Yannick Cyiza Karekezi

An In-Depth Study of Calculation Models for Hydro-Generators:
 Quantifying the Impact of the Energy Transition

Master's in Electric Power Engineering
Supervisor: Jonas Kristiansen Nøland
Co-Supervisor: Thomas Øyvang
June 2021

■ NTNU

Norwegian University of Science and Technology

An In-Depth Study of Calculation Models for Hydro-Generators:
 Quanifying the Impact of the Energy Transition

Master's in Electric Power Engineering Supervisor: Jonas Kristiansen Nøland
Co-Supervisor: Thomas Øyvang
June 2021
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering Department of Electric Power Engineering

- NTNU

Norwegian University of Science and Technology

An In-Depth Study on Calculation Models for Hydro-Generators: Quantifying the Impact of the Energy Transition

Yannick Cyiza Karikezi, Student Board Member, IEEE

Abstract

This project's background is the worldwide energy transition that takes advantage of the hydropower plant's operational flexibility to extend the integration of renewable energy sources. This era and future operational regimes will be much more flexible. This means that today's generators and future generators will have to operate in regimes far away from their designed condition. This report presents two calculation models and two distinct hydro generators.

The first generator is a hydro generator in a Furnas power plant in Brazil. The second generator is a hydro generator in Norway called Åbjøra. The first generator is used as an example to illustrate the different methods and procedures used for calculating the saturation level, iso-efficiency curves, total energy loss curves, total energy loss (TEL), and total energy production (TEP). This report presents two calculation models called weighted average efficiency (WAE) and accumulated average efficiency (AAE). This report also presents a simple worked example that compares the two calculation models for three different loading points. In addition to this, the calculation models are compared using more complex data sets, where the calculation models are compared using three different load distributions. The result was that the AAE superseded the calculation model WAE for all the different load distributions investigated. The difference between the calculation models is as follows. The concentrated load distribution gives a difference of 0.67%, the uniform load distribution gives a difference of 1.43%, and the synchronous condenser load distribution gives a difference of 33.18%.

This report focuses mainly on an in-depth study of the Norwegian hydro generator Åbjøra. The main issue with the calculation model WAE is that it gives a low efficiency when the generator is operated as a synchronous condenser for relatively long periods, during its yearly production. This was illustrated using an artificially made load distribution. That mimics an actual synchronous condenser distribution like the one in Bortoni's technical report [1].

In summary, this report presents a proposal of not only calculating the efficiency at the rated point but considers all the loading points and in doing so evaluates the WAE and AAE. A histogram of discrete loading points is constructed for the two existing generators, an estimate of the duration of loading points and the percentage of time by which each loading point operates is deduced and illustrated. The reason that the generator operates at different loading points than the rated point, is due to the increasing prevalence of renewable energy sources. The integration of renewable energy sources forces conventional power plants like hydro generators to be more flexible in their operating range. This means that the entire load distribution must be taken into account instead of considering the efficiency at a single point.

I. Introduction

This article is written as a project report in the course TET4910 "Electric power engineering, master thesis" at the

Norwegian University of Science and Technology (NTNU). The report presents a study of two different calculation models. The first calculation model is called weighted average efficiency (WAE) and the second calculation model is called accumulated average efficiency (AAE). The proposed AAE is the basis for a journal paper recently submitted to the IEEE Transactions on Energy Conversion [2]. The paper presents a comparison of the WAE and AAE of the Norwegian hydro generator Åbjøra. In this report, there are two generators understudy. The first generator (G1) is a hydro generator in a Furnas hydropower plant, which is the hydro-generator understudy in Bortoni's technical report [1]. The second generator (G2) is an industry generator in Norway called Åbjøra. Generator G1 is used to illustrate the different methods and assumptions for the different calculation models. Three different methods were used to account for the saturation of the generators during different loading points. The first method is called the Anderson and Fouad method and uses saturation factors to quantify the level of saturation. The second method is the method implemented in Bortoni's technical report [1], which uses polynomial coefficients. The third method stems from Machowski [3], which uses a fitting function to quantify the field current for different voltage levels. These three methods are compared in regards to simplicity and accuracy. This is done to calculate the total energy Losses (TEL), rather than average/expected efficiency. The significance of this approach is further explained in Section V III Discussion. In addition to the calculation of TEL, the implementation of different zones was used to capture the discrete loading points and quantify their probability of occurrence. This was done to find the best approach for calculating the TEL. After studying the different zones a conclusion of the most appropriate zone was made. The methods and procedures were experimentally validated using measurements of the efficiency and field current extracted from the industry generator Åbjøra. MATLAB is the chosen numerical software used for calculation and results presented in this report. The University of Southeast Norway provided industry data consisting of production data for different hydrogenerator in Norway. A case study of the calculation models WAE and AAE were compared using production data from the industry, an artificially made uniform load distribution, and an artificially made synchronous condenser distribution. The project report is divided into nine sections. The different sections can be seen in the list below.

1) Introduction
2) The Problem Description
3) An introduction to the Energy Transition
4) Description of the case studies
5) Theoretical framework for loss and efficiency calculation
6) The Implementation of different Methods and the Calculation Procedures
7) Results and discussion
8) Further work
9) Conclusion

II. The Problem Description

The energy transitions' main impact is the increased prevalence of solar and wind power plants and their influence on exciting electrical grids. In addition to this, there is also a disconnection of fossil power production units. Moreover, the rising demand for fast, reliable, and sufficient power generation, in case of missing solar and wind power generation, creates a need to modernize the current grids [4]. This is necessary to assure a sufficient amount of rotational mass, such as rotational phase-shifter applications, and to build new fast-cycling power plants [5].

This master thesis aims to increase the physical understanding of the phenomena and challenges that occurs when renewable energy sources are connected to the grid. This study focuses in particular on how renewable energy sources affect hydropower plants. The increased incentives for the removal of conventional power plants like coal, gas, and nuclear power in addition to the encouragement of a faster transition to renewable energy sources create entirely new criteria regarding the operation and design of new and existing hydropower plant [6]. From the hydro generator's point of view, the increased implementation of renewable energy sources creates a bigger variation in loading points, and thus, requires reliable electrical machines with increased operational flexibility. This also creates the need for a hydro generator that can withstand higher thermo-mechanical loads, rapid load ramping, and losses related to variation in production [7]. Figure 1]shows an example of a capability diagram that indicates operation points in MVAr and MW in addition to their weight. The example shows that the generator operates only 5% around its nominal rated condition (best point).

This report focuses both on the different loading points and the frequency of the loading points. This means that the generator's start and stop cycles as well as the different loading points are considered. The efficiency and losses in this study are calculated based on their loading points. The weight is calculated based on the frequency of the loading points and the total number of loading points.

This project's contribution is to investigate different methods and approaches for quantifying the impact of the energy transition. This is done by comparing two different calculation models for three different load distributions/operational regimes. This was done using hydro-generator G1, which is the hydro-generator in the Furnas power plant. An illustration of the Furnas hydropower plant can be seen in Figure 2. This project also contributes to explain and quantify the impact of the energy transition by implementing a case study of the

Fig. 1. Example of a capability diagram depicting efficiency contours, considering different load points and weights based on the operational regime of the generator understudy [1]. The x-axis projects the active power in MW, whereas the y-axis takes the reactive power in MVAr into account. The yellow squares with indication numbers show the probability for a load point to occur.
calculation models WAE and AAE. This is further explained in Section VII Three important case studies are presented in this report using hydro generator G2. The first case study uses industry data. The second case study uses an artificially made distribution that mimics a load distribution that is evenly distributed throughout the entire capability diagram. The third load distribution is also artificially made, but this distribution mimics a synchronous condenser distribution. The characteristics of these load distributions are further explained in Section IV

III. An introduction to the Energy Transition

This section goes into more detail on how renewable energy affects the grid and conventional power sources. This section primarily focuses on how it affects hydraulic units. The increasing prevalence of renewable energy sources forces turbogenerator sets and hydraulic units to be more flexible in their operational regime [9].

One example is the production phenomenon "duck curve". The California Independent System Operator (CAISO) published a graph that shows the timing imbalance caused by solar power production and energy need during a day [10]. The

Fig. 2. A Picture of a Furnas hydropower plant in Brazil 8].

Fig. 3. Typical spring day for solar power production in California [10].
duck curve pictured in figure 3 shows that the peak demand occurs in the time when the amount of solar energy production decreases significantly [11]. This means that conventional power plants must be able to quickly ramp up production to compensate for the imbalance within a short time frame [12]. On the other hand, there is also a risk of over-generation during noontime when a lot of solar production is fed into the grid, while the consumption is low.

There has been made several incentives to increase the prevalence of renewable energy sources, and a shutdown and disconnection of conventional power source. This has lead to a decrease in frequency response and an increase in noncontrollability of reactive power flow in the grid [13]. The removal of large reliable power sources leads to a reduction of rational mass in the system. This is because the inertia and the reactive power provided by the conventional power sources help stabilize the frequency and assures the reliability of the grid [5]. The regulation of reactive power is very difficult without conventional power plants. This is primarily because renewable energy sources like wind and solar have limited capabilities of running in capacitive mode [14]. This means that one must often implement expensive power electronic devices in combination with renewable energy sources [6].

As previously stated several incentives have been made to get a quicker transition towards renewable energy sources. One example is California which has made several incentives to
accelerate the prevalence of the duck curve. The following key initiatives that California have set in motion are:

1) 50% of retail electricity from renewable power by the year 2030
2) Greenhouse gas emission goal to 1990 levels;
3) Regulation in the next 4-9 years requires power plants that use coastal water for cooling to either re-power, retrofit or retire.
4) An executive order for 1.5 million zero-emission vehicles.

The same initiatives have also been set in motion by other countries. The German grid operators are also trying to increase the prevalence of renewable energy sources. The Germans have implemented something called the "Energiewende" (energy turnaround), the portion of renewable energy rose to 38.5% in 2017, where 50% of the renewable energy was generated by wind turbines. Wind power generation is quite difficult to predict. Wind power underlies more or less an "on/off" behavior in regards to power generation [7]. This means that there is a big risk of over-generation on windy days, and sudden energy breakdown, due to calms or storms. Figure 4 below shows the electricity generation in Germany for public power supply in 2017. This number is only increasing due to the goals of the "German Energiewende". The goals for the German Energiewende are as follows.

1) 55-60 \% of retail electricity from renewable by 2035 .
2) Nuclear phase-out by end of 2020 .
3) 50% reduction of primary energy demand by 2050
4) Development of energy storage devices, intelligent grids, and flexible fossil power plants.
5) Six million electric cars in Germany by 2030.

One can see that the increase in renewable energy in existing and future electricity production leads to the necessity of an extensive re-design of the grid topology, and the development of very reliable and flexible electrical machines [4]. It is therefore important to continuously develop the current grid. This must be done to assure a sufficient amount of rotating mass, such as the application and building of new fast-cycling power plants [15]. The variability of renewable energy sources has a significant impact on hydropower turbines [16]. The ramping capabilities of hydraulic units are highly appreciated since it is one of the best solutions to compensate for the unreliability of renewable energy sources.

There are no concrete plans from the US and European governments to reconstruct the present grid topology. This means that the increasing volatility of the current grid will be dealt with by the power plant operators. This also means that future hydro generators must be designed to handle this type of fluctuation in regards to the loading points. Most of the generators today are not designed for this kind of operational regime. Most hydro generators are designed in regards to a nominal operating point. In other words a classical mode of operation [17]. This also means that today's generators are designed for a continuous running duty cycle. Figure 5 shows the different duty cycles for generators and motor loads. As previously stated today's generators are designed for a continuous running duty cycle, but the increasing prevalence of renewable energy sources causes the operations to vary

Fig. 4. The figure shows the net electricity generation for public power supply in Germany during the implementation of the Energiewende. The figure illustrates which type of electricity generation that is present and its prevalence [10].

Fig. 5. Different duty cycles for generators and motor loads 10 .
intermittently [18].
The introduction of renewable energy sources results in several starts and stop cycles in the day/week depending on the renewable energy generation. Due to the start and stop cycle there are frequent steps of active power and reactive power production to balance the weather dependant renewable energy sources [19]. Figure 6 shows that the introduction of renewable energy sources causes short-time duty cycles and intermittent periodic duty cycles. The increasing prevalence of this kind of operational regime gives rise to the study of calculation models to accurately quantify the impact of the energy transition.

A. The Energy Transitions Impact on the Short-Circuit Ratio

The short circuit capability of a power system is strongly correlated to the short circuit properties of its power genera-

Fig. 6. Operational flexibllity of Large turbine Generators-Duty Cycle. The short time duty cycle during a day (left plot) and the intermittent periodic duty cylce during nine days (right plot) |10]
tion, as well as the grid topology. The increasing mix of power generation will inevitably affect this issue. The short circuit ratio (SCR) of a generator refers to its ability to deliver a short circuit current to its terminal. The short circuit ratio can be expressed with equation 1. I.e it is the ratio of field current required to produce rated armature voltage at the open circuit, over the field current required to produce the rated armature current at short circuit [20].

$$
\begin{equation*}
S C R=k_{c}=\frac{i f_{0}}{I_{f k}} \tag{1}
\end{equation*}
$$

Typical values of SCR for hydraulic units may be in the range of 1 to 1.5 . The larger the SCR is, the smaller is the synchronous reactance in the d-axis. Consequently, this means that if the SCR is above 1 , a power system has a good grid strength. This means that the generator will be less subjected to variations in frequency and can provide more short circuit current. The SCR can be calculated for each point on an electrical grid. I.e a point on a grid having several machines connected to it, with a SCR above a number between 1 and 1.5 has less vulnerability to voltage instability. Hence such a grid is known as a strong grid.

It is perceived that the SCR improves the grid stability, but it is observed to have a marginal performance improvement between 0.5 and 0.45 when using a fast high-gain excitation system [21]. In some grid typologies, there are long distances between the bulk production (hydro-generator) and the main consumption, this would mean a higher SCR. A high short circuit ratio for hydraulic units is important because it results in a machine that is loosely coupled to the grid and has a slow response. This increases the machines stability while operating connected to the grid, but simultaneously will increase the short circuit current delivery capability of the machine (higher short circuit current), and subsequently higher machine size and cost. The list below shows the following requirements that are usually considered in regards to the value of the SCR for hydraulic units and turbogenerators sets.

1) IEC 600343/IEEE C50.13 specifies a minimum SCR of 0.35
2) Most generators are designed to have $\mathrm{SCR} \geq 0.45$.
3) Most grid codes require $S C R \geq 0.5$.

In addition to the normal SCR, a dynamic SCR might be important in cases where short-term reactive power capability (RPC) of the machine is utilized in combination with more advanced control schemes [22]. The reactive power capability

Fig. 7. Different grid code requirements for reactive power capability 25.
is closely coupled with the short circuit ratio [23]. One example could be that a high SCR enhances the RPC significantly. This is because the high SCR reduces the synchronous reactance in the d-axis X_{d}, which reduces the internal parasitic reactive power consumption of the generator [24]. This is important because the introduction of renewable energy causes a wider operational range in reactive power production and consumption. It is therefore important to have generators with good RPC. Figure 7 shows the grid code requirements for reactive power capability at different terminals.

B. Energy Transitions Impact on Turbogenerator sets and Hydraulic Units

Figure 8 clearly illustrates the temperature change in generators due to future operational regimes of turbo-generator sets and hydraulic units under the influence of increased solar and wind power generation. The short and steep load ramps can result in significant thermo-mechanical stresses on the generator [26]. This is because the components in the machine are heated up during a very short period [27]. This results in a vast temperature difference from standstill to full load. The losses are proportional to the current, which means that the current-carrying parts, such as the rotor and stator windings will have significant losses [28]. This means that most of the temperature rise will occur in these parts compared to the part conducting the magnetic flux, such as the rotor body and stator body [29]. This in combination with the thermal expansion coefficient of the material will cause mechanical stresses and also contribute to accelerated aging of the insulation system [30]. Another important consideration is that the bearing and coupling are penetrated by higher mechanical stresses during this ramping time [31]. This problem is perpetuated by the fact that the number of start and stop cycles is increasing under this new operational regime.

C. The Introduction of an Extended Capability Diagram to handle Increasing Load Variation

As previously stated the increasing start and stop cycle affects the temperatures in the generator. Adaptive cooling will be needed to avoid the high ventilation losses under low loading conditions and to reduce the repetitive thermal expansion occurring as a result of the energy transition. The

Fig. 8. The figure illustrates the temperature change in a generator for three different load cycles. Figure a) illustrates the temperature change during constant output. Figure b) illustrates the short time duty cycle during a day and figure c) illustrates the intermittent periodic duty cycles during nine days [10]
lifetime and thermal aging must be carefully considered when designing and operating the machine for future operational regimes.
Because of the increasing prevalence of renewable energy, there will be a need for utilization of an extended capability diagram [32]. Figure 8 show that "extreme points" may be realized in short periods. Figure 8 also shows that very high temperatures are reached due to the wider operational range. The operational point at the outer edges of the capability diagram is considered "extreme points". This is because the generator is not designed to operate at those points for long periods. This is mainly due to the large thermal inertia and the corresponding thermal time constants available in the machine [33]. The use of new real-time monitoring and control technology means that a dynamic envelop regime can be enforced on the generators. This would enhance the flexibility of the generator [34].
An example of these "extreme operating points" can be illustrated using a boundary profile. The European Network of Transmission System Operators for Electricity (ENTSO-E) and the Transmission System Operator (TSO), have made a boundary profile in regards to $\mathrm{Q} / \mathrm{Pmax}$ and terminal voltage. Figure 9 represents the boundary profile for a synchronous generator (eg. hydro generator) defined by ENTSO-E and the TSO requirements.

If one first considers the upper right corner (overexcited) of the envelope illustrated in figure 9 one can see that for the generator to satisfy such an operation point, the max power must be downrated to about 0.8 pu. The generator terminal has to operate at a voltage level of $U_{t}=1.10 \mathrm{pu}$, which is outside the typical machine design specifications of $\pm 5 \%$. Another "extreme operating point" is the lower-left corner (underexcited) of the envelope. In a condition like this, the generator needs to provide an unsatisfactory high stator current to provide the same power [35].

The new operational regime and ENTSO-requirements increase the range of the loading point points in the capability diagram. Figure 10 illustrates the distribution of loading points in the capability diagram of the 300 MVA generator. The figure also illustrates the change due to the energy transition. a) Before "German Energiewende", and b) After. In addition, the figure 10 also illustrates the probability of a loading point to occur. The figure shows an increase in range in addition to

Fig. 9. Typical $\mathrm{V}-\mathrm{Q} / P_{\max }$ requirements of a synchronous power generating module from ENTSO-E. In addition, the TSO requirements for downstream and upstream profile (referred $\mathrm{Q} / P_{\max }$ at the generator side) are indicated. (10).

Fig. 10. The distribution of load points in the capability diagram of 300 MVA generator. The figure illustrates the relative changes due to the energy transition. a) Before the "German Energiewende" and b) After. [10]. The figure is also an example of an uniform load distribution, because the load points are much more evenly distributed.
an increase in the generator's duration time in those "extreme operating points". The probability of a loading point to occur is illustrated using zones. In other words figure b illustrates that there is a 36% probability of occurrence for a loading point to occur when the active power is between (0.45-0.65).

IV. DESCRIPTION OF THE CASE STUDIES

To investigate the impact of the energy transition on the hydro-generator facilities, two distinct case studies were made. The machine understudy is hydro generator G1 and G2.

TABLE I
Key rated quantities of Hydrogenerator G1

Symbol	Description	Value
S_{b}	Base apparent power	160 MVA
$\cos (\varphi)$	Power factor	0.95
η_{n}	Measured rated efficiency	98.5%
U_{t}	Nominal armature voltage	15.0 kV
I_{t}	Nominal armature current	6158 A
I_{f}	Rated field current	1047.0 A
f	Nominal frequency	50 Hz
R_{a}	Armature resistance	0.00232 pu
X_{d}	Direct axis reactance	0.8 pu
X_{q}	Quadrature axis reactance	0.6 pu
X_{p}	Potier reactance	0.18 pu

TABLE II
Key rated quantities of Hydrogenerator G2

Symbol	Description	Value
S_{b}	Base apparent power	103 MVA
$\cos (\varphi)$	Power factor	0.90
η_{n}	Measured rated efficiency	98.834%
U_{t}	Nominal armature voltage	11 kV
I_{t}	Nominal armature current	5406 A
I_{f}	Rated field current	1065 A
f	Nominal frequency	50 Hz
n	Nominal speed	500 rpm
R_{a}	Armature resistance	0.002 pu
X_{d}	Direct axis reactance	1.059 pu
X_{q}	Quadrature axis reactance	0.676 pu
X_{p}	Potier reactance	0.141 pu

The generator under focus in Section VI. Methods is hydrogenerator G1 which is the generator used in the Furnas hydropower plant in Brazil. The data for this generator is extracted from the technical report written by Bortoni [1].

The Norwegian hydro generator Åbjøra (hydro-generator G2) is used in the Section VII Results to illustrate that this study can be applicable for hydro-generator of different sizes and characteristics. The studies that were done in Section VI and VII show that one can develop an algorithmic procedure for calculating the WAE and AAE using the generators rated data and losses at the rated operation as input for the algorithm. The rated quantities for generator G1 and G2 is illustrated in table \square and Π. The rated losses for the generators can be seen in Table III

TABLE III
LOSS DATA OF THE MACHINES EXTRACTED AT RATED CONDITION.

Loss	hydro generator G1		hydro generator G2	
component	SI value	PU value	SI value	PU value
P_{a}	327.05 kW	0.0020 pu	187.46 kW	0.00182 pu
P_{s}	237.07 kW	0.0015 pu	89.16 kW	0.0009 pu
$P_{w f}$	710.47 kW	0.0044 pu	172.92 kW	0.0017 pu
P_{c}	539.87 kW	0.0034 pu	211.92 kW	0.0021 pu
P_{b}	156.17 kW	0.0009 pu	240.9 kW	0.0023 pu
P_{f}	477.81 kW	0.0030 pu	173.65 kW	0.0017 pu
$P_{e x}$	33.96 kW	0.0002 pu	15.88 kW	0.0002 pu
$P_{b r}$	5.93 kW	0.0000 pu	2.13 kW	0.0000 pu
$P_{\text {loss }}$	2488.33 kW	0.0154 pu	1094.02 kW	0.01062 pu

V. Theoretical framework for Loss and EFFICIENCY CALCULATION AND IMPORTANT DEFINITIONS

This section consists of the theoretical basis for the main objective of this report, which is comparing the calculation models WAE and AAE. The important nomenclature used in this project can be seen below.

Nomenclature

$\Delta t_{i} \quad$ Discrete time interval for a load point, $[h]$ or $[s]$
$\delta \quad$ Rotor loading angle, [rad] or [${ }^{\circ}$]
$\eta \quad$ Generator's operation point efficiency, $[p u$] or [\%]
$\eta_{a} \quad$ Accumulated average efficiency (AAE), [$p u$] or [\%]
$\eta_{n} \quad$ Generator's nominal efficiency, [$p u$] or [\%]
$\eta_{w} \quad$ Weighted average efficiency (WAE), [$p u$] or [\%]
$\mathcal{E}_{g} \quad$ Induced generator voltage, [pu] or [V]
$\mathcal{E}_{p} \quad$ Induced voltage behind potier reactance, $[p u]$ or $[V]$
$\bar{P} \quad$ Average power, $[p u$] or $[k W]$
$\bar{P}_{\text {loss }} \quad$ Average power loss, $[p u]$ or $[k W]$
$\theta \quad$ Angle behind the potier reactance, $[\mathrm{rad}]$ or $\left[{ }^{\circ}\right]$
$\varphi \quad$ Power factor angle, [rad] or [${ }^{\circ}$]
$A_{i} \quad$ Weighting factor for an operation point, [pu] or [\%]
$b_{v} \quad$ Slope constant of the generator's air gap line curve
$C_{m} \quad$ Saturation constant for the generator's saturation curve
$E \quad$ Total energy production, [GWh]
$E_{\text {loss }}$ Total energy losses, [GWh]
$I_{a} \quad$ Stator armature current, $[p u]$ or $[A]$
$I_{f} \quad$ Rotor field current, $[p u]$ or $[A]$
$k \quad$ Slope constant for approximating the generator' saturation curve in the air gap line region
$m \quad$ Saturation curve's exponential constant
$P \quad$ Generator's active power, [$p u$] or [MW]
$P_{a} \quad$ Stator armature winding resistive loss, $[p u]$ or $[k W]$
$P_{b e} \quad$ Bearing loss, $[p u]$ or $[k W]$
$P_{b r} \quad$ Rotor brush loss, [pu] or $[k W]$
$P_{c} \quad$ Stator armature iron core loss, $[p u]$ or $[k W]$
$P_{e x} \quad$ Excitation system loss, $[p u]$ or $[k W]$
$P_{f} \quad$ Rotor field winding resistive loss, $[p u]$ or $[k W]$
$P_{\text {loss }}$ Generator's total losses, $[p u]$ or [$k W$]
$P_{s} \quad$ Stator stray load loss, $[p u]$ or $[k W]$
$P_{w f} \quad$ Windage and friction loss, $[p u]$ or $[k W]$
$Q \quad$ Generator's reactive power, [$p u$] or [MVAr]
$R_{a} \quad$ Armature resistance, $[p u$] or [Ω]
$S \quad$ Generator's apparent power, $[p u]$ or $[M V A]$
$U_{a} \quad$ Terminal voltage, $[p u$] or [V]
$X_{d} \quad$ Direct axis synchronous reactance, $[p u]$ or $[\Omega]$
$X_{p} \quad$ Potier reactance, $[p u]$ or [Ω]
$X_{q} \quad$ Quadrature axis synchronous reactance, $[p u]$ or [Ω]
$\mathrm{N} \quad$ The number of elements
T The number of discrete loading points
The equations used for calculating the losses in the different loading points and the efficiency of the generator during different loading points can be seen in equations (2)-(9). The active power losses marked with "*", represent the different losses during rated operations. The current and voltage marked with "*" represent the rated armature current $\left(I_{A}\right)$, field current
$\left(I_{F}\right)$, and terminal voltage $\left(U_{a}\right)$ respectively.

$$
\begin{align*}
& P_{a}=P_{a}^{*}\left(\frac{I_{A}}{I_{A}^{*}}\right)^{2} \tag{2}\\
& P_{f}=P_{f}^{*}\left(\frac{I_{F}}{I_{F}^{*}}\right)^{2} \tag{3}\\
& P_{s}=P_{s}^{*}\left(\frac{I_{A}}{I_{A}^{*}}\right)^{2} \tag{4}\\
& P_{b r}=P_{b r}^{*}\left(\frac{I_{F}}{I_{F}^{*}}\right)^{2} \tag{5}\\
& P_{e x}=P_{e x}^{*}\left(\frac{I_{F}}{I_{F}}\right) \tag{6}\\
& P_{c}=P_{c}^{*}\left(\frac{U_{A}}{U_{A}^{*}}\right)^{2} \tag{7}\\
& P_{\text {Loss }}=P_{a}+P_{f}+P_{s}+P_{b r}+P_{e x}+P_{b}+P_{w f}+P_{c} \tag{8}\\
& \eta=\frac{P^{2}}{P+P_{\text {Loss }}} \tag{9}
\end{align*}
$$

To better grasp the concepts and the challenges facing the energy transition some definitions have been made and articulated.

1) Exact/specific loading point: A specific loading point is defined as a loading point with two decimals or less that occurs frequently in a production dataset, meaning more than once. This could for example be the nominal operating point of hydro generator G 2 which is $(0.33,0.95)$, or an arbitrary operating point ($0.1,0.4$).
2) Discrete loading point: A discrete loading point is defined as an operating point that is not exact, in other words, a loading point that is unique in a dataset. This means that the loading point only occurs once in a production dataset and often consists of several decimals.
3) Density/resolution: In this study, the density is referred to as the space between the loading points. This means that high density represents several discrete loading points in close proximity.
4) Iso-efficiency curves: Non-concentric curves that depict the efficiency at different loading points.
5) Weight: The probability of occurrence for an exact/specific loading point. This means that the frequency of an exact loading point is counted. In other words the duration of a particular loading point. Δt represents the duration (hour) of a particular loading point i.e the frequency of occurrence. The constant T represents the generators running time during a year. Bortoni's definition of weight is therefore the time interval of a loading point over the total duration time of a generator during a given year. The equation for the weight is illustrated below.

$$
\begin{equation*}
A_{i}=\frac{\Delta t}{T} \tag{10}
\end{equation*}
$$

6) Equal weight distribution: The calculation model Accumulated Average Efficiency assumes an "equal weight distribution". This means that the discrete loading point is not rounded up to two decimals. Instead of counting the frequency of an exact loading point, every discrete loading point in a dataset is unchanged. This also means that every discrete loading point has the same weight therefore the name " equal weight distribution". It also means that the weight for discrete loading points is constant and not dependant on the time intervals because they only occur once. In other words, the weight is constant and equal to $1 / T$. The weight when an equal distribution is assumed can be seen in equation 11

$$
\begin{equation*}
A_{i}=\frac{\Delta t}{T}=\frac{1}{T} \tag{11}
\end{equation*}
$$

7) Concentrated load distribution: Most of today's generators operate with concentrated load distribution, meaning most of the loading points are concentrated within a relatively small area. The production data from \AA Åbjøra is a prime example. From this data, one can see three distinct characteristics. The first characteristics are that most of the loading points are around $P_{\text {max }}$, and not as much evenly distributed throughout the capability diagram. The second characteristics are that the range in reactive power production and consumption does not vary that much. In Åbjøra's case, it varies from -0.08 to 0.175 pu. The third characteristics are that almost all of the loading points are above 0.6 pu , in most cases the loading point below this value is usually because the generator is turned off.
8) Uniform load distribution: Future hydro generators will operate with uniform load distribution, meaning the load distribution will be uniformly distributed throughout the capability diagram. Figure 10 is a prime example of the difference between concentrated load distribution and uniform load distribution. Figure a) shows the load distribution before Germanys "Energienwende", while figure b) shows the load distribution when the "German Energiewende" is set in motion. This figure illustrates what happens when there is a disconnection of conventional power plants and a lot of renewable energy sources are connected to the grid. Uniform load distribution has primarily three characteristics. The first characteristics are that the loading point is more or less evenly distributed throughout the capability diagram. The second characteristics are that the range in reactive power consumption and production varies drastically. The third characteristics are that more loading points are below 0.6 pu compared to concentrated load distribution, this is primarily because the generator operates more often as a synchronous condenser. The reason for this is further explained in Section IV
9) Synchronous condenser distribution: The synchronous condenser distribution is 'The worst-case scenario". This kind of distribution is illustrated in figure 24 In this distribution, a lot of the loading points are concentrated around 0 pu active power. Forcing the generator to operate as a synchronous condenser. For the case in figure 24, the generator is operating below 0.02 pu active power 50% of the time. This figure also illustrates what happens when a lot of renewable energy sources are connected to the grid. Renewable energy sources like wind and solar do not produce reactive power only active
power. This forces hydro generators to produce little or no active power. This is because the active power demand is satisfied by renewable energy sources. This means that a lot of the time, the hydro generators either provide or consumes reactive power from the grid. The hydro generators work as a synchronous condenser by producing little or no active power and mostly providing or consuming reactive power. This gives rise to the name synchronous condenser distribution.

A. Important Presuppositions Regarding Calculations done in this Report

1) Steady state: All the loading points are assumed to be steady-state. This means that there are no transient or subtransient events for the different loading points.
2) Infinite grid: The generator is connected to an infinite grid. This means that the voltage is stiff and equal to 1 pu for all loading points. The generator terminal is chosen as the reference point and is therefore given the value 1 pu and 0 degrees. This also means that the armature current is directly proportional to the apparent power. This can be seen in equation 12

$$
\begin{equation*}
I_{A}=\frac{S}{U_{A}}=\frac{\sqrt{\left(P^{2}+Q^{2}\right)}}{1} \tag{12}
\end{equation*}
$$

3) Synchronous reactance: The synchronous reactance used in this report is the reactance from the generator to the generator terminal. This implies eg. that the synchronous reactance in the d-axis is the summation of the armature reaction reactance and the leakage reactance.
4) The armature resistance: The armature resistance is included in all the calculations except for the calculation of the practical stability limit (PLS). It is assumed to be 0 for the PLS calculation.

VI. Method

A. Magnetic Saturation

In this subsection, three methods for calculating the magnetic saturation are presented. Determining saturation is a difficult task. In the book power system stability [36] Kundur states that "Any practical method of accounting for saturation effects must be based on semi-heuristic reasoning and judiciously chosen approximations, with due consideration to the simplicity of model structure, data availability, and accuracy of results.". The first method presented is the Anderson and Fouad method. The Anderson and Fouad method was used in the specialization project [37] to quantify the level of saturation and replicate the iso-efficiency curves in Bortoni's technical report. This subsection also explains Bortoni's method of quantifying saturation. The third method uses a fitting function to quantify the field current during saturation. These three methods are presented to illustrate that one can use several methods to determine magnetic saturation. These methods are compared in regards to their simplicity and accuracy.

Fig. 11. The airgap line and the open circuit characteristics of the hydrogenerator G2 [1].

1) Anderson and Fouad method: Operating a generator with a very flexible operational range causes high stresses on the excitation system [38] and significant excitation losses [39]. This means that more robust excitation systems must be built in the future [32]. This must be done so that future excitation systems can withstand the thermo-mechanical stresses [40]. Another alternative is to implement expensive power electronics to reduce the variation in reactive power [33].

As previously stated the new operational regimes causes an increase in thermal-mechanical loading and load variation, which again causes significant stresses on the excitation system. Consequently, the losses related to the field current and magnetic saturation play a much more significant role in determining the losses and the efficiency of the hydrogenerator during different loading points. In other words, this means that one can not assume that the generator's field current I_{f} is directly proportional to the induced voltage E_{g}.

Several assumptions must be made before one determines the saturation. The main assumption is presented below in chronological order:

1) The Leakage inductance and Potier inductance are independent of saturation.
2) The only inductance affected by saturation is the mutual inductance $L_{a d}$.
3) Since the generator's understudy is salient pole generators it is assumed that the saturation occurs only in the d-axis.
4) Because load tests is not available. Saturation is determined using the open-circuit characteristics.
5) The induced voltage E_{g} is equivalent to the terminal voltage U , This is because the saturation is determined during no-load.

The open-circuit characteristics (OCC) can be seen in figure [1] The figure shows the induced voltage in the air gap as a function of the field current. This means that one must select an appropriate method and procedure to determine the saturation for all operations. This is because saturation must be determined based on the available data and the most applicable
method. One of the most applicable methods is the method developed by Anderson and Fouad. The procedure for the method is further explained in the journal "Computer-aided analysis of saturation in synchronous machines" [41]. Equation 13 is used to fit the saturation curve. V is the terminal voltage, n is either number 7 or 9 , c and k are arbitrary constants. The induced voltage E_{g} can be used instead of V in the fitting function. The slope of the air gap is equal to 1 pu. This means that the assumption made for the air gap line is that field current is directly proportional to the induced voltage. The airgap line is replicated using equation 14 When generators have a linear characteristic, i.e. the field current is directly proportional to the induced voltage, saturation is neglected. The equation for the armature reaction reactance, when saturation is neglected, can be seen in equation 15 Notice that the Potier reactance is used instead of the leakage reactance X_{l}. Another noticeable remark is that saturation only occurs in the d-axis. This is because the flux takes the path of least reluctance. The reluctance is much smaller in the d-axis because the air gap is much smaller in the d-axis compared to the q -axis. In other words, the airgap is non-uniform in a salient pole generator forcing the flux to travel mostly through the d-axis.

$$
\begin{gather*}
I_{f d}=\left(V+C * V^{n}\right) * k \tag{13}\\
I f=E_{g} \tag{14}\\
X_{a d u}=X_{d}-X_{p} \tag{15}
\end{gather*}
$$

As previously stated, the equation determining the armature reaction reactance when saturation is neglected is given by equation [15] By rearranging the equation one can determine the synchronous reactance in the d -axis X_{d}. The synchronous reactance is illustrated in equation 16. The equation illustrates that the armature reaction reactance and the synchronous reactance are both affected by saturation.

$$
\begin{equation*}
X_{d}=X_{a d u}+X_{p} \tag{16}
\end{equation*}
$$

To get the correct slope of the saturation curve the saturation curve was optimized around the three points marked in figure 12. The light blue line and the orange lines intersection point are used to optimize the saturation curve around the intersection point $(2.25,1.3)$. The light blue line and the orange line are used to optimize the saturation curve around the point $(1.5,1.1)$. The pink and yellow lines intersection point is used to optimize the saturation curve around the point $(1.0,0.9)$. The green line was used as a proxy to see if the slope of the saturation curve between the intersection point were also correct. These points were chosen based on the fact they were relatively easy to read/estimate from the given OCC.

The Anderson and Fouad method state that once the air gap line and the saturation curve are plotted the following step of the procedure is to then determine the saturation factor S . which is scaled in regards to the open circuit characteristics

Fig. 12. The figure illustrates the three points that the saturation curve was optimized around [37].

Fig. 13. The figure illustrates the procedure for calculating the saturation factors $S_{1.0}$ and $S_{1.2}$ 37. By using the constants $A_{1.0}, A_{1.2}, B_{1.0}$ and $B_{1.2}$.
of the generator. The first step is to calculate the saturation factor S when the induced voltage/terminal voltage is at its rated value and 20% overvoltage. The saturation factor is determined from the computed air gap line and saturation curve. This procedure can be seen in figure 13. The figure illustrates the field current giving the air gap line and the saturation curve a terminal voltage of 1 pu . and 1.2 pu . These field currents are used to determine the saturation factor $S_{1.0}$ $S_{1.2}$

As one can see from figure 13, the saturation factor at rated terminal voltage $S_{1.0}$ and the saturation factor at 20 $\%$ overvoltage $S_{1.2}$ is found from the saturation curve. The saturation factors are calculated using equation 17 and 18 . The constants $A_{1.0}, A_{1.2}, B_{1.0}$ and $B_{1.2}$ are equivalent to the field currents giving rated terminal voltage, and 20% overvoltage for the airgap line and the saturation curve. $A_{1.0}$ and $A_{1.2}$
represent the field currents resulting in a terminal voltage equal to 1 pu and 1.2 pu on the air gap line. The constant $B_{1.0}$ and $B_{1.2}$ represent the field currents resulting in a terminal voltage equal to 1 pu and 1.2 pu on the saturation curve. The saturation factors $S_{1.0}$ and $S_{1.2}$ are then used to calculate two saturation constants $A_{\text {sat }}$ and $B_{\text {sat }}$. The equation used for calculating $A_{\text {sat }}$ and $B_{\text {sat }}$ can seen in equation 19 and 20

$$
\begin{gather*}
S_{1.0}=\frac{B_{1.0}-A_{1.0}}{A_{1.0}} \tag{17}\\
S_{1.2}=\frac{B_{1.2}-A_{1.2}}{A_{1.2}} \tag{18}\\
A_{\text {sat }}=\frac{S_{1.0}^{2}}{1.2 * S_{1.2}} \tag{19}\\
B_{\text {sat }}=5 \ln \left(1.2 \frac{S_{1.2}^{2}}{S_{1.0}}\right) \tag{20}
\end{gather*}
$$

The saturation factor for all operations is expressed as an exponential function. The saturation factor S is given in equation 21 The saturation factor is an exponential function consisting of the saturation constants $A_{\text {sat }}, B_{\text {sat }}$ and the threshold voltage U_{T}, which is 0.43 in this case. The saturation factor is a function of the induced voltage and therefore scaled in regards to the induced voltage E_{g}.

$$
\begin{equation*}
S=A_{\text {sat }} * e^{B_{s a t} *\left(E_{g}-0.43\right)} \tag{21}
\end{equation*}
$$

The saturation factor is then converted to the saturation factor $K_{s d}$. This is done because the saturation factor $K_{s d}$ can be multiplied with the armature reaction reactance $X_{a d u}$ to give a lower value of $X_{a d u}$ depending on the level of saturation. This is done to quantitatively express the decrease in armature reaction reactance when there is an increase in saturation. By using equation 21, 22 and 23 One can model the level of saturation for different induced voltages and quantify its influence on the armature reaction reactance and field current.

$$
\begin{gather*}
K_{s d}=1 / 1+S \tag{22}\\
X_{a d s a t}=X_{a d u} * K_{s d} \tag{23}\\
X_{d s a t}=X_{a d s a t}+X_{p} \tag{24}
\end{gather*}
$$

If one assumes that all load conditions are steady-state, the use of X_{p} instead of X_{l} is believed to make an empirical allowance for the difference between the saturation during the loaded condition and no-load condition.
This is primarily because the leakage flux under loaded conditions and the no-load condition are different. The field leakage under loaded conditions is higher. The Potier reactance accounts for the difference and is higher than the leakage inductance. This means that the field current can be expressed using equation 25 and 26 below.

$$
\begin{equation*}
E_{g s a t}=U_{A} * \cos (\delta)+R_{A} * I_{A} * \cos (\delta)+X_{d s a t} I_{A} \sin (\phi+\delta) \tag{25}
\end{equation*}
$$

TABLE IV
The polynomial coefficients of hydro generator G1.

Symbols	$\mathbf{b}_{\mathbf{0}}$	$\mathbf{b}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{4}}$
Values	2.0737	-10.959	24.85	-22.228	7.4417

$$
\begin{equation*}
I_{f d}=\frac{E_{g s a t}}{X_{a d_{s a t}}} \tag{26}
\end{equation*}
$$

An important assumption in regards to the OCC is that the saturation is divided into segments these segments are called linear characteristics, nonlinear saturation characteristics, and linear saturation characteristics. The linear saturation characteristics are neglected. This is because this generator does not operate with an induced voltage giving a linear saturation characteristic. It is also because linear characteristics and nonlinear saturation characteristics are usually the only segments of interest. This is further explained in kundur's power system and stability [36].
2) Bortoni's method: During linear characteristics, the field current is directly proportional to the induced voltage with the assumption that the slope b_{v} in pu is 1 . This can be seen in equation 27, but as soon as the generator reaches its threshold voltage one must include the saturation increment.

$$
\begin{equation*}
I f_{u}=\frac{E_{g}}{b_{v}} \tag{27}
\end{equation*}
$$

Bortoni's method does not use saturation factors, Bortoni's method takes a fourth-order polynomial regression of the nonlinear saturation characteristic to get five polynomial coefficients. He then uses the polynomial coefficient to calculate the field current during non-linear saturation characteristics. which he refers to as the saturation increment. This can be seen in equation 28

$$
\begin{equation*}
I f_{s}=\left(\sum_{i=1}^{n} b_{i} E_{p}^{i}\right)-\frac{E_{p}}{b_{v}} \tag{28}
\end{equation*}
$$

This means that the field current of the generator when it's past the threshold voltage is $E g$ plus the saturation increment. This can be seen in equation 29 Bortoni states that "The saturation increment is the difference between the excitation current value required to induce E_{p} on the air-gap line and value of field current corresponding to E_{p} on the no-load saturation curve." [1]. In other words for Bortoni's case, the threshold voltage is reached when $E_{p}>0.43$ and not E_{g} like in the Anderson and Fouad method. The polynomial coefficient of the generator can be seen in Table $I V$.

$$
\begin{equation*}
I f=\frac{E_{g}}{b_{v}}+\left(\sum_{i=1}^{n} b_{i} E_{p}^{i}\right)-\frac{E_{p}}{b_{v}}=I f_{u}+I f_{s} \tag{29}
\end{equation*}
$$

3) fitting function as saturation increment: This report introduced a new approach to accurately quantifying the saturation. As previously mentioned, the new operational regimes cause significant changes in the load cycling of the generator's excitation system. Consequently, the losses related to the field current and the machine's magnetic saturation play a much more significant role in determining the losses and the
efficiency. This means that it is very important to accurately quantify the saturation. If this is not accurately done it will manifest itself in the iso-efficiency curves. The results section in this report uses the fitting function illustrated in equation 13. which stems from Machowski's power system dynamics and control [3]. This report's contribution is that the constant k is added to the original equation. This is done to align the saturation curve with the air gap line. Making it possible to use the equation to model the linear characteristics and non-linear saturation characteristics. The equation and assumption used to model the field current can be seen below. This method is chosen because it is more user-friendly and highly accurate. This is because one can visually adjust the constants C_{m} and k to fit the air gap line and non-linear saturation characteristics exactly and then directly implement the function to calculate the field current.

$$
\begin{gather*}
I_{f s}=k\left(\mathcal{E}_{g}+C_{m} \mathcal{E}_{g}^{m}\right) \tag{30}\\
I_{f}=I_{f u}+I_{f s}=\frac{\mathcal{E}_{g}-\mathcal{E}_{p}}{b_{v}}+k\left(\mathcal{E}_{p}+C_{m} \mathcal{E}_{p}^{n}\right) \tag{31}
\end{gather*}
$$

4) comparing the methods: Using the fitting function as saturation increment is the most user-friendly and least timeconsuming. The method is also very accurate and is, therefore the chosen method in Section VII The Anderson and Faoud method is accurate because the saturation factor can be tuned to approximate the non-linear saturation characteristics. The drawback is that it is time-consuming to calculate the saturation factors. Bortoni's method is less time-consuming, but the method is not as accurate as the Anderson and Faoud method and fitting function method. This is because the polynomial coefficients are difficult to tune, once the fourthorder regression is done.

B. V-Curve Family

As previously stated the armature current is directly proportional to the complex power output. The field current must be calculated for each operating point considering saturation as previously described. For the generator understudy the X_{d} is $0.8 \mathrm{pu}, X_{q}$ is 0.6 pu and X_{p} is 0.18 pu and R_{a} is 0.00232 pu . If one applies the equation for the armature current and the equation for the field current one can obtain the Mordey diagram also know as the V-curve family. This can be done by relating the armature current to the field current, for several constant active powers. Figure 14 presents the Mordey diagram, for powers varying from 0 to 1 in steps of 0.2 . This means that the active power is held constant and the reactive power is gradually changed, which changes the field current. Once the reactive power is gradually increased from minimum to maximum, the active power is increased with a step of 0.2 . The purpose of the V-curve is to show the variation in magnitude of the armature current as the field current is varied. The power factor of the synchronous generator can be controlled by varying the field current I_{f}. If one assumes that the generator is running in no-load the armature current is reduced to its minimum value. The generator operates with a lagging value until it reaches this point. If the field current
is increased further, the armature current increase and the generator starts operating with a leading power factor. The lowest point of all the V-curves for various power levels is called the unity power factor compounding curve. The curves on each side of the unity PF compounding curve are called compounding curves. This is illustrated in figure 15. Some Vcurve family plots also include the armature core end heating limit. Two primary points are considered when including the armature core end heating limit. The first point is defined as 75% of the rated armature current and 25% of the rated excitation current. The second point is defined as 100% of the rated armature current and the rated power factor. The field current is then determined as depicted in figure 15

Fig. 14. The figure illustrates the V-curve of hydro generator G1 [1].
The V-curve family does not show the power factor of the generator for all the different loading points. The capability diagram and power factor lines are often used to illustrate the different power factors of the generator for different loading points. This can be seen in figure 16.

C. Iso-Efficiency Curves

Once the saturation model and V-curve family are established one can determine the iso-efficiency curves. Figure 17 is the iso-efficiency curves calculated using Bortoni's method. The data points of these iso-efficiency curves were extrapolated so that they could be experimentally compared with the iso-efficiency curves calculated using the Anderson and Fouad method, and the given OCC of the generator illustrated in figure 11. As one can see from figure 18, the iso-efficiency curves are almost perfectly aligned with the extrapolated data points. If one compares figure 17 and 18 one can see that they are almost identical. This illustrates that one can use several methods to quantify the level of saturation.

From the iso-efficiency curves, one can see that the iso efficiency curve close to the nominal operating point is 98.4 , which is the rated efficiency for the generator given in Table 11 This also indicates that the iso-efficiency curves are correct.

The saturation modeling is the most sensitive loss component, this means that if the field currents saturation characteristic is not accurately model. The discrepancy between the

Fig. 15. The figure illustrates the V-curve of hydro generator G1 [1 with armature end heating limit.

Fig. 16. The different power factors of generator G1 for different loading points 37.
iso-efficiency curve labeled 98.4 and the nominal operation will be vast and prevalent in the iso-efficiency map.

The iso-efficiency curves are non-concentric curves because of the saturation. When the generator reaches its threshold voltage, the relationship between the field current and the induced voltage is no longer linear. The reason for this is because the iron cores in the generator saturate and reach a magnetic saturation [31]. This means that the excitation system in the generator must provide a higher field current to produce the same induced voltage as the generator during linear characteristic [42]. This is illustrated as a decrease in efficiency and a small downward tilt of the iso-efficiency curves. I.e the generator becomes more saturated as it increases its reactive power production.

D. Determining the Boundaries of the Capability Diagram

This subsection focus on how the outer limits of the capability diagram can be determined. This subsection also determines the underlying mechanism and theoretical basis for the limits. The MATLAB code used to illustrate the capability diagram is placed in the appendix.

Fig. 17. The machine under study from the technical report [1 (hydro generator G1).

Fig. 18. The iso-efficiency curves of generator G1 experimentally compared with the extrapolated datapoints of the iso-efficiency curves calculated using Bortoni's method. [37].

To explain the capability diagram one must first determine the underlying mechanism and theoretical basis. This must be done to explain the important characteristic and assumptions limiting the capability diagram. Bortoni's technical report [1] illustrates a capability diagram bounded by its armature current and maximum field current. The rated data of generator G1 is given in actual values and converted to a per-unit value system before the capability diagram is plotted. The rated data for this generator can be seen in Table \square The main literature used to replicate the capability diagram in Bortoni's technical report is the paper "MATLAB Model for Visualization of PQ diagram of a Synchronous Generator" [43].

The capability diagram has maximum and minimum active and reactive power. The reactive power limitation is a function of the real power output of the generator. This means that when the real power increases, the reactive power limitation moves closer to zero. The reactive powers maximum and minimum limitation is limited by the generator's maximum and minimum induced voltage.
I.e the reactive power is limited by the generator's excitation system. This is because the excitation system has a field current limitation. This means that the DC-exciter has a maximum current that it can provide through the field windings. The same principle applies to the under-excitation of the generator. I.e, the generator has a maximum limit of how much reactive power it can consume. As previously stated the field current is proportional to the induced voltage. This means that the generator's maximum and minimum induced voltage is limited by the generator's maximum and minimum field current. The minimum induced voltage is smaller in magnitude compared to the maximum induced voltage. It is usually between 0.2-0.3 of $E_{\max }$.

The turbine speed is regulated by the governor. This means that the maximum and minimum active power is regulated by the governor. This is because speed and active power are closely related. The generator has a maximum power limit because operating the generator above its maximum active power causes mechanical and thermal stresses on the machine which reduces its lifetime. The same applies to the minimum active power. Operating the generator below minimum active power causes huge electromechanical stresses on the machine, which reduces the lifetime of the generator. The minimum active power limit is not included in the capability diagrams illustrated in this report.

The quantities limiting the generator's capability diagram are plotted to illustrate the underlying mechanisms limiting the capability diagram. The capability diagram can be seen in figure 19 The boundaries are plotted in MATLAB to illustrate the important parameters limiting generator G1, capability diagram. The blue circle illustrates the stator current limitations, i.e the apparent power limitation. The red arc is the maximum induced voltage $\left(E_{\max }\right)$ in the generator. The yellow arc is the minimum allowed induced voltage ($E_{\text {min }}$) in the generator. Figure 19 shows all the important characteristics of generator G1. Table \llbracket shows the rated data which are important parameters limiting the capability diagram. One example is $\cos (\phi)$ which is the nominal power of the machine in a pu system.

In summary the figure shows the nominal operation point (N), rated load angle $\left(\phi_{n}\right)$ rated power angle $\left(\delta_{n}\right)$, the minimum induced voltage $\left(E_{\text {min }}\right)$ and the maximum induced voltage $\left(E_{\max }\right)$. The figure also shows the different values of the induced voltage ranging from 0.1-0.3 with its center between A_{x} and B_{x}. The constants A_{x} and B_{x} are calculated using equations 32 and 33 respectively.

$$
\begin{align*}
& A_{x}=\frac{-V_{n}^{2}}{X_{q}} \tag{32}\\
& B_{x}=\frac{-V_{n}^{2}}{X_{d}} \tag{33}
\end{align*}
$$

E. The Practical Stability Limit and the Minimum Field Current of the Generator

This subsection presents the underlying theory and assumptions for the practical stability (PLS) and minimum field

Fig. 19. The figure illustrates the capability diagram of hydro generator G1 and the different parameters limiting the capability diagram.
current. Bortoni [1] did not include the practical stability limit and the minimum field current of the generator in his technical report. This report, therefore, extends his analysis by including the PLS and minimum field current.

The practical stability limit represents the maximum power angle the generator can operate with, without stepping out of synchronism with the grid. When the power angle is increased beyond the breakover angle the electromagnetic torque is no longer in balance with the mechanical torque. The breakover angle can be determined for which $P_{\max }$ is reached. The theoretical stability limit is not used as the boundary for the capability diagram. This is because it does not provide a safe operating condition. A slight increase in the load could easily cause the generator to slip out of synchronism, thus a practical stability limit is determined. The theoretical stability limit must then be multiplied with a stability margin. The stability margin is often 10%. This is to ensure a good stability margin.
Figure 20 (a) illustrates that the theoretical stability limit is far away from the capability diagram. To get the stability limit inside the capability diagram on must have a stability margin of 20%. This seemed very high and unusual. Usually, the stability margin is 10%. To validate the methods two different were used. The PLS using the first method was calculated using the following assumptions:

$$
\begin{gather*}
P=\frac{V E_{q}}{X_{d}} \sin (\delta)+\frac{V^{2}}{2}\left(\frac{X_{d}-X_{q}}{X_{d} X_{q}}\right) \sin (2 \delta) \tag{34}\\
Q=\frac{V E_{q}}{X_{d}} \cos (\delta)-\frac{V^{2}}{X_{d}}-V^{2}\left(\frac{X_{d}-X_{q}}{X_{d} X_{q}}\right)(\sin (\delta))^{2} \tag{35}
\end{gather*}
$$

First, the maximum permissible steady-state rotor angle can be deduced from the active power equation. The rotor angle is then a parametric curve of E_{q} which can be placed in P and Q to calculate the theoretical stability limit. This means that the theoretical stability limit is a parametric curve of $E_{q} . E_{q}$ is ranged from $0-1$ with a step of 0.1 . The theoretical stability limit is then converted to the PLS by multiplying 0.8 with P
and Q to account for a stability margin of 20%. The practical stability limit can be seen in figure 20 (b).

$$
\begin{gather*}
\frac{\partial P}{\partial \delta}=0 \tag{36}\\
\cos (\delta)=\frac{1}{4}\left(-\frac{E_{q} X_{d}}{V\left(X_{d}-X_{q}\right)}+\sqrt{\left(\frac{E_{q} X_{d}}{V\left(X_{d}-X_{q}\right.}\right)^{2}+8}\right) \tag{37}
\end{gather*}
$$

As previously stated to verify the findings a second method was used. The second method was calculated using the equations for active power and reactive power for salient pole generators, as previously illustrated in equation 34 and 35 The power angle was then plotted as a contour plot. The figure illustrates that this particular generator has a large stability margin. This is because the power angel within the capability diagram is very low. This means that the breakover angle must be low for the generator to run stably. One would expect that the breakover angle would be between 65-75 degrees, but this is not the case. The reason for this is due to the low values of the synchronous reactance's. The low value of the synchronous reactance of the d -axis and q -axis forces this generator to have a low breakover angle. If one increases the synchronous reactance one can observe that the generator needs a smaller stability margin.

Once the practical stability limit was determined. the minimum field current was calculated. The minimum field current is the induced voltage with its center between A_{x} and B_{x}. The induced voltage is gradually increased from $0-1$, with a step increase of 0.1 pu . The minimum field current is usually where the first induced voltage arc crosses the armature current limitation. For this case the induced voltage is equal to 0.3 pu. Figure 21 illustrates the complete capability diagram, where the capability diagram is limited by the armature current, practical stability limit, minimum induced voltage, and maximum induced voltage.

F. What is Weighted Average Efficiency?

This subsection presents the calculation model developed in Bortoni's technical report. The calculation model offers a viable solution /alternative to quantify the impact renewable energy sources have on hydro generators. The particular computation scheme is suitable for the calculation of the efficiency at the rated point and efficiency estimation for different loading conditions. This calculation model can model different load distribution/ operational regimes and therefore able to quantify the impact of the energy transition.

In the technical report, Bortoni focuses on WAE where he calculated the unique efficiency at different loading points and multiplies it with its corresponding weight to calculate the expected/average efficiency. To illustrate this principle a figure of several different loading points and their corresponding weight and efficiency is illustrated in figure 22. Notice that Bortoni calculates the frequency of occurrence for an exact loading point and then calculates the efficiency of this exact/specific loading point. A dataset usually consists of a generator's yearly production where measurements are made

Fig. 20. Figure (a) illustrates the theoretical stability limit for hydro generator G1. Figure (b) illustrates the practical stability limit for hydro-generator G1. Figure (c) illustrates the breakover angle for different practical stability limits.
every hour for an entire year. A dataset could for example consist of 8610 different discrete loading points, i.e where the loading point only occurs once. Bortoni has rounded up the loading points to two decimals, therefore giving the illusion that a particular loading point occurs with a certain frequency, but in most cases, very few operations are the same. These exact loading points give an unique efficiency that corresponds to that particular loading point. This can also be seen in figure 22

The Weighted Average Efficiency (WAE) is obtained as the summation for diverse loading points, of the observed efficiency multiplied by a weight. For brand new generators, the weights are established from experience or based on the importance of given loading points. For existing generators, the weight is calculated as the probability of occurrence for a given loading point. The studies done in this report are based on existing generators therefore this particular definition of

Fig. 21. The figure illustrates the capability diagram of hydro generator G1, were the practical stability limit and the minimum induced voltage is included.

$\mathrm{P}(\mathrm{pu})$	0.2	0.4	0.6	0.8	0.8	0.8	0.8	0.8
$\mathrm{Q}(\mathrm{pu})$	0	0	0	0	-0.4	-0.2	0.2	0.4
A_{i}	0.05	0.20	0.30	0.20	0.05	0.10	0.05	0.05
$\eta_{\# 1}(\%)$	96.70	98.10	98.47	98.59	98.55	98.61	98.49	98.53
$\eta_{\# 2}(\%)$	96.37	98.03	98.54	98.76	98.75	98.78	98.70	98.59

Fig. 22. The figure illustrates several exact loading point and its corresponding weight and efficiency for two different generators [1].
weight is used when calculating the WAE.
The weighed is denoted as A_{i} and represents the probability of occurrence for a particular loading point. the weight is illustrated in equation 38. Were Δt represent the duration (hour) of a particular loading point. The constant T represents the generators running time during a year. Figure 23 is a general illustration that shows the duration of several specific efficiencies throughout an entire year.

$$
\begin{equation*}
A_{i}=\frac{\Delta t}{T} \tag{38}
\end{equation*}
$$

The WAE is illustrated with the following formula. Where η_{w} is the WAE. A_{i} and η_{i} are respectively the weight factor and efficiency at a particular loading point, and n is the number of considered loading points.

$$
\begin{equation*}
\eta_{w}=\sum_{i}^{n} A_{i} * \eta_{i} \tag{39}
\end{equation*}
$$

The working principle is best illustrated using equation 40 The equation illustrates that the calculation model considers one loading point at a time and calculates the efficiency and weight for that loading point. This gives several elements of average efficiencies. These average efficiencies are summed, resulting in a WAE.

$$
\begin{equation*}
\eta_{w}=\sum_{i=1}^{n} \eta_{i} \frac{\Delta t_{i}}{T}=\sum_{i=1}^{n} \eta_{i} A_{i}=\eta_{1} A_{1}+\eta_{2} A_{2}+\ldots+\eta_{n} A_{n} \tag{40}
\end{equation*}
$$

Fig. 23. The time dependant efficiency trend for exact efficiency's, in order to compute the WAE. [1].

Figure 22 also illustrates quantitatively what happens with the efficiency, when one operates the generator at different loading points. The report "An In-Depth Study of HydroGenerator Losses and Efficiencies for Different loading points" [37] studies qualitatively and quantitatively how the increasing prevalence of renewable energy sources forces the generator to operate at different efficiencies for different loading points. Figure 27 illustrates the iso-efficiency curves of hydrogenerator G1 at different loading points. i.e Figure 27 illustrates qualitatively how the efficiency of the generator differs for different loading points.

1) Advantages and disadvantages with weighted average efficiency: The advantage of weighted average efficiency is that it offers a viable solution /alternative to quantify the impact renewable energy sources have on hydro generators. The particular computation scheme is suitable for the calculation of the efficiency at the rated point and efficiency estimation for different loading conditions, resulting in a WAE. Consequently, it is shown that this particular procedure is necessary because regular synchronous generators can no longer be designed for a nominal operating point. Under these new operational regimes losses of diverse nature must be accurately modeled.

This calculation model has one primary weakness, which is that it considers the efficiency for one loading point at a time and not the accumulation of the loading points. This means that if the generator is operated purely as a synchronous condenser for a long time, one gets a lot of the elements that are zero in the summation of efficiencies. This is because the generator is producing zero active power which gives zero efficiencies. This can be seen quantitatively in equation 41

$$
\begin{equation*}
\eta=\frac{0}{0+P_{\text {loss }}}=0 \tag{41}
\end{equation*}
$$

In the technical report, Bortoni states that the hydrogenerator understudy has a WAE of 64.84%. The synchronous condenser-dominated load distribution of this generator can be seen in figure 24. If one compares the WAE of this hydro generator with the rated efficiency of 98.4%, one can see that there is a 33.56% difference in the efficiency. This means

Fig. 24. The figure illustrates A 2D histogram of how many times a discrete loading points occur around an exact loading point "zone". I.e the figure illustrates the frequency and probability of occurrence for specific loading points. [1]. The figure is also an example of a synchronous condenser load distribution, where the generator operates 50% of the time below 0.02 pu active power.
that there is a loss of 33.56% in efficiency because the generator varies in its operational point. The low value of WAE found for this particular generator is due to the subsequent periods this machine operates at low active power generation and low energy conversion efficiency. Figure [25 illustrates the cumulative probability and the conversion efficiency as a function of active power. From the figure, one can observe that 40% of the time the active power is higher than $0,6 \mathrm{pu}$, with an efficiency greater than 97%, on other hand 50% of the time the active power is below 0.02 pu with efficiency lower than 55%.

Bortoni's suggests a lower limit of active power generation of 0.6 pu , which then results in WAE of 98.01%. Which is closer to the rated efficiency of 98.41%. This suggestion considerably reduces the operational flexibility of the generator. This would mean that one would have to implement very expensive power electronics to compensate reactive power. This is because operating a generator above 0.6 pu active power limits the generator's reactive power consumption and production capability. This is explained in much greater detail in section VIII, Discussion. These disadvantages give rise to the study of a new calculation model.

G. Accumulated Average Efficiency

This subsection presents a new calculation model called accumulated average efficiency (AAE). This report presents the concept of accumulated average efficiency (AAE) as a new and useful method to compute the overall efficiency of synchronous generators when they frequently vary their operating conditions. An illustration of the concept is depicted in figure 23. The method is compatible with both exact load points or load-grid distributions clustered in discrete points.

1) Discrete loading points and the accumulation of loading points: The calculation model accumulated average efficiency (AAE) does not use the same weight definition and assumption

Fig. 25. The cumulative probability and conversion efficiency as a function of active power for hydro generator G1 [1].
regarding the loading points as Bortoni. Bortoni converts the discrete loading point from a given dataset to exact loading points by rounding up the discrete loading point to a loading point consisting of two decimals or less. He then counts the number of times these "exact loading points" occur and then divides the frequency of these loading points with the total number of loading points. The calculation model AAE calculates the accumulation of all the discrete loading points and the accumulation of all the discrete losses, to calculate an AAE. This means if a dataset consists only of discrete loading points the time intervals in figure 23 are not considered.

AAE assumes an "equal weight distribution". This means that every discrete loading point has an equal probability of occurrence. I.e this means that every discrete loading point has the same weight therefore the name " equal weight distribution". It also means that the weight is constant and can be quantitatively illustrated as $A_{i}=\frac{\Delta t}{T}=\frac{1}{T}$, which is 1 over the total number of discrete loading points. The weight during equal distribution can be seen in equation 42, Figure 26 illustrates the discrete-time intervals for the pu values of $P_{\text {loss }}$ and P.

$$
\begin{equation*}
A_{i}=\frac{1}{T} \tag{42}
\end{equation*}
$$

The discrete-time intervals are equal, and the summation of all the discrete-time intervals are equal to the total number of discrete loading points.

$$
\begin{equation*}
T=\sum_{i}^{n} \Delta t_{i}=\Delta t_{1}+\Delta t_{2}+\ldots \Delta t_{n} \tag{43}
\end{equation*}
$$

The equation below illustrates that the weight is distributed among the discrete loading points, if one sum all the weights one gets a value equal to 1 .

$$
\begin{equation*}
1=\sum_{i}^{n} \frac{\Delta t_{i}}{T}=\sum_{i}^{n} A_{i}=A_{1}+A_{2}+\ldots A_{n} \tag{44}
\end{equation*}
$$

2) Calculation procedure: The calculation model AAE follows an entirely different calculation procedure. The sum of all the pu power loss elements is multiplied by the weights to get the average value. From the equation, one can also see that the average pu power loss is equivalent to the total energy losses divided by the number of discrete loading points.

Fig. 26. Generic load cycling sequence for accumulation of the generator's energy loss $\left(E_{\text {loss }}\right)$ and energy generation (E) over time formulated by discrete time intervals. $E_{\text {loss }}$ is equal to the sum of all red areas, while E is the sum of all blue areas. The average power loss in pu $\left(\bar{P}_{l o s s}=E_{l o s s} / T\right)$ and the average power generation in pu ($\bar{P}=E / T$) are also indicated.

$$
\begin{align*}
\bar{P}_{\text {loss }} & =\frac{E_{\text {loss }}}{T}=\sum_{i}^{n} P_{\text {loss }, i} A_{i} \tag{45}\\
& =P_{\text {loss }, 1} A_{1}+P_{\text {loss }, 2} A_{2}+\ldots P_{\text {loss }, n} A_{n} \\
& E_{\text {loss }}=\sum_{i}^{T} P_{\text {Loss }(i)} A_{i} \tag{46}
\end{align*}
$$

The same principle applies to the pu average active power production and total energy production. This means that one must first start by calculating the sum of the pu active power production for all the discrete loading points. The average pu power production, and total energy production (E) can be seen in equation 47 and 48

$$
\begin{gather*}
\bar{P}=\frac{E}{T}=\sum_{i}^{n} P_{i} A_{i}=P_{1} A_{1}+P_{2} A_{2}+\ldots P_{n} A_{n} \tag{47}\\
E=\sum_{i}^{T} P_{i} A_{i} \tag{48}
\end{gather*}
$$

The values can also be converted to actual values, rather than pu. Equation 49 shows that the vector consisting of active power losses in pu is multiplied with the generator's nominal apparent power, which is the base apparent power of the generator. The vector elements are also multiplied by the weight and the number of hours in a year. This means that the average power is converted to energy, and the energy calculations are scaled according to if the generator were to run for an entire year. The sum is then divided by 10^{9}. This is done to get the value in GWh/year. The total energy losses ($E_{\text {loss }}$) and production (E) can be seen in equation 49 and 50

$$
\begin{equation*}
E_{l o s s}=\sum_{i}^{T} P_{\text {Loss }(i)} A_{i} \frac{S_{n} * 8760}{10^{9}} \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
E=\sum_{i}^{T} P_{i} A_{i} \frac{S_{n} * 8760}{10^{9}} \tag{50}
\end{equation*}
$$

Once the total energy Losses $\left(E_{\text {loss }}\right)$ for the entire year and the total energy production (E) for an entire year are established. One can determine the AAE. The AAE is found by dividing the total energy production out, with the total energy production in. The AAE can also be calculated using the average power losses and average power productions. The AAE can be seen in equation 51 and 52 respectively.

$$
\begin{gather*}
\eta_{a}=\frac{E}{E+E_{\text {loss }}} \tag{51}\\
\eta_{a}=\frac{\bar{P}}{\bar{P}+\bar{P}_{\text {loss }}}=\frac{\sum_{i}^{n} P_{i} A_{i}}{\sum_{i}^{n}\left(P_{i}+P_{\text {loss }, i}\right) A_{i}} \tag{52}
\end{gather*}
$$

3) A worked example comparing WAE against AAE: To illustrate the implementation of the calculation procedure a worked example has been made. In this worked example, the generator is assumed to operate in three loading points throughout the entire year. The three loading points and their duration time can be seen in Table ∇. This simple example is used to give a simple illustration of the core principle and the significance of the principles. This is because one can get confused with larger datasets. The larger datasets add complexity. It is harder to grasp and articulate the challenges and benefits of the calculation models with a larger dataset if the fundamentals are not properly articulated.

It is assumed that the generators run 8760 h in a year. The generators running time is divided into three, representing that the generator operates in three loading points for the entire year. Table V also illustrates key quantities used to calculate the WAE and AAE. The example is so simple that one can analytically deduce the results presented in Table VI using the equations 40 and 52

$$
\begin{gather*}
\eta_{w}=\left(\frac{1}{3} * 0\right)+\left(\frac{1}{3} * 98.56\right)+\left(\frac{1}{3} * 97.77\right)=65.44 \% \tag{53}\\
\eta_{a}=\frac{\bar{P}}{\bar{P}+\bar{P}_{\text {loss }}}=\frac{0.5}{0.5+0.0128}=97.5 \% \tag{54}
\end{gather*}
$$

This worked example illustrates the benefits of the calculation model AAE. This worked example also illustrates the significance of the weight, especially for the WAE. From the example above one can see that weight lowers the WAE. The calculation model AAE shows that the weight is multiplied with the pu active power production and pu active power loss, giving an average value for the pu active power production and pu active power loss. In the equation for the AAE, the weight is in the numerator , and the denominator for both the addend parts. This means that the weight is negligible for the calculation of the AAE. I.e, the weight is insignificant in the equation for AAE. The weight is only significant for the calculation of the average pu active power production and pu active power loss. This is illustrate in equation 52 The equation illustrates that one can remove the weight without it affecting the AAE.

The primary reason for the disparity between the calculation models is the zero in efficiency in the first addend part for the WAE calculation. This is because the generator produces no active power. Consequently, the WAE is reduced $\frac{1}{3}$. An important and distinct difference between the calculation models is that the calculation model AAE assumes an accumulation of all active power production. This means that one mitigates the low efficiencies caused by loading points with low active power production. Instead of having a case of low efficiency, like in the WAE model, the low active power production is mitigated by adding all the active power production. The WAE considers only one loading point at a time and then calculates the summation of all the average efficiencies, causing a significant reduction in the WAE. This worked example has illustrated the influence of weight and low energy conversion efficiency. The example has shown that if one eliminates the weight in the AAE equation, then the remaining quantities are the sum of all the active power production and the sum of all the active power loss. This is the core principle of the calculation model. Equation 55] illustrates that it is the summation of the active power production that prevents a low value for the AAE. The equation illustrates that the summation of the active powers prevents a low efficiency. The significance of this benefit is further explained in Section VIII

$$
\begin{equation*}
\eta_{a}=\frac{\sum_{i}^{n} P_{(i)}}{\sum_{i}^{n} P_{(i)}+\sum_{i}^{n} P_{\text {Loss }(i)}} \tag{55}
\end{equation*}
$$

H. Illustration Models (zones) for Calculation of AAE

The calculation model WAE considers efficiency for different loading points. The iso-efficiency curves in figure 27 partly illustrate what the calculation model does, by depicting the efficiency for different loading points. The 2D histogram depicted in figure 24 illustrates the weight or the probability of occurrence for specific loading points. These two illustration models show illustratively what the calculation model does. This subsection presents possible illustration models that can be used for the calculation model AAE.

The calculation model AAE considers all the discrete loading points, rather than the frequency of occurrence for specific loading points. I.e the 2D histogram in figure 24 shows the frequency of occurrence for specific loading points, while the AAE histogram shows the discrete loading points and their density. This subsection presents some illustration models/zones that may be considered for calculating the total energy losses, using discrete loading points. The total energy loss is used as the only example in Section VI-H2 and VI-H3 because the same principles apply to total energy production. This subsection presents some new illustration models and arguments for why some models are better than others. To simplify the calculations, the density is evenly distributed throughout the capability diagram. In reality, the density is uneven. One example could be a generator that is operating mostly around its rated active power. This would cause the generator to have a high density of discrete loading points around its rated active power output.

There are primarily two considerations that must be taken into account in regards to the sub-sub section VI-H3. To sim-

TABLE V
WORKED EXAMPLE OF GENERATOR OPERATING IN THREE DISTINCT LOAD POINTS OVER A YEAR

Output	\#1	\#2	\#3	Sum
P_{i}	0.0 pu	1.0 pu	0.5 pu	
Q_{i}	0.5 pu	0.0 pu	0.5 pu	
Δt_{i}	2920 h	2920 h	2920 h	8760 h
A_{i}	$1 / 3$	$1 / 3$	$1 / 3$	1
$P_{\text {loss }, i}$	0.0124 pu	0.0146 pu	0.0114 pu	
η_{i}	0%	98.56%	97.77%	
E_{i}	0.00 GWh	451.46 GWh	225.73 GWh	677.19 GWh
$E_{\text {loss }, i}$	5.60 GWh	6.59 GWh	5.14 GWh	17.36 GWh

TABLE VI
FINAL OUTPUTS FROM WORKED EXAMPLE WITH THREE DISTINCT LOAD POINTS OVER A YEAR

	E	$E_{\text {loss }}$	\bar{P}	$\bar{P}_{\text {loss }}$	η_{w}	η_{a}	$\eta_{a}-\eta_{w}$
Value	677.19 GWh	17.36 GWh	0.5 pu	0.0128 pu	65.44%	97.5%	$+32.06 \%$

Fig. 27. The figure illustrates the iso-efficiency curves of hydro generator G1.
plify the calculations, the discrete loading points are assumed to have the same density, meaning the space between the loading point is evenly distributed. They are also assumed to have the same probability of occurrence in their respective zones. In other words, a discrete loading point within a zone has the same probability of occurrence as all the other discrete loading points within that zone.

1) Iso-efficiency curves vs total energy curves: As previously stated the calculation model WAE considers efficiency for different loading points. The iso-efficiency curves partly illustrate what the calculation model does, by depicting the efficiency for different loading points. This can be seen in figure 27] The calculation model AAE considers total energy production and loss for different loading points. This means that one can partly illustrate what the calculation model does, by depicting the total yearly energy production and losses for different loading points as total energy production lines and total energy loss curves. These values can be illustrated in pu as power loss and power production or in GWh as total yearly energy loss and production. In this case, the values are illustrated in GWh and can be seen in figure 28 and 29 respectively.

Fig. 28. The total yearly energy loss (GWh/year) as curves, with the capability diagram in the background.

Fig. 29. The total yearly energy production (GWh/year) as lines, with the capability diagram in the background.
2) Important considerations in regards to the total energy losses: To make sure that the total energy losses (TEL) was correct, the density was increased until the TEL converged. In other words, increasing the density would make little to

Fig. 30. The figure illustrates all the loading points inside the capability diagram with equal probability of occurrence, were the number of discrete loading points are 250000 , i.e a dataset equal to a matrix size of 500 X 500 .
no difference in the total energy losses. Figure 31 illustrates the converging value of the discrete loading points inside and outside the capability diagram. The converging value of the discrete loading points within the capability diagram is equal to 16.5 GW .

The TEL ($E_{\text {loss }}$) for all the discrete loading points(blue and red circles) converges to 17.39 GW when the matrix size is 500X500. In other words when the total number of discrete loading points is 250000 . This particular matrix size is chosen because of convenience. Increasing the matrix size/number of discrete loading points would mean more computational time. Another reason for the specific matrix size is because there is little to no difference in the TEL by increasing the matrix size to for example an 800X800 matrix. Figure 30 illustrates the discrete loading points inside the capability diagram when the total number of discrete loading points is 250000 . This is the chosen matrix size/number of discrete loading point for all the calculations throughout sub subsection $\nabla 1-\mathrm{H} 2$ and $\nabla 1-\mathrm{H} 3$. This is done to make the calculations consistent and eliminate the difference in results due to uneven density.

The losses of interest are inside the capability diagram. Therefore the total energy losses in focus for this study are within the capability diagram of generator G1. Three distinct resolution/densities have been chosen to better illustrate what is happening when one increases the density and assumes that the loading points are evenly distributed. Figure 32 illustrates that there is still space between the discrete loading points when the number of discrete loading points is 121 , i.e the total number of discrete loading points does not give a converging value of the TEL. Figure 33 shows that if one increases the number of discrete loading points to 12100 the density becomes much more compact, but there is still some space between the discrete loading points, i.e the number of discrete loading points is so high that TEL has started to reach a converging value. Figure 34 illustrates 121000 discrete loading points and shows that there is no space between the discrete loading points. This means that increasing the number

Fig. 31. The figure illustrates the converging value of all the discrete loading point (blue and circles).

Fig. 32. The figure illustrates the discrete loading points outside the capability diagram (blue) and the discrete loading points inside the capability diagram (red). This figure has a resolution equivalent to a 11×11 matrix. i.e 121 discrete loading points evenly distributed throughout the figure.
of discrete loading points, would not affect the TEL, i.e TEL has reached a converging value.
3) total energy loss modeled as distribution circles: One interesting study could be to look at the different loading points distributed as circles moving away from an arbitrary operating point. one could for example choose an arbitrary loading point, where the reactive power is equal to 0 pu and the active power is equal to 0.5 pu . One can then calculate the TEL as one moves further away from this operating point, i.e gradually encompass an increasing number of discrete loading points, by increasing the radius of the circles. This can be seen in figure 35

The figures show that as one moves away from this point the TEL converges. This arbitrary point might not be much of interest. This arbitrary point is used to illustrate that the TEL converges to the TEL of the entire capability diagram as one increases the radius. What is of more interest, is to see

Fig. 33. The figure illustrates the discrete loading points outside the capability diagram (blue) and the discrete loading points inside the capability diagram (red). This figure has a density equivalent to a 110×110 matrix. i.e 12100 discrete loading points evenly distributed throughout the figure.

Fig. 34. The loading points outside the capability diagram (blue) and the discrete loading points inside the capability diagram (red). This figure has a density equivalent to a 1100×1100 matrix. i.e 1210000 discrete loading points evenly distributed throughout the figure.
what happens when one moves further away from the nominal operating point. The nominal operating point for generator G1 is $0.33 \mathrm{pu}(\mathrm{Q})$ and $0.95 \mathrm{pu}(\mathrm{P})$. This can be seen in figure 36 . In addition to the nominal operating point, a third point was studied. The third operating point understudy was 0 pu (Q) and $1 \mathrm{pu}(\mathrm{P})$. This is illustrated in figure 37 These three points are studied to see how the TEL differs as one increases the radius of the distribution circles.

The TEL was modeled as a function of the distribution circle radius. This was done for all three points. what can be seen is that the total energy losses start at different values. This is because the algorithm starts by calculating the TEL with a very small radius. This is because when the radius is very small one considers only a few discrete loading points. This is the same as considering the total energy loss for the point $(0,0.5)$,

Fig. 35. The figure illustrates the discrete loading points for different distribution circles. The distribution circles has their center at the point $(0,0.5)$.

Fig. 36. The figure illustrates the discrete loading points for different distribution circles. The distribution circles has their center at the nominal point ($0.33,0.95$).
$(0.33,0.95)$ and $(0,1)$. If one compares the starting values of figure 38, 39 and 40 with the total energy loss in figure 28 . one can see that the starting value for the figures is equivalent to the total energy losses at these points. One can also see that as one increases the distribution radius the losses converge to a value equal to that of the TEL of the capability diagram. This is because the radius of the distribution circle becomes so big that it encompasses the entire capability making it equivalent to the TEL of the entire capability diagram.

The cost was also modeled as a function of the distribution radius of the circles. The formula for the TEL ($\bar{E}_{\text {loss }}$) can be seen in equation 46 and the cost is given by equation 56 The cost is modeled in regards to the Norwegian market price, which is $14.4 \not$ re. The TEL is divided by 8760 to converter the energy to power and is multiplied with 10^{3} and 14.4 øre to convert it to $\mathrm{MW}^{*} \not \mathrm{r}$. The cost for the operating points $(0,0.5),(0.33,0.95)$ and $(0,1)$ can be seen in figure 41,42 and

Fig. 37. The figure illustrates the discrete loading points for different distribution circles. The distribution circles has their center at the point $(0,1)$.

Fig. 38. The figure illustrates the converging value of the Total energy losses as one increases the radius of the distribution circles, starting from the point (0,0.5).

43 respectively.

$$
\begin{equation*}
\text { Cost }=\frac{10^{3}}{8760} 14.4 * \bar{E}_{\text {loss }} \tag{56}
\end{equation*}
$$

4) The illustration model $2 D$ histogram: Another possible illustrative model is to not consider zones at all. One can for example plot all the discrete loading points and categories them in regards to their density. As previously stated in Bortoni's technical report [1], the WAE is calculated using approximated zones of loading points. In other words, the zone consist of all the exact loading points rounded up from discrete values. I.e this means that the histogram in figure 24 does not show all the discrete loading points. As previously stated AAE considers all the discrete loading points. Therefore an illustrative model has been made where one considers all the discrete loading points. This can be seen in figure 44. In the figure, the discrete loading points are presented in a scatter plot that highlights the density of the occurring loading points. The

Fig. 39. The figure illustrates the converging value of the total energy losses as one increases the radius of the distribution circles, starting from the nominal operating point $(0.33,0.95)$.

Fig. 40. The figure illustrates the converging value of the total energy losses as one increases the radius of the distribution circles,starting from the operating point $(0,1)$.
probability of occurrence is determined based on the proximity of the discrete load points. This means that the 2D histogram depicted in figure 44 does not show the probability of an exact loading but rather the likelihood of a loading point to occur in a certain region.

The figure shows an artificially made uniform/even load distribution, and the probability of occurrence for a loading point in a certain region, which is the entire capability diagram in this case. Because the loading point is evenly distributed, the discrete loading points are given the same indication color and relatively low probability of occurrence. The benefit of this illustrative method is best illustrated when the generator has a concentrated load distribution.

A concentrated load distribution highlights where the generator operates the most. This can be seen Section VII, in figure 51. A bar plot histogram showing the duration can also be used to give an even better overview of the concentration of

Fig. 41. The figure illustrates the converging value of the cost as one increases the radius of the distribution circles, starting from the operating point $(0,0.5)$.The figure start with a cost of $25.7 \mathrm{MWøre} / \mathrm{h}$ and converges to 27.0872 MWøre/h, which is the cost when the discrete loading points covers the entire capability diagram.

Fig. 42. The figure illustrates the converging value of the cost as one increases the radius of the distribution circles, starting from the nominal operating point $(0.33,0.95)$. The figure start with a cost of $34.7 \mathrm{MWøre} / \mathrm{h}$ and converges to 27.0872 MWøre/h, which is the cost when the discrete loading points covers the entire capability diagram.
the discrete loading points. This can also be seen in figure 51 .
5) comparing the illustration models distribution circles and $2 D$ histogram: The illustration model distribution circle is not as good of an illustration model as the 2D histogram. This is because the illustration model uses a scatter plot that shows all the discrete loading points. As previously the discrete loading points are presented in a scatter plot that highlights the density of the occurring loading points. The probability of occurrence is determined based on the proximity of the discrete load points. I.e the histogram does not show the probability of an exact loading but rather the likelihood of a loading point to occur in a certain region. This model is very descriptive and gives a clear overview of

Fig. 43. The figure illustrates the converging value of the cost as one increases the radius of the distribution circles, starting from the operating point (0,1).The figure start with a cost of $32.9819 \mathrm{MWøre} / \mathrm{h}$ and converges to 27.0872 MWøre/h, which is the cost when the discrete loading points covers the entire capability diagram.

Fig. 44. The figure illustrates an artificially made uniform load distribution and the likelihood of a loading point to occur in a certain region, which is the entire capability diagram in this case.
where the generator operates the most, and which kind of load distribution/operational regime that is present.
The illustration model distribution circle is a relatively good illustration model. The illustration model can be used to illustrate the TEL and TEP. The drawback is that the last distribution circle is the only circle that encompasses the entire load distribution/ operational regime. This is because this is the only circle that encompasses the entire capability diagram. What is of interest is the discrete loading points throughout the entire capability diagram. In other words what is of interest is the "overall efficiency" of the entire load distribution, not a specific part of the load distribution. If the distribution circle does not encompass the entire operational regime, it does not calculate the TEP and TEL of the entire distribution.

Fig. 45. The open circuit characteristic of Åbjøra given by the manufacturers.

VII. Results

In this section, a case study is made, where the efficiency and field current is calculated analytically using the methods presented in this report. The calculated values are compared with the measured efficiency and field current from an actual industry generator. The methods are experimentally validated using the measured efficiency and field current at eight different loading points. The industry generator under study is a Norwegian hydro-generator called Åbjøra (G2). The rated data for this generator can be seen in Table II. The calculation models AAE and WAE are also compared for different load distributions. This is done to observe how the calculation models perform for different operational regimes. The characteristic behavior of the calculation models is also studied. This is done to see how the calculation models behave for different active power levels and an increasing number of discrete loading points.

A. Quantifying the Saturation from OCC

One must first consider saturation when calculating the efficiency of a generator. In this case, the open circuit characteristics are given. The open-circuit characteristic of this generator can be seen in figure 45. The method used for considering saturation is the method, which stems from Machowski's equation. Were equation 30 is used as the saturation increment, when the generator reaches a threshold voltage of $E_{p}=0.55 p u$.

The replicated OCC can be seen in figure 46 The figure is scaled in regards to base current 525.15 A which is the field current that results in the rated voltage on the airgap line. It is illustrated as (C) in figure 45. The replicated figure illustrates an extrapolation of the measurement points (black dots) of figure 45, in addition to the air gap line and the saturation curve of the generator. The threshold voltage U_{t} and the equation used to plot the air gap line and saturation curve is also illustrated in figure 46 . The values and quantities used to plot the air gap line and the non-linear saturation characteristics can be seen in Table VII

Fig. 46. The replicated air gap line and non-linear saturation characteristics of Abjøra.

TABLE VII
COEFFICIENTS USED TO PLOT THE OCC SHOWN IN FIGURE 46

Symbols	$\mathbf{b}_{\mathbf{v}}$	$\mathbf{C}_{\mathbf{m}}$	\mathcal{E}_{g}	\mathbf{m}	\mathbf{k}
Values	1	0.160	$0-1.8$	7	1.0308

B. Experimental Validation of Efficiencies and Saturation Model

Eight measured loading points from the industry generator Åbjøra were used to validate the algorithm. I.e this was done to validate the chosen methods and assumptions. The measured quantities at these loading points were compared with the calculated quantities. This was done to qualitatively validate the illustration models and the saturation modeling. This can be seen by studying the iso efficiency curves and the eight loading points in figure 49 The measured loading points and key quantities can be seen in Table VIII.

As previously stated, quantifying saturation is a rigorous task. To quantify the saturation, one must accurately quantify the field current at different loading points. The measured field current at different loading points is therefore compared with the calculated field current. This is done to validate the saturation model and illustrate its accuracy. The validation of the saturation model can be seen in Table IX

1) The V-curve family of Åbjøra: Once the saturation model is validated one can determine the V-curve family of the generator. The armature current is directly proportional to the complex power output, the field current must be calculated for each operating point considering saturation as previously described. For this generator the X_{d} is $1.06 \mathrm{pu}, X_{q}$ is 0.676 pu and X_{p} is 0.141 pu and R_{a} is 0.002 pu . If one applies the equation for the armature current and the equation for the field current (31) one can obtain the Mordey diagram also know as the V-curve family. This can be done by relating the armature current to the field current, for several constant active powers. Figure 47 presents the Mordey diagram, for powers varying from 0 to 103 MW in steps of 25.7 MW. This means

TABLE VIII
THE MEASURED LOAD POINTS, AND IMPORTANT QUANTITIES AT THESE LOAD POINTS.

Output	$\boldsymbol{\# 1}$	$\boldsymbol{\# 1}$	$\boldsymbol{\# 3}$	$\boldsymbol{\# 4}$	$\boldsymbol{\# 5}$	$\boldsymbol{\# 6}$	$\boldsymbol{\# 7}$	\#8
S	1.000 pu	0.750 pu	0.500 pu	0.250 pu	1.000 pu	0.750 pu	0.500 pu	0.250 pu
$\cos (\varphi)$	0.900	0.900	0.900	0.900	1.000	1.000	1.000	1.000
P	0.900 pu	0.675 pu	0.450 pu	0.225 pu	1.000 pu	0.750 pu	0.500 pu	0.250 pu
Q	0.436 pu	0.327 pu	0.218 pu	0.109 pu	0.000 pu	0.000 pu	0.000 pu	0.000 pu
I_{a}	5406.1 A	4054.6 A	2703.0 A	1351.5 A	5406.1 A	4054.6 A	2703.0 A	1351.5 A
I_{f}	1065.00 A	936.12 A	816.18 A	711.38 A	873.17 A	776.61 A	698.70 A	646.84 A
P_{f}	173.65 kW	133.66 kW	101.61 kW	77.19 kW	116.29 kW	91.99 kW	74.48 kW	63.81 kW
$P_{e x}$	15.88 kW	13.02 kW	10.72 kW	8.87 kW	11.65 kW	9.92 kW	8.68 kW	7.92 kW
$P_{b r}$	2.13 kW	1.87 kW	1.63 kW	1.42 kW	1.75 kW	1.55 kW	1.40 kW	1.29 kW
P_{a}	187.46 kW	105.45 kW	46.86 kW	11.72 kW	187.46 kW	105.45 kW	46.86 kW	11.72 kW
P_{s}	89.16 kW	50.15 kW	22.30 kW	5.57 kW	89.16 kW	50.15 kW	22.30 kW	5.57 kW
P_{c}	211.92 kW							
$P_{b e}$	240.90 kW							
$P_{w f}$	172.92 kW							
$P_{\text {loss }}$	1094.02 kW	921.89 kW	808.85 kW	730.51 kW	1032.05 kW	884.81 kW	779.0 kW	172.92 kW
η	98.834%	98.680%	98.250%	96.944%	99.008%	98.868%	98.509%	97.294%

TABLE IX
VALIDATION OF THE SATURATION MODEL AND AN ILLUSTRATION OF ITS ACCURACY.

Output	\#1	\#2	$\boldsymbol{\# 3}$	\#4	\#5	\#6	\#7	\#8
Measured I_{f}	1065.00 A	936.12 A	816.18 A	711.38 A	873.17 A	776.61 A	698.70 A	646.84 A
Calculated $I_{f u}$	907.99 A	794.05 A	689.23 A	597.70 A	747.18 A	657.57 A	586.96 A	541.21 A
Calculated I_{f}	1064.88 A	934.23 A	815.01 A	711.11 A	857.50 A	764.76 A	691.88 A	644.67 A
Deviation I_{f}	-0.01%	-0.20%	-0.14%	-0.03%	-1.79%	-1.52%	-0.97%	-0.34%

that the active power is held constant and the reactive power is gradually changed, which changes the field current. Once the reactive power is gradually increased from minimum to maximum. The active power is increased with a step of 25.7 MW. The lowest point of all the V-curves for various power levels also called the unity power factor compounding curve is around 600 A . The curves on each side of the unity PF compounding curve also called compounding curves have a power factor equal to -0.9 and 0.9 . This is also illustrated in the figure 47.

As previously stated the V-curve family does not show the power factor of the generator for all the different loading points. The capability diagram and power factor lines are often used to illustrate the different power factors of the generator for different loading points. Therefore the capability diagram in addition to the power factor at different loading points is plotted. This can be seen in figure 48

The efficiency map for the different loading points can be seen in the figure 49 From the iso-efficiency curves, one can see that the iso-efficiency curve at the nominal operating point is 98.83%, which is the rated efficiency for the generator. This indicates that the iso-efficiency curves are correct. In addition to this one can notice that the measured loading point is aligned with its corresponding efficiency.

The pu power loss curves for the different loading points can be seen in figure 50. The curves indicate the pu power losses if the generator were to operate at a certain loading point for a year. This would for example mean that if the generator operated at $(0.2,0.4)$ for an entire year the pu power

Fig. 47. The figure illustrates the v-curve family of Åbjøra. The figure illustrates the relationship between the armature current and the field current, for several constant active powers. The figure presents the v-curve family, for powers varying from 0 to 103 MW in steps of 25.7 MW . This means that the active power is held constant and the reactive power is gradually changed, which changes the field current.
losses would be 0.0075 pu .

C. Comparing the Different Load Distribution

This subsection presents a calculation of the WAE and AAE for three different load distributions. The first load distribution under study is a concentrated load distribution

Fig. 48. The figure illustrates different $\cos (\phi)$ at different loading points.

Fig. 49. Mapping of the calculated iso-efficiency curves of the capability diagram of the synchronous machine (G2), and assessed against eight measured operating points (referring to Table VIII.
from Åbjøra's production data. The second load distribution is an uniform load distribution, like the one illustrated in figure [10, after the Energiewende. The third load distribution is a synchronous condenser distribution, like the one illustrated in figure 24 The uniform load distribution and synchronous condenser distribution are artificially made because these kinds of datasets are not readily available. This comparison is done to illustrate how the AAE and WAE differ for different load distributions. It is also done to test the calculation models for more complex datasets.

The University of Southeast Norway provided production data from Åbjøra. The histogram and the bar plot of the production data are illustrated in figure 51. The figure depicts the duration and density of the discrete loading point. The sub-figure in the top left corner illustrated as a bar plot is very

Fig. 50. Mapping of the calculated power loss contours over the capability diagram of the synchronous machine (G2) in per unit with 103 MVA as the power base.
illustrative and gives a better overview of the load distribution and their concentration, in comparison to the other sub-figures in figure 51 . From the figure, one can see that most of Åbjøra's production is around 0.93 pu active power and the range of reactive power is very small. The reactive power ranges from -0.08 pu to 0.175 pu. This illustrates that the loading points are concentrated around a relatively small area. The density of the different loading points and the probability of occurrence can be seen in the 2D histogram, also illustrated in figure 51 The contours are also plotted to highlight where the loading points are concentrated. The WAE and the AAE in addition to other key parameters for this particular load distribution are illustrated in Table \mathbb{Z}

As previously stated production dataset consisting of loading points that are partly or almost completely uniformly distributed is not readily available. The Energy transition is still in its infancy, which means that renewable energy sources are not as prevalent in Norway. Figure 52 illustrates the artificially made uniform load distribution. The load distribution has equal density across the entire capability diagram. A relatively simple case study is made where the number of discrete loading points is 641 . The WAE and the AAE in addition to other key quantities for this particular load distribution are illustrated in Table 区

The synchronous condenser distribution is also illustrated in figure 52 In this distribution, a lot of the loading points are concentrated around 0 . Forcing the generator to operate as a synchronous condenser. The synchronous condenser distribution in figure 52 operates below 0.02 pu 60.5% of the time. The WAE and the AAE in addition to other key quantities for this particular load distribution are illustrated in Table X

Fig. 51. oad distributions for a whole year of the studied hydropower plant. The minimum and maximum reactive power ranges from -0.08 to 0.2 pu. The minimum and maximum active power are varying from 0 to 1 pu . The measurements were recorded every hour, starting from 06. January 2020 15:00, ending at 31 . December 2021 (i.e., 8610 h in total). The generator were operated 3087 h around the vicinity of the $P_{\max }$ region. Contour lines are added to indicate the density peaks. a): One-dimensional histogram of number of hours (Δt). \mathbf{b}): Two-dimensional histogram of probability of occurrence in percent (\%).

TABLE X
IMPORTANT QUANTITIES FOR DIFFERENT LOAD DISTRIBUTION/OPERATIONAL REGIMES.

Distribution	\mathbf{E}	$\mathbf{E}_{\text {loss }}$	$\overline{\mathbf{P}}$	$\overline{\mathbf{P}}_{\text {loss }}$	$\boldsymbol{\eta}_{\mathbf{w}}$	$\boldsymbol{\eta}_{\mathbf{a}}$	$\boldsymbol{\eta}_{\mathbf{a}}-\boldsymbol{\eta}_{\mathbf{w}}$	\mathbf{T}
Concentrated load distribution	663.558 GWh	7.85 GWh	0.7354 pu	0.0087	98.17%	98.83%	$+0.67 \%$	8610
Uniform load distribution	412.11 GWh	7.25 GWh	0.457 pu	0.0080 pu	96.84%	98.27%	$+1.43 \%$	641
Synchronous condenser distribution	165.98 GWh	6.82 GWh	0.1840 pu	0.0076	62.87%	96.05%	$+33.18 \%$	1517

D. The Characteristic Behaviors of the Calculation Models

In this subsection, the calculation models AAE and WAE are compared for different active power thresholds. In addition to this, an evenly distributed case was studied as a function of the number of elements (N) inside the capability diagram, i.e an increasing number of discrete loading points. This is done to study the characteristics behavior of the calculation models for different active power levels and increasing discrete loading points.

1) Uniform distribution with Power Constraints: Figure 53 illustrates the AAE and WAE for different active power thresholds. The active power threshold is increased from $0.001-1 \mathrm{pu}$, where all the uniformly discrete loading points are below this threshold. Figure 54 also illustrates the AAE and WAE for different active power thresholds. In this case
the threshold starts at 0.999 and goes to 0 . All of the discrete loading points are uniformly distributed and above the active power threshold.
2) Uniform load distribution with an increasing number of elements: The uniformly distributed case was studied as a function of the number of elements (N) inside the capability diagram. This can be seen in figure 55 As N is increasing, both the AAE and the WAE are shown to converge toward asymptotic values.

VIII. DIScussion

This section consists of some reflected thoughts around the results and their meaning. This section starts by describing some observations and analysis of the saturation model, isoefficiency curves, and the pu power loss curves. This section

Fig. 52. The figure illustrates and artificially made uniform load distribution and synchronous condenser dominated distribution. The uniform load distribution has 641 discrete loading points. synchronous condenser dominated distribution has a 60.5% probability for a loading point to occur below 0.02 pu in active power and has a 39.5% probability of occurrence for loading points outside this region. It is assumed an even distribution above 0.02 pu active power.
also explains the difference in results between the calculation models for different load distributions. In addition to this, some reflected thoughts and comments are made regarding the characteristic behavior of the calculation model for different active power thresholds in uniform load distributions. The calculation model for an increasing number of elements in an uniform load distribution is also studied and analyzed.

A. Efficiency Calculation and Saturation Model

An iso-efficiency map using the saturation model was plotted together with the measured efficiencies in figure 49 The calculated non-concentric curves show a good agreement with the measured operating points of Table VIII, as indicated in figure 49 The pu power loss curves are also plotted in the figure 50. This additional map is needed to conduct the proposed AAE, which is different from the alternative WAE. The most sensitive loss component was the saturation model, which predicts I_{f}. In Table IX, the accuracy of this model

Fig. 53. The figure Compares the WAE to the AAE for different active power thresholds. The active power threshold is increased from 0.001-1 pu until the loading points are uniformly distributed throughout the entire capability diagram. (a):The dark blue area covering the evenly distributed load points. b): Efficiencies (η_{w} and η_{a}) plotted in terms of $P_{\max }$, converging toward the values $98.24 \%\left(\eta_{a}\right)$ and $95.923 \%\left(\eta_{w}\right)$ as $P_{\max }$ approaches 1 pu . The number of elements (N) where 171075.
was assessed against the measurements, revealing a worstcase deviation of 1.79%, occurring in measurement number $\# 5$. The reason that the iso-efficiency curves are so perfectly aligned with the measured loading point is due to the accuracy of the saturation modeling. As previously stated the saturation modeling is the most sensitive loss component, which means that if the field currents saturation characteristic is not accurately model. The discrepancy between iso-efficiency curves and measured loading points will be prevalent in the isoefficiency map. This also applies to the pu power loss curves.

B. Reason for the Disparities in the Results and its Consequences

1) Disparities between the calculation models for a concentrated load distribution: Today's generators operate with a concentrated load distribution which means that most loading point is concentrated around a relatively small area. Section VII shows the load distribution of Åbjøras production data. This is illustrated in figure 51 From the histogram that depicts

Fig. 54. The figure Compares the WAE to the AAE for different active power thresholds. The active power threshold is decreased from $0.999-0$ pu until the loading points are uniformly distributed throughout the entire capability diagram.a): Definition of the minimum power $\left(P_{\text {min }}\right)$ with the dark blue area covering the evenly distributed load points. b): Efficiencies (η_{w} and η_{a}) plotted in terms of $P_{\text {min }}$, converging toward the values the values $98.24\left(\eta_{a}\right)$ and $95.923\left(\eta_{w}\right)$ as $P_{\text {min }}$ approaches 0 pu . The number of elements (N) where 171075.
the duration one can see that most of the loading points are concentrated around the generators, $P_{\max }$ value. One can also see that reactive power production and consumption do not vary drastically. It ranges from -0.08 to 0.175 pu . This is not very clear in the 2D histogram illustrated in the sub-figure below. The 2D histogram shows the density of the discrete loading points, while the other figure shows for example that

Fig. 55. The figure Compares the WAE to the AAE in an uniformly distributed load distribution. The number of discrete loading points is gradually increased until both values converge.
the generator operates 3087 hours around $P_{\max }$. In other words, the figure shows that the generator operates 3087 hours out of 8610 hours around nominal power. One can see that the generator operates for very few hours around zero active power. The generator usually operates at zero, because it is turned off, not because it is operated as a synchronous condenser. The generator is not operating at very low active powers, which means that one gets a high efficiency. The 2D histogram that shows the density illustrates that most of the loading points are concentrated around $P_{\max }$, which results in high efficiency and high weights for the efficiencies around nominal power. This gives a high WAE. The calculation model AAE is based on the accumulation of active power productions and losses. Because most of the loading points are at high active powers, the accumulated value must also be high. This gives a high AAE. This kind of load distribution gives high efficiency for both the WAE and AAE, which results in small disparities between the calculation models. The disparities is 0.67% and illustrated in Table 区.
2) Disparities between the calculation models for a uniform load distribution: Figure 10 shows the probability and distribution of loading point when there is a large integration and prevalence of renewable energy sources. The introduction of renewable energy sources gives a lot more loading points below eg. 0.6 pu active power, as explained in Section III The renewable energy sources will affect the operational range and the duration of the loading points. The duration of the loading points will be more evenly distributed. These datasets are not readily available, therefore an artificially made uniform load distribution was made. This was done to mimic the characteristics of a load distribution that is more or less evenly distributed and covers most if not the entire capability diagram, like the one illustrated in figure 10 The artificially made uniform load distribution was made to quantify the ramifications of uniformly distributed load distributions and their effect on the calculation models WAE and AAE.

The artificially made uniform load distribution is illustrated in figure 52. The load distribution is evenly distributed, i.e the
density is the same everywhere in the capability diagram. This creates a lower efficiency because it affects the probability of a loading point (low weight). In addition to low weights there is an increase of relatively low energy conversion efficiency because the generator produces a lot less active power, by not being concentrated around $P_{\max }$. All this results in a lower WAE. As previously mentioned the weight plays a considerable role in the WAE calculation resulting in a lower WAE for the uniformly distributed case in comparison to concentrated load distribution. This can be seen quantitatively using equation 58. The weight is multiplied by the efficiency of a particular loading point. This means that if the likelihood of a loading point is low, the WAE is lowered.

By comparing the WAE of Åbjøra's production data with the uniform load distributions WAE one can see the significance of the weight in the calculation model. This has been quantitatively deduced and illustrated in Table X.

As previously stated, The AAE is independent of the weight and is lowered due to the increasing number of elements closer to the boundary of the synchronous condenser operations, where the efficiency is steeply approaching zero. This is quantitatively illustrated in Section VI-G where the weight is factored out and removed. Since the weight does not affect AAE, one gets a higher "overall efficiency" in comparison to the WAE. Another reason for the higher efficiency is the fact that the active power production is accumulated. Summing the active power production, causes the high active power operations to mitigate or compensate for the low active power production giving a higher overall active power production and efficiency. This is also illustrated in the worked example in Section VI-G3, which demonstrates the working principles of equation 57 and 58 . This results in a disparity of 1.43% between the calculation models. This disparity is illustrated in Table X

$$
\begin{gather*}
\eta_{a}=\frac{\sum_{i}^{n} P_{\operatorname{Prod}(i)}}{\sum_{i}^{n} P_{\operatorname{Prod}(i)}+\sum_{i}^{n} P_{\operatorname{Loss}(i)}} \tag{57}\\
\eta_{w}=\sum_{i}^{n} A_{i} * \eta_{i} \tag{58}
\end{gather*}
$$

3) Disparities between the calculation models for synch. condenser load distribution: In the worked example in Section VI-G3, three loading points were considered. The loading points were used to illustrate what happens to the efficiency of the different calculation models when the generator operates one-third of its yearly operating time at zero active power. It was illustrated that the efficiency dropped $\frac{1}{3}$ as a consequence. In Section VII, a more realistic and complex load distribution is considered. The section illustrates a synchronous condenser distribution that is artificially made. This was done to mimic the characteristics of a load distribution where the generator operates as a synchronous condenser most of the time, like the one illustrated in figure 24. The WAE calculation of the synchronous condenser distribution illustrated in figure 52 gave a value equal to 62.87%, while the AAE gave a value equal to 96.05%. This gives a difference of 33.18%. This is illustrated in Table 区

The primary reason for the disparities is that calculation models WAE calculates the efficiency for a particular loading point and multiplies it with the weight, then sums all the efficiencies. If the generator operates at low active power for long periods, then one gets a summation of mostly zero or very low efficiency, which gives a low WAE. The calculation model AAE focuses on summing the active powers rather than the efficiency. As previously stated if one considers the loading points individually and calculates their corresponding efficiency one gets a summation of mostly zero efficiencies. This is because more elements will now be placed closer to the boundary of the synchronous condenser operations, where the efficiency is steeply approaching zero. The working principles behind this disparity are quantitatively deduced in the worked example in equation 54 and 53

From the results section, one can see that the calculation model AAE supersedes the WAE for all the operational regimes investigated. The biggest advantage of the calculation model is when the generator has a synchronous condenser distribution. I.e when the generator produces little or no active power for relatively long periods. This gives vast differences in efficiency between the calculation models.

If one looks at Table X one can see that the weight plays a role in the WAE calculation, but very low active powers play the most significant role when it comes to the WAE. This means that operating the generator as a synchronous condenser is the "worst-case scenario " in regards to the "overall efficiency" of the generator. In other words, operating the generator as a synchronous condenser for long periods will give the lowest efficiency compared to the other load distributions.
4) Uniform distribution with Power Constraints: In figure 53 one can see that the deviation is greatest around 0.1-0.3 pu active power. This is because of the reason previously stated, the calculation model AAE accumulates the active power production, where the high active power operations increase the "overall efficiency". This causes the calculation model to differ in their results. This is because the WAE model gives low efficiency for relatively low active power operations. As one increases the threshold to 1 , one can see that the WAE and AAE converge to the values $98.24 \%\left(\eta_{a}\right)$ and $95.923 \%\left(\eta_{w}\right)$. This is because the threshold is increased until the discrete loading points cover the entire capability diagram.

In figure 54 the active power threshold is reduced from 0.999-0, the calculation models are the same for very high active powers. As one lowers the threshold, the calculation models start to diverge. This is primarily due to two reasons. The first reason is that lowering the threshold increase the number of the discrete loading point. This reduces the weight. The second reason is due to the inclusion of more and more relatively low active power operations by gradually lowering the active power threshold.
5) Uniform load distribution with an increasing number of elements: The evenly distributed case was studied as a function of the number of elements (N) inside the capability diagram. This can be seen in figure 55 The AAE and the WAE are shown to converge toward asymptotic values as N increases. The deviation between the AAE and WAE is found
to be 2.32%. The AAE and WAE behave similarly with very few elements, but the weighting in the WAE model causes the calculation models to diverge with increasing N. This is because the weight becomes lower for increasing discrete loading points, and as previously stated the weight plays a significant role in the WAE calculation. In addition to this is more elements will now be placed closer to the boundary of the synchronous condenser operations, where the efficiency is steeply approaching zero. Increasing the discrete loading point beyond a certain point does not affect WAE. This is because the discrete loading points are distributed throughout the entire capability diagram. The density is so compact that the weight remains constant. This causes the WAE to converge. The AAE is independent of the weight and converges due to the increasing number of elements closer to the boundary of the synchronous condenser operations, where the efficiency is steeply approaching zero.
6) Proposed solution and implementations: Bortoni technical report states that the generator G1 has a WAE of 64.84%. This is because the generator operates at low active power for long periods. In the technical report, it is stated that. "One can observe that about 40% of the time, the active power is higher than 0.6 pu , with efficiencies greater than 97%, on the other hand, the active power is below 0.02 pu about 50 $\%$ of the time, with efficiencies lower than 55%. One must also take into consideration that those values are weighted by their probabilities of occurrence, resulting in a considerable reduction of the WAE in comparison to the rated efficiency of 98.4%. As previously stated this can also be seen illustratively by looking at figure 25] The technical report proposes a lower limit of active power generation equal to 0.6 pu. By doing this one gets a WAE efficiency equal to 98.01%, which is relatively close to the generator's rated efficiency of 98.4%.

The technical report offers a proposed solution but does not state how the solution is implemented. This is vital for the validity of the proposed solution. The implementation would most likely involve expensive power electronics. This is because forcing the generator to operate above a 0.6 pu active power limit reduces its reactive power capability. This is because the reactive power operating range of the generator becomes smaller as one moves further up in the capability diagram. Germany's "Energiewende" illustrates that a wider operating range is necessary when a lot of renewable energy sources are connected to the grid. In other words, using a threshold of 0.6 pu would limit the operating range of the generator and result in not utilizing the full operating capacity of the generator. From a technical-economic perspective, the best solution is to utilize most of the operating capacity if not all of the operating capacity provided by the generator. The accumulated average efficiency gives a viable solution to the challenges caused by the energy transition and prevents the utilization of an active power threshold when the generators operate as a synchronous condenser.
7) A technical-economic perspective: If one compares the WAE and AAE for uniform load distribution one can see that the AAE gives approximately 1.43% higher efficiency. This can be seen in Table X This number may seem small and insignificant, but a 1.43% difference in efficiency could rep-
resent a large difference in generation cost. In other words, the difference is not quantitatively large, but from a technical and economical perspective this difference could be significant. The same applies to the concentrated load distribution where the difference is 0.67%. The significance of this could be further studied. An example could be a cost-benefit analysis that quantifies the economical implications.

The generator range in reactive power production and consumption can be vast when the generator is operating as a synchronous compensator. This stresses the excitation system and gives relatively large losses related to the excitation system. In other words, one gets huge excitation losses when the generator is running purely as a synchronous compensator and if one also considers the fact that it is running as a synchronous compensator for long periods.

Its common practice to design a machine for a specific application. It is observed that, the larger the diameter of the machine is, the larger the losses will be. It is also observed that the losses related to the armature current vary drastically depending on the size of the machine. This means that it is better to design the machine in regards to a specific purpose or an expected "overall efficiency". For this to happen one needs to design a generator using a calculation model that is applicable for all kinds of load distribution. Making a calculation model like AAE highly relevant in regards to the design of future hydro generators.

IX. CONCLUSION

This report has comprehensively explored a wide variety of realistic operating points of hydro generators due to the ongoing energy transition. In Section III the different operational regimes resulting from increased grid-integration of renewable energy sources are explored. It is highlighted that the classical operation mode with base, average, and peak condition, is no longer valid. New calculation schemes are necessary to accurately quantify the "efficiency" of a generator, in other words, to accurately quantify the impact of new operational regimes. This is because these new operational regimes were not considered during their past development, it is a new phenomenon caused by the integration of renewable energy. The integration of new power sources such as solar power panels and wind farms creates a fundamental change in the power grid's load regime, seen from the hydro-generator operators. These changes cause a higher variation in production, which results in huge electromechanical stresses on the machine and a drastic increase in losses (due to rapid power ramping and different inefficient operating conditions). The increased thermo- mechanical loading and load variation cause significant stresses on the generator and excitation system. Consequently, the losses concerning the field current and magnetic saturation play a significant role in determining the losses and the efficiency of the hydro-generator during different loading points.

A new method to determine the "overall efficiency" of synchronous generators under intermittent operation is proposed, incorporating the machine's magnetic saturation. Section VI introduces a procedure where one considers the magnetic
saturation of a generator using the most appropriate method based on the available data. It is emphasized that determining saturation is a rigorous task. Moreover, this is because there are a wide variety of methods and approaches to determine and quantify the saturation. Therefore one must choose the procedure based on semi-heuristic reasoning, judiciously chosen approximations, available data, and accuracy of the method/results. The losses concerning the field current and magnetic saturation introduced in this report are fairly accurate and have a maximum deviation of 1.79% in comparison to the measured nominal field current.

Section VI-E explains the underlying theory and assumption regarding the practical stability limit. By starting from the relationship which shows the active and reactive power of the generator dependency on the power angle δ. The breakover angle can be determined for which active power is a function of the power angle δ. In this subsection, it was concluded that if the mechanical power from the generator were to be increased beyond $P_{\max }$, i.e the generator crosses its breakover angle. The electromechanical torque would no longer be in balance with the mechanical torque and the generator would slip out of synchronism. Two different methods were used to validate the results of the calculations.

Section VI-H5 introduces a procedure where one considers the density and distribution of the loading points. In this section, the density is increased so much that the total energy losses (TEL) reach a converging value. In this section, it was concluded that increasing the number of discrete loading points beyond this converging value had little to no difference in the TEL. The TEL was also investigated using different zones. Bortoni calculates the weight using zones of " exact loading points". In other words, the zone consist of all the discrete loading points rounded up to exact values. This report presented an implementation of different zones for AAE. This was used to capture the discrete loading points and quantify their probability of occurrence, and the total energy losses inside these zones. The discrete load operation was divided into zones of different sizes and shapes. After studying the different zones a conclusion of the most appropriate zone was made.

It is shown that the proposed AAE is more effective and adaptable than the alternative WAE for all the different load distributions that were investigated. The AAE is therefore, a possible tool to quantify a generator's overall efficiency accurately in future operating regimes. To legitimize the results, the efficiency and loss map has been validated by eight handpicked load-point measurements. Once the method was validated the AAE and the WAE were compared. The following findings comparing the AAE and the WAE have been identified.

1) A load distribution dominated by synchronous condenser generation yields a difference as high as 33.18%, while an even distribution deviates by 1.43% in their respective efficiencies;
2) A concentrated load distribution found from a full year of measurements on the studied generator revealed a discrepancy of 0.67%, which could be a significant deviation considering what the operating regime would mean in terms of economic implications;
3) It is perceived that there are technical and economical implications of the significant reduction in the WAE against the AAE, as it is much more heavily influenced by the weight coefficients and by intervals of lower active power.
The additional costs for intermittent operation of hydro generators should not merely be investigated in terms of losses, but also its implication on the generator's lifetime. The burden is not only influenced by the static load points, but also by the rapid transitions between them. Future work should also investigate how the loading regime could be better incorporated into the design of future hydro generators.

These kinds of studies are projected to have a significant impact. The information harvested in these kinds of projects lays the foundation for the design and operation of future hydropower plants. Therefore actual data and comprehensive studies on these kinds of issues are highly relevant for policymakers to make wise decisions pawing the way for a sustainable energy transition.

X. FURTHER WORK

In this section, some reflected comments about the entire study are made. The possibility for further work is also discussed. Its common practice to design a machine for a specific application. It is observed that, the larger the diameter of the machine is, the larger the losses will be. It is also observed that the losses related to the armature current vary drastically depending on the size of the machine. Future work should investigate how the loading regime could be better incorporated into the design of future hydro generators. One can use the calculation model AAE to calculate the overall efficiency using the entire operational regime. One can then design the machine in regards to the AAE. A lot of the algorithms developed in this report are not fully automated, a possibility could be to automate the entire process for calculating the AAE and other important quantities. A more comprehensive study could be done on the different calculation models presented in this report. A more detailed study on the calculation model's response to different load distribution could also be made. This report is submitted to the University of Southeast Norway for further study. The methods deduced and developed for the two calculation models, as well as algorithms developed in this report, are also submitted.

1) Estimating the losses in a generator at nominal operation: One of the necessary input parameters is the losses in the generator at the nominal operating point. in other words $P_{a n}$, $P_{f n}, P_{s n}, P_{b r n}, P_{e x}, P_{b}, P_{w f}$ and $P_{c n}$. One can implement an algorithmic procedure that calculates these losses based on standard parameters/rated data of the generator. There is a method developed by a professor called Erling Westgaard which calculates the dimension of a generator and the losses in a generator based on educated guesses and rules of thumbs. The book is called "dimensjoneringseksempel for synkronmaskin" [44]. The book illustrates the design procedure for a hydro generator above 5 MVA . The book also illustrates a calculation procedure for determining generator losses at the nominal operating point. The calculation procedure developed

TABLE XI
The known data values in Westgaard's method

Data	Values
\mathbf{S}	47 MVA
\mathbf{n}	166.67
$\mathbf{n}_{\mathbf{r}}$	441
$\boldsymbol{\operatorname { c o s }}(\phi)$	0.9

in the book can be used to estimate generator losses at the nominal operating point. The design procedure by Westgaard takes into account that certain data values are known or specified. These values can be seen in Table XI.

Westgaard's method also takes into account three important criteria that must be fulfilled. The first criterion is that the synchronous reactance of the generator is lower or equal to 1.1 pu. The second criterion states that the moment of inertia $G D^{2}$ must be equal to or greater than $225 \mathrm{tm}^{2}$, and the third criterion is that the temperature rise in the stator and field winding's must not exceed $60^{\circ} \mathrm{C}$. If these values are known and the criteria are fulfilled the design procedure can begin. By using this procedure one can calculate/ estimate almost all the dimensions of the generator, in addition to important quantities like rated armature current and terminal voltage.

In most cases, the rated generator losses are given in the datasheet of the generator. The calculation model AAE can be used on a particular generator's expected yearly production. The AAE of the existing generator can be used to determine the design parameters of future generators. Erling Westgaard's "dimensjoneringseksempel for synkronmaskin" can be used to roughly estimate the dimensions of a generator giving an efficiency equivalent to the AAE. The designed parameters can then be finely tuned using the book "Design of rotating electrical machines" [45], which is written by Juha Pyrhönen. The book illustrates the design procedure for different electrical machines. The design procedure developed in the book is very precise and can be used to finely tune the design parameters. The design parameters can be calculated using the software MATLAB. Once the design parameters are established one can build the model in COMSOL Multi-Physics where one can tune the parameters even more and stress test the generator.
2) Automatising the implementation of saturation data and the Algorithmic procedure: In Section VI the Anderson and Faoud method was introduced. This method uses the open circuit characteristic (OCC) to calculate the saturation factors $S_{1.0}$ and $S_{1.2}$, which is respectively the saturation factor at the rated terminal voltage and 20% overvoltage. These saturation factors are often given in the industry. Sometimes the saturation factors are given instead of the OCC. An illustration of a dataset consisting of saturation factors for several different generators is placed in the appendix and can be seen in figure 56 One can develop an algorithm that extracts the saturation factors of the different generators from for example an excel document and plots the OCC of that particular generator. This can be done by reverse-engineering the Anderson and Faoud method to deduce the saturation curve. The easiest procedure would be to implement the saturation factor directly using the Anderson and Faoud method.

The dataset in figure 56 illustrates several important rated quantities like the synchronous reactance in the d-axis and qaxis, and the generators rated voltage and armature current, but not the rated generator losses, which illustrates the importance of being able to implement an algorithm like the one developed by Erling Westgards. This particular dataset has all the necessary input to run the WAE and AAE algorithm except for the generator losses at the nominal operating point, and its yearly production data.

The algorithms developed for calculating the fitting equation constants, capability diagram, iso-efficiency curve, total energy loss curves, and AAE are only partly automated. One could further this study by atomizing the entire process. This means that the algorithm would take specific inputs and calculate the level of saturation, capability diagram, iso-efficiency curve, total energy loss curves, and AAE (output). In other words combine all the different individual algorithm as one complete algorithm, which output eg. the iso-efficiency curves, total energy loss curves, and AAE.
3) A more comprehensive study: A more comprehensive study could be done on the different calculation models presented in this report. In addition to this, a more detailed study on the different load distribution could also be made. Once data with operating range like " Energiewende" are more readily available a study on uniform load distribution could be made using actual industry data. This could give an additional validation of the significance of the calculation models. As previously stated this report is submitted to the University of Southeast Norway. This is done to conduct further studies on the calculation model AAE. This calculation model will be tested for different operational regimes and possibly developed further. Another approach would be to implement a new calculation model that is even better than the ones presented in this report.

XI. AcKnowledgement

I would like to express my gratitude to my supervisors Jonas Kristiansen Nøland and Thomas Øyvang for providing me with excellent guidance throughout my fifth year here at NTNU. I would also like to thank Trond Leiv Toftevaag for providing additional feedback and being a good sparring partner regarding the fundamentals.

REFERENCES

[1] E. d. C. Bortoni, "Efficiency map and weighted average efficiency for synchronous machines for hydropower plants," Technical report, Universidade Federal de Itajuba (UNIFEI), 2019.
[2] Y. C. Karekezi, T. Øyvang, and J. K. Nøland, "The energy transition's impact on the accumulated average efficicency of large hydrogenerators," IEEE Trans. Energy Convers, (under review), vol. PP, no. 99, pp. 1-10, 2021.
[3] J. Machowski, "Power system dynamics : stability and control," Chichester, 2008.
[4] T. Øyvang, J. K. Nøland, R. Sharma, G. J. Hegglid, and B. Lie, "Enhanced power capability of generator units for increased operational security using nmpc," IEEE Trans. Power Syst., pp. 1-1, 2019.
[5] J.-H. Braam, "Development, test and validation of new generator product line for current and future operational regimes," CIGRE, 2018.
[6] ENSOE, "Requiremets for Generators (RFG)," ENTSO-E, 2016.
[7] A. Joswig and M. Baca, "Extended requirements on turbo-generators and solutions for flexible load operation," in Proc. XXII Int. Conf. Elect. Mach. (ICEM), Sep. 2016, pp. 2649-2654.
[8] B. B. Contributor,

crease Investments In $\begin{gathered}\text { Brazilian } \\ \text { Renewable }\end{gathered} \begin{gathered}\text { Companies } \\ \text { Energy. }\end{gathered} \begin{array}{r}\text { In- } \\ \text { [On- }\end{array}$ | crease $\begin{array}{ll}\text { Investments } \\ \text { line]. } & \text { Available: }\end{array}$ | In $\begin{array}{c}\text { Renewable Energy. } \\ \text { https://www.hartenergy.com/exclusives/ }\end{array}$ |
| :--- | ---: | :--- | brazilian-companies-increase-investments-renewable-energy-177301

[9] A. Nami, "Power electronics for future power grids: Drivers and challenges," in 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), 2018, pp. P.1-P.2.
[10] J.-H. Braam, "Development, test and validation of new generator product line for current and future operational regimes," 2018.
[11] B. Zhu, X. Zheng, S. Shen, Y. Jiang, Z. Zhang, Y. Huang, C. Tong, Y. Su, L. Yang, and Z. Lin, "Development path of future power grid with high proportion of renewable energy in the context of electricity spot market," in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), 2020, pp. 3827-3831.
[12] F. Ayadi, I. Colak, I. Garip, and H. I. Bulbul, "Impacts of renewable energy resources in smart grid," in 2020 8th International Conference on Smart Grid (icSmartGrid), 2020, pp. 183-188.
[13] W. Yang, P. Norrlund, L. Saarinen, A. Witt, B. Smith, J. Yang, and U. Lundin, "Burden on hydropower units for short-term balancing of renewable power systems," Nature communications, vol. 9, no. 1, pp. 1-12, 2018.
[14] J. K. Nøland, S. Nuzzo, A. Tessarolo, and E. F. Alves, "Excitation system technologies for wound-field synchronous machines: Survey of solutions and evolving trends," IEEE Access, vol. 7, pp. 109699-109718, 2019.
[15] E. Agneholm, "REPORT ON COORDINATION OF GRID CODES AND GENERATOR STANDARDS: Consequences of diverse grid code requirements an synchronous machine design and standards," Technical report PES-TR69, pp. 1-88, Feb 2019.
[16] T. Øyvang, J. K. Nøland, G. J. Hegglid, and B. Lie, "Online model-based thermal prediction for flexible control of an air-cooled hydrogenerator," IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6311-6320, Aug 2019.
[17] W. Tang, J. Hu, Y. Chang, and X. Kong, "Short-circuit current of gridconnected voltage source converters: Multi-timescale analysis method," in Proc. IEEE PES GM, July 2017, pp. 1-5.
[18] IEEE, "Ieee standard for cylindrical-rotor 50 hz and 60 hz synchronous generators rated 10 mva and above," IEEE Std C50.13-2014 (Revision of IEEE Std C50.13-2005), pp. 1-63, May 2014.
[19] A. Joswig, K. Walli, and M. Baca, "Synchronous rotating equipment as backbone for renewables," in VDE High Voltage Technology 2018; ETG-Symposium. VDE, 2018, pp. 1-6.
[20] Short Circuit Ratio. [Online]. Available: https://en.wikipedia.org/wiki/ Short circuit ratio
[21] K. Mayor, L. Montgomery, K. Hattori, and J. Yagielski, "Grid code impact on electrical machine design," in Proc. IEEE Power Energy Soc. Gen. Meeting. IEEE, 2012, pp. 1-8.
[22] N. R. E. Laboratory and I. P. S. O. C. Limited, "Ramping up the ramping capability," Tech. Rep., September 2020.
[23] L. Rouco, K. Chan, J. Oesterheld, and S. Keller, "Recent evolution of european grid code requirements and its impact on turbogenerator design," in Proc. IEEE Power Energy Soc. Gen. Meeting. IEEE, 2012, pp. 1-9.
[24] W. E. Council and CAISO, "Five steps to energy storage," Tech. Rep., 2020.
[25] J. K. Nøland, M. Leandro, A. Nysveen, and T. Øyvang, "Future operational regimes of bulk power generation in the era of global energy transition: Grid codes, challenges and open issues," in Proc. IEEE Power Energy Soc. Gen. Meet. (PESGM), 2020, pp. 1-5.
[26] O. Rahman, K. M. Muttaqi, and D. Sutanto, "High temperature superconducting devices and renewable energy resources in future power grids: A case study," IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-4, 2019.
[27] D. Fenwick and W. Wright, "Review of trends in excitation systems and possible future developments," in Proc. of the Institution of Electrical Engineers, vol. 123, no. 5. IET, 1976, pp. 413-420.
[28] F. Yao, Q. An, X. Gao, L. Sun, and T. A. Lipo, "Principle of operation and performance of a synchronous machine employing a new harmonic excitation scheme," IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 38903898, 2015.
[29] S. Nuzzo, M. Galea, C. Gerada, and N. Brown, "Analysis, modeling, and design considerations for the excitation systems of synchronous generators," IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 2996-3007, April 2018.
[30] Z. Zhang, Y. Liu, B. Tian, and W. Wang, "Investigation and implementation of a new hybrid excitation synchronous machine drive system," IET Elect. Power Appl., vol. 11, no. 4, pp. 487-494, 2017.
[31] IEEE, "Discussion on "review of trends in excitation systems and possible future developments"," Electrical Engineers, Proceedings of the Institution of, vol. 123, no. 12, pp. 1363-1364, December 1976.
[32] D. C. Ludois, J. K. Reed, and K. Hanson, "Capacitive power transfer for rotor field current in synchronous machines," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4638-4645, Nov 2012.
[33] IEEE, "IEEE standard for salient-pole 50 hz and 60 hz synchronous generators and generator/motors for hydraulic turbine applications rated 5 mva and above," IEEE Std C50.12-2005 (Previously designated as ANSI C50.12-1982), pp. 1-45, Feb 2006.
[34] _ , "IEEE standard definitions for excitation systems for synchronous machines," IEEE Std 421.1-2007 (Rev of IEEE Std 421.1-1986), pp. 138, July 2007.
[35] F. Evestedt, Improving the Functionality og Synchronous Machines using Power Electronics. Licentiate thesis, Division of Electricity, Angstrom Laboratory, Uppsala University, Uppsala, Sweden, 2017.
[36] P. Kundur, "Power system stability and control," Toronto, 1993.
[37] Y. C. Karekezi, A In-Depth Study of Hydro-Generator Losses and Efficiencies for Different Load Operations: Quantifying the Impact of the Energy Transition, December 2020.
[38] C. A. P. Gaona, F. B. García, P. F. Marín, M. R. Cuevas, R. G. Arrabé, and C. C. López, "Rapid de-excitation system for synchronous machines with indirect excitation," Feb. 11 2010, US Patent App. 13/201,971.
[39] R. Thornton-Jones, I. Golightly, N. Gutteridge, C. Huizer, and D. Navratil, "Review of generator and excitation system specification and test requirements to satisfy multiple international grid code standards," in Proc. IEEE Power and Energy Soc. Gen. Meeting, July 2012, pp. 1-6.
[40] F. Bensmaine, A. Barakat, S. Tnani, G. Champenois, and E. Mouni, "Dual control of synchronous generator for terminal voltage regulationcomparison with a single control," Electric Power Systems Research, vol. 91, pp. 78-86, 2012.
[41] S. Sourish Sanyal Sohorab Hossain Sujit Dhar, "Computer-aided analysis of saturation in synchronous machines," 2017.
[42] H. Gorginpour, "Optimal design of brushless ac exciter for large synchronous generators considering grid codes requirements," IET Gen., Trans. Dist., vol. 12, no. 17, pp. 3954-3962, 2018.
[43] K. N. D. Pejovski, B. Velkovski, "Matlab model for visualization of pq diagram of a synchronous generator," Researchgate, 2016.
[44] E. H. Westgaard, "Dimesjoneringseksempel for synkronmaskin," Trondheim, 1965.
[45] J. Pyrhonen, V. Hrabovcova, and T. Jokinen, Design of Rotating Electrical Machines, 1st ed. New York: Wiley, 2009.

Listings

	de for the OCC remake shown in figure 12. 37
	Code for the theoretical and practical stability
	limit shown in figure 20 37
	Code for contour plot of the practical stability
	limit shown in figure 20 38
	Code for the final capabillity diagram (G1)
	Code for the iso-efficiency curves of G1 illus-
	trated in fig. 27. 40
	Code for the energy prod. and loss illustrated
	in figure 29 and 28 41
	Code for the converging value shown in figure
	311. .
	Code for the three different densities inside the
	cap. 44
9	Code for the distribution circles. 46
0	Additional function that plots circles 48
11	Additional function that clean vector of zero. . 49
	Additional function that plots datapoints inside
	cap. .
	Additional function that plots datapoints inside
	the circle. 50
	Code for the scatter plot in figure 44

Fig. 56. The figure illustrates a dataset of different saturation factor for different generators.

Appendix A
 MATLAB CALCULATIONS

A. Code for OCC remake shown in Fig. 12

Listing 1. Code for the OCC remake shown in figure 12

```
%Data
```

Xq_pu= 0.72
Xp_pu= 0.2
Xd_pu=1.09
$\mathrm{n}=7$
$C=0.175$
$\mathrm{k}=1.12$
$\mathrm{V}=0: 0.01: 1.5$
$\mathrm{If}=(\mathrm{V}+\mathrm{C} . * \mathrm{~V} . \wedge \mathrm{n}) . * \mathrm{k}$
$\%$ If $2=\mathrm{V}+\mathrm{C} 2 . * \mathrm{~V} . \wedge \mathrm{n}$
$\mathrm{xad}=1.09-0.2$
$\mathrm{Ep}=\boldsymbol{x a d} * \mathrm{If}$
figure (1)
clf
plot (If, Ep, 'b'), hold on
plot (If, V, ' -')
\%plot(If,x)
\%plot(If, x2)
\%plot(If,x1)
plot ([041$],\left[\begin{array}{ll}0.89 & 0.89\end{array}\right], '$ Linewidth,$\left.~ 1\right) ~$
plot ([$1.0 \quad 1.0],\left[\begin{array}{ll}0 & 2\end{array}\right]$, 'Linewidth', 1$)$
plot ([1.2 1.2],[0 2 $]$, 'Linewidth', 1)
plot ([1.087 1.087], [0 2 $]$, ' Linewidth', 1)
plot $\left(\left[\begin{array}{ll}0 & 4\end{array}\right],\left[\begin{array}{ll}1.085 & 1.085\end{array}\right], '\right.$ Linewidth', 1$)$
plot ([1.5816 1.5816],[0 2 $]$,' Linewidth', 1$)$
xlabel ('If')
ylabel ('U')
axis ([$\left.\left.\begin{array}{llll}0 & 4 & 0 & 2\end{array}\right]\right)$
\%plot(If,V, 'o', If $\left.2, V,{ }^{\prime} \mathrm{o}^{\prime}\right)$
B. Code for the theoretical and practical stability limit shown ${ }^{47}$
in figure 20
48

Listing 2. Code for the theoretical and practical stability limit shown in figure ${ }^{50}$ 20

Capabillity diagram of the hydro

 genrator:```
%% Plot Capabillitydiagram
Xd_pu=0.8;
Xq_pu=0.6;
V=1;
%Pmax =0.9
th = (71.1:0.905:180);
Sn1 = 1; %or whatever radius you want
x = Sn 1* cosd(th) ;
```

```
y = Sn1*sind(th);
A_x=-1/Xq_pu ;
B_x=-1/Xd_pu;
%small circle E=0
E0=0.0
th1 = (0:0.1:180);
R=(0.5*(V^2)*(Xd_pu-Xq_pu))./(Xd_pu .*
 Xq_pu)+E0
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E0
x1= R*cosd(th1) - c;
yl=R*sind(th1);
%small circle E=0.1
E1=0.1
th1 = (0:0.1:180);
R=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu-Xq_pu))./(Xd_pu .*
 Xq_pu)+E1
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu . **
 Xq_pu)-E1
x1_01= R*\operatorname{cosd(th1) - c;}
y1_01= R*sind(th1);
%small circle E=0.2
E2=0.2
th1 = (0:0.1:180);
R=(0.5*(V^2)*(Xd_pu-Xq_pu))./(Xd_pu .*
 Xq_pu)+E2
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E2
x1_02= R*\operatorname{cosd(th1) - c;}
y1_02= R*sind(th 1);
%64.5
%third semi circle Emax
th2 = (64.5:0.8:96);
R=2.20757
y2= R*\operatorname{cosd(th2);}
x2= R*sind(th2) +A_x;
%%
 figure(1)
 clf
 plot(x,y,'k','linewidth', 1.5), hold on
 %plot([-0.326 0.326],[0.95 0.95],'
 Linewidth ', 1)%Pmax
%plot([0 0 0 ,[[0 1 1],'Linewidth', 1)%
 origoaxis
% %plot([[0}00.326],[[0 0.95],'Linewidth',1
 %Sn
 %plot(A_x,0,'o')
```

```
a=(eq.*Xq_pu)./(V.*(Xd_pu-Xq_pu))
```

$\mathrm{b}=\mathrm{sqrt}\left(\mathrm{a} .^{\wedge} 2+8\right)$
$\operatorname{cosdelta}=(1 / 4) . *(-a+b)$
delta=acosd(cosdelta)
\%Calculate the active power and reactive
power
\%with eq ranging from $0-1$ and use max
delta
$\mathrm{c}=(\mathrm{eq} * \mathrm{~V}) /(\mathrm{Xd}$ _pu) $) * \operatorname{sind}(\mathrm{delta})$
$\mathrm{d}=(0.5 * \mathrm{~V} . \wedge 2) . *\left(\left(X d \_p u-X q \_p u\right) . / X d \_p u * X q \_p u{ }_{34}\right.$
$) * \operatorname{sind}(2 * \operatorname{delta})$
35
$\mathrm{P}=\mathrm{c}+\mathrm{d}$
$\mathrm{e}=2 * \mathrm{~d}$
$\mathrm{f}=\left((\mathrm{V} . \wedge 2) . / \mathrm{Xd} \_\right.$pu $)$
$\mathrm{Q}=\left((\mathrm{eq} . * \mathrm{~V}) . / \mathrm{Xd} \_\mathrm{pu}\right) . * \operatorname{cosd}(\mathrm{delta})-\mathrm{f}-\mathrm{e}$
\%In order to get the PLS multiply with a ${ }^{39}$
stabillity margin
\%25 percent stability margin
stabm $=0.75$
stabm $=0.75$
$S=(j * Q+P) . * s t a b m$
plot (imag(S), real(S), '-')
C. Code for contour plot of the practical stability limit shown ${ }^{48}$ in figure 20

Listing 3. Code for contour plot of the practical stability limit shown in figure ${ }^{51}$ 20

```
%% Plot Capabillitydiagram
```

Xd_pu $=0.8$;
Xq_pu $=0.6$;
$\mathrm{V}=1$;
\%Pmax $=0.9$
th $=(71.1: 0.905: 180) ;$
Sn1 $=1$; \%or whatever radius you want

```
x = Sn 1*\operatorname{cosd(th) ;}
y = Sn 1*sind(th) ;
A_x=-1/Xq_pu ;
B_x=-1/Xd_pu;
%small circle E=0
E0=0.0
th1 = (0:0.1:180);
R=(0.5*(V^2) *(Xd_pu-Xq_pu)) ./(Xd_pu .*
 Xq_pu)+E0
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E0
x1= R*\operatorname{cosd(th1) - c;}
yl=R*sind(th1);
%small circle E=0.1
E1=0.1
th1 = (0:0.1:180);
R=(0.5*(V^2) *(Xd_pu-Xq_pu)) ./(Xd_pu .*
 Xq_pu)+E1
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E1
x1_01= R*cosd(th1) - c;
y1_01= R*sind(th1);
%small circle E=0.2
E2=0.2
th1 = (0:0.1:180);
R=(0.5*(V^2)*(Xd_pu-Xq_pu)) ./(Xd_pu .*
 Xq_pu)+E2
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E2
x1_02= R*\operatorname{cosd(th 1) - c;}
y1_02= R*sind(th1);
%64.5
%third semi circle Emax
th2 = (64.5:0.8:96);
R=2.20757
y2= R*\operatorname{cosd(th2);}
x2= R*sind(th2) +A_x;
%%
```

    figure (1)
    clf
    plot (x,y, 'k', 'linewidth', 1.5), hold on
    \%plot ([-0.326 0.326$],\left[\begin{array}{ll}0.95 & 0.95\end{array}\right]$,
Linewidth', 1 )\%Pmax
\%plot ([0 0 0 ],[ $\left.0 \begin{array}{ll}0 & 1\end{array}\right]$, , Linewidth ', 1$) \%$
origoaxis
\% \%plot ([ $\left.0 \begin{array}{ll}0 & 0.326\end{array}\right],\left[\begin{array}{ll}0 & 0.95\end{array}\right], '$ Linewidth ', 1$)$
$\%$ Sn

```
 %plot(A_x,0,'o')
 %plot(B_x,0,'o')
plot(xl,yl)%first semi-circle
plot(x1_01,y1_01)%second semi-circle
plot(x1_02,y1_02)%third semi-circle
% %plot([[A_x 0.326],[[0}00.95],',Linewidt
 ,1)%second line
 plot(x2,y2,'k',' linewidth', 1.5)%third
 semi circle Emax
 xlabel('Q [pu]')
 ylabel('P [pu]')
 axis ([- 1.8
\%plot (A_x, 0, 'o')
\%\% Data inputs
\(\% \mathrm{P}=1\);
\(\mathrm{V}=1\);
\(\mathrm{Xd}=0.8\);
\(\mathrm{Xq}=0.6\)
\(\mathrm{a}=\mathrm{V} / \mathrm{Xd}\);
\(\mathrm{b}=\left(0.5 * \mathrm{~V}^{\wedge} 2\right) *((\mathrm{Xd}-\mathrm{Xq}) / \mathrm{Xd} * \mathrm{Xq}) ;\)
\(\mathrm{c}=\left(\left(\mathrm{V}^{\wedge} 2\right) / \mathrm{Xd}\right)\);
\(\%\) Eq_P \(=(\mathrm{P}-(\mathrm{b} . * \operatorname{sind}(2 . * \mathrm{delta}))) . /(\mathrm{a} . * \operatorname{sind}(\)
 delta) ;
\% Eq_Q \(=\left(\mathrm{Q}+\mathrm{c}+\left(2 . * \mathrm{~b} . * \mathrm{~d} .{ }^{\wedge} 2\right)\right) . /(\mathrm{a} \cdot * \operatorname{cosd}(\mathrm{delta}\)
)) ;
\%delta_SP=[]
for \(i=d r a n g e(1,11)\)
 \(\mathrm{P}=(0-1 / 10)+\mathrm{i} / 10\);
 for \(s=\) drange \((1,17)\)
 \(\mathrm{Q}=(-1-1 / 10)+\mathrm{s} / 10\);
 counter=s
 for \(k=\) drange \((1,80000)\)
 delta=k/1000;
 \(\mathrm{d}=\mathrm{sind}(\mathrm{delta})\);
 \(E q_{-} P=(P-(b . * \operatorname{sind}(2 . * d e l t a)))\)
 .\(/(\mathrm{a} . * \operatorname{sind}(\mathrm{delta}))\);
 \(\mathrm{Eq} Q \mathrm{Q}=(\mathrm{Q}+\mathrm{c}+(2 . * \mathrm{~b} . * \mathrm{~d} . \wedge 2)) . /(\mathrm{a} . *\)
 \(\operatorname{cosd}(d e l t a))\);
 if round \(\left(E q_{-} P, 2\right)==\) round \(\left(E q_{-} Q\right.\)
 , 2)
 break
 end
 end
 delta_SP(i,s)=delta
 end
 end
delta_SP(1, 1: end \()=0\)
\(\mathrm{P} 1=0: 0.1: 1\);
\(\mathrm{Q} 1=-1: 0.1: 0.6\)
\([\mathrm{Q} 1, \mathrm{P} 1]=\operatorname{mesh} \operatorname{rid}(\mathrm{Q} 1, \mathrm{P} 1) ;\)
```

Q=q_a-q_b-q_c

```

\section*{D. Code for the final capability diagram (G1) shown in figure}

\section*{21]}

Listing 4. Code for the final capabillity diagram (G1) shown in figure 21
```

    function [x,y,x2,y2,x1_02,y1_02,x_p,y_p,
    ```
 c1]=New_capabilitydiagramG2_func (
 Xd_pu, Xq_pu)
 \%\% Plot Capabillitydiagram
Xd_pu=Xd_pu;
Xq_pu=Xq_pu;
\(\mathrm{V}=1\);
\%Pmax \(=0.9\)
th = (71.1:1:145.1);
Sn1 \(=1\); \%or whatever radius you want
\(\mathrm{x}=\operatorname{Sn} 1 * \operatorname{cosd}(\mathrm{th})\);
\(\mathrm{y}=\operatorname{Sn} 1 * \operatorname{sind}(\mathrm{th}) ;\)
A_x \(=-1 /\) Xq_pu ;
B_x \(=-1 / X d _p u\);
\%small circle E=0
\(\mathrm{E} 0=0.0\)
th \(1=(0: 0.1: 180)\);
\(\mathrm{R}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(\mathrm{Xd} _\right.\right.\)pu-Xq_pu)) ./(Xd_pu . *
 Xq_pu) + E0
\(\mathrm{c}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(X d _p u+X q_{_} p u\right)\right) . /\left(X d _p u . *\right.\)
 Xq_pu)-E0
\(x 1=R * \operatorname{cosd}(t h 1)-c ;\)
\(\mathrm{y} 1=\mathrm{R} * \operatorname{sind}(\mathrm{th} 1)\);
\%small circle \(E=0.1\)
\(\mathrm{E} 1=0.1\)
th1 \(=(0: 0.1: 180)\);
\(\mathrm{R}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(\mathrm{Xd} _\right.\right.\)pu \(-\mathrm{Xq} _\)pu \(\left.)\right) . /\left(\mathrm{Xd} _\mathrm{pu} . *\right.\)
 Xq_pu)+E1
\(\mathrm{c}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(\mathrm{Xd} _\right.\right.\)pu + Xq_pu \(\left.)\right) . /\left(\mathrm{Xd} _\right.\)pu.\(*\)
 Xq_pu)-E1
\(x 1 _01=R * \operatorname{cosd}(t h 1)-c\);
\(\mathrm{y} 1 _01=\mathrm{R} * \operatorname{sind}(\operatorname{th} 1)\);
\(\mathrm{c}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(\right.\right.\) Xd_pu \(^{2}+\) Xq_pu \(\left.\left.^{2}\right)\right) . /(\mathrm{Xd}\) _pu.\(*\)
 Xq_pu) -E3
\(\mathrm{c} 1=\mathrm{c}\)
\(x 1 _04=R * \operatorname{cosd}(t h 1)-c\);
\(\mathrm{y} 1 _04=\mathrm{R} * \operatorname{sind}(\operatorname{th} 1)\);
\%64.5
\%third semi circle Emax
th2 \(=(64.5: 0.8: 96)\);
\(\mathrm{R}=2.20757\)
\(\mathrm{y} 2=\mathrm{R} * \operatorname{cosd}(\mathrm{th} 2)\);
\(\mathrm{x} 2=\mathrm{R} * \operatorname{sind}(\mathrm{th} 2)+\mathrm{A}_{-} \mathrm{x}\);
\%\%
 figure (1)
 clf
plot(x,y, 'k', 'linewidth', 1.5), hold on
 \%plot ([-0.326 0.326], \(\left[\begin{array}{lll}0.95 & 0.95\end{array}\right]\),
 Linewidth', 1)\%Pmax
 \%plot ([0 0 0] , [0 1 1 , , Linewidth ', 1) \%
 origoaxis
\% \%plot ([00.326\(],\left[\begin{array}{ll}0 & 0.95\end{array}\right]\), 'Linewidth ', 1\()\)
 \%plot (A_x,0, 'o')
 \%plot (B_x,0, o' \()\)
\%plot(x1,y1)\%first semi-circle
\%plot (x1_01,y1_01)\%second semi-circle
plot (x1_02,y1_02,'k', 'linewidth', 1.5)\%
 third semi-circle
\%plot(x1_03,y1_03)\%fourth semi-circle
\%small circle E=0.2
\(\mathrm{E} 2=0.2\)
th \(1=(0: 0.1: 30.5) ;\)
\(\mathrm{R}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(X d _p u-X q _p u\right)\right) . /\left(X d _p u . *\right.\)
 Xq_pu) +E2
\(\mathrm{c}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(X d _p u+X q_{-}\right.\right.\)pu \(\left.)\right) . /\left(\mathrm{Xd} _\right.\)pu.\(*\)
 Xq_pu)-E2
\(x 1 _02=R * \operatorname{cosd}(t h 1)-c\);
\(\mathrm{y} 1 _02=\mathrm{R} * \operatorname{sind}(\mathrm{th} 1)\);
\%small circle E=0.3
\(\mathrm{E} 3=0.3\)
th \(1=(0: 0.1: 180)\);
\(\mathrm{R}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(\mathrm{Xd} _\right.\right.\)pu \(-\mathrm{Xq} _\)_pu \(\left.)\right) . /\left(\mathrm{Xd} _\right.\)pu.\(*\)
 Xq_pu) +E3
\(\mathrm{c}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(X d _p u+X\right.\right.\) q_pu \(\left.\left.^{2}\right)\right) . /\left(\mathrm{Xd} _\right.\)pu.\(*\)
 Xq_pu)-E3
\(x 1 _03=R * \cos d(t h 1)-c\);
\(y 1 _03=R * \operatorname{sind}(\operatorname{th} 1)\);
\%small circle \(E=0.4\)
\(\mathrm{E} 3=0.4\)
th \(1=(0: 0.1: 180)\);
\(\mathrm{R}=\left(0.5 *\left(\mathrm{~V}^{\wedge} 2\right) *\left(X d _p u-X q _p u\right)\right) . /\left(X d _p u . *\right.\)
 Xq_pu) +E3
figure (1)
clf
plot(x,y, 'k', 'linewidth', 1.5), hold on
\%plot ([-0.326 0.326],[0.950 .95\(]\),' Linewidth ', 1)\%Pmax
\%plot ([0 0 0 , [\(\left.0 \begin{array}{ll}0 & 1\end{array}\right],{ }^{\prime}\) Linewidth ', 1\() \%\) origoaxis
\(\% \%\) plot ([0 00.326\(],\left[\begin{array}{ll}0 & 0.95\end{array}\right]\), 'Linewidth', 1\()\)
\[
\% \mathrm{Sn}
\]
\%plot (A_x, 0, 'o')
\%plot(\(\mathrm{B}_{-} \mathrm{x}, 0, \mathrm{O}^{\circ}\))
\(\%\) plot (x1-01, y1_01)\%second semi-circle
plot(x1_02,y1_02,'k', 'linewidth', 1.5)\%
third semi-circle

\section*{E. Code for the iso-efficiency curves of G1 illustrated in fig. 27}

Listing 5. Code for the iso-efficiency curves of G1 illustrated in fig. 27
\%\% Data inputs
clear; clc;
\(\mathrm{Ra}=0.002322 ; \mathrm{Xq}=0.6 ; \mathrm{Xd}=0.8 ; \mathrm{Xp}=0.18\);
```

$$
\mathrm{b} 4=7.4417 ; \quad \mathrm{b} 3=-22.228 ; \quad \mathrm{b} 2=24.85 ; \quad \mathrm{b} 1
$$

b4 =7.4417; b3 = - 22.228; b2=24.85; b1
=-10.959; b0=2.0737; bv=1;
%losses along the loading
ifd_o=1.712;
s=154608; ua_o=1; ia_o=1; ifd_o = 2.;
%s=154608;
P_wf=710.47/s; % windage and friction
loss
P_cn=539.87/s; % core loss
P_an=327.05/s; % stator current loss
P_sn=237.07/s; % additional loss
P_fn=477.81/s; % rotor current loss
P_brn=5.96/s; % brush loss
P_exn=33.96/s; % excitation loss
P_b=156.17/s; % bearings loss
pcte=P_wf+P_b; % constant power
k=0;
Xd_pu=0.8;
Xq_pu=0.6;
[x,y,x2,y2, x1_02,y1_02, x_p,y_p,c 1]=
New_capabilitydiagramG2_func(Xd_pu,
Xq_pu)
%% Efficiency calculation
for i=0.01:0.001:1 % active power }\mp@subsup{}{74}{
from 0 to 1
for j=-1:0.01:1 % reactive
power from -1 to 1
ia=sqrt(i^2+j^2);
phi=atan(j/i);
delta=atan(ia*(Xq* cos(phi) -Ra*sin }7
(phi))/(ua+Ra*ia*cos(phi)+Xq* 78
ia*sin(phi)));
egu=ua*cos(delta)+Ra*ia*\operatorname{cos}(delta
+phi)+Xd*ia*sin(delta+phi);
ifu=egu/bv;
th=atan(ia*(Xp*cos(phi)-Ra*sin(
phi))/(ua+Ra*ia*\operatorname{cos}(phi)+Xp*ia
* sin(phi)));
ep=ua*\operatorname{cos}(th)+Ra*ia*\operatorname{cos}(th+phi)+
Xp*ia*sin(th+phi);
if ep >0.45
if s=b4*ep^4+b3*ep^}3+b2*ep^^2+b
*ep+b0-ep/bv;
else
if s =0;
end
ifd=ifu+ifs;
P_a=P_an*(ia/ia_o)^2;
P_s=P_sn*(ia/ia_o ) ^ 2;
P_f=P_fn*(ifd/ifd_o )}\mp@subsup{}{`}{\prime}2
P_br=P_brn*(ifd/ifd_o )^2;

```
\[
5
\]
H
```

H

```
```

sn=1; ua=1; fpn=0.95; pf=0.95;

```
```

sn=1; ua=1; fpn=0.95; pf=0.95;

```
```

%s=154608; ua_o=1.04229; ia_o = 0.9382;

```
```

%s=154608; ua_o=1.04229; ia_o = 0.9382;

```
```

53
54
55
55
56
57
58
7
8

## F. Code for the energy prod. and loss illustrated in figure 29

 and 28```
Listing 6. Code for the energy prod. and loss illustrated in figure 29 and 28
%% Data inputs
clear; clc;
Ra=0.002322; Xq=0.6; Xd=0.8; Xp=0.18;
b4=7.4417; b3 = -22.228; b2 =24.85; b1
    =-10.959; b0 =2.0737; bv=1;
sn=1; ua=1; fpn=0.95; pf=0.95;
%losses along the loading
%s=154608; ua_o=1.04229; ia_o = 0.9382;
    ifd_o = 1.712;
s=154608; ua_o=1; ia_o=1; ifd_o = 2;
%s=154608;
P_wf=710.47/s; % windage and friction
    loss
P_cn=539.87/s; % core loss
```

```
```

```
end
```

```
```

end

```
```

```
end
```

```
```

end
end
end
end
n=n*100;
n=n*100;
n=n*100;
nPoints=101;
nPoints=101;
nPoints=101;
pMin=min(p); pMax=max (p);
pMin=min(p); pMax=max (p);
pMin=min(p); pMax=max (p);
qMin=min(q); qMax=max(q);
qMin=min(q); qMax=max(q);
qMin=min(q); qMax=max(q);
pVect=linspace(pMin, pMax, nPoints);
pVect=linspace(pMin, pMax, nPoints);
pVect=linspace(pMin, pMax, nPoints);
qVect=linspace(qMin,qMax, nPoints);
qVect=linspace(qMin,qMax, nPoints);
qVect=linspace(qMin,qMax, nPoints);
[pMat,qMat]= meshgrid(pVect,qVect);
[pMat,qMat]= meshgrid(pVect,qVect);
[pMat,qMat]= meshgrid(pVect,qVect);
int=scatteredInterpolant(p',q',n');
int=scatteredInterpolant(p',q',n');
int=scatteredInterpolant(p',q',n');
nMat=int(pMat,qMat);
nMat=int(pMat,qMat);
nMat=int(pMat,qMat);
colormap jet; % doc colormap
colormap jet; % doc colormap
colormap jet; % doc colormap
[c,h]=contour(qMat,pMat, nMat,[91.2 94.9
[c,h]=contour(qMat,pMat, nMat,[91.2 94.9
[c,h]=contour(qMat,pMat, nMat,[91.2 94.9
96.5 97.4 97.9 98.2 98.4],'LineWidth'
96.5 97.4 97.9 98.2 98.4],'LineWidth'
96.5 97.4 97.9 98.2 98.4],'LineWidth'
,2);
,2);
,2);
clabel(c,h,'FontSize',16,'LabelSpacing'
clabel(c,h,'FontSize',16,'LabelSpacing'
clabel(c,h,'FontSize',16,'LabelSpacing'
,200,'FontName','Times New Roman')
,200,'FontName','Times New Roman')
,200,'FontName','Times New Roman')
ylabel('Active power (pu)','FontName','
ylabel('Active power (pu)','FontName','
ylabel('Active power (pu)','FontName','
Times New Roman')
Times New Roman')
Times New Roman')
xlabel('Reactive power (pu)','FontName',
xlabel('Reactive power (pu)','FontName',
xlabel('Reactive power (pu)','FontName',
Times New Roman')
Times New Roman')
Times New Roman')
axis equal;
axis equal;
axis equal;
axis([-1 [. 6 0 1 1]);
axis([-1 [. 6 0 1 1]);
axis([-1 [. 6 0 1 1]);
P_ex=P_exn*(ifd/ifd_o);
P_ex=P_exn*(ifd/ifd_o);
P_ex=P_exn*(ifd/ifd_o);
P_c=P_cn*(ua/ua_o);
P_c=P_cn*(ua/ua_o);
P_c=P_cn*(ua/ua_o);
P_c=P_c
P_c=P_c
P_c=P_c
P_c=P_cn*(ua/ua_o);

```
```

```
P_c=P_cn*(ua/ua_o);
```

```
```

P_c=P_cn*(ua/ua_o);

```
```

```




and 28
```

```
P_an=327.05/s; % stator current loss % 
```

```
P_an=327.05/s; % stator current loss % 
P_sn=237.07/s; % additional loss
P_sn=237.07/s; % additional loss
P_fn=477.81/s; % rotor current loss }\mp@subsup{}{63}{
P_fn=477.81/s; % rotor current loss }\mp@subsup{}{63}{
P_brn=5.96/s; % brush loss 64
P_brn=5.96/s; % brush loss 64
P_exn=33.96/s; % excitation loss
P_exn=33.96/s; % excitation loss
P_b=156.17/s; % bearings loss 
P_b=156.17/s; % bearings loss 
pcte=P_wf+P_b; ; % constant power
pcte=P_wf+P_b; ; % constant power
k=0;
k=0;
%% plot Capabillitydiagram
%% plot Capabillitydiagram
Xd_pu=0.8
Xd_pu=0.8
Xq_pu=0.6
Xq_pu=0.6
[x,y,x2,y2,x 1_02, y1_02,x_p,y_p, c 1 ]=
[x,y,x2,y2,x 1_02, y1_02,x_p,y_p, c 1 ]=
    New_capabilitydiagramG2_func(Xd_pu,
    New_capabilitydiagramG2_func(Xd_pu,
    Xq_pu )
    Xq_pu )
%% effciecny calc
%% effciecny calc
P}=0.01:0.001:1
P}=0.01:0.001:1
Q}=-1:0.001:1
Q}=-1:0.001:1
for i=drange(1, length(P))
for i=drange(1, length(P))
            % active
            % active
    power from 0 to 1
    power from 0 to 1
    for j=drange(1, length(Q))
    for j=drange(1, length(Q))
        P1=P(i);
        P1=P(i);
        Q1=Q( j ) ;
        Q1=Q( j ) ;
        ia=sqrt(P1^2+Q1^2);
        ia=sqrt(P1^2+Q1^2);
        fi=atan(Q1/P1);
        fi=atan(Q1/P1);
        d= atan(ia*(Xq* cos(fi) -Ra*sin(fi))
        d= atan(ia*(Xq* cos(fi) -Ra*sin(fi))
        /(ua+Ra*ia*cos(fi)+Xq*ia*sin( }\mp@subsup{}{88}{
        /(ua+Ra*ia*cos(fi)+Xq*ia*sin( }\mp@subsup{}{88}{
        fi)));
        fi)));
        egu=ua*cos(d)+Ra*ia*cos(d+fi )+Xd*
        egu=ua*cos(d)+Ra*ia*cos(d+fi )+Xd*
        ia*sin(d+fi);
        ia*sin(d+fi);
    ifu=egu/bv;
    ifu=egu/bv;
    th=atan(ia*(Xp*\operatorname{cos}(fi)-Ra*sin(fi)
    th=atan(ia*(Xp*\operatorname{cos}(fi)-Ra*sin(fi)
        )/(ua+Ra*ia*\operatorname{cos}(fi)+Xp*ia*sin(
        )/(ua+Ra*ia*\operatorname{cos}(fi)+Xp*ia*sin(
        fi)));
        fi)));
    ep=ua*cos(th)+Ra*ia*cos(th+fi)+Xp
    ep=ua*cos(th)+Ra*ia*cos(th+fi)+Xp
        *ia* sin(th+fi);
        *ia* sin(th+fi);
    if ep >0.45
    if ep >0.45
        ifs=b4*ep^4+b 3*ep^^3+b2*ep^^2+b1
        ifs=b4*ep^4+b 3*ep^^3+b2*ep^^2+b1
            *ep+b0-ep/bv;
            *ep+b0-ep/bv;
        else
        else
        if s =0;
        if s =0;
    end
    end
    ifd=ifu+ifs;
    ifd=ifu+ifs;
        P_a=P_an*(ia/ia_o ) ^2;
        P_a=P_an*(ia/ia_o ) ^2;
        P_s=P_sn*(ia/ia_o )}^\2
        P_s=P_sn*(ia/ia_o )}^\2
        P_f=P_fn*(ifd/ifd_o )^ 2;
        P_f=P_fn*(ifd/ifd_o )^ 2;
        P_br=P_brn*(ifd/ifd_o )^2;
        P_br=P_brn*(ifd/ifd_o )^2;
        P_ex=P_exn*(ifd/ifd_o );
        P_ex=P_exn*(ifd/ifd_o );
        P_c=P_cn*(ua/ua_o);
        P_c=P_cn*(ua/ua_o);
        ploss=pcte+\mp@subsup{P}{-}{\prime}+\mp@subsup{P}{-}{}}\textrm{a}+\mp@subsup{\textrm{P}}{-}{}\textrm{br}+\mp@subsup{P}{-}{\prime}f+\mp@subsup{P}{-}{}c
        ploss=pcte+\mp@subsup{P}{-}{\prime}+\mp@subsup{P}{-}{}}\textrm{a}+\mp@subsup{\textrm{P}}{-}{}\textrm{br}+\mp@subsup{P}{-}{\prime}f+\mp@subsup{P}{-}{}c
        P_ex;
```

 P_ex;
    ```
```

 67
    ```
    67
    68
    68
    69
    69
    70
    70
    71
    71
    72
    72
73
```

73

```
.

\section*{G. Code for the converging value illustrated in figure 31}

Listing 7. Code for the converging value shown in figure 31
```

%%%% data input

```
\%rated quanteties for G1
\(\mathrm{Sn}=160 * 10^{\wedge} 6\);
Ua_pu=1;
\(\operatorname{cosphi}=0.95 ;\)
\(\mathrm{Pn}=\mathrm{Sn} * \operatorname{cosphi} / \mathrm{Sn}\);
Qn=0.3259;
PHIn=atan (Qn/Pn)
\(\mathrm{Vn}=15.8 * 10^{\wedge} 3\)
\%fn= 60
    Xd_pu=0.8 ;
    Xq_pu= 0.6;
\%Potierreactance and armature resistance
Xp_pu= 0.18 ;
    \(\mathrm{Ra}=0.00232\);
```

%nominell induced voltage
Egn=1.3980;
delta_n=26.622; %26.622
%rated armature current and terminal
voltage:
Ian=1;
Uan=1;
E=Xp_pu.*Ian .* cosd(PHIn);
F=Ra.*Ian.* sind(PHIn);
G=Ra.*Ian.* cosd(PHIn);
H=Xp_pu.*Ian.*sind(PHIn);
phiportiern=atand((E-F)./(Ua_pu+G+H));
%polynomial koefisient
bv=1
b_0=0.0105
b_1=1.0172
b_2 =0.0328
b_3=-0.218
b_4 =0.0514
Egn=1.57
Epn=Ua_pu.* cosd(PHIn) -(Ra.*Ian.*\operatorname{cosd(PHIn }\mp@subsup{}{85}{}
+phiportiern))+ Xp_pu.*Ian.*sind(PHIn+86
phiportiern)
Poly_Sn=b_0+(b_1.*Epn.^1) +(b_2 **Epn.^2) +(88
b_3.*Epn.^3)+(b_4.*Epn.^4)
Ifn=(Egn./bv)+(Poly_Sn)-(Epn./ bv) 90
%Ifn=2.2
%Ifn=round (Ifn)
%losses in rated operation(Given):
P_wf=(710.47*10^3)/Sn;% Constant windage
and friction losses
P_cn=(539.87*10^3)/Sn; % constant
*)
armature core losses
P_an=(327.05*10^3)/Sn; % nominal armature 99
winding losses
P_sn=(237.07*10^3)/Sn; % nominal stray
load losses
P_fn=(477.81*10^3)/Sn; % nominal field
winding current losses
P_brn=(5.93*10^3)/Sn; %nominal brush
losses
P_exn=(33.96*10^3)/Sn; % nominal exictor
P_exn=(33.96*10^3)/Sn; % nominal exictor
losses
105
P_b=(156.17*10^3)/Sn %contstant bearing
losses

``` losses
\(\mathrm{Xd}=0.8\);
\(\mathrm{Xq}=0.6\);
\(\mathrm{V}=1\)
\(\mathrm{i}=\mathrm{j}\)
eq \(=0.2: 0.01: 0.63\);
```

 [Q,P]= meshgrid(Q,P);
 [Qdata_ins,Pdata_ins]=
 data_point_lim_func(Xd_pu,Xq_pu,Ua_pu,
 V,P,Q,div,x_p,y_p)
 m_data=(Pdata_ins & Qdata_ins) ~}=0
 Pdata_ins=Pdata_ins(m_data);
 Qdata_ins=Qdata_ins(m_data);
 Q=Qdata_ins;
 P=Pdata_ins;
 %Armature current calculations
 S=sqrt((P.^2)+Q.^2);
 %Ibase=Sn/(sqrt(3)*Ua_pu)
 Ia_pu=S./1;
 PHI=atand(Q./P) ;
 %field current calculations
 A=Xq_pu.*Ia_pu.* cosd(PHI);
 B=Ra.*Ia_pu.* sind(PHI);
 C=Ra.*Ia_pu.* cosd(PHI);
 D=Xq_pu.*Ia_pu.*sind(PHI);
    ```
\% Calulation of delta
\% derivate P in regard to delta to get the maximum delta
\(\mathrm{a}=(\mathrm{eq} . * \mathrm{Xq}) . /(\mathrm{V} . *(\mathrm{Xd}-\mathrm{Xq}))\)
\(\mathrm{b}=\mathrm{sqrt}(\mathrm{a} \cdot \wedge 2+8)\)
cosdelta \(=(1 / 4) . *(-a+b)\)
delta=acosd(cosdelta)
\%Calculate the active power and reactive power
\% with eq ranging from \(0-1\) and use max delta
\(\mathrm{c}=(\mathrm{eq} . * \mathrm{~V}) . /(\mathrm{Xd}) . * \operatorname{sind}(\mathrm{delta})\)
\(\mathrm{d}=\left(0.5 * \mathrm{~V} .{ }^{\wedge} 2\right) . *((\mathrm{Xd}-\mathrm{Xq}) . / \mathrm{Xd} * \mathrm{Xq}) . * \operatorname{sind}\) (2.* delta)
\(\mathrm{P}=\mathrm{c}+\mathrm{d}\)
\(\mathrm{e}=\left(\mathrm{V} .{ }^{\wedge} 2\right) \cdot *((\mathrm{Xd}-\mathrm{Xq}) . / \mathrm{Xd} . * \mathrm{Xq}) . *(\operatorname{sind}(\)
delta) ) .^2
\(\mathrm{f}=\left(\left(\mathrm{V} .{ }^{\wedge} 2\right) . / \mathrm{Xd}\right)\)
\(\mathrm{Q}=((\mathrm{eq} . * \mathrm{~V}) . / \mathrm{Xd}) . * \cos (\mathrm{delta})-\mathrm{f}-\mathrm{e}\)
\% In order to get the PLS multiply with a stabillity margin
\%Fifteen percent stabilty margin
stabm =0.75;
\(\mathrm{S}=(\mathrm{j} * \mathrm{Q}+\mathrm{P}) . *\) stabm ;
x_p=imag (S) ;
y_p=real(S);
\% Effeciency calculation
\%Load operations:
TotalEloss = []
for \(w=\) drange \((1,200)\)
div=w
\(\mathrm{P}=0.0: 1 / \operatorname{div}: 1\);
\(\mathrm{Q}=-1: 1.6 / \mathrm{div}: 0.6\);
\([\mathrm{Q}, \mathrm{P}]=\) meshgrid \((\mathrm{Q}, \mathrm{P})\);
[Qdata_ins, Pdata_ins]=
data_point_lim_func (Xd_pu, Xq_pu, Ua_pu,
V, P, Q, div, x_p, y_p)
_data=(Pdata_ins \& Qdata_ins) \(=0 ;\)
Qdata ins=Odata ins (m_data) ;
\(\mathrm{Q}=\mathrm{Qdata}\) _ins ;
P=Pdata_ins;
\%Armature current calculations
S=sqrt ((P.^2)+Q.^2);
\(\%\) Ibase \(=\) Sn \(/(\) sqrt (3) \(*\) Ua_pu )
Ia_pu=S ./1;
PHI=atand (Q./P) ;
\%field current calculations
A=Xq_pu.*Ia_pu.* cosd (PHI) ;
\(\mathrm{B}=\mathrm{Ra} . * \mathrm{Ia} \_\mathrm{pu} . * \operatorname{sind}(\mathrm{PHI})\);
\(\mathrm{C}=\mathrm{Ra} . * \mathrm{Ia} \_\mathrm{pu} . * \operatorname{cosd}(\mathrm{PHI})\);
D=Xq_pu.*Ia_pu.*sind (PHI) ;
```

delta=atand ((A-B)./(Ua_pu+C+D));
%delta=round(delta,0)
E=Xp_pu.*Ia_pu.* cosd(PHI);
F=Ra.*Ia_pu.*sind(PHI);
G=Ra.*Ia_pu .* cosd(PHI);
H=Xp_pu.*Ia_pu.*sind(PHI);
phiportier=atand((E-F)./(Ua_pu+G+H));
1 6 2
1 6 3
%induced voltage and portier
effective value
Eg=Ua_pu.* cosd(delta)+(Ra.*Ia_pu.*
cosd(PHI+delta))+Xd_pu.*Ia_pu.*
sind(PHI+delta);
Ep=Ua_pu.* cosd(PHI) -(Ra.*Ia_pu.* cosd(
PHI+phiportier))+ Xp_pu.*Ia_pu.* 169
sind(PHI+phiportier);
%Ep=abs(Ua_pu+((Ra+(j*Xp_pu)).*Ia_pu)
);
Poly_S=b_0+(b_1.*Ep.^1) +(b_2.*Ep.^2)
+(b_3.*Ep.^3)+(b_4.*Ep.^4);
If =(Eg./ bv) +(Poly_S) -(Ep./ bv);
% Active power Losses
P_a=P_an.*((Ia_pu/Ian).^2); %armature s
winding losses depending on Ia
for different load operations
P_f=P_fn.*((If/Ifn).^2); %field
winding current losses depending
on If for different load
operations
P_s=P_sn.*((Ia_pu/Ian).^2); % stray
load losses depending on Ia for
different load operations
P_br=P_brn.*((If/Ifn).^2); %brush
losses depending on If for
different load operations
P_ex=P_exn.*(If/Ifn); % exictor
losses depending on If for
different load operations
P_c=P_cn.*((Ua_pu/Uan).^2); %
Constant armature core losses
%Total active power losses for the
different load operations
24
ss=P_a+P_f+P_s+P_br+P_ex+P_c+P_b+
P_wf;
27
% Total Energy losses in a year (Kwh)
ElosskWh=8765.*Ploss.*(Sn/10^3);
% Expected Total losses
%average losses for each operation

```
```

 %Weigth
 A_w=(1/div)^2
 %Average loss in giga watt
 Eloss_avg=(A_w.*ElosskWh)./10^6;
 %TotalPloss1=sum(Ploss_avg,' all');
 TotalEloss1=sum(Eloss_avg,' all');
 TotalEloss=[TotalEloss;TotalEloss1];
 end
xs=0:1: div - 1
figure(1)
plot(xs,TotalEloss,'go')
ylabel('Total Energy loss [GWh]')
xlabel('number of row }x\mathrm{ number of columns
')
%figure(2)
%plot(Qdata_ins,Pdata_ins,'ro')
H. Code for the three different densities inside the cap. shown in figure 3233 and 34

```

\section*{\%Weigth}
```

A_w=(1/div) ${ }^{\wedge} 2$
\%Average loss in giga watt
Eloss_avg =(A_w.*ElosskWh)./10^6;
\%TotalPloss $1=$ sum (Ploss_avg, ' all') ;
TotalEloss =[TotalEloss; TotalEloss1];
end
$\mathrm{xs}=0: 1: \operatorname{div}-1$
figure (1)
plot (xs, TotalEloss, 'go')
ylabel ('Total Energy loss [GWh]')
xlabel('number of row x number of columns
')
\%figure (2)
\%plot(Qdata_ins, Pdata_ins, 'ro')

```

Listing 8. Code for the three different densities inside the cap.
```

%% data input

```
%% data input
%rated quanteties for G1
%rated quanteties for G1
Sn=160*10^6;
Sn=160*10^6;
Ua_pu=1;
Ua_pu=1;
cosphi=0.95;
cosphi=0.95;
Pn=Sn* cosphi/Sn;
Pn=Sn* cosphi/Sn;
PHIn=acosd(Pn/1);
PHIn=acosd(Pn/1);
Qn=(Sn*sind(PHIn))/Sn;
Qn=(Sn*sind(PHIn))/Sn;
Vn=15.8*10^3;
Vn=15.8*10^3;
%fn=60
%fn=60
    Xd_pu=0.8 ;
    Xd_pu=0.8 ;
    Xq_pu= 0.6;
    Xq_pu= 0.6;
%Potierreactance and armature resistance
%Potierreactance and armature resistance
Xp_pu= 0.18;
Xp_pu= 0.18;
    Ra=0.00232;
    Ra=0.00232;
%Nominell induced voltage
%Nominell induced voltage
    Egn=1.3980;
    Egn=1.3980;
    delta_n=26.622; %26.622
    delta_n=26.622; %26.622
%Rated armature current and terminal
%Rated armature current and terminal
    voltage:
    voltage:
Ian=1;
Ian=1;
Uan=1;
Uan=1;
% Saturation calculation
% Saturation calculation
Sg1=0.601;%-c 1
Sg1=0.601;%-c 1
Sg12=0.4400;%-c2
Sg12=0.4400;%-c2
%Calculation of Bsat and Asat:
%Calculation of Bsat and Asat:
Asat=(Sg1^2)/(1.2*Sg12);
Asat=(Sg1^2)/(1.2*Sg12);
Bsat=5*log((1.2*Sg12)/Sg1);
```

Bsat=5*log((1.2*Sg12)/Sg1);

```
```

```
%plot([[0 0.326],[[0}00.95],'Linewidth',1)%
```

```
%plot([[0 0.326],[[0}00.95],'Linewidth',1)%
    Sn
    Sn
plot(A_x,0,'o')
plot(A_x,0,'o')
plot(B_x,0,'o')
plot(B_x,0,'o')
%plot(x1,y1)%second semi circle
%plot(x1,y1)%second semi circle
%plot([[A_x 0.326],[0}00.95],'Linewidth', 1)
%plot([[A_x 0.326],[0}00.95],'Linewidth', 1)
    %second line
    %second line
plot(x2,y2,'k','1inewidth', 1.5)%third
plot(x2,y2,'k','1inewidth', 1.5)%third
    semi circle Emax
    semi circle Emax
xlabel('Q [pu]')
xlabel('Q [pu]')
ylabel('P [pu]')
ylabel('P [pu]')
axis([-1.0
axis([-1.0
    %% Ploss calculations
    %% Ploss calculations
P=0.0:0.001:1;
P=0.0:0.001:1;
Q=-1:0.00146:0.6;
Q=-1:0.00146:0.6;
[Q,P]=meshgrid(Q,P);
[Q,P]=meshgrid(Q,P);
%Weigth
%Weigth
A_w=100/(1100*100)
A_w=100/(1100*100)
%armature current calculations
%armature current calculations
S=abs(sqrt((P.^2)+Q.^2));
S=abs(sqrt((P.^2)+Q.^2));
Ia_pu=S ./1;
Ia_pu=S ./1;
PHI= atand(Q./P);
PHI= atand(Q./P);
%field current calculations
%field current calculations
A=Xq_pu.*Ia_pu.* cosd(PHI);
A=Xq_pu.*Ia_pu.* cosd(PHI);
B=Ra.*Ia_pu.*sind(PHI);
B=Ra.*Ia_pu.*sind(PHI);
C=Ra.*Ia_pu.* cosd(PHI);
C=Ra.*Ia_pu.* cosd(PHI);
D=Xq_pu.*Ia_pu.*sind(PHI);
D=Xq_pu.*Ia_pu.*sind(PHI);
delta=atand((A-B)./(Ua_pu+C+D));
delta=atand((A-B)./(Ua_pu+C+D));
%
%
E=Xp_pu.*Ia_pu.* cosd(PHI);
E=Xp_pu.*Ia_pu.* cosd(PHI);
F=Ra.*Ia_pu.*sind(PHI);
F=Ra.*Ia_pu.*sind(PHI);
G=Ra.*Ia_pu.* cosd(PHI);
G=Ra.*Ia_pu.* cosd(PHI);
H=Xp_pu.*Ia_pu.*sind(PHI);
H=Xp_pu.*Ia_pu.*sind(PHI);
phiportier=atand((E-F)./(Ua_pu+G+H));
phiportier=atand((E-F)./(Ua_pu+G+H));
%induced voltage and portier effective
%induced voltage and portier effective
    value
    value
Eg=Ua_pu.* cosd(delta)+(Ra.*Ia_pu.* cosd(
Eg=Ua_pu.* cosd(delta)+(Ra.*Ia_pu.* cosd(
        PHI+delta))+Xd_pu.*Ia_pu.*sind(PHI+
        PHI+delta))+Xd_pu.*Ia_pu.*sind(PHI+
        delta);
        delta);
Ep=Ua_pu.* cosd(PHI) -(Ra.*Ia_pu.* cosd(PHI+
Ep=Ua_pu.* cosd(PHI) -(Ra.*Ia_pu.* cosd(PHI+
    phiportier))+ Xp_pu.*Ia_pu.*sind(PHI+
    phiportier))+ Xp_pu.*Ia_pu.*sind(PHI+
    phiportier);
    phiportier);
%Ep=abs(Ua_pu+((Ra+(j*Xp_pu)).*Ia_pu ));
%Ep=abs(Ua_pu+((Ra+(j*Xp_pu)).*Ia_pu ));
hj=1;
hj=1;
L_row=size(Eg,1);
L_row=size(Eg,1);
L_col=size(Eg,2);
L_col=size(Eg,2);
for i=drange(1,L_row);
for i=drange(1,L_row);
    for s=drange(1, L_col);
    for s=drange(1, L_col);
    if 0.0<=Eg(i, s) & (Eg(i, s)<=1.7)
```

```
    if 0.0<=Eg(i, s) & (Eg(i, s)<=1.7)
```

```
```

1 1 8
123
124
90

```
34
```

S_facn=Asat *exp(Bsat *(Egn-0.43));

```
S_facn=Asat *exp(Bsat *(Egn-0.43));
Ifn=Egn
Ifn=Egn
% Losses in rated operation(Given):
% Losses in rated operation(Given):
P_wf=(710.47*10^3)/Sn;% Constant windage
P_wf=(710.47*10^3)/Sn;% Constant windage
    and friction losses
    and friction losses
P_cn=(539.87*10^3)/Sn; % constant
P_cn=(539.87*10^3)/Sn; % constant
    armature core losses
    armature core losses
P_an=(327.05*10^3)/Sn; % nominal armature 89
P_an=(327.05*10^3)/Sn; % nominal armature 89
    winding losses
    winding losses
P_sn=(237.07*10^3)/Sn; % nominal stray
P_sn=(237.07*10^3)/Sn; % nominal stray
        load losses
        load losses
P_fn=(477.81*10^3)/Sn; % nominal field
P_fn=(477.81*10^3)/Sn; % nominal field
        winding current losses
        winding current losses
P_brn=(5.93*10^3)/Sn; %nominal brush
P_brn=(5.93*10^3)/Sn; %nominal brush
        losses
        losses
P_exn=(33.96*10^3)/Sn; % nominal exictor
P_exn=(33.96*10^3)/Sn; % nominal exictor
        losses
        losses
P_b}=(156.17*10^3)/Sn %contstant bearing
P_b}=(156.17*10^3)/Sn %contstant bearing
        losses
        losses
%% plot Capabillitydiagram
%% plot Capabillitydiagram
Xd_pu=0.8;
Xd_pu=0.8;
Xq_pu=0.6; 104
Xq_pu=0.6; 104
V=1;
V=1;
%Pmax =0.9
%Pmax =0.9
th = (71.1:0.905:180);
th = (71.1:0.905:180);
Sn1 = 1; %or whatever radius you want
Sn1 = 1; %or whatever radius you want
x = Sn 1* cosd(th) ;
x = Sn 1* cosd(th) ;
y = Sn 1* Sind(th);
y = Sn 1* Sind(th);
A_x=-1/Xq_pu ;
A_x=-1/Xq_pu ;
B_x=-1/Xd_pu;
B_x=-1/Xd_pu;
%small circle E=0
%small circle E=0
th1 = (0:0.1:180);
th1 = (0:0.1:180);
R=(abs(A_x)-abs(B_x))/2
R=(abs(A_x)-abs(B_x))/2
c=abs(B_x)+R
c=abs(B_x)+R
x1=R*\operatorname{cosd(th1)-c;}
x1=R*\operatorname{cosd(th1)-c;}
yl=R*\operatorname{sind}(th1) ;
yl=R*\operatorname{sind}(th1) ;
%64.5
%64.5
%third semi circle Emax
%third semi circle Emax
th2 = (64.5:0.0008:96);
th2 = (64.5:0.0008:96);
R=2.20757
R=2.20757
y2= R*\operatorname{cosd(th2);}
y2= R*\operatorname{cosd(th2);}
x2= R*sind(th2) +A_x;
x2= R*sind(th2) +A_x;
figure(1)
figure(1)
clf
clf
plot(x,y,'k','linewidth', 1.5), hold on
plot(x,y,'k','linewidth', 1.5), hold on
%plot([-0.326 0.326],[[0.95 0.95],
%plot([-0.326 0.326],[[0.95 0.95],
        Linewidth ', 1)%Pmax
        Linewidth ', 1)%Pmax
%plot([[0}00],[\begin{array}{ll}{0}&{1}\end{array}],',Linewidth',1)% 13
%plot([[0}00],[\begin{array}{ll}{0}&{1}\end{array}],',Linewidth',1)% 13
        origoaxis
        origoaxis
V=1; 
```

V=1;

```
```

 S_fac(i,s)=Asat*exp(hj.* Bsat *(Eg 172
 (i, s) -0.43));
 else
 S_fac(i, s) = 1;
 end
 end
 end
%calculation of the armature reaction
reactance with saturation.
Xad_sat=(Xd_pu-Xp_pu)./ S_fac; 184
Xd_pu_sat=Xad_sat+Xp_pu;
% The induced voltage including
saturation
Eg_sat=Ua_pu.* cosd(delta)+(Ra.*Ia_pu.*
cosd(PHI+delta))+Xd_pu_sat.*Ia_pu.*
sind(PHI+delta);
% The field current including saturation
If=Eg_sat./ Xad_sat ;
% Active power Losses
P_a=P_an.*((Ia_pu/Ian).^2); %armature
winding losses depending on Ia for
different load operations
P_f=P_fn.*((If/Ifn).^2); %field winding
current losses depending on If for
different load operations
P_s=P_sn.*((Ia_pu/Ian).^2); % stray load 203
losses depending on Ia for different 204
load operations 205
P_br=P_brn.*((If/Ifn).^2); %brush losses 206
depending on If for different load 207
operations
P_ex=P_exn.*(If/Ifn); % exictor losses
depending on If for different load
operations
P_c=P_cn.*((Ua_pu/Uan).^2); % Constant
armature core losses
1
% Total active power losses for different 4
load operations
Ploss=P_a+P_f+P_s+P_br+P_ex+P_c+P_b+P_wf;
% Total active power losses in a year (8
Kwh)
PlosskWh=8765.*Ploss.*(Sn/10^3);
% Expected Total losses
%average losses for each operation
Ploss_avg=A_w.*PlosskWh;

```
```

%Expected Total losses (kW/h) and cost(
kWore/h) for each load op
Ploss_kW_per_h=Ploss_avg./8765;
Cost=14.4.*Ploss_kW_per_h;
plot(Q,P,'bo')
%% Load operation calculation
L_row=size(P,1);
L_col=size(P,2);
for i=drange(1,L_row);
for s=drange(1, L_col);
M=((abs(Q(i,s))<abs(x))| P(
i,s)<(y));
if M==true
Q1(i, s)=Q(i,s);
P1(i, s)=P(i,s);
end
end
end
%plot(Q1,P1,'ro')
L_row1=size(P1,1);
L_col1=size(P1,2);
for n=drange(1,L_row1);
for m=drange(1, L_col1);
M1=(Q(n,m)<x2) |P(n,m)<(y2);
if Ml==true
Q11(n,m)=Q1(n,m);
P11(n,m)=P1(n,m);
end
end
end
plot(Q11,P11,'ro')

```

\section*{I. Code for the distribution circles ,TEL and Cost}

\section*{Listing 9. Code for the distribution circles.}
```

%% DAta input
div=299;
P=0.0:1/ div:1;
Q=-1:1.6/div:0.6;
[Q,P]=meshgrid(Q,P);
%rated quanteties for generator G1
Sn=160*10^6;
Ua_pu=1;
cosphi=0.95;
Pn=Sn* cosphi/Sn;
Qn=0.3259;
PHIn=atan(Qn/Pn);
Vn=15.8*10^3;

```
```

%fn= 60
Xd_pu=0.8 ;
Xq_pu= 0.6;
%Potierreactance and armature resistance
Xp_pu= 0.18;
Ra=0.00232;
%nominell induced voltage
Egn=1.3980;
delta_n=26.622; %26.622
%rated armature current and terminal
voltage:
Ian=1;
Uan=1;
V=1;
E=Xp_pu.*Ian.* cosd(PHIn);
F=Ra.*Ian.*sind(PHIn);
G=Ra.*Ian.* cosd(PHIn);
H=Xp_pu.*Ian.* sind(PHIn);
phiportiern=atand((E-F)./(Ua_pu+G+H));
%polynomial koefisient
bv=1;
b_0=0.0105;
b_1=1.0172;
b_2=0.0328;
b_3=-0.218;
b_4=0.0514;
Egn=1.57;
Epn=Ua_pu.* cosd(PHIn) -(Ra.*Ian .* cosd(PHIn 81
+phiportiern))+ Xp_pu.*Ian.*sind(PHIn+
phiportiern)
Poly_Sn=b_0+(b_1.*Epn.^1) +(b_2.*Epn.^2) +(
b_3.*Epn.^3)+(b_4.*Epn .^4)
Ifn=(Egn./bv) +(Poly_Sn) -(Epn./bv)
%losses in rated operation(Given):
P_wf=(710.47*10^3)/Sn;% Constant windage
and friction losses
P_cn=(539.87*10^3)/Sn; % constant
armature core losses
P_an=(327.05*10^3)/Sn; % nominal armature
winding losses
P_sn=(237.07*10^3)/Sn; % nominal stray
load losses
P_fn=(477.81*10^3)/Sn; % nominal field
winding current losses
P_brn=(5.93*10^3)/Sn; %nominal brush
losses
P_exn=(33.96*10^3)/Sn; % nominal exictor
losses
P_b=(156.17*10^3)/Sn %contstant bearing
losses

``` losses
```

%% plot capabiltiy diagram
[x,y,x2,y2, x1_02,y1_02,x_p,y_p,c1]=
New_capabilitydiagramG2_func(Xd_pu,
Xq_pu)

```
[P_one, P_two, P_three, P_four, P_five, P_six, P_seven, P_eight, P_nine, P_ten, P_eleven , P_twelve, P_therteen, Q_one, Q_two,
Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, Q_nine, Q_ten, Q_eleven, Q_twelve, Q_therteen]= distrution_circle_func (Q_point, P_point , Qdata, Pdata, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12,R13) ;
\(\% \%\) clean the vector of zeros in order to not get NAN
[P_one, P_two, P_three, P_four, P_five, P_six, P_seven, P_eight, P_nine, P_ten, P_eleven , P_twelve, P_therteen, Q_one, Q_two,
Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, Q_nine, Q_ten, Q_eleven, Q_twelve, Q_therteen]=
Clean_vector_of_zero_func (P_one, P_two, P_three, P_four, P_five, P_six, P_seven, P_eight, P_nine, P_ten, P_eleven, P_twelve, P_therteen, Q_one, Q_two, Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, Q_nine, Q_ten, Q_eleven, Q_twelve, Q_therteen) ;
\%\% Energy loss calculation
[TEL1, Cost1]=Total_Energy_Losses (P_one, Q_one) ;
[TEL2, Cost2]=Total_Energy_Losses (P_two, Q_two ) ;
[TEL3, Cost3]=Total_Energy_Losses (P_three, Q_three) ;
[TEL4, Cost4]=Total_Energy_Losses (P_four , Q_four) ;
[TEL5, Cost5]=Total_Energy_Losses (P_five , Q_five) ;

\section*{J. Code for additional functions used in dis. circle plot}

\section*{Listing 10. Additional function that plots circles}
```

function[Radius,R1,R2,R3,R4,R5,R6,R7,R8, }\mp@subsup{}{5}{5

```
    R9,R10,R11,R12,R13]= Circle_func_TEL (P \({ }_{59}\)
\(a=P\)
\%\% Circle function in TEL calculation
\% Circle 12
th2 \(=(0: 1: 360)\);
\(\mathrm{R} 13=0.01 * 2^{\wedge} 7.5\);
\(\mathrm{y} 3 \_10=\mathrm{R} 13 * \operatorname{cosd}(\operatorname{th} 2)+0.5\);
x3_10= R13*sind (th2);
\% Circle 12
th2 = (0:1:360);
\(\mathrm{R} 12=0.01 * 2^{\wedge} 7.0\);
\(\mathrm{y} 3 \_10=\mathrm{R} 12 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
x3_10= R12*sind (th2);
\% Circle 11
th2 \(=(0: 1: 360)\);
\(\mathrm{R} 11=0.01 * 2^{\wedge} 6.5\);
\(\mathrm{y} 3 \_10=\mathrm{R} 11 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
\(\mathrm{x} 3 \_10=\mathrm{R} 11 * \operatorname{sind}(\mathrm{th} 2)\);
\% Circle 10
th2 = ( \(0: 1: 360) ;\)
\(\mathrm{R} 10=0.01 * 2 \wedge 6.0\);
\(\mathrm{y} 3 \_10=\mathrm{R} 10 * \operatorname{cosd}(\operatorname{th} 2)+0.5\);
\(\mathrm{x} 3 \_10=\mathrm{R} 10 * \operatorname{sind}(\operatorname{th} 2)\);
\% Circle 9
th2 \(=(0: 1: 360) ;\)
\(\mathrm{R} 9=0.01 * 2^{\wedge} 5.5\);
\(\mathrm{y} 3 \_9=\mathrm{R} 9 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
x3_9= R9*sind (th2);
\% Circle 8
th2 \(=(0: 1: 360) ;\)
\(\mathrm{R} 8=0.01 * 2^{\wedge} 5\);
\(\mathrm{y} 3 \_8=\mathrm{R} 8 * \cos (\mathrm{th} 2)+0.5\);
x3_8= R8*sind(th2);
\% Circle 7
th2 \(=(122: 1: 360)\);
\(\mathrm{R} 7=0.01 * 2^{\wedge} 4.5\);
\(\mathrm{y} 3 \_7=\mathrm{R} 7 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
\(x 3 \_7=\mathrm{R} 7 * \operatorname{sind}(\mathrm{th} 2)\);
\% Circle 6
th2 \(=(0: 1: 360) ;\)
R6=0.01*2^4;
\(\mathrm{y} 3 \_6=\mathrm{R} 6 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
x3_6= R6*sind (th2);
\% Circle 5
th2 \(=(0: 0.020432: 360) ;\)
\(\mathrm{R} 5=0.01 * 2^{\wedge} 3.5\);
\(\mathrm{y} 3 \_5=\mathrm{R} 5 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
x3_5= R5*sind(th2);
\% Circle 4
th2 \(=(0: 1: 360)\);
\(\mathrm{R} 4=0.01 * 2^{\wedge} 3\);
\(\mathrm{y} 3 \_4=\mathrm{R} 4 * \operatorname{cosd}(\mathrm{th} 2)+0.5\);
x3_4= R4*sind(th2);
\% Circle 3
th2 \(=(0: 1: 360) ;\)
\(\mathrm{R} 3=0.01 * 2^{\wedge} 2\);
\(\mathrm{y} 3 \_3=\mathrm{R} 3 * \operatorname{cosd}(\operatorname{th} 2)+0.5\);
x3_3= R3*sind (th2);
\% Circle 2
```

th2 = (0:1:360);
R2=0.01 *2;
y3_2= R2*\operatorname{cosd(th2)+ 0.5;}
x3_2= R2*sind(th2);
% Circle 1
th2 = (0:1:360);
R1=0.01;
y3_1= R1*\operatorname{cosd(th2)+ 0.5;}
x3_1= R1*sind(th2);
Radius =[R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,
R11,R12,R13]
end

```

Listing 11. Additional function that clean vector of zero
function [P_one, P_two, P_three, P_four, \(P_{\text {_f }}\) five, \(P_{-}\)six, \(P_{-}\)seven, \(P_{-}\)eight, \(P_{-}\)nine, P_ten, P_eleven, P_twelve, P_therteen, Q_one, Q_two, Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, Q_nine, Q_ten, Q_eleven, Q_twelve, \(Q\) _therteen \(]=\) Clean_vector_of_zero_func (P_one, P_two, \(P_{-}\)three, \(P_{-}\)four, \(P_{-}\)five, \(P_{-}\)six, \(P_{-}\)seven, P_eight, P_nine, P_ten, P_eleven, P_twelve, \(P\) _therteen, \(Q_{-}\)one, \(Q\) _two, Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, \(Q_{\text {_nine, }}\) Q_ten, \(Q \_e l e v e n\), Q_twelve, Q_therteen)
\%\% clean the vector of zeros in order to not get NAN
\(m_{\text {_one }}=(P \text { _one \& Q_one })^{\sim}=0\)
P_one=P_one ( \(m\) _one)
Q_one=Q_one (m_one)
\(m_{-} t w o=\left(P \_t w o \& ~ Q \_t w o\right)^{\sim}=0\)
P_two=P_two (m_two)
Q_two \(=\) Q_two (m_two)
\(m_{-}\)three \(=\left(P_{-} \text {three \& Q_three }\right)^{\sim}=0\)
P_three=P_three (m_two)
Q_three=Q_three (m_two)
\(m_{-}\)four \(=\left(P_{-} \text {four \& Q_four }\right)^{\sim}=0\)
\(P_{-}\)four=P_four (m_four)
Q_four=Q_four (m_four)
m_five=(P_five \& Q_five \()^{\sim}=0\)
\(P_{-}\)five= \(P_{-}\)five (m_five)
Q_five=Q_five(m_five)
\(m \_\)six \(=\left(P \_s i x \& Q \_s i x \quad\right)^{\sim}=0\)
\(P_{-} \operatorname{six}=P_{-}\)six (m_six)
Q_six \(=\) Q_six (m_six)
\(m \_\)seven \(=(P \text { _seven \& Q_seven })^{\sim}=0\)
```

P_seven=P_seven(m_seven)
Q_seven=Q_seven(m_seven)
m_eight=(P_eight \& Q_eight) ~ =0
P_eight=P_eight(m_eight)
Q_eight=Q_eight(m_eight)
m_nine=(P_nine \& Q_nine) ~ = 0
P_nine=P_nine(m_nine)
Q_nine=Q_nine(m_nine)
m_ten=(P_ten \& Q_ten) ~}=
P_ten=P_ten(m_ten)
Q_ten=Q_ten(m_ten)
m_eleven=(P_eleven \& Q_eleven) ~}=
P_eleven=P_eleven(m_eleven)
Q_eleven=Q_eleven(m_eleven)
m_twelve=(P_twelve \& Q_twelve) ~ = 0
P_twelve=P_twelve(m_twelve)
Q_twelve=Q_twelve(m_twelve)
m_therteen=(P_therteen \& Q_therteen) ~}=
P_therteen=P_therteen(m_therteen)
Q_therteen=Q_therteen(m_therteen)
end

```

Listing 12. Additional function that plots datapoints inside cap.
function [Qdata_ins, Pdata_ins]=
    data_point_lim_func (Xd_pu, Xq_pu, Ua_pu,
    V, P, Q, div, x_p,y_p)
\%\% Data points limited by armature
    current and Emax
L_row=size (P, 1) ;
L_col=size (P, 2) ;
col=L_row \(*\) L_col;
\(\mathrm{Q}=\) reshape \((\mathrm{Q}, 1\), col \()\);
\(\mathrm{P}=\) reshape \((\mathrm{P}, 1\), col \()\);
for \(r=d r a n g e(1, \operatorname{col})\)
    if \((\mathrm{Q}(\mathrm{r})-0) .^{\wedge} 2+(\mathrm{P}(\mathrm{r})-0) .^{\wedge} 2-(1)<0\);
        Q 1 ( r\()=\mathrm{Q}(\mathrm{r})\);
        P 1 (r) \(=\mathrm{P}(\mathrm{r})\);
    end
end
A_x \(=-1 /\) Xq_pu ; \(^{2}\)
coll=length (P1) ;
Q11 = [] ;
P11 = [];
for \(i=\operatorname{drange}(1\), col1 \()\)
    if (Q1 (i) -A_x). ^ \(2+(\) P1 (i) -0\()\)
        . \(2-(2.20757) . \wedge 2<0\);
        Q11 (i) =Q1 (i) ;
```

P11(i)=P1(i);
end
end
% Data points limited by min. field
current
E2=0.2;
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu . *
Xq_pu)+E2 ;
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu . **
Xq_pu)-E2 ;
col2=P11;
Q_11=[];
P_11=[];
for i = drange(1, length(P11))
xdiff=(Q11(i)+c).^ 2;
ydiff=(P11(i) -0).^^2;
d=sqrt(xdiff+ydiff);
if d}>>R\mathrm{ ;
Q_11(i)=Q11(i);
P_11(i)=P11(i);
end
end
%% Data points limited by PLS
p=polyfit(x_p,y_p,1);
s=-1:0.1:0;
a=p (1);
b=p(2);
y=a*s+b
% Get the data point inside the function
for i = drange(1, length(Q_11))
if Q_11(i)>(-P_11(i)+b)/-a;
Qdata_ins(i)= Q_11(i);
Pdata_ins(i)= P_11(i);
end
end
end

```

Listing 13. Additional function that plots datapoints inside the circle
function [P_one, P_two, P_three, P_four, P_five, P_six, \(P_{-}\)seven, \(P_{-}\)eight, \(P_{-}\)nine, P_ten, P_eleven, P_twelve, P_therteen, Q_one, Q_two, Q_three, Q_four, Q_five, Q_six, Q_seven, Q_eight, Q_nine, Q_ten, Q_eleven, Q_twelve, Q_therteen]= distrution_circle_func(Q_point, P_point \({ }_{54}\) , Qdata, Pdata , R1, R2, R3, R4, R5, R6, R7, R8, \({ }_{55}\) R9, R10, R11, R12, R13)
\% Plot distrubtion circle function
\%plot circle 13
\%perlocate the variables
Q_therteen \(=[]\)
```

P_therteen=[]
for rs = drange(1, length(Qdata))
if (Qdata(rs)-Q_point)^2+(Pdata(rs)-
P_point)}^2-(R13)^2<
Q_therteen(rs)=Qdata(rs);
P_therteen(rs)=Pdata(rs);
end
end
plot(Q_therteen, P_therteen,'ro')
%plot circle 12
%perlocate the variables
Q_twelve=[]
P_twelve=[]
for rs =drange(1, length(Q_therteen))
if (Qdata(rs)-Q_point)^2+(Pdata(rs)-
P_point)}^2-(R12)^2<
Q_twelve(rs)=Qdata(rs);
P_twelve(rs)=Pdata(rs);
end
end
plot(Q_twelve,P_twelve,'go')
%plot circle 11
%perlocate the variables
Q_eleven=[]
P_eleven=[]
for rs =drange(1, length(Q_twelve))
if (Q_twelve(rs)-Q_point)^2+(P_twelve
(rs)-P_point)^2-(R11)^2<0
Q_eleven(rs)=Q_twelve(rs);
P_eleven(rs)=P_twelve(rs);
end
end
plot(Q_eleven,P_eleven,'ro')
%plot circle 10
%perlocate the variables
Q_ten = []
P_ten = []
for rs =drange(1, length(Q_eleven))
if (Q_eleven(rs)-Q_point)^2+(P_eleven
(rs)-P_point)^2-(R10)^2<0
Q_ten(rs)=Q_eleven(rs);
P_ten(rs)=P_eleven(rs);
end
end
plot(Q_ten,P_ten,'bo')
%plot circle 9
%perlocate the variables
Q_nine = []
P_nine=[]
for rs = drange(1, length(Q_ten))
if (Q_ten(rs)-Q_point)^ }2+(P_ten(rs)-
P_point)^2-(R9)^2<0
Q_nine(rs)=Q_ten(rs);
P_nine(rs)=P_ten(rs);

```
```

 end 116
 end
plot(Q_nine,P_nine,'co')
%plot circle 8
%perlocate the variables
Q_eight=[]
P_eight=[]
for rs = drange(1, length(Q_nine))
if (Q_nine(rs)-Q_point)^ 2+(P_nine(rs) }\mp@subsup{}{126}{
-P_point)^2-(R8)^2<0
Q_eight(rs)=Q_nine(rs);
P_eight(rs)=P_nine(rs);
end
end
plot(Q_eight,P_eight,'ro')
%plot circle 7
%perlocate the variables
Q_seven=[]
P_seven=[]
for rs = drange(1, length(Q_eight))
if (Q_eight(rs)-Q_point)^2+(P_eight(}\mp@subsup{}{141}{
rs)- P_point)^2-(R7)^2<0 142
Q_seven(rs)=Q_eight(rs);
P_seven(rs)=P_eight(rs);
end
end
plot(Q_seven,P_seven,'go')
%plot circle 6
%perlocate the variables
Q_six = []
P_six = []
for rs = drange(1, length(Q_seven))
if (Q_seven(rs)-Q_point)^ 2+(P_seven(
rs)-P_point)^2 - (R6)^2<0
Q_six(rs)=Q_seven(rs);
P_six(rs)=P_seven(rs);
end
end
plot(Q_six,P_six,'yo')
%plot circle 5
%perlocate the variables
Q_five = []
P_five=[]
for s = drange(1, length(Q_six))
<118
119
120 118 19 120

```
.

17
. .
\(\%\)
    plot(Q_five, P_five, 'bo')
\%plot circle 4
\%perlocate the variables
Q_four = []
P_four = []
    for \(i=d r a n g e(1\), length (Q_five) )
        if (Q_five (i)-Q_point) \({ }^{\wedge} 2+\left(P_{-}\right.\)five (i)
            \(-P_{-}\)point \()^{\wedge} 2-(R 4)^{\wedge} 2<0\)
            Q_four (i)=Q_five (i);
            P_four (i)=P_five (i);
        end
    end
    plot(Q_four, P_four, 'co')
\%plot circle 3
\%perlocate the variables
Q_three = []
P_three = []
    for \(\mathrm{ti}=\mathrm{drange}(1\), length (Q_four) )
        if (Q_four (ti)-Q_point) ^ \(2+\left(P_{-}\right.\)four (
            ti ) - P_point \()^{\wedge} 2-(\mathrm{R} 3)^{\wedge} 2<0\)
                Q_three (ti)=Q_four (ti) ;
            P_three (ti) = P_four (ti) ;
        end
    end
\%
    plot (Q_three, P_three, ' ko')
\%plot circle 2
\% Perlocate the variables
Q_two = []
P_two = []
    for it \(=\) drange (1, length (Q_three) )
            if ( \(Q_{-}\)three (it)- \(Q_{-}\)point \()^{\wedge} 2+(\)
                \(P_{-}\)three (it ) \(-P_{-}\)point \()^{\wedge} 2-(R 2)^{\wedge} 2<0\)
                    Q_two (it)=Q_three (it);
                    P_two (it)=P_three (it);
        end
    end
\%
    plot (Q_two, P_two, 'go')
\% \%plot circle 1
Q_one = []
P_one = []
    for si \(=\) drange (1, length (Q_two) )
        if (Q_two(si)-Q_point) ^2 2 ( P _two (si)
        \(-P_{-}\)point \()^{\wedge} 2-(\text { R1 })^{\wedge} 2<0\)
```

 Q_one(si)=Q_two(si);
 P_one(si)=P_two(si);
 end
 end
 %
plot(Q_one,P_one,'bo')
end

```
K. Code for the 2D density plot in figure 44

Listing 14. Code for the scatter plot in figure 44
\%rated quanteties for generator G1
```

Sn=160*10^6;

```
Ua_pu=1;
cosphi=0.95;
\(\mathrm{Pn}=\mathrm{Sn} * \operatorname{cosphi} / \mathrm{Sn}\);
\(\mathrm{Qn}=0.3259\);
PHIn= atan (Qn/Pn);
\(\mathrm{V}=1\);
\(\% f n=60\)
    Xd_pu=0.8 ;
    Xq_pu= 0.6;
\%Potierreactance and armature resistance
Xp_pu= 0.18 ;
    \(\mathrm{Ra}=0.00232\);
\% full load dis
\(\operatorname{div}=10\)
\(\mathrm{P}=0.0: 1 / \mathrm{div}: 1 ;\)
\(\mathrm{Q}=-1: 1.7 / \mathrm{div}: 1\);
\([\mathrm{Q}, \mathrm{P}]=\operatorname{meshgrid}(\mathrm{Q}, \mathrm{P})\);
\% plot capabillity diagram
\(\left[\mathrm{x}, \mathrm{y}, \mathrm{x} 2, \mathrm{y} 2, \mathrm{x} 1 \_02, \mathrm{y} 1 \_02, \mathrm{x} \_\mathrm{p}, \mathrm{y} \_\mathrm{p}, \mathrm{c} 1\right]=\)
    New_capabilitydiagramG2_func (Xd_pu,
    Xq_pu )
.
\% data point limited by max. field
    current and armature current PLS
[Qdata_ins, Pdata_ins]=data_point_lim_func \({ }^{25}\)
    (Xd_pu, Xq_pu, Ua_pu, V, P, Q, div, x_p, y_p )
\(\%\) Data points inside the cap.diag.
Qdata=Qdata_ins ;
Pdata=Pdata_ins;
Qdata=Qdata';
Pdata=Pdata';
m_one \(=(\text { Pdata \& Qdata })^{\sim}=0\)
Pdata=Pdata (m_one)
Qdata \(=\) Qdata ( \(m\) _one )
colormap (jet)
\(\mathrm{cb}=\) colorbar ('southoutside');
ylabel(cb, probabillity of occurance (\%)
    , )
```

grid on
%21
densityscatter(Qdata, Pdata, 31,15)
%title('Uniform load distrubtion')
figure(2)
subplot(2,1,1)
histogram(Qdata)
xlabel('Reactive power')
ylabel('Hours')
subplot(2,1,2)
histogram(Pdata)
xlabel('Active power')
ylabel('Hours')

```
L. Code for the Measured OCC of \(\AA\) bjøra in figure 45
```

Listing 15. Code for the measured OCC in figure45
%% Saturation curve
% If base 525.15 A
measured_points=DefaultDataset9
div=length(measured_points)
sat_data=measured_points % pu
% Saturation points
Eg_sat=sat_data(:, 2)%./100
ifd_sat=sat_data(:,1)%.1525.15
% Airgap line
Eg=0:1/div:1.9*100;
Ifd=5.10*Eg;
% Fitting curve
n=7;
C=0.160;
k=1.0308; % k=1.02275;
V=0.0:0.01:1.2*100;
If =(V+C.*V.^n).*k;
figure(1)
clf
plot(ifd_sat, Eg_sat,'r-', 'linewidth',
2.5), hold on
plot(ifd_sat,Eg_sat,' ko')
plot(Ifd,Eg,'b-', 'linewidth', 3.5)
plot([525.15 525.15], [0 102],'g',',
linewidth', 2.5)
axis([[0 1000 0 130}]
title('Measured OCC')
xlabel('If [A]')
ylabel('U [%]')
legend(',airgapline',' data points','non-
linear saturation char.')

```
M. Code for the replicated pu OCC of Åbjøra in figure 46
    for \(m=1:\) length ( P _m0)
            \(P \_m=S n * P \_m 0(m) ;\)
            \(P_{-} t=\) linspace (P_m, P_m, 100) ;
```

Listing 16. Code for the replicated OCC in figure 46
%% Saturation curve
% If base 525.15 A
Sat_data=DefaultDataset9
div=length(Sat_data)
sat_data=Sat_data % pu
% Saturation points
Eg_sat=sat_data(:, 2)./100
ifd_sat=sat_data(:,1)./525.15
% Airgap line
Eg=0:1/div:1.3;
Ifd=Eg;
% Fitting curve
n=7;
C=0.160;
k=1.0308; % k=1.02275;
V=0.0:0.01:1.2;
If =(V+C.*V .^n) .* k;
figure(1)
clf
plot(ifd_sat,Eg_sat,'go'), hold on
plot(Ifd,Eg,'b-', 'linewidth', 1.5)
plot(If,V,'r',},'linewidth', 1.5)
axis([[0
title('OPCC')
xlabel('If [pu]')
ylabel('Eg [pu]')
legend(',data points',', airgapline','non-
linear saturation char.')
Listing 16. Code for the replicated OCC in figure 46
*

```

\section*{N. Code for the V-curve family shown in figure 47}

Listing 17. Code for the V-curve family shown in figure 47
```

Sn = 103; %MVA
Vn = 11; %kV
Xq=0.69; % (Pu)
Ra}=0.003155; % (ohm

```
Xad \(=8.7362\); \(\%(\mathrm{Pu})\) estimated from \(V-\)
    curve by knowing field current (Ifd)
\(\mathrm{Xd}=1.06\);
\(\operatorname{In}=\operatorname{Sn} /(\operatorname{sqrt}(3) * V n) ;\)
\%\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Plotting V-curves and
    field current relationship \#\#\#\#\#\#
    figure (2)
    \(V_{-} t=\) linspace \((11,11,100)\);
    \% \% Plotting V-curves
P_m0 = 0:0.25:1;
18
19
19
20
26
```

\square

```
43
44
45
46
```

 for k = 1:2
 if k == 1
 Q_t = linspace(0,-Sn,100);
 else
 Q_t = linspace(0,Sn,100);
 end
 I_t = (sqrt(P_t.^2+Q_t .^2)./(
 sqrt(3).*V_t));
 [ifd]=Field_current2(P_t,Q_t); %
 The correct field current
 Ifd_t = ifd
 %Ifd_t = Field_current_two(P_t,
 Q_t, V_t, Sn, Vn, Ra, Xad, Xq,
 Xd);
 %This field current could be used
 to plot the V-curves
 plot(Ifd_t, I_t./In,' -')
 leg1(m)= sprintf("P= %3.1f",
 P_m);
 hold
 grid on
 end
 end
%Plotting relationship between armature
and field current at constant PF
PF = 0
PF0 = [1, 0.9, -0.9];
for f = 1:length(PF0)
PF = PF0(f);
if PF}<
phi_t0 = - acos(PF);
else
phi_t0 = acos(PF);
end
S_t0 = linspace(0,Sn*1.2,100);
P_t0 = S_t0*\operatorname{cos}(phi_t0);
Q_t0 = S_t0*sin(phi_t0);
[ifd]=Field_current2(P_t,Q_t);
Ifd_t_PF0=ifd
%Ifd_t_PF0 = Field_current_two(P_t0,
Q_t0, V_t, Sn, Vn, Ra, Xad, Xq,
%Xd); Adjust this field current so
the PF fits
I_t0 = (sqrt(P_t0.^2+Q_t0.^2)./(sqrt
(3).*V_t));
plot(Ifd_t_PF0,I_t0/In,'--')
leg2(f) = sprintf("PF = %3.1f", PF);
leg_tot = [leg1, leg2];
legend(leg_tot)
xlabel 'Field current [A]'
ylabel 'Armature current [Pu]'
axis([[0 1400}00<1.5]
end
hold, off,

```
O. Code for the iso-efficiency curve of Åbjøra in figure 49
```

Listing 18. Code for the efficiency map in figure49 45
%% Data inputs 46
clear; clc; }\mp@subsup{}{47}{47
Ra=0.00182; Xq=0.676; Xd=1.059 ; Xp
=0.141;
b4 =0.0817; b3 = -0.2482; b2 = - 0.1645; b1
=1.3647
; b0 = -0.2251; bv=1;
n1=7;
C=0.160;
k1=1.0308 %1.03;
sn=1; ua=1; pf=0.9; %fpn=0.95;
%losses along the loading
%s=103000; ua_o = 1; ia_o=1; ifd_o=1.7665; 59
s=103*10^3; ua_o=1; ia_o=1; ifd_o
=1065/525.15;
P_wf=172.92/s; % windage and friction
loss
P_cn=211.92/s; % core loss
P_an=193.63/s; % stator current loss
P_sn=82.99/s; % additional loss
P_fn=173.65/s; % rotor current loss
P_brn=2.13/s; % brush loss
P_exn=15.88/s; % excitation loss,
P b=240.9/s; %356.23 % bearings loss }\mp@subsup{}{}{69
pcte=P_wf+P_b; % constant power %1
k=0;
New_capabilitydiagram_AAbjora_func(Xd,Xq)
%% Efficiency calculation
% Chose the load op.:
P=0:0.01:1;
Q=-1:0.1:1;
for i=drange(1,length(P)) % active
power from 0 to 1
for j=drange(1, length(Q))
P1=P(i);
Q1=Q(j);
ia=sqrt(P1^2+Q1^2);
phi=atan(Q1/P1);
%phi(isnan(Q))=0;
delta=atan(ia*(Xq* cos(phi) - (Ra*
sin(phi)))/(ua+(Ra*ia*\operatorname{cos}(phi) \&7
)+Xq*ia*sin(phi)));
egu=ua*\operatorname{cos}(delta)+(Ra*ia*\operatorname{cos}(
delta+phi))+Xd*ia*sin(delta+
phi);
ifu=egu/bv;
th=atan(ia*(Xp*cos(phi) -(Ra*sin(92
phi)))/(ua+(Ra*ia*cos(phi))+Xp
*ia*sin(phi)));
ep=ua*\operatorname{cos}(th)+(Ra*ia*\operatorname{cos}(th+phi))
+Xp*ia*sin(th+phi);
if ep >0.55
%ifs=b4*ep^4+b3*ep^3+b2*ep^2+
b1*ep+b0-ep/bv;
48
49
52
53
54

```
```

 ifs=(ep+C*ep^n1).*k1 - (ep/bv);
 else
 if s =0;
 end
 ifd1=(ifu+ifs)*525.15;
 ifd=(ifu+ifs);
 P_a=P_an*(ia/ia_o) ^2;
 P_f=P_fn*(ifd/ifd_o)}\mp@subsup{)}{}{\prime}2
 P_c=P_cn*(ua/ua_o);
P_s=P_sn*(ia/ia_o)^2;
P_ex=P_exn*(ifd/ifd_o);
P_br=P_brn*(ifd/ifd_o)^2;
ptot=pcte+P_s+P_a+P_br+P_f+P_c+
P_ex;
k=k+1;
p(k)=P1;
q(k)=Q1;
n(k)=(P1/(P1+ptot)); %rend(k)=n(k
);
Pf=P_f*s;
Pex=P_ex*s;
Pbr=P_br*s;
sum=(P_f+P_ex+P_br)*s;
ploss=ptot;
%E=((1/n(k))-1)*P1;
%E(k)=ptot; %; rend(k)=n(k);
end
end
%E= 1460*s * 10^3*E/10^9
% EPoints=101;
% E=8610*E;
% E=E/10
n=100*n
nPoints=101;
pMin=min(p); pMax=max (p);
qMin=min(q); qMax=max(q);
pVect=linspace(pMin, pMax, nPoints);
qVect=linspace(qMin,qMax, nPoints);
[pMat,qMat]=meshgrid(pVect,qVect);
int=scatteredInterpolant(p', q', n');
%int=scatteredInterpolant(p',q', E');
nMat=int(pMat,qMat)
%EMat=int(pMat,qMat);
colormap jet; % doc colormap
% % % %v=[llll.2 94.9 96.5
98.5]
v=[[$$
\begin{array}{lllll}{99.008}&{98.834 97.8927298325486 98.68}\end{array}
$$]
98.285 96.944 98.868 98.509 97.294];
%v=[[lllll}98.83 98.68 98.285 96.944]
%% % e=[9,9.5,10,10.5,11,11.5,12,12.5];
% %
% % % her ploter jeg operasjons punktene
P
=[0.9,0.675,0.450,0.225,1,0.75,0.5,0.25]

```

\section*{P. Code for the total energy loss of Åbjøra in figure 50}

Listing 19. Code for the energy loss map in figure 50
\%\% Data inputs
clear; clc;
\(\mathrm{Ra}=0.00182\); \(\mathrm{Xq}=0.676\); \(\mathrm{Xd}=1.059\); Xp
\[
=0.141
\]
\(\mathrm{b} 4=0.0817 ; \mathrm{b} 3=-0.2482 ; \mathrm{b} 2=-0.1645 ; \mathrm{b} 1\) \(=1.3647\)
; \(\mathrm{b} 0=-0.2251 ; \mathrm{bv}=1\);
n1 \(=7\);
\(\mathrm{C}=0.160\);
\(\mathrm{k} 1=1.0308 \quad\) \%1.03;
\(\mathrm{sn}=1 ; ~ \mathrm{ua}=1 ; ~ \mathrm{pf}=0.9 ; ~ \% \mathrm{fpn}=0.95\);
\%losses along the loading
\(\% \mathrm{~s}=103000 ;\) ua_o \(=1 ;\) ia_o \(=1 ; ~ i f d \_o=1.7665\);
\(\mathrm{s}=103 * 10^{\wedge} 3 ;\) ua_o \(=1 ;\) ia_o \(=1 ; ~ i f d \_o\)
\(=1065 / 525.15\);

P_wf=172.92/s; \% windage and friction loss
\(P_{-} \mathrm{cn}=211.92 / \mathrm{s} ; \quad\) \% core loss
P_an \(=193.63 / \mathrm{s} ; \quad\) \% stator current loss
P_sn=82.99/s; \(\quad\) \% additional loss
P_fn=173.65/s; \% rotor current loss
P_brn=2.13/s; \(\quad \%\) brush loss
P_exn=15.88/s; \% excitation loss
P_b=240.9/s; \%356.23 \% bearings loss
pcte=P_wf+P_b; \% constant power

\section*{\(\mathrm{k}=0\);}

New_capabilitydiagram_AAbjora_func (Xd,Xq)
\%\% Efficiency calculation
\(\mathrm{P}=0: 0.01: 1\);
\(\mathrm{Q}=-1: 0.01: 1\);
[c, h] = contour (qMat, pMat, nMat, v) \%, hold on
    plot(Q, P, 'bo')
grid on
    title('Efficiency')
ylabel('Active power (pu) \({ }^{\prime},{ }^{\prime}\), FontName, , , \({ }^{,}{ }^{38}\)
        Times New Roman')
    xlabel('Reactive power (pu)','FontName',
        'Times New Roman')
```

axis equal;

```
axis \(\left(\left[\begin{array}{llll}-1 & .7 & 0 & 1\end{array}\right]\right)\);
for i=drange(1, length(P)) % active
    power from 0 to 1
    for j=drange(1, length(Q))
        P1=P(i );
        Q1=Q(j );
        ia=sqrt(P1^2+Q1^2);
        phi=atan(Q1/P1);
        delta=atan(ia*(Xq* cos(phi) -(Ra*
        sin(phi)))/(ua+(Ra*ia*\operatorname{cos}(phi)
        )+Xq*ia*sin(phi)));
            egu=ua*\operatorname{cos}(delta)+(Ra*ia*\operatorname{cos}(
        delta+phi))+Xd*ia*sin(delta+
        phi);
    ifu=egu/bv;
    th=atan(ia*(Xp*\operatorname{cos}(\textrm{phi})-(\textrm{Ra}*\operatorname{sin}(
        phi)))/(ua+(Ra*ia*\operatorname{cos}(phi))+Xp
        *ia*sin(phi)));
        ep=ua*\operatorname{cos}(th)+(Ra*ia*cos(th+phi))
        +Xp*ia*sin(th+phi);
        if ep }>0.5
        %ifs=b4*ep^4+b3*ep^3+b2*ep^2+
                b1*ep+b0-ep/bv;
            ifs=(ep+C*ep^n1).*k1 - (ep/bv );
            else
                if s =0;
            end
            ifd1=(ifu+ifs )*525.15;
            ifd=(ifu+ifs);
P_a=P_an*(ia/ia_o ) ^2;
P_f=P_fn*(ifd/ifd_o)^2;
P_c=P_cn*(ua/ua_o);
P_s=P_sn*(ia/ia_o )}\mp@subsup{}{~}{\prime}2
P_ex=P_exn*(ifd/ifd_o);
P_br=P_brn *(ifd/ifd_o )^2;
ptot=pcte+P_s+P_a+P_br+P_f+P_c+
                P_ex;
k=k+1;
p(k)=P1;
q(k)=Q1;
n(k)=P1/(P1+ptot); %rend(k)=n(k);
Pf=P_f*s;
Pex=P_ex*s;
Pbr=P_br*s;
sum=(P_f+P_ex+P_br )*s;
E}(\textrm{k})=((1/n(k))-1)*P1
%E(k)=(ptot*s*10^3)/10^9; %; rend
        (k)=n(k);
    end
end
EPoints=101;
%E=E/10
```

$\mathrm{n}=\mathrm{n} * 1 ;$
\%nPoints = 101 ;
$\mathrm{pMin}=\min (\mathrm{p}) ; \quad \mathrm{pMax}=\max (\mathrm{p})$;
$q \operatorname{Min}=\min (q) ; q \operatorname{Max}=\max (q)$;
pVect=linspace (pMin, pMax, EPoints) ;
qVect=linspace (qMin, qMax, EPoints) ;
[pMat, qMat] $=$ meshgrid $(p V e c t, q V e c t)$;
\%int=scatteredInterpolant ($\left.\mathrm{p}^{\prime}, \mathrm{q}^{\prime}, \mathrm{n}^{\prime}\right)$;
int $=$ scatteredInterpolant ($\left.\mathrm{p}^{\prime}, \mathrm{q}^{\prime}, \mathrm{E}^{\prime}\right)$;
nMat $=$ int (pMat, qMat)
EMat $=$ int (pMat, qMat) ;
$\% \mathrm{EMat}=\left(8610 * \mathrm{EMat} * \mathrm{~s} * 10^{\wedge} 3\right) / 10^{\wedge} 9$
\% colormap jet; \% doc colormap
$\% ~ \% v=\left[\begin{array}{lllllll}91.2 & 94.9 & 96.5 & 97.4 & 97.9 & 98.2 & 98.5\end{array}\right]$
$\mathrm{v}=\left[\begin{array}{lllllll}99.008 & 98.834 & 98.68 & 98.285 & 96.944 & { }_{26}\end{array}\right.$ $98.868 \quad 98.509 \quad 97.294$];
$\% \mathrm{v}=\left[\begin{array}{lllll}98.83 & 98.68 & 98.285 & 98.200 & 96.944\end{array}\right]$
$\mathrm{e}=\left[\begin{array}{lllll}0.00675 & 0.007 & 0.0075 & 0.008 & 0.0082724\end{array}\right.$
$0.0085 \quad 0.009 \quad 0.0095 \quad 0.01$];
$\% \mathrm{e}=[]$
\% P
$=[0.9,0.675,0.450,0.225,1,0.75,0.5,0.253]$
$\% \quad \mathrm{Q}=[0.436,0.323,0.218,0.109,0,0,0,0]$
$\mathrm{P}=[0]$
$\mathrm{Q}=[0.5]$
$\% \quad$ P_one $=[0.933]$
$\% \quad$ Q_one $=[0.335]$
plot (Q, P, ' bo ')
\% plot(Q_one, P_one, 'ko')
$[\mathrm{c}, \mathrm{h}]=\mathrm{contour}(\mathrm{qMat}, \mathrm{pMat}$, EMat, e $)$
clabel (c, h, 'FontSize', 16 ,'LabelSpacing' , 200, 'FontName', 'Times New Roman')
title (' $\left.P_{-}\{\operatorname{loss}\} \quad(\mathrm{pu})^{\prime}\right)$ ylabel('Active power (pu)', 'FontName', ' Times New Roman')
xlabel('Reactive power (pu) ', 'FontName', 7 'Times New Roman')
axis equal;
axis ([-1
Q. Code for the $2 D$ density plot of Åbjøra in figure 51

Listing 20. Code for the 2D histogram in figure 51
Data $=$ AAbjoradata
Sbase = 103.0
Pdata=Data $(:, 2)$
Qdata=Data $(:, 1)$
Pdata=Pdata./Sbase
Qdata $=$ Qdata./Sbase
Xd_pu=1.059;
Xq_pu= 0.69 ;
\% plot(Qdata, Pdata, 'ro')
$\%$ axis $\left(\left[\begin{array}{llll}-1 & 0.6 & 0 & 1\end{array}\right]\right)$
New_capabilitydiagram_AAbjora_func (Xd_pu, ${ }^{27}$ Xq_pu)
\% plot (Qdata, Pdata, ' $\mathrm{k} *^{\prime}$,, 'Markersize ${ }^{\prime}, 0.5$)
figure (2)
subplot (2, 1, 1)
histogram (Qdata)
xlabel('Reactive power')
ylabel('Hours')
subplot (2, 1,2)
histogram (Pdata)
xlabel('Active power')
ylabel('Hours')
\%figure (22)
\%print -depsc -tiff -r300 - painters full_load_toptobottom.eps
R. Code for the synch. condenser plot in figure 52

```
Listing 21. Code for the synch. cond dis. in Fig.52
%for i = drange(1,600)
t=375
P=0.0:1/t:1;
Q=-1:1.7/t:0.7;
[Q,P]=meshgrid(Q,P);
[Qdata_ins,Pdata_ins] = DatainscapAAbjora(
    P,Q);
Q=Qdata_ins;
P=Pdata_ins;
%% ZONE 1
% It is better to start at almost zero
k=0.01;
xv1 = [llllllll
yv1 = [lllllll}
%vertical Displacment(VD)
%Horisontal Displacment(HF)
%If HD>Height, HD=Heigth
%xv = [VD width width VD VD ];
%yv = [HD HD heigth heigth HD ]
xq1 = Q;
yq1 = P;
[in,on] = inpolygon(xq1,yq1,xv1,yv1);
Q_zone1=xq1(in);
P_zone1=yq1(in);
```

```
%% Zone 2
%for i =drange(1,900)
P1 = 0.0:1/30:1;
Q1=-1:1.7/30:0.7;
[Q1,P1]= meshgrid(Q1,P1);
[Qdata_ins,Pdata_ins] =DatainscapAAbjora(
    P1,Q1);
Q1=Qdata_ins;
P1=Pdata_ins;
% It is better to start at almost zero
k2=k +0.02
k_one=1;
xv_two = [lllllll}-0.95 0.7 0.7 -0.95 -0.95 ];
yv_two = [k2 k2 k_one k_one k2 ];
%vertical Displacment(VD)
%Horisontal Displacment(HF)
%If HD>Height, HD=Heigth
%xv = [VD width width VD VD ];
%yv = [HD HD heigth heigth HD ]
    xq_two = Q1;
    yq_two = P1;
[in,on] = inpolygon(xq_two,yq_two,xv_two,
    yv_two);
numel(xq_two(in));
Q_zone_two=xq_two(in);
P_zone_two=yq_two(in);
figure (1)
%plot(Q_zone1, P_zone1,'ro'), hold on
%plot(Q_zone_two, P_zone_two,'bo')
Q_vec=[Q_zone1,Q_zone_two ]
P_vec=[P_zone1, P_zone_two ]
Q_vec=Q_vec'
P_vec=P_vec'
figure(1)
densityscatter(Q_vec, P_vec,35,15)
title('synch. condenser distrubtion')
[n_wae, n_aae]=WAE_func_jonas(Q1,P1)
AAE=n_aae
WAE=n_wae
[n_wae,n_aae]=WAE_func_jonas(Q_vec, P_vec) 19
AAE=n_aae
WAE=n_wae
%[WAE_sum,WAE1]=WAE_cal_func(Q_vec, P_vec) 23
%[AAE1]=AAE_calc_func(Q_vec,P_vec)
```

S. Code for the uniform load dis. in figure 52

Listing 22. Code for the uniform load dis in figure 52 \% full load dis.

```
P1 = 0.0:1/3 1:1;
Q1=-1:1.7/3 1:0.7;
[Q1,P1]=meshgrid(Q1,P1);
[Qdata_ins,Pdata_ins] = DatainscapAAbjora(
    P1,Q1);
Q1=Qdata_ins;
P1=Pdata_ins;
Q1=Q1'
P1=P1,
%plot(Q1,P1,'bo')
figure(1)
densityscatter(Q1,P1,50,15)
title('full load distrubtion')
[n_wae,n_aae]=WAE_func_jonas(Q1,P1)
AAE=n_aae
WAE=n_wae
%[WAE_sum,WAE1]=WAE_cal_func(Q_vec , P_vec )
%[AAE1]=AAE_calc_func(Q_vec,P_vec)
```


T. Code for the max active power threshold 53

Listing 23. Code for the max active power threshold in figure 53
\%\% Data inputs
clear; clc;
$\mathrm{Ra}=0.00182$; $\mathrm{Xq}=0.676$; $\mathrm{Xd}=1.059$; Xp
$=0.141$;
$\mathrm{b} 4=0.0817 ; \mathrm{b} 3=-0.2482 ; \mathrm{b} 2=-0.1645 ; \mathrm{b} 1$
$=1.3647$
; $\mathrm{b} 0=-0.2251$; $\mathrm{bv}=1$;
n1 $=7$;
$\mathrm{C}=0.160$;
$\mathrm{k} 1=1.0308$; $\% 1.03$;
$\mathrm{sn}=1 ; ~ \mathrm{ua}=1 ; \quad \mathrm{pf}=0.9 ; \% \mathrm{fpn}=0.95$;
\%losses along the loading
$\% \mathrm{~s}=103000 ;$ ua_o $=1 ;$ ia_o $=1 ; ~ i f d _o=1.7665$;
$\mathrm{s}=103 * 10^{\wedge} 3 ;$ ua_o $=1 ;$ ia_o $=1$; ifd_o
$=1065 / 525.15$;
P_wf=172.92/s; \% windage and friction
loss
P_cn=211.92/s; \% core loss
P_an=193.63/s; \% stator current loss
P_sn=82.99/s; $\quad \%$ additional loss
P_fn=173.65/s; \% rotor current loss
P_brn=2.13/s; \% brush loss
P_exn=15.88/s; \% excitation loss
P_b=240.9/s; \%356.23 \% bearings loss
pcte=P_wf+P_b; \% constant power
$\mathrm{k}=0$;
\%New_capabilitydiagram_AAbjora_func (Xd, Xq
)
\% Efficiency calculation
$P=0.001: 1 / 500: 1 ;$
30

```
P=0.001:1/1000:1;
Q=-1:1.7/1000:0.7;
[Q,P]= meshgrid (Q,P);
[Qdata_ins,Pdata_ins] =DatainscapAAbjora(
        P,Q)
    Q=Qdata_ins;
    P=Pdata_ins;
    x_vec = [];
    WAE_vec = [];
    AAE_vec = [];
    j=0
%% Zone 1
for i =(10^3)-1:-1:1
    % It is better to start at almost
        zero
    k=(i/10^3);
    xv = [llllllll
```

```
```

Q=-1:1.7/500:0.7;

```
```

Q=-1:1.7/500:0.7;
[Q,P]= meshgrid(Q,P);
[Q,P]= meshgrid(Q,P);
[Qdata_ins,Pdata_ins] =DatainscapAAbjora(
[Qdata_ins,Pdata_ins] =DatainscapAAbjora(
P,Q)
P,Q)
Q=Qdata_ins;
Q=Qdata_ins;
P=Pdata_ins;
P=Pdata_ins;
x_vec = [];
x_vec = [];
WAE_vec = [];
WAE_vec = [];
AAE_vec = [];
AAE_vec = [];
j=0
j=0
%% Zone 1
%% Zone 1
for i =drange(1,1*10^0)
for i =drange(1,1*10^0)
% It is better to start at almost
% It is better to start at almost
zero
zero
k=(i/10^3);
k=(i/10^3);
xv = [lllllll
xv = [lllllll
yv}=[0.0001 0.0001 k k .0001];
yv}=[0.0001 0.0001 k k .0001];
%vertical Displacment(VD)
%vertical Displacment(VD)
%Horisontal Displacment(HF)
%Horisontal Displacment(HF)
%If HD>Height, HD=Heigth
%If HD>Height, HD=Heigth
%xv = [VD width width VD VD];
%xv = [VD width width VD VD];
%yv = [HD HD heigth heigth HD]
%yv = [HD HD heigth heigth HD]
v=1;
v=1;
xq = Q;
xq = Q;
yq = P;
yq = P;
[in,on] = inpolygon(xq,yq,xv,yv);
[in,on] = inpolygon(xq,yq,xv,yv);
numel(xq(in));
numel(xq(in));
%plot(xv,yv,'g','LineWidth',2) %
%plot(xv,yv,'g','LineWidth',2) %
polygon
polygon
Q_zone1=xq(in);
Q_zone1=xq(in);
P_zonel=yq(in);
P_zonel=yq(in);
[n_wae, n_aae]=WAE_func_jonas(Q_zone1, 27
[n_wae, n_aae]=WAE_func_jonas(Q_zone1, 27
P_zone1);
P_zone1);
WAE_sum=n_wae ;
WAE_sum=n_wae ;
AAE1=n_aae ;
AAE1=n_aae ;
j=j+1
j=j+1
x_vec(j)=k;
x_vec(j)=k;
WAE_vec(j)=WAE_sum;
WAE_vec(j)=WAE_sum;
AAE_vec(j)=AAE1;
AAE_vec(j)=AAE1;
end
end
figure(22)
figure(22)
clf
clf
plot(x_vec,WAE_vec,'r'), hold on
plot(x_vec,WAE_vec,'r'), hold on
plot(x_vec,AAE_vec,'b')
plot(x_vec,AAE_vec,'b')
title('WAE vs AAE')
title('WAE vs AAE')
legend('WAE','AAE')
legend('WAE','AAE')
xlabel('Active power [pu]')
xlabel('Active power [pu]')
ylabel('Efficiency [%]')
ylabel('Efficiency [%]')
figure(32)
figure(32)
clf
clf

```
18
```

18

```
```

%% Efficiency calculation

```
```

```
```

%% Efficiency calculation

```
```

```
```

%% Efficiency calculation

```
```

plot(Q_zone1, P_zone1, 'ro ', 'DisplayName ',' Zone3')\% points inside

U. Code for the min active power threshold 53

Listing 24. Code for the min active power threshold in figure 54
\%\% Data inputs
clear; clc;
$\mathrm{Ra}=0.00182 ; \mathrm{Xq}=0.676$; $\mathrm{Xd}=1.059$; Xp
$=0.141$;
b4 $=0.0817$; b3 $=-0.2482$; b2 $=-0.1645$; b1
$=1.3647$
; $\mathrm{b} 0=-0.2251$; $\mathrm{bv}=1$;
n1 $=7$;
C=0.160;
k1 = 1.0308;
$\mathrm{sn}=1 ; \mathrm{ua}=1 ; \mathrm{pf}=0.9$;
\%losses along the loading
$\% \mathrm{~s}=103000 ;$ ua_o $=1 ;$ ia_o $=1 ; ~ i f d _o=1.7665$;
$\mathrm{s}=103 * 10^{\wedge} 3$; ua_o $=1$; ia_o $=1$; ifd_o $=1065 / 525.15$;

P_wf=172.92/s; \% windage and friction loss
P_cn=211.92/s; \% core loss
P_an=193.63/s; \% stator current loss
P_sn=82.99/s; \% additional loss
P_fn=173.65/s; \% rotor current loss
P_brn=2.13/s; \% brush loss
P_exn=15.88/s; \% excitation loss
P_b=240.9/s; \% bearings loss
pcte=P_wf+P_b; \% constant power
$\mathrm{k}=0$;
\%New_capabilitydiagram_AAbjora_func (Xd,Xq)

```
    yv = [lllllll
    %yv = [0.0001 0.0001 k k .0001 ];
%vertical Displacment(VD)
%Horisontal Displacment(HF)
%If HD>Height, HD=Heigth
%xv = [VD width width VD VD ];
%yv = [HD HD heigth heigth HD ]
    v=1;
    xq=Q;
    yq = P;
    [in,on] = inpolygon(xq,yq,xv,yv);
    numel(xq(in));
    %plot(xv,yv,'g','LineWidth',2) %
        polygon
    Q_zone1=xq(in);
    P_zone1=yq(in);
    [n_wae, n_aae]=WAE_func_jonas(Q_zone1,
        P_zone1);
    WAE_sum=n_wae;
    AAE1=n_aae ;
    j=j +1
    x_vec(j)=k;
    WAE_vec(j )=WAE_sum;
    AAE_vec ( j )=AAE1;
end
figure(22)
clf
plot(x_vec,WAE_vec, 'r'), hold on
plot(x_vec,AAE_vec,'b')
title('WAE vs AAE')
legend('WAE','AAE')
grid on
xlabel('Active power [pu]')
ylabel('Efficiency [%]')
axis([00 1 0 100])
figure(32)
clf
plot(Q_zone1,P_zone1,'ro','DisplayName',' 46
    Zone3')%
```


V. Code for the uniform dis. with increasing $N 55$

Listing 25. Code for increasing number of elements shown in figure 55 \%\% Data inputs
clear; clc;
$\mathrm{Ra}=0.00182$; $\mathrm{Xq}=0.676$; $\mathrm{Xd}=1.059$; Xp $=0.141$;
$\mathrm{b} 4=0.0817 ; \mathrm{b} 3=-0.2482 ; \mathrm{b} 2=-0.1645 ; \mathrm{b} 1$ $=1.3647$

```
; b0=-0.2251; bv=1;
n1=7;
C=0.160;
k1=1.0308; %1.03;
sn=1; ua=1; pf=0.9; %fpn=0.95;
%losses along the loading
%s=103000; ua_o=1; ia_o=1; ifd_o=1.7665;
s}=103*1\mp@subsup{0}{}{\wedge}3; ua_o=1; ia_o o 1; ifd_o
    =1065/525.15;
P_wf=172.92/s; % windage and friction
        loss
P_cn=211.92/s; % core loss
P_an=193.63/s; % stator current loss
P_sn=82.99/s; % additional loss
P_fn=173.65/s; % rotor current loss
P_brn=2.13/s; % brush loss
P_exn=15.88/s; % excitation loss
P_b=240.9/s; %356.23 % bearings loss
pcte=P_wf+P_b; % constant power
k=0;
%New_capabilitydiagram_AAbjora_func(Xd, Xq
        )
%% Efficiency calculation
Nel = [];
eta_wae = [];
eta_aae = [];
% adjust the number of elements
for j = 1:200;
    t=j+2;
    P}=0.0:1/t:1
    Q}=-1:1.7/t:0.7
    [Q,P]= meshgrid (Q,P);
    [Qdata_ins,Pdata_ins] =
        DatainscapAAbjora(P,Q);
    Q=Qdata_ins;
    P=Pdata_ins;
    %figure(20)
    %clf
    %plot(Q,P,'bo')
    n=[];
    ploss =[];
    for i=1:length(P);
        P1=P(i );
        Q1=Q(i );
        ia=sqrt(P1^2+Q1^2);
        phi=atan(Q1/P1);
        delta=atan(ia*(Xq*\operatorname{cos}(phi) -(Ra*
        sin(phi)))/(ua+(Ra*ia*\operatorname{cos}(phi)
            )+Xq*ia*sin(phi)));
        egu=ua*\operatorname{cos}(delta)+(Ra*ia*\operatorname{cos}(
        delta+phi))+Xd*ia*sin(delta+
```

phi);
if $u=e g u / b v$;
th=atan (ia $*(X p * \cos (\mathrm{phi})-(\mathrm{Ra} * \sin ($ phi))) /(ua $+(\mathrm{Ra} * \mathrm{ia} * \cos (\mathrm{phi}))+\mathrm{Xp}+$ *ia*sin(phi)));
$\mathrm{ep}=\mathrm{ua} * \cos (\mathrm{th})+(\mathrm{Ra} * \mathrm{ia} * \cos (\mathrm{th}+\mathrm{phi})){ }_{2}$ $+\mathrm{Xp} * \mathrm{ia} * \sin (\mathrm{th}+\mathrm{phi}) ;$
if ep >0.55;
$\%$ ifs $=\mathrm{b} 4 * \mathrm{ep}^{\wedge} 4+\mathrm{b} 3 * e \mathrm{p}^{\wedge} 3+\mathrm{b} 2 * e \mathrm{p}^{\wedge} 2+$ b1 *ep+b0-ep/bv;
ifs $=\left(\mathrm{ep}+\mathrm{C} * \mathrm{e} \mathrm{p}^{\wedge} \mathrm{n} 1\right) . * \mathrm{k} 1-(\mathrm{ep} / \mathrm{bv})$;
else;
ifs $=0$;
end
ifd1=(ifu+ifs)*525.15;
ifd=(ifu+ifs);
$P_{-} a=P_{-} a n *\left(i a / i a _o\right)^{\wedge} 2$;
$P_{-} f=P_{-} f n *\left(i f d / i f d _o\right)^{\wedge} 2$;
$P_{-} c=P_{-} c n *($ ua/ua_o) ;
$P_{-} s=P_{-} s n *\left(i a / i a _o\right)^{\wedge} 2$;
P_{-}ex $=P_{-}$exn $*($ ifd/ifd_o);
P_br=P_brn*(ifd/ifd_o $)^{\wedge} 2$;

```
ptot=pcte+P_s+P_a+P_br+P_f+P_c+
``` P_ex;
```

%k=k+1;

```
ploss (i) \(=\) ptot;
eta \(=(\mathrm{P} 1 /(\mathrm{P} 1+\mathrm{ptot}))\);
\(\mathrm{n}(\mathrm{i})=\mathrm{eta} * 100\);
end
n_wae \(=\operatorname{sum}(n) /\) ength (n) ;
eta_wae (j) = n_wae;
Eloss \(=\left(\operatorname{sum}(\mathrm{ploss}) *\left(\mathrm{~s} * 10^{\wedge} 3\right) * 365 * 24 /\right.\) length (n))/10^9;
\(\mathrm{E}=\left(\operatorname{sum}(\mathrm{P}) *\left(\mathrm{~s} * 10^{\wedge} 3\right) * 365 * 24 / \mathrm{length}\left(\mathrm{n}_{30}\right.\right.\))) \(/ 10^{\wedge} 9\);
\(n_{-}\)aae \(=100 * E /(E+E \operatorname{loss}) ;\)
eta_aae (j) = n_aae ;
\(\operatorname{Nel}(\mathrm{j})=\) length(n);
end
figure (33)
clf
plot(Nel, eta_wae, 'r-', 'Linewidth', 2.5), hold on
plot(Nel, eta_aae, 'b-', 'Linewidth', 2.5)
grid on
axis ([lllll \(0 \quad 180000 \quad 95.5 \quad 98.5])\)
figure (29)
clf
plot (Q, P, 'bo')

\section*{W. Code for additional functions in Abjora plots}
```

Listing 26. Function that calculates WAE and AAE for AAbjora
function [n_wae,n_aae]=WAE_func_jonas(
Qdata_ins,Pdata_ins)
%% Data inputs
%clearvars -except Pdata Qdata; clc;
Ra=0.00182; Xq=0.676; Xd=1.059 ; Xp
=0.141;
b4 =0.0817; b3 = - 0.2482; b2 = - 0.1645; b1
=1.3647;
; b0 = - 0.2251; bv=1;
n1=7;
C=0.160;
k1=1.0308; %1.03;
sn=1; ua=1; pf=0.9; %fpn=0.95;
%losses along the loading
%s=103000; ua_o=1; ia_o=1; ifd_o=1.7665;
s=103*10^3; ua_o=1; ia_o=1; ifd_o
=1065/525.15;
P_wf=172.92/s; % windage and friction
loss
P_cn=211.92/s; % core loss
P_an=193.63/s; % stator current loss
P_sn=82.99/s; % additional loss
P_fn=173.65/s; % rotor current loss
P_brn=2.13/s; % brush loss
P_exn=15.88/s; % excitation loss
P_b=240.9/s; %356.23 % bearings loss
pcte=P_wf+P_b; % constant power
k=0;
Q=Qdata_ins;
P=Pdata_ins;
%figure(20)
%clf
%plot(Q,P,',bo')
n=[];
ploss =[];
for i=1:length(P); % active
power from 0 to 1

```
 \(\mathrm{P} 1=\mathrm{P}\) (i) ;
 Q1=Q(i);
 ia=sqrt (P1^2+Q1^2);
 phi=atan (Q1/P1) ;
 delta \(=\operatorname{atan}(\mathrm{ia} *(X q * \cos (\mathrm{phi})-(\mathrm{Ra} *\)
 \(\sin (\mathrm{phi}))) /(\mathrm{ua}+(\mathrm{Ra} * \mathrm{ia} * \cos (\mathrm{phi})\)
) \(+\mathrm{Xq} * \mathrm{ia} * \sin (\mathrm{phi}))\));
 egu \(=u a * \cos (d e l t a)+(R a * i a * \cos (\)
 delta+phi)) +Xd*ia*sin(delta+
 phi) ;
```

    ifu=egu/bv;
        phi)) )/(ua+(Ra*ia*cos(phi))+Xp 15
        *ia*sin(phi)));
    ep=ua*cos(th)+(Ra*ia*cos(th+phi))
+Xp*ia*sin(th+phi); 18
if ep>0.55;
%ifs=b4*ep^4+b3*ep^3+b2*ep^2+
b1*ep+b0-ep/bv;
ifs=(ep+C*ep^n1).*k1 -(ep/bv); 22
else;
if s =0;
end
ifd1=(ifu+ifs )*525.15;
ifd=(ifu+ifs);
P_a=P_an*(ia/ia_o)^2;
P_f=P_fn*(ifd/ifd_o)^2;
P_c=P_cn*(ua/ua_o);
P_s=P_sn*(ia/ia_o ) ^2;
P_ex=P_exn*(ifd/ifd_o);
P_br=P_brn*(ifd/ifd_o )^2;
ptot=pcte+P_s+P_a+P_br+P_f+P_c+
P_ex;
%k=k+1;
ploss(i)=ptot;
eta=(P1/(P1+ptot));
n(i)=eta*100;
end
n_wae = sum(n)/length(n);
%eta_wae(j) = n_wae;
Eloss = (sum(ploss)*(s*10^3)*365*24/
length(n))/10^9;
E = (sum (P)*(s*10^3)*365*24/length(n + 43
))/10^9;
n_aae = 100*E/(E+Eloss);
%eta_aae(j) = n_aae;
%Nel(j) = length(n);
end
Listing 27. Function that plots AAbjoras capability diagram
function [x_p,y_p]=
New_capabilitydiagram_AAbjora_func(
Xd_pu,Xq_pu)
%% Plot Capabillitydiagram
Pn=0.9
phin=acosd(Pn)
Qn=Pn*tand(phin)
Xd_pu=1.06;
Xq_pu=0.69;
V=1;
%Pmax =0.9
th = (63.7:1:126.152);
Sn1 = 1; %or whatever radius you want
x = Sn1*\operatorname{cosd(th);}

```
```

y = Sn1*sind(th);

```
y = Sn1*sind(th);
```

y = Sn1*sind(th);
A_x=-1/Xq_pu ;
A_x=-1/Xq_pu ;
A_x=-1/Xq_pu ;
B_x=-1/Xd_pu;
B_x=-1/Xd_pu;
B_x=-1/Xd_pu;
%small circle E=0
%small circle E=0
%small circle E=0
E0=0.0
E0=0.0
E0=0.0
th1 = (0:0.1:180);
th1 = (0:0.1:180);
th1 = (0:0.1:180);
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
Xq_pu)+E0
Xq_pu)+E0
Xq_pu)+E0
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
Xq_pu)-E0
Xq_pu)-E0
Xq_pu)-E0
x1=R*\operatorname{cosd(th1) - c;}
x1=R*\operatorname{cosd(th1) - c;}
x1=R*\operatorname{cosd(th1) - c;}
yl=R*sind(th1);
yl=R*sind(th1);
yl=R*sind(th1);
%small circle E=0.1
%small circle E=0.1
%small circle E=0.1
E1=0.1
E1=0.1
E1=0.1
th1 = (0:0.1:22.5);
th1 = (0:0.1:22.5);
th1 = (0:0.1:22.5);
R=(0.5*(V^2)*(Xd_pu-Xq_pu)) ./(Xd_pu .*
R=(0.5*(V^2)*(Xd_pu-Xq_pu)) ./(Xd_pu .*
R=(0.5*(V^2)*(Xd_pu-Xq_pu)) ./(Xd_pu .*
Xq_pu)+E1
Xq_pu)+E1
Xq_pu)+E1
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
c}=(0.5*(\mp@subsup{V}{^}{\wedge}2)*(Xd_pu+Xq_pu))./(Xd_pu .*
Xq_pu )-E1
Xq_pu )-E1
Xq_pu )-E1
x1_01= R*\operatorname{cosd(th1) - c;}
x1_01= R*\operatorname{cosd(th1) - c;}
x1_01= R*\operatorname{cosd(th1) - c;}
y1_01= R*sind(th1);
y1_01= R*sind(th1);
y1_01= R*sind(th1);
%small circle E=0.2
%small circle E=0.2
%small circle E=0.2
E2=0.2
E2=0.2
E2=0.2
th1 = (0:0.1:45.5);
th1 = (0:0.1:45.5);
th1 = (0:0.1:45.5);
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
Xq_pu)+E2
Xq_pu)+E2
Xq_pu)+E2
c=(0.5*(V^2) *(Xd_pu+Xq_pu))./(Xd_pu .*
c=(0.5*(V^2) *(Xd_pu+Xq_pu))./(Xd_pu .*
c=(0.5*(V^2) *(Xd_pu+Xq_pu))./(Xd_pu .*
Xq_pu)-E2
Xq_pu)-E2
Xq_pu)-E2
x1_02= R*\operatorname{cosd(th1) - c;}
x1_02= R*\operatorname{cosd(th1) - c;}
x1_02= R*\operatorname{cosd(th1) - c;}
y1_02= R*sind(th 1);
y1_02= R*sind(th 1);
y1_02= R*sind(th 1);
%small circle E=0.3
%small circle E=0.3
%small circle E=0.3
E3=0.3
E3=0.3
E3=0.3
th1 = (0:0.1:180);
th1 = (0:0.1:180);
th1 = (0:0.1:180);
R=(0.5*(V^2)*(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2)*(Xd_pu-Xq_pu))./(Xd_pu .*
R=(0.5*(V^2)*(Xd_pu-Xq_pu))./(Xd_pu .*
Xq_pu)+E3
Xq_pu)+E3
Xq_pu)+E3
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
Xq_pu)-E3
Xq_pu)-E3
Xq_pu)-E3
x1_03= R*\operatorname{cosd(th 1) - c;}
x1_03= R*\operatorname{cosd(th 1) - c;}
x1_03= R*\operatorname{cosd(th 1) - c;}
y1_03= R*sind(th1);
y1_03= R*sind(th1);
y1_03= R*sind(th1);
%small circle E=0.4
%small circle E=0.4
%small circle E=0.4
E3=0.4
E3=0.4
E3=0.4
th1 = (0:0.1:180);
th1 = (0:0.1:180);
th1 = (0:0.1:180);
R=(0.5*(V^2) *(Xd_pu-Xq_pu)) ./(Xd_pu.*
R=(0.5*(V^2) *(Xd_pu-Xq_pu)) ./(Xd_pu.*
R=(0.5*(V^2) *(Xd_pu-Xq_pu)) ./(Xd_pu.*
Xq_pu )+E3
Xq_pu )+E3
Xq_pu )+E3
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
c}=(0.5*(\mp@subsup{V}{}{\wedge}2)*(Xd_pu+Xq_pu))./( Xd_pu .*
Xq_pu)-E3
Xq_pu)-E3
Xq_pu)-E3
x1_04= R*\operatorname{cosd(th1) - c;}
x1_04= R*\operatorname{cosd(th1) - c;}
x1_04= R*\operatorname{cosd(th1) - c;}
y1_04= R*sind(th1);
y1_04= R*sind(th1);
y1_04= R*sind(th1);

```
*
```

```
*
```

```
*
```

```
%64.5
%third semi circle Emax
th2 = (64.5:0.8:95.5);
x2=Qn
x1=A_x
y2=Pn
y1=0
R=sqrt((x2-x1).^2+(y2-y1).^2);
y2= R*\operatorname{cosd(th2);}
x2= R*sind(th2) +A_x;
%%
 figure(1)
 clf
 plot(x,y,'k','linewidth', 1.5), hold on
 %plot([-0.4359 0.4359],[0.9 0.9],
 Linewidth', 1)%Pmax
%plot([00 0],[[0 1],'Linewidth',1)%
 origoaxis
% %plot([[0}00.326],[\begin{array}{ll}{0}&{0.95}\end{array}],'Linewidth',1
 %Sn
 %plot(A_x,0,'o')
 %plot(B_x,0,'o')
 plot(x1,y1)%first semi-circle
plot(x1_01,y1_01,'k','linewidth', 1.5)%
 second semi-circle
%plot(x1_02,y1_02)%third semi-circle
%plot(x1_03,y1_03)%fourth semi-circle
%plot(x1_04,y1_04)%fifth semi-circle
%%plot([[\begin{array}{ll}{\mathrm{ _x 0.326}}\end{array}],[\begin{array}{ll}{0}&{0.95}\end{array}],',Linewidth
 , ,1)%second line
 plot(x2,y2,'k','linewidth', 1.5)%third
 semi circle Emax
 xlabel('Q [pu]')
 ylabel('P [pu]')
```

    \%\% The practical stabilty limit:
    \% data inputs
$\mathrm{Xd}=1.06$;
$X q=0.69$;
$\mathrm{V}=1$
$\mathrm{i}=\mathrm{j}$
$\mathrm{eq}=0.08: 0.01: 1.151$
\% Calulation of delta
\% derivate P in regard to delta to get
the maximum delta
$\mathrm{a}=(\mathrm{eq} \cdot * \mathrm{Xq}) . /(\mathrm{V} . *(\mathrm{Xd}-\mathrm{Xq}))$
$\mathrm{b}=\mathrm{sqrt}(\mathrm{a} . \wedge 2+8)$
cosdelta $=(1 / 4) . *(-a+b)$
delta=acosd(cosdelta)
\%Calculate the active power and reactive ${ }_{28}$
power

```
 % with eq ranging from 0-1 and use max
 delta
 c=(eq.*V)./(Xd).*sind(delta)
 d=(0.5*V.^2) .*((Xd-Xq)./Xd*Xq) .* sind
 (2.*delta)
 P}=\textrm{c}+\textrm{d
 e=(V.^2) .*((Xd-Xq)./Xd.*Xq).*(sind (
 delta)).^2
 f=((V.^2)./Xd)
 Q=((eq.*V)./Xd).*\operatorname{cosd}(delta)-f-e
 % In order to get the PLS multiply with
 a stabillity margin
 %twentyfive percent stabilty margin
stabm=0.75;
S=(j*Q+P).*stabm
x_p=imag(S)
y_p=real(S)
plot(x_p,y_p,'k','linewidth', 1.5)
```



```
%end
```

```
Listing 28. Function that plots datapoints ins. cap. of AAbjora
```

Listing 28. Function that plots datapoints ins. cap. of AAbjora
function [x_p,y_p] = function [Qdata_ins,
function [x_p,y_p] = function [Qdata_ins,
Pdata_ins] =DatainscapAAbjora(P,Q)
Pdata_ins] =DatainscapAAbjora(P,Q)
Xd_pu=1.06 ;
Xd_pu=1.06 ;
Xq_pu= 0.69;
Xq_pu= 0.69;
$\mathrm{V}=1$;
$\mathrm{V}=1$;
[x_p,y_p] =
[x_p,y_p] =
New_capabilitydiagram_AAbjora_func (
New_capabilitydiagram_AAbjora_func (
Xd_pu, Xq_pu) ;
Xd_pu, Xq_pu) ;
$x_{-} p=x \_p$;
$x_{-} p=x \_p$;
$y_{\_} p=y \_p$;
$y_{\_} p=y \_p$;
\%[Qdata_ins, Pdata_ins]=
\%[Qdata_ins, Pdata_ins]=
data_point_lim_func (Xd_pu, Xq_pu, Ua_pu,
data_point_lim_func (Xd_pu, Xq_pu, Ua_pu,
V, P, Q, div, x_p,y_p)
V, P, Q, div, x_p,y_p)
\% D Data points limited by armature
\% D Data points limited by armature
current and Emax
current and Emax
L_row=size (P, 1);
L_row=size (P, 1);
L_col=size (Q,2);
L_col=size (Q,2);
col=L_row $*$ L_col;
col=L_row $*$ L_col;
$\mathrm{Q}=\operatorname{reshape}(\mathrm{Q}, 1, \operatorname{col})$;
$\mathrm{Q}=\operatorname{reshape}(\mathrm{Q}, 1, \operatorname{col})$;
$\mathrm{P}=$ reshape $(\mathrm{P}, 1, \operatorname{col})$;
$\mathrm{P}=$ reshape $(\mathrm{P}, 1, \operatorname{col})$;
$\mathrm{Q} 1=[]$;
$\mathrm{Q} 1=[]$;
P1 = [];
P1 = [];
for $r=d r a n g e(1, c o l)$
for $r=d r a n g e(1, c o l)$
if $(\mathrm{Q}(\mathrm{r})-0) . \wedge 2+(\mathrm{P}(\mathrm{r})-0) .^{\wedge} 2-(1)<0$;
if $(\mathrm{Q}(\mathrm{r})-0) . \wedge 2+(\mathrm{P}(\mathrm{r})-0) .^{\wedge} 2-(1)<0$;
Q 1 ( r ) $=\mathrm{Q}(\mathrm{r})$;
Q 1 ( r ) $=\mathrm{Q}(\mathrm{r})$;
P 1 (r) $=\mathrm{P}(\mathrm{r})$;
P 1 (r) $=\mathrm{P}(\mathrm{r})$;
end
end
end
end
A_x $=-1 /$ Xq_pu $^{\text {; }}$
A_x $=-1 /$ Xq_pu $^{\text {; }}$
col1=length (P1) ;
col1=length (P1) ;
\% Nominal op. (0.9,0.44)
\% Nominal op. (0.9,0.44)
Q11 = [];
Q11 = [];
P11 = [];

```
P11 = [];
```

```
R=sqrt((0.44+1.4493)^2+(0.9)^2);
for i =drange(1, col1);
 if (Q1(i)-A_x).^2+(P1(i) -0).^2 -(R)
 .^2<0;
 Q11(i)=Q1(i);
 P11(i)=P1 (i);
 end
end
%% Data points limited by min. field
 current
E2=0.1;
R=(0.5*(V^2) *(Xd_pu-Xq_pu))./(Xd_pu .*
 Xq_pu)+E2;
c = (0.5*(V^2) *(Xd_pu+Xq_pu))./(Xd_pu .*
 Xq_pu)-E2;
col2=P11;
Q_11=[];
P_11=[];
for i = drange(1, length(P11))
 xdiff=(Q11(i)+c).^2;
 ydiff=(P11(i)-0).^2;
 d=sqrt(xdiff+ydiff);
 if d>R
 Q_11(i)=Q11(i);
 P_11(i)=P11(i);
 end
end
%% Data points limited by PLS
 p=polyfit(x_p,y_p,1);
 s=-1:0.1:0;
 a=p(1);
 b=p(2);
 y=a*s+b;
Qdata_ins=[];
Pdata_ins=[];
% % Get the data point inside the
 function:
 for i = drange(1, length(Q_11))
 if Q_11(i)>(-P_11(i)+b)/-a
 Qdata_ins(i)= Q_11(i);
 Pdata_ins(i)= P_11(i);
 end
 end
m_data=(Pdata_ins & Qdata_ins) ~}=0
Pdata_ins=Pdata_ins(m_data);
Qdata_ins=Qdata_ins(m_data);
%plot(Qdata_ins,Pdata_ins,'ro')
end
```

Listing 29. Function that plots field current using the fitting function methods function[ifd]=Field_current2 (Pt, Qt)
\%\% Data inputs
$\mathrm{Ra}=0.00182$; $\mathrm{Xq}=0.676$; $\mathrm{Xd}=1.059$; Xp $=0.141$;

```
b4=0.0817; b3 = -0.2482; b2 = -0.1645; b1
 =1.3647
; b0=-0.2251; bv=1;
n1=7;
C=0.160;
k1=1.0308 %1.03;
sn=1; ua=1; pf=0.9; %fpn=0.95;
%losses along the loading
%s=103000; ua_o=1; ia_o=1; ifd_o=1.7665;
s=103*10^3; ua_o=1; ia_o=1; ifd_o
 =1065/525.15;
P_wf=172.92/s; % windage and friction
 loss
P_cn=211.92/s; % core loss
P_an=193.63/s; % stator current loss
P_sn=82.99/s; % additional loss
P_fn=173.65/s; % rotor current loss
P_brn=2.13/s; % brush loss
P_exn=15.88/s; % excitation loss
P_b=240.9/s; %356.23 % bearings loss
pcte=P_wf+P_b; % constant power
k=0;
ifd=[]
Sn=103
%% Field current calculation
% her velger du hvilken last operasjon du
 onkser
 P=Pt./Sn
 Q=Qt./Sn
% P=0.9
% Q=0.43
 for i=1:length(P) % active
 power from 0 to 1
 P1=P(i);
 Q1=Q(i);
 ia=sqrt(P1^2+Q1^2);
 phi=atan(Q1/P1);
 if Q1>= 0
 phi= acos(P1/Sn);
 elseif Q1< 0
 phi = -1*acos(P1/Sn);
 end
 %phi(isnan(Q))=0;
 delta=atan(ia*(Xq* cos(phi) -(Ra*
 sin(phi)))/(ua+(Ra*ia*\operatorname{cos}(phi)
)+Xq*ia*sin(phi)));
 egu=ua*\operatorname{cos}(delta)+(Ra*ia*\operatorname{cos}(
 delta+phi))+Xd*ia*sin(delta+
 phi);
 ifu=egu/bv;
 th=atan(ia*(Xp*\operatorname{cos}(phi) -(Ra*sin (
 phi)))/(ua+(Ra*ia*\operatorname{cos}(phi))+Xp
 *ia*sin(phi)));
 ep=ua*\operatorname{cos}(th)+(Ra*ia*\operatorname{cos}(th+phi))
 +Xp*ia*sin(th+phi);
```

```
 if ep >0.55
 %ifs=b4*ep^4+b3*ep^3+b2*ep^2+
 b1*ep+b0-ep/bv;
 if s=(ep+C*ep^n1).*k1 - (ep/bv);
 else
 if s =0;
 end
 k=k+1
 ifd(k)=(ifu+ifs)*525.15;
 end
```

Listing 30. Function that plots the approximated field current
function [Ifd, Eg, I, P, Q] =
Field_current_two (P, Q, V, Sn, Vn, Ra,
Xad, Xq, Xd)
$P=P / S n ;$
$\mathrm{Q}=\mathrm{Q} / \mathrm{Sn}$;
$\mathrm{V}=\mathrm{V} / \mathrm{Vn}$;
$\mathrm{In}=\mathrm{Sn} /(\operatorname{sqrt}(3) * \mathrm{Vn}) ; \quad \% \mathrm{kA}$
$\mathrm{Zb}=\mathrm{Vn}^{\wedge} 2 / \mathrm{Sn}$;
$\mathrm{Ra}=\mathrm{Ra} / \mathrm{Zb}$;
$\mathrm{I}=\operatorname{sqrt}\left(\mathrm{P}^{\wedge} \wedge^{\wedge} 2+\mathrm{Q}^{\wedge} 2\right) . / \mathrm{V}$;
for $n=1:$ length (I)
if $Q(n)>=0$
$\operatorname{phi}(\mathrm{n})=\operatorname{acos}(\mathrm{P}(\mathrm{n}) /(\mathrm{V}(\mathrm{n}) * \mathrm{I}(\mathrm{n}))) ;$
elseif $Q(n)<0$
$\operatorname{phi}(\mathrm{n})=-\operatorname{acos}(\mathrm{P}(\mathrm{n}) /(\mathrm{V}(\mathrm{n}) * \mathrm{I}(\mathrm{n}))) ;$
end
end
delta $=\operatorname{atan}((X q * I . * \cos (p h i)-R a * I . * \sin ($
phi) )./(V+Ra*I.*cos(phi) $+\mathrm{Xq} * \mathrm{I} . * \sin (\mathrm{phi}$
) ) ;
ed $=$ V.*sin(delta);
$\mathrm{eq}=\mathrm{V} . * \cos (\mathrm{delta})$;
id $=I . * \sin (d e l t a+p h i)$;
$\mathrm{iq}=\mathrm{I} . * \cos (\mathrm{delta}+\mathrm{phi}) ;$
$\mathrm{Eg}=(\mathrm{eq}+\mathrm{Ra} * \mathrm{iq}+\mathrm{Xd} * \mathrm{id})$
Ifd $=$ Eg. $/(\mathrm{Xad}) ; \% \mathrm{Pu}$
Ifd $=\operatorname{Ifd} * \operatorname{In} * 1000 ; \quad \% A$
$\%$ Xad_cal $=(e q+\mathrm{Ra} * \mathrm{iq}+\mathrm{Xd} * \mathrm{id}) /(625 / 5406.1)$
\%Calibrating line

