1048 0

Other usage 44 10.05 5378 2

60 Other usage 3 21.65 90 0

9.2 Performance parameter and degradation indicator

Travel time is identified as the performance parameter used to observe DOP failure mode. The

health indicator can be given as change in travel time per hour:

∆C Tk =
C T k

CO1
−C T k−1

CO1

T k
CO1

−T k−1
CO1

(9.1)

Figure 9.1a shows the degradation path based on the given indicator in Equation 9.1 for one of

the valves.



CHAPTER 9. DEGRADATION MODELLING 45

(a) Change in travel time per hour. (b) Standardized path.

Figure 9.1: Degradation path

To account for heterogeneity between the valves, covariates are introduced. It is proposed to

use the covariates identified in the regression analysis to account for the different degradation

patterns in the valves. In the literature as seen in subsection 6.2.1, the covariates are introduced

directly into the degradation model and the coefficients are estimated along with parameters of

the selected model. This could prove to be computationally expensive especially dealing with

time-dependent covariates as in our case. A pragmatic or engineering approach would be to

estimate the coefficients using regression analysis as done in the previous chapter and to use

these coefficients to standardize the increments. The standardized increments are given as:

∼
∆C Tk =

C TCOk
1
−C TCOk−1

1àC TCOk
1

(9.2)

where àC TCOk
1

is the estimated travel time from Equation 8.3. Based on the identified usage in

Table 9.1, Equation 8.3 is adjusted to account for the usages. The estimated travel time then

becomes:

àC TCOk
1
=β0,C IV +β0,GLV +β0,PW V +β0,U MV +β0,OT H

β1 · (TCOk
1
−TCOk−1

n
) · I0,0(COk−1

n )+β2 · (TCOk
1
−TCOk−1

n
) · I0,1(COk−1

n )+
β3 · (TCOk

1
−TCOk−1

n
) · I0,2(COk−1

n )+β4 · (TCOk
1
−TCOk−1

n
) · I1,0(COk−1

n )+
β5 · (TCOk

1
−TCOk−1

n
) · I1,1(COk−1

n )+β6 · (TCOk
1
−TCOk−1

n
) · I1,2(COk−1

n )+
β7 ·C TCOk−1

n
+β8 ·C TCOk−1

1

(9.3)

Using the model in Equation 9.3 gives a better goodness of fit measure than the model in Equa-

tion 8.3. The R-squared and adjusted R-squared are 60.6% and 60.5% respectively (Figure C.3).

The now standardized path for the same valve is as shown in Figure 9.1b.
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9.3 Degradation models

Based on the standardized path, two models are selected to model the degradation process:

• Wiener process

• Gamma process with noise

The observed deterioration is given as:

Yn =∑n
k=1

∼
∆C Tk

9.3.1 Wiener Process

The Wiener process obviously is suitable to model the observed degradation because of its suit-

ability to non-monotone increasing degradation. The Wiener process is described in section 6.1.

This section describes the estimation of the parameters for the Wiener process.

Parameter Estimation

The method used to estimate the parameters of the Wiener process is the maximum likelihood

estimation method.

The maximum likelihood estimation (MLE) is a method of estimating unknown parame-

ters of a probability distribution given samples assumed to have been drawn from that distri-

bution. Suppose we have N independent and identically distributed (iid) variables denoted

Y = Y1, . . . ,YN , and a corresponding N observations, y = y1, . . . , yn , drawn from Y and a joint

PDF given by f (y ;θ) where θ is an unknown parameter or vector of parameters of the PDF. The

principle of MLE involves finding an estimate of θ such that it maximizes the likelihood of ob-

serving those data that were actually observed. Because the elements in Y are independent, the

joint distribution may be written as the product of the individual marginal distributions. The

resulting likelihood function, Equation 9.4, is then maximized:

Λ(θ) =
N∏

i=1
f (yi ;θ) (9.4)

Due to the computational difficulties of working with products, the log-likelihood function

is maximized instead with the knowledge that the log of a function will have its maximum value

at the same values of parameters as the function itself. The resulting log-likelihood function,

ln(Λ(θ)) =λ(θ) is given as:

λ(θ) =
N∑

i=1
ln[ f (yi ;θ)] (9.5)
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The solution for θ that maximizes the log-likelihood function in Equation 9.5 is called the maxi-

mum likelihood estimator (MLE), typically denoted θ̂, the value of which is called the maximum

likelihood estimate. Eliason [1993].

For the Wiener process, the observed increments, ∆yi , are normally distributed with param-

eters λ∆ti and σ∆ti . Barros [2019]. The likelihood function is given as:

L(λ,σ; (∆y1, . . . ,∆ym1 ), . . . , (∆y1, . . . ,∆ymn )) =
n∏

l=1

ml∏
j=1

f (∆yl j ;λ,σ) (9.6)

where n is the number of components (valves), ml , the number of observed increments of the

l th valve (1 ≤ l ≤ n and ml ≥ 1) and ∆yl j , the increment of the l th valve at the j th observation

(1 ≤ j ≤ ml ).

The maximum likelihood estimate for the parameters based on the standardized degradation

paths of the valves are λ = 0.0354 and σ = 0.4868. The codes used in estimating the parameters

is given in Appendix B.

9.3.2 Gamma Process with Noise

The Gamma process is popular for modelling monotone increasing degradation. However as

discussed in section 6.2, the Gamma process with noise can be applied to model non-monotone

degradation. This section describes the estimation of the parameters for the gamma process

with noise.

Parameter Estimation

As the true deterioration states are hidden, the maximum likelihood method cannot be directly

used. The unknown parameters of the true deterioration obtained through Gibbs sampling are

estimated through the Stochastic Expectation-Maximization (SEM) algorithm. Nielsen [2000].

The likelihood function of the gamma distributed deterioration states X (i ) = (x(i )
1 , . . . , x(i )

n ), i =
1, . . . , N (N :number of components) given the observations Y (i ) = (y (i )

1 , . . . , y (i )
n ), i = 1, . . . , N is

defined as follows:

L(c,u,σ) =
N∑

i=1

ni∑
j=1

(c(t j − t j−1)−1) ln(x(i )
j −x(i )

j−1)−u(x(i )
j −x(i )

j−1)−
g 2(x(i )

j , y (i )
j )

2σ2

+ ln(|g ′(x(i )
j , y (i )

j )|)− ln(σ
p

2π)+ c(t j − t j−1) lnu − ln(Γ(ct j − ct j−1))

(9.7)

where all the parameters and variables have the usual meaning as defined in subsection 6.2.2.
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The random variables X (i )
j , j = 1, . . . ,ni in the log-likelihood are approximated by the Gibbs sam-

pling (presented in section 6.2.2) and replaced by Z (i )
j , j = 1, . . . ,ni in the likelihood function to

estimate iteratively the parametric inference of the model by the SEM algorithm. The algorithm

as described in Le Son et al. [2016] and implemented in the codes in Appendix B is as follows:

1. The initial parameters (c0,u0,σ0) are choosen and then Z 1 = (z1
i ,1, . . . , z1

i ,ri
) simulated by

Gibbs sampling. In this work the initial parameters are chosen by maximizing the likeli-

hood function, L, of the monotone path generated using isotonic regression on the ob-

served degradation path.

2. At the q-th iteration, by the samplers vector Z q = (zq
i ,1, . . . , zq

i ,ri
), the following estimation

is done:

σ2
q =

ΣN
i=1Σ

ri
j=1g 2(Z q

i , j ,Yi , j )

ΣN
i=1ri

(9.8)

and (cq , uq ) are obtained by maximizing the likelihood function L.

3. At (q +1)-th iteration, (cq , uq ) are used to simulate Z q+1 = (zq+1
i ,1 , . . . , zq+1

i ,ri
).

4. The parameters of the Gamma process are updated to a sufficient number of iterations Q

and a parameter set (cq , uq ), q = 1, . . . ,Q is obtained.

5. The estimated parameters are finally calculated as follows:

ĉ = 1

Q

Q∑
q=1

cq , û = 1

Q

Q∑
q=1

uq
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(a) Shape Parameter. (b) Intensity or Scale Parameter.

(c) Sigma.

Figure 9.2: Evolution of the Parameters of the Gamma Process Under Stochastic Expectation
Maximization Algorithm

Figure 9.2 shows the evolution of the parameters under the stochastic expectation-maximization

process. The descriptive statistics of the result from the SEM process for the parameters of the

gamma process with noise is given in Table 9.2.
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Table 9.2: Parameters of the Gamma Process with Noise.

Statistics Shape (c) Scale (u) Sigma (σ)

Count 201 201 201

Mean 0.03556 1.0187 0.31554

Std 0.00055 0.01359 0.011658

min 0.03440 0.9628 0.17814

25% 0.03441 0.97377 0.24093

50% 0.03443 0.98471 0.30371

75% 0.03451 0.98706 0.30404

max 0.03992 1.05753 0.34915

The codes used for the estimation is given in Appendix B. The original code for estimating

the noisy gamma process (section D.1) was written by Xingheng Liu, a post-doc researcher in

the RAMS group. The code was modified as explained in section B.4 to be used to estimate the

gamma parameters in this thesis. The modification involved adapting the likelihood function

of the gamma process from a three-parameter non-homogeneous gamma process to a two-

parameter homogeneous gamma process. The Gibbs sampling process, the stochastic expec-

tation maximization algorithm and the likelihood function were also modified to take a joint

degradation paths for all the valves as inputs as opposed to one path in the original code.



Chapter 10

Conclusions, Discussion, and

Recommendations for Further Work

10.1 Summary and Conclusions

The work done in this thesis was an attempt to bridge the gap between collection of condition

data for final element of SIS and the use of this data in predicting the future condition of the

system. The failure mode of the SIS under consideration was ’closing too slowly’ or ’delayed op-

eration’ (DOP). This failure mode of the valve can have undesirable consequences particularly

when the response time of the system is required to be less than the process safety time. It can

only be detected during activation of the valve and therefore can be classified as a dangerous un-

detected failure. The main aim of the thesis was to build a model to predict the travel time of the

shutdown valve and fit a degradation model to the valve based on the linear model in order to

monitor the progression of the DOP failure mode. The thesis has ten chapters. The thesis began

in Chapter 1 by giving a brief background and motivation for the work done in the thesis. Chap-

ter 1 also described the objectives, limitations and approach used to accomplish the tasks in this

work. In chapter 2, a brief introduction to the main concepts of SIS was presented, concepts

such as main components of SIS, modes of operation, testing and so on. Chapter 3 presents

the structure, configuration and working principles of shutdown valves, the final element of SIS

under study. The most common failure modes and testings of the shutdown valve is also dis-

cussed in chapter 3. Statistical framework relevant to the analysis carried out in this thesis is

explored in chapter 4 while Chapter 5 and 6 lays the framework for the degradation modelling.

Chapter 5 begins by giving a brief introduction of prognostics and health management before

looking at the relationship between diagnostics and prognostics and finally the different types

of degradation models. Chapter 6 looks into the degradation models used in the analysis, the

Wiener process and the Gamma process and its variants. In Chapter 8, a predictive linear model

is built for the travel time of the valve. It was identified that the time between operations and

51
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maintenance as well as the previous travel time have significant effects on the travel time of the

valve. Based on an analysis of variance carried out on a select group of valves it was further iden-

tified that the previous state of the valve has a significant effect on the next travel time. These

factors were used to build a predictive model for the valve based on linear regression. Chapter

9 began by identifying different usages for the valves in the data and using this information to

update the linear model. The travel time was identified as a suitable performance parameter

to observe the DOP failure mode and it was proposed to use the change in travel per hour as a

degradation indicator. In order to estimate the parameters for the degradation models, it was

necessary to combine the data from all valves and in order to account for heterogeneity between

the valves, it was proposed to introduce covariates into the model. The factors identified in the

statistical analysis was proposed to be used as the covariates. Estimating the coefficients for

the covariates can be difficult and computationally expensive particularly when dealing with

time-dependent covariates as is the case in this thesis. A pragmatic or engineering approach is

used instead where the coefficients are estimated by regression and these coefficients are used

to standardize the increments to obtain the final degradation indicator. The parameters for the

Wiener process and the Gamma process with noise are then estimated using maximum likeli-

hood estimation and stochastic expectation maximization methods respectively.

10.2 Discussion

The results from the linear regression analysis is fairly promising with the linear predictive model

able to predict the travel time with a prediction accuracy of up to 60%. The most important fac-

tor based on the value of the coefficients is the previous travel time. This makes sense as the

valves have different ranges of travel time. For instance some valves have a normal travel time

of between 1-5s while others can have a normal travel time of up to 25s. Effect of maintenance

on the valve can be seen in the coefficients of the variables NOT OK-long, NOT OK-medium and

NOT OK-short which are -0.0157, -0.0075 and -0.0498 respectively. These variables define the

condition of the valve in the previous activation and the length of the interval since that previ-

ous activation. The coefficients of these variables which all have significant p-value indicates

that the condition of the valve improved after a DOP failure was observed as evident in the re-

duction in travel time. This is as expected. However, it was also expected that the longer the

interval after a DOP failure, the better the condition of the valve, but the results shows that the

shorter intervals had the most reducting effect on the travel time. This can be attributed to the

fact that in most cases, the DOP failure mode is fixed by the movement of the valve itself and

as such cannot be observed after the valve is closed in the first instance Rausand [2014]. It is

therefore concluded here that, thorough maintenance which takes longer time is only carried

out if the failure mode is still present after several movements of the valve otherwise the valve
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is classified as OK. Despite this promising results, there still exists some concerns with utiliz-

ing this model for predictions. From an operational point of view, it can be expected that the

travel time would increase with the length of the interval since the last activation if the last op-

eration was OK. The variables modelling this are labelled OK-long, OK-medium and OK-short

and as with the NOT OK variables defines the condition of the valve in the previous activation

and the length of the interval since that previous activation. These variables, however, do not

have significant effects on the valve travel time with the p-values for their coefficients all greater

than 0.05. An argument for this could be that, even when the valves tested OK, some minor

maintenance actions such as adjustments or lubrication are still carried out on the valve and

even the movement of the valve itself improved the valve condition. Another reason for this

could be attributed to imbalances in the data between OK operations and NOT-OK operations.

There are a total of 8939 operations for all the valves and only 72 of those were delayed operation

In health management and prognostics, it is common practice to combine models to make pre-

dictions for systems in what is often called hybrid models. An attempt to fit a degradation model

to the travel time data was explored. The degradation models built on the results from the linear

regression analysis. The pragmatic/engineering approach proposed in the thesis reduces the

computational complexity associated with estimating coefficients for covariates in degradation

models. However, this approach of introduction of covariates is yet to be verified from a theo-

retical point of view. From the resulting degradation path which is non-monotone, the Wiener

process with drift is obviously a good candidate model. The estimated parameters shows a gen-

eral linear drift of 0.0354 with a diffusion of 0.4868. In practice, the deterioration of a system is

often monotonous and the non-monotonicity observed in the collected data can be attributed

to noise from measurement errors Le Son et al. [2016]. Based on this, the Gamma process with

noise is also used to model the degradation path. The estimated parameters for the Gamma

process sees the shape and scale parameter and the standard deviation of the Gaussian noise

take mean values of 0.036, 1.019 and 0.316 respectively. The diffusion coefficient in the Wiener

process and the deviation of the noises for the Gamma process are reasonably low. Based on

these results, it may be argued that the engineering approach adopted to introduce covariates

into the models was effective in capturing the heterogeneity in the degradation paths amongst

the valves.

10.3 Recommendations for Further Work

Due to limited time, RUL predictions and proposal of optimal maintenance policy for the valves

based on the RUL were not carried out. Also comparisons between the performance of both

models was not done. The following gives possible suggestions on improving or extending the
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work carried out.

1. The linear predictive model is fairly promising in terms of its predicting accuracy. Further

work needs to be done to improve the model further particularly to improve the ability

to predict increase in travel time leading up to delayed operation. More data particularly,

data characterizing the delayed operation failure mode should be collected and analyzed.

One could also consider other statistical approach such as weighted least squares, partial

least squares and principal component analysis to analyze the data.

2. In order to make efficient prognosis and develop optimal maintenance and testing strat-

egy for the valve, RUL predictions based on the degradation models should be developed

and a goodness of fit test carried out on the predictions to determine the best model that

fits the data. Other factors such as runtime for parameter estimation should also be taken

into consideration in choosing the best model.

3. The full theoretical approach of incorporating covariates into the degradation models

should be explored. Factors such as size of valves, normal operating speed or torque of

the valve amongst others could be considered as time invariant covariates which could be

discretized and incorporated into the models.



Appendix A

Acronyms

DOP Delayed operation

ESD Emergency shutdown

ESV Emergency shutdown valve

EUC Equipment under control

FMECA Failure mode effect and criticality analysis

IEC International electrotechnical commission

iid Independent and identically distributed

NO Normally open

PCS Process control system

PFD Probability of failure on demand

PFDav g Probability of failure on demand

PSD Process shutdown

RAMS Reliability, availability, maintainability, and safety

RCA Root cause analysis

SIF Safety instrumented function

SIL Safety integrity level

SIS Safety instrumented system
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Appendix B

Python Codes

This chapter contains the python codes used for the analysis in this masters thesis. The program

was written in an objected oriented way

B.1 Core

This module contains data structures to store information about the valves including the travel

time. The module in python is as follows:

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 26 12:26:09 2021

@author: danem
"""

#%% Required modules

from datetime import datetime

#%% program constans

class Constant:
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dateFormat = '%Y-%m-%d %H:%M:%S.%f'
refDate = datetime(1970,1,1)

#%% valve attributes

class Valve:

def __init__(self, name, category):

self.name = name
self.dates = {}
self.dates_sec = {}
self.operationStatus = {}
self.travelTime = {}
self.category = category
self.key = 0

def UpdateValveData(self, date, operationStatus, travelTime):

self.dates[self.key] = date
sec = (date - Constant.refDate).total_seconds()
self.dates_sec[self.key] = sec
self.operationStatus[self.key] = operationStatus
self.travelTime[self.key] = travelTime
self.key += 1

def SetValveCategory(self, category):
self.category = category

#%% valve data

class ValveData:
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def __init__(self):
self.data = {}

def AddValve(self, name, category):

valve = self.LookForValve(name)
if valve == None:

valve = Valve(name, category)
self.data[name] = valve

return valve

def LookForValve(self, name):
return self.data.get(name, None)

def GetData(self):
return self.data

#%% valve category

class ValveCategory:

def __init__(self):
self.category = dict()
self.civ = []
self.glv = []
self.pwv = []
self.umv = []
self.oth = []

def AddDescription(self, name, category):

description = self.LookForValve(name)
if description == None:

description = category
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self.category[name] = description
if description == 'CIV':

self.civ.append(name)
elif description == 'GLV':

self.glv.append(name)
elif description == 'PWV':

self.pwv.append(name)
elif description == 'UMV':

self.umv.append(name)
elif description == 'OTH':

self.oth.append(name)

return description

def LookForValve(self, name):
return self.category.get(name, None)

def GetCategories(self):
return self.category

B.2 Parser

This module contains functions to import the valve data from the excel sheet into the data struc-

ture in the core module.

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 26 14:11:45 2021

@author: danem
"""

#%% Required modules

import sys
import openpyxl
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#%%

class XLSParser:

def ImportValveData(self, valveData, fileName, sheetName,
valveCategory):,→

try:
workbook = openpyxl.load_workbook(fileName)

except:
sys.stderr.write('Unable to open file "%s"\n' % fileName)
sys.stderr.flush()
return 1

worksheet = workbook[sheetName]
error = self.DownloadValveData(valveData, worksheet, valveCategory)
return error

def DownloadValveData(self, valveData, worksheet, valveCategory):
row = 1
#key = 0
while True:

row += 1
cell = worksheet.cell(row=row, column=1)
timeStamp = cell.value
#print(type(timeStamp))
if timeStamp==None:

break

cell = worksheet.cell(row=row, column=2)
name = cell.value
if name==None:

sys.stderr.write('Row %d, column 2: not a valve"\n' %
row),→

sys.stderr.flush()
return 1

if name != 'XXESVTEST':
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category = valveCategory.get(name,None)
if category==None:

sys.stderr.write('category is not specified for
valve %s\n' % name),→

sys.stderr.flush()
return 1

valve = valveData.AddValve(name, category)

cell = worksheet.cell(row=row, column=7)
operationStatus = cell.value
if operationStatus==None:

sys.stderr.write('Row %d, column 7: not a valid
entry for operation status"\n' % row),→

sys.stderr.flush()
return 1

cell = worksheet.cell(row=row, column=8)
travel_time = cell.value
if travel_time==None:

sys.stderr.write('Row %d, column 8: not a valid
entry for travel time"\n' % row),→

sys.stderr.flush()
return 1

valve.UpdateValveData(timeStamp, operationStatus,
float(travel_time)),→

return 0

def ImportValveCategory(self, valveCategory, fileName, sheetName):
try:
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workbook = openpyxl.load_workbook(fileName)
except:

sys.stderr.write('Unable to open file "%s"\n' % fileName)
sys.stderr.flush()
return 1

worksheet = workbook[sheetName]
error = self.DownloadValveCategory(valveCategory, worksheet)
return error

def DownloadValveCategory(self, valveCategory, worksheet):

row = 1
while True:

row += 1
cell = worksheet.cell(row=row, column=1)
valve = cell.value
if valve==None:

break

if valve != '43ESV5021':
cell = worksheet.cell(row=row, column=3)
description = cell.value
if description==None:

sys.stderr.write('Row %d, column 3: not a valve
description"\n' % row),→

sys.stderr.flush()
return 1

valveCategory.AddDescription(valve,description)

return 0
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B.3 Regression Tools

This module contains functions used to extract relevant variables to carry out the regression

analysis. It also contain the function used to obtain the standardized increments of the degra-

dation process. However, it does not contain the function to perform the linear regression.

# -*- coding: utf-8 -*-
"""
Created on Sat Apr 24 10:19:38 2021

@author: danem
"""

""" Regression Analysis """

#%% Required modules

import numpy as np

#%%

class Regression2:

def GetExplanatoryVariables(self, vData, vCategory,
noOfExplanatoryVariables):,→

X = np.zeros((1,noOfExplanatoryVariables))
y = np.zeros((1,1))

for valve in vData.keys():

data = vData[valve]

category = vCategory[valve]
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assert len(data.travelTime) == data.key, "length of data is not
the same as key %d, %d"%(len(data), data.key),→

x, Y, increments = self.ValveExplanatoryVariable(data, category)

Y = np.delete(Y, 0)
Y = Y.reshape(-1,1)

X = np.vstack((X,x))
y = np.vstack((y, Y))

X = np.delete(X,0,axis=0)
y = np.delete(y,0,axis=0)
return X, y

def ValveExplanatoryVariable(self, data, category):

first_TT = []
timeStamp_first_TT = []
op_stat_first = []

last_TT = []
timeStamp_last_TT = []
op_stat_last = []

#print(str(vData.time_stamp[1])[:10] ==
str(vData.time_stamp[3])[:10]),→

ttime = data.travelTime
dates = data.dates
dates_s = data.dates_sec
operation_status = data.operationStatus

for i in range(data.key):
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if i == 0:
first_TT.append(ttime[i])
timeStamp_first_TT.append(dates_s[i])
op_stat_first.append(operation_status[i])

elif i == (data.key - 1):
last_TT.append(ttime[i])
timeStamp_last_TT.append(dates_s[i])
op_stat_last.append(operation_status[i])

else:
prev = str(dates[i-1])[:10]
cur = str(dates[i])[:10]

if prev != cur:
first_TT.append(ttime[i])
timeStamp_first_TT.append(dates_s[i])
op_stat_first.append(operation_status[i])

last_TT.append(ttime[i-1])
timeStamp_last_TT.append(dates_s[i-1])
op_stat_last.append(operation_status[i-1])

assert len(first_TT) == len(last_TT),"first TT and last TT do not
have the same size %d, %d."%(len(first_TT),len(last_TT)),→

hours = 60*60

end = np.asarray(timeStamp_first_TT)[1:]
start = np.asarray(timeStamp_last_TT)[:-1]

interval = (end-start)/hours

x, Y, increments = self.ExtractExplanatoryVariables(interval,
first_TT, last_TT, op_stat_last, category),→

return x, Y, increments
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def ExtractExplanatoryVariables(self, interval, first_TT, last_TT,
op_stat_last, category):,→

z0_civ = np.zeros(len(interval))
z0_glv = np.zeros(len(interval))
z0_pwv = np.zeros(len(interval))
z0_umv = np.zeros(len(interval))
z0_oth = np.zeros(len(interval))

if category == 'CIV':
z0_civ = np.ones(len(interval))

elif category == 'GLV':
z0_glv = np.ones(len(interval))

elif category == 'PWV':
z0_pwv = np.ones(len(interval))

elif category == 'UMV':
z0_umv = np.ones(len(interval))

elif category == 'OTH':
z0_oth = np.ones(len(interval))

z1 = [interval[i] if interval[i] >= 3*730 and op_stat_last[i] !=
'Slow' else 0 for i in range(len(interval))],→

z2 = [0 if interval[i] >= 3*730 else( 0 if interval[i] < 730 else(0
if op_stat_last[i] == 'Slow' else interval[i])) for i in
range(len(interval))]

,→

,→

z3 = [interval[i] if interval[i] < 730 and op_stat_last[i] != 'Slow'
else 0 for i in range(len(interval))],→

z4 = [interval[i] if interval[i] >= 3*730 and op_stat_last[i] ==
'Slow' else 0 for i in range(len(interval))],→

z5 = [interval[i] if interval[i] < 3*730 and interval[i] >= 730 and
op_stat_last[i] == 'Slow' else 0 for i in range(len(interval))],→

z6 = [interval[i] if interval[i] < 730 and op_stat_last[i] == 'Slow'
else 0 for i in range(len(interval))],→
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z0_civ = z0_civ.reshape(-1,1)
z0_glv = z0_glv.reshape(-1,1)
z0_pwv = z0_pwv.reshape(-1,1)
z0_umv = z0_umv.reshape(-1,1)
z0_oth = z0_oth.reshape(-1,1)

z1 = np.asarray(z1)
z1 = z1.reshape(-1,1)

z2 = np.asarray(z2)
z2 = z2.reshape(-1,1)

z3 = np.asarray(z3)
z3 = z3.reshape(-1,1)

z4 = np.asarray(z4)
z4 = z4.reshape(-1,1)

z5 = np.asarray(z5)
z5 = z5.reshape(-1,1)

z6 = np.asarray(z6)
z6 = z6.reshape(-1,1)

z7 = np.asarray(last_TT)
z7 = np.delete(z7, -1)
z7 = z7.reshape(-1,1)

z8 = np.asarray(first_TT)
z8 = np.delete(z8, -1)
z8 = z8.reshape(-1,1)

x =
np.hstack((z0_civ,z0_glv,z0_pwv,z0_umv,z0_oth,z1,z2,z3,z4,z5,z6,z7,z8)),→
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Y = np.asarray(first_TT)

increments = np.asarray(first_TT[1:]) - np.asarray(last_TT[:-1])

return x, Y, increments

def GetStandardizeIncrements(self, incr_dict, valve_set, valve_data,
valve_category, regression_result, relevant_variables):,→

for valve in valve_set:
category = valve_category[valve]

vData = valve_data[valve]
cov, t_i, increments =

self.ValveExplanatoryVariable(vData,category),→

cov_s = cov[:,relevant_variables]
t_i = np.ravel(t_i)

E_ti = cov_s @ regression_result.params

d_t_i = np.diff(t_i)

#stan = t_i[1:] - E_ti

stan_incr = d_t_i/E_ti#[1:]

#stan_incr = np.diff(stan_incr)

stan_path = np.cumsum(stan_incr)

#stan_path = t_i - E_ti

stan_path = np.insert(stan_path, 0, 0)
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incr_dict[valve] = stan_path

return 0

B.4 Parameter Estimation

This module contains functions to estimate the parameters for the Wiener process and the Noisy

Gamma Process. The code for estimating the Noisy Gamma Process is based on the original

code received from Xingheng Liu, a post-doc researcher in the RAMS research department. The

original code was written to estimate the parameters for a non-homogeneous gamma process

with the shape parameter following the power law v(t ) = at b and scale parameter u, thus es-

timating three unknown parameters. The original code, given in section D.1, is modified to

estimate parameters for a homogeneous gamma process with two unknown parameters. Other

modifications include adapting the code to estimate for a joint observation of several degrada-

tion paths.

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 27 10:12:09 2021

@author: danem
"""

#%% Required Modules

from sklearn.isotonic import IsotonicRegression

import numpy as np
import random as rd
import matplotlib.pyplot as plt
import copy
import math

from scipy.stats import beta
from scipy import optimize
from scipy.special import gamma
from scipy.stats import norm
from scipy.stats import uniform
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from scipy import stats

#%%

class NoisyGamma2Parameters:

def GenerateNoisyGammab(self, Theta, Timestep):
c, u, sigma= Theta[0], Theta[1], Theta[2] # u is rate parameter
Increments = [0]
Noise = np.array(norm.rvs(loc = 0,scale = sigma, size =

len(Timestep))),→

for i in range(1,len(Timestep)):
Increments.append(rd.gammavariate(c*Timestep[i]-c*Timestep[i-1],

1/u)),→

GammaPath = np.cumsum(Increments)
NoisyPath = GammaPath + Noise
return NoisyPath, GammaPath, Noise

def kernel1rvs(self, c,d,gam,delt,sigma,Y):
P=250
U1 = beta.rvs(a=gam+1,b=delt+1,loc=c,scale=d-c, size=P)
U2 = uniform.rvs(size=P)
cpr = U2<=np.exp(-(Y-U1)**2/(2*sigma**2))
idx = np.argmax(cpr)
sample = U1[idx]
return sample

def kernel2rvs(self, c,bet,gam,sigma,Y):
P=250
U1 = stats.gamma.rvs(a=gam+1,loc=c,scale=1/bet, size=P)
U2 = uniform.rvs(size=P)
cpr = U2<=np.exp(-(Y-U1)**2/(2*sigma**2))
idx = np.argmax(cpr)
sample = U1[idx]
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return sample

def GLike(self, Theta, Timestep_dict, Paths_dict):

if type(Paths_dict) == dict:
L = []
keys = Paths_dict.keys()
for key in keys:

Paths = Paths_dict[key]
Timestep = Timestep_dict[key]
Paths = np.asarray(Paths)
c, u = Theta[0], Theta[1]
dX = np.diff(Paths)
dX[dX<=0]=1e-20 #to avoid numerical errors

t_start, t_end = Timestep[0:-1], Timestep[1:]
eta = c*t_end - c*t_start
el =

(eta*np.log(u)-np.log(gamma(eta))+(eta-1)*np.log(dX)-u*dX),→

l = np.sum(el)

L.append(l)
L = np.asarray(L)

else:
Paths = Paths_dict
Timestep = Timestep_dict
Paths = np.asarray(Paths)
c, u = Theta[0], Theta[1]
dX = np.diff(Paths)
dX[dX<=0]=1e-20 #to avoid numerical errors

t_start, t_end = Timestep[0:-1], Timestep[1:]
eta = c*t_end - c*t_start
L = (eta*np.log(u)-np.log(gamma(eta))+(eta-1)*np.log(dX)-u*dX)
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return -np.sum(L)

def GibbsSampling(self, Path_dict, Timestep_dict, Theta, sigma, Qm, Qs,
Y0_dict):,→

if type(Path_dict) == dict:
Z_Tab = {}

keys = Path_dict.keys()

for key in keys:

Path = Path_dict[key]
Timestep = Timestep_dict[key]
Y0 = Y0_dict[key]

n = len(Timestep)
alpha = Theta[0]
#b = Theta[1]
bet = Theta[1]
Z_tab = [Y0]
for Q in range(1, Qm):

z = copy.deepcopy(Z_tab[Q-1])
for i in range(n):

if i==0:
z[i]=0

elif i<n-1:
if z[i+1]<=z[i-1]: # to avoid numerical errors

z[i]=z[i+1]
else:

c, d = z[i-1], z[i+1]
t1, t2, t3 = Timestep[i-1], Timestep[i],

Timestep[i+1],→

gam = alpha*(t2-t1)-1
delt = alpha*(t3-t2)-1
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z[i] =
self.kernel1rvs(c,d,gam,delt,sigma,Path[i]),→

else:
c= z[i-1]
t1, t2 = Timestep[i-1], Timestep[i]
gam = alpha*(t2-t1)-1
z[i] = self.kernel2rvs(c,bet,gam,sigma,Path[i])

Z_tab.append(z)
Z_Tab[key] = Z_tab[Qs:Qm]

else:
Path = Path_dict
Timestep = Timestep_dict
Y0 = Y0_dict
n = len(Timestep)
alpha = Theta[0]
#b = Theta[1]
bet = Theta[1]
Z_tab = [Y0]
for Q in range(1, Qm):

z = copy.deepcopy(Z_tab[Q-1])
for i in range(n):

if i==0:
z[i]=0

elif i<n-1:
if z[i+1]<=z[i-1]: # to avoid numerical errors

z[i]=z[i+1]
else:

c, d = z[i-1], z[i+1]
t1, t2, t3 = Timestep[i-1], Timestep[i],

Timestep[i+1],→

gam = alpha*(t2-t1)-1
delt = alpha*(t3-t2)-1
z[i] =

self.kernel1rvs(c,d,gam,delt,sigma,Path[i]),→

else:
c= z[i-1]
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t1, t2 = Timestep[i-1], Timestep[i]
gam = alpha*(t2-t1)-1
z[i] = self.kernel2rvs(c,bet,gam,sigma,Path[i])

Z_tab.append(z)
Z_Tab = Z_tab[Qs:Qm]

return Z_Tab

def Std_joint(self, path_dict, timestep_dict, y0_dict):

keys = path_dict.keys()

chk = path_dict[list(path_dict)[0]]

if type(chk) == list:

var = 0
N = 0

for key in keys:

SampledPath = path_dict[key]
timestep = timestep_dict[key]
Path = y0_dict[key]

var += np.sum((SampledPath-Path)**2)
N += len(SampledPath)*len(Path)

sigma = np.sqrt(var/N)

else:
var = 0
N = 0
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for key in keys:

path = path_dict[key]
timestep = timestep_dict[key]
y0 = y0_dict[key]

var += np.sum((path-y0)**2)

N += len(timestep)

sigma = np.sqrt(var/N)

return sigma

def EM_Gibbs_us(self, Path_dict, Timestep_dict=None, Qm=200, Qs=50,
M=200, x0=None, y0_dict=None):,→

if type(Path_dict) == dict and Timestep_dict == None:
keys = Path_dict.keys()
Timestep_dict = dict()
for key in keys:

path = Path_dict[key]
timestep = np.asarray(list(range(len(path))))
Timestep_dict[key] = timestep

elif Timestep_dict == None and type(Path_dict) != dict:
Timestep_dict = np.asarray(list(range(len(Path_dict))))

if x0 == None and y0_dict==None:
x0, y0_dict = self.IsoX0(Path_dict, Timestep_dict)

if type(Path_dict) == dict:

#keys = Path_dict.keys()
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# SamplePaths = {}

# for key in keys:
# Path = Path_dict[key]
# Timestep = Timestep_dict[key]
# y0 = y0_dict[key]

sigma0 = self.Std_joint(Path_dict, Timestep_dict, y0_dict)
Tab_sigma=[sigma0]
Tab_theta=[x0]
for i in range(M):

SampledPath = self.GibbsSampling(Path_dict, Timestep_dict,
Tab_theta[-1], Tab_sigma[-1], Qm, Qs, y0_dict),→

#var = np.sum((SampledPath-Path)**2)
NewSigma = self.Std_joint(SampledPath, Timestep_dict,

Path_dict),→

Param_hat = optimize.minimize(self.GLike,
x0,
args=(Timestep_dict, SampledPath),
method='Nelder-Mead')

Tab_theta.append(Param_hat.x)
Tab_sigma.append(NewSigma)
print('i=',i)

else:
Path = Path_dict
Timestep = Timestep_dict
y0 = y0_dict

sigma0 = np.sqrt(np.sum((Path-y0)**2)/len(Timestep))
Tab_sigma=[sigma0]
Tab_theta=[x0]
for i in range(M):

SampledPath = self.GibbsSampling(Path, Timestep,
Tab_theta[-1], Tab_sigma[-1], Qm, Qs, y0),→

var = np.sum((SampledPath-Path)**2)
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NewSigma = np.sqrt(var/(len(SampledPath)*len(Path)))
Param_hat = optimize.minimize(self.GLike,

x0,
args=(Timestep, SampledPath),
method='Nelder-Mead')

Tab_theta.append(Param_hat.x)
Tab_sigma.append(NewSigma)
print('i=',i)

return Tab_theta, Tab_sigma

def IsoX0(self, paths,timeStep):

if type(paths) == dict:
FilteredY = {}
new_path = {}
new_time = {}

keys = paths.keys()
for key in keys:

Path = paths[key]
Timestep = timeStep[key]
iso_reg = IsotonicRegression(y_min=0).fit(Timestep, Path)
y_filt = iso_reg.predict(Timestep)
FilteredY[key] = y_filt
unique = np.unique(y_filt, return_index=True)
new_path[key] = unique[0]
new_time[key] = Timestep[unique[1]]

else:
Path = paths
Timestep = timeStep
iso_reg = IsotonicRegression(y_min=0).fit(Timestep, Path)
y_filt = iso_reg.predict(Timestep)
FilteredY = y_filt
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unique = np.unique(y_filt, return_index=True)
new_path = unique[0]
new_time = Timestep[unique[1]]

p_hat_iso = optimize.minimize(self.GLike,
[1,1],
args=(new_time, new_path),
method='Nelder-Mead')

x_isohat = p_hat_iso.x
return x_isohat, FilteredY

class WienerProcess:

def WLike(self, Theta, Timestep_dict, Paths_dict):

if type(Paths_dict) == dict:
L = []
keys = Paths_dict.keys()
for key in keys:

Paths = Paths_dict[key]
Timestep = Timestep_dict[key]

lam, sig = Theta[0], Theta[1]
dX = np.diff(Paths)

Timestep = np.asarray(Timestep)
dT = np.diff(Timestep)

eta = (dX - lam*dT)/(sig*dT)

el = -np.log(np.sqrt(2*math.pi)) - np.log(sig) -np.log(dT) -
0.5*(eta**2),→

l = np.sum(el)
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L.append(l)
L = np.asarray(L)

else:
Paths = Paths_dict
Timestep = Timestep_dict
Paths = np.asarray(Paths)
lam, sig = Theta[0], Theta[1]
dX = np.diff(Paths)

Timestep = np.asarray(Timestep)
dT = np.diff(Timestep)

eta = (dX - lam*dT)/(sig*dT)

L = -np.log(np.sqrt(2*math.pi)) - np.log(sig) -np.log(dX) -
0.5*(eta**2),→

return -np.sum(L)

def Wiener_MLE(self, Path_dict, Timestep_dict=None):

if type(Path_dict) == dict and Timestep_dict == None:
keys = Path_dict.keys()
Timestep_dict = dict()
for key in keys:

path = Path_dict[key]
timestep = np.asarray(list(range(len(path))))
Timestep_dict[key] = timestep

elif Timestep_dict == None and type(Path_dict) != dict:
Timestep_dict = np.asarray(list(range(len(Path_dict))))

x0 = [1,1]

Param_hat = optimize.minimize(self.WLike,
x0,
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args=(Timestep_dict, Path_dict),
method='Nelder-Mead')

return Param_hat.x

B.5 Main

This is where everything comes together. All the other modules are imported here and the re-

gression analysis is carried out as well as the parameter estimation for the Wiener and Gamma

Processes.

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 27 15:46:17 2021

@author: danem
"""

import Parser
import core
import RegressionTools
import ParameterEstimation
import statsmodels.api as sm
import numpy as np

import matplotlib.pyplot as plt

#%% Inputs

#valve descriptions file
v_des_fileName = r"C:\Users\emefo\OneDrive - NTNU\Data for Thesis\Valve

Descriptions.xlsx",→

v_des_sheetname = 'Sheet1'

#valve operation data file
v_data_fileName = r"C:\Users\emefo\OneDrive - NTNU\Data for Thesis\OPERATION

TIMES DATA excel\active.xlsx",→
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v_data_sheetname = 'test_closing_no_PS_'

#%% Import Valve Descriptions

valve_Descr = core.ValveCategory()

parser = Parser.XLSParser()

parser.ImportValveCategory(valve_Descr, v_des_fileName, v_des_sheetname)

#%% Import Valve Data

vCat = valve_Descr.GetCategories()

valve_data = core.ValveData()

parser.ImportValveData(valve_data, v_data_fileName, v_data_sheetname, vCat)

#%% Regression Parameters

vData = valve_data.GetData()

regress = RegressionTools.Regression2()

noOfExplanatoryVariables = 13

X, y = regress.GetExplanatoryVariables(vData,vCat, noOfExplanatoryVariables)

#%% Regression

xName = []

relevant_variables = [0,1,2,3,4,5,6,7,8,9,10,11,12]
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xVar = ['CIV','GLV', 'PWV', 'UMV', 'OTH','OK-long', 'OK-medium', 'OK-short',
'NOT OK-long', 'Not OK-medium', 'NOT OK-short', 'prev last tt', 'prev
first tt']

,→

,→

xName.extend([xVar[i] for i in relevant_variables])

xs = X[:,relevant_variables]
ys = y

#xs = sm.add_constant(xs)

model = sm.OLS(ys,xs)
results = model.fit()

print(results.summary(yname='closing time',xname=xName))

#%% Standardized increments

civ = valve_Descr.civ
glv = valve_Descr.glv
pwv = valve_Descr.pwv
umv = valve_Descr.umv
oth = valve_Descr.oth

all_valves = []
all_valves.extend(civ)
all_valves.extend(glv)
all_valves.extend(pwv)
all_valves.extend(umv)
all_valves.extend(oth)

incr_dict = {}

regress.GetStandardizeIncrements(incr_dict, all_valves, vData, vCat,
results, relevant_variables),→
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#%% Parameter Estimation

del incr_dict['13ESV5154']

gamma2 = ParameterEstimation.NoisyGamma2Parameters()

theta_gamma2, sigma_gamma2 = gamma2.EM_Gibbs_us(incr_dict)

c_gamma2 = np.asarray(theta_gamma2)[:,0]
u_gamma2 = np.asarray(theta_gamma2)[:,1]

#%%
a = sigma_gamma2
print(len(a))
print(np.mean(a))
print(np.std(a))
print(min(a))
print(np.percentile(a, 0.25))
print(np.percentile(a, 0.5))
print(np.percentile(a, 0.75))
print(max(a))

#%% Evolution of the gamma parameters under the stochatic expectation
maximization,→

plt.figure()
plt.plot(sigma_gamma2)
plt.title(r'sigma, $\sigma$')
plt.xlabel('No of iterations')
#Tab_theta = np.asarray(Tab_theta)
#plt.plot(Tab_theta[:,2])*
plt.figure()
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plt.plot(u_gamma2)
plt.title('intensity, u')
plt.xlabel('No of iterations')

plt.figure()
plt.plot(c_gamma2)
plt.title('shape, c')
plt.xlabel('No of iterations')

#%% Parameter Estimation - Wiener Process

wiener = ParameterEstimation.WienerProcess()
x_hat = wiener.Wiener_MLE(incr_dict)

print(x_hat)



Appendix C

Figures

C.1 Valve activation data structure

Figure C.1: Valve activation data structure.

C.2 Regression Results

Figure C.2 shows the full regression result for the model in Equation 8.3

85
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Figure C.2: Regression results from improved model

Figure C.3 shows the estimated coefficients for the model in Equation 9.3



APPENDIX C. FIGURES 87

Figure C.3: Coefficients from the adjusted model



Appendix D

Python Codes 2

D.1 Original Noisy Gamma Process Code

This section contains the original codes for estimating the gamma parameters of the noisy

gamma process written by Xingheng Liu.

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 26 15:02:26 2021

@author: visca
"""

from sklearn.isotonic import IsotonicRegression

import numpy as np
import random as rd
import matplotlib.pyplot as plt
import copy

from scipy.stats import beta
from scipy import optimize
from scipy.special import gamma
from scipy.stats import norm
from scipy.stats import uniform
from scipy import stats

88
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#%%

# Generate a time-dependent gamma sequence using
# Theta = [c,b,u] the gamma parameters. See Zhang Yun 2016
# Timestep: time sequence

def GenerateNoisyGammab(Theta, Timestep):
c, b, u, sigma= Theta[0], Theta[1], Theta[2], Theta[3]
Increments = [0]
Noise = np.array(norm.rvs(loc = 0,scale = sigma, size = len(Timestep)))
for i in range(1,len(Timestep)):

Increments.append(rd.gammavariate(c*Timestep[i]**b-c*Timestep[i-1]**b,
1/u))

,→

,→

GammaPath = np.cumsum(Increments)
NoisyPath = GammaPath + Noise
return NoisyPath, GammaPath, Noise

# The two functions below are rejection sampling algorithm
# and is an improved version of what has been described in Le Son 2016;
# we changed the proposal distribution so that the envelope fits better the

target distribution,→

# envelope: Beta distribution

def kernel1rvs(c,d,gam,delt,sigma,Y):
P=250
U1 = beta.rvs(a=gam+1,b=delt+1,loc=c,scale=d-c, size=P)
U2 = uniform.rvs(size=P)
cpr = U2<=np.exp(-(Y-U1)**2/(2*sigma**2))
idx = np.argmax(cpr)
sample = U1[idx]
return sample

# Envelope: Gamma distribution
def kernel2rvs(c,bet,gam,sigma,Y):

P=250
U1 = stats.gamma.rvs(a=gam+1,loc=c,scale=1/bet, size=P)
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U2 = uniform.rvs(size=P)
cpr = U2<=np.exp(-(Y-U1)**2/(2*sigma**2))
idx = np.argmax(cpr)
sample = U1[idx]
return sample

# Glike: return the opposite value of Log-likelihood given all the sampled
paths,→

# Paths: a array containing all the samples
def GLike(Theta, Timestep, Paths):

Paths = np.asarray(Paths)
c, b, u = Theta[0], Theta[1], Theta[2]
dX = np.diff(Paths)
dX[dX<=0]=1e-20 #to avoid numerical errors
t_start, t_end = Timestep[0:-1], Timestep[1:]
eta = c*t_end**b - c*t_start**b
L = (eta*np.log(u)-np.log(gamma(eta))+(eta-1)*np.log(dX)-u*dX)
return -np.sum(L)

# Gibbs sampling, details can be found in Le son 2016
# sigma: standard deviation of the Gaussian noise
# Qm: number of samples
# Qs: samples before Qs are discarded to ensure the stable state of Markov

chain,→

def GibbsSampling(Path, Timestep, Theta, sigma, Qm, Qs, Y0):
n = len(Timestep)
alpha = Theta[0]
b = Theta[1]
bet = Theta[2]
Z_tab = [Y0]
for Q in range(1, Qm):

z = copy.deepcopy(Z_tab[Q-1])
for i in range(n):

if i==0:
z[i]=0

elif i<n-1:
if z[i+1]<=z[i-1]: # to avoid numerical errors
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z[i]=z[i+1]
else:

c, d = z[i-1], z[i+1]
t1, t2, t3 = Timestep[i-1], Timestep[i], Timestep[i+1]
gam = alpha*(t2**b-t1**b)-1
delt = alpha*(t3**b-t2**b)-1
z[i] = kernel1rvs(c,d,gam,delt,sg,Path[i])

else:
c= z[i-1]
t1, t2 = Timestep[i-1], Timestep[i]
gam = alpha*(t2**b-t1**b)-1
z[i] = kernel2rvs(c,bet,gam,sg,Path[i])

Z_tab.append(z)
return Z_tab[Qs:Qm]

# Expectation maximization: iterative approach for statistical inference
# M: total number of iteration
# x0: initial guess for the gamma parameter
# y0: initial guess for Gibbs sampling
def EM_Gibbs_us(Path, Timestep, Qm, Qs, M, x0, y0):

sigma0 = np.sqrt(np.sum((Path-y0)**2)/len(Timestep))
Tab_sigma=[sigma0]
Tab_theta=[x0]
for i in range(M):

SampledPath = GibbsSampling(Path, Timestep, Tab_theta[-1],
Tab_sigma[-1], Qm, Qs, y0),→

var = np.sum((SampledPath-Path)**2)
NewSigma = np.sqrt(var/(len(SampledPath)*len(Path)))
Param_hat = optimize.minimize(GLike,

x0,
args=(Timestep, SampledPath),
method='Nelder-Mead')

Tab_theta.append(Param_hat.x)
Tab_sigma.append(NewSigma)
print('i=',i)

return Tab_theta, Tab_sigma
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# Isotonic regression: derive the initial guess for parameter/gibbs sampling

def IsoX0(Path,Timestep):
iso_reg = IsotonicRegression(y_min=0).fit(Timestep, Path)
FilteredY = iso_reg.predict(Timestep)
unique = np.unique(FilteredY, return_index=True)
new_path = unique[0]
new_time = Timestep[unique[1]]
p_hat_iso = optimize.minimize(GLike,

[1,1,1],
args=(new_time, new_path),
method='Nelder-Mead')

x_isohat = p_hat_iso.x
return x_isohat, FilteredY

#%% Generate Gamma degradation paths
gap = 2
Timestep = np.arange(0,200,gap)
n = len(Timestep)
# Gamma parameters and time
sg = .15
Gamma_par = [0.00059, 2, 3.65543, sg]

Path, GammaPath, noise = GenerateNoisyGammab(Gamma_par, Timestep)
plt.plot(Timestep, Path, label='Observation')
plt.plot(Timestep, GammaPath, label='Hidden path')
plt.plot(Timestep, noise, label='Gaussian noise')
plt.legend()

# Isotonic regression
x0, y0 = IsoX0(Path,Timestep)

# The first 50 samples are discarded
Qm, Qs=150, 50
Theta = [0.00059, 2, 3.65543]
samples = GibbsSampling(Path, Timestep, Theta, sg, Qm, Qs,y0)
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for s in samples:
plt.plot(Timestep, s, C = 'blue', alpha=0.1)

plt.plot(Timestep, Path, C = 'red', LineWidth=2, label='Observation')

#%% MLE and EM

# MLE based on the true (hidden) degradation path

p_hat_truepath = optimize.minimize(GLike,
x0,
args=(Timestep, GammaPath),
method='Nelder-Mead')

x_truehat = p_hat_truepath.x

plt.plot(Timestep, Path)
plt.plot(Timestep,

x_truehat[0]*Timestep**x_truehat[1]/x_truehat[2],label='EX hat'),→

plt.plot(Timestep, Theta[0]*Timestep**Theta[1]/Theta[2],label='true param')
plt.legend()

# EM based on the noisy degradation path

M=200
Tab_theta, Tab_sigma = EM_Gibbs_us(Path, Timestep, 200, 50, M, x0, y0)
plt.plot(Tab_sigma)
Tab_theta = np.asarray(Tab_theta)
plt.plot(Tab_theta[:,2])
plt.plot(Tab_theta[:,1])
plt.plot(Tab_theta[:,0])

# EM result: last element of the parameter table
theta_hat = Tab_theta[-1]

# Compare the mean E(X)
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plt.plot(Timestep, Path)
plt.plot(Timestep,

x_truehat[0]*Timestep**x_truehat[1]/x_truehat[2],label='EX hat'),→

plt.plot(Timestep,
theta_hat[0]*Timestep**theta_hat[1]/theta_hat[2],label='true param'),→

plt.legend()

# Compare the variance Var(X)
plt.plot(Timestep,

x_truehat[0]*Timestep**x_truehat[1]/x_truehat[2]**2,label='EX hat'),→

plt.plot(Timestep,
theta_hat[0]*Timestep**theta_hat[1]/theta_hat[2]**2,label='true param'),→

plt.legend()
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