
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Caroline Bakkene
M

aster Thesis, N
TN

U
 2021

Caroline Bakkene

Optimization of a Convolutional
Neural Network for Classification of
Radar Signals

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Torbjørn Karl Svendsen
Co-supervisor: Jon Alm Eriksen

June 2021

M
as

te
r’s

 th
es

is





Caroline Bakkene

Optimization of a Convolutional
Neural Network for Classification of
Radar Signals

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Torbjørn Karl Svendsen
Co-supervisor: Jon Alm Eriksen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Preface

This thesis is the final project in the Master of Science (MSc) degree in
Electronics Systems Design and Innovation at the Norwegian University of
Science and Technology. The master thesis was carried out during the spring
of 2021 in collaboration with Novelda.

I would like to thank my supervisors Torbjørn Karl Svendsen at NTNU,
and Jon Alm Eriksen from Novelda for their supervision and help structur-
ing this work process. I would also like to thank Novelda for giving me the
opportunity to collaborate with them for my master thesis, and for providing
the data sets used to train and evaluate the neural networks.

Trondheim, 11.06.2021

Caroline Bakkene

i





Abstract

Novelda’s Ultra Wide Band (UWB) radar is able to detect human presence by
observing small movements, like breathing and heartbeats. This radar tech-
nology has many possible areas of application, and is among other things
used in computers to implement touch-free log-in. The radar will reduce the
energy used by the computer and increase the security by automatically log
off when the user is leaving. To make sure the radar is behaving optimally,
it should be able to classify whether or not there is human presence in the
detection range by using information from the radar. Applying convolutional
neural networks to solve classification problems can be beneficial. When us-
ing neural networks, the choice of hyperparameters can make a significant
impact on the final performance.

This thesis studies the possibility to apply hyperparameter optimization to
develop neural networks with improved accuracy and performance. Two
different approaches were tested for the hyperparameter optimization, both
using the same search space. A genetic algorithm was implemented, and sev-
eral model structures were compared using this algorithm. This algorithm
was used to search for the optimal hyperparameters for a set of defined mod-
els. The Python library Keras Tuner that uses the Hyperband algorithm for
optimization was also implemented and compared to the genetic algorithm.

The results indicate that the best performance was achieved using two dropout
layers with a rate of 0.5, in addition to a Max-pooling layer. When using
the genetic algorithm to search for the optimal hyperparameters, the model
achieved a validation loss of 0.168 and a true positive rate (Sensitivity) of
0.82 for a given false positive rate (Specificity) of 0.01. When using the
Hyperband algorithm, those values were respectively 0.156 and 0.83.

iii





Sammendrag

Noveldas ultrabredbåndsradar kan oppdage menneskelig tilstedeværelse ved
å detektere svært små bevegelser, slik som pusting og hjerteslag. Denne
radarteknologien har mange mulige bruksområder, og blir blant annet benyt-
tet i datamaskiner, for å implementere berøringsfri innlogging. Radaren vil
redusere datamaskinens energiforbruk og øke sikkerheten ved å logge av når
brukeren beveger seg vekk fra maskinen. For å være sikker på at radaren
fungerer optimalt, bør den være i stand til å bruke innhentet informasjon til
å klassifisere om det er menneskelig tilstedeværelse eller ikke i radarens dekn-
ingsområde. Det kan være nyttig å bruke konvolusjonelle nevrale nettverk til
å løse slike klassifiseringsproblemer.

Denne avhandlingen undersøker mulighetene ved å benytte hyperparam-
eteroptimalisering til å utvikle nevrale nettverk med høy nøyaktighet og
ytelse. To forskjellige tilnærminger for hyperparameteroptimalisering ble
testet med det samme søkeområdet. En genetisk algoritme ble implementert,
og flere ulike modellstrukturer ble sammenlignet ved hjelp av denne algorit-
men. Denne algoritmen ble også brukt til å søke etter optimale hyperpa-
rametere for et sett med modeller. Biblioteket Keras Tuner i Python, som
bruker Hyperband som algoritme for optimalisering, ble også implementert
og sammenlignet med den genetiske algoritmen.

Resultatene viser at den beste ytelsen ble oppnådd ved bruk av to dropout-
lag med rate 0.5, i tillegg til ett Max-pooling-lag. Ved å benytte den genetiske
algoritmen til å søke etter optimale hyperparametere, oppnådde den et valid-
eringstap på 0.168, og en sann positiv rate (sensitivitet) på 0.82 for en gitt
falsk positiv rate (spesifisitet) på 0.01. Ved å benytte Hyperband som algo-
ritme, ble disse verdiene henholdsvis 0.156 og 0.83.

v





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 Ultra Wide Band Radar . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Novelda’s UWB Radar . . . . . . . . . . . . . . . . . . 4
2.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Introduction to Artificial Neural Networks . . . . . . . 5
2.2.2 Convolutional Neural Networks . . . . . . . . . . . . . 6

2.3 Training Neural Networks . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Activation Functions . . . . . . . . . . . . . . . . . . . 8
2.3.4 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Techniques and layers in CNNs . . . . . . . . . . . . . 11

2.4 Classification evaluation . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Sensitivity and Specificity . . . . . . . . . . . . . . . . 15

vii



2.4.3 Receiver Operating Characteristics (ROC) . . . . . . . 15
2.4.4 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . 16

2.5 Hyper Parameter Optimizing . . . . . . . . . . . . . . . . . . 17
2.5.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Hyperband Algorithm . . . . . . . . . . . . . . . . . . 19

3 Methods 20
3.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Pre-processing of data . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Tensorflow and Keras . . . . . . . . . . . . . . . . . . . 22
3.3.3 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Keras Tuner . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Optimization of hyperparameters . . . . . . . . . . . . . . . . 23
3.4.1 Search space . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Initial hyperparameters . . . . . . . . . . . . . . . . . . 24

3.5 Architecture search . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Initial architecture . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Exploring CNN architectures . . . . . . . . . . . . . . 27

3.6 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 System setup . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.2 Multiple models . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Keras Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Test and Results 31
4.1 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Optimization of the Architecture . . . . . . . . . . . . . . . . 32

4.2.1 Test of Initial Model . . . . . . . . . . . . . . . . . . . 33
4.2.2 Effect of Dropout layer . . . . . . . . . . . . . . . . . . 34
4.2.3 Effect of L2 Regularization . . . . . . . . . . . . . . . . 37
4.2.4 Combination of Regularization Techniques . . . . . . . 40
4.2.5 Max-Pooling layers . . . . . . . . . . . . . . . . . . . . 42

4.3 Hyperparameter Search . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 The Optimized Architecture . . . . . . . . . . . . . . . 46
4.3.2 Hyperparameters Using Genetic Algorithm . . . . . . . 46
4.3.3 Hyperparameters Using Keras Tuner . . . . . . . . . . 48

viii



5 Discussion 56
5.1 Results Architecture search . . . . . . . . . . . . . . . . . . . 56

5.1.1 Initial model . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Max-Pooling . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Results Hyperparameter Search . . . . . . . . . . . . . . . . . 58
5.2.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Keras Tuner (Hyperband) . . . . . . . . . . . . . . . . 58
5.2.3 Comparison of the two algorithms . . . . . . . . . . . . 59
5.2.4 Converging Loss . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Exploration of other Architectures . . . . . . . . . . . . 62
5.4.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 62
5.4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion 64
6.1 Results and Methods . . . . . . . . . . . . . . . . . . . . . . . 64

A Confusion Matrices Architecture Search 68
A.1 Effect of Dropout . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Effect of L2 Regularization . . . . . . . . . . . . . . . . . . . . 70
A.3 Combination of Regularization Techniques . . . . . . . . . . . 71
A.4 Max-Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . 72

B Hyperparameter Search 73
B.1 Using Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . 73

B.1.1 Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.1.2 Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.1.3 Test 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Using Keras Tuner . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2.1 Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2.2 Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.2.3 Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



List of Figures

2.1 Feedforward ANN with one hidden layer. Figure modified
from [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A simple CNN architecture. Modified figure from [8] . . . . . 6
2.3 ReLU function . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Dense layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 3x1 Max-Pooling . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Neural network after applying dropout . . . . . . . . . . . . . 13
2.9 The effect of using a dropout layer. Plot from the project. . . 14
2.10 ROC curve from project . . . . . . . . . . . . . . . . . . . . . 16
2.11 Confusion matrix from project . . . . . . . . . . . . . . . . . . 17
2.12 Genetic algorithm. Figure modified from [4] . . . . . . . . . . 19

3.1 Visualization of the data representing the classes Presence and
No presence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Initial CNN model . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Implementation of hyperparameter optimization using GA . . 28

4.1 Initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Validation loss vs epochs for the initial model. Smoothed

graph to the right. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Validation loss vs epochs for different dropout rates. Smoothed

graph to the right. . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 ROC curves (log and normal) for different dropout rates . . . 35
4.6 Validation loss vs epochs for different L2 regularization strengths.

Smoothed graph to the right. . . . . . . . . . . . . . . . . . . 38
4.7 ROC curves (log and normal) for different L2 regularization

strengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



4.8 ROC curves (log and normal) for different combinations of L2
and dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Validation loss vs epochs for combinations of L2 and dropout.
Smoothed graph to the right. . . . . . . . . . . . . . . . . . . 42

4.10 Validation loss vs Epochs for different combinations of Max-
Pool and Dropout. Smoothed graph to the right. . . . . . . . 44

4.11 ROC curves (log and normal) for different combinations of
Max-Pool and Dropout . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Optimized CNN architecture . . . . . . . . . . . . . . . . . . . 47
4.13 Loss vs Epochs for hyperparameter search using Genetic Al-

gorithm. Smoothed graph to the right. (Test 3) . . . . . . . . 49
4.14 ROC curves (log and normal) for hyperparameter search using

Genetic Algorithm (Test 3) . . . . . . . . . . . . . . . . . . . . 50
4.15 Confusion matrix for hyperparameter search using Genetic Al-

gorithm (Test 3) . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.16 Loss vs Epochs for 150 epochs using the genetic algorithm.

Smoothed graph to the right. . . . . . . . . . . . . . . . . . . 52
4.17 Loss vs Epochs for hyperparameter search using Keras Tuner.

Smoothed graph to the right. (Test 4) . . . . . . . . . . . . . 53
4.18 ROC curves (log and normal) for hyperparameter search using

Keras Tuner (Test 4) . . . . . . . . . . . . . . . . . . . . . . . 54
4.19 Confusion matrix for hyperparameter search using Keras Tuner

(Test 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Confusion matrices for variations of Dropout rates . . . . . . . 69
A.2 Confusion matrices for variations of L2 regularization strengths 70
A.3 Confusion matrices for combinations of regularization techniques 71
A.4 Confusion matrices for combinations of max-pooling and dropout 72

B.1 Loss vs Epochs for hyperparameter search using Genetic Al-
gorithm. Smoothed graph to the right. (Test 1) . . . . . . . . 74

B.2 ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 1) . . . . . . . . . . . . . . . . . . . . 75

B.3 Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 1) . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.4 Loss vs Epochs for hyperparameter search using Genetic Al-
gorithm. Smoothed graph to the right. (Test 2) . . . . . . . . 77

xi



B.5 ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 2) . . . . . . . . . . . . . . . . . . . . 78

B.6 Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 2) . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.7 Loss vs Epochs for hyperparameter search using Genetic Al-
gorithm. Smoothed graph to the right. (Test 4) . . . . . . . . 80

B.8 ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 4) . . . . . . . . . . . . . . . . . . . . 81

B.9 Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 4) . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.10 Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 1) . . . . . . . . . . . . . 83

B.11 ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 1) . . . . . . . . . . . . . . . . . . . . . . . 84

B.12 Confusion Matrix for hyperparameter search using Keras Tuner
(Test 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.13 Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 2) . . . . . . . . . . . . . 86

B.14 ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 2) . . . . . . . . . . . . . . . . . . . . . . . 87

B.15 Confusion Matrix for hyperparameter search using Keras Tuner
(Test 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.16 Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 3) . . . . . . . . . . . . . 89

B.17 ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 3) . . . . . . . . . . . . . . . . . . . . . . . 90

B.18 Confusion Matrix for hyperparameter search using Keras Tuner
(Test 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



List of Tables

3.1 Sizes of the provided data sets. . . . . . . . . . . . . . . . . . 21
3.2 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Results: Accuracy, Loss and TPR using the initial model . . . 33
4.2 Results: Accuracy, Loss and TPR for different dropout rates . 35
4.3 Results: Accuracy, Loss and TPR for different L2 regulariza-

tion strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Combination of regularization techniques used for each model 40
4.5 Results: Accuracy, Loss and TPR for different combinations

of L2 and dropout . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Different locations and number of Max-Pooling layers for each

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Results: Accuracy, Loss and TPR for the Max-Pooling . . . . 43
4.8 Hyperparameters found using the genetic algorithm . . . . . . 48
4.9 Results: Accuracy, Loss and TPR for the hyperparameter

search using GA . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Hyperparameters found using Keras Tuner . . . . . . . . . . . 49
4.11 Results: Accuracy, Loss and TPR for the hyperparameter

search using Keras Tuner . . . . . . . . . . . . . . . . . . . . . 50

xiii



Abbreviations

ANNs Artificial Neural Networks.

CNNs Convolutional Neural Networks.

FPR False Positive Rate.

GA Genetic Algorithm.

MSE Mean Squared Error.

ReLU Rectified Linear Unit.

RNNs Recurrent Neural Networks.

ROC Receiver Operating Characteristics.

SGD Stochastic Gradient Descent.

TNR True Negative Rate.

TPR True Positive Rate.

UWB Ultra Wide Band.

xiv



Chapter 1

Introduction

This chapter will introduce the motivation for this project and why it is a
necessary field to study. A thorough description of the problem this thesis
aims to solve will be presented. Previous work in the field of hyperparameter
optimization will be discussed, as well as the development of classifiers used
in Novelda. Finally, the outline of the report is presented.

1.1 Motivation
The use of machine learning and artificial neural networks are increasing,
and the need for optimization methods is getting more important. A manual
selection of hyperparameters for a network is challenging due to the high
number of possible combinations. This will result in a random search, where
experience from previously developed models is useful. For some systems
the requirements for security and accuracy are high, and it is important that
security breaches are avoided. To achieve the highest possible accuracy, an
extensive numbers of hyperparameter combinations should be tested. To
achieve this, algorithms that helps choose a set of optimal parameters that
minimizes a given loss function for a neural network is beneficial.

1.2 Problem Description
Novelda’s ultra wide band (UWB) radar is designed for detection of human
presence in a room. It is able to detect breathing from humans and animals.
This application is promising reliable precision and improved security. For

1



Novelda it is therefore important to be able to deliver a product that the
costumers can rely on every time.
The objective of this master thesis was to explore hyperparameter optimiza-
tion for a classifier. This includes some pre-processing of provided data, and
the design and implementation of a convolutional neural network. Using op-
timization, this project aims to achieve the lowest possible validation loss
and the highest positive True Positive Rate for a given False Positive Rate.
The True Positive Rate was used as a metric due to the security Novelda
promises their costumers. Novelda’s radar detects human presence, and this
project will focus on improving the no presence category. As long as there
is no actual human presence in the room, the radar should not detect any
presence.

With exception of a couple of earlier master theses, Novelda has not per-
formed any research of classifiers earlier. It will therefore be interesting to
explore how well a classifier is performing on their radar data.

1.3 Previous Work
Multiple theses have been performed in collaboration with Novelda. [1] was
a master thesis conducted in the fall of 2016. This project aimed to reduce
wrongly classified objects with a Doppler spectrum that is similar to the hu-
mans respiration, such as oscillating fans and roof-lamps. The results of this
thesis is very encouraging, and it suggest that future work should include
exploration of deeper convolutional networks. [2] is another master thesis
that was carried out in collaboration with Novelda, in the spring of 2018. It
focused on the classification of radar signals, where the classifier should be
able to separate humans from animals.

In the field of hyperparameter optimization, much research has been per-
formed in recent years. [3] describes several optimization algorithms and
search components. Some of the optimization methods that are mentioned
are evolutionary algorithms, ant colony optimization and particle swarm op-
timization. These are all Population based metaheuristics that focuses on
improving a population. This research also focuses on the components of
optimization algorithms and the importance of the search space. [4] uses an
enhanced genetic algorithm for optimizing neural networks. This enhance-

2



ment was based on the use of mitochondrial DNA in combination with a
genetic algorithm. This resulted in an improved exploration and exploita-
tion of the solution space. [5] discuss different approaches for hyperparameter
optimization and neural architecture search. These approaches includes gra-
dient based methods, population based methods, and Bayesian optimization.
The aim of this paper is to discover more efficient methods for model configu-
ration, including both hyperparameter optimization and neural architecture
search.

1.4 Outline
Chapter 2 presents background theory that is useful for understanding the
development, training and evaluation of neural networks. It also provides
some theory of hyperparameter optimization, and the belonging algorithms.
The third chapter cover the methods used to solve the project, and some
information about the software used. In chapter 4, the results of the project
are presented. These results are discussed further in chapter 5, together with
suggestions for further work. Finally, in chapter 6, a conclusion of the work
and result are presented.

3



Chapter 2

Theory

This chapter will present some background theories that are useful for this
project. It is assumed that the reader has basic understanding of mathemat-
ics, signal processing and machine learning. This chapter will mainly cover
the methods that are used in the project. It will also give a brief description
of some other important methods.

2.1 Ultra Wide Band Radar
Ultra Wide Band (UWB) uses wide bandwidth for short-range communi-
cation, and operates using radio waves. The bandwidth of an UWB should
exceed 500 MHz and have a maximum power spectral density of 75 nW/MHz.
Compared with the traditional narrowband signals, the UWB offers low cost,
low energy consumption and high capacity. The sensor technology that is
using UWB, is commonly used in areas such as surveillance and medical
supervision. [6]

2.1.1 Novelda’s UWB Radar

The information about the UWB radar that the data in this project is col-
lected from, is described on Novelda’s homepage [7]: "Our groundbreaking
innovation is an UWB short-range impulse radar transceiver System on Chip
(SoC). Designed for human presence detection in indoor applications, it of-
fers product innovators a unique combination of reliable sensing precision
and unobtrusive, intelligent functionality."

4



Using the micro-Doppler effect, the radar is able to detect very small move-
ments, even breathing and heartbeats. It has a high distance accuracy of
approximately 1cm and a resolution of approximately 10cm within a range
of ten meters.

2.2 Neural networks

2.2.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) are models that are designed to simulate
the human brain with a large number of neurons that transmits signals to
each other. These models can be used to solve several problems in machine
learning, including regression and classification. ANNs are built by using
multiple connected layers of neurons. A neural network consists of an input
layer, an output layer, and one or more hidden layers. The networks where
the data is passed from one layer to the next layer are called a feedforward
network as illustrated in figure 2.1. Some networks have feedback loops where
the data also are passed backwards in a loop. These networks are called
Recurrent Neural Networks (RNNs).

Figure 2.1: Feedforward ANN with one hidden layer. Figure modified from
[8]

5



An ANN is created by designing an architecture for the network, and then
training it by using a data set with training data. The training data that is
used in machine learning consists of pre-labeled data. A separate validation
and test dataset will determine the accuracy of the network.

[8] gives a thorough description of ANNs and deep learning, and the
theory presented in this chapter will mainly be based on this book.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are well suited for classification prob-
lems. In convolutional networks, all the neurons in the first layer are not
connected to all the hidden neurons in the next layer. A small field of the
input is connected to one neuron in the first hidden layer. This field is called
the receptive field for that specific hidden neuron. A hidden layer consists
of multiple channels where each channel will be searching for one specific
feature in the input data. This means that every neuron in a channel has
the same parameters and weights.

CNNs are mainly built of convolutional layers, pooling layers and dense lay-
ers, as shown in figure 2.2. These layers will be described in ch. 2.3.5.

Figure 2.2: A simple CNN architecture. Modified figure from [8]

6



2.3 Training Neural Networks

2.3.1 Loss Function

ANNs use loss functions, also called cost functions, to evaluate how well the
neural network is performing while the model is trained. The loss functions
measure the difference between the true and predicted value. The values
provided by the output layer are used to calculate the loss. Two of the most
common loss functions are the Mean Squared Error (MSE) and the cross-
entropy.

The MSE is given by eq. 2.1. The total number of inputs is represented
by n, y is the true value, while a represents the value predicted by the net-
work. Ideally should y = a, which would indicate that the model returns the
correct value. The MSE loss function is mainly used for regression problems.

C =
1

2n

∑
x

||y(x)− a||2 (2.1)

The cross-entropy loss function is defined by 2.2, and it is well suited
for classification problems. It calculates the difference from the predicted
probability to the true values. The output value is therefore in the range
[0,1], and a value close to 0 is preferred as this indicates that the predicted
output is close to the true output.

C = − 1

n

∑
x

[y ln a+ (1− y) ln (1− a)] (2.2)

Training loss and validation loss

During training of a network, the loss function is used to calculate the perfor-
mance of the network. The training loss is calculated during training using
the training data set, and indicates how well the model’s prediction was on
the same data it is trained with. The training loss will decrease over time
when the model is learning more. The validation loss is calculated in the
same way during training, but is using a different data set. The validation
loss will therefore give an indication on how well the model is performing
when presented with new data. For a perfectly designed and trained model,
the validation loss should be equal to the training loss.

7



2.3.2 Optimization

Gradient Descent

Gradient descent is an optimization method that is used to minimize the
loss of the network. The learning algorithm will find a set of weights and
biases that will provide the lowest possible loss. This is done by computing
the gradient for the loss function and then use this result to change the
parameters.

Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) computes the gradient descent for
small batches of input data, this is called mini-batch. Using small batches
of random input data will make the learning more effective and faster. The
SGD method will use short time to give a good estimate for the gradient.
This will result in the network learning fast and providing an accurate result.

Adam

The Adaptive Moment Estimation, also called Adam optimization, is an ef-
ficient stochastic optimization method. It combines the best features from
the AdaGrad and the RMSProp methods. The advantage of AdaGrad is the
ability to deal with sparse data, while the RMSProp is suited for stochas-
tic objectives. The Adam optimization method is based on the individual
computation of learning rates for the different parameters. The Adam opti-
mization method requires less memory than other methods, and does only
use first-order gradients. [9] shows that Adam is a robust method and is
applicable for a wide range of optimization problems.

2.3.3 Activation Functions

The activation function in machine learning is the function that decides how
the output of the current layer should be presented. It calculates a weighted
sum of the input and adds a bias to it. This can be done to achieve non-
linearity between the input and the output, as most of the activation func-
tions are non-linear. The choice of activation functions is important as it
decides what kinds of predictions the model can make. [10] describes some
of the most common activation functions.

8



Rectified Linear Unit

The Rectified Linear Unit (ReLU) activation function is a non-saturating
activation function. It does also avoid the vanishing gradient problem, which
could be an issue for the sigmoid function. When using ReLU, not all neurons
are activated at the same time which makes it more effective than other
activation functions. The ReLU function is given by equation 2.3:

f(x) = max(0, x) (2.3)

The output of the function is zero if the weighted input is negative, and
for a positive input it will output the input value directly. The ReLU is a
common activation function that is used in most kinds of neural networks.
The ReLU activation function is illustrated in figure 2.3.

Figure 2.3: ReLU function

Sigmoid and Softmax

For classification problems, the sigmoid or the softmax activation function
are mainly used in the output layer. The sigmoid function will give outputs

9



between 0 and 1 which represent the probability for each class. The sigmoid
function is showed in figure 2.4, and its function is presented in eq. 2.4

σ(z) =
1

1 + e−z
(2.4)

The softmax function will also give outputs between 0 and 1, but those
values will always sum to one. This means that the outputs of the softmax
function are related, and will also give the probabilities for each class. The
softmax function is mainly used for multiclass classification while the sigmoid
is used for binary classification. It is given by the function presented in eq.
2.5. K is the number of classes in the classifier and zi are the input values to
the softmax function. Normalization of the values is performed by using the
denominator in this expression.

σ(z)i =
ezi∑K
j=1 e

zj
(2.5)

Figure 2.4: Sigmoid function

10



2.3.4 Overfitting

A network is presented with a given dataset during training, and it will often
provide good results using this data. This doesn’t necessary indicate that it
is a good model. The performance of the model is dependent of how general-
ized it is, and its ability to adapt to new data. Overfitting may occur when a
model is trained too much, while too little training could cause underfitting.
Problems regarding overfitting can also appear when the amount of data is
limited compared to the parameters in the network.

There are several techniques to reduce overfitting when it occurs. Some
options could be to increase the amount of training data, reduce the com-
plexity of the model, or use regularization techniques.
The regularization techniques used for this project was dropout layers and
L2 regularization, which will be described in ch. 2.3.5.

2.3.5 Techniques and layers in CNNs

Convolutional layers

In convolutional layers, filters of a given size are used to search for important
patterns in the data. The size of this filter, often called kernel size, should be
chosen so that meaningful patterns will be detected. When a filter has been
applied to the input data, a feature map is created. Each map can detect
one specific feature as each map has shared weights and biases. The number
of filters should be decided based on the complexity in the data, and how
many features that are desired to map. An illustration of a convolutional
layer with the creation of one neuron in a feature map is shown in figure 2.5.

Dense Layers

Dense layers, also called fully-connected layers, are layers that connect every
input in one layer with every neuron in the next layer, as illustrated in figure
2.6. For CNNs, the last couple of layers are normally fully-connected. Fully-
connected networks with several dense layers consist of a high number of
trainable parameters, while a CNN with only one or two dense layers will
have remarkably less parameters. A reduction in parameters results in faster
learning which is an advantage for building deeper networks. In CNNs the

11



fully-connected layers are used for the classification at the end of the network,
while the convolutional layers are used for the feature extraction.

Figure 2.5: Convolutional layer

Figure 2.6: Dense layer

Pooling Layers

The pooling layer is downsampling the convolutional layer to decrease com-
plexity, and it is normally used directly after a convolutional layer. Two
variations of pooling layers, are Max-Pooling and L2-Pooling. Max-Pooling
will output the maximum value in the pooling region, while L2-Pooling will
output the squared root of the sum of the squared values in the pooling re-
gion. An illustration of an one dimensional Max-Pooling with a 3x1 pool-size
is shown in figure 2.7.

12



Figure 2.7: 3x1 Max-Pooling

Dropout Layers

Dropout is a regularization method that is used to prevent overfitting when
training the data. The dropout modifies the network by temporarily remov-
ing hidden neurons that are chosen randomly, as shown in figure 2.8. The
amount of neurons that are removed is decided by the dropout rate that has
a value: 0 < Rate < 1. After one epoch, the weights and biases are updated,
and a different set of neurons is removed. The effect of using dropout is
similar to averaging the result of several different networks, which will help
to reduce overfitting.

Figure 2.8: Neural network after applying dropout

Figure 2.9 illustrates that overfitting is prevented by using a dropout
layer. The two graphs show the validation loss (using a smoothing filter)
for two identical models built using two convolutional layers and two dense
layers. The only difference is that the model illustrated with a blue graph
is using a dropout layer between the two convolutional layers. No other
regularization methods are applied. The model with a dropout layer has

13



a loss that is still decreasing at 15 epochs. The yellow graph, the model
without dropout, reaches its minimum validation loss at 4 epochs, before the
loss increases rapidly. An increasing validation loss indicates that the model
fails to generalize to new data.

Figure 2.9: The effect of using a dropout layer. Plot from the project.

L2 Regularization

L2 regularization, also called weight decay, is a commonly used regularization
technique that is used to prevent overfitting. The idea of this technique is to
add an extra term to the cost function that sums the squares of all weights
in the model. This is performed to prevent some parameters to grow very
large, and will apply penalties for the weight size to the cost function. The
L2 regularization term is shown in eq. 2.6.

λ

2n
Σw2 (2.6)

14



n is the size of the training set, w is the weights, and λ is the regularization
parameter. This parameter should be chosen to be a value in the range
0− 0.1. A small value will make the network prefer to minimize the original
cost function, while a larger value will make the network prefer to learn small
weights.

2.4 Classification evaluation
This section will cover some methods for evaluation of the ANNs in this
project. The theory in this section is based on [11].

2.4.1 Accuracy

The accuracy of the network is given as the percentage of correctly classified
predictions. For a trained network, a test data set is used for evaluation.
This evaluation tests the network using unseen data, the test data set, and
measures how many predictions are classified as the correct class.

2.4.2 Sensitivity and Specificity

When evaluating the performance of a classifier, the sensitivity and specificity
of the model are important statistical measures. The sensitivity, also called
True Positive Rate (TPR), gives the probability of the instance classified
as positive truly being positive. The specificity, also called True Negative
Rate (TNR), indicates how well the classifier has identified the negatives.
The metrics are defined mathematically using the number of false and true
positives (FP and TP) and false and true negatives (FN and TN):

sensitivity (TPR) =
TP

TP + FN
(2.7)

specificity (TNR) =
TN

TN + FP
(2.8)

2.4.3 Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) graphs are used for evaluation
of classifiers, and the trade-off between the sensitivity and specificity can

15



be helpful when comparing different models. ROC curves are used in this
project when comparing different optimization methods.
The ROC curve is plotting the TPR (sensitivity) against the False Positive
Rate (FPR), which is defined by 1 − specificity. These plots can be used
to observe whether the system meets the requirements. For some systems,
a high FPR can have large consequences. The ROC curve can therefore
indicate if the system is achieving a sufficient hit rate compared with the
false alarm rate. An example of a ROC curve from the project is shown in
fig. 2.10.

Figure 2.10: ROC curve from project

2.4.4 Confusion Matrix

The confusion matrix is an other technique used for performance evaluation.
The two axes represent the true values and the predicted values using a clas-
sifier. The matrix will give an insight in how well the classifier is predicting
the correct classes. Figure 2.11 show an example of a confusion matrix from

16



this project, with normalized values. Each row will sum to 1, and represents
the probability of the classifier predicting the true label or not.

Figure 2.11: Confusion matrix from project

2.5 Hyper Parameter Optimizing

2.5.1 Hyperparameters

Hyperparameters in a neural network are variables that must be chosen be-
fore the model can be trained. These are not determined by the learning
algorithm, like the weights and biases in the network are. Hyperparameters
should be determined for both the network structure and for the training
algorithm. The parameters that should be determined for the network struc-
ture is e.g. the number of units in the hidden layers, number of filters in the
convolutional layers, the dropout rate and the activation functions. The type
and number of layers in the architecture is also important to determine. The

17



most common hyperparameters for the training algorithm are the number of
epochs to train, the learning rate and the batch-size.

The choice of hyperparameters is important when building and training a net-
work, as the results achieved depend on this. When optimizing a network,
different combinations of hyperparameters should be tested. The different
combinations of hyperparameters are extensive, and this is why algorithms
for hyperparameter optimization are important.

2.5.2 Genetic Algorithm

Genetic Algorithm (Genetic Algorithm (GA)) is an evolutionary based opti-
mization method that is based on the improvement of a population through
generations. GA is inspired by the process of natural selection and genetic
crossover in the nature. Using genetic crossover and mutations, the genetic
algorithm aims to find the optimal hyperparameters efficiently within the
solution space. [4] describes optimization of a CNN using genetic algorithm.

The three main functions in a GA are the selection, crossover and mutation.
The selection function is choosing parents from the population to mate. The
members in the population with the highest fitness value should be chosen for
the next generation. These members should be processed by the crossover
function, which chooses what genetic information should be passed on to
their offspring. Some small amount of mutation can also be applied to en-
sure genetic diversity between the generations. The mutation rate should be
low to avoid large variations between the generations, which could change the
genetic algorithm to a random search. The full structure of a basic genetic
algorithm is illustrated in figure 2.12.

The number of generations must be chosen, and will define how many
iterations the algorithm will run. Another important parameter is the popu-
lation size, which is defined as the number of solutions in the first generation.
The output of the GA will be the set of optimized hyperparameters that re-
sulted in the best performing model.

18



Figure 2.12: Genetic algorithm. Figure modified from [4]

2.5.3 Hyperband Algorithm

Another algorithm that will be used in this project to optimize hyperparam-
eters is the Hyperband algorithm. This algorithm use the principle of the
successive halving algorithm to achieve higher efficiency than a standard ran-
dom search. The successive halving algorithm will randomly choose sets of
hyperparameters from a given search space, and evaluate the performance of
all configurations. The algorithm performs a number of trials where the half
with lowest performance for each trial is discarded. This approach will result
in one final model, with the so far best combination of hyperparameters.

The Hyperband algorithm does also use an early-stopping strategy, which
makes it very efficient. If a model being trained performs poorly, the train-
ing is stopped to avoid using unnecessary time. Hyperband will allocate more
time for models performing well. [12] claims that the Hyperband algorithm
is 5 to 30 times faster than Bayesian optimization methods.

The algorithm takes two inputs, the resource parameter R and the prun-
ing factor η. The pruning factor decides the number of models eliminated at
each halving, while the resource parameter normally defines the maximum
number of epochs.

19



Chapter 3

Methods

This chapter describes the methods used in this project to build and optimize
a neural network. The data set and the tools that are used will also be
presented.

3.1 Data sets
The data sets used in this thesis was provided by Novelda. The data was
created by Novelda using their UWB radar. This radar was recording a per-
son that performed different tasks, and collecting the range bins from the
measurements. The person was moving and staying in pre-determined ar-
eas in proximity of the radar. All the data provided was collected during
one recording, before it was divided into different segments. The different
segments consists of the person staying in specific zones relative to the radar.

The data was divided into a training, validation and test data set. The
validation data set was used together with the training data set during train-
ing to estimate the accuracy and loss after each epoch. The test data set
was not a part of the training process, and was introduced to the model after
training to calculate the accuracy using new data.

The sizes of the data sets are presented in table 3.1. The data consists
of a high number of data samples, that are represented in the outermost
dimension. Each data sample is composed of a series of time samples. For
every time sample, 32 frames with a resolution of four frames per second

20



were obtained. Each frame contains several range bins that represent the
distance of the reflected echo signal from the radar. The innermost dimen-
sion contains two values, respectively the real and imaginary part of the echo
observation.

Data set Size

Training data 11480 x 32 x 18 x 2
Test data 3828 x 32 x 18 x 2

Validation data 3824 x 32 x 18 x 2

Table 3.1: Sizes of the provided data sets.

In addition to these data sets, associated labels were provided. The labels
specify which class the data belongs to. The original data sets had four
classes. The radar could either detect presence or no presence, and it could
reject or accept the candidate. As this project should focus on improving
classification for presence/no presence, both the rejected and accepted class
are combined. This results in two classes from the data set, no presence and
presence. One example from each class is plotted and visualized in figure 3.1.
The data was applied a Savitzky–Golay filter to smooth the data to make it
easier observe the patterns. The data representing Presence is more distinct
and shows a clear signal with higher amplitudes, while the No presence data
appears more noisy.

3.2 Pre-processing of data
Pre-processing of the data was done to prepare the data for training. The
data provided by Novelda was already divided into different data sets with
associated labels, so a minimum of pre-processing was necessary. Using stan-
dardization as a scaling technique, the data was re-scaled to avoid large
variations. This is performed by subtracting the mean and divide by the
standard deviation. The standardization was performed in Python and was
applied to every value for all the data sets.

For each time sample in the data sets, the first five range bins from the
radar were removed. This data were mostly noise, and did not contain much

21



Figure 3.1: Visualization of the data representing the classes Presence and
No presence

valuable information. The remaining data was more accurate, and could
make it easier for the network to learn.

3.3 Software tools

3.3.1 Python

For this project, Python was used as the programming language [13]. This
was chosen because the author had previous knowledge of this language, and
because it provides several libraries for building ANNs.

3.3.2 Tensorflow and Keras

The Tensorflow library was used to create and train neural networks for this
project [14]. Tensorflow is an open sourced framework used for machine
learning. Keras is an API that simplifies the implementations in Tensorflow
[15]. It has multiple built-in functions that make designing and training of
ANNs easier.

22



3.3.3 Scikit-learn

Scikit-learn is a machine learning module in Python, used for predictive data
analysis [16]. It is used in this project for model evaluation, like the ROC
curve and the confusion matrix.

3.3.4 Keras Tuner

A library that helps to pick the optimal set of hyperparameters for a Ten-
sorflow model [17]. It has four available tuners that can be used for the
hypertuning. In this project, the Hyperband tuner was applied.

3.4 Optimization of hyperparameters
The aim of this project was to find a method for optimizing the hyper-
parameters of a classifier. As described in ch. 2.5.1, the combination of
hyperparameter values are extensive and very difficult to optimize manually.
In this project, two different methods have been implemented to find the
optimal hyperparameters. In ch. 2.5.2, the theory of the genetic algorithm
was described. This algorithm has been implemented in Python, and this
implementation and the belonging search space of the genetic algorithm will
be further discussed. In addition to the genetic algorithm, hyperparameter
optimization using a library called Keras Tuner has been tested.

The metrics that mainly were used to evaluate the different models, were
the validation loss and the ROC curve. For the validation loss, it was desir-
able to find the models that achieved the lowest loss. When analyzing the
ROC curves, a FPR of 0.01 was the maximum accepted rate for Novelda,
and the associated TPR was therefore used for comparison.

3.4.1 Search space

When using algorithms for hyperparameter optimizing, the search space
should be defined. The search space is a pre-determined domain that contains
the possible solutions for the parameters that should be optimized. Table
3.2 shows the search space that was used in this project. The range of the
numbers was chosen to be relatively large, to avoid restricting the algorithms
too much. Based on knowledge of other CNNs used in similar projects, these

23



limits should be sufficient to allow the optimization algorithms to do a thor-
ough search. A larger range was avoided as this should not be necessary, it
would be more time consuming, and could produce very large models.

Parameter Minimum Maximum

Number of filters, Conv layer 1 5 100
Size kernel, Conv layer 1 1 3 5

Number of filters, Conv layer 2 10 120
Size kernel, Conv layer 2 3 5

Units Dense layer 10 150
Epochs 10 20

Table 3.2: Search space

3.4.2 Initial hyperparameters

Some of the hyperparameters that were necessary to build and train a model
were chosen before the optimization. This was done to make sure that the
models compared in the results had some consistency, and because parame-
ters like the output activation function had to be specified to get the desired
output.

Epochs

As shown in table 3.2, the number of epochs during the search for hyperpa-
rameters was between 10 and 20. This number was only used for the search,
and a pre-determined number of 50 epochs was used for the final training.
The models with optimized hyperparameters were trained using these pa-
rameters and 50 epochs, to make all the models comparable. If different
numbers of epochs were used, it would be more challenging to compare the
loss and accuracy of the models.

Activation functions

For all the layers, except the output layer, the ReLU activation function
was used. This was used due to its efficiency and to avoid the vanishing

24



gradient problem. For the output layer, the Softmax activation function was
applied. This project aimed to solve a multiclass classification problem, and
the softmax function is well suited for this. As mentioned in ch. 2.3.3, the
softmax function will output the normalized probabilities for each class.

Optimizer

The optimization technique used when implementing models in this project,
was the Adam optimization, that was described in ch. 2.3.2. This was chosen
due to its generalized use, the adaptive learning rates and the robustness.

Learning rate

No specific learning rate was set in this project. The Adam optimizer that
was used, has an initial learning rate of 0.001. As mentioned earlier, Adam
does also use adaptive learning rates for the different parameters.

Loss function

Categorical cross-entropy was used as the loss function in the implementation
of the models. The cross-entropy function was described in ch. 2.3.1. Cate-
gorical cross-entropy is a version of this that is intended for multiclass classi-
fication. One of the reasons to employ the cross-entropy for classification, is
that it gives a good indication on how certain the prediction was. Given that
the classifier has two classes, it could potentially output the probabilities
[0.51, 0.49], and still classify the input to the right class. The cross-entropy
loss function is therefore beneficial to understand how well the predictions
actually were, even when they classified the input correctly.

Pooling size

The pooling size that was used for the MaxPool-layers was decided to be 2.
Pooling layers are used to reduce complexity in the model, and the effect of
using these will be explored. The size of 2 was decided because this provided
the best results in some tests performed early in this project. A larger pool
size reduced the accuracy.

25



3.5 Architecture search
In this project, the aim was to optimize a classification model. As described
earlier, a hyperparameter search within a given search space was performed.
When optimizing a model, the architecture of the model should also be stud-
ied.

3.5.1 Initial architecture

An initial CNN model was used, and different improvements were performed
using this model as a base for multiple tests. This initial model consisted of
two convolutional layers and two dense layers, where the last of the dense
layers were the output layer of the model. This architecture was chosen based
on previous knowledge of how convolutional networks are built. More than
one convolutional layer can provide some advantages regarding the classifi-
cation, but will also increase the time consumption. The dense layers at the
end perform the classification task, and for this project 2 dense layers were
used, as this is common in basic CNN architectures. This model architecture
is presented in figure 3.2

Figure 3.2: Initial CNN model

More convolutional and dense layers could have been applied, but it would
also have increased both the number of parameters and the time consump-
tion. This thesis focused on building a high performing network, using as
few parameters as possible.

26



3.5.2 Exploring CNN architectures

As mentioned in the last sub-chapter, ch.3.5.1, some tests were performed
to optimize the initial CNN architecture used. The variations that were
investigated are listed below:

• The effect of L2 regularization and dropout layers. These methods were
tested separately.

• Different combinations of dropout layers and L2 regularization were
tested.

• The position and number of Max-pooling layers in combination with
dropout layers.

The features from the best models achieved in each test were combined
to build an optimal model architecture.

3.6 Genetic Algorithm

3.6.1 System setup

As discussed in ch. 2.5.2, the GA was constructed using three main func-
tions. The selection, crossover and mutation functions are based on natural
evolution. The implementation of these functions, and how to build a GA,
was inspired by a git repository1. A short summary of the hyperparameter
search using the genetic algorithm is illustrated in figure 3.3.

The genetic algorithm, with its evolutionary functions, was implemented
using Python. Functionality that allowed the genetic algorithm to optimize
pre-defined CNNs were also implemented. A class with the necessary param-
eters and their search spaces, in addition to the initial model was defined.
When the model and search space were defined, the fitness function was im-
plemented. This function was used to calculate the fitness, or the accuracy
of each combination of hyperparameters. This was used to decide which
solutions that performed best. The evolutionary functions mentioned ear-
lier were also implemented. The selection function was returning a list with

1https://github.com/ahx-code/CNN-with-GA-Keras

27



Figure 3.3: Implementation of hyperparameter optimization using GA

the solutions in the population that were used for the next generation. The
crossover function chose two of these solutions, and created two off-springs
based on this. The effect of this function was that the population of possible
solutions increased for each generation. These off-springs were passed on to
the mutation function. The mutation rate used in this project was 0.1, which
increased the epoch and unit number with a random number between 0 and
5, in 1 out of 10 cases. As discussed in 2.5.2, a high mutation rate should be
avoided as it may change the genetic algorithm to a random search as the
variations between generations become very large.

For hyperparameter search and training of a model using the genetic al-
gorithm, the initial population size and the number of generation should be
decided. For the tests used in this project, two combinations of numbers have
been used. The first were Population = 2 and Generations = 10. These were
used on smaller tests to see how many layers or which regularization that
should be used. These numbers were chosen because they are large enough
to do a good search, but not too time consuming. For some larger tests where
the optimal hyperparameters should be decided for an optimized architec-
ture, Population = 4 and Generations = 20 were used. These were used to
conduct a more thorough search, evaluating a higher number of combinations.

After the hyperparameter search was finished, the model was trained one
final time using these parameters and 50 epochs. A validation training set
was used for each epoch, and the training and validation loss were plotted.
The loss functions were also applied a Savitzky–Golay filter which has the

28



purpose of smoothing the data. This was used to visually be able to see how
the loss varied, as this often has a lot of small and rapid variations. When
training a model, the loss and accuracy of the model are not always best at
the final epoch. Callbacks were used for each epoch during training to be
able to save the best model observed and its weights. This resulted in the
program being able to save the model with the highest performance inde-
pendently of the number of epochs. This was necessary as a high number of
epochs were used to ensure that all models being compared would reach its
best performance.

The evaluation of the trained model consists of several parts. First the
accuracy is calculated using the test data set and the loss function. This
accuracy is presented with a percentage of how well the model performed
when presented with new and unseen data. Then, the predicted y-values are
found using the test data set. The comparison of the true and predicted
values is used to create both the ROC-curve and the confusion matrix, as
described in ch. 2.4.

3.6.2 Multiple models

For evaluation of the different models that were optimized, it was necessary
to compare them to each other. Functionality that made it possible to define
several model architectures were implemented with the genetic algorithm.
The algorithm performed the given number of generations on each defined
model, and repeated this for all of the models. All models used the same
search space defined in table 3.2. When all the models were optimized and
trained using the GA, the results were represented such that the models could
be compared. The ROC curves and loss curves for the models were plotted
in the same figure to be able to compare them.

3.7 Keras Tuner
The Keras Tuner library in Python was another method used to search for
optimized hyperparameters. Keras Tuner requires that a model structure is
given, and that the search space is defined. This search space was the same
as for the GA, and is shown in table 3.2.

29



The Hyperband algorithm, as described in ch. 2.5.3, was used as tuner
for the hyperparameter search. The metric to minimize, also called objec-
tive, was the validation loss. The Hyperband was finding the best models
of each trial to carry forward to the next trial. For each trial the number
of models was halved, resulting in one optimal set of hyperparameters for
the model. The Hyperband algorithm takes two inputs in addition to the
hypermodel, the pruning factor (η) and the resource parameter (R). For this
project a η = 3 was chosen, and the resource parameter was decided to be
Max epochs = 20. A larger η would result in an increased number of models
being eliminated at each halving, and 3 was the initial value defined for the
function in Python. The maximum number of epochs was chosen to be large
enough to evaluate the performance of the models.

When an optimal model architecture was found using the genetic algorithm,
the optimized hyperparameters of this model are returned. To verify the
hyperparameters found using the GA, a separate search was performed using
the Keras Tuner on the same model architecture. A comparison of these
search methods was conducted to find the optimal hyperparameters.

30



Chapter 4

Test and Results

In this chapter, the testing performed on the CNNs and the associated re-
sults will be presented. It is mainly the loss and ROC curves that will be
presented as results for the networks. Some confusion matrices will also be
introduced, and the remaining matrices are included in appendix A.

The first section will briefly describe the procedure used for testing. This
was described more detailed in chapter 3. The next sections present the
results achieved using the various tests.

4.1 Test Procedure
The code and implementation of the CNNs were created using Python, as
described in ch. 3.3. During training of the networks, the hyperparameters
of the models were saved locally, as well as the ROC curves, confusion ma-
trices, and the loss curves.

To develop the ROC curves and confusion matrices, prediction in Keras was
used. This prediction function uses the test data set to predict the output
of the network. These predicted values were compared to the true values,
and the relationship between true and predicted values were used to develop
ROC curves and confusion matrices. The results obtained using the test data
set was quite interesting, as it tests the CNN in new situations.

The accuracy, that will be presented as results for the different tests, was

31



estimated using the test data set in the evaluation function in Keras. The
validation loss was obtained by using the validation data set during training
of the models.

As described in ch. 3.5.2, different variations of regularization techniques
and architectures were tested using the genetic algorithm. Using the results
from these tests, an optimized model structure was developed. Hyperparam-
eter optimization was performed on this model to achieve the best possible
loss and accuracy. This optimization was achieved using both the genetic
algorithm and the Keras tuner, and comparing these.

4.2 Optimization of the Architecture
The following tests of different architectures and regularization techniques
were performed using the genetic algorithm with an initial population of
2 and 10 generations. These searches gave an indication of which model
architecture would provide the best results. All of the experiments were
performed using the same basis, to make sure they were comparable.

The model shown in figure 4.1 is used as a base for the different experi-
ments, as described in ch. 3.5.1.

Figure 4.1: Initial model

32



4.2.1 Test of Initial Model

The initial model used in this project was illustrated in figure 4.1. Before
optimizing this model, its performance was tested. The results are presented
in table 4.1.

Model Max Accuracy Min validation loss TPR for FPR=0.01
Initial model 90.7 % 0.23 0.71

Table 4.1: Results: Accuracy, Loss and TPR using the initial model

The best validation loss of this model was 0.23, and as seen in figure 4.2
it was constantly increasing. Overfitting of the model was the most likely
reason for this, and different regularization techniques was later tested to
reduce this.

Figure 4.2: Validation loss vs epochs for the initial model. Smoothed graph
to the right.

33



4.2.2 Effect of Dropout layer

When testing the effect of dropout layers in the neural network, different
dropout rates were used. The dropout layer was added between the two
convolutional layers from fig. 4.1. The dropout rates with corresponding
accuracy, validation loss and TPR are presented in table 4.2. The validation
loss plotted against the epochs is illustrated in figure 4.3.

Figure 4.3: Validation loss vs epochs for different dropout rates. Smoothed
graph to the right.

Figure 4.3 shows that the validation loss for model 1 with the lowest
dropout rate reaches its minimum after 6 epochs, and it is then increasing
significantly. Model 2, with a dropout rate of 0.5, is decreasing steadily for
the first 14 epochs until it reaches its minimum of 0.18. After this it is in-
creasing, but not as steep as for model 1. Model 3 has a slowly decreasing
loss, and has achieved 0.25 in validation loss by the 50th epoch. It is possi-
ble that this model eventually could have provided the lowest loss, but this

34



Model Dropout Rate Max Accuracy Min validation loss TPR for FPR=0.01
Model 1 0.25 93.3 % 0.22 0.78
Model 2 0.50 94.2 % 0.18 0.77
Model 3 0.75 91.1 % 0.25 0.77

Table 4.2: Results: Accuracy, Loss and TPR for different dropout rates

would cause a slower model to train.

Figure 4.4: ROC curves (log and normal) for different dropout rates

Table 4.2 shows that model 2 performed best in terms of accuracy and
validation with a dropout rate of 0.5. Using this rate, the model achieved a
maximum accuracy of 94.2%, a validation loss of 0.18 and a TPR of 0.77 for
a FPR=0.01. Investigating the logarithmic ROC curve in figure 4.4, model 1

35



with a TPR of 0.78, performed marginally better than model 2 and 3. Using
the confusion matrices for model 1 and 2 to compare, a total evaluation
indicates that model 2 with a dropout rate of 0.5 is optimal. These matrices
are displayed in fig. 4.5a and 4.5b, and it shows that model 2 predicted No
presence correctly in 92.5% of the cases, while model 1 detected this label
correctly in 91.1% of the cases.

(a) Confusion matrix model 1, Dropout rate = 0.25

(b) Confusion matrix model 2, Dropout rate = 0.5

36



4.2.3 Effect of L2 Regularization

The effect of using L2 regularization was tested using different regulariza-
tion strengths (λ). The same strength was used on all layers in the model,
except for the output layer where no regularization was applied. Using the
result from 4.2.2, a dropout layer with a rate of 0.5 was applied between
the two convolutional layers. Table 4.3 presents the accuracy, validation loss
and TPR for the different values of λ. The corresponding ROC curves and
validation loss curves are shown in fig. 4.6 and 4.7.

Model λ Max Accuracy Min validation loss TPR for FPR=0.01
Model 1 0.0001 94.0 % 0.24 0.80
Model 2 0.001 93.6 % 0.27 0.79
Model 3 0.01 91.0 % 0.27 0.76
Model 4 0.1 88.0 % 0.35 0.70

Table 4.3: Results: Accuracy, Loss and TPR for different L2 regularization
strengths

From the results presented in table 4.3, the best accuracy, loss and TPR
were achieved for model 1. It achieved a validation loss of 0.24 and a TPR
of 0.80. The conclusion was therefore that model 1 using λ = 0.0001 was the
best option.

When observing the loss in figure 4.6, it is visible that the graph is still
decreasing for model 3 and 4. It was known that L2 regularization compli-
cates the computations, and could therefore result in a model that is slower
to train. The aim was to find an efficient model, and the results obtained
using 50 epochs was therefore used.

37



Figure 4.6: Validation loss vs epochs for different L2 regularization strengths.
Smoothed graph to the right.

38



Figure 4.7: ROC curves (log and normal) for different L2 regularization
strengths.

39



4.2.4 Combination of Regularization Techniques

Using the results from 4.2.2 and 4.2.3, a combination of the regularization
techniques was tried and compared to the use of only one technique. Four
models were tested to decide which combinations that resulted in the best
performing model. It was not given that the combination of the best results
from 4.2.2 and 4.2.3 would provide the best performance. The model archi-
tecture was as shown in 4.1, and the regularization techniques were added to
this model. The combinations of techniques and values that were tested are
listed in table 4.4. The dropout layer was applied between the convolutional
layers while the L2 regularization was applied to all hidden layers. A dropout
rate of both 0.5 and 0.25 was tested, due to the even results for these rates.
The L2 regularization strength of λ = 0.0001 provided superiorly better re-
sults regarding the validation loss, so only this strength was tested further.
For this test, 80 epochs was used instead of the 50 epochs that had been used
previously. In ch. 4.2.3 it was observed that the models used longer time
to converge when applying L2 regularization. It was therefore interesting to
test with a higher number of epochs.

Model λ Dropout Rate
Model 1 0.0001 0.5
Model 2 0.0001 0.25
Model 3 0.0001 No dropout
Model 4 No L2 0.5

Table 4.4: Combination of regularization techniques used for each model

Model Max Accuracy Min validation loss TPR for FPR=0.01
Model 1 92.5 % 0.23 0.78
Model 2 91.7 % 0.23 0.78
Model 3 91.2 % 0.28 0.70
Model 4 93.3 % 0.20 0.81

Table 4.5: Results: Accuracy, Loss and TPR for different combinations of L2
and dropout

The results of this test are presented in table 4.5. Model 4 was overall
performing better than the other models tested, with no L2 regularization

40



and 0.5 as dropout rate. The validation loss for this model was 0.20, and it
achieved a TPR of 0.81. The graphs are presented in figure 4.8 and 4.9.

Figure 4.8: ROC curves (log and normal) for different combinations of L2
and dropout

41



Figure 4.9: Validation loss vs epochs for combinations of L2 and dropout.
Smoothed graph to the right.

4.2.5 Max-Pooling layers

In convolutional networks there are common to use Max-Pooling layers to
decrease the complexity. The effects of using Max-pooling, and the number
and location of these layers was investigated. Based on the results from ch.
4.2.4, the combination of 0.5 as dropout rate and no L2 regularization was
carried on for further tests.

When used in combination with a dropout layer, the max-pooling layer was
applied first. The order of these layers would probably not make any sig-
nificant difference. The order was decided such that the max-pooling layer
decreased the complexity and number of neurons before removing neurons
using dropout.

42



Table 4.6 shows the combinations and locations of the Max-pooling and
dropout layers that were tested. The results are presented in table 4.7, and
the corresponding graphs are shown in figure 4.10 and 4.11.

Model Model structure
Model 1 Max-pooling + Dropout after the first convolu-

tional layer
Model 2 Dropout after first convolutional layer. Max-

pooling + Dropout after second convolutional
layer.

Model 3 Max-pooling + Dropout after first convolutional
layer. Dropout after second convolutional layer.

Model 4 Max-Pool + Dropout after both convolutional lay-
ers

Table 4.6: Different locations and number of Max-Pooling layers for each
model

Model Max Accuracy Min validation loss TPR for FPR=0.01
Model 1 93.2 % 0.19 0.78
Model 2 94.1 % 0.17 0.80
Model 3 93.5 % 0.19 0.79
Model 4 93.2 % 0.18 0.76

Table 4.7: Results: Accuracy, Loss and TPR for the Max-Pooling

Observing the results from table 4.7, model 2 has the highest performance
regarding all metrics. The results for all four models were even, but as model
2 performed slightly better, this was the model that was used for further tests.
This model used dropout after the first convolutional layer, and max-pooling
+ dropout after the second convolutional layer. In figure 4.10, the loss for
model 2 is still decreasing at 50 epochs. This model will be tested using a
higher number of epochs in the hyperparameter search in ch. 4.3.

43



Figure 4.10: Validation loss vs Epochs for different combinations of Max-Pool
and Dropout. Smoothed graph to the right.

44



Figure 4.11: ROC curves (log and normal) for different combinations of Max-
Pool and Dropout

45



4.3 Hyperparameter Search
Based on the previous results, an optimal architecture was decided. A hyper-
parameter search using two different algorithms were used to find the optimal
parameters, and the results will be presented in this section.

4.3.1 The Optimized Architecture

From ch. 4.2 the following results were conducted:

• Dropout rate = 0.5 gave the best overall results of the tested rates.

• A L2 regularization strength, λ = 0.0001 provided the best performance
of the tested strengths.

• Only using dropout as regularization gave better results than the com-
bination of dropout and L2, or the use of only L2.

• The combination of a dropout layer after the first convolutional layer
and a max-pooling after the second one, provided the highest perfor-
mance.

Figure 4.12 illustrates the model structure of this optimized architecture.
Both dropout layers used 0.5 as rate, and the pool-size for the Max-pooling
layer was 2.

4.3.2 Hyperparameters Using Genetic Algorithm

The hyperparameters that were optimized are listed in table 4.8. This con-
sists of the number of filters and the kernel size for both the convolutional
layers, and the number of neurons (units) for the dense layer. The epochs
are also listed in this table, as the different combinations of hyperparameters
were not trained for a given number of epochs during the search. The ge-
netic algorithm was performing a random number between 10 and 20 epochs
during the search, as described in ch. 3.4.2. This number could increase
throughout the generations, as this is one of the parameters affected by the
mutation function. This search was used to give an indication on the perfor-
mance of the models, and the final test used to collect results in this section
was performed using 80 epochs. For this test, the optimized architecture

46



Figure 4.12: Optimized CNN architecture

in figure 4.12 was used in the genetic algorithm with Population = 4 and
Generations = 20.

Four tests were performed when searching for hyperparameters using the
genetic algorithm. The resulting parameters are listed in table 4.8, and the
corresponding results are presented in table 4.9. Observing the values for the
hyperparameters, some of them were consistent throughout the tests, while
some varied more. Kernel sizes of 5 resulted overall in the best performance.
The number of filters for both convolutional layers was also decided to be
relatively large compared with the search space, but with some more varia-
tions for layer 2. The parameter that varied the most throughout the tests
was the number of units in the dense layer, with values from 36 to 105.

Using the optimized parameters, the network was able to achieve a vali-
dation loss down to 0.168 in test 4. The remaining tests had ≈ 0.18, which
is only a minor difference from test 4. Test 3 achieves a TPR = 0.82, which

47



Hyperparameter Test 1 Test 2 Test 3 Test 4
Number of filters, Conv layer 1 95 76 84 72

Kernel size, Conv layer 1 5 5 5 5
Number of filters, Conv layer 2 117 52 83 112

Kernel size, Conv layer 2 5 3 5 5
Units Dense layer 36 56 105 57

Epochs 22 38 25 32

Table 4.8: Hyperparameters found using the genetic algorithm

Test Max Accuracy Min validation loss TPR for FPR=0.01
Test 1 94.0 % 0.179 0.81
Test 2 93.6 % 0.184 0.76
Test 3 93.9 % 0.176 0.82
Test 4 93.8 % 0.168 0.79

Table 4.9: Results: Accuracy, Loss and TPR for the hyperparameter search
using GA

was the best TPR achieved so far in the project. The results from test 3
are presented in figures 4.13, 4.14 and 4.15. In figure 4.13, the training loss
is also included in the non-smoothed plot. The training loss is descending
towards zero, while the validation loss is converging around 0.17− 0.20. The
validation loss can be observed closer in the smoothed graph to the right in
the figure. A validation loss that is higher than the training loss indicates
that the model is overfitted. The converging of validation loss has been con-
sistent for most of the tests in this project.

An additional test using 150 epochs was performed to observe how the loss
was changing over time. This test showed that the minimum validation loss
was achieved at 38 epochs, before it slowly stared to increase. This loss func-
tion is presented in figure 4.16. The plotted results for the remaining tests
in this section are presented in appendix B.

4.3.3 Hyperparameters Using Keras Tuner

The Keras Tuner library in Python was also used to search for optimized
hyperparameters. The same optimized model as used with the genetic algo-

48



Figure 4.13: Loss vs Epochs for hyperparameter search using Genetic Algo-
rithm. Smoothed graph to the right. (Test 3)

rithm, as illustrated in figure 4.12, was implemented. The hyperparameters
that were optimized and the belonging search space were also identical as for
the GA.

Hyperparameter Test 1 Test 2 Test 3 Test 4
Number of filters, Conv layer 1 83 99 91 85

Kernel size, Conv layer 1 5 5 3 5
Number of filters, Conv layer 2 56 90 120 100

Kernel size, Conv layer 2 3 5 3 5
Units Dense layer 94 134 138 136

Table 4.10: Hyperparameters found using Keras Tuner

49



Figure 4.14: ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 3)

Test Max Accuracy Min validation loss TPR for FPR=0.01
Test 1 93.9 % 0.176 0.80
Test 2 94.5 % 0.174 0.82
Test 3 94.1 % 0.160 0.80
Test 4 94.4 % 0.156 0.83

Table 4.11: Results: Accuracy, Loss and TPR for the hyperparameter search
using Keras Tuner

Observing the resulting parameters in table 4.10, the number of filters for
the first convolutional layer was very consistent in the range from 83 − 99.
There were larger variations for the second convolutional layer, and for the
kernel sizes. The number of units for the dense layer had very small variations
for the three last tests, and was in the range from 134 − 138. From the

50



Figure 4.15: Confusion matrix for hyperparameter search using Genetic Al-
gorithm (Test 3)

results presented in 4.11, test 4 performed the absolute best in regards of the
validation loss and TPR. It achieved a validation loss of only 0.156 and a
TPR of 0.83, which both were the best results obtained during the project.
The corresponding graphs are presented in figure 4.17, 4.18 and 4.19. The
plotted results for the remaining tests are presented in appendix B.

51



Figure 4.16: Loss vs Epochs for 150 epochs using the genetic algorithm.
Smoothed graph to the right.

52



Figure 4.17: Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 4)

53



Figure 4.18: ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 4)

54



Figure 4.19: Confusion matrix for hyperparameter search using Keras Tuner
(Test 4)

55



Chapter 5

Discussion

This chapter will discuss the different results achieved and the methods used
in the project.

5.1 Results Architecture search
The results of the architecture search presented in chapter 4.2 are discussed
in this section.

The metrics this thesis aimed to optimize were the validation loss and the
TPR for FPR=0.01. When training and testing neural networks the results
will differ for each trial. The results presented can therefore only be viewed
as an indication of the performance.

5.1.1 Initial model

The initial model achieved a maximum test accuracy of 90.7%, a validation
loss of 0.23, and a TPR=0.71. The results for the initial model showed
that the validation loss was constantly increasing. This is an indication of
overfitting, and that the model is not adapting to new data. This was not
an unexpected result as the model did not use any form for regularization.
Overfitting occurs when the model is too complex for the data. Reducing
the complexity of the model or applying regularization can be beneficial. For
this project, different regularization techniques were applied.

56



5.1.2 Regularization

The two regularization methods that were tested were the L2 regularization
and Dropout layers. These were tested both individually and in combina-
tion. For a dropout rate of 0.5, a validation loss = 0.18 and a TPR = 0.77
were achieved. This showed significant improvements from the initial model,
and indicated that the overfitting problem was improved. When adding L2
regularization to the model, both the loss and TPR were aggravated, for all
regularization strengths. When testing different combinations of these tech-
niques, the model without any L2 regularization performed overall best. The
same results were achieved for several tests, and concluded that L2 regular-
ization reduced the performance. Only dropout layers were therefore applied
for later models.

L2 regularization is commonly used to reduce overfitting in neural networks.
There could be several reasons why it did not work as expected for this net-
work. From the results of different weight sizes, the model using the smallest
weight, λ = 0.0001 was performing best. This model achieved a validation
loss = 0.23, but it was still higher than for the model without L2. This
indicated that L2 regularization might not was necessary for this network,
as the regularization strength needed to achieve good performance was very
low. As L2 is used to prevent overfitting by penalizing the large weights in
the network, it could also make it more difficult to fit the training data. A
higher number of epochs could be the solution, but this would also make the
network slower.

5.1.3 Max-Pooling

Max-Pooling with a pool-size = 2 was used in combination with the dropout
layer with a rate of 0.5. Out of the four models that were tested, the model
with a max-pooling layer only after the second convolutional layer performed
best. The dropout layer was placed after both the convolutional layers. This
model reached a TPR=0.80 and a validation loss=0.17. This was so far the
best performing model.
An advantage of using max-pooling layers, is the reduction of complexity in
the model. This will reduce the number of trainable parameters which will
give a more time efficient network to train. As this layer locates the most
important features in a region, it will remove data that may not be necessary

57



or that is noisy. When applying this layer, the model performed better, just
as expected.

5.2 Results Hyperparameter Search

5.2.1 Genetic Algorithm

The results of the hyperparameter search using the genetic algorithm showed
that the number of filters for the convolutional layers should be relatively
high, and that a kernel size of 5 was selected for almost every test. A high
number of filters in a convolutional layer could detect more features in the
data, and it makes therefore sense that a high number was chosen. The opti-
mal size of a kernel is dependent on the data, as a larger kernel size will detect
larger features in the data, and a small kernel size will detect smaller features
better. The search space for these tests did only allow a kernel size of either
3 or 5, as these are most commonly used in CNNs. The largest variations
were found for the number of units in the dense layer, and they varied from
36− 105. This can be a coincidence, as the algorithm tries a high number of
different values. Different combinations can cause the best results for each
test, and a hyperparameter search can therefore only be used as an indication.

The results regarding the validation loss and the TPR did also have some
variations, like expected. Even when training a model several times using
the same hyperparameters, the results will have some variations. This is due
to the weights and biases being trained a little different each time. The final
results using the GA are still good, and achieved a quite consistent valida-
tion loss throughout the tests, from 0.168 − 0.184. This indicates that the
algorithm found a good set of hyperparameters for each test.

5.2.2 Keras Tuner (Hyperband)

The results using Keras Tuner had several similarities with the results from
the genetic algorithm. The optimized number of filters for the convolutional
layers was relatively large compared with the search space. The number of
units for the dense layer was high for all the tests using Keras Tuner, and
did not vary as much as for the genetic algorithm. The kernel size is more
inconsistent here, and varies between 3 and 5. The size does not increase

58



from the first to the second convolutional layer for any of the tests. If it
starts with a kernel size of 5, the next kernel size is 5 or 3. For the one test
that starts with 3 as kernel size, the next kernel does also have a size of 3.
This was unexpected, as it was anticipated that it would choose the smallest
kernel first. It could be easiest for the model to detect the smallest features
first, and then use the largest kernel to find high-level features. This would
then lead to a gradually decrease of the feature space. One reason for this
unexpected behavior could be that both 3 and 5 are considered small kernel
sizes, and the performance using either was not that different. If a kernel
size of 7 or 9 was used, it could have resulted in another outcome where the
smallest kernel sizes were used in the first layer.

The results achieved using the Keras Tuner were the best accomplished dur-
ing this project. It reached a minimum validation loss of 0.156 and a TPR
of 0.83, which both are relatively good values compared to other results in
this thesis.

5.2.3 Comparison of the two algorithms

Both algorithms achieved good results using the available data. Keras Tuner,
using the Hyperband algorithm, obtained slightly better results. There can
be several reasons for this. Four tests were performed using each algorithm,
and this is not sufficient enough to conclude that it was not a coincidence
that one performed better than the other. It is anyhow enough to observe a
pattern, as the Keras Tuner performed a little better for almost each test.

The genetic algorithm was implemented and programmed by the author,
while the Keras Tuner was implemented using a library in Python. This
could be one reason for the difference, and if given more time to further
develop the genetic algorithm, it might have provided better performance.

5.2.4 Converging Loss

As observed for many of the previous tests, the validation loss converged
when it reached a value of approximately 0.16 − 0.20. The loss was not
decreasing any further than this regardless which techniques that were ap-
plied, and there can be different reasons for this. When the validation loss
is higher than the training loss, it is often a sign of overfitting. The training

59



loss will in most cases converge towards zero. The validation loss will not al-
ways be capable of achieving the same loss values as for the training data set.

The training loss will usually perform well, as this is the exactly same data
that the model is trained with. The validation loss will decide how general-
ized the model is, and how well it adapts to new data. If the data used as
input to the model is noisy or has high similarity between the classes, it can
be hard to achieve a perfect validation loss.

By observing the the visualization of the data, it could be possible to de-
tect if the different classes are distinct enough. There could also be better
ways to pre-process the data, which potentially can make it easier for the
model to recognize the patterns.

5.3 Methods
This section will discuss the methods used in the project.

The initial model was build using two convolutional layers and two dense
layers. This was based on previous knowledge of similar models, and the
requirement to keep it simple. When evaluating this choice later, it is clear
that several initial models should have been tested. Models with fewer train-
able parameters could have reduced the problem with overfitting. Former
developed, and well tested architectures should also have been implemented
for comparison.

For each test performed using the genetic algorithm, a different set of param-
eters was chosen based on which parameters that provided the best results.
It is possible that a model could have increased its performance slightly by
using more generations. The number of generations was chosen to be high
enough for the model to reach its potential, but the optimal number of gen-
erations could vary between the different models. If running the same test
multiple times, it could present different results. It is important to remem-
ber that the results presented in this thesis was obtained during a limited
number of tests, and could possibly change if performing a larger number of
tests. However, it should give a good indication of the performance of the
different models.

60



The number of filters and the size of the kernels, in addition to the num-
ber of units in the dense layers were chosen to be the hyperparameters that
were optimized. The remaining hyperparameters, like e.g. the dropout rate
and the pool-size for max-pooling were decided by testing their effect, or by
using previous knowledge. A network where all the parameters were chosen
by the optimization algorithm should have been tested, but it was not con-
ducted in this project.

A higher number of epochs could also have been used for some of the tests.
When searching for hyperparameters, the number of epochs was increased
from 50 to 80. This seemed to be enough for most of the tests, but it was
some cases where it appeared like the loss had not finished converging after
80 epochs. One trial that was running 150 epochs was therefore also tested,
but this did not result in any lower validation loss. The loss did slowly start
to increase again after 38 epochs, and the conclusion was therefore that 80
epochs should be sufficient enough for most tests.

An uncertainty when comparing models was the rounding of the results.
Both the loss and TPR were presented using two decimals for the first tests.
This was a problem e.g. for two loss values of 0.18 and 0.19, as these values
could be almost equal due to the rounding. In these cases, a total evaluation
of all results was used. For the last tests searching for hyperparameters, three
decimals were used for the loss.

When observing the results, the optimized values for the number of filters
and the unit size were relatively large compared with the range of the search
space. The smallest values within the search space were not chosen as op-
timal values for any of the tests. This could indicate that the search space
should have been larger. The initial model did struggle with overfitting, and
a reduction in complexity could be a solution to this. It is therefore con-
tradictory to choose a larger search space. As mentioned earlier in ch. 3, a
larger search space could also cause larger models that are slower to train.

61



5.4 Future Work
After the evaluation of the results and methods, some possible improvements
were discovered. For future work related to this subject, some suggestions
will be mentioned in this section.

5.4.1 Exploration of other Architectures

Deeper networks using a higher number of layers provide many opportuni-
ties. This thesis focused on developing and optimizing a simple CNN model.
As mentioned, several initial models should have been tested. A well tested
model, such as AlexNet [18] or ResNet [19], could have been used as a basis.
These architectures can be scaled to fit the amount of data, to avoid creating
too complex models. Further work should therefore include a wider test of
initial architectures for the hyperparameter search.

It would also be interesting to perform broader tests regarding the dropout
layers and max-pooling layers. Other variations of pooling-layers, such as the
L2-pooling or Avg-pooling could also be tested. In this project, the use of
L2 regularization reduced the performance for the networks. Further testing
and research in this field can be interesting, as regularization is a good tech-
nique against overfitting in neural networks. For larger data sets or deeper
networks, this should probably be implemented. The use of L1 regularization
should also be examined, as this was not tested in this project.

5.4.2 Genetic Algorithm

The field of hyperparameter optimization using GA is continuously growing,
and it could be interesting to explore this field more. There are several ways
to implement genetic algorithms, and different metrics and parameters to
optimize. The selection of other parameters to use in the mutation function,
and adaptive mutation rates should also be investigated.

5.4.3 Data

The data used for training, validation and testing can be studied more care-
fully. Other techniques for pre-processing, and data augmentation could be
investigated. Also, the data that the classifier fails to classify correctly should

62



be observed. This could make it possible to understand more of the problem,
and identify whether it is the data set or the classifier that causes the errors.

63



Chapter 6

Conclusion

This chapter concludes the results obtained in this project. A short conclu-
sion for the methods used is also presented.

The objective of this thesis was to implement and test methods for hyperpa-
rameter optimization for Convolutional Neural Networks (CNNs). The data
used was provided by Novelda, and was recorded using their Ultra Wide Band
(UWB) radar. The network should classify the radar signals and detect if
there is human presence or not. In addition to this, it was desired that the
implemented network should not be too complex. To avoid a network with
many trainable parameters, a simple model was designed. When optimizing
the model, the aim was to reduce the validation cross-entropy loss and max-
imise the True Positive Rate (TPR) for a given False Positive Rate (FPR).
These metrics were used to decide which architectures and hyperparameters
performed best.

6.1 Results and Methods
A search for the best architecture was performed using a simple initial model,
and investigate the effects of applying regularization and pooling. The final
CNN model was implemented using two dropout layers and one Max-pooling
layer, in addition to the initial model consisting of two convolutional layers
and two dense layers. The effect of L2 regularization was also tested, but it
was not implemented as the model achieved reduced performance.

64



Using the optimized architecture, a hyperparameter search was conducted.
To perform the hyperparameter optimization, a genetic algorithm, as well as
the Python library Keras Tuner, was implemented. Keras Tuner uses the hy-
perband algorithm to search for parameters, and this method was compared
to the genetic algorithm. The algorithms searched for optimized values for
the convolutional and dense layers, consisting of the number of filters, the
kernel sizes, and the number of units.

Using the optimized network in combination with the genetic algorithm, the
network achieved a validation loss of 0.168. For a FPR = 0.01, a TPR = 0.82
was reached. The best results were obtained using the hyperband algorithm
to search for hyperparameters. It achieved a validation loss of 0.156, and a
TPR = 0.83 for FPR = 0.01 was reached.

Regarding the values of the optimized hyperparameters, the two algorithms
reached several similarities with their results. A relatively high number of
filters for the convolutional layers, and units for the dense layer were selected
by the optimizers. In addition to this, a kernel size of 5 for the first convolu-
tional layer, followed by a kernel size of 5 or 3 for the second layer resulted
overall in the best results.

65



Bibliography

[1] H. Blehr, “Ann based respiration detection using uwb radar,” M.S.
thesis, NTNU Department of Engineering Cybernetics, 2017.

[2] B. wiik, “Ann based classification of humans and animals using uwb
radar,” M.S. thesis, NTNU Department of Engineering Cybernetics,
2018.

[3] E.-G. Talbi, “Optimization of deep neural networks: a survey and uni-
fied taxonomy,” working paper or preprint, Jun. 2020, [Online]. Avail-
able: https://hal.inria.fr/hal-02570804.

[4] A. Shrestha and A. Mahmood, “Optimizing deep neural network ar-
chitecture with enhanced genetic algorithm,” 18th IEEE International
Conference on Machine Learning and Applications, pp. 1365–1370, 2019.
doi: doi:10.1109/ICMLA.2019.00222.

[5] I. T. Hovden, “Optimizing artificial neural network hyperparameters
and architecture,” 2019, University of Oslo.

[6] B. A. et al., “Ultra wideband: Applications, technology and future per-
spectives,” 2005.

[7] Accessed 30.04.21. [Online]. Available: https://novelda.com/technology/.

[8] M. A. Nielsen, Neural Networks and Deep Learning. Determination
press, 2015.

[9] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” 2015.

[10] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural
networks,” International Journal of Engineering Applied Sciences and
Technology, vol. 4, no. 12, pp. 310–316, 2020.

66

https://hal.inria.fr/hal-02570804
https://doi.org/doi:10.1109/ICMLA.2019.00222
https://novelda.com/technology/


[11] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Let-
ters, vol. 27, pp. 861–874, 2006. doi: doi:10.1016/j.patrec.2005.
10.010.

[12] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion, 2018. arXiv: 1603.06560 [cs.LG].

[13] [Online]. Available: https://www.python.org/.

[14] [Online]. Available: https://www.tensorflow.org/.

[15] [Online]. Available: https://keras.io/.

[16] [Online]. Available: https://scikit-learn.org/stable/.

[17] Accessed 23.05.21. [Online]. Available: https://www.tensorflow.
org/tutorials/keras/keras_tuner.

[18] S. Li, L. Wang, J. Li, and Y. Yao, “Image classification algorithm
based on improved AlexNet,” Journal of Physics: Conference Series,
vol. 1813, no. 1, p. 012 051, Feb. 2021. doi: 10.1088/1742-6596/1813/
1/012051. [Online]. Available: https://doi.org/10.1088/1742-
6596/1813/1/012051.

[19] I. Bello, W. Fedus, X. Du, E. D. Cubuk, A. Srinivas, T.-Y. Lin, J.
Shlens, and B. Zoph, Revisiting resnets: Improved training and scaling
strategies, 2021. arXiv: 2103.07579 [cs.CV].

67

https://doi.org/doi:10.1016/j.patrec.2005.10.010
https://doi.org/doi:10.1016/j.patrec.2005.10.010
https://arxiv.org/abs/1603.06560
https://www.python.org/
https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://www.tensorflow.org/tutorials/keras/keras_tuner
https://www.tensorflow.org/tutorials/keras/keras_tuner
https://doi.org/10.1088/1742-6596/1813/1/012051
https://doi.org/10.1088/1742-6596/1813/1/012051
https://doi.org/10.1088/1742-6596/1813/1/012051
https://doi.org/10.1088/1742-6596/1813/1/012051
https://arxiv.org/abs/2103.07579


Appendix A

Confusion Matrices Architecture
Search

The confusion matrices for all tests were not included in the results. Here,
all confusion matrices for the different architecture searches from ch. 4.2
will be presented. These results were not of the same importance as the
validation loss and ROC when evaluating models. They are therefore only
used as additional information for the different models.

68



A.1 Effect of Dropout

(a) Model 1. Dropout rate = 0.25 (b) Model 2. Dropout rate = 0.5

(c) Model 3. Dropout rate = 0.75

Figure A.1: Confusion matrices for variations of Dropout rates

69



A.2 Effect of L2 Regularization

(a) Model 1. λ = 0.0001 (b) Model 2. λ = 0.001

(c) Model 3. λ = 0.01 (d) Model 4. λ = 0.1

Figure A.2: Confusion matrices for variations of L2 regularization strengths

70



A.3 Combination of Regularization Techniques

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure A.3: Confusion matrices for combinations of regularization techniques

71



A.4 Max-Pooling Layers

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure A.4: Confusion matrices for combinations of max-pooling and dropout

72



Appendix B

Hyperparameter Search

In this chapter the different plots from the tests performed in the hyperpa-
rameter searches will be presented. This includes the loss, the ROC curve
and the confusion matrices.

B.1 Using Genetic Algorithm

73



B.1.1 Test 1

Figure B.1: Loss vs Epochs for hyperparameter search using Genetic Algo-
rithm. Smoothed graph to the right. (Test 1)

74



Figure B.2: ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 1)

75



Figure B.3: Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 1)

76



B.1.2 Test 2

Figure B.4: Loss vs Epochs for hyperparameter search using Genetic Algo-
rithm. Smoothed graph to the right. (Test 2)

77



Figure B.5: ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 2)

78



Figure B.6: Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 2)

79



B.1.3 Test 4

Figure B.7: Loss vs Epochs for hyperparameter search using Genetic Algo-
rithm. Smoothed graph to the right. (Test 4)

80



Figure B.8: ROC curves (log and normal) for hyperparameter search using
Genetic Algorithm (Test 4)

81



Figure B.9: Confusion Matrix for hyperparameter search using Genetic Al-
gorithm (Test 4)

82



B.2 Using Keras Tuner

B.2.1 Test 1

Figure B.10: Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 1)

83



Figure B.11: ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 1)

84



Figure B.12: Confusion Matrix for hyperparameter search using Keras Tuner
(Test 1)

85



B.2.2 Test 2

Figure B.13: Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 2)

86



Figure B.14: ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 2)

87



Figure B.15: Confusion Matrix for hyperparameter search using Keras Tuner
(Test 2)

88



B.2.3 Test 3

Figure B.16: Loss vs Epochs for hyperparameter search using Keras Tuner.
Smoothed graph to the right. (Test 3)

89



Figure B.17: ROC curves (log and normal) for hyperparameter search using
Keras Tuner (Test 3)

90



Figure B.18: Confusion Matrix for hyperparameter search using Keras Tuner
(Test 3)

91



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Caroline Bakkene
M

aster Thesis, N
TN

U
 2021

Caroline Bakkene

Optimization of a Convolutional
Neural Network for Classification of
Radar Signals

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Torbjørn Karl Svendsen
Co-supervisor: Jon Alm Eriksen

June 2021

M
as

te
r’s

 th
es

is


	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Problem Description
	Previous Work
	Outline

	Theory
	Ultra Wide Band Radar
	Novelda's UWB Radar

	Neural networks
	Introduction to Artificial Neural Networks
	Convolutional Neural Networks

	Training Neural Networks
	Loss Function
	Optimization
	Activation Functions
	Overfitting
	Techniques and layers in CNNs

	Classification evaluation
	Accuracy
	Sensitivity and Specificity
	Receiver Operating Characteristics (ROC)
	Confusion Matrix

	Hyper Parameter Optimizing
	Hyperparameters
	Genetic Algorithm
	Hyperband Algorithm


	Methods
	Data sets
	Pre-processing of data
	Software tools
	Python
	Tensorflow and Keras
	Scikit-learn
	Keras Tuner

	Optimization of hyperparameters
	Search space
	Initial hyperparameters

	Architecture search
	Initial architecture
	Exploring CNN architectures

	Genetic Algorithm
	System setup
	Multiple models

	Keras Tuner

	Test and Results
	Test Procedure
	Optimization of the Architecture
	Test of Initial Model
	Effect of Dropout layer
	Effect of L2 Regularization
	Combination of Regularization Techniques
	Max-Pooling layers

	Hyperparameter Search
	The Optimized Architecture
	Hyperparameters Using Genetic Algorithm
	Hyperparameters Using Keras Tuner


	Discussion
	Results Architecture search
	Initial model
	Regularization
	Max-Pooling

	Results Hyperparameter Search
	Genetic Algorithm
	Keras Tuner (Hyperband)
	Comparison of the two algorithms
	Converging Loss

	Methods
	Future Work
	Exploration of other Architectures
	Genetic Algorithm
	Data


	Conclusion
	Results and Methods

	Confusion Matrices Architecture Search
	Effect of Dropout
	Effect of L2 Regularization
	Combination of Regularization Techniques
	Max-Pooling Layers

	Hyperparameter Search
	Using Genetic Algorithm
	Test 1
	Test 2
	Test 4

	Using Keras Tuner
	Test 1
	Test 2
	Test 3



