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Abstract

Efficient handling of materials and products on manufacturing shop floors is essen-
tial to reduce production costs and improve productivity. Although the scientific
community has embraced automated material-handling equipment in the wake of
Industry 4.0, human-operated vehicles like forklifts and pallet trucks are still the
most commonly used equipment for material handling. This thesis investigates how
a cloud-enabled shop floor can facilitate dynamic dispatching by automating human
and autonomously operated material-handling equipment through a centralized sys-
tem, coined as the Cloud Material Handling System (CMHS).

The main objective of this study is to determine how a CMHS may improve mate-
rial handling activities in manufacturing. Specifically, the study evaluates a CMHS
in different scenarios to support when it is particularly beneficial in material han-
dling operations. Multiple dispatching methods like heuristic dispatching rules and
reinforcement learning policies are evaluated to support how a CMHS can be im-
plemented. A literature study was conducted to disclose research gaps addressed
by a CMHS, while a simulation model based on a case study was developed to
demonstrate its use in practice.

The results have shown the CMHS’s ability to achieve higher productivity in product
throughput and equipment utilization than the conventional non-automated bench-
mark. Performance increases were observed in all scenarios, while the number of
required material-handling equipment was reduced by 40%.

The simulation results revealed that the CMHS with reinforcement learning is par-
ticularly beneficial for uncertain product arrival rates and workstation failures when
product loads were kept in line relative to production capacity. Most prominent were
moderate product loads, resulting in a 197% gain in total product throughput. The
lower-complexity heuristic methods were on a par, or superior, to the reinforcement
learning policy for predictable material flows with high arrival rates.

Further evaluation of the CMHS should be done in collaboration with a practical
business case to extract key operation parameters, reducing the number of assump-
tions, and develop a rigorous economic model for the CMHS.
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Sammendrag

Effektiv håndtering av materialer og produkter på produksjonsgulv er viktig for
å redusere produksjonskostnadene og forbedre produktiviteten. Selv om det viten-
skapelige samfunnet har omfavnet automatisert materialhåndteringsutstyr i kjølvan-
net av Industry 4.0, er menneskedrevne kjøretøy som gaffeltrucker og palletrucker
fortsatt det mest brukte utstyret for materialhåndtering. Denne masteroppgaven un-
dersøker hvordan et skyaktivert produksjonsgulv kan utnytte dynamisk utsendelse
ved å automatisere både menneskelige og autonomt betjente materialhåndteringsut-
styr, kalt Cloud Material Handling System (CMHS).

Hovedmålet med denne studien er å bestemme hvordan en CMHS kan forbedre ma-
terialhåndteringsaktivitetene i produksjonen. Spesielt evaluerer studien en CMHS i
forskjellige scenarier for å undersøke når den er spesielt gunstig i materialhåndter-
ingsoperasjoner. Flere utsendelsesmetoder som etablerte heuristikker og læringsme-
toder med forsterkningslæring blir evaluert for å undersøke hvordan en CMHS kan
implementeres. En litteraturstudie ble utført for å avsløre forskningshull adressert
av en CMHS, mens en simuleringsmodell basert på et casestudie ble utviklet for å
demonstrere bruken i praksis.

Resultatene har vist CMHSs evne til å oppnå høyere produktivitet når det gjelder
gjennomstrømning av produkter og utstyrsutnyttelse enn den konvensjonelle ikke-
automatiserte referansen. Ytelsesøkninger ble observert i alle scenarier, mens antall
nødvendige materialhåndteringsutstyr ble redusert med 40 %.

Simuleringsresultatene avslørte at CMHS med forsterkningslæring er spesielt gun-
stig for usikre produktankomster og arbeidsstasjonsfeil når produktbelastninger ble
holdt på linje med arbeidsstasjonenes produksjonskapasitet. Mest fremtredende var
under normale produktbelastninger, noe som resulterte i en 197 % forbedring i total
produktgjennomstrømning. De heuristiske metodene med lavere kompleksitet var
på nivå eller bedre enn metodene med forsterkningslæring for forutsigbare material-
strømmer med høy ankomstrate.

Videre evaluering av CMHS bør gjøres i samarbeid med en praktisk business case
for å trekke ut viktige driftsparametere, redusere antall antagelser og utvikle en
nøyaktig kostnadsmodell for CMHS.
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Abbreviations
CMHS Cloud Material Handling System

CM Cloud Manufacturing

CPS Cyber-Physical System

AGV Automated Guided Vehicle

AMR Autonomous Mobile Robot

IoT Internet of Things

IPS Indoor Positioning System

IPT Indoor Positioning Technology

MH Material handling

MHE Material Handling Equipment

MS Machine Scheduling

RFID Radio Frequency Identification

KPI Key Performance Indicator

ML Machine Learning

RL Reinforcement Learning

DRL Deep Reinforcement Learning

PBT Population-Based Training

PPO Proximal Policy Optimization

HPO Hyperparameter Optimization

STD Shortest Travel Distance

LWT Longest Waiting Time

CP Centralized Positioning

NIL Nearest Idle Location
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Chapter 1
Introduction

1.1 Motivation

With an increasing demand for high-variety and low-volume products (Telgen et al.
2014), leveraging Industry 4.0 (I4.0) to increase flexibility is essential to maintain
competitive advantages for manufacturing companies (Centobelli et al. 2016). The
emerging and rapidly evolving field of I4.0 has given rise to several new technologies
in the world of manufacturing, such as the Internet of Things (IoT), Cyber-Physical
Systems (CPS), cloud computing, and big data analytics (Liu and X. Xu 2017). Since
the term was coined in 2010, the rapid growth and availability of cloud technologies
have spawned a new concept called Cloud Manufacturing (CM; Li et al. 2010).

CM offers rapidly provisioned on-demand network access to a centralized pool of
manufacturing resources with minimal management effort (X. Xu 2012). As a result,
it can be used together with other I4.0 technologies to reduce establishment costs,
scale resources quickly as data volumes grow, and increase manufacturing flexibility
(Liu and X. Xu 2017). This recent technological development has encouraged the
manufacturing sector to seek out new areas of improvement, emphasizing dynamic
decision-making, increased productivity, and reduced costs.

The cloud provides a reliable real-time service over the Internet that facilitates dy-
namic decision-making and control in the manufacturing shop floor (Yue et al. 2015).
Its performance is closely linked to how sensors, chips, and other IoT devices track
and trace the physical environment.

1



Chapter 1: Introduction

However, the implementation of tracking components in today’s manufacturing com-
panies is still in its infancy. The report "Digital Factories 2020 – Shaping the future
of manufacturing" (PWC-Deutchland 2017) carried out a quantitative survey on
over 200 manufacturing companies in Germany, and they found that only 29% of re-
spondents said they had implemented tracking components within their production
process. Concurrently, more than twice as many (60%) said they expected to do so
by 2022.

The report also demonstrated successful implementations. For instance, Bosch
Rexroth uses RFID to track components within a manufacturing cell and machine
sensors to perform scheduling and predictive maintenance. Fujitsu’s Augsburg fac-
tory utilizes cloud-based services, sensors, and RFID tags to achieve fast production
to exact customer specifications. Continental Automotive developed a production
line with automated scheduling connected to a warehousing system operated by
Automated Guided Vehicles (AGVs) and can respond dynamically to changes in
product volumes or variances. In short, tracking of manufacturing resources and
equipment in the age of I4.0 and CM has had the most significant impact on pro-
duction scheduling operations as of 2021 (see Section 4.1).

Although manufacturing companies do not use tracking to a great extent today, the
CM concept has received much attention in the scientific community. The papers
discussing cloud technology and tracking in the manufacturing shop floor define
CM as a cloud or centralized connectivity system that interconnects a network of
manufacturing resources and equipment to some extent. In the context of CM,
production scheduling has been particularly recognized by researchers (Mourtzis et
al. 2018; Wan et al. 2017; Kumar et al. 2019; Pakpahan et al. 2018). However,
due to the novelty of CM, most papers examine the problem from an architectural
perspective with device shop floor configurations, disregarding material handling.

Material handling can be defined as "(...) the movement, storage, protection, and
control of materials throughout the manufacturing and distribution process (including
their consumption and disposal)" (Sgarbossa et al. 2020, p. 88). Material handling
activities generally account for 30 to 40% of production costs (Onut et al. 2009).
Thus, efficient handling of materials and products on the shop floor is vital to operate
a responsive and adaptable production environment (Zangaro et al. 2019).

Literature targeting material handling has almost exclusively focused on automated
material-handling equipment (MHE) like Automated Guided Vehicles (AGVs; De
Ryck et al. 2020) and Autonomous Mobile Robots (AMRs; Fragapane et al. 2020).
As demonstrated in figure 1.1, the AGV is restricted to a fixed path, whereas the

2



Chapter 1: Introduction

AMR has built-in obstacle avoidance allowing for more flexible movement.

Implementations of automated and decentralized solutions in material handling—
particularly with AGVs—have become increasingly popular in the CM context for
material handling purposes (De Ryck et al. 2020). Although an abundance of al-
gorithms and control methods have been researched, AGVs are not necessarily ap-
plicable for all manufacturing companies (Fragapane et al. 2020). Choosing the
appropriate MHE type is a complex decision-making problem as both quantitative
(e.g., load capacity, cost, and energy consumption) and qualitative (e.g., flexibility,
reliability, and safety) measures need to be taken into consideration (Hellmann et al.
2019).

Figure 1.1: Obstacle avoidance comparison between AGVs,
AMRs and human-operated MHE

Current literature on material handling seems to reflect that most manufacturing
companies use AGVs, AMRs, or other automated (non-human operated) material
handling equipment to fulfill their material handling needs. However, the positive
outlook on automated MHE in literature has not yet been transferred into practice.
The report "Industrial mobility – How autonomous vehicles can change manufactur-
ing" (PWC-US 2018) states that, from the 128 large and mid-size US manufacturers
surveyed, only 9% have adopted some type of semi-autonomous or autonomous mo-
bility within their operation. Additionally, warehousing and inventory management
is seeing the most prominent growth in automation, whereas the shop floor has seen
limited development.

3



Chapter 1: Introduction

In the shop floor environment, human-operated vehicles like forklifts and pallet
trucks are still the most common MHE and are often deemed sufficient for the
factory’s material handling needs (Dukic et al. 2018). Human-operated MHE is
equally capable of avoiding obstacles as AMRs (Figure 1.1), but because such MHE
is challenging to automate, research on this topic is underrepresented in literature.
This split between the research community’s view on automation in theory and its
true manifestation in material handling practices reveals a significant research gap.

While non-automated material handling systems can be adequate in some cases,
they usually struggle to adapt to dynamic and unpredictable demands in real-time,
often leading to low MHE utilization and poor manufacturing performance (Tomp-
kins et al. 2010). Material handling in practice is directly linked to the processes
it needs to support, and the permutations of the system’s configuration are differ-
ent for each shop floor. Thus, the conventional non-automated material handling
system is difficult to define rigorously. However, as a general rule, it can be clas-
sified as human-operated solutions with ad-hoc methods based on trial-and-error
(Desrosiers et al. 1995) where human physical interference is commonplace (Sgar-
bossa et al. 2020). By addressing this issue, there is an evident potential to increase
the utilization of MHE, resulting in reduced production costs and increased profits.
For manufacturing companies looking to optimize their shop floor operation, elabo-
rate production optimizations might not be value-adding if their material handling
system performs under par.

The lack of attention towards human-operated solutions reveals a significant gap
between scientific research and the technology utilized in actual manufacturing shop
floors. Additionally, manufacturing companies often use AGVs and human-operated
MHE in combination (Saputro et al. 2015), demonstrating the need for control meth-
ods incorporating several MHE simultaneously. To bridge this gap, the Logistics 4.0
lab at the Norwegian University of Science and Technology proposes a new paradigm
to apply cloud services on material-handling equipment, namely a Cloud Material
Handling System (CMHS; Sgarbossa et al. 2020).

4
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1.2 CMHS concept

A CMHS implementation can automate human-operated MHE like forklifts and
pallet trucks, offering companies an automation alternative without switching out
their existing MHE fleet for expensive AGVs or AMRs. Shop floors that require
multiple MHE types will also automate their material handling as the cloud engine—
the CMHS component responsible for MHE dispatching and job allocation—will
differentiate and allocate tasks according to the MHE type required for the job.
Thus, from a cost and practical perspective, a company with automation ambitions
will benefit from the flexibility of a CMHS.

A CMHS aims to "satisfy consumers’ requests through the available resources in a
cloud environment, reducing the complexity of a multilevel hierarchical control sys-
tem and increasing the manufacturing system’s overall flexibility and productivity"
(Sgarbossa et al. 2020, p. 89). The concept combines the CM paradigm with an In-
door Positioning System (IPS), enabling real-time positional MHE data capture from
the shop floor and making it available in the cloud to facilitate dynamic dispatching
at a reasonable cost. The same way GPS revolutionized travel in the outdoor envi-
ronment and enabled companies like Uber to find ways to optimize their driver fleet,
a CMHS aims to bridge the same gap for the stochastic manufacturing shop floor
environment. Compared to established tracking technologies like RFID, where phys-
ical scanning is necessary to log position data of MHE, real-time tracking with an
IPS offers the high data frequency and precision level needed to provide an Uber-like
service on the shop floor.

Figure 1.2 outlines how the MHE position data is collected and processed to allocate
jobs according to the active dispatching policy or rule. It is based on the Logistics
4.0 Lab’s work at NTNU and the paper Sgarbossa et al. 2020 where the IPS is also
used to track materials, pallets, and boxes (called smart objects) at a conceptual
level. However, as the location and relevant data points from these objects can
be sufficiently tracked and relayed to the cloud engine without an IPS (but with
workstation sensors and RFID), this thesis will only focus on MHE tracking to
avoid unnecessary complexity.
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Figure 1.2: Flow of data in and out of the cloud engine

The shop floor is inherently stochastic, and the ability to react quickly to unex-
pected events and revise plans in a cost-efficient way is essential for manufacturing
efficiency (Herrmann 2004). As the number of daily material-handling tasks grows,
the importance of a flexible material-handling system increases accordingly. In or-
der to demonstrate the potential of a CMHS’s capabilities, the system is compared
with conventional non-automated material handling methods. Figure 1.3 is meant
to depict such an environment, and although it is not graphically representative
for all shop floor environments, it demonstrates the material handling logic. In the
conventional material handling case, MHE operators are assigned to predetermined
areas/workstation clusters, relying on visual contact to identify and perform new
tasks.

Figure 1.3: Conventional material handling case
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The Manufacturing-Uber concept proposed in Greis et al. 2019 allowed machine
operators to move unrestricted in workstation cells by scheduling jobs dynamically,
reducing machine idle time by increasing their freedom of movement. The same logic
applies to MHE controlled by a CMHS as shown in Figure 1.4. Consequently, the
visual contact requirement is not present in this case.

Figure 1.4: Material handling with a CMHS

A vital feature of a CMHS is the ability to enable dynamic dispatching of MHE.
Upon completing a job, the MHE will be recognized as unassigned by the cloud
engine and immediately be considered for a new one. Dynamic dispatching can
boost MHE utilization and manufacturing efficiency, but the policies and rules gov-
erning this process are the main drivers behind whether a CMHS implementation
is advantageous. Additionally, where the MHE idles may significantly impact the
distance traveled to execute a material handling task. Thus, investigating optimal
dispatching and idle policies/rules with a CMHS implementation will be one of the
main focus areas of this thesis.

1.3 Problem description

A CMHS leverages the interconnection of cloud services, IPS, and dispatching to
coordinate material handling activities. These topics have been researched individ-
ually, but there has not been any research carried out exploring them in a combined
system. In order to determine a CMHS’s value-adding properties, there is a need to
create a roadmap that accurately demonstrates its potential capabilities in different
scenarios for shop floor material handling.
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This roadmap will give companies with different needs, objectives, and degrees of
expertise the ability to determine if a CMHS is applicable in their operation and,
if so, how advanced such a setup should be to improve their overall efficiency. The
problem statement can be divided into two parts:

• Should the company implement a Cloud Material Handling System?

• If so, how sophisticated does the logic need to be to obtain satisfactory results?

The first item is concerned with whether or not a CMHS and its inherent automation
capabilities of MHE can improve a material handling operation compared to con-
ventional non-automated methods. Upon this foundation, the natural progression
is to investigate what degree and in what situations a more sophisticated dispatch-
ing logic is beneficial compared to more straightforward approaches. By comparing
different complexity levels of dispatching logic to conventional non-automated shop
floor scenarios, the goal is to give potential users of a CMHS the tools required to
make an educated decision on whether to adopt it or not.

Figure 1.5: Thesis scope illustrated in a venn diagram

As depicted in figure 1.5, this thesis’ scope is centered towards three pillars included
in a CMHS: dynamic dispatching, cloud manufacturing, and shop floor material
handling. Dynamic dispatching is the focal point of the theoretical background,
while the literature study will focus on cloud manufacturing and shop floor material
handling.
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A key aspect to consider when optimizing material handling is to take into account
the number of trips taken by the MHE on average each day. If the number is too
low, optimization with a CMHS will not make any intuitive sense. As a result, a
prerequisite for potential candidates for a CMHS is that the shop floor environment
has a considerable level of material flow, where planning each material handling job
in advance is impractical due to uncertainties like arrival rates, processing times,
and workstation failures.

The warehousing research field is outside the scope of this thesis. Although the ware-
house is acting as a supplier and storage unit for the manufacturing process, the shop
floor environment often contains more complex material flows due to interdependent
processes with a high degree of unpredictability. Hence, an analysis concerning shop
floor manufacturing is more applicable for initial research of a CMHS’s capabilities.

As this thesis investigates manufacturing from a material handling perspective,
the scope is not restricted to a particular production strategy like Make-to-Order,
Assemble-to-Order, Engineer-to-Order, or Make-to-Stock. Material handling has
been regarded as a process to minimize in traditional manufacturing, so applying
a specific production strategy is irrelevant in this context. Rather than applying
the CMHS to one particular production environment, this thesis aims to provide
guidelines from a purely material handling perspective, allowing each manufactur-
ing company to consider a CMHS for their operation.

1.4 Research objectives

There is a need to develop methods to support when and how to apply a CMHS in
manufacturing operations. A simulation model with different scenarios concerning
material flow variability and workstation failure is evaluated to decide when CMHS
is particularly beneficial. The scenarios aim to depict stochastic occurrences on the
shop floor to test the flexibility of different material handling methods. In order to
determine how a CMHS can be applied, methods like traditional dispatching rules
and policy generation through reinforcement learning are further explored in the
model to demonstrate the performance of a CMHS. The basis of comparison will
measure product throughput and MHE utilization across the shop floor.

The analysis will serve as a foundation to develop general guidelines for businesses
to decide whether to implement a CMHS. Finally, the thesis proposes a generalized
economic model as a first step to assess CMHS’s profitability. The research questions
are:
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RQ1 How can a CMHS improve the material handling activities in manufacturing
in terms of flexibility and productivity performance?

RQ2 In what scenarios should a CMHS be applied in manufacturing shop floors
compared to traditional dispatching approaches?

RQ3 When should reinforcement learning support the decision-making process in a
CMHS for dispatching the material handling activities?

A literature study on the use of CM in shop floor material handling is conducted to
disclose research gaps addressed by a CMHS to answer RQ1. Furthermore, a simu-
lation model portraying a stochastic shop floor environment will be used to answer
RQ2 and RQ3. Notably, the model focuses its attention on MHE job dispatching
methods. The exploration steps can be grouped into seven categories to outline the
objectives. Table 1.1 and Figure 1.6 show what, why, and which method is used to
answer each research question.

Figure 1.6: A graphical representation of the thesis objectives
listed in Table 1.1
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What Why Method Related
RQ

1. Map CM influence on ma-
terial handling in manufac-
turing shop floors

Identify gaps between cur-
rent literature and real facil-
ities

Literature
study

RQ1

2. Develop an understand-
ing of a CMHS and its capa-
bilities

Explain why a CMHS ad-
dress research gaps on a con-
ceptual level

Literature
study

RQ1

3. Explain different dis-
patching methods and argue
their use in a CMHS

Construct an overview of
different ways to dispatch
MHE in a CMHS

Theoretical
background

RQ2/RQ3

4. Develop a shop floor lay-
out and implement it in a
simulation model

Obtain a CMHS implemen-
tation that demonstrates its
potential

Simulation RQ2/RQ3

5. Compare dispatching
rules and DRL in a CMHS
with conventional methods
for different levels of system
variability

Manifest the impact of a
CMHS from a practical per-
spective

Simulation RQ3

6. Develop general guide-
lines and an economic model
for businesses to decide
whether or not to apply a
CMHS

Provide advice for CMHS’s
role in a material handling
operation

Discussion /
Conclusion

RQ2

7. Propose an implementa-
tion strategy

Describe when sophisticated
logic like reinforcement
learning should be applied,
and when easier methods
are sufficient

Discussion /
Conclusion

RQ2/RQ3

Table 1.1: A systematic representation of how the research
questions will be answered

1.5 Thesis structure

The thesis is structured as follows. Chapter 2 presents the theoretical background
on dispatching in material handling. Chapter 3 explains why the scientific methods
are chosen and how they are used. Moreover, the chapter gives an overview of
the model implementation. Chapter 4 outlines the literature study findings and
relates the current gaps to the capabilities of a CMHS (RQ1). Chapter 5 presents
and analyzes the experimental results from the simulation model (RQ2 and RQ3).
Chapter 6 discuss the results concerning the research questions before Chapter 7
provides a conclusion.
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Figure 1.7: Thesis structure overview
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Chapter 2
Theoretical Background

The objective of this chapter is to establish a theoretical background for material
handling dispatching. First, traditional dispatching methods are outlined. Then, the
chapter centers its attention on dynamic dispatching and machine learning, with a
particular emphasis on reinforcement learning. Finally, critical components of deep
reinforcement learning are presented and used to argue why deep reinforcement
learning is appropriate in a CMHS.

2.1 Dispatching in material handling

Several factors influence the performance of a material handling system, most no-
tably the shop floor configuration/layout, the MHE fleet size, and how they are
dispatched (Le-Anh et al. 2005). However, a well-developed shop floor layout with
an incompatible control method might lead to decreased system performance (Vis
2006). The most common way of controlling the MHE dispatching operation is by
using a centralized controller that manages the fleet simultaneously (De Ryck et al.
2020). The shop floor environment is inherently stochastic, and exact information
on what should go where and when is seldom known in advance. Planning in this
environment becomes more difficult as the complexity and number of material han-
dling jobs increases, facilitating the need for flexible real-time control to optimize
shop floor efficiency (Mařık et al. 2007).

A well-established control method in the shop floor environment is the use of dis-
patching rules. They have been used extensively in academic research on machine
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scheduling and AGV dispatching (Sabuncuoglu 1998), but as material handling is the
main focus of this thesis, machine scheduling is disregarded. Dispatching rules can
be split into two categories: Workstation-initiated and MHE-initiated dispatching
rules (Vis 2006).

1. Workstation-initiated: A job claims an available MHE according to the dis-
patch rule

2. MHE-initiated: An available MHE claims a job according to the dispatch rule

The static dispatching rule controls the MHE movements based on intuitive reason-
ing to achieve good performance (Le-Anh et al. 2005). No best rule applies to all
cases, but an appropriate rule can be found for the specific shop floor layout and
material handling requirement. Table 2.1 is a compounded list of the most common
rules found in academic literature (Vis 2006; Le-Anh et al. 2005; Ho et al. 2006;
Sabuncuoglu 1998).

Name Abbreviation Rule category
Shortest travel distance STD Both
Longest Idle Vehicle LIV Workstation-initiated
Least Utilized Vehicle LUV Workstation-initiated
Longest Waiting Time LWT Both
Greatest Queue Length GQL Both

Table 2.1: Static dispatching rules

• STD – Dispatching MHE with shortest travel distance to job

• LIV – Longest idling vehicle/MHE is dispatched

• LUV – Least utilized vehicle/MHE is dispatched

• LWT - Dispatching MHE to job that has waited the longest

• GQL – Dispatching MHE to job with the biggest queue

Another important aspect of dispatching is locating idle MHE to react as efficiently
as possible to a new assignment. The return policy or rule can have a significant
effect on response time and is sub-optimal if the MHE fleet has to travel unnecessarily
large distances without a load (Vis 2006). Minimizing average fleet response time
can lead to a more even distribution of idle MHE on the shop floor. Static rules
like centralized positioning (CP) and nearest idle location (NIL) were proposed in
Egbelu 1993 as the most common idle rules in shop floors. Thus, no other rules will
be explored going forward.
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Although static dispatching rules are simple, offer low computation costs, and are
easy to implement in practice, the primary issue for the rules outlined above is
that the performance depends heavily on the system state (Le-Anh et al. 2005).
No definitive rule supports all possible states of a manufacturing environment, as
manufacturing facilities often operate in dynamic environments with unavoidable,
unpredictable real-time events (Priore, Gómez, et al. 2014). Unforeseen variations
in arrival rates, processing delays, machine failure, and maintenance may cause
deviations from the original plan and lead to delays.

2.1.1 Dynamic dispatching

Successful implementation of real-world dispatching systems relies on dispatching
in the presence of real-time events, known as dynamic scheduling (Ouelhadj et al.
2009). In the context of shop floor manufacturing, where MHE is responsible for
transporting materials across the facility, it is more convenient to address scheduling
as dispatching of MHE. Scheduling is an ambiguous term as it may be confused
with predetermined planning. Hence, dynamic scheduling is referred to as dynamic
dispatching going forward.

Due to the NP-hard nature of dispatching problems in complex manufacturing shop
floors, exact solutions become unfeasible within a reasonable time (Qin et al. 2021).
Hence, optimization-based algorithms are utilized to identify acceptable solutions in
dynamic environments.

Optimization-based algorithms

In recent years, most optimization-based algorithms introduced in dynamic dispatch-
ing descend from evolutionary algorithms (Liu, L. Wang, et al. 2019). Genetic al-
gorithms (GA), inspired by the concept of natural selection and evolution, are the
most prominent in this category due to their easy implementation and conceptual
simplicity (Shukla et al. 2017). These algorithms are so-called metaheuristics, i.e., a
higher-level procedure to find satisfactory solutions to optimization problems.

Using metaheuristics for dispatching problems transforms NP-hard problems into
problems with polynomial complexity. This feature is essential for a computation-
ally feasible dynamic dispatching system. However, the main drawback of these
algorithms is that they require extensive expert knowledge and human intervention
(Y. Wang et al. 2019).

Priore, Gómez, et al. 2014 defines two contradictory characteristics of dynamic dis-
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patching that needs to be addressed:

1. The rule selection must contemplate different information about the manufac-
turing system in real-time.

2. The rule selection must be completed in such a short amount of time that real
operations are not delayed.

Knowledge about the relationship between the environment’s state and the dispatch-
ing rule applied is vital to achieving these characteristics (Priore, Gómez, et al. 2014).
However, the procedure of choosing a dispatching rule from a pre-established set of
rules can make real-time dispatching difficult, as the examination of all candidates
(e.g., through simulation) may require a significant amount of time.

Nonetheless, the emergence of Industry 4.0 has made it possible to optimize material
handling by acquiring knowledge of the environment and determine which rule is the
best for each possible system state (Priore, Gómez, et al. 2014). The most prominent
way of achieving this goal is through the use of machine learning.

2.1.2 Machine Learning

Machine learning (ML) can be defined as a collection of computational methods using
experience to improve performance or to make accurate predictions (Mohri et al.
2018). Machine learning can detect patterns in data with little human intervention
and use these patterns to understand new, unseen data (Murphy 2012).

Two of the most common approaches in machine learning are supervised and un-
supervised learning. In supervised learning, the goal is to learn a mapping from
inputs x to outputs y, given a labeled set of input-output pairs (Murphy 2012). The
approach can compare its outputs with the correct outputs because it is labeled
and finds errors to modify the model accordingly. Typical applications used with
supervised learning are classification (categorical response variable) and regression
(continuous response variable).

Unsupervised learning is applicable when the information used for training is not
labeled, meaning the target value is unknown. In this scenario, we lack a response
variable that can supervise our analysis. The goal is to discover structure or patterns
in data, and we seek to understand the relationships between observations (James
et al. 2013). Clustering and pattern detection is the most common areas within
unsupervised learning.

Although supervised and unsupervised learning approaches are widely used within
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the ML field, they have some limitations regarding interactive problems. The mate-
rial handling environment is an example of such a problem. Here, it is often difficult
to obtain desired behavior that is both correct and representative of all situations
where an agent needs to act (Sutton et al. 2018). Additionally, data from the real
world is hard to capture and even harder to structure. Hence, many dynamic dis-
patching approaches utilizing machine learning are based on interactive learning
between the agents and the environment.

2.1.3 Dynamic dispatching with machine learning

Figure 2.1 gives an architectural presentation of machine learning in interaction with
a dynamic dispatching system. Here, training and test examples are generated from
the simulation model. The machine learning algorithm uses the data acquired to
gain dispatching knowledge iteratively.

The knowledge acquired from the algorithm, combined with the manufacturing sys-
tem’s performance and state, is utilized by the real-time control system to determine
the best dispatching rule. In a CMHS context, the manufacturing system can be
viewed as a facility equipped with an IPS that monitors the manufacturing environ-
ment continuously. The real-time control system plays the role of the cloud engine.
Finally, the state and performance of the system are analyzed, and the knowledge
is refined by generating more training examples from the simulation model until the
performance is satisfactory.

Figure 2.1: Overview of machine learning for dynamic dis-
patching (from Priore, Gómez, et al. 2014)

Table 2.2 excerpts some literary contributions for dynamic dispatching with machine
learning:
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Paper Algorithm Manufacturing
system

Objectives

Kim et al. 2020 Deep neural network Automated material
handling system

Improve machine uti-
lization and through-
put

Choi et al. 2011 Inductive learning Hybrid flow shop Improve through-
put, reduce mean
flow time and mean
tardiness

Priore, Parreño, et
al. 2010

Support-vector ma-
chine

Flexible manufactur-
ing system

Reduce mean tardi-
ness and flow time

Y. Wang et al. 2019 Deep reinforcement
learning

Multi-workflow
scheduling

Minimize makespan,
reduce costs

Hwang et al. 2020 Reinforcement learn-
ing

Job shop Reduce total vehicle
travel time

Zhou et al. 2021 Reinforcement learn-
ing

Cloud-enabled smart
factory

Reduce makespan
and energy con-
sumption, improve
machine utilization
and balance machine
workloads

Hu et al. 2020 Deep reinforcement
learning

Flexible shop floor Minimze makespan
and delay ratio

Table 2.2: Research papers from the literature study

As Table 2.2 shows, current literature in the last years has viewed much attention
to solutions with reinforcement learning, deep reinforcement learning in particular
(DRL; François-Lavet et al. 2018). The field of DRL has received much attention,
mainly because of remarkable results within game environments like Chess, Go,
and Atari (Silver et al. 2018; Kaiser et al. 2019). However, in a manufacturing
setting, the simultaneous scheduling of machines and material handling systems is
rarely considered as it is a very complex problem (Tabatabaei et al. 2018). As
a result, applications in real-world environments with simultaneous scheduling are
still underexplored.

Today, as computational power is improving rapidly and emerging IPS technologies
are under development, the use cases of DRL in a cloud-enabled shop floor are yet
to explore. In order to understand how a DRL approach can be formulated in a
shop floor context, it is necessary to give an in-depth explanation of one of the main
areas of machine learning called reinforcement learning.
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2.2 Reinforcement Learning

Reinforcement learning (RL) enables an agent to learn by trial-and-error in an inter-
active environment from its actions and experience with no predefined data required.
Sutton et al. 2018 describes reinforcement learning as "learning what to do - how
to map situations to actions - so as to maximize a numerical signal" (Sutton et al.
2018, p. 1). This definition assumes that the agents have one or more explicit goals
they strive to reach. They continuously work towards these goals by maximizing
rewards based on actions in specific states.

The two most crucial base features distinguishing RL from other machine learning
approaches are trial-and-error search and delayed rewards (Sutton et al. 2018). An
action executed by an agent may not affect only the immediate reward but also the
subsequent rewards. As a result, RL needs to be structured in a sequential decision-
making manner. This structure is formalized as Markov Decision Processes.

2.2.1 Markov Decision Processes

A Markov decision process (MDP) is a formalization of sequential decision-making
(Sutton et al. 2018). The process involves an agent that interacts with the envi-
ronment it is placed in, and the agent receives representation of the environment’s
states. In the context of this thesis, agents are viewed as material-handling equip-
ment. The agent performs an action based on the representation, and gets a reward
based on this action. As actions are performed, the agent’s goal is to maximize the
cumulative rewards throughout the process - not only the immediate reward.

Return of rewards

Given a set of states S, a set of actions A, and a set of rewards R. At each time-
step t the environment’s state and the agent’s action is formed as a state-action pair
(St, At). At the next time-step t+1, the agent receives a reward based on the action
taken from the state, f(St, At) = Rt+1.
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Figure 2.2: Agent and environment interaction in reinforce-
ment learning (from Sutton et al. 2018)

For episodic tasks, the agent’s goal would be to maximize these rewards simply
by adding the rewards to a final time-step, T . On the other hand, in continuous
environments—like in a manufacturing environment—the agent interaction with the
environment continues without limits. A discounting factor, � 2 (0, 1), is introduced
to avoid infinite returns and apply the concept of delayed returns. Therefore, the
agent’s goal is to maximize the discounted return of rewards given by:

Gt =
1X

k=1

�kRt+k+1 (2.1)

Policies and value functions

With a newfound way to maximize the discounted return of rewards, it is also
essential to consider the probability of an agent choosing an action a from a state s,
and how good the action or state is for the agent (Sutton et al. 2018). The former
is expressed as a policy, ⇡(a|s), while the latter is represented in a value function,
v⇡(s). The quality of actions can be expressed through expected returns, and the
expected returns depend on what actions are performed.

Formally, a state-value function of a state s under policy ⇡ can be defined as the
expected return when starting in s and follow ⇡ thereafter:

v⇡(s) = E[Gt|St = s] = E[
1X

k=1

�kRt+k+1|St = s] (2.2)

The action-value function q⇡(s, a) can also be defined as the expected return of doing
action a in state s, and follow policy ⇡ thereafter:

q⇡(s, a) = E[Gt|St = s,At = a] = E[
1X

k=1

�kRt+k+1|St = s,At = a] (2.3)
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Equation 2.3 will be referred to as the Q-function going forward.

The optimal policy

The goal of a RL algorithm is to find the policy that will yield the highest possible
return. The policy in question is called the optimal policy. The optimal policy has a
related optimal state-value function, v⇤(s) = max⇡v⇡(s), and an optimal Q-function,
q⇤(s, a) = max⇡q⇡(s, a). The values of q⇤, called Q-values, are updated according to
the following equation (coined as the Bellman equation):

q⇤(s, a) = E[Rt+1 + �maxa0q⇤(s, a)]. (2.4)

Exploration vs. Exploitation

The trade-off between exploration and exploitation is also a key aspect of RL. An
agent has to exploit what has already been determined to get its reward, but also
explore the rest of the environment to make better action selections in the future
(Sutton et al. 2018). In order to get the balance between exploration and exploita-
tion, an epsilon greedy strategy is used. An exploration rate, ✏, is defined and initially
set to 1. The exploration rate will gradually decay with some factor so that the agent
will become more inclined to exploit the environment. A randomly generated num-
ber, r 2 (0, 1), will decide the trade-off at each time step. If r > ✏, the agent will
choose its next action based on exploitation, and if r < ✏, the agent bases its action
on exploration.

Learning rate

Suppose an agent experiences a state-action pair it has been to previously. In that
case, we want to update the Q-value (Eq. 2.4) to reflect the Q-value regarding the
agent’s perception of future returns for this particular state-action pair. However,
the solution is not to overwrite the current state but instead introduce a portion of
the new Q-value to the old Q-value. How quickly the agent updates this value is
governed by the learning rate, ↵ 2 (0, 1). The learning rate determines the step size,
that is, the speed at which the model learns, and is a highly influential parameter
in search of a policy.

Although RL methods have proved to be successful in various applications, the
implementations are only suitable for fully observable, low-dimensional state spaces
(Mnih et al. 2015). For real-world applications, we are dealing with high-dimensional
sensory inputs required to be processed efficiently and precisely. In order to meet
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these requirements, deep reinforcement learning is introduced.

2.3 Deep Reinforcement Learning

In a vast state space like a manufacturing environment, it is more feasible to approx-
imate the value and policy functions outlined in the previous section. The approach
to such a problem can be made by introducing neural networks, specifically through
deep reinforcement learning (DRL). DRL is the combination of deep neural networks
with reinforcement learning methods.

Neural networks are models which learn to associate inputs and outputs patterns
adaptively using learning algorithms. Deep learning extends this by introducing
additional, hidden layers between the input and output, enabling agents to make
decisions without human interference (Mnih et al. 2015). Inspired by the structure
and information processing of the human brain, deep learning has shown remark-
able results, especially in supervised learning, with image processing and speech
recognition as the most prominent (LeCun et al. 2015).

Although today’s top results in deep learning are shown with supervised learning,
data in the real world is generally unlabeled, and the information’s structure is dis-
covered by observing the environment. Reinforcement learning is one of the areas
where labeled data is not required. The combination of deep learning and reinforce-
ment learning is still in its infancy, but with the emergence of DRL, it is predicted
to dominate the future of deep learning (LeCun et al. 2015).

Architecture

The deep neural network is incorporated in the agent like a brain, as depicted in
figure 2.3. Given the current environment state as input, DRL can evaluate the
agent’s current state and rank all possible actions from this state. The rank is
based on previous experiences from the current state and estimates the total reward
expected after an action is taken. The agent will choose the best possible action
leading to the highest long-term reward.
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Figure 2.3: Agent and environment interaction in deep rein-
forcement learning (from Mao et al. 2016)

The memory of state-action values is acquired from nodes on which the neural
network is built. With the same trial-and-error mindset as in pure reinforcement
learning, the network nodes adjust their weights according to the backpropagated
response received through the reward function.

Composite rewards

Dispatching rules in manufacturing shop floors often aim to optimize objectives si-
multaneously. For instance, the facility may strive towards increased throughput and
equipment utilization while also desiring to reduce mean flow time, tardiness, and
vehicle travel time. These objectives may sometimes be conflicting, so it is necessary
to construct a global reward function to reflect all objectives simultaneously.

The construction of a global reward function with multiple objectives is feasible
in theory. However, the practical implementation often tends to deviate from the
theoretical global optimal solution due to variable perturbation (Deb et al. 2014).
Thus, we are more concerned with reducing the variable sensitivity to find a robust
solution in practice.

In DRL, parameters like product throughput, energy consumption, delay ratio, main-
tenance cost, and equipment utilization can be considered in the reward function
since the reward is a scalar (Hu et al. 2020). As a result, the rewards can be com-
bined based on multiple objectives into a composite reward. This feature has some
clear benefits, as multi-objective optimization for practical purposes faces challenges
regarding robustness and sensitivity (Deb et al. 2014). Since the reward is a scalar,
the objectives can be weighted according to the practitioner’s desire, giving a trans-
parent overview of each reward’s effect on the overall system performance.
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The parameters outlined in section 2.2.1 have a significant impact on the policy.
If the parameters are not controlled with care, it may lead to sudden catastrophic
drops in performance. The performance is predominantly governed by the step size,
i.e., how fast we replace the old policy value with the new policy value. To obtain
an optimized policy, we need to choose a suitable procedure to update the policy.

Value function approximation vs. policy gradient methods

Traditionally, reinforcement learning approaches have been dominated by value func-
tion approximation for policy updating. Here, the agent’s behavior is determined
by the estimated long-term expected value of each action in a particular state (Beit-
elspacher et al. 2006). Various techniques have been introduced in the past decades,
with deep Q-learning as one of the most prominent approaches due to its essential,
model-free fashion (Wiering et al. 2012).

Although this widely used technique works well in game environments, it is poorly
understood and fails on many simple problems on continuous state/action spaces
(Schulman, Wolski, et al. 2017). Implementations with value function approximation
often lead to deterministic policies, although the optimal policy is stochastic (R. S.
Sutton et al. 2000).

In order to tackle these deficiencies, policy-gradient methods are often used as an
alternative in stochastic environments because the methods can express stochastic
optimal policies (Beitelspacher et al. 2006). Additionally, they are guaranteed to
converge (R. S. Sutton et al. 2000). As the shop floor environments investigated in
this thesis are continuous and stochastic with a medium-high degree of randomness
and uncertainty, policy-gradient methods are a natural approach to consider.

2.3.1 Policy-gradient methods

Policy-gradient methods are key contributions for controlling reinforcement learning
problems (Schulman, Wolski, et al. 2017). Unlike value function approximators that
base the policy on a long-term reward estimate, policy-gradient methods work by
directly computing an estimator of the gradient and use this in a stochastic gradient
ascent algorithm. Gradient ascent algorithms are iterative methods to optimize an
objective function (Bottou 2012). Policy-gradient methods directly update the policy
according to the approximation of the gradient concerning the policy parameter
(Richard Sutton et al. 1983). The estimated gradient is obtained by differentiating
a loss function:
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LPG(✓) = Êt[log⇡✓(at|st)Ât] (2.5)

The objective is to maximize equation 2.5. Here, Êt denotes the empirical expec-
tation at time t, ⇡✓ is a policy parameterized by ✓, (at|st) is the action-state pair,
and Ât is the estimated advantage at time t. The advantage, A, can be considered
as another version of the Q-value (Eq. 2.4) with lower variance by subtracting the
state-value from the baseline (A(s, a) = Q(s, a)� V (s)).

A significant downside with traditional policy-gradient methods is the possibility of
performance collapse if the step size gets too large or hopelessly slow progression
with too small step sizes. The question is then how to update the new policy from
the old policy.

Since the field of policy-gradient optimization has accelerated in the wake of deep
neural networks, this thesis focus on a new, state-of-the-art family of policy-gradient
methods for reinforcement learning called proximal policy optimization (PPO; Schul-
man, Wolski, et al. 2017).

Proximal Policy Optimization

Obtaining a successful DRL model is less pronounced than with other machine learn-
ing approaches as the parameters are highly tuning sensitive, and the effect of each
parameter is hard to debug (Schulman, Wolski, et al. 2017). PPO tries to overcome
these challenges by finding a suitable trade-off between implementation simplicity,
sample complexity, and ease of tuning. Similar to the Trust Region Policy Opti-
mization (TRPO; Schulman, Levine, et al. 2015), PPO aims to allow for the most
significant possible improvement step without stepping so far that it causes perfor-
mance collapse. In contrast to the TRPO, however, PPO presents a much simpler,
first-order optimization with the same performance excellency (Schulman, Wolski,
et al. 2017).

PPO algorithms use a hybrid approach of sampling data from the environment and
optimization of an objective function using stochastic gradient ascent (Schulman,
Wolski, et al. 2017). We denote the probability ratio between the old and the new
policy as:

r(✓) =
⇡✓(a|s)
⇡✓old(a|s)

(2.6)
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Without a distance limitation between the new and old policy parameter ✓, maxi-
mizing equation 2.5 may cause instability and destructively large policy updates. To
avoid this issue, PPO introduces a simplified constraint by using a clipped objective;
it forces r(✓) to stay within a small interval determined by a parameter, ✏:

LCLIP (✓) = Êt[min(rt(✓) ⇤ Ât, clip(rt(✓), 1� ✏, 1 + ✏) ⇤ Ât)] (2.7)

The introduction of ✏ makes PPO a trust-region optimization method. More specif-
ically, the ratio of taking a single action between the updated policy and the old
policy is constrained to be no greater than 1+ ✏ (A > 0 increases action probability)
and no less than 1� ✏ (A < 0 decreases action probability)

Figure 2.4 shows the effect of the clip for a single timestep t. The red dot represents
the starting point for the optimization (r = 1), and the clip depends on whether the
advantage is positive or negative.

Figure 2.4: PPO clip parameter illustration fFrom Schulman,
Wolski, et al. 2017)

Deep learning success depends on empirical choices of joint model structure tuning,
data representation, and model optimization (Jaderberg et al. 2017). These com-
ponents are controlled by numerous parameters. In a neural network setting these
parameters are referred to as hyperparameters - a parameter whose value is used to
control the learning process (Hutter et al. 2019).

PPO-clip provides the loss function, and its parameter, ✏, affects the upper bound
magnitude of resulting behavioral changes in the policy. In addition to this fea-
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ture, it is necessary to simultaneously tune the hyperparameters involved in the
learning process. Complex machine learning approaches like DRL often have many
hyperparameters involved in the learning process. The complexity makes it neces-
sary to automatically set these parameters in compliance with each other, known as
automated hyperparameter optimization (HPO).

2.3.2 Automated hyperparameter optimization

The objective for automated HPO is to strike a sustainable trade-off between the
performance and cost of a deep learning model. The non-stationary problems in DRL
enlarge the scenario complexity level. As a result, the hyperparameters themselves
are often non-stationary (Jaderberg et al. 2017). Automated HPO has essential
implications for efficient policy generation, like reducing human effort, improve per-
formance, and improve the reproducibility and fairness of scientific studies (Hutter
et al. 2019). Two of the most widely used methods for automatic HPO are sequential
optimization and parallel search1.

Sequential optimization (Figure 2.5) uses knowledge from previous training runs
to gradually tune the hyperparameters towards a satisfactory performance. This
method starts by guessing an initial set of hyperparameter values. Then, these
values are used in the model for training before the performance is evaluated. This
process iterates until the performance converges to a satisfactory result. Although
sequential optimization uses minimal computational resources, these methods have
an apparent downside; due to their sequential nature, the process is tedious and
slow, especially for expensive optimization processes (Jaderberg et al. 2017).

Figure 2.5: Sequential optimization

On the other hand, parallel search (Figure 2.6) can be viewed as a population of
networks trained independently in parallel. When training stops, the researcher
chooses the model with the highest performance. Parallel search is good at find-
ing regions for sensitive hyperparameters, but the method is in danger of wasting

1
Sequential optimization and parallel search are also referred to as hand-tuning and random

search, respectively
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computational power on inadequate combinations, making it inefficient for several
applications (Jaderberg et al. 2017).

Figure 2.6: Parallel search

Jaderberg et al. 2017 suggests a different approach, aiming to bridge the gap from
the shortcomings of sequential optimization and parallel search, namely population-
based training (PBT).

Population-based training

PBT is a hybrid of the two techniques mentioned. Like parallel search, the hyper-
parameters are picked at random, and a population of concurrently running neural
networks are trained in parallel. Inspired by genetic algorithms, the networks lever-
ages information sharing across the population and exploits partial results from other
promising training runs to refine the hyperparameters. Furthermore, the networks
are capable of exploring new hyperparameters as training progresses by changing
their values randomly (Figure 2.7).

The periodical process of exploiting the population and exploring new values secure
training runs from a poor performance baseline while exploring the solution space
consistently. This capability is critical in a reinforcement learning setting with sig-
nificant non-stationary learning dynamics (Jaderberg et al. 2017).
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Figure 2.7: Population-based training

As for other common machine learning approaches, we want to optimize a set of
hyperparameters, h, and corresponding weights, ✓, of a model to maximize an ob-
jective. For this, we approximate the hyperparameters by introducing a function
that evaluates the objective, eval(✓). Furthermore, the weights are updated itera-
tively, formulated by a step function, ✓  step(✓|h). These steps are sequentially
embedded that ideally converges to an optimal solution. Finally, we search over all
possible hyperparameter values, (ht)Tt=1 = h, to arrive at an approximation:

✓⇤ = optimize(✓|h⇤), where h⇤ = argmax
h2HT

eval(optimize(✓|h)) (2.8)

For an efficient calculation of equation 2.8, we form a population P where different
hyperparameters optimize each model in the population. The methods exploit and
explore are used to let h and ✓ adapt according to the population’s performance
(see Algorithm 1). These methods let us not only benefit from local optimization
but also periodic model selection and hyperparameter refinement (Jaderberg et al.
2017).

29



Chapter 2: Theoretical Background

Algorithm 1 Population Based Training
1: procedure Train(P ) . Initial population P
2: for (✓, h, p, t) 2 P do
3: while r 6= 0 do . One step of optimization using hyperparameters h

4: ✓  step(✓|h) . Current model evaluation

5: p eval(✓)
6: if ready(p, t, P ) then
7: h0, ✓0  exploit(h, ✓, p, P ) . Use the rest of population P to find better solution

8: if ✓ 6= ✓0 then
9: h, ✓  explore(h0, ✓0, P ) . Produce new hyperparameters h

10: p eval(✓) . New model evaluation

11: end if
12: end if
13: update P with new (✓, h, p, t+ 1)
14: end while
15: end for
16: return ✓ with the highest p in P
17: end procedure

PBT does not require any population synchronization, meaning the computing pro-
cesses are independent and run in parallel. Asynchronous behavior has a significant
effect on data efficiency and improving the convergence rate (Ooi et al. 2015).

2.3.3 Why Deep Reinforcement Learning in a CMHS?

Despite the growing number of technologies in the wake of Industry 4.0, several
opportunities are underexploited or neglected by companies (Moeuf et al. 2017).
The research community has introduced bundles of sophisticated algorithms, but
the main shortcomings of many solutions are extensive prior expert knowledge and
human intervention. The lack of programmatic expertise within manufacturing com-
panies makes it difficult to utilize all the benefits of these new technologies, and they
need solutions that do not require expertise in this area. DRL can overcome these
challenges because limited human interference and prior expert knowledge are nec-
essary for the dispatch rule construction (Waschneck et al. 2017). Although the
development phase itself may require highly skilled professionals, an abundance of
third-party software is available for an effortless DRL implementation.

Other types of optimizers work well for offline dispatching in static environments,
but they tend to overfit the data and consequently be biased towards specific situ-
ations (Priore, Gómez, et al. 2014). In contrast, DRL can adapt well to stochastic
environments by responding immediately to changes. With the interconnectivity
through an IPS, as one of the significant pillars in a CMHS, the environment can be
monitored continuously and respond to changes dynamically.

As one of the emerging trends in Industry 4.0, big data is also under-exploited in
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the industry. From the literature study conducted by Moeuf et al. 2017, none of the
companies reported any use of big data. Many companies still do not consider data
as a source of added value (Bi et al. 2014).

A notable contributor to this perception is that capturing, cleaning, and managing
significant data sources is often a comprehensive task. In contrast, DRL does not
rely on predefined training data; as it exploits a learning-by-doing approach, the
training data is generated in the simulation environment. The learning process
is continuously improved based on newly discovered patterns that generate higher
rewards. Moreover, due to the interconnectivity between simulation and reality with
a CMHS, simulation can supplement learning purposes.

Deep learning methods often suffer from inefficient training. Learning an agent
the environment dynamics and rules for a particular system can be a cumbersome
task. Instead of starting all over again for each training run, pre-training the neural
network to learn the underlying features can effectively speed up learning (Cruz et
al. 2019). Pre-training of a DRL model has shown to be feasible and highly effective
to speed up the learning (Anderson et al. 2015; Cruz et al. 2019; Abtahi et al. 2011).
The effect of a pre-trained model in a CMHS allows for rapid response and high
flexibility when major deviance in production occurs.

To summarize why DRL can be a good fit in the era of Industry 4.0 and the concept
of CMHS, the following arguments are made:

1. DRL can learn its own dispatching rules with limited human interference or
prior expert knowledge

2. It is not based on predefined training data, which makes it easier with imple-
mentation and maintenance

3. It has the flexibility to re-train a model within hours, and the agents can be
pre-trained from existing pre-training

4. There exist quality tools for painless integration between simulation and train-
ing for dynamic dispatching

5. No research has been done with interconnectivity between materials and MHE
with dynamic dispatching in the scale as CMHS facilitates. Therefore, it is
possible to explore other applications of DRL that have not yet been identified.
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Limitations

The key aspect of deep learning, in general, is that the layers of features are learned
from data, not designed by humans (LeCun et al. 2015). Thus, the DRL model can
be viewed as a black box with a lack of data transparency during training. It is not
easy to understand why the agents make their choices in certain situations and how
each parameter with corresponding weights affects the overall system performance.
Hence, it is vital to monitor the effect of each parameter separately before composing
them into a full-fledged reward function.

Even if the reward function is well-defined, it is often impossible to let agents in-
teract freely in a real-world environment due to safety, cost, or time constraints.
In real-world applications, François-Lavet et al. 2018 distinguish between two DRL
limitations:

1. Agent is unable to interact due to dissimilarities between simulation and the
real-world environment

2. Acquisition of new observations is not possible due to external, uncontrollable
dependencies

In order to limit the impact of these limitations, it is crucial to develop an accurate
simulation model that takes significant changes into account. Hence, generalization
in the dispatching policy is vital to avoid overfitting (François-Lavet et al. 2018).
These limitations are kept in mind during the model implementation presented in
the next chapter.
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Methodology

This section describes the methods used to acquire knowledge regarding material
handling in shop-floor manufacturing and this thesis’s systematic approach to an-
swer the research questions outlined in the introduction. The methodology is the
justification for research methods - a systematic approach to solve a research problem
(Goddard et al. 2014). The techniques presented let the reader assess the research’s
reliability and validity, enabling study replication.

Two main methods have formed the methodology used in this project: qualitative
and quantitative. Quantitative research is based on the quantitative measurements
of characteristics and is applicable when phenomenons can be expressed in terms of
quantities (Goddard et al. 2014). On the other hand, qualitative research is primarily
appropriate when the aim is to discover the underlying motives of behavior (Goddard
et al. 2014).

A literature study contributes to the qualitative part of the research and is a key
contributor to the answer to RQ1. The structure of the literature searches is elabo-
rated in Section 3.1 and the results are presented in Chapter 4. A simulation model
is constructed for quantitative research to answer RQ2 and RQ3. The justification
and construction of the simulation model is found in Section 3.2 - 3.4, while the
corresponding results are presented and analyzed in Chapter 5.
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3.1 Literature study

A literature study is essential to understand existing research on the chosen topic. It
can guide the research development to construct reasonable hypotheses and research
questions in the initial research phase (Karlsson 2008). The purpose of the litera-
ture study is to identify research on material handling in shop floor manufacturing,
especially research involving real-time positioning of material-handling equipment
with or without Industry 4.0 applications, to answer RQ1.

Block searches were the dominating method in the literature study. Based on Sgar-
bossa et al. 2020, three categories were chosen that reflected Industry 4.0 applications
in manufacturing connected to shop floor material handling:

• CPS/CM frameworks with real-time data collection (CPS)

• Shop floor machine scheduling (MS)

• Shop floor material handling (MH)

The CPS abbreviation stands for Cyber-Physical System and was used as the literary
community use the terms CPS and CM interchangeably. The categories were chosen
due to the diversity in problem formulations that tackled different shop floors and
material handling processes. Thus, these three were selected as general bins to
demonstrate the primary contribution value of the papers.

Scopus were the primary search database used for the block searches. Google Scholar
were also used as a supplement to avoid overlooking relevant papers. The keywords
used were:

• "Material handling" AND ("AGV" OR "AMR" OR "Shop floor*" OR "Schedul-
ing" OR "Dispatching" OR "Fleet" OR "Industry 4.0" OR "Non-automated"
OR ("Forklift" AND ("Manufacturing" OR "Production")))

• ("Cyber-physical system*" OR "Cloud manufacturing") AND ("Material han-
dling" OR "Shop floor")

• "Material handling equipment" AND ("Shop floor" OR "Scheduling" OR "Dis-
patching")
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Figure 3.1: Filtering process for the literature study

The initial search gave 2,655 documents in Scopus. The documents were filtered
to avoid outdated research, where only articles and conference papers in English
over a time period from 2014 to 2021 were considered. "Engineering," "Computer
Science," and "Decision Science" were chosen as subject areas to limit the results
to papers that mainly focus on I4.0 technologies and decision-making techniques in
manufacturing. After filtering, 644 documents remained.

The searches were sorted according to the number of citings in descending order,
and each paper’s title, abstract, and keywords were deemed relevant based on the
following criteria:

• Does the document involve any type of MHE tracking for non-automated
MHE? If not, is the MHE used either an AGV or an AMR?

• Does the document dedicate its focus to shop floor manufacturing?

• Does the document mention MHE scheduling/dispatching?

These criteria reduced the number of papers to 90. The documents were stored and
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handled by using BibTeX as a reference library. Promising articles were skimmed
and noted in a logbook with key topics, methods, and a summary. After a full-text
review and removal of duplicates, 17 documents were chosen for further analysis.

The documents were then used to identify the use and impact of Industry 4.0 in shop
floor material handling and CM in particular. This analysis laid the foundation for
how the CMHS addresses the current research gaps as a contribution to answer RQ1.
The results from the literature study can be found in Chapter 4.

3.2 Simulation modeling

Modeling is a way to explore and understand the structure of a system that appears
in the real world through a risk-free, virtual environment (Borschev 2013). The
concept of modeling, particularly in manufacturing shop floors, is of great interest
because finding solutions by experimenting with real objects is too expensive, dan-
gerous, or simply impossible. It is highly impractical to model material handling
activities for a job shop in a real environment, primarily if the movement of jobs in
the environment only relies on the material handling equipment (Xie et al. 2015).
Modeling simplifies the real-world environment to predict how a system behaves
where there is room for mistakes and continuous iterations.

Pure analytical modeling is usually not suited for complex, dynamic environments
because an analytic solution often does not exist or is hard to obtain (Borschev
2013). A manufacturing shop floor is an example of such dynamic environments, and
to model dynamic behavior in these systems, simulation modeling is used. Borschev
2013 describes six advantages of simulation modeling:

1. Possible to analyze systems and find solutions where methods like analytic
calculations and linear programming fail

2. Requires less intellectual efforts than analytical modeling - it is easily scalable,
incremental, and modular

3. Reflects the structure of a real system

4. Possible to measure any value and track any entity

5. Ability to animate system behavior in time, making it easier to verify and
debug the model

6. A more persuasive and explainable tool compared to spreadsheets with num-
bers
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Simulation advantages for a CMHS

Simulation modeling can capture every logical aspect of a system. Nonetheless, man-
ufacturing environments’ complexity and uncertainty make such systems intractable
to analytic modeling and simulation (J. Xu et al. 2015). As simulations in virtual
environments simplify the real world, the main issue is to map the insights, findings,
and simulation solutions back to the real shop floor environment. Advanced manu-
facturing schemes like the multi-agent system (MAS) have aimed to overcome this
drawback. However, due to a lack of global coordination, these schemes have not
been able to handle complex systems efficiently on their own (S. Wang et al. 2016).

On the other hand, a CMHS is equipped to tackle this transferability issue. Exploit-
ing the real-time location of products and material-handling equipment with an IPS
can allow for dynamic job assignments to available resources from a centralized cloud
platform. This capability bridges the gap from simulation to reality; simulation can
mirror reality more accurately with IoT-equipped materials and MHE utilized in a
CMHS. Suppose the layout and material flow modeled are in accordance with the
real-world environment. In that case, the simulation could reflect the cloud-enabled
shop floor’s exact image, as they are both relying on the same assignment logic.
Hence, simulation can be a great tool to identify a CMHS’s capabilities regarding
reliability and validity.

3.2.1 Simulation software

For simulating complex systems like a manufacturing shop floor, a multi-purpose
simulation tool is needed. As the simulation software market has been increasing
rapidly in the wake of Industry 4.0 (Xie et al. 2015), there is a need to map software
capabilities to the modeling method and purpose. When choosing the right software
for our purpose, the following requirements were made:

• Possibility to extend the graphical modeling language with other well-established
code languages

• Real-time 3D animation capabilities of manufacturing processes

• Support a variety of simulation methodologies

• Good documentation and customer support

With these objectives as a starting point, a simulation software survey from the
October 2017 issue of the ORMS Today journal (ORMS-Today 2017) was used to
map out the software vendors and compare the software tools and capabilities.
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From this mapping, AnyLogic became the natural choice as one of the most widely
used simulation software in the manufacturing industry (Borschev 2013). AnyLogic
is a multi-method simulation modeling software that supports all the principal sim-
ulation methodologies.

Additionally, it extends its graphical modeling with Java code. These capabilities
give flexible opportunities in the modeling, as code snippets with dynamic values
can replace the standardized graphic value editor. Notably, this thesis’s objectives
require tailor-made logic for agent behavior and flexibility beyond what any appli-
cation programming interface (API) can offer today. Moreover, AnyLogic provides
several manufacturing process examples, guideline books for learning purposes, and
a responsive support team.

3.2.2 Deep Reinforcement Learning software

There are two possibilities for implementing DRL to the simulation model: con-
structing the neural network with Java code from scratch or using a third-party
extension to the AnyLogic software. The former approach allows for a more custom-
made solution, offering higher flexibility in the development process. However, this
approach might be excessive for this thesis’s purposes, as AnyLogic cooperates with
several companies specializing in DRL. The purpose of the simulation model is to
demonstrate the simplicity of policy generation with CMHS, and the DRL software
Pathmind was chosen due to its painless compatibility with AnyLogic.

Pathmind is a Software-as-a-Service (SaaS) that offers painless integration between
simulation modeling and reinforcement learning. It is a web-based platform that
provides easy access to state-of-the-art DRL and cloud computing. The capabilities
of Pathmind manifest how the platform can be used in manufacturing for decision-
making and optimization with limited prior expert knowledge:

1. It handles the integration between simulation and RL libraries automatically

2. No data science expertise is required

3. Policies generated can be used in real-world manufacturing facilities with real-
time decision making

The policy is trained in the Pathmind software, extracted as a zip file, and deployed
in AnyLogic. Figure 3.2 depicts the connection between the components.
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Figure 3.2: Simplified Pathmind setup

Symbiotic relation between PPO and PBT in Pathmind1

Pathmind has integrated PPO and PBT simultaneously, where PBT controls pa-
rameter tuning while PPO governs the behavioral policy changes. The updated
PPO policy results from many fine-grained changes among the different neural net-
work weight dimensions. Whereas PPO provides the loss function, the actual loss
landscape is transversed with an ADAM optimizer (Kingma et al. 2017), which uses
adaptive learning rates based on the dimension-wise curvature approximation of the
landscape. ADAM treats each neural network weight dimension separately so that
the adequate step size can be small in some dimensions but large in others.

The learning rate parameter tuned via PBT is the ↵ parameter of ADAM, which
still is a free parameter that benefits from tuning (Loshchilov et al. 2019). ADAM’s
↵ parameter affects the magnitude of changes to individual neural network weight
dimensions, whereas the PPO-clip parameter ✏ affects the upper bound magnitude
of resulting behavioral changes in the policy.

As PBT explores different ↵ parameters, PPO can safely compensate for inappro-
priately large ↵ values through a well-tuned clip parameter. The PBT tunes many
different hyperparameters, PPO-clip’s ✏ and ADAM’s ↵ included.

1
An explanation of PPO and PBT can be found in Section 2.3.1 and 2.3.2, respectively
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3.3 Model implementation

The simulation model is a multi-agent system (MAS) in a fully cooperative, stochas-
tic environment. All agents strive for a joint maximization of the same goal. The
agents’ returns cannot be maximized independently in such environments, as agents’
behavior is correlated (Buşoniu et al. 2010). Multi-agent environments are often far
more complex than single-agent environments, and hardwired behavior may be inap-
propriate due to dynamic, unpredictable changes over time. In practice, the agents
in a MAS are heavily dependent on real-time communication with sensors and track-
ing, making a MAS suitable for CMHS validation and testing.

3.3.1 Scope

The simulation model’s focus is on the cloud engine and the way it assigns material-
handling jobs to MHE (see figure 1.2). Hence, the simulation model does not rep-
resent a physical implementation of the CMHS. That being said, the cloud engine
follows the built-in simulation model logic.

The model will only consider material handling as transportation of materials from
A to B on the manufacturing shop floor. Conveyor-based systems are not regarded
as material handling in this interpretation and will not be considered going forward.

The research includes hybrid setups of different MHE types working together on the
shop floor. However, the simulation model’s focus will be on managing forklifts only.
A hybrid setup introduces unnecessary complexity in the simulation model, and as
the benefits are evident on a conceptual level, it has been left out for simplicity
reasons. Still, it should be noted that the symbiotic relationship between different
MHE types is investigated in the literature study and is considered an integral part
of the CMHS concept.

3.3.2 Modeling technique

In order to model the system, appropriate modeling techniques are needed. Two
modeling methods have been used in the simulation model: discrete-event modeling
and agent-based modeling. The two methods are differentiated based on the model’s
abstraction level, i.e., the amount of information and details included. Figure 3.3
portrays a rough division of the two methods, where discrete-event is known for a low
abstraction level. In contrast to discrete-event, agent-based modeling span various
purposes and scopes, focusing on the autonomous, decentralized, and individual
behavior of objects.
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Figure 3.3: Level of abstraction for discrete-event and agent-
based modeling (from Borschev 2013)

Since the objective is to investigate the utilization of MHE and product throughput
in a manufacturing shop floor through a predetermined set of stages, the natural
approach is to model the processing stages in the environment using discrete-event
modeling. This method enables us to model the system as a process (sequence of
operations) done on entities (materials) by resources (material-handling equipment).

However, the MHE involved in the process should also choose actions from a finite
action space based on the state of the environment in which they are operating.
A significant difference between discrete-event models and agent-based models is
that neither the entities nor the process have behavior on their own in the discrete-
event case (Borschev 2013). When implementing the CMHS, the system behavior
is governed by a cloud-enabled shop floor that accounts for the environment’s state,
which changes dynamically in time. Agent-based modeling can be suitable when
investigating individual object behavior and optimal policies through sophisticated
heuristics and machine learning algorithms. Hence, autonomous behavior is also
appreciated for this simulation model.

Many real-world environments are too complex to model with one method only
(Borschev 2013). Thus, the model will be built according to the following multi-
method approach:

41



Chapter 3: Methodology

• Discrete-event for the processes and the environment as a whole

• Agent-based for the decision-making and general behavior of the agents (MHE)

3.3.3 Shop floor layout

The layout is based on an Italian shop floor example where forklifts move products
and supply in the facility, aiming to acquire the highest possible product throughput
(Figure 3.4). The shop floor is modeled with dimensions 152 by 178 meters and
thereby represents a large shop floor facility with considerable distances that need
to be covered by the forklifts between the material handling jobs. The shop floor
produces three different product types that undergo a series of steps until they
are finished and transported away from the facility. Products cannot be processed
without supply present at the workstation, but the type of supply provided is equal
regardless of product type or workstation number.

The process stages are fixed for each product, the type of operations executed in the
environment are predetermined, and the same kind of entities are used to perform
material handling tasks. The processes have a starting point at the supermarkets
(the source), where materials are injected into the system. Then, numerous processes
(seizing transporters, moving materials, processing products) are executed discretely.
When the required stages are completed, the product is removed from the model at
an ending point (the sink).

The shop floor has four docks where forklifts can idle when no job is present. De-
pending on the model method and return policy after a material handling activity
is performed, the forklift will navigate to a dock until a new job occurs. The fork-
lifts carry out simple transportation tasks of product or supply from pickup-point to
destination. The arrival rate of materials and supply ready for processing is scenario-
dependent but is assumed to be stochastic in real life. The scenario parameters and
corresponding results are outlined in Chapter 5.
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Figure 3.4: Layout

Each product is equally prioritized and has to move through three workstations
in a predefined order. As illustrated in figure 3.5, some products share the same
workstation in different completion stages of the material flow. When a product
reaches the "Ending workstation," the throughput count is incremented by one and
is considered completed.
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Figure 3.5: Product flow

The facility possesses seven workstations, where each workstation is responsible for
some kind of product processing. The type of processing is not specified in the
example provided. However, as the simulation model focuses exclusively on material
handling activities, elaborating on processing specifics is unnecessary as we advance.

3.3.4 Stochastic shop floor processes

In most manufacturing shop floor environments, unpredictable real-time events like
arrivals of urgent jobs or workstation failures may occur at any moment, making
it challenging to stick to a pre-defined schedule or plan (Ouelhadj et al. 2009).
Running a material handling operation under such conditions can result in low MHE
utilization and poor manufacturing performance if the system struggles to adapt to
real-time events (Tompkins et al. 2010). In order to mimic the stochastic shop floor,
the simulation model introduces stochastic elements to the demand and maintenance
requirements in scenarios that will be elaborated further in Chapter 5. However, the
mathematical methods are explained here.

The rate of arrivals that simulate the system demand is expressed as a uniform
discrete distribution bounded by a (min,max) input (Figure 3.6). In this case
study, arrival rates can be perceived as unfinished products/supplies delivered to the
facility. The distribution is easy to use and is beneficial for scenario testing as the
input is only two variables. More complex distributions like the Weibull distribution
(Rinne 2008) are often seen in manufacturing simulation models. However, as this
study aims to demonstrate differences in control methods rather than simulating the
day-to-day operation of a facility, the uniform distribution is more than sufficient.
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The lower complexity is also helpful for precise result extraction as they are generated
by Monte Carlo simulation (see section 3.4.4).

Figure 3.6: Uniform discrete distribution (from Sirjani 2017)

3.4 Modeling methods

As stated in the research objectives, three methods are chosen to investigate the
capabilities of the CMHS: conventional non-CMHS version, heuristic CMHS, and
deep reinforcement learning CMHS. The basis for comparison is scenario-testing,
where the performance is assessed based on total product throughput and MHE
utilization over an eight-hour workday.

3.4.1 Conventional method (non-CMHS)

In the conventional method, visual contact with the workstation is a prerequisite.
The method demonstrates how forklift drivers in a traditional manufacturing envi-
ronment behave without support from a cloud-enabled shop floor. Hence, forklifts
are assigned to a cluster of workstations based on their home dock position as illus-
trated in figure 3.7. Consequently, the forklifts are unable to contribute anywhere
else in the environment than in their assigned area.
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Figure 3.7: Conventional method restricted to visual sight

In the past, analytical models have been the most popular methods to determine fleet
sizes in real-time manufacturing environments, but simulation offers an alternative
way (Chawla et al. 2018). Thus, the number of forklifts in each dock is determined
by a trial-and-error approach where higher material flow on a station requires a
larger fleet size.

3.4.2 Heuristic method (w/CMHS)

The heuristic method is based on the same layout configuration as the previous
method. However, the environment is assumed to be equipped with sensors for
materials and MHE tracking components to simulate the CMHS. Thus, the visual
line-of-sight requirement is no longer necessary, so the forklifts can move freely on
the shop floor, which implicates that any forklift can perform a material handling job
anywhere on the shop floor. Here, the forklifts are assumed to possess a notification
device (e.g., tablet) that instructs where to move and which job to perform.
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Figure 3.8: Action flowchart for heuristic method

Which action to perform is governed by the environment’s state. As demonstrated
in figure 3.8, the action space is structured as a decision tree hierarchically based on
the essential parts necessary to maintain high performance and adequate material
flow. Several factors determine the decisions: if the workstation is congested, if the
throughput of each product type is imbalanced, and so on.

The heuristic method uses static dispatching and idling rules to control which MHE
is assigned to what task. There are several rules to choose from, listed in Section
2.1. Inspecting table 2.1, the LIV and LUV dispatching rules are not applicable for
testing due to the simulation model having a MHE-initiate action-loop. GQL and
LWT are very similar as they use metrics from a given node’s output in the system.
During the trial-and-error phase of the simulation modeling, GQL performed worse
than LWT and STD and was, as a result, eliminated from further evaluation.

Idling MHE also need to abide by a static rule in this heuristic method and the two
most common centralized positioning (CP) and point of release/nearest idle location
(NIL) (see Section 2.1). The CP rule instructs each idle MHE to the dock between
WS1, WS5, WS6, and the supermarkets as these are the busiest zones on the shop
floor. The NIL rule instructs idle MHE to the nearest dock after it has become idle.
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The following heuristic dispatching rules will be tested:

Dispatch rule Idle rule

STD NIL
STD CP
LWT NIL
LWT CP

Table 3.1: Heuristic dispatch and idle rules

Assessing the rule combinations in different scenarios allows for a gained insight into
the optimal dispatching method for the given scenarios. Also, the impact of idling
rules will become apparent as a result of the analysis.

3.4.3 Deep Reinforcement Learning (w/CMHS)

In contrast to the previous method, any specific decision hierarchy does not control
the DRL method. The forklifts are trained to discover actions in certain states,
which yields higher total product throughput. To obtain this capability, they need
observations to see environment states relevant to the decision-making and rewards
to recognize productive behavior.

Training of the DRL model is done in Pathmind and is based on the same architecture
and principles as outlined in the theory section - parameter tuning with PBT (Section
2.3.2), policy changes governed with PPO (Section 2.3.1), and traversed optimization
with ADAM (Section 3.2.2).

Observations

Observations provided to the agents consist of individual and global observations
(Figure 3.9). Global observations are simply the components’ states in the environ-
ment, like queue length, supply needs, and finished products. Since the Pathmind
software used for dispatching policy generation is disconnected from the actual simu-
lation model, the agents need information about their current location and who they
are in the population. Additionally, as the simulation model portrays a collaborative
multi-agent system, the agents need to observe other agents’ current whereabouts
and activities.
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Figure 3.9: Environment observations

Rewards

Specifying a common goal is one of the most challenging tasks in reinforcement
learning, multi-agent reinforcement learning in particular (Buşoniu et al. 2010). Al-
though the main objective is to obtain the highest total throughput possible, the
agents need to be rewarded on penalized in other parts of the procedure to under-
stand how they can achieve higher throughput. Hence, numerous individual and
global rewards and penalties shape the composite reward functions. Note that the
reward functions will vary between scenarios, but they will all be a combination of
the rewards/penalties portrayed in figure 3.10.

As explained in the theoretical background (see section 2.3), multiple, conflicting
objectives often deviate from a global optimum in practice. Figure 3.10 portrays
some contradictory objectives. For instance, agents should be rewarded for higher
throughput, but not at the expense of full queues or significant product imbalances.
The correct weighting of each reward or penalty is an art in itself. The resulting
reward function used in this simulation model is based on an extensive trial-and-error
methodology. Moreover, as seen in Chapter 5, these weights are tuned differently
according to the scenario investigated.
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Figure 3.10: Rewards and penalties

Pathmind training

The DRL method is re-trained for each specific scenario investigated. The AnyLogic
model is uploaded to the Pathmind service, and the reward function is specified. In
order to evaluate the effect of reward variables, experiments are run in parallel, and
the performance is monitored through a learning process graph (Figure 3.11). This
graph depicts how the agents learn according to the defined reward function.

Figure 3.11: Policy training in Pathmind
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When the policy is trained, Pathmind will play a single simulation run as many
times as possible. Then, the final reward is averaged over all episodes and captured
into a single iteration. This process continues until convergence is reached. As the
figure above illustrates, Pathmind will run different hyperparameter combinations
in parallel and use the experience-sharing capability of PBT to improve the policy
gradually. After a fixed number of iterations—250 in this case—Pathmind chooses
the run with the highest mean reward score overall episodes and transforms it into
a full-fledged policy.

3.4.4 Performance evaluation

Key Performance Indicators (KPIs) are a set of quantifiable measurements used to
evaluate the critical business objectives’ overall performance (Parmenter 2015). For
simulation models, KPIs can be used to evaluate and compare cases’ performance
in respective scenarios (Xie et al. 2015).

The main objective is to find a trade-off between minimized material handling equip-
ment costs and maximized throughput. To measure the MHE costs, earlier simula-
tion methods in job shops have emphasized MHE utilization to identify equipment
productiveness (Xie et al. 2015). In the simulation model, MHE is only considered
utilized when they are either on their way to a job or performing the job. Hence,
both total product throughput and MHE utilization will be the basis of analysis for
the results. As there are no interdependencies between the products on the evalu-
ated shop floor, product imbalances are not considered a KPI when analyzing the
performance results.

In order to ensure a viable basis of comparison, the performance will be evaluated
from Monte Carlo (MC) simulation. MC is suitable for this model’s purposes, as it
is broadly used to model probabilities of different outcomes when random variables
are involved. Although some of the scenarios include variables like arrival rates and
processing times with randomly generated values, it is worth mentioning that each of
the methods evaluated is based on the same randomness. Hence, the MC simulation
comparison is credible, and the variability does not differ between methods.

Instructions on how to run the simulation model are explained in Appendix A.

3.4.5 Limitations

The main limitation of this thesis’s simulation modeling is that we have not cooper-
ated with any manufacturing companies. As a result, the simulation modeling has

51



Chapter 3: Methodology

limited data available. Preferably, information about a company’s characteristics,
real-time data about mean processing times, arrival rates, and failure rates would
have made the generated results more credible and more manageable for a company
to compare its existing operations with the shop floor evaluated in the simulation
model.

To reduce the impact of this limitation, the layout from the Italian job shop serves as
a baseline. Additionally, each method will experiment with various scenarios based
on educated assumptions about variables like arrival rates, processing times, and
failure rates in cooperation with our supervisors. Although the data basis is limited,
the novelty of CMHS will still benefit from this analysis before moving into an entire
case study.

Although the use of third-party software often leads to a faster development process,
it may also limit the flexibility of customized logic and solutions as the developer
is bounded to the API services provided by the issuer. Even if AnyLogic provides
snippets of Java code, the drag-and-drop palettes on which the model relies are
static classes with few editing possibilities. The user is inevitably dependent on
the provider who can jeopardize the model’s stability, especially when two software
services are intertwined like AnyLogic and Pathmind.

Minor transparency issues have also been encountered with Pathmind. Although
the simple system and techniques utilized are known, the detailed implementation
is not visible as this is the software’s trade secret. This shortcoming is somewhat
insignificant in practice, but it also prohibits us from identifying the exact parameter
values.

Finally, we acknowledge that the solution in this thesis does not guarantee a perfect
simulation model or DRL policy. This perfection requires expert knowledge and
considerable effort so that some elements may have been overlooked.
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Chapter 4
Literature Study Results and
Analysis

A thorough understanding of how I4.0 has influenced the material handling research
field is integral to assess the potential gains from a CMHS (RQ1). Gaining insights
into what areas have received more, some or no attention by researchers allows for a
direct approach where the CMHS is formulated to answer the gaps identified in the
literature. With this process in mind, a literature study has been conducted with
a base footing in I4.0 research relevant to shop floor material handling is presented.
The CMHS is highly technology-dependent, and to understand the influence of I4.0
and CM in material handling, it is necessary to complete the research surrounding
the topic.

Manufacturing has been an established field on its own in the past. Still, technologi-
cal advancements have resulted in a research field that spans a wide range of problem
formulations with a corresponding variety of solutions. The initial research phase
revealed a lack of academic common ground, which necessitated a literature study
to clarify the current state of material handling. Without this understanding, the
theoretical improvements in flexibility and productivity of a CMHS are challenging
to demonstrate. The following section (4.1) presents the results and associated re-
search gaps. Then, the CMHS is discussed regarding these gaps and the theoretical
background knowledge to answer RQ1.
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4.1 Results and analysis

Table 4.1 lists the papers that match the selection criteria, categorized into the
groups presented in 3.1: Cyber-Physical System (CPS), Machine Scheduling (MS),
and Material Handling (MH).

Paper CPS MS MH Comment

Tao et al. 2017 Yes No No CPS architecture

Lee et al. 2015 Yes No No CPS architecture

Zhong et al. 2016 Yes No No CPS architecture, RFID

Liu, L. Wang, et al. 2019 Yes No No CPS/CM literature review

Mourtzis et al. 2018 Yes Yes No RFID, CM, machine opera-
tors

Greis et al. 2019 Yes Yes No RFID, CM, machine opera-
tors

Nielsen, Dang, et al. 2017 Yes No Yes AMR part feeding, CPS

Rahman et al. 2019 Yes No Yes MHE automation, AGV
scheduling

De Ryck et al. 2020 Yes No Yes Centralized vs. Decentral-
ized AGV control

Y. Zhang, G. Zhang, et al.
2015

Yes No Yes Real-time RFID CPS, opti-
mization

Y. Zhang, Zhu, et al. 2017 Yes No Yes CPS architecture, IoT, AGV
control

Yao et al. 2018 Yes No Yes CPS architecture, AGV dis-
patching

Wan et al. 2017 Yes Yes Yes CPS architecture, IoT, AGV
technology

Kumar et al. 2019 Yes Yes Yes Integrated machine and MH
scheduling, AGV automa-
tion

Pakpahan et al. 2018 Yes Yes Yes Integrated job and MH
scheduling

Sahin et al. 2017 No Yes Yes MS+MH, AGV

Nielsen, Do, et al. 2017 No Yes Yes MS+MH, RFID, ’circular’
layout, AGV

Table 4.1: Research papers from the literature study

The I4.0 paradigm is frequently discussed in the literature, covering various in-
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dustrial practices with great results in academic journals and databases. Recent
advancements in cloud technology have spawned the CM paradigm that is aimed
toward manufacturing operations (Li et al. 2010).

A common finding in the literature regarding I4.0 advancements in material handling
is the requirement for a Cyber-Physical System (CPS)—also called a digital twin—
which serves the same purpose as a CM service. The CPS term has been more
frequently used in literature, and although CM is the preferred term for this thesis,
it has been kept in this section to agree with the papers in question. Still, the reader
should know that the research state on CPS’s is relevant for CM, material handling,
and the CMHS.

The CPS topic is still relatively new in the research community and lacks a solid
base of actual implementations by practitioners. Thus, the focus on CPS research
has been mainly on architectures to handle real-time data and support shop-floor
manufacturing. Lee et al. 2015 presented a five-layer CPS architecture as the critical
enabler for an intelligent manufacturing operation. Tao et al. 2017 proposed a CPS
framework that connected the physical and virtual shop floor with a "Shop-floor
Service System," enabled by sensors and other IoT like Radio-frequency identification
(RFID). Similar concepts were also proposed in Zhong et al. 2016 and Liu, L. Wang,
et al. 2019.

There is a clear consensus in all three papers that a CPS enabled by real-time data
and other IoT technology has immense economic potential and will improve decision-
making capabilities and shop floor flexibility on multiple levels. However, the papers
approaching CPS from an architecture perspective marginalizes the inherent risk of
investing in a CPS and does not provide clear guidelines for practitioners.

Moving a level deeper into the CPS and how it can support manufacturing opera-
tions, the question of how to track materials and equipment arises. Mourtzis et al.
2018 used a cloud-based CPS with real-time data capture of part movement with
RFID to perform dynamic job scheduling of sensor-equipped machines. Wan et al.
2017, Kumar et al. 2019 and Pakpahan et al. 2018 investigated the same topic, but
also included material handling in their architecture proposal. Greis et al. 2019
proposed a cloud-based demand-driven solution for scheduling by tracking human
machine operators with RFID in a cellular manufacturing environment resulting in
increased worker utilization and thus reducing the number of workers required to
operate the machine cell.

However, real-time data capture has not been exclusive to manufacturing machines
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to use in job scheduling. The literature study has shown that real-time tracking
of equipment and objects is essential to improve material handling efficiency. The
majority of papers referencing a method for capturing this kind of data uses RFID.
Y. Zhang, G. Zhang, et al. 2015 used RFID to track human-operated trolleys in a
cellular manufacturing environment and optimized material handling by minimizing
carbon emission and travel costs. Y. Zhang, Zhu, et al. 2017 proposed a CPS control
model for material handling that equipped workstations and AGVs with RFID to
enable them to communicate directly. Wan et al. 2017 proposed a context-aware
shop floor control model where RFID was used to report material quantities at each
workstation. Yao et al. 2018 tracked materials with RFID on the shop floor to
optimize the scheduling of AGVs.

RFID has been among the favorite IoT technologies to enable real-time control in
shop-floor manufacturing and material handling. However, RFID has some limita-
tions; for instance, it requires an object to be physically "scanned" to update the
CPS. The technology also struggles with signal distortion and requires a direct line
of sight between tag and receiver (Sgarbossa et al. 2020). A faulty scan can lead to
errors during the pick and delivery of materials and might be costly or cumbersome
to fix. Thus, even though RFID has proven beneficial for manufacturing and mate-
rial handling efficiency, these drawbacks may act as bottlenecks for further flexibility
and productivity improvements on the shop floor.

The MHE is an essential part of any material handling operation, and developments
in automation and robotized technologies have spawned AGVs and AMRs. The
majority used AGVs as MHE of choice to enable automated material handling in
their proposed CPS control model (De Ryck et al. 2020, Y. Zhang, Zhu, et al.
2017, Yao et al. 2018, Wan et al. 2017). Multiple papers were found investigating
algorithms for AGV dispatching, but only Rahman et al. 2019 was chosen because
of the limited relevance to the literature study. The paper proposed a genetic and
greedy algorithm to optimize AGV dispatch in a job shop with a functional layout.
Sahin et al. 2017 and Nielsen, Do, et al. 2017 investigated the integration of MH
and MS, where AMRs were the only enablers of automation.

AGVs and AMRs are very prevalent in material handling research, mainly due to
their inherent automation capabilities that promise increased manufacturing effi-
ciency. However, non-automated MHE is more common among real practitioners.
Although "non-automated" was included as a search term, no research papers were
found that investigated these types of MHE in an I4.0 environment.
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4.2 Research gaps addressed by a CMHS - RQ1

The literature study aimed to answer the following research question:

RQ1 How can a CMHS improve the material handling activities in manufacturing
in terms of flexibility and productivity performance?

The results from the literature study in the previous section indicate that continuous
acquisition of high-accuracy real-time data opens up a new range of possibilities to
explore from a material handling perspective. The CPS is also a frequently discussed
topic, but most academic research has been centered around architectural proposals
that lack clear directions on implementation. The literature study also revealed that
RFID had been the most popular Indoor Positioning Technology (IPT) to track
equipment and material in real-time. The scanning process is a limiting factor as
the position of MHE and materials cannot be tracked passively.

The CMHS solves this issue with an Indoor Positioning System (IPS), where the
MHE and objects are equipped with tags broadcasting their locations to the cen-
tralized cloud-based CPS with high accuracy and frequency. A more detailed ex-
planation of the IPS and IPTs can be found in Sgarbossa et al. 2020, but in short,
it locates objects on the shop floor with triangulation and broadcasts the position
data to the CPS several times per second. This approach allows for a more accurate
and reliable positioning compared to RFID.

The literature study also revealed the importance of a CPS working as a centralized
hub for interconnected equipment and material, acting as an enabler for automation
in shop floor processes. Keeping records updated in real-time reduces the risk of
misplacing or losing items and improves the ability to control the manufacturing
shop floor. Moreover, making the CPS cloud-based improves its computational
capabilities and is a crucial contributor to a scalable CMHS.

As conventional material handling techniques have been based on trial-and-error
methods, the CMHS introduces a way of automating a manufacturing company’s
current MHE. As stated in Section 4.1, a lot of academic research on material han-
dling has been concerned with AGV and AMR implementations, disregarding the
fact that many industrial sectors and companies use non-automated MHE in their
material handling activities.

Combining the theoretical background and the literature study results reveals several
limitations regarding conventional material handling methods and recent Industry
4.0 applications. However, these limitations are more centered around what is not
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current literature’s focal point, like the lack of automation focus for non-automated
MHE. The list below suggests how the features of CMHS can address them:

1. Automation of capabilities for all MHE

2. Increased freedom of movement, not restricted to a predetermined shop floor
area

3. Dynamic dispatching when and where MHE is needed

4. Material flow and layout adaptability

5. Preventing errors in the material picking- and delivering process

6. Smart positioning of idle MHE

Automation of multiple MHE types

The academic community’s response to automation in material handling is seemingly
biased towards investigating how AGVs and AMRs can be used in the CPS and
algorithms to optimize their behavior. It is well known that many manufacturing
companies still use carts, trolleys, and forklifts for their material handling. Replacing
the entire MHE fleet with AGVs is not a sustainable choice from a cost or practicality
perspective in all shop floor environments. Based on the literature study, AGVs
work well when fixed guided paths can be established, but this also limits the shop
floor flexibility as the AGV paths must be reconfigured if changes are made to the
production layout or the material flows.

The CMHS provides a way to automate existing MHE in a manufacturing company
by automating the dispatching process. Depending on the type of material handling
job, the CMHS enables automatic and dynamic selection of the optimal available
vehicle to dispatch. For example, the CMHS will know the difference between a
worker walking on the shop floor with a trolley and a worker with a jack trolley
that can transport pallets. Choosing the right MHE reduces complexity, as multiple
MHE types can operate simultaneously in the manufacturing facility.

Increased freedom of movement

Conventional material handling in high material flow environments has been carried
out by grouping/clustering MHE in groups where they are assumed to be most
useful. In this non-Industry 4.0 environment, the MHE are restricted as they need
to "see" (visually) when a new job is available.
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The CMHS can solve this problem because it centrally manages the location of each
MHE and the material handling jobs. The system introduces a lot more flexibility
and removes the requirement to be in visual contact or restricted to a small area.

Dynamic dispatching

Another benefit of the CMHS is the ability to dispatch MHE while they are on the
move. RFID tags are passive and need to be scanned by a reader to log position
data. The result is a sparsely populated set of data meant to reflect where MHE
are in real-time, making the optimization potential of MHE movement limited. Like
a pipeline of position data, the IPS flows from the shop floor into the cloud engine
continuously. The precision and frequency are very high, and the derived knowledge
of where MHE is located can be leveraged to perform dynamic dispatching.

When the MHE completes a job, it will automatically be registered as available in
the CMHS and made available for dispatch. The literature study has shown that
higher utilization of MHE is an essential contributor to material handling efficiency.
Efficient dispatching is, for that reason, the main objective that needs to be solved
to maximize the potential of a CMHS, which will be the main focus for the rest of
this thesis.

Material flow and layout adaptability

Evaluating process types and choosing a suitable layout has been an essential aspect
of planning a manufacturing facility in the past but is also vulnerable to unpre-
dictable demand and sudden changes (Section 4.1). Reconfiguration of production
equipment and workflows can be a costly undertaking for a manufacturing company.
The CMHS aims to improve material handling such that detailed layout becomes a
less cumbersome process in the future.

Error prevention

As identified in 4.1, manual order picking is prone to common errors, like picking
the wrong material type or material amount and transporting the material to the
wrong location. Occurrences of such errors may be reduced or even eliminated in
the CMHS. Due to the interconnectivity property between materials and equipment
and the highly accurate IPS, the CMHS will assist the MHE in picking the suitable
material with the right amount, transporting it to the right place at the right time
with high accuracy.
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Smart positioning of idle MHE

Another vital element for efficient material handling is to decide where to position
idle MHE. Analogous to the Uber concept, idle MHE can navigate to places on
the shop floor where the expected demand density is highest, i.e., where material
handling jobs most likely occur. This demand-based navigation is enabled by the
real-time positioning data of the MHE and intelligent cloud computing based on
knowledge gained over time. The positioning of other MHE can also be considered to
avoid MHE accumulation in places where the demand is already met. This approach
allows MHE to be proactive even if idle, contributing to increased MHE utilization.

Table 4.2 summarizes current challenges concerning today’s material handling in
manufacturing shop floors, the consequences this leads to, and the corresponding
CMHS capability that may solve these challenges.

Challenge Consequence CMHS capability

Only AGVs have automa-
tion capabilities

Manual solutions have to
rely on outdated conven-
tional assignment methods

Automation capabili-
ties for all MHE

MHE restricted to pre-
defined areas or flows

Low flexibility, increased
risk of bottlenecks

Increased freedom of
movement

Need to return back empty-
handed after completed job

Low resource utilization Dynamic dispatching

Reconfiguration of layouts High reconfiguration costs Operates indepen-
dently of layout

Misplaced materials and
picking errors

Cumbersome reallocation of
materials and risk of stock-
out

Accurate logging of
MH jobs

Idle MHE returning to fixed
idle locations

Longer travel distance to job Dynamic allocation
of idle locations

Table 4.2: Summary of how material handling challenges are
addressed by a CMHS

Summary

The CMHS is a concept combining IPS and cloud technology to track MHE and
objects in a shop floor manufacturing environment. This new paradigm introduces
a new approach to material handling not yet seen in the academic community by
giving MHE increased freedom of movement, automating several MHE types, allow-
ing dynamic dispatching, and a higher degree of integration and flexibility. Many
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challenges have been identified for today’s manufacturing shop floors, and the CMHS
can utilize new technology to cope with these challenges. The literature study has
shown a place for a CMHS in shop floor material handling, but yet to be explored
is how dynamic dispatching can be utilized to the fullest.
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Simulation Results and
Analysis

In this chapter, the results from the simulation scenarios will be presented and ana-
lyzed in succession to form a foundation for discussion of RQ2 and RQ3 in Chapter
6. A recap of the material handling methods used in the analysis is provided, and
the stochastic parameters that define the simulation scenarios are presented. Each
scenario is then explained in detail, along with the generated results and analysis.

5.1 Methods and stochastic parameters

The three material handling methods that have been selected to demonstrate the
capabilities of a CMHS were presented in Section 3.4. The conventional method
aims to mimic non-automated material handling and serves as a base of comparison
for the different CMHS methods that are put to the test (RQ2). Four heuristic
method permutations have also been tested to investigate whether or not a heuristic
method outperforms the Pathmind policy (RQ3). Additionally, some scenarios are
tested with policies trained for other scenarios and investigate if there is a need for
re-training. In total, the methods are summarized in Table 5.1.
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MH method CMHS Characteristic Flexibility # Forklifts

Conventional No Visual contact Low 5
Heuristic STD/NIL Yes Static rule Medium 3
Heuristic STD/CP Yes Static rule Medium 3
Heuristic LWT/NIL Yes Static rule Medium 3
Heuristic LWT/CP Yes Static rule Medium 3
Pathmind policy/policies Yes DRL High 3

Table 5.1: Methods evaluated in the analysis

Based on the shop floor configuration investigated for the scenarios, five forklifts were
needed in the conventional method to maintain visual contact with the workstations.
After simulating the heuristics with the same amount of forklifts, the performance
was not affected considerably compared to a case with three forklifts only. Hence,
the conventional method is evaluated with five forklifts while the CMHS methods
only have three, i.e., a 40% reduction in fleet size.

Each method has been tested for scenarios developed to simulate different load
and stochastic uncertainty levels for the material handling system to handle. The
methods are then evaluated based on their achieved product throughput, meaning
the number of products that complete all process stages and forklift utilization by
running 100 Monte Carlo iterations for each method/scenario combination. The
scenarios have been constructed by assigning parameters to specific values and dis-
tributions. These stochastic parameters are summarized in the list below:

• Hourly arrival rate of product and supply made available at the supermarket.

• Number of products passed through the workstation until maintenance is re-
quired

• Workstation maintenance/repair time

Assigning these parameters to different distributions makes it possible to simulate
different levels of uncertainty on the shop floor. 11 scenarios have been formulated
to capture as many stochastic aspects as possible of the material handling operations
within the scope of this study. First, three scenarios without arrival variability and
workstation downtime were constructed to mimic predictable material flow. Then,
stochastic loads with different levels of variability were introduced to evaluate the
material methods under these conditions. Finally, workstation failures and downtime
were introduced together with stochastic loads to assess its influence on the shop
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floor for each method.

Uncertainty and arrival rate differences due to demand changes and unexpected
workstation failures are chosen as the main stochastic elements for two reasons. First,
as the case study information includes daily material flow data and a workstation
location overview, the most relevant factors are demand- and workstation-related.
These stochastic elements are also easy to implement and configure in the simulation
model such that ensuring replicability over multiple experiments becomes feasible.
One cannot rule out that production companies may have different stochastic pro-
cesses in their facility that are not captured in this thesis. Still, unexpected demand
and production breaks are common in manufacturing and highly correlated to the
system’s productivity (Sajadi et al. 2011).

5.2 Scenarios

The following list is an overview of each scenario:

(sc1) Unlimited product and supply level

(sc2) Flooding non-stochastic load

(sc3) Moderate non-stochastic load

(sc4) Flooding stochastic load

(sc5) High variance stochastic load

(sc6) Supply shortage

(sc7) Moderate stochastic load

(sc8) Flooding stochastic load w/ moderate failure

(sc9) Flooding stochastic load w/ frequent failure

(sc10) Moderate stochastic load w/ moderate failure

(sc11) Moderate stochastic load w/ high frequency failure

5.2.1 Scenario 1 – Unlimited product and supply level

sc1 is the non-stochastic without any arrival rate in the supermarkets or failure rates
in the workstations. New product ready to be distributed to its first production stage
is always available, and the supply pickup supermarket never runs out. This scenario
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makes the shop floor environment predictable, and all workstation and material
handling jobs could, in theory, be pre-planned without the need for re-planning or
scheduling.

Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 60.54 2.837 0.524 0.006
STD/NIL 71.13 2.707 0.975 0.009
STD/CP 71.55 2.743 0.98 0.007
LWT/NIL 70.27 2.799 0.981 0.007
LWT/CP 70.8 2.582 0.983 0.007
Pathmind 59.61 10.459 0.894 0.1

Table 5.2: Results sc1

The conventional and Pathmind methods are evenly matched on product through-
put, while the heuristic methods have a near 100% utilization and even higher
throughput. Pathmind performs worse than anticipated, but the high �Throughput

value might indicate that the learned policy struggles to prioritize what kind of
material handling jobs to execute when the product and supply levels are unlimited.

Pathmind seems to prioritize the dispatching of MHE to the supermarkets with lower
prioritization for products further down the processing stages. The consequence of
this behavior is that the workstation capacity limit is reached, resulting in large
queues. The conventional method can cope with these queues more efficiently as
forklifts monitor all workstations across the shop floor, enabling more responsive-
ness to the queues. High throughput levels for the Pathmind method on par with
the heuristic are achieved in some simulation runs, but the occasional poor result
drastically reduced the average throughput performance.

The throughput deviance between the methods is further manifested by the highly
skewed distribution for the Pathmind method, as depicted in figure 5.1. Although
high performance (from 57 to 69 in total throughput) accounts for 88% of the sim-
ulation runs, extreme outliers significantly affect average performance.
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Figure 5.1: Total throughput histogram for sc1

5.2.2 Scenario 2 - Flooding non-stochastic load

sc2 introduces a constant, non-stochastic arrival rate of 8 products per hour. In
contrast to sc1, this scenario does not have unlimited amounts of products and
supply, but the loads are still high relative to the workstation capacities. Hence,
there is still a risk of flooding the system with products and generate workstation
queues.

Parameter Value

minArrivalRate 8 per hour
maxArrivalRate 8 per hour
arrivalRate constArrival(8) per hour
supplyRate 3*constArrival(8) per hour

Table 5.3: Parameters sc2
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 45.46 7.047 0.458 0.037
STD/NIL 53.57 6.209 0.805 0.051
STD/CP 54.36 5.984 0.829 0.056
LWT/NIL 54.58 7.193 0.829 0.056
LWT/CP 54.79 6.854 0.807 0.06
Pathmind 56.44 6.204 0.809 0.077

Table 5.4: Results sc2

With a reduction in product arrivals, the conventional method has lower through-
put and utilization than the other methods. Furthermore, the Pathmind method
improves its performance drastically compared to sc1 and is on a par with the heuris-
tics. As the number of arrivals reduces, the workstations are flooded to a lesser degree
than in sc1, giving the forklifts more space for strategic positioning and thoughtful
task priorities. This scenario is in favor of more sophisticated knowledge like the
Pathmind method, as substantiated by the measured performance depicted in table
5.4. However, these DRL capabilities are still not remarkably prominent in high
product loads, and the heuristics will still be deemed sufficient in this scenario.

The distribution of total throughput is less skewed for the Pathmind method com-
pared to sc1. However, simulation run outliers that perform considerably lower than
both the conventional method and the heuristics are still observed for Pathmind, as
demonstrated in figure 5.2. These outliers should be taken seriously since the shop
floor greatly benefits stability for the dispatching policy. Simultaneously, as the ma-
terial handling activities are handled by human-operated vehicles, one could argue
that throughput collapses can be detected and manually overridden by the workers.
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Figure 5.2: Total throughput histogram for sc2

5.2.3 Scenario 3 - Moderate non-stochastic load

sc3 reflects a moderate scenario with a medium load of products introduced on
the shop floor, and the material flows are still predictable without any stochastic
elements. ’Moderate’ in this context is related to the workstation capacities specific
to this particular shop floor. Hence, this scenario will rarely encounter any overflow
of products at the workstations.

Parameter Value

minArrivalRate 4 per hour
maxArrivalRate 4 per hour
arrivalRate constArrival(4) per hour
supplyRate 3*constArrival(4) per hour

Table 5.5: Parameters sc3
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 8.91 3.709 0.22 0.024
STD/NIL 10.62 5.701 0.436 0.037
STD/CP 10.11 5.587 0.395 0.038
LWT/NIL 10.63 5.425 0.439 0.039
LWT/CP 10.90 5.896 0.402 0.043
Pathmind 26.51 4.951 0.418 0.054

Table 5.6: Results sc3

With a more controlled flow of products, table 5.6 shows significant improvements
for the Pathmind method with over 197% and 143% increase in total through-
put compared to the conventional and LWT/CP heuristic, respectively. Although
LWT/CP performs slightly better than the other heuristics, no emerging pattern of
dispatch or idle rule that performs best is identified. Furthermore, the heuristics
have marginally higher throughput than the conventional method with considerably
higher �Throughput.

The forklifts’ ability to position themselves strategically becomes increasingly crucial
in this scenario due to the lower product load. The utilization is equal, or even lower
in some cases, for the Pathmind method than the heuristics. This result indicates
that freedom of movement independent of predetermined idle locations is critical
to achieving the highest possible throughput performance. When material handling
jobs are not available at all times, strategic positioning in the idling periods becomes
especially important.

The results are further enhanced by the distribution in figure 5.3. All methods
follow a normal distribution without any extreme outliers. The LWT/CP heuristic
is the only method with a fatter tail to the right of the mean. This observation is
as expected due to the high variance for the heuristic methods.
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Figure 5.3: Total throughput histogram for sc3

5.2.4 Scenario 4 - Flooding stochastic load

sc4 introduces a high load, stochastic arrival rate to the shop floor environment with
the following parameters:

Parameter Value

minArrivalRate 5 per hour
maxArrivalRate 9 per hour
arrivalRate uniformDiscrete(5, 9) per hour
supplyRate 3*uniformDiscrete(5, 9) per hour

Table 5.7: Parameters sc4

The parameters are evaluated with the uniformDiscrete(minArrivalRate,

maxArrivalRate) function where a number in the distribution is returned for each
product. The supply has an arrival rate of 3⇤uniformDiscrete(minArrivalRate,
maxArrivalRate) as supply stockouts aren’t investigated in this scenario.

The high load, stochastic arrival rate introduces the possibility of uneven distribution
of new products on the shop floor, leading to extended pickup and delivery queues
in the workstations. Hence, there is still a risk of flooding the system with products
as in sc2.
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 34.12 16.106 0.391 0.09
STD/NIL 43.48 16.235 0.715 0.152
STD/CP 42.59 16.51 0.687 0.153
LWT/NIL 43.1 15.849 0.719 0.142
LWT/CP 41.98 15.531 0.703 0.147
Pathmind 48.41 8.435 0.687 0.11
Pathmind (sc1) 45.84 12.831 0.707 0.159

Table 5.8: Results sc4

As for the previous scenarios, the conventional method has the lowest average
throughput. Moreover, its utilization is significantly lower than all other methods.
Due to visual contact requirements, combined with an uneven product balance, a
few forklifts may be significant contributors to lower utilization as material handling
jobs occurs less frequently in their predetermined working area.

The heuristics are more or less evenly matched, although we see a slight increase
in total throughput for the STD/NIL heuristic. However, this difference does not
conclude which heuristic is the most suitable in this scenario, as the throughput
deviance is correspondingly higher for the heuristics with higher throughput mean.

The scenario-trained Pathmind policy yields the highest average throughput and a
significantly lower �Throughput compared to the conventional and heuristic methods,
indicating that the policy systematically handles the unpredictable arrivals more
adequately. Low throughput deviation is especially favorable here as stability is
highly appreciated for unpredictable scenarios. The Pathmind policy trained for sc1
also operates well in this scenario, although with a higher �Throughput and slightly
lower throughput.

Comparing the throughput distribution in this scenario to the distribution in sc2,
we see that the introduction of a stochastic element produces a significantly higher
throughput deviation between the Pathmind method and the other methods in sc4;
sc2 gives an increase of 3% in total throughput for Pathmind compared to the
best-performed heuristic, while sc4 produce over 11% throughput increase for the
same comparison. As hypothesized, Pathmind is more superior in a scenario with
unpredictable material flow.
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Figure 5.4: Total throughput histogram for sc4

5.2.5 Scenario 5 - High variance stochastic load

sc5 is an extreme scenario where the shop floor environment is exposed to an overflow
of arrivals with the following parameters:

Parameter Value

minArrivalRate 3 per hour
maxArrivalRate 13 per hour
arrivalRate uniformDiscrete(3, 13) per hour
supplyRate 3*uniformDiscrete(3, 13) per hour

Table 5.9: Parameters sc5

Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 41.06 23.618 0.385 0.143
STD/NIL 47.92 25.491 0.764 0.225
STD/CP 47.46 25.349 0.743 0.241
LWT/NIL 45.19 23.929 0.745 0.217
LWT/CP 46.2 25.482 0.738 0.254
Pathmind 48.75 15.016 0.692 0.199
Pathmind(sc1) 42.78 19.007 0.665 0.244

Table 5.10: Results sc5
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The conventional method is again the worst performer at 41 product throughput,
although this is still better than the performance in sc4. An explanation for this
difference may be that, on average, higher loads of products are injected into the
system. This theory is further enhanced by the notably large �Throughput for the
conventional method.

The best heuristic dispatching rule is STD, suggesting that a distance-based rule is
more applicable in highly stochastic shop floor scenarios. However, the idling rules
seem to have little influence on the overall result.

The Pathmind policy performs marginally better on product throughput compared
to the heuristic methods but has a significantly lower �Throughput value. In a highly
unpredictable shop floor environment, achieving the lowest possible deviation in
throughput per day may have significant value even though the average throughput
is the same.

The importance of low deviation is further enhanced by examining the minimum
throughput value for the methods. For specific simulation runs, both the conven-
tional method and the heuristics fail to throughput a single product during the
eight-hour workday. In contrast, Pathmind produces a minimum of 18 products for
the same scenario. The policy trained for sc1 is not capable of maintaining the same
throughput level and should thus be re-trained.

It is worth noticing that the throughput differences between the CMHS methods are
not as evident in this scenario as in sc4. Due to large arrival deviations and unique
simulation runs through random seeds, finding a dynamic policy that can handle all
possible variations the shop floor may encounter is more complicated.

The distribution depicted in figure 5.5 shows how influencing high-variance stochas-
tic loads have on the performance. When the product arrivals vary from 3 to 13
per hour, some simulation runs will naturally have more significant material flow,
producing higher throughput. As a result, no precise distribution can be detected
for any method.
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Figure 5.5: Total throughput histogram for sc5

5.2.6 Scenario 6 - Supply shortage

sc6 tests the impact of supply shortage on the product arrival rates from sc4. While
the product arrival rate is stochastic, the supply rate is constant, causing stock-outs
in the supermarket resulting in workstations unable to process products.

Parameter Value

minArrivalRate 5 per hour
maxArrivalRate 9 per hour
arrivalRate uniformDiscrete(5, 9) per hour
supplyRate 20 per hour

Table 5.11: Parameters sc6
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 31.75 5.551 0.376 0.033
STD/NIL 42.24 7.452 0.687 0.05
STD/CP 40.07 7.443 0.647 0.052
LWT/NIL 41.35 7.084 0.691 0.053
LWT/CP 40.79 7.888 0.659 0.058
Pathmind 48.65 4.427 0.733 0.058
Pathmind(sc1) 41.38 8.652 0.651 0.094
Pathmind(sc4) 47.29 5.911 0.678 0.065

Table 5.12: Results sc6

With a supply shortage, the conventional method has the lowest product throughput
but with a low deviation. The heuristic methods deliver ten additional products on
average. The STD dispatching rule edges out LWT moderately, and the NIL idling
rule performs best compared to CP. Idling at the nearest idling location seems to
enable a more efficient response to supply shortages.

The Pathmind policy outperforms the other methods by a clear margin depicted by
the low deviation and high utilization. Once again, the low deviation creates a more
stable throughput and is further enhanced by the methods’ minimum throughput
value; 38 for Pathmind, 22 for the STD/NIL heuristic, and 16 for the conventional
method.

Pathmind can react to stock-outs dynamically and prioritize workstations that are
supplied already. The policy trained for sc4 yields the same product throughput as
the scenario trained policy, at the cost of a slight increase in deviation. Acquiring
similar results with a not specifically trained policy for the scenario in question is
highly relevant as re-training can be avoided, which is both cost-effective and time-
saving.
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Figure 5.6: Total throughput histogram for sc6

5.2.7 Scenario 7 - Moderate stochastic load

sc7 has a load of new product arrivals that are more in line with the operating
capacity of the workstations, leading to less congestion and shortages. The scenario
is similar to sc3 in terms of product load magnitude but differs with the stochastic
arrival rate.

Parameter Value

minArrivalRate 3 per hour
maxArrivalRate 6 per hour
arrivalRate uniformDiscrete(3, 6) per hour
supplyRate 3*uniformDiscrete(3, 6) per hour

Table 5.13: Parameters sc7
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 12.94 10.334 0.239 0.072
STD/NIL 17.17 12.872 0.483 0.107
STD/CP 17.38 14.295 0.444 0.12
LWT/NIL 16.82 13.776 0.477 0.129
LWT/CP 19.79 13.495 0.474 0.113
Pathmind 31.5 9.465 0.483 0.12

Table 5.14: Results sc7

The conventional method is again the worst performer, but the difference is lower
than the heuristic methods. The �Throughput is also lower for the conventional
method with an almost constant utilization rate of 24%.

LWT with CP idling rule performs best in the Moderate stochastic load environ-
ment suggesting that a combination of prioritizing products that have waited for the
longest to be picked up leads to gained throughput. Also, positioning idle forklifts
in the most active area of the shop floor seems to be beneficial in this scenario.

The Pathmind method is the best performer in this scenario, yielding more than 11
products compared to the best heuristic method with a low deviation. By inspecting
the methods’ distributions, both the conventional and LWT/CP heuristic are skewed
to the left; 60% and 51% of the simulation runs are below 15 in total throughput,
respectively. In contrast, throughput with the Pathmind method never falls below
15.
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Figure 5.7: Total throughput histogram for sc7

5.2.8 Scenario 8 - Flooding stochastic load w/ moderate fail-

ure

sc8 has the same arrival rate used in sc4 but introduces a reasonable possibility of
workstation failure such that repair or maintenance is required.

Parameter Value

minArrivalRate 5 per hour
maxArrivalRate 9 per hour
arrivalRate uniformDiscrete(5, 9) per hour
supplyRate 3*uniformDiscrete(5, 9) per hour
productsUntilFailure 20 + uniformDiscrete(0, 5) products
timeToRepair 2000 seconds

Table 5.15: Parameters sc8

The time until failure depends on the number of products that have passed through
the workstation. This number is determined by a number varying between 20 and
25 products for each workstation. As a result, approximately four down-periods for
each workstation occurs on average over eight hours. The repair time is set to 2000
seconds (33 minutes).

78



Chapter 5: Simulation Results and Analysis

Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 38.43 14.788 0.382 0.087
STD/NIL 41.52 13.645 0.706 0.118
STD/CP 42.24 13.97 0.634 0.124
LWT/NIL 40.63 15.11 0.698 0.131
LWT/CP 40.27 14.949 0.707 0.137
Pathmind 37.34 9.029 0.706 0.113

Table 5.16: Results sc8

The introduction of workstation failures decreases the throughput gap between the
conventional and heuristic dispatching methods. The STD dispatching rule yields
the best throughput performance and CP positioning of idle forklifts. The differences
are more small yet prominent than most of the scenarios tested previously except sc5
and sc7. The results are inconclusive as to which idle policy works best, indicating
a symbiotic relationship in the dispatching rule-pair.

The Pathmind method performs slightly worse conventional when workstation fail-
ures are introduced. A probable cause is that the training process cannot take the
workstation failures into account before it teaches itself to yield throughput. The
failure rates are throughput-dependent. Thus, at the beginning of the learning phase,
no/few failures occur. The shortcoming is that the trained policy cannot correct this
when flooding arrivals lead to high failure rates.

Figure 5.8: Total throughput histogram for sc8
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5.2.9 Scenario 9 - Flooding stochastic load w/ frequent failure

sc9 has the same arrival rate used in sc4 but introduces the possibility of frequent
workstation failures. Compared to sc8, the likelihood for workstation repair is
almost doubled.

Parameter Value

minArrivalRate 5 per hour
maxArrivalRate 9 per hour
arrivalRate uniformDiscrete(5, 9) per hour
supplyRate 3*uniformDiscrete(5, 9) per hour
productsUntilFailure 10 + uniformDiscrete(0, 5) products
timeToRepair 2000 seconds

Table 5.17: Parameters sc9

Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 37.41 12.465 0.375 0.079
STD/NIL 42.76 12.078 0.67 0.107
STD/CP 41.59 13.87 0.656 0.13
LWT/NIL 42.59 12.256 0.694 0.119
LWT/CP 42.13 12.688 0.67 0.128
Pathmind 38.55 8.421 0.653 0.106

Table 5.18: Results sc9

While the conventional and heuristic methods seem unaffected by the increased
frequency of workstation failures, the Pathmind method responds poorly. The com-
bined effect of flooding product arrivals and high failure rate appears to affect Path-
mind’s throughput performance significantly and may be caused by training bias as
discussed in 5.2.9. The throughput differences between heuristic dispatching rules
seem to diminish as the failure rate increases.
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Figure 5.9: Total throughput histogram for sc9

5.2.10 Scenario 10 - Moderate stochastic load w/ moderate

failure

sc10 has the same arrival rate used in sc7 with a moderate probability of workstation
failure, approximately two times per workstation.

Parameter Value

minArrivalRate 3 per hour
maxArrivalRate 6 per hour
arrivalRate uniformDiscrete(3, 6) per hour
supplyRate 3*uniformDiscrete(3, 6) per hour
productsUntilFailure 20 + uniformDiscrete(0, 5) products
timeToRepair 2000 seconds

Table 5.19: Parameters sc10
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Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 19.52 10.59 0.242 0.067
STD/NIL 22.52 14.978 0.495 0.112
STD/CP 21.35 13.58 0.439 0.104
LWT/NIL 22.63 15.424 0.49 0.114
LWT/CP 23.64 14.174 0.447 0.117
Pathmind 27.08 8.759 0.486 0.119

Table 5.20: Results sc10

The conventional method has the lowest throughput, but the difference to heuristic
methods has decreased, which seems to be a pattern for workstation failures. The
best dispatching rule LWT for both idle rules, but CP is the most suited idling rule
when machine failures occur.

Pathmind is the clear best performer in terms of yielded throughput and deviation.
Workstation failures seem to be reduced when the system load is lower and, to some
extent, matches production capacity.

Figure 5.10: Total throughput histogram for sc10
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5.2.11 Scenario 11 - Moderate stochastic load w/ frequent

failure

sc11 has the same arrival rate used in sc7 with a very frequent probability of
workstation failure, approximately 7 or 8 times per workstation.

Parameter Value

minArrivalRate 3 per hour
maxArrivalRate 6 per hour
arrivalRate uniformDiscrete(3, 6) per hour
supplyRate 3*uniformDiscrete(3, 6) per hour
productsUntilFailure 5 + uniformDiscrete(0, 5) products
timeToRepair 2000 seconds

Table 5.21: Parameters sc11

Method Throughput (pcs/day) �Throughput Utilization (%) �Util

Conventional 17.75 11.643 0.237 0.067
STD/NIL 21.96 13.974 0.465 0.107
STD/CP 22.96 14.011 0.445 0.111
LWT/NIL 22.27 13.34 0.481 0.101
LWT/CP 22.56 14.056 0.444 0.108
Pathmind 27.37 6.961 0.482 0.102
Pathmind(sc10) 26.99 6.625 0.432 0.092

Table 5.22: Results sc11

The same pattern identified in sc8, sc9, and sc10 continues for the performance
difference between the conventional method and dispatching rules. The heuristics
are also evenly matched with STD/CP as the best performer, but with no clear
winner. Increased failure rates seem to even out the possibility of one dispatching
rule-pair beating the others.

The Pathmind policy is the best performer and handles frequent failures well under
moderate load, stochastic circumstances. The deviation is also 50% than the best
heuristic. In addition, the policy trained in sc10 performs equally well, indicating
an ability to operate independently from workstation failure rates by responding to
them dynamically.
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Figure 5.11: Total throughput histogram for sc11
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5.3 Analysis related to RQ2

The simulation model aimed to answer two of the research questions outlined in the
introduction. The second research question was formulated as follows:

RQ2 In what scenarios should a CMHS be applied in manufacturing shop floors
compared to traditional dispatching approaches?

The simulation results clearly show the CMHS’s ability to achieve higher productiv-
ity in terms of throughput compared to the conventional method—regardless of the
dispatching method—while reducing the active fleet size from five to three MHE.
In all the 11 scenarios investigated, there is no single case where the conventional
method performs better than the best CMHS method. The increased freedom of
movement enabled by the IPS and cloud engine allows a lower number of MHE to
cover a larger area, unrestricted by the proximity needed in non-automated conven-
tional material handling.

The CMHS’s capabilities become evident in scenarios where the product loads are
kept in balance relative to the workstations’ capacities. This observation is par-
ticularly prominent for the CMHS supported by reinforcement learning, yielding a
throughput increase of almost 200% for the moderate non-stochastic load introduced
in sc3. The conventional approach struggles with high idle times as the forklifts can-
not contribute where it is needed, and this observation is further supported by the
low MHE utilization in nearly all scenarios investigated.

Simultaneously, the relative gain of a CMHS also seems to diminish as a function of
increased load on the material handling system. sc1 depicts the extreme case where
unlimited amounts of products and supplies are available at all times. Although the
best CMHS method yields a throughput improvement of 18%, the worst-performing
method scores lower than the conventional method. It seems like the load is the
determining factor for the method differences, as the performance gain increases to
24% when moderate load restrictions are introduced (sc2).

As the load uncertainty increases, the CMHS makes more sense, like the results in
sc4 indicate. However, the performance deviation is not as clear when the variance
is extremely high (sc5). The shop floor seems to be in such a chaotic condition
that even the CMHS struggles to adapt to the load changes. Nevertheless, the
conventional method struggles to adapt to changing material flow dynamics more
evidently than the CMHS methods, and the results substantiate the inflexibility of
predetermined working areas. The high throughput deviation for the conventional
method is particularly critical in scenarios where unpredictable flows and sudden
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workstation failures occur, where a considerable amount of simulation runs fail to
produce a single product throughout the eight-hour workday.

The four heuristic methods evaluated in the simulation model have demonstrated
mostly equal performance with a few exceptions. There is no evidence of a dis-
patch/idle rule pair that consistently outperforms the others, but the most common
best performers are LWT/CP (4/11) and STD/NIL (4/11). However, only sc5,
sc7, and sc10 stand out when comparing the differences in total throughput. In
sc10, the introduction workstation failures yields a slightly lower difference between
heuristics compared to sc7.

5.4 Analysis related to RQ3

The third research question was concerned with how the CMHS might benefit from
more sophisticated logic through reinforcement learning:

RQ3 When should reinforcement learning support the decision-making process in a
CMHS for dispatching the material handling activities?

The simulation results have demonstrated that reinforcement learning is superior
to the heuristics for constant and stochastic load scenarios when the workstations
operate within their capacity, reducing the chance of long queues (sc3, sc7, and
sc10). This observation is in line with the general analysis for the CMHS as a
whole; the performance gain is governed by the relation between product load and
workstation capacity.

The introduction of reinforcement learning has significant implications for the fork-
lifts’ productivity. The MHE utilization in sc3 and sc7 are similar for both Path-
mind and the best heuristic, but the former method is far more productive with a
throughput increase of 143% compared to the best-performing heuristic. This re-
sult indicates that Pathmind is better at strategic positioning of idle MHE under
"moderate loads" compared to the predetermined idling areas used by the heuristics.
When material handling jobs are not available at all times, strategic positioning in
the idling periods becomes particularly important.

When the material handling system is flooded with new arrivals, the Pathmind
policy prioritizes the dispatching of MHE to the supermarkets. Under extreme
flooding like in sc1, the Pathmind policy achieves lower product throughput than
the other methods. The relative gap is relatively small for the less severe flooding
scenarios. Hence, heuristic methods are deemed sufficient when the workstations are
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operating close to their maximum capacity.

Pathmind is also able to adapt to stock-outs in supply needed to process products
like the performance in sc6 shows. It identifies which workstation needs to supply
the most and, as a result, enables the shop floor to output more products at a stable
rate. The literature study revealed that delayed or missing products or supplies are
a common cause of problems in shop-floor manufacturing, and the scenario results
indicate that Pathmind can extract a lot out of these situations.

The possibility of workstation failures in high load scenarios seems to reduce Path-
mind productivity further, whereas both the conventional and heuristic methods
have higher throughput in sc8. However, lower product loads indicate that worksta-
tion failures are less frequent, as observed in sc10. Still, the Pathmind performance
is unaffected by a quadruple increase in workstation failures in sc11 and performs
significantly better than the other methods. Hence, the critical takeaway is that
workstation failure has a smaller impact on productivity if the load levels handled
by the Pathmind policy are kept under control.

The simulation analysis also aimed to demonstrate the need for re-training of Path-
mind policies when the stochastic elements in the shop floor changed. Drastic
changes in load parameters yield a worse performance in Pathmind throughput,
facilitating a re-training. However, if the company using this method can quan-
tify the average daily load and variance of time, Pathmind can train the policy to
achieve satisfactory results. sc7 demonstrates this capability as it can handle the
uncertain loads much better than the alternative methods. Hence, using reinforce-
ment learning is further enhanced for moderate load scenarios since re-training can
be avoided.
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Discussion

This thesis is an in-depth investigation of an applied concept utilizing CM and I4.0
technologies in the shop floor environment. Manufacturers are looking to improve
their ability to adapt to changes in demand or unforeseen occurrences in their pro-
duction processes to stay competitive. While many companies still have not digitized
their processes yet, there is a clear consensus that leveraging these technologies is
essential to improve flexibility and, in turn, increase productivity.

The CMHS is proposed as a low-cost, low-complexity solution with the promise
to increase the overall productivity of manufacturing operations from a material
handling perspective. This chapter will discuss the findings from the literature study
and simulation results related to the research questions.

The goal is to clarify the factors a potential adopter of a CMHS needs to consider
when assessing their material handling operation and manufacturing productivity.
Section 6.1 discuss the findings related to RQ1, emphasizing implications the CMHS
has on automation in today’s manufacturing shop floors. Section 6.2 and 6.3 pro-
vides a critical view of the analyzed results in light of RQ2 and RQ3. Practical
considerations for a CMHS implementation is outlined in section 6.4, while section
6.5 intends to support the decision for whether or not to adopt the CMHS. Finally,
suggestions for further work are presented.
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6.1 RQ1 - CMHS and automation

A vital feature of the CMHS is the ability to automate existing, previously non-
automated material-handling equipment. The CMHS gives companies another op-
tion to guided vehicles and robots, as it allows for preserving the previously non-
automated MHE fleet. Humans have a better ability to gather tacit and implicit
knowledge of the patterns in a shop floor compared to AGVs and AMRs. Thus,
rather than replacing the workers, the CMHS equips already capable human opera-
tors with automation abilities. A CMHS implementation would also not require any
changes to manufacturing processes or the shop floor layout.

However, there are also apparent reasons for using automated MHE. Unlike human
workers, such equipment has a higher work capacity to operate the shop floor beyond
the eight-hour workday. Thus, large companies with continuous activity and demand
might not be suited to use humans for their material handling activities. That being
said, the CMHS is still fit to support shop floors where automated MHE are in
use. The necessity of utilizing dispatching methods and tracking both MHE and the
environment is just as relevant for automated MHE as for human workers.

Companies with MHE for different types of material handling may use a hybrid
solution of AGVs/AMRs and non-automated MHE. The implementation barriers
seen in manufacturing companies make it less likely that AGVs or AMRs fulfill all
material handling needs for all companies and that a hybrid solution is therefore
of interest. CMHS also facilitates collaborative automation for all MHE types. By
assigning attributes like weight capacity, vehicle speed, and other factors that play a
role in the dispatching choice, distinguishing which MHE to carry out a specific job
is a straightforward task for the cloud engine. Although there is appealing evidence
for an easy hybrid MHE solution, issues like collision, collaboration, and safety may
occur that are difficult to predict in advance.

The introduction of a CMHS will also impact the influence human workers have on
the decision-making process. The tacit knowledge human workers possess is chal-
lenging to model and measure, and there is a risk that this knowledge may disappear
when the cloud makes all decisions. Even though the transferability between simu-
lation and reality with the CMHS is highly accurate in theory, it is always a risk for
dissimilarities between the model and the real-world environment. How this will af-
fect the overall performance and well-being of the workers are questions that should
be investigated further.
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6.2 RQ2 - Dispatching and productivity

The result analysis from all 11 scenarios favors the implementation of the CMHS
compared to the conventional benchmark in terms of higher product throughput
and efficient MHE utilization. However, the simulation results are obtained from
a case study layout that benefits from the increased MHE mobility as there are
few areas within line of sight of each other. Thus, the results are less conclusive
for layout configurations where the MHE operators can visually observe and use
their experience to know where the next job arrives. Simultaneously, as the CMHS
operates independently of layout configurations, a CMHS implementation would at
the very least be on par with a non-CMHS in terms of productivity and flexibility.
The results of the CMHS predominantly outperform the conventional method, so
one can argue that even such layouts will benefit from the system but with a lower
productivity increase. Hence, the decision for implementing the CMHS boils down
to a cost-benefit trade-off for layouts where visual observation and facility-specific
knowledge are prominent.

The literature study has revealed that a significant motivator behind automation and
digitization in material handling is driven by the intention to increase flexibility and
the ability to respond to unforeseen events in real time. Thus, a dynamic material
handling system should efficiently control the dispatch of MHE jobs and idle areas
on the shop floor. Still, it is equally crucial for manufacturing companies to clearly
understand how stochastic elements influence them in the shop floor environment.

In this thesis, uncertainty and load differences in demand and unexpected worksta-
tion failures were chosen as stochastic elements. One cannot rule out that production
companies may have different stochastic processes in their facility that are not cap-
tured in this thesis. These elements may be business-specific, so the CMHS should
avoid too much generalization and be implemented concerning the company at hand.

Generalized assumptions on what dispatching method to deploy have next to no
value for manufacturing companies looking to extract the most potential from their
CMHS. Thus, the simulation scenarios express the different types of stochastic shop
floors such that companies can use their as-is situation to gauge which dispatching
method works best. The layout and processes in the case study facilitated the use
of MHE-initiated dispatching rules. Different dispatching/idling rules may also be
appropriate for other configurations. For instance, in cases where machine scheduling
is relevant, workstation-initiated dispatching rules can also be investigated.

The dispatching rule heuristics are simple, easy-to-implement approaches that gov-
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ern which MHE is assigned to which job and where it should return to idle. Although
the results are inconclusive on which rule-pair to use, it is evident that the differ-
ences increase with the level of uncertainty as long as the material handling system
is not flooded with products. When there is much available product to handle,
the idle positioning becomes less significant, and the optimal choice of the heuris-
tic rule becomes a zero-sum game. Due to the marginal performance increases and
somewhat inconclusive evidence, companies can be encouraged to use trial-and-error
to find the optimal dispatching rule-pair over time. Regardless of dispatching rule
choice, implementing the CMHS in some way or another is the most decisive factor
to improve material handling productivity.

6.3 RQ3 - Dispatching with reinforcement learning

The results showed significant improvements with the introduction of reinforcement
learning logic for the CMHS in most scenarios. This improvement was not only in
terms of higher throughput and more strategic MHE positioning than the heuristic
methods but also with lower deviations and performance consistency.

Simultaneously, some of the scenarios do not obtain this improvement. The reasoning
behind the priorities made by a reinforcement learning policy is unknown, and no
apparent deficiencies with the Pathmind method are discovered in these scenarios.
These findings reveal one of the significant shortcomings with reinforcement learning;
the actions can be viewed as a black box, which gives difficulties regarding behavior
interpretation and data transparency. Heuristics, on the other hand, are easier to
interpret as the rules are tangible and rigorous. Hence, a heuristic approach may be
the best starting point for the company’s CMHS implementation to evaluate if the
system works in line with its purpose.

The results indicate that reinforcement learning policies seem to handle the stochas-
tic load well, but if the arrivals of new products deployed in the material handling sys-
tem get out of hand, the productivity decreases. There is a possibility of throughput
collapse in these situations where the Pathmind policy achieves considerably lower
throughput relative to the mean. However, a manual override can be implemented
to combat this infrequent issue. Human operators can use their cognitive abilities
to notify the cloud engine and trigger a reset, resulting in expected efficiency.
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6.4 Practical considerations

A company contemplating whether or not to invest in a CMHS would need to con-
sider the practicalities and cost benefits of the system. The literature study and
identified reports from actual manufacturing companies have revealed that the tech-
nologies underlying the concept have reached a level of maturity that would enable
a realistic implementation of a CMHS on a shop floor. Although cloud computing,
third-party software, and real-time indoor tracking have become more accessible in
recent years, the feasibility of a CMHS from a business perspective comes down to
a cost analysis.

The following expense items need to be evaluated to acquire and maintain a CMHS:

• Purchase of an IPS

• Development or subscription/purchase of CMHS software (cloud CPS)

• Implementation and maintenance costs (consulting)

The IPS used in the Logistics 4.0 lab at NTNU cost around 50k NOK for a ⇡ 100m2

area. A CMHS makes more sense in more extensive areas as size can be associated
with a need to automate. Thus, a purchase cost in the 100K-200K NOK range is
a low-end estimate that most potential adopters would need to be willing to invest
in the IPS. Comparing these numbers to estimated purchasing costs of single AGVs
or AMRs (from 100K to 500K NOK), it becomes clear that decision-makers must
decide based on the number of MHE, shop floor size, and cost of labor to operate
non-automated MHE. However, as the number of MHE increases, a CMHS becomes
more sensible from an economic perspective.

Decision-makers must also take costs related to the development or purchase of
CMHS-related software into account. Developing a fully operative CMHS for use
in a single manufacturing company is a costly and perhaps risky endeavor due to
the novelty of the system and the absence of established actors in the IT industry.
On the other hand, there is a possible market segment to provide the CMHS as
a Software-as-a-Service (SaaS) as a "full package" solution. A corporation able to
offer implementation, policy generation, and maintenance would lift the burden of
expertise and risk of the manufacturing companies, but at the expense of increased
purchase/subscription costs. Still, the increases in productivity demonstrated by
the simulation model and automation capabilities without expensive AGVs/AMRs
argue that the CMHS can be an economically viable option in the future.

A proposed strategy for early adopters of the CMHS is to begin by using the low-
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complexity dispatching rules to assign MHE to jobs and, after some time, start
exploring DRL as an option. The Pathmind software used for the policy generation in
this thesis is free of use for small-scale experiments, making it possible to investigate
its potential in the early stages. For larger enterprise implementations, the software
price range from 5000 NOK to 10,000 NOK. Pathmind also necessitates the AnyLogic
simulation software to build and deploy the model in the CMHS, costing at least
20,000 NOK per year.

Quantifying the savings or increased earnings is an intricate process as a CMHS can
be deployed in a diverse set of shop-floor environments. However, fleet size reduc-
tion enabled by a switch from conventional to CMHS methods can yield significant
savings while increasing manufacturing throughput. The simulation results revealed
a 40% reduction in forklifts needed to serve the material handling operation. A
smaller forklift fleet size leads to lower costs, and a CMHS can contribute to a sig-
nificant cost reduction associated with running a fleet of MHE. If a forklift driver
earns 400,000 NOK a year and ten workers are needed to operate five forklifts on
two eight-hour shifts, a reduction from five to three forklifts will save the company
1,600,000 NOK each year. Thus, a company can, with some confidence, expect a
return on their investment in a CMHS.

Summing up the essential cost components related to the CMHS, it is possible
to determine its case-specific applicability with quantifiable variables. In order to
quantify the savings, costs, and earnings related to a CMHS implementation, we
suggest a generalized economic model to calculate the marginal profit expected for a
business, Pb, when switching from a conventional non-automated system to a CMHS.
Note that the equation is not used in the result analysis in the previous chapter due
to limited case data on costs and product prices. With tangible operational cost
parameters for a business, the following equation is proposed:

Pb =
i=nX

i=1

(pi ⇤ [TCMHSi�Topi ])+Cop+CMHE ⇤ (Nop�NCMHS)� (Csw+CIPS+Cc)

(6.1)

Here, pi reflects the marginal profit for a single product in product type i, (TCMHSi�
Topi) is the throughput increase for product type i with a CMHS compared to
current operations, and Cop is cost savings for the alternative operational costs.
CMHE ⇤ (Nop � NCMHS) is the cost savings with a reduced MHE fleet compared
to current operations. Finally, (Csw +CIPS +Cc) is additional CMHS-related costs
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like software subscriptions, physical IPS implementation, and consultant expenses.
Note that the net profit in 6.1 is a measure between CMHS and conventional non-
automated operations. Comparing the CMHS to a system with automated MHE
will make the equation different in terms of MHE price, CMHE .

6.5 CMHS evaluation checklists

The main goal of the research questions posed in this thesis was to identify a set of
guidelines for manufacturing companies and provide them with a tool to evaluate
if a CMHS is suited for their material handling needs. If deemed applicable, the
next step was to identify the required level of dispatching complexity and choosing
between simple dispatching rules and the DRL method. The problem statement was
divided into two parts:

(1) Should the company implement a Cloud Material Handling System?

(2) If so, how sophisticated does the logic need to be to obtain satisfactory results?

Table 6.1 provides a checklist for a company to decide if the CMHS can be helpful in
their operations. If the decision to implement the CMHS is made, Table 6.2 provides
a checklist to see if their manufacturing and material flow characteristics will benefit
from a deep reinforcement learning dispatching policy:
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Situation Yes CMHS

MHE related

Experiencing low MHE utilization and
high idle rates

Enables MHE to take jobs
outside a pre-defined area

AGVs/AMRs lack the capabilities re-
quired in the material handling operation

Workers can operate MHE

A shift to only AGVs/AMRs is too ex-
pensive

CMHS provides a cost-
efficient alternative

Human-operated MHE used together
with AGVs/AMRs

Automation of all MHE
types

Shop floor related

Material handling is required frequently
(> 50 jobs

day
) in the shop floor

Flow is needed to increase
overall productivity

MH jobs spanning an area (> 200m2)
with obstructed views

CMHS enables increases
freedom of movement for
MHE and productivity
increase

Layout are sometimes reconfigured and
material flows can change

Operates independently of
layouts and material flows

Table 6.1: Checklist allowing companies to gain insights
whether they should implement a CMHS to automate their ma-
terial handling operation
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Situation Yes Dispatching method

Constant arrivals of new products Dispatching rules are suffi-
cient. DRL policy is optimal

Unlimited arrivals of new product Dispatching rules perform
best

Able to avoid flooding the shop floor with
new product

DRL works best when the
production facility operates
within capacity

Risk of supply stock-outs DRL adapts well to stock-
outs

Arrivals ranging from no activity to flood-
ing

Dispatching rules are suffi-
cient. DRL policy not worth
the added costs

Frequent stops in production DRL prioritizes well as long
the system is not flooded

Table 6.2: Checklist allowing companies to determine if their
operations will benefit from DRL

6.6 Further work

This thesis is the first practical investigation for using a CMHS regarding MHE
flexibility and productivity in a manufacturing shop floor. Although the results
provide manufacturing companies with pointers on when and how to implement the
CMHS, the concept is still in its infancy, and further work is needed.

The information and data basis used for the simulation model is limited due to
corporate confidentiality. Future validation and evaluation of the CMHS should be
tested in a more practical business case, where real-time data about variables like
processing times, arrival rates, and failure rates lays the basis of comparison.

Section 6.4 has given a rough estimate of the costs and savings that follows with
a CMHS implementation. A generalized economic model is proposed, but these
are estimates that are closely linked to the specific manufacturing processes and
material handling operation of each company. Thus, a product earnings increase is
only valuable to estimate using prices from the company in question. Extracting key
operation parameters reduces the number of assumptions needed and can support a
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rigorous cost model development.

The investigation should be executed both through simulation and a physical CMHS
implementation to confirm that the transferability between simulation and reality is,
in fact, as accurate as this thesis indicates. Additional parameters that may affect
the variability and uncertainty for the material handling activities are also relevant
to implement following the present business case.

The simulation model only considers forklifts as the only MHE. The possibility of
having mixed types of MHE in the fleet can be of great interest for companies
reluctant to replace an existing MHE fleet or companies that need both human
workers and automated vehicles to perform their day-to-day operations. Hence,
incorporating multiple MHE types in the examination should be done in practice to
investigate the interaction between humans and AGVs/AMRs.

Further investigation should also consider material handling and production schedul-
ing in combination. The products in the example environment used in this thesis
moved through three workstations in a predefined order. When considering a large-
scaled environment, products may have multiple workstations performing the same
tasks. There is a possibility of extending the dispatching policy/rules to contem-
plate machine scheduling regarding queue lengths, machine utilization, and other
parameters relevant to overall productivity performance.

Reinforcement learning has proved to be a highly appropriate extension to the dis-
patching methods in the CMHS. The use of this particular machine learning method
is further justified in literature, where multiple machine learning approaches for dy-
namic dispatching in material handling are tried out. However, as the CMHS is a
relatively new concept, these approaches are not directly transferable to the CMHS.
Hence, further work should include other types of machine learning approaches.
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With the introduction of Industry 4.0 technologies, manufacturers seek new oppor-
tunities to improve material handling in terms of flexibility and productivity by
automating material handling activities. Few attempts have been made to auto-
mate manufacturing shop floors dominated by human-operated vehicles like forklifts
and pallet trucks. This thesis investigates how real-time positioning of material-
handling equipment (MHE) can enhance automation capabilities for non-automated
MHE through a Cloud Material Handling System (CMHS) concept.

A literature study was conducted to identify research gaps addressed by a CMHS and
how its capabilities can improve the material handling activities in manufacturing.
The results show that CMHS addresses several aspects in combination not yet seen
in academia, like automation capabilities of all MHE types, dynamic dispatching and
allocation of idle locations for the MHE, and universal implementation independent
of layout configuration.

A simulation model based on a case study was developed to determine in what scenar-
ios the CMHS proved to be particularly beneficial. A conventional non-automated
case, where visual line-of-sight to job arrivals was a prerequisite, served as a bench-
mark. The scenarios differed in variable product arrival rates, stochastic product
loads, and uncertain workstation failures. Out of the 11 scenarios investigated, the
CMHS achieved both higher throughput and MHE utilization for all cases with a
40% reduction in the number of MHE required. Most prominent were scenarios
with moderate, non-stochastic loads with a throughput increase as much as 197%,
suggesting that the CMHS particularly applies for shop floors where product loads
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are kept in balance relative to the system’s capacity.

The simulation model also aimed to determine when sophisticated reinforcement
learning policies further enhanced the CMHS implementation. The reinforcement
learning method performed better than the heuristic methods in 8 out of 11 sce-
narios, often with significantly lower throughput deviation. These scenarios were
characterized by moderate product loads and variable arrival rates, suggesting that
reinforcement learning is more appropriate in these scenarios. However, as the shop
floor was exposed to high product loads, which resulted in long workstation queues,
the policy struggled notably with extreme throughput outliers. Hence, the heuristics
were deemed sufficient in such scenarios.

This thesis is the first attempt to investigate the impact of a CMHS on the manufac-
turing shop floor. Further work should explore the CMHS from a cost perspective
through a practical business case.
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Appendix A
How to run the simulation model

This repository (https://github.com/augustdahl/master) is made in connection
with our master’s thesis in Engineering and ICT at NTNU. Please follow the in-
structions below to run the simulation model:

1. Download the AnyLogic University version (free 30-day trial): https://www.
anylogic.com/downloads/

2. Download this repository as a zip file and un-zip the folder in your preferred
location

3. Open AnyLogic University and the MasterThesis.alp file (located in /master/-
MasterThesis/MasterThesis.alp)

4. Navigate to the Monte Carlo Experiment (MC: Main) and run the file

5. Choose one method (Conventional, Pathmind, Heuristic) and one of the 11
scenarios on the left-hand side

6. If the heuristic method is chosen, you are free to choose one of the four pick-
up/release policy combinations listed. Note that the pickup/release policy is
only available for the heuristic method

7. Start the experiment in the bottom left corner. The performance statistics will
appear in the histograms

8. If you want to compare different methods, you can do the following:
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Chapter A: How to run the simulation model

• Wait until the first experiment is finished

• Click on the pause button in the bottom left corner

• Change to the method you want to compare with and run the experiment
again

It is also possible to run a single simulation run to analyze the forklifts’ behavior.
To do this, you follow the same procedure as above, but now with the Simulation
Experiment class (Simulation: Main).
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