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Abstract

Wavelet transformations are a powerful tool in data analysis and computer vision. Here we use them to
identify near surface turbulent structures by looking at the imprint they have on the surface. The 2D
wavelet transformations using the MATLAB Wavelet Toolbox was implemented on the surface of Direct
Numerical Simulation (DNS) data to find both attached vortices and up- and downwellings.

The data contained both the values for the surface elevation and the velocity and pressure field under-
neath. Using the velocity field the attached vortices and the up- and downwellings where located. The
attached vortices were identified using a method for finding vortex cores for a given velocity field. For the
up- and downwellings the surface divergence was used, as these structures appear in areas of very large
(upwellings) or very small (downwellings) divergence.

The 2D wavelet transform of the surface elevation was performed and compared with the location of the
near surface turbulent structures found using the velocity field. The Mexican hat wavelet was the main
wavelet used. It turned out that, with this wavelet, the attached vortices gave strong localised positive
values in wavelet space, while the up- and downwellings gave negative values. When only looking at the
positive values above a certain threshold, other structures then the attached vortices also appeared, proba-
bly lingering structures close to up and downwellings. However, the attached vortices have a characteristic
circular shape, while these other structures are mainly elongated. The strength of the vortices was also
compared to the response they had in wavelet space and some correlation was found, However, only a
limited number of vortices were tested in this case.

For the up- and downwellings looking only at the negative values of the threshold below a certain
value filtered out these structures quite well. Since these surface structures are sometimes elongated, an
anisotropic version of the Mexican hat was tested as well to see if it resulted in a better fit. For the smallest
scale, squeezing the wavelet gave slightly better results than just using the isotropic version.

Lastly, the mean surface curvature bared a good resemblance to the small scale wavelet transform and
this was investigated. It turns out that transforming with the Mexican hat wavelet is close to a high order
sum of the second derivatives of the surface.
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Sammendrag

Wavelet-transformasjoner er et kraftig verktøy i dataanalyse og datasyn. Her skal vi bruke dem til å
identifisere turbulente strukturer i nærheten av overflaten ved å se p̊a avtrykket de har p̊a overflaten.
2D-wavelet-transformasjonen ved hjelp av MATLAB Wavelet Toolbox ble implementert p̊a overflaten av
“Direct Numerical Simulation” (DNS) data for å finne b̊ade virvler og opp- og nedvellinger.

Dataene inneholdt b̊ade overflatehøyden og hastighets- og trykkfeltene under. Ved hjelp av hastighets-
feltet ble virvlene og opp- og nedvellingene plassert. Virvlene ble identifisert ved hjelp av en metode for
å finne virvelkjerner i et gitt hastighetsfelt. For opp- og nedvellingene ble overflatedivergensen brukt, da
disse strukturene dukker opp i omr̊ader med svært stor (oppvelling) eller svært sm̊a (nedvelling) divergens.

2D-wavelet-transformasjonen av overflatehøyded ble utført og sammenlignet med plasseringen av de
turbulente strukturer i nærheten av overflaten som ble funnet ved hjelp av hastighetsfeltet. “Mexican
hat” waveleten var den som ble brukt for det meste av arbeidet. Med denne waveleten, ga virvlen sterke
lokaliserte positive verdier i wavelet-rommet, mens opp- og nedvellingene ga negative verdier. N̊ar vi bare
ser p̊a de positive verdiene over en viss terskel dukket det op andre stukturere enn virvlene, sannsynligvis
strukturer nær opp- og nedvellinger. Imidlertid har virvlene en karakteristisk sirkulær form, mens disse
andre strukturene er langstrakte. Styrken til virvler ble ogs̊a sammenlignet med responsen de hadde i
wavelet-rom, og det ble funnet noe sammenheng, men bare et begrenset antall virvler ble testet i dette
tilfellet.

For opp- og nedvellingene, ble de filtrert gangske bra n̊ar man ser kun p̊a verdier i wavelet rom under
en viss terskel. Siden disse overflatestrukturene er noen ganger langstrakte, ble en anisotrop versjon av
“Mexican hat” ogs̊a testet for å se om den ga bedre resultater. For den minste skala, en klemt versjon av
waveleten ga litt bedre resultater enn bare å bruke den isotropiske versjonen.

Til sist, ble det oppdaget at overflatekurvaturen lignet veldig p̊a sm̊a skala wavelet transformasjonen og
dette ble undersøkt. Det visste seg at å transformere med “Mexican hat” er veldig nærme en høy ordens
sum av de andrederiverte.
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Nomenclature

p1, p2 = Pressure at point at 1 or 2

ρ = Fluid density

g = Gravitational acceleration

h1, h2 = Relative height difference from reference at point 1 or 2

v1, v2 = Velocity at point 1 or 2

ψ = Wavelet function

f(x), h(x) = General function

ψu,s = Wavelet function scaled by s and translated by u

||f ||, ||ψ|| = Magnitude of f and ψ

f∗, h∗, ψ∗ = Complex conjugate of the functions f, h and ψ

f̂, ĥ, ψ̂ = Fourier transforms of the functions f, h and ψ

x, t = General variables

ω, f = Frequency

s = Wavelet scaling variable, ∈ R+

u = Wavelet translation variable, ∈ R

c = Constant

Wf = Wavelet transform of a function f

Cψ = Admissibility condition for the wavelet function ψ

T ~u = 2D translation operator

Ds = 2D dilation operator

Rθ = 2D rotation operator

rθ = 2D rotation matrix

ψ~u,s,θ = Wavelet function rotated by θ, scaled by s and translated by ~u

ψ~u,s = Wavelet function scaled by s and translated by ~u

Lx, Ly = Domain size in respectively the x and y directions

H = Domain height (in the z direction)

Nx, Ny, Nz = Number of cells in respectively the x, y and z directions

SD = Surface divergence

E = Enstrophy
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ωx, ωy, ωz = Vorticity in respectively the x, y and z directions

H = Mean surface curvature

K = Total or Gaussian curvature

R1, R2 = Principal radii of curvature
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1 Introduction

1.1 Background

The transfer of heat, gas an momentum between the sea or ocean and the air around it happens at the
surface. Christopher et al., 2007 state that gas transfer between the air and the water influences the flux
of CO2 and other climatically important gasses on a global scale. Jähne et al., 1987 says that this gas
transfer is important both on large scales, for global systems, but also on a smaller scale, for recycling
gasses in rivers and lakes. Currently the gas exchange is estimated using approximation based on the
wind speed, Wanninkhof et al., 2009, Frew et al., 2004. However, these methods can be quite inaccurate,
especially for strong winds. Moreover it is now known that the source of the exchange is not the wind,
but near-surface turbulence (Frew et al., 2004, Turney and Banerjee, 2013). The wind may agitate the
fluid near the surface, increasing near surface turbulence, and increasing the exchange particles and heat,
however, the structures right under the free surface are just as important.

It has been found that slow long-lived near surface turbulent structures are the most effective, Turney
and Banerjee, 2013, Kermani et al., 2011, Khakpour et al., 2012. They renew the surface keeping it
from reaching an equilibrium and facilitate the exchange. What is not know, however, is a good way to
identify these turbulent structures, and quantifying their effect on the interactions between surface and
air. Identifying these structures usually means looking into the velocity field right under the surface, but
that is not easily done on a large scale, as it means measuring the velocity field of seas, oceans, rivers
and lakes. These near surface turbulent structures agitate the surface, locally changing the elevation, so,
another idea is to look at the imprint they leave on the surface like Savelsberg and Van De Water, 2009,
have done. This means that one could take a picture of the ocean from the air or from satellites or drones
and find all the fluid structures only by looking at the surface elevation. In Savelsberg and Van De Water,
2009, the surface and velocity fields were measured separately and they did not detect distinct structures
on the surface, they performed statistical and qualitative analysis of near surface turbulent structures.
The goal in this project was to identify specific structures with the help of wavelet transformations.

1.2 Motivation for wavelets

Wavelet transformations are a method of representing a signal or a function based on a mathematical
construct called wavelets, Mallat and Peyre´, 2008. This is similar to Fourier transformations where the
signal is represented as the sum of sinusoidal waves. But the Fourier transform of a signal is only a function
of the frequencies of the waves it is composed of; it gives no information on where these frequencies are
localised. Wave-like phenomena are well described using Fourier transformations, whereas non-dispersive
structures, like vortices, are localised. Wavelet transformations try to amend this by using both a frequency
and a localisation/time parameter in the transform. This will prove useful when we are trying to filter out
stationary long lived structures.

Dolcetti and Garćıa Nava, 2019 used 1D wavelet analysis to measure the surface elevation. They
used what’s called the Wavelet Directional Method, WMD, (Donelan et al., 1996). This method is used
in measurements of the surface elevation by minimising the number of measurements locations. The
transforms in time at some points where calculated and used to describe the rest of the surface. While in
this work, the transforms of the whole surface are of interest.
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Some might ask why machine learning is not used, as it has proven to be a very effective method to
identify shapes and object in images, Li et al., 2020. The reason is simply because wavelets are a straight
forward mathematical concept like Fourier transformations, and it is quite simple to see how and why they
perform and how they detect what they detect. In machine learning, the algorithm is very much a black
box, and it is not always possible to know what is happening. Having simple to understand methods also
makes it easier to correlate with the physics behind what we are observing.

1.3 Project work

This work was preceded by a project where the wavelet transforms where tested and used on the surface
to get an idea of how they worked and what kind of information could be gathered from them. In the
project one dimensional wavelet transforms where implemented along straight lines on the surface. This
work focuses on 2D wavelet transform of the whole surface. In the project, however, lines crossing the
surface where chosen and a one dimensional wavelet transform was done. The lines where chosen so that
they crosses a dimple on the surface. This is one of the long-lived turbulent structures that facilitate the
exchange of heat and gas mentioned earlier. These are the response to a small turbulent vortex right
underneath the surface that is attached to id and forms a small dimple. Figure 1.1 shows the surface
elevation along the y-axis of the direct numerical simulation done by Guo and Shen (the same dataset used
in this work), Figure 1.1a is the surface elevation, and Figure 1.1b is it’s transform. The red circles outline
a dimple on the surface, both in the original signal and in the wavelet transform. It turns out that, in the
transform, these dimples make these pyramid like shapes, and are fairly simple to recognise. Structures
of different scales and shapes gave different responses in the wavelet transform. How to read these images
will be explained in more detail in later sections.

(a) (b)

Figure 1.1: Surface elevation along the y-axis of the surface(a), and it’s 1D wavelet transform(b). The red
circles outline the a dimple on the surface created by an attached vortex underneath

The 2D wavelet transform was also performed in the project work, but little could be derived other that
the fact that it could differentiate between structures of different length scales. This gave the motivation
for this work, where the 2D transform is cultivated further, and more typical turbulent structures are
investigated.

1.4 Outline

Chapter 2 gives a general explanation of the theory behind how turbulent motion right under the surface
can deform the surface, and presents the typical near surface turbulent structures to be investigated. It
also gives an introduction to wavelets and wavelet transforms, with some mathematical definitions. In
depth mathematical knowledge of wavelets is unnecessary so only the general formulas are given with
some qualitative explanation of how they work. Chapter 3 introduces the free surface Direct Numerical
Simulation (DNS) data that was used, and how the velocity field was used to identify the turbulent
structures near the surface. This chapter also delves into the MATLAB Wavelet Toolbox, which contains

3



the functions for wavelet transformation that were used. Chapter 4 Then looks at the transforms of the
surface elevation and compares them with the turbulent structures that were found using the velocity field.
Various results are given and discussed along the way. Chapter 5 concludes the analysis and gives some
ideas for future work. Lastly, the Appendix contains the MATLAB scripts.
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2 Theory

2.1 Surface deformations and near surface turbulence

The Bernoulli equation in fluid dynamics (Çengel and Cimbala, 2014) states that

p1 +
1

2
ρv21 + ρgh1 = p2 +

1

2
ρv22 + ρgh2, (2.1)

along a streamline. Where p1, p2 are static pressures at two points on the streamline, ρ is the density,
v1, v2 are the velocities at the two points; g is the gravitational acceleration and h1, h2 are the heights
of the two points relative to a reference.

Let us now look at the free surface of a body of fluid, for example water in the sea or the ocean. We can
assume that there is only vacuum above it since air has much smaller density and viscosity. Nonetheless
there is an approximately constant pressure above the surface, the atmospheric pressure. Now assume,
also, that the stresses are continuous at the surface (Phillips, 1977), this is because discontinuous stresses
lead to infinitely large forces, which does not make sense in practice. There are two stresses working at the
surface: the pressure and the surface tension. These two must then, in sum, be continuous at the surface.
If the fluid at the surface is still or at a constant velocity the surface elevation will be a flat surface. The
surface tension works tangential to the surface and is continuous and constant, while the pressure works
in the vertical directions and is also continuous from the atmospheric pressure above, and increases with
pascals law (Çengel & Cimbala, 2014) the further we descend below the surface.

If there is a velocity fluctuation close to the surface, caused by for example and obstacle or turbulent
motion, the local pressure near the surface decreases, relative to the fluid around it. This is because to
satisfy the Bernoulli equation 2.1, an increase in velocity causes a decrease in pressure. However, the
pressure right above the fluctuation is the constant atmospheric pressure. This atmospheric pressure
then presses down on the surface causing a dimple. When the surface is deformed surface tension kicks
in to amend that. A stress force is then generated to counteract the pressure difference. The surface
tension works only tangential to the surface, so that when it is bent downwards by the pressure difference,
there is a component in both the vertical and the horizontal direction. This results in a balancing act
between the surface tension created by the deformed surface and the pressure difference across the surface.
A deceleration causes a pressure increase and a hump on the surface. A more in-depth mathematical
explanation can be found in Phillips, 1977.

With that in mind let us look at some of the structures that are common in near surface turbulence. The
structures we look at here are the ones we find in gravity dominated turbulence, as Brocchini and Peregrine,
2001 define it. The surface ripples and elevation changes caused by the subsurface turbulence are relatively
small, and at a small scale. On top of waves travelling on the surface we also have vortex dimples and
scars. The vortex dimples are circular dips in the surface caused by vertically oriented vortices attached to
the surface. When turbulent structures near the surface and are obstructed by it they sometimes break up
and their vorticity is redirected so that they attach themselves to the surface causing this dimple. They
are also called bathtub vortices as they are similar to the vortices one gets when emptying a bathtub.

The other main feature of interest are what Brocchini and Peregrine, 2001, call scars, or up- and
downwellings (Kumar et al., 1998). They have also been called splats and antisplats (Guo and Shen, 2010)
or up- and downdraughts (Pan and Banerjee, 1995). The scars are technically the features one observes in
the vicinity of up- downwellings, but are the most visible structures. Shen et al., 2004, and Kumar et al.,
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1998, notice that in channel-like flow hairpin vortices generated by the shear layer from the bottom of the
channel move towards the surface causing regions with strong vertical motion. When these updraughts
reach the surface they cause a small hump on the surface, as the fluid that is being rushed upwards meets
the boundary to the air and is redirected horizontally to the sides. Here we call these upwellings, but
they have also been called splats, as, on the surface, they are shaped similar to something splattered on a
wall. Due to mass conservation, some of the fluid that is dispersed to the sides at the top of an upwelling
goes back down again, making areas with strong downward motion. These generate downwellings on the
surface, where the opposite happens, and fluid from the sides is pushed inward and back down below the
surface. The vortices that cause these rushes of upward or downward moving fluid may break up and
attach themselves to the surface, causing the attached vortices mentioned before. In DNS simulation these
up- and downwellings appear with the inclusion of a shear layer under the surface. Shen et al., 1999, and
Kumar et al., 1998, mention that the hairpin vortices that cause these upwellings are only present if these
is a some kind of shear layer underneath. Pan and Banerjee, 1995, did simulations where they changed the
boundary condition away from the surface and noticed that upwellings are found to disappear when a slip
boundary condition is used for the wall opposite to the free surface, causing the shear layer to disappear.

These have the clearest impact on the surface divergence, SD. It is calculated by

SD =
du

dx
+
dv

dy
, (2.2)

here u and v are the horizontal velocities at the surface, with x and y as their respective directions. By
continuity this has to be equal to −dwdz . At an upwelling the fluid at the surface is pushed strongly to the
sides, giving strong positive surface divergence; at downwellings the fluid is pushed strongly inward giving
strong negative surface divergence.

The important thing to note is that these turbulent structures are the main cause for heat and gas
exchange between the ocean and the air around it, Turney and Banerjee, 2013. These near-surface struc-
tures continuously renew the surface keeping the exchange reaction from reaching equilibrium. And, as
mentioned in chapter 1, stable long-lived eddies are believed to be the main proponent of this exchange. In
some flow conditions by Kumar et al., 1998, they estimated that the upwellings contribute to 51% of the
mass transfer rate, and the attached vortices up to 20%. The attached vortices and up- and downwellings
occur at a very small scales on the surface (smaller than the turbulent perturbations that cause them,
Brocchini and Peregrine, 2001) and are sometimes hard to identify and quantify. Here we look at how a
simple computer vision tool, more specifically wavelet analysis, can be used on the surface elevation to
find these structures. So what are wavelets, and how are they used?

2.2 Wavelet analysis

Most of the theory on wavelet transformations is taken from a book called “A wavelet tour of signal
analysis” by Mallat and Peyre´, 2008, unless something else is specified. As this book is more mathematical
than is necessary for this work, only a simplified version of the main concepts and definitions is given here.

The simplest way to give an idea of wavelets is by addressing their similarities with Fourier transforma-
tions. Here, we decompose the signal into its frequencies using a sum of sinusoidal waves. The transform
then becomes a function of the frequencies. However, this gives no information on where these frequencies
are localised. There is more than one way to amend this. One is to do a Fourier transformation only on a
windowed portion of the signal, then moving this windows throughout the signal. This is called windowed
Fourier transformations or short-time Fourier transformations. Another is wavelet transformations.

Wavelet transformations started in 1910 when Alfred Haar constructed the function

ψ(t) =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise.

(2.3)

Shown also in Figure 2.1. Dilating and translating this generates a basis for all functions of finite energy.
A function of finite energy has a finite squared magnitude meaning
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Figure 2.1: The Haar wavelet.

∫ ∞
−∞
|f(t)|2dt <∞. (2.4)

This is also denoted as ||f ||2 <∞.

The function 2.3 was called the Haar wavelet after it’s creator. Dilation an translation are the two
fundamental operation one can do to a function of one variable. Dilating and translating means a variable
shift using two parameters like so

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (2.5)

where the variable u ∈ R is used to translate the function, or wavelet, in the time/space axis, so that
the wavelet can be centred for at any value of t. And the variable s ∈ R+ is used for the scaling,
this term has the effect of squeezing and stretching the whole wavelet. ψu,s(t) is the resulting wavelet
after the manipulation. Scaling and translating the wavelet, and summing over all possible scales and
translations, can generate any function of finite energy. The reason for adding the 1√

s
term to the start

is to keep the squared magnitude of the wavelet the same: the original wavelet has a magnitude of 1, so
||ψ||2 = ||ψu,s||2 = 1. To keep this the case for all possible scaling factors, the term was added.

Similarly to Fourier transformations, we use a convolution to calculate the transform. Defining the
transform of a function, f(t), as Wf (u, s), evaluating the integral

Wf (u, s) =

∫ ∞
−∞

f(t)
1√
s
ψ∗
(
t− u
s

)
dt, (2.6)

gives the transform. Here ψ∗ means the complex conjugate of the wavelet function, since the wavelet and
the signal can in general be complex functions. Notice that the transform, Wf (u, s), is a function of two
variables, the scaling s and the shifting u. The Haar wavelet in Equation 2.3 is a so called a “mother”
wavelet. This mother is then scaled and shifted to get all the other possible variations of the mother needed
for the transform, ψu,s from Equation 2.5. At each value for s and u we have a coefficient, a value that the
wavelet transform takes. This tells how prominent the wavelet is at each scale and location. Analogous to
how in Fourier transformations the transforms told us how prominent each frequency was.

This is easier to calculate in Fourier space. To do this we use Plancherel’s theorem∫ ∞
−∞

f(t)h∗(t)dt =
1

2π

∫ ∞
−∞

f̂(ω)ĥ∗(ω)dω, (2.7)
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where f̂ is the Fourier transform of f . This is the general form of the theorem, and accounts for the fact
that f and h can be complex valued. Here, in ĥ∗(ω) means the complex conjugate of the Fourier transform
of h. Meaning that, for our wavelet transform integral, we need to evaluate the Fourier transform of
ψ
(
t−u
s

)
first. From Fourier analysis we have that (Rottmann, 2019)

F

(
ψ

(
t− u
s

))
= e−iuωF

(
ψ

(
t

s

))
= ψ̂

(ω
s

)
e−iuω

It’s complex conjugate becomes

ψ̂∗
(ω
s

)
eiuω

Plugging this back into Equation 2.6 we get

Wf (u, s) =
1

2π

∫ ∞
−∞

f̂(ω)
1√
s
ψ̂∗
(ω
s

)
eiuωdω, (2.8)

If we look at Equation 2.8 we notice that the variable s is not integrated over, but does contribute to
scaling of ψ̂∗. So, for every value of s, Equation 2.8 becomes the inverse Fourier transform of

f̂(ω)
1√
s
ψ̂∗
(ω
s

)
.

The reason for mentioning this is that the functions from the MATLAB Wavelet Toolbox use this to
calculate the transforms. See chapter 3 for more on the Wavelet Toolbox.

The inverse is not as straight forward as with Fourier transforms, since the transform is a function of
two variables, u, s. First we need to calculate what is defined as the admissibility condition

Cψ = 2π

∫ ∞
0

|ψ̂(ω)|2

ω
dω, (2.9)

ψ̂ is the Fourier transform of ψ, which is why we integrate over ω, usually representing frequency. It is a
criterion that Cψ <∞ for the inverse transform to exist, and is therefore a general criterion for wavelets.

The inverse transform then becomes

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

Wf (u, s)
1√
s
ψ

(
t− u
s

)
du
ds

s2
. (2.10)

How the term Cψ comes into play for the inverse and more details in general can be found chapters 2
and 4 of “A wavelet tour of signal processing” by Mallat and Peyre´, 2008, or other literature on wavelets.
Deep mathematical knowledge on wavelets is unnecessary and the base concepts and definitions given here
will suffice going forward.

An example of wavelet transformation is still useful. Figure 2.2 is taken from the book mentioned before,
“A wavelet tour of signal analysis” by Mallat and Peyre´, 2008.

The Mexican hat wavelet is used in this example, another mother wavelet. This is defined as

ψ(x) = (1− x2)e
−x2

2 (2.11)

and can be seen in Figure 2.3.

In Figure 2.2 the vertical axis on the bottom plot is the logarithm of the scale, log2(s), while the
horizontal axis is the shifting variable, u. u matches the variable used in the signal t. We can think of the
transform as the fitting between the wavelet and the original signal. For every value of the scaling s we
have a more contracted or dilated wavelet. This is then convolved with the signal to see where there is
the most overlap between the wavelet and the signal. Black areas in Figure 2.2 represent places where the
value of the fitting is positive, in grey areas there is little overlap and the values are close to 0, and in the
white areas the value for overlap is negative. Since the transform is a function of two variables, s and u,
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Figure 2.2: Example from “A wavelet tour of signal processing” by Mallat and Peyre´, 2008, page 104.

Figure 2.3: The Mexican hat wavelet.

it has 1 more dimension than the original signal; in the bottom plot of Figure 2.2 we are therefore looking
at a surface in 3D from the top down.

Looking at the signal, f(t), we see that for u = t ∈ [0.6, 1] there is a lot of noise on top of a general
signal. The noise is captured in the transform by the structures we see at the lower scales (top right of the
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bottom plot of Figure 2.2, log2(s) ≤ −4, u ≥ 0.6), while the general signal is captured at the larger scales
(log2(s) ≥ −3).

Looking at the transform we notice that some of the structures are quite blurry and smeared out. The
jumps at t ≈ 0.05 and 0.1 are very localised phenomena in the signal, but in the transform it is apparent
that they give values for the transform also if we move slightly away from them, especially for larger scales.
This makes it hard to judge where some structures in the signal are localised sometimes. This is especially
hard when there are various structures close to each other.

This is similar to a famous idea in quantum mechanics, certain pairs of variables cannot be predicted
exactly. This is called the Heisenberg’s uncertainty principle, or just the uncertainty principle (Sen, 2014).
In this case, the variables that can’t be predicted exactly are the time, and the scale, which is analogous
the the frequency in Fourier transforms. For every signal one can either know exactly it’s time variation
or it’s frequency spectrum. It’s impossible to know where each frequency is localised in the time axis, or
which frequencies are present at a certain time. In wavelet transformations one works with scales instead
of frequencies but the problem remains the same. Predictions of both the time/space and the scale cause
uncertainty in both. Meaning that to get an idea of where a frequency is localised, we have to give up some
accuracy in exactly which scale we are looking at, and where exactly it is localised. This is also the case
for other time-frequency transformations, like the windowed Fourier transform, mentioned at the start of
this section.

(a) Time-frequency box, also called Heisenberg box (b) Heisenberg boxes in wavelet transforms.

Figure 2.4: Time-frequency boxes, also called Heisenberg boxes. Figures from “A Wavelet Tour of Signal
Processing” by Mallat and Peyre´, 2008, pages 15 and 20.

Let’s look at this graphically. Figure 2.4a shows a box in the time-frequency plane (for wavelets it’s
the time-scale plane). Predicting φ in both time and frequency causes uncertainties. If these uncertainties
are set to be the sides of a rectangle in this grid, we get what is called a Heisenberg box. This box is
mathematically restricted to have a area larger than 1

2 . This is the resolution for the transform, a kind of
“pixel”. Inside this box the values are uncertain, but we know that they are most likely somewhere inside
of this box. If we want to know the exact signal in the time domain we can reduce the time uncertainty
and increase the frequency uncertainty. When there is no uncertainty in time, we need infinite uncertainty
in frequency for this box to have an area larger than 1

2 , so we have no information about the frequencies
in the signal. The same is the case when there is no uncertainty in frequency. Proof is in chapter 2 of “A
wavelet tour of signal processing” by Mallat and Peyre´.

In wavelet transformations the uncertainties are dependent on the scale we are looking at. These
Heisenberg boxes don’t need the to have the same sides on the whole time-frequency plane. In wavelet
transformations this is not the case, and the boxes are arranged such that for smaller scales there is little
uncertainty in time but large uncertainty in frequency; these boxes can be seen as tall and thin in our
time-frequency plane. But for larger scale there is little uncertainty in frequency but large uncertainty
in time and can be seen as short and wide. These boxes can be seen in Figure 2.4b. Here the y-axis is
the frequency not the scale, however, these are analogous: small scales mean large frequencies (narrow
wavelets), and large scales mean small frequencies (wide wavelets).

The figure shows how for every scale range the box is half the width but twice the length of the boxes
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in the scale range below it, keeping the area of the box the same, but varying the uncertainties depending
on the scale. This means that for large scales (or low frequencies) the transform has good scale resolution
as the uncertainty in the scale is small. However, it has bad time resolution, with large uncertainty in the
time axis. For small scales (or high frequencies) the opposite is true. The transform has then good time
resolution, but bad scale (frequency) resolution.

2.2.1 2D Wavelet transforms

When transforming a two-dimensional surface, an extension of the normal 1D wavelet transform is used. As
the book by Mallat and Peyre´, 2008, does not contain much about 2D wavelet transforms, the information
given in this section is mostly taken from Antoine et al., 2008, and Wang and Lu, 2010.

For 1D wavelets we used the two transformations on a function of one variable: translation and dilation.
On the plane, however, there are three fundamental transformations: translation, dilation and rotation.
We then need three variable shifts of the mother wavelet ψ(~x) in 2D wavelet transformations

Translation: T ~uψ = ψ(~x− ~u), ~u ∈ R2,

Dilation: Dsψ =
1

s
ψ

(
~x

s

)
, s ∈ R+,

Rotation: Rθψ = ψ(r−θ~x), θ ∈ [0, 2π);

(2.12)

here there is a vector ~u, instead of the scalar in 1D wavelet transforms, since there are two directions to
translate in. The scaling is done similarly, but the term in front is now 1

s instead of 1√
s

to keep the squared

magnitude of the function the same. The r−θ term is the rotational matrix in two dimensions (Lay et al.,
2016):

rθ =

cos θ − sin θ

sin θ cos θ

 . (2.13)

The terms T ~u, Ds, Rθ are then operators for translation, dilation and rotation on the plane respectively.

Transforming the wavelet to include all of these variable shifts gives

ψ~u,s,θ =
1

s
ψ

[
r−θ

(
~x− ~u
s

)]
. (2.14)

Having said that, there is a simplification that can be done when working with isotropic wavelets.
Isotropic means that the functions is the same no matter the orientation of the axes, it is rotation invariant
and the rotation term has no effect. This simplifies the variable shift to

ψ~u,s =
1

s
ψ

(
~x− ~u
s

)
. (2.15)

The 2D wavelet transformation then becomes a simple extension of the 1D transformation

Wf (~u, s) =

∫
R+

∫
R2

f(~t)
1

s
ψ

[
r−θ

(
~t− ~u
s

)]
d~t, (2.16)

or in Fourier space

Wf (~u, s) =

∫
R2

f̂(~ω)
1

s
ψ̂

[
r−θ

(
~ω

s

)]
ei~u~ωd~ω.

The inverse is also a natural extension of the 1D transform, first we need the admissibility condition

Cψ = (2π)2
∫
R2

|ψ̂(~ω)|2

~ω2
d~ω, (2.17)
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Then the inverse becomes

f(~x) =
1

Cψ

∫ π

−π

∫
R+

∫
R2

Wf (~u, s)
1

s
ψ

[
r−θ

(
~x− ~u
s

)]
d~u
ds

s2
dθ. (2.18)

We see that the original signal now has two variables, ~t = [t1, t2], while the transform has 4: ~u =
[u1, u2], s and θ, for isotropic wavelets it’s three as the angle θ is omitted. This means that visualising the
whole 2D wavelet transform is quite challenging. It is therefore common to only inspect a certain scale
and rotation angle at a time. See chapter 4 for how the surface transforms are presented.
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3 Methods

3.1 DNS data

The data is based on a Direct Numerical Simulation (DNS) of the free surface with turbulence underneath.
The simulation was executed by Guo and Shen at the University of Minnesota. Figure 3.1 illustrates the
simulation setup they used. The dimensions of the simulation domain are Lx×Ly×H = 2π×2π×5π. The
grid is divided uniformly such that the number of cells is Nx = 256, Ny = 256 and Nz = 660 in the x, y
and z directions respectively. In the region described as the “bulk region” in Figure 3.1, a forcing term was
used to stir the flow and generate turbulence. In the “damping region” this forcing was gradually reduced.
The turbulence in these regions was deemed to be isotropic. Close to the free surface, in the region label
“free region”, there was no induced forcing, so the turbulence naturally advected to this region from the
“bulk region”. The Reynolds number in the simulation was 2500, and the Froude number was 0.1. The
surface tension was omitted in this simulation.

Figure 3.1: The setup used in the simulation by Guo and Shen, 2010. They constructed this and equivalent
figure is shown in the article from 2010.

The data was given as hdf5 files, which is a hierarchical data format. This data format saves the
variables as a struct in a file. There is a struct for each timestep. It included various variables needed in
the DNS. The surface elevation, and the velocities and pressure near the surface were extracted from the
hdf5 files using the build-in MATLAB functions h5info and h5read, (h5info, 2011, h5read, 2011). The
scripts are included in the Appendix.
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Figure 3.2: Vortex cores at the surface given by the algorithm by Jeong and Hussain, 1995, the vortex cores
are given by the red outlines.

Since the whole velocity spectrum was known, it could be used to find the actual location of the various
structures close to the surface. As mentioned in chapter 2 there are two main structures of interest, the
attached vortices and the up- and downwellings. The vortices were found using the algorithm presented
by Jeong and Hussain, 1995. This method finds the centres of vortices, and was used on the velocity field
at the surface. If there is a vortex core of a certain strength at the surface it is then a attached vortex.
Non-attached vortices are aligned horizontally, along the surface and their cores don’t appear if we only
look at the surface velocity (see Brocchini and Peregrine, 2001, Kumar et al., 1998).

Figure 3.2 gives an example of the method by Jeong and Hussain, 1995 on one of the timesteps in the
DNS data. Here the red outlines are the vortices found by the method. As mention in chapter 2: Theory
the attached vortices cause small circular dimples on the surface, looking at the surface and imposing these
outlines, wee see which dimples are caused by an attached vortex. This can be seen in Figure 3.3.

For the up- and donwwellings, Guo and Shen give a method themselves. This is most thoroughly
described in Shen et al., 2004, and is based on the surface divergence. They called the method the
Variable Interval Space Averaging (VISA) method. The idea is to look at where the surface divergence
changes the most. On top of the welling, the surface divergence is very large, but diminishes very quickly
away from it. The variance of the surface divergence is calculated on a small interval around each point.
If the variance is larger than a certain threshold, that point is part of an up- or downwelling, depending
on whether the divergence is positive or negative at that point.

Since the variance is calculated in a small window around a point let us call the half side-length of
this window W . The value of W should be around the width of these wellings. This length scale is hard
to define since it is not the same as the Taylor microscale of the turbulent structures that cause these
upwellings, as one would think, but much smaller (see Brocchini and Peregrine, 2001). No literature was
found to estimate this length scale directly, so the value used for W came from qualitative observation
of the structures on the surface on from comparison to the length scales of the wavelets used in the
transformation. It was found that W ≈ 0.22, captures the structures quite well.

So to use the VISA (Variable Interval Space Averaging) method, we need to compute what Shen et al.
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Figure 3.3: Surface elevation with the vortex core given by the algorithm by Jeong and Hussain, 1995, the
vortex cores are the red outlines.

call a variable interval space-averaging quantity:

SD(x, y, t,W ) =
1

4W 2

∫ x+W

x−W

∫ y+W

y−W
SD(ξ, η, t)dξdη. (3.1)

The local variance inside this window then becomes

SDvar(x, y, t,W ) = SD2(x, y, t)− SD2(x, y, t,W ). (3.2)

If at some point (x, y), SDvar(x, y) > 5SD2
rms (here SDrms is the root mean square of the surface

divergence) then it was deemed that this point is part of an up- or downwelling, depending on the sign of
SD.

Figure 3.4 shows an example of the use of this method on one of the timesteps. As mentioned the
upwellings are regions with large surface divergence, and the downwellings have small surface divergence.
We see that the outlines in red and green capture these areas. Here the red outlines are the upwellings,
and the green are downwellings.

3.2 The MATLAB Wavelet Toolbox

To perform the wavelet transformation the MATLAB Wavelet Toolbox was used. The source code for
these functions is sometimes hard to find, but it was assumed that MATLAB would have better wavelet
transformation functions that any that could be manually generated in the span of the work. Nonetheless,
some signals in MATLAB were transformed and transformed back for comparison and testing.

Figure 3.5 and Figure 3.6 show examples of two built-in MATLAB data sets called “mtlb” and “noisdopp”
significantly. Figure 3.5b and Figure 3.6b are the wavelet transforms, similar to the example in Figure 2.2.
To get the 1D wavelet transforms in MATLAB, the function wt was used (wt, 2018). But this needed
information about which wavelet to use and the scales in the transformation as a second input variable.
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Figure 3.4: Sample of the surface divergence at a timestep in the DNS data. The green outlines enclose a
downwelling, while the red enclose an upwelling.

(a) (b)

Figure 3.5: Wavelet transform of the signal “mtlb” in MATLAB and comparison between original and
inverse.

These were constructed using the function cwtfilterbank (cwtfilterbank, 2018). The Mexican hat wavelet
was used in the example in Figure 2.2, but the Morlet wavelet, shown in Figure 3.7, was used for these
examples.

The vertical axes are the scales in logarithmic spacing, and the horizontal the localisation, although
another colour scheme was used and a colour bar was added to show the value of the wavelet coefficients
(the coefficients are again the values for the fitting at each scale and localisation).

The signals were also reconstructed using the inverse wavelet transform function icwt (icwt, 2016) and
we see that the “mtlb” signal had a good fit but “noisdopp” had some mismatch, as can be seen in
Figure 3.6a. This is mainly at the end where the main oscillation in the signal is very wide, meaning that
a wavelet of a very large scale is needed to capture this part of the signal. However, the transform goes
up to a scale value of around 303, and it might be the case that a larger scale is needed to capture this
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(a) (b)

Figure 3.6: Wavelet transform of the signal “noisdopp” in MATLAB and comparison between original and
inverse.

wave. Unfortunately, the scale of a wavelet of a signal can only be so large, in MATLAB this cutoff is such
that the wavelet spans the whole signal at the largest scale. Meaning that a larger scale would involve a
wavelet wider than the signal. As expected only including all possible scales correctly describes the signal,
even though that would require an infinitely long signal (so that the scales can go to infinity). We see that
since the “mtlb” has more data points, the largest scale present there is close to 1000.

Also note the white lines in the wavelet transform plots. They define what MATLAB calls the cone
of influence (wt, 2018). All the values underneath these white lines represent areas where the wavelet,
centred at that point, was partially beyond the signal. This meant that the coefficients at these scales and
localisation cannot be fully trusted, as the wavelet tries to describe something that is beyond the signal.
At the smallest scales, the wavelet is very squeezed and can go close to the boundary of the signal, without
leaving the span of the signal. In contrary, for the larges scales (bottom of the plot) these lines almost
seem to meet at the centre, meaning that the wavelet is so stretched out at this scale, that only when it
is at the centre, it does not go outside the signal. Which means that The wavelet here is the same length
as the signal. This is the cutoff scale mentioned in the previous paragraph.

Figure 3.7: The Morlet wavelet.

Figure 3.7 shows the real part of the Morlet wavelet, since it is in general a complex valued function.
This also means that the transform becomes complex, Figure 3.5b and Figure 3.6b show the absolute values
of the wavelet coefficients. Since the wavelet toolbox is mostly used for signal processing the values on the
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vertical axis are returned as frequencies in MATLAB, not the wavelet scales. As mentions there is a very
close relationship between scale s and frequency f in wavelet transform, they are inverse proportionate
such that f = c

s =⇒ s = c
f where c is a constant that depends on the wavelet. There is a function in

MATLAB that interchanges between them depending on the wavelet called scal2frq which was used to
find the scales in the figures (scal2frq, 2006).

For the two dimensional analysis of the whole surface, cwtft2 calculates 2D wavelet transforms (cwtft2,
2013). As mentioned this function first transforms the signal with 2D fast Fourier transforms, then
multiplies it with the Fourier transform of the wavelet at the desired scale to find the convolution. Here
the 2D Mexican hat wavelet from Figure 3.8 was mostly used. This was also tested, but a function for
inverting 2D wavelet transforms in MATLAB could not be found.

The two dimensional version of the Mexican hat wavelet is given by the function

ψ(~x) = (2− |~x|2)e−|~x|
2/2 = (2− x21 − x22)e−(x

2
1+x

2
2)/2 (3.3)

and can be seen in Figure 3.8.

Figure 3.8: The 2D Mexican hat wavelet.

The functions cwtft2 can be used with a variety of inputs, and one has a lot of choices in costuming
the transform. Other than the input signal to be transformed, one can specify the wavelet used in the
transformations. The function cwtftinfo2 has a list of all the possible wavelets, and which parameters
can be changed (cwtftinfo2, 2013). For this work, the Mexican hat was used in general. The wavelet in
Figure 3.8 is isotropic in its basic version, but the parameters for the wavelets can be changes to stretch the
wavelet in one direction or the other. The wavelet becomes elongated and is therefore no longer isotropic,
this version of the wavelet proved very useful in some cases, as can be seen in Results. The function
defaults to the Morlet wavelet if nothing is specified for the wavelet.

Another input parameter is the scale range for the transformation. For 1D transformation all plausible
scales are used automatically based on the length of the signal, but for 2D transformations, not all scales
are necessarily of interest. As before there are some conditions. The smallest scale has to be larger than
one. There is not a largest scale condition built in, however the same problem arises if the scale is too
large; the wavelet goes beyond the boundary of the signal. The documentation does not mention this,
however the smallest scales is probably chosen to be the smallest amount of data points, but still retain
the form of the original wavelet. For most of the work it was found that the smallest scales were preferable
for this data set. The wavelet at this scale was reconstructed by looking into the code for cwtft2 giving
what we see in Figure 3.9. It looks jagged because at the smallest scale it is only a few data-points wide.

The last input parameter of interest is the set of angles. These are the angles used to rotate the wavelet
relative to the signal. These are only used with anisotropic wavelets.
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Figure 3.9: Mexican hat wavelet at the smallest scales in MATLAB

Most of the MATLAB scripts can be found in the chapter 5, even the ones used for just testing the
wavelets, if they are of interest.
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4 Results

4.1 First look at the transforms

Let us now look at some transforms of the surface elevation to get an idea of what responses we get and
how they can be of use.

(a) (b)

Figure 4.1: Surface elevation at timestep 196.25 and it’s wavelet transform with the Mexican hat at the
smallest scale.

Figure 4.1 shows the surface elevation at one of the timesteps in the DNS data on the left and it’s
wavelet transformation for the smallest scale on the right. The Mexican hat wavelet was used here (not
the stretched version, but the unchanged wavelet). Since this wavelet is isotropic the angle is irrelevant.

We see how small or thin structures in the surface elevations give strong responses in the wavelet
transform. However, distortions of surface at larges scales, for example in the middle of Figure 4.1a, give
no response in wavelet space (the areas in light blue in Figure 4.1b are values close to 0).

If we look at a larger scale for the Mexican hat we get Figure 4.2. Here the shapes are more diffused
and the small or thin structures on the surface are not as apparent.

Since the structures we are looking for are quite small, using the small scale transform is preferable.
As mentioned in section 2.2, at small scales the transform has high uncertainty in the scale. So the exact
scale used is not important. In fact, for the scales from 1 to around 2.5 the transforms are really similar,
and the structures become only slightly diffused. Figure 4.3 shows the transform the smallest scale of 1
(4.3b) and 2.6 (4.3a).
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(a) (b)

Figure 4.2: Surface elevation at timestep 196.25 and it’s wavelet transform with the Mexican hat at the
smallest scale

(a) (b)

Figure 4.3: Wavelet transform of the surface for the scales (a) 2.6, (b) 1

4.2 Response from attached vortices

Let us then compare the wavelet transform for the smallest scale with the location of the various surface
structures and see what we can find. The wavelet at the smallest scale was reconstructed in Figure 3.9.
The top of the “hat” is pointed downwards, meaning that, when convolving with the surface elevation, we
get positive positive values of the transform when the surface is bent downwards, and negative values when
it is bent upwards. This means that the dimples from the attached vortices will give positive values in
the wavelet transform. Now if we look at Figure 4.4, we have again included the outlines for the attached
vortices. We see that, in general, these outlined regions coincide with where the transform is locally
positive.

The colour scaling bar on the right side tells us that the coefficients of the wavelet transforms are between
−6.5·10−4 and 6.5·10−4. If we only look at the positive values for the wavelet, larger than 0.4·10−4, we get
what we can see in Figure 4.5. The yellow blobs are the areas in the transform larger than the threshold
and the red outlines are, as before, the attached vortices given by the velocity field at the surface. We see
that the dimples made by the attached vortices give strong responses in the wavelet transform. There are
also some other structures appearing. These may be dips in the surface from up- or downwellings or other
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Figure 4.4: Wavelet transform at the smallest scale, the red outlines represent the location of the attached
vortices.

structures on the surface.

Figure 4.5: Wavelet transform at the smallest scale. Only the positive value above the threshold of 0.4 ·10−4

are shown. The red outlines represent the location of the attached vortices.

From this point we try to look into two questions that come to mind when looking at Figure 4.5. One is

22



if there is a way to isolate the dips on the surface caused by surface dimples. The other if the deformations
on the surface are proportional to the strengths of the attached vortices, i.e. if the stronger the vortex,
the more the deformed the surface is. This would mean that the wavelet transform may have information
on the strength of the attached vortex causing the dimple it is detecting. Intuitively, the stronger the
vortex the bigger the velocity change in it, and the more dipped the surface. But how does this translate
in wavelet space?

4.2.1 On attached vortex strength

Getting an estimate of a vortex’ actual strength from the velocity field was done in a simple manner. Using
the areas designated as vortex cores by the algorithm mentioned in chapter 3, we integrate the enstrophy E
using the velocity field at the surface. Since the attached vortices are mainly directed vertically, one could
make an argument that only the vertical vorticity ωz is required to make an estimate, but right under the
surface the vortices are not necessarily vertically oriented. The enstrophy E = ω2

x + ω2
y + ω2

z was therefore
used instead.

Figure 4.6: Ratio between the integrated enstrophy and the wavelet transform over some observed attached
vortices

The vortices used in the comparison where chosen by looking at the ones detected by the vortex core
algorithm. To see if the transform has information on the strength of the vortex, we integrate the transform
on an area enclosing the vortex. The ratio between the two was then calculated and can be seen in
Figure 4.6. Since the enstrophy is calculated using the derivatives of the velocity fields and the wavelet
transform from the surface elevation, they are two orders of magnitude from each other. Even so, we
are not interested in their values being close to each other, but that their ratio is consistent. It would
mean that a strong vortex implies a strong dimple on the surface and a strong response in the transform.
Looking at Figure 4.6 we see that their ratio varies between 350 and 750 for the 36 vortices that were
identified and used in this comparison. This implies some dependency, and this assumption is fortified
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when instead of choosing the location of known attached vortices we look at random points in the same
timesteps as these vortices.

Figure 4.7: Ratio between the integrated enstrophy and the wavelet transform over some random areas on
the surface

Figure 4.7 shows the result of using random points. Most of the values are 0, or close to 0, except for å
few exceptions where they fall in the same range as before. The main reason for this is that the enstrophy
is very close to 0 when we are not in a vortex or in a strong vortical structure. Since the enstrophy is
the sum of the vorticities squared, when there is little to no vorticity, the enstrophy becomes really small.
The wavelet transform, on the other hand, is much smaller when it is not close to a small scale structures,
but the disparity between the values in areas with strong responses and areas with weak responses is not
as large. Nevertheless, some dependency is present between the strengths of the vortices and the signals
in the transforms, but is not investigated further here. Ideally one would like to compare all the vortices
in the whole data set; these would then have to be identified manually, which was deemed unnecessary
considering part of the reason for using these transform is also identifying these structures. This problem
can be reopened once the identification of the attached vortices has improved.

4.2.2 On attached vortex isolation

Isolating the attached vortices means to filter out the other structures that appear in Figure 4.5. First
notice how the dimples generated by the attached vortices are very circular, and mainly give a response
in wavelet space in a small circular area. The other responses are, on the contrary, very elongated.

The method used here is based on exactly that. There is another tool in computer vision that is often
used to find circles or circular shapes in images. It is called the circle Hough transform. The idea behind
this method is very simple. For a given radius the Hough transform makes circles around contour points
on the signal. If enough of them have a common intersection, that is probably the centre of a circle. The
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MATLAB function imfindcircles from the Image Processing Toolbox was used. The documentation for
this function (imfindcircles, 2012) or other sources on the Hough transformation can give more details
on the circle Hough transform. Another criteria was used when using this method, the perimeter of the
blobs could not be too much larger than the circumference of the circle with the radius of inspections.
This filtered out long shapes that were semicircular at the ends and could give a response in the Hough
transform. The radii for the attached vortices varied somewhat, so a range of radii was chosen based on
the observed size of the dimples caused by the attached vortices. With the width of the domain being 2π
nondimensional units, then the radii of the attached vortices where mostly between 0.022 and 0.123 units.
The width of the whole vortices was then up to 0.24 units, close to the width W used in the VISA method
mentions in chapter 3 to find the up- and downwellings.

Figure 4.8: Positive values of the wavelet transform at the smallest scale. The red outlines are the vortices
found using the velocity field at the surface. The blue dotted circles are the attached vortices found by the
Hough circle transform.

The result of this method for the same timestep as Figure 4.4 can be seen in Figure 4.8. The blue dotted
circles are the circles found by the Hough circle transform. We see that generally this isolates the circular
structures made from the attached vortices quite well. It does not capture the vortical structures that are
more elongated, like the one on the top right of the figure. This may be two attached vortices meeting at
this timestep and fusing together, making this elongated shape. These types of structures can be hard to
identify when we look at a single timestep. However, looking at several timesteps after one another could
amend this problem. This was not implemented in this work. It could also be a vortex that is diagonally
aligned with the surface, but that is unlikely as the presence of the surface realigns vortices to be either
parallel with it or attached to it (Kumar et al., 1998, Shen et al., 1999, Dabiri, 2003).

There are also some false positives, where the Hough algorithm finds circles in the response that are not
necessarily caused by an attached vortex, but is just a region where the wavelet transform is above the
threshold and has a circular contour. This are the areas around an up- or downwelling that give responses
here as well.
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(a) t = 215 (b) t = 227.5

(c) t = 252.5 (d) t = 340

Figure 4.9: Four different timesteps of the simulation data with the attached vortices outlined in red, and
dotted blue circles are detected using the Hough circle transform.

Figure 4.9 shows some additional timesteps in the simulation data, where this method was used. We see
how the blue dotted lines capture a fair amount of the attached vortices (red outlines). However, when
these vortices are large and somewhat deformed, they are badly captured. The Hough transform has a
sensitivity variable that can be preset such that the blobs do not need a very clear circular shape to be
included. Even so, setting this sensitivity too high sometimes meant that some circles where detected at the
ends of some of the elongated shapes. In general the optimal sensitivity for the Hough transform depended
on the timestep and on the cutoff threshold of the wavelet transform (the value 0.4 · 10−4) mentioned in
a previous section. It is therefore quite challenging to find threshold values that were appropriate for all
the timesteps. Keeping in mind that this is all based on the same data set with the same Reynolds and
Froude numbers, it means that for experimental data and real world implementation, there is still a lot to
be improved.

One recommendation for future work is the to look at the time variation of the surface. The data in
this work was inspected one timestep at the time, however a lot of information can be gathered from
looking at the time variation. For instance these attached vortices are not stationary, but move slowly
in a certain direction that is not the mean flow direction, however the up and downwellings do not, and
they move along with the flow (Kumar et al., 1998); or, like in our case where there is no mean flow,
they are stationary. The up- and downwellings do, however, expand slightly outward, as the fluid motion
underneath causing them changes. Nonetheless, following these circular blobs in time should give an idea
if it represents an attached vortex, or something else.
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Another point to be made is if one should look at all the attached vortices, even the weaker ones. In
Figure 4.8 and Figure 4.9 we see that there are a lot of very small vortices. Some of them cause very
small disturbances on the surface that are still captured by the wavelet transform. We chose a very small
threshold for the positive values in the wavelet transform, so all small scale structures that bent the surface
slightly downwards are present. There is a case to be made if these small vortices are actually long lived
attached vortices. They may be some very small turbulent structures that dissipate at the surface and
do not renew the surface efficiently. Again an analysis in time will show if this is the case. The reason
for mentioning this is that by increasing the threshold in the wavelet transform, a lot of the structures
around the up- and downwellings that give false positives on the Hough transform are filtered out. If the
deformation caused by the vortex is very small, and does not show sufficient values in wavelet space, that
might also indicate that the vortex itself is very weak, and does not contribute to surface renewal in a
significant way.

One could also be tempted to say that a way to filter out the small blobs around the up- an downwellings
is to ignore them and only look at a certain distance away from them. This is, however, not a good
proposition. In fact these attached vortices tend to appear at the ends of up- and downwellings as they die
out. If we look at the bottom left of Figure 4.9b we see a semicircular yellow structure (around (x, y) =
(1, 1)), with some others around it. This is probably a lingering structure after an up- or downwelling
phenomena. We see it has two red outlines at is ends, meaning that two attached vortices have formed
there, as the up- or downwelling died out. This has been postulated to be the main cause of these attached
vortices in some flow by Kumar et al., 1998, and the blobs around the up- and downwellings cannot
therefore be omitted.

Figure 4.10: Ratio between the sum of the vortex strength at each timestep calculated by summing the
enstrophy and the estimated strength of the vortices detected using the wavelet and the Hough transforms

The strength of the detected vortices using this method was also compared with the total enstrophy of
all the vortices at each timestep detected with the algorithm by Jeong and Hussain mentioned in chapter 3.
The idea was to see if the same correlation from the lest section could be found, but also to identify which
timesteps gave a bad correlation relative to the others so that the identification could be improved overall.
This gave the results in Figure 4.10. Since this represents the sum of all the vortices at each timestep,
the ratio is in a different range than before. However, the spread is much larger, relative to the one in the
previous section, going from 1 · 10−4 to 3.5 · 10−4. The clear correlation from before is not as present and
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reinforces the need to improve on the detection of attached vortices. This is the extent this work delves
into attached vortex identification, now to look at up- and downwellings.

4.3 Response from up- and downwellings

Let us now draw the contours for the up and downwellings on the small scale wavelet transform and see
what we can derive.

Figure 4.11: Wavelet transform at the smallest scale at the timestep 196.25 with the green outlines repre-
senting the downwellings and the red outlines representing the upwellings.

From Figure 4.11 we see that most of the up- and downwellings are present in areas of the transform
with negative values. As mentioned earlier in section 4.2, this means that the surface is bent upward
relative to it’s surroundings in these regions. This is to be expected for upwellings, since they are formed
when some fluid moving upwards meets the surface and causes a stagnation at the centre of the upwelling,
where the fluid from the jet is dispersed to the sides. This stagnation, and the area around it have a
higher pressure that the rest of the surface causing it to bend upward. But in most of the literature the
presence of downwellings is argued with the presence of “scars” on the surface (Brocchini and Peregrine,
2001, Savelsberg and Van De Water, 2009). These are areas where the surface is bend sharply downward,
like a long rift. So one would assume that the downwellings are right under these scars, however when we
superimpose the outlines for the up and downwellings we see something different.

Figure 4.12 shows the same surface as before, but now the up- and downwellings are also included in
green (downwellings) and red (upwellings) outlines. The white circles focuses on such a scar on the surface.
We see that the downwelling does not coincide with it, but is slightly to the side. In fact it seems more
like this scar is right in between an up- and a downwelling.

To explain this we need to review the theory of these surface deformations. It was mentioned in chap-
ter 2 that the surface is deformed by velocity fluctuations that caused pressure fluctuations due to the
conservation of energy law proposed by Bernoulli. As mentioned when there is a local increase in velocity
the pressure drops and the surface bends downwards, while a decrease in velocity causes the pressure to
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Figure 4.12: Surface elevation at the timestep 196.25 with the green outlines representing the downwellings
and the red outlines representing the upwellings. The white circle shows a scar on the surface.

rise and the surface to bend upwards. We also mentioned that upwellings are generated when there is
a jet of fluid that meets the surface, here it spreads to the side, causes a stagnation at the surface and
the velocity to be very small close to the centre of the upwelling. This results in the surface being bent
upwards. Downwelling phenomena occur close to upwellings, when the fluid that has been dispersed to
the sides is jetted inwards and downwards again, because the mass needs to be conserved. This means
that at the centre of the downwelling the fluid meets and causes a new stagnation point, where the fluid
is decelerated close to it due to the change in velocity direction. A downwelling effect will, in fact, cause
the surface to rise, not a fall. However, in the region between an upwelling and a downwelling the fluid is
moving at a fairly high velocity, since it is being pushed by the upwelling and pulled by the downwelling.
This causes a strong local decrease in pressure resulting in the scars we see on the surface.

With that cleared up let us again set a threshold for the wavelet transform, so that we are only looking at
negative values. An appropriate threshold value in this case was found to be around −1 ·10−4. Figure 4.13
shows the wavelet transform again, but only taking into account the values below the threshold. Again
the yellow blobs represent the areas in the transform where it is below the threshold, the red outlines are
the upwellings and the green are the downwellings. Apparently there are very few other structures than
downwellings and upwellings that cause a local increase in surface elevation and are therefore captured by
the transform at this timestep. It is important to note that there may have been other areas where the
surface was deformed to the same degree, but the wavelet transform gives large values only if this change
happens one the same length scale as the scale of the wavelet used. So there may be other areas on the
surface where it is bent upward in a large area, but since the scale of this structure was too big, it did not
give a response in wavelet space that exceeded the set threshold.

As with the detection of attached vortices, the result of this varied from timestep to timestep in the
simulation. Figure 4.14 shoes a few other timesteps in the simulation. In Figure 4.14b the up- and
downwellings were not captured as well by only setting a threshold on the wavelet transform. This may
have been because the up- and downwellings at this timesteps were weaker, at the end of their life and did
not affect the surface as in other timesteps.
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Figure 4.13: Negative values of the wavelet transform at the smallest scale, the threshold value was around
−1 · 10−4. The green outlines represent the downwellings and the red outlines represent the upwellings.

To improve on this we can use the fact that up- and downwellings tend to be elongated shapes, contrary
to the attached vortices that were in general circular. This means that an elongated wavelet should be able
to capture them better that the isotropic Mexican hat wavelet we have used thus far. As mentioned in
chapter 3 the wavelet used in the transformations could be altered in some ways. The Mexican hat could,
for example, be made anisotropic. Figure 4.15 shows a reconstruction of the smallest scale anisotropic
Mexican hat wavelet used in this section. This was made by elongating the isotropic Mexican hat wavelet.
The dips on the side of the hat we had all around the central top of the hat in the isotropic version are
now only on two of the sides, and the wavelet is now much wider in one direction than the other.

As mentioned in subsection 2.2.1, with anisotropic wavelets the angle of rotation of the wavelet is also
relevant for the transformations. In general the up- and downwelling can have any rotation, some do
not follow a straight line, but can be bent. This means that several angles of the transform need to be
considered. Figure 4.16 shows the transform of the surface at the timestep 195.25 for an angle of 0 and
the wavelet is parallel with the x-axis. We see that all the structures in the transform are elongated and
angled the same as the wavelet. This is the same timestep ad before. Again the areas where the wavelet
has strong negative values are areas where the surface is locally bent upward, but since we are using an
elongated Mexican hat, this also means that this elevated area is somewhat elongated. This means that
following these should give good approximation of the location of the up- and downwellings.

Let us then again set a threshold of around 0.9 · 10−4 where we take values in the anisotropic transform
that exceed it. We then do this for several angles such that the anisotropic Mexican hat is aligned with
the up- or downwelling no matter the orientation. The angles chosen where all the angles from −90° to
90° with a 15° interval, i.e.

[−90°,−75°,−60°,−45°,−30°,−15°, 0°, 15°, 30°, 45°, 60°, 75°, 90°].

Figure 4.17 shows the result of using the anisotropic Mexican hat to detect the up- and downwellings.
We see that there is no apparent improvement for this timestep than just using the isotropic Mexican
hat, especially since that one captured them quite well. In fact, for most timesteps, using the anisotropic
version of the wavelet was worse or only marginally better than the isotropic.
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(a) t = 265 (b) t = 301.25

(c) t = 315 (d) t = 352.5

Figure 4.14: Four other timesteps in the simulation with the outlines for the upwellings (red) and down-
wellings (green).
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Figure 4.15: Anisotropic Mexican hat wavelet for the smallest scale.

Figure 4.16: Wavelet transform using the anisotropic Mexican hat wavelet at the time 196.25. The angle
of the wavelet to the x-axis is 0.

To see how well this transform captured the structures, a statistical correlation of the areas found using
the wavelet transform and the ones found by looking at the surface divergence was calculated. Since the
values at each point are not the same for the surface elevation and the surface divergence (they don’t
have the same units), the correlations was done purely on the areas where the up- and downwellings were
found with both methods at each timestep. This could also be used to identify the timesteps with the best
and worst correlation and see which aspects can be improved. The function corr2 in MATLAB was used
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Figure 4.17: Wavelet transform using the anisotropic Mexican hat wavelet at the time 196.25. This are all
the values for all the angles that exceeded the threshold

(corr2, 2006), and the result can be seen in Figure 4.18.

A correlation of 1 means that we have exactly the same picture. For both wavelet types the correlation
was, for the most part, between 0.4 and 0.6, with some values outside this interval. We see that in general
the isotropic Mexican hat has higher correlation values with the identified up- and downwellings.

There are two ways to alter the isotropic Mexican hat wavelet in MATLAB, Figure 4.15 represents
stretching along one directions, but we can also squeeze the wavelet at the smallest scale. Using this
squeezed wavelet gave the results in Figure 4.19. We see that this gave better correlations than the
stretched wavelet.

When stretching the Mexican hat the general scale of the wavelet can be seen as increasing, the width of
the wavelet is the same as before, but the stretching increases the scale in the other direction. While when
squeezing it, the scale decreases. A small difference in scale should not affect the transform, as the wavelet
transform has a large uncertainty when the scale is small, as was mentioned in 2.2. In fact the transform
changed little when we increases the wavelet scale from 1 to 2.5. What happened instead was that the
shapes in the transform became a little bit smeared out, like in 4.3. Nonetheless, the apparent change in
scale was noticeable in this comparison. This is likely the result of the length scales of the structures we
are detecting. No literature was found on how to estimate the length scales of the free surface structures
for a general turbulence stirred flow, however, by inspecting the outputs form the VISA method presented
in section 3.1, the width of the the up- and downwellings was around 0.15 nondimentional units across.
The width of the isotropic Mexican hat and the elongated Mexican hat was around 0.2, this was the
distance between the two “valleys” in the reconstructed wavelets. The width of the squeezed Mexican
hat was around 0.14. So one explanation to why the elongated Mexican hat did not detect the up- and
downwellings as well was because it was slightly too large, and even though it gave responses around
these structures, they did not exceed the threshold for all timesteps. The problem with squeezing the
wavelet is that we are already using the smallest possible scale, so squeezing it even more could loose some
information about it. Using a finer grid should help with this problem as the wavelet with the same length
scale as the smallest in this data set could be several datapoints wide, reducing the uncertainty. One way
to do this is to interpolate the surface elevation, but this was not attempted in this work.
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(a) Anisotropic Mexican hat

(b) Isotropic Mexican hat

Figure 4.18: Statistical correlation of the location of the up- and downwellings between the surface diver-
gence VISA method and (a) the anisotropic Mexican hat wavelet, (b) the isotropic Mexican hat wavelet.

Another thing to note is that the timesteps with good or bad correlations matched across all three
wavelet types, if we look at Figure 4.18a, Figure 4.18b and Figure 4.19. The explanation might simply be
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Figure 4.19: Statistical correlation of the location of the up- and downwellings between the surface diver-
gence VISA method and the squeezed anisotropic Mexican hat.

that all three are a Mexican hat type wavelet, and some of these timesteps contained structures that were
captured better or worse by this wavelet, however this was not investigated in detail.

In any case this indicates that we are at the extent of what can be detected by only using the Mexican
hat wavelet. Other wavelets and tools used in computer vision might improve the process. There is also
little progress in differentiating between up- and downwellings. Initially it was thought that the scars were
in the same location as the downwellings, and that using the surface curvature could be used to differentiate
between them, i.e. if the surface is bent upward it was an upwelling, if it was bent downwards it was a
downwelling. However, as was mentioned earlier, both phenomena bend the surface upward, and the scars
are located between them, where the fluid is moving from an upwelling to a downwelling. Looking into the
surface curvature gave, nonetheless, some other interesting discoveries that are covered in the next section.

35



4.4 Looking at the surface curvature

During the course of the work it was thought the surface curvature could improve the isolation of some of
the structures. For example the attached vortices form surface dimples that bend the surface downward,
giving a strongly positive surface curvature. The surface curvature could also help in locating up- and
downwellings, especially the sharp “scars” that form around them. The surface curvature was therefore
calculated and compared with the wavelet transform, in the hope of improving the identification of these
turbulent structures. Here we will look into the mean surface curvature and see how it relates to the
transform.

The mean surface curvature is the average of the two principal curvatures, which are the inverse of the
principal radii of curvature (Pressley, 2010). Let us call the surface elevation η. The mean curvature of η
becomes

H =
1

2

(
1

R1
+

1

R2

)
=

(1 + η2x)ηxx + (1 + η2y)ηyy − 2ηxηyηxy

2(1 + η2x + η2y)3/2
(4.1)

R1 and R2 are the two principal radii of curvature, the two principal curvatures are then 1/R1 and 1/R2,
so the mean curvature is the mean of the two. ηx represents the derivative of η with respect to x, ∂η

∂x
(see Pressley, 2010 chapter 8 for more). Let us now compare the mean surface curvature and the wavelet
transform at the smallest scale.

(a) (b)

Figure 4.20: The wavelet transform for the smallest scale Mexican hat (a), and the surface curvature (b).

Figure 4.20 shows the wavelet transform with the smallest scale Mexican hat wavelet and the surface
mean curvature side by side. We see that they look really similar, even though the colour bar on the sides
show they have different values. However it seems like they are a scaled versions of the other.

If we look at our surface elevation we see that most of it’s values are really small, in the order of 10−4.
So the derivatives will also have really small values. We can then linearize Equation 4.1, since all the
nonlinear terms are really close to 0 and we can simplify the equation for the mean curvature to

H =
1

2
(ηxx + ηyy). (4.2)

In MATLAB these derivatives were calculated using the gradient function, that calculates the gradient
numerically using central difference (gradient, 2006). This means that to find the derivative of f at a
point n, this function calculates the difference in the values of the neighbouring points and divides it by
the distance between them. Let’s say that the data points are evenly space and that the spacing between
them is ∆x, the derivative becomes

1

2∆x
(fn+1 − fn−1).

36



This can also be represented as a numerical convolution, since we can think of this operation as taking the
matrix containing the data to be differentiated and convulving with

1

2∆x

[
−1 0 1

]
.

At the boundaries the derivatives are calculated using single-sided derivatives

∂f

∂xn=1
=

1

∆x
(f2 − f1) ,

∂f

∂xn=N
=

1

∆x
(fN − fN−1) (4.3)

Where N represents the last point.

Let us look at a quick example. We have a set of values with unit spacing, and the values[
. . . 4 5 6 9 . . .

]
are somewhere in the middle of this set of values. Let us look at the derivatives at second and third
position in the section using the convolution with 1/2

[
−1 0 1

]
[
. . . 4 5 6 9 . . .

]
∗ 1

2

[
−1 0 1

]
=[

. . . 1
2 (−1 · 4 + 0 · 5 + 1 · 6) 1

2 (−1 · 5 + 0 · 6 + 1 · 9) . . .
]

=[
. . . 6−4

2
9−5
2 . . .

]
=
[
. . . 1 2 . . .

]
which are the derivatives one gets by using central difference.

For the second derivative, the process is repeated, again using the gradient function. To find the second
derivative of f at n we use the first derivatives at the neighbouring points again. If the derivative is f

′

n at
a point n, we get that the second derivatives are

∂2f

∂x2
=

1

2∆x
(f
′

n+1 − f
′

n−1) =
1

2∆x

(
1

2∆x
(fn+2 − fn)− 1

2∆x
(fn − fn−2)

)
=

=
1

4∆x2
(fn−2 − 2fn + fn+2)

(4.4)

which is equivalent to the convolution

∂2f

∂x2
= f ∗ 1

4∆x2

[
1 0 −2 0 1

]
. (4.5)

To find the derivatives in the x-direction we apply this along the rows of the matrix, and for the
derivatives in the y-direction we apply this along the columns. Now, since convolution is a linear operation,
finding the sum of the two derivatives is also quite simple

∂2f

∂2x
+
∂2f

∂2y
= f ∗ 1

4∆x2

[
1 0 −2 0 1

]
+ f ∗ 1

4∆x2



1

0

−2

0

1


=

= f ∗ 1

4∆x2



0 0 1 0 0

0 0 0 0 0

1 0 −4 0 1

0 0 0 0 0

0 0 1 0 0



(4.6)
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The matrix in 4.6 strongly resembles the isotropic Mexican hat wavelet at the smallest scale, even if
it only applies for the centre points the signal we are calculating the second derivatives of. In fact the
wavelet transform has some similar inconsistencies when it is close to the boundary of the signal, where
part of the wavelet is outside the signal. Nonetheless the similarities in the matrix that we convolve with
explains the similar responses from the wavelet transform and the mean surface curvature. This in turn
means that looking at the surface curvature could not help with isolating the structures in this case. It is
important to note that the formula for the surface curvature, Equation 4.1, can only be linearised when
the values for the derivatives are much smaller then 1. Which means that data taken from experimental
data, where the surface elevation and the derivatives are not necessarily of a small magnitude, the surface
curvature might show something different.

This also prompted the idea that the large scale wavelet transforms with the Isotropic Mexican hat
wavelet might show the surface curvature of a scaled down version of the surface, i.e. if the surface is
minimised from 256×256 to, for example, 32×32, then surface curvature of this new surface could be
similar to the wavelet transform at scale 8. This proved to be the case as can be seen in Figure 4.21.

(a) (b)

Figure 4.21: The surface curvature of the resized surface (a), and the wavelet transform at scale 8 (b).

The transform at the larger scale is then very similar to the surface curvature, or just the sum of the
two second order derivatives. Wavelet transformations using the Mexican hat wavelet can then be seen
as the second order derivatives of higher order than the central difference method used in gradient. The
elongated Mexican hat could also represent a directional second derivative, but this was not tested here.

The principal curvatures, 1
R1
, 1
R2

, and the total, or Gaussian, curvature, K = 1
R1
· 1
R2

(Pressley, 2010),
are also mainly derived from the second derivatives, and did not give informative results, but they where
not investigated closely in this work.
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5 Conclusions

The two dimensional wavelet transform proved to be an impressive tool in isolating structures on the free
surface. When it comes to both attached vortices and up- and downwellings, the Mexican hat wavelet
managed to filter out the structures of interest quite well. When detecting attached vortices, however,
there where a lot of artefacts from structures near the up- and downwellings, and the detection of the
surface wellings themselves can still be improved. It is important to note that in the data-set for this work,
there where no waves. The surface was only agitated by the turbulence underneath, which may in some
cases generate capillary waves, but these were not apparent in the given simulation data. In real world
experiments, waves of different orders of magnitude will always be present, however, since these are moving
oscillatory structures, they should be straight forward to filter out by looking into the time variation of
the surface elevation.

Both the attached vortices and the up- and downwellings are very localised structures, the vortices move
slowly in a certain directions, while the up- and downwellings are fairly stationary relative to the flow. This
means that looking into the time variation of the structures on the surface can also improve in identifying
these turbulent structures. As we mentioned in section 4.2, the time variation could drastically improve
the detection of attached vortices by filtering out other unwanted structures.

Another factor to improve in future work is how the threshold values for the different detection methods
are set. In this work, they were put in manually, using the ones which gave preferable result throughout
the different timesteps. Still, one would like for these threshold values to be set automatically by the
method depending on the input data.

And lastly the choice of wavelet is also important. Here the Mexican hat was used since it was simple
and gave easy to read transforms. Some other wavelets may yet prove to be better suited, especially for
detecting the up- and downwellings. The elongated anisotropic Mexican hat was not sufficient to cater to
the long shapes of these phenomena, while the squeezed proved useful. Increasing the data points of the
data could help understand why this is the case.

With all this in mind, one cannot overlook the fact that the wavelet transforms performed really well
in this analysis, and that they can and should be used more in this field. Future work could also include
other computer vision tools to improve detection and analysis of free surface structures.
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Appendix A MATLAB scrips

Total inspection

%% Total inspection

clear

% Referance scales and flow variables

Re = 2500; % Reynold ’s Number

Fr = sqrt (0.01); % Frode ’s Number

l_ref = 2*pi; % Reference length

H_bar = 5*pi; % Domain height

a_0 = 0.1; % Forcing parameter

u = a_0*l_ref; % Referance velocity

nu = 1/Re; % Kinematic viscosity

% Loading surface elevation and timesteps

[eta0 , timestamps] = load_surface_data ();

% Square half side lenght

ds = 0.1;

% Cutoff value for veortex inspection

cutoff_lambda = 2;

% Wavelt scale index for inspection (i.e. the index in the scale vector for

% the scale of intereset)

wlt_scale = 1;

% Taylor microscale very close to the surface

[u_rms , taylor_scale] = taylor_length_scale ();

% Taylor Reynlods number

Re_lambda = u_rms*taylor_scale/nu;

% Initializing vortex strength vector

vortex_strength = [];

% Testing variable

vortex_strength_2 = [];

% Initializing vortex strength vector

ds_ind = floor(ds *256/(2* pi))*2 + 1;

vortex_wlt_max = [];

vortex_wlt_int = [];

% Testing variable

vortex_wlt_max_2 = [];
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vortex_wlt_int_2 = [];

% Differential area used for integration

dA = (2*pi /255).^2;

% Loading z coordinates

[~,~,~,~,zz] = load_near_surf_velocities (1);

% Important to note that zz is 1 at the suirface and decreas as we go

% further down in the domain

% Surface mesh

x_range = linspace(0, l_ref , 256);

y_range = linspace(0, l_ref , 256);

[x_2d , y_2d] = meshgrid(x_range , y_range );

[x_3d , y_3d , z_3d] = meshgrid(x_range , y_range , zz);

[x_ver , z_ver] = meshgrid(x_range , zz);

% [x_int , y_int , z_int] = meshgrid(x_range , y_range , zw);

% Index of horizontal slice for inspection

% insp_ind = 1: length(zz);

insp_ind = 1;

z_ind = 1;

% Initializing vortex strength variables

true_vortex_strength = zeros(1,length(timestamps ));

vortex_wlt_strength = zeros(1,length(timestamps ));

vortex_elev_strength = zeros(1,length(timestamps ));

%% Velocity field comparison at different timesteps

for data_index = 5

% Data index for the timestamp we are looking at

% Loading subsurface velocities (u,v,w) and the presure (p)

[v,u,w,p,zz] = load_near_surf_velocities(data_index );

% Surface elevation at this time index

surf_elev = reshape(eta0(data_index ,: ,:) ,[256 256]);

%% Finding the derivatives

% Differentiating the surface elevation

% Time step for differentiation

dt = (timestamps (2) - timestamps (1));

% Grid variables in the x ang y directions

xhi = linspace(0,l_ref ,256);

psi = linspace(0,l_ref ,256);

dx = xhi(2)-xhi (1);

% The relevant derivatives

[deta_dt , ~, ~] = gradient(eta0 , dt, dx, dx);

% Surface gradients at the investigated timestamp

[deta_dx , deta_dy] = gradient(surf_elev , xhi , psi);

% z_index = 1: length(zz);
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% Calculating velocity derivatives

[du_dx , ~, ~] = vel_derivatives(u, zz, insp_ind ,...

surf_elev , deta_dx , deta_dy );

[~, dv_dy , ~] = vel_derivatives(v, zz , insp_ind ,...

surf_elev , deta_dx , deta_dy );

% The rest if needed

% [du_dx , du_dy , du_dz] = vel_derivatives(u, zz, insp_ind ,...

% surf_elev , deta_dx , deta_dy );

% [dv_dx , dv_dy , dv_dz] = vel_derivatives(v, zz, insp_ind ,...

% surf_elev , deta_dx , deta_dy );

% [dw_dx , dw_dy , dw_dz] = vel_derivatives(w, zz, insp_ind ,...

% surf_elev , deta_dx , deta_dy );

% [dp_dx , dp_dy , dp_dz] = vel_derivatives(p, zz, insp_ind ,...

% surf_elev , deta_dx , deta_dy );

% Surface gradient and surface curvature

% Finding the second order derivatives

[deta_dxx , deta_dxy] = gradient(deta_dx , xhi , psi);

[~, deta_dyy] = gradient(deta_dy , xhi , psi);

% Surface gaussian curvature , the product of the principal curvatures

surf_gaus_curv = (deta_dxx .*deta_dyy -deta_dxy .^2)./...

(1 + deta_dx .^2 + deta_dy .^2).^2;

% Surface mean curvature , the mean of the principal curvatures

surf_mean_curv = ((1+ deta_dy .^2).* deta_dxx + (1+ deta_dx .^2).* deta_dyy ...

- 2* deta_dx .* deta_dy .* deta_dxy )./(1 + deta_dx .^2 + deta_dy .^2).^(3/2);

% Inicializing principal curvatures

surf_prin_curv_1 = zeros (256 ,256);

surf_prin_curv_2 = zeros (256 ,256);

% Setting the principal curvatures

for i = 1:256

for j = 1:256

surf_II_form = [deta_dxx(i,j) deta_dxy(i,j);...

deta_dxy(i,j) deta_dyy(i,j)];

prin_curv = eig(surf_II_form );

surf_prin_curv_1(i,j) = max(prin_curv );

surf_prin_curv_2(i,j) = min(prin_curv );

end

end

% Mean surface elevation

surf_mean = mean(surf_elev ,’all ’);

%% Finding vortices

% Getting the middel eigenvalue at each point (lambda), the vorticity inn

% all trhee directions at each point (omega) and the sum og eignevalues Q

[lambda , omega , Q] = lambda_omega_Q(u, v, w, zz, insp_ind ,...

surf_elev , deta_dx , deta_dy );

% Checking for votices

vortex_pos = zeros (256 ,256); % Initializing variable

vortex_omega = zeros (256 ,256);

45



% When the second eigenvalue (lambda_2) is negative we have a vortex core

% When it is positive we don ’t, leaving that at 0

% Bathtub vortices will mainly have vorticity in the z directiions

if length(insp_ind) == 1

vortex_pos = lambda (: ,: ,1).*( lambda (:,:,1)<0);

% z-direction vorticity for bathtub vortices

omega_z = reshape(omega (:,:,1,3),[256 256]);

vortex_omega(lambda <-cutoff_lambda) = omega_z(lambda <-cutoff_lambda );

else

vortex_pos = lambda(:,:,z_ind ).*( lambda(:,:,z_ind )<0);

% z-direction vorticity for bathtub vortices

omega_z = reshape(omega(:,:,z_ind ,3) ,[256 256]);

vortex_omega(lambda(:,:,z_ind)<-cutoff_lambda) = ...

omega_z(lambda(:,:,z_ind)<-cutoff_lambda );

end

% Calculating enstrophy

enstrophy = sum(omega .^2 ,4);

% Defining x and y coordinates for som bathtub vortices

[pos_x_vec , pos_y_vec] = bathtub_pos_vec(data_index );

pos_x_vec_2 = (2*pi -2*ds )*0.99* rand (1 ,10)+ds;

pos_y_vec_2 = (2*pi -2*ds )*0.99* rand (1 ,10)+ds;

% Calculating vortex strengths

if length(insp_ind) == 1

for i = 1: length(pos_x_vec)

vortex_strength(end+1) = vortex_strength_by_int(vortex_pos ,...

enstrophy , pos_x_vec(i), pos_y_vec(i));

vortex_strength_2(end +1) = vortex_strength_by_int(vortex_pos ,...

enstrophy , pos_x_vec_2(i), pos_y_vec_2(i));

end

else

for i = 1: length(pos_x_vec)

tmp_strength = [];

tmp_strength_2 = [];

for ind = z_ind

tmp_strength(ind) = vortex_strength_by_int(vortex_pos ,...

enstrophy (:,:,ind), pos_x_vec(i), pos_y_vec(i));

tmp_strength_2(ind) = vortex_strength_by_int(vortex_pos ,...

enstrophy (:,:,ind), pos_x_vec_2(i), pos_y_vec_2(i));

end

vortex_strength(end+1) = sum(tmp_strength );

vortex_strength_2(end +1) = sum(tmp_strength_2 );

end

end

true_vortex_strength(data_index) = ...

sum(enstrophy .*( vortex_pos <-1.5), ’all ’)*dA;

vortex_elev_strength(data_index) = ...

sum(surf_elev .*( vortex_pos <-1.5), ’all ’)*dA;

%% Finding up and downwellings

% Surface divergence

surf_div = du_dx + dv_dy;
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% Probable location of up and downwellings

[surf_upwelling , surf_downwelling] = surface_wellings_locations(surf_div );

%% Isotropic Wavelet transformation

% Wavelet name

wname_iso = "mexh";

wname_iso_full = "Mexican hat";

% Scale range for transform

scale_range = logspace(0, log10 (2^3), 25);

% Wavelet transformation of the surface

cwt_elev_iso = cwtft2(surf_elev , ’wavelet ’, wname_iso , ...

’scales ’, scale_range );

% Matrix the coefficients at each frequency

wlt_elev_iso = reshape(cwt_elev_iso.cfs(:,:,1,:), ...

[256 256 length(scale_range )]);

angles_coeff_lev = angle(wlt_elev_iso ); % Phase angle of the coefficients

% Calculating vortex strengths

for i = 1: length(pos_x_vec)

[vortex_wlt_max(end+1), vortex_wlt_int(end +1)] = ...

vortex_wlt_trans(vortex_pos , wlt_elev_iso , ...

pos_x_vec(i), pos_y_vec(i));

[vortex_wlt_max_2(end+1), vortex_wlt_int_2(end +1)] = ...

vortex_wlt_trans(vortex_pos , wlt_elev_iso , ...

pos_x_vec_2(i), pos_y_vec_2(i));

end

[wlt_iso , wlt_iso_len_scale] = ...

wavelet_length_scale(scale_range(wlt_scale),surf_elev , wname_iso );

% Vortex position circles from wavelet transformation and vortex strength

% based on the transform of the elevation

% [vortex_wlt_strength(data_index), vor_circles , vor_radii] = ...

% wlt_surface_vortices(wlt_elev_iso (:,:,1), surf_mean_curv );

% Calculating vortex strength based on the transform of the elevation

% vortex_wlt_strength(data_index) = vortex_wavelet_strength(vor_circles ,...

% vor_radii , wlt_elev_iso (: ,: ,1));

%% Nonisotropic wavelet transformation

wname_mexh_non = {"mexh", {2 ,1 ,0.2}}; % Mexican hat wvaelet 2D

wname_morl_non = {"morl", {6,1,1}}; % Morlet wavelet 2D

% Scale range for transform

scale_range = logspace(0, log10 (2^3), 25);

% Angles used in the transform

angles = linspace(-pi/2, pi/2, 13);

% angles = [0 15 30 45 60 75 90 105]/180* pi;

cwt_elev_non = cwtft2(surf_elev , ’wavelet ’, wname_mexh_non , ...

’angles ’, angles , ’scales ’, scale_range );

wlt_elev_non = reshape(cwt_elev_non.cfs , [256 256 ...
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length(scale_range) length(angles )]);

[wlt_non , wlt_non_len_scale] = ...

wavelet_length_scale(scale_range(wlt_scale),surf_elev , wname_mexh_non );

wlt_scars = zeros (256, 256);

for i = 1: length(angles)

wlt_scars = wlt_scars + (real(wlt_elev_non (:,:,wlt_scale ,i)) < -1.1*10^ -4);

end

%% Stefan ’s idea: comparison with surface curvature

x_resize = 32;

xhi_resize = linspace (0,2*pi,x_resize );

surf_elev_resize = imresize(surf_elev , [x_resize x_resize ]);

[deta_dx_resize , deta_dy_resize] = ...

gradient(surf_elev_resize , xhi_resize , xhi_resize );

[deta_dxx_resize , deta_dxy_resize] = ...

gradient(deta_dx_resize , xhi_resize , xhi_resize );

[~, deta_dyy_resize] = gradient(deta_dy_resize , xhi_resize , xhi_resize );

surf_mean_curv_resize = ((1+ deta_dy_resize .^2).* deta_dxx_resize ...

+ (1+ deta_dx_resize .^2).* deta_dyy_resize ...

- 2* deta_dx_resize .* deta_dy_resize .* deta_dxy_resize )./...

(1 + deta_dx_resize .^2 + deta_dy_resize .^2).^(3/2);

surf_mean_curv_resize_2 = imresize(surf_mean_curv , [x_resize x_resize ]);

cwt_elev_iso_resize = cwtft2(surf_elev_resize , ’wavelet ’, wname_iso , ...

’scales ’, 1 );

wlt_elev_iso_resize = reshape(cwt_elev_iso_resize.cfs(:,:,1,:), ...

[x_resize x_resize ]);

%% Timestep finished

fprintf("Timestep %5.2f done , nr %3d of %d \n" ,...

timestamps(data_index), data_index , length(timestamps ))

end

%% Ploting

if data_index == 160

figure (1), clf

plot(timestamps , true_vortex_strength ./ vortex_wlt_strength)

xlim([ timestamps (1) timestamps(end )])

title("Comparison of vortex strength at each timestep")

else

figure (1), clf

% subplot (1,2,1)

pcolor(x_2d , y_2d , surf_elev)
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hold on

% contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [1.5 1.5]*0.5*10^ -4 ,...

% ’r’, ’linewidth ’, 1.5)

contour(x_2d , y_2d , surf_downwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’r’, ’linewidth ’, 1)

% viscircles ([1 ,0.9] ,0.7 , ’color ’, ’w’);

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

legend("Surface elevation", "Downwellings", "Upwellings")

% title (" Surface elevation at time = " + timestamps(data_index ))

hold off

figure (2), clf

pcolor(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale ))

hold on

% contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [1.5 1.5]*0.5*10^ -4 ,...

% ’r’, ’linewidth ’, 1)

% contour(x_2d , y_2d , surf_downwelling *10^-4, [0.1 0.1]*10^ -4 ,...

% ’g’, ’linewidth ’, 1)

% contour(x_2d , y_2d , surf_upwelling *10^-4, [0.1 0.1]*10^ -4 ,...

% ’r’, ’linewidth ’, 1)

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% legend (" Wavelet transform", "Downwellings", "Upwellings ")

% title (" Wavelet transform of surface elevation at scale = "...

% + scale_range (1))

hold off

wlt_angle = 7;

figure (3), clf

pcolor(x_2d , y_2d , real(wlt_elev_non (:,:,wlt_scale , wlt_angle )))

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Anisotropic mexh transform with angle  = " ...

+ angles(wlt_angle )/pi*180)

hold off

figure (4), clf

% contour_levels = [cutoff_lambda cutoff_lambda ];

% contourf(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale), [0.4 0.4]*10^ -4)

pcolor(x_2d , y_2d , surf_mean_curv)

hold on

% contourf(x_2d , y_2d , real(wlt_elev_non (:,:,wlt_scale , 1)), ...

% [1.2 1.2]*10^ -4)
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% contour(x_2d , y_2d , -vortex_pos *10^-4, [0.7 0.7]*10^ -4 ,...

% ’r’, ’linewidth ’, 1)

% viscircles(vor_circles ,vor_radii );

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% legend (" Wavelet transform", "Vorteces ")

% title (" Wavelet transform positive values and attached vortices ")

hold off

figure (5), clf

% pcolor(x_2d , y_2d , wlt_coeff (:,:,1))

contourf(x_2d , y_2d , -wlt_elev_iso (:,:, wlt_scale), [0.8 0.8]*10^ -4)

% contourf(x_2d , y_2d , real(-wlt_elev_non (:,:,wlt_scale , wlt_angle )) ,...

% [1 1]*10^ -4)

% contourf(x_2d , y_2d , wlt_scars , [1 1]*10^ -4 )

% contourf(x_2d , y_2d , -surf_mean_curv , [0.03 0.03])

hold on

% contourf(x_2d , y_2d , -wlt_coeff (:,:,1), [1 1]*10^ -4)

contour(x_2d , y_2d , surf_downwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’r’ ,’linewidth ’, 1)

% contourf(x_2d , y_2d , 10* wlt_coeff (:,:,1), [1 1]*10^ -3)

shading flat

% colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% legend (" Wavelet transform", "Downwellings", "Upwellings ")

% title (" Wavelet transform negative and posisive values comparison ")

hold off

figure (6), clf

pcolor(x_2d , y_2d , surf_mean_curv)

hold on

contour(x_2d , y_2d , surf_downwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’r’, ’linewidth ’, 1)

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface mean curvature")

hold off

figure (7), clf

% subplot (1,2,1)

pcolor(surf_mean_curv_resize)

shading flat

% title ("Mean curvature og the resized surface ")
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figure (8), clf

% subplot (1,2,2)

pcolor(wlt_elev_iso (:,:,25))

shading flat

% title (" Wavelet transform at scale = " + scale_range (25))

%

% figure (8), clf

% plot(vortex_strength ./ vortex_wlt_max)

% xlim([1, length(vortex_strength )])

%

% figure (9)

% plot(vortex_strength_2 ./ vortex_wlt_max_2)

% xlim([1, length(vortex_strength_2 )])

end
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Attached vortices detection

%% Attached vorteces detection

clear

% Referance scales and flow variables

Re = 2500; % Reynold ’s Number

Fr = sqrt (0.01); % Frode ’s Number

l_ref = 2*pi; % Reference length

H_bar = 5*pi; % Domain height

a_0 = 0.1; % Forcing parameter

u = a_0*l_ref; % Referance velocity

nu = 1/Re; % Kinematic viscosity

% Loading surface elevation and timesteps

[eta0 , timestamps] = load_surface_data ();

% Square half side lenght

ds = 0.1;

% Cutoff value for veortex inspection

cutoff_lambda = 2;

% Wavelt scale index for inspection (i.e. the index in the scale vector for

% the scale of intereset)

wlt_scale = 1;

% Taylor microscale very close to the surface

[u_rms , taylor_scale] = taylor_length_scale ();

% Initializing vortex strength vector

vortex_strength = [];

% Testing variable

vortex_strength_2 = [];

ds_ind = floor(ds *256/(2* pi))*2 + 1;

% Differential area used for integration

dA = (2*pi /255).^2;

% Loading z coordinates

[~,~,~,~,zz] = load_near_surf_velocities (1);

% Important to note that zz is 1 at the suirface and decreas as we go

% further down in the domain

% Surface mesh

x_range = linspace(0, l_ref , 256);

y_range = linspace(0, l_ref , 256);

[x_2d , y_2d] = meshgrid(x_range , y_range );

[x_ver , z_ver] = meshgrid(x_range , zz);

% Index of horizontal slice for inspection

% insp_ind = 1: length(zz);

insp_ind = 1;

z_ind = 1;

% Initializing vortex strength variables
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true_vortex_strength = zeros(1,length(timestamps ));

vortex_wlt_strength = zeros(1,length(timestamps ));

vortex_elev_strength = zeros(1,length(timestamps ));

%% Velocity field comparison at different timesteps

for data_index = 5

% Data index for the timestamp we are looking at

% Loading subsurface velocities (u,v,w) and the presure (p)

[v,u,w,p,zz] = load_near_surf_velocities(data_index );

% Surface elevation at this time index

surf_elev = reshape(eta0(data_index ,: ,:) ,[256 256]);

%% Finding the derivatives

% Differentiating the surface elevation

% Time step for differentiation

dt = (timestamps (2) - timestamps (1));

% Grid variables in the x ang y directions

xhi = linspace(0,l_ref ,256);

psi = linspace(0,l_ref ,256);

dx = xhi (2) - xhi (1);

% The relevant derivatives

[deta_dx , deta_dy] = gradient(surf_elev , xhi , psi);

% Surface gradient and surface curvature

% Finding the second order derivatives

[deta_dxx , deta_dxy] = gradient(deta_dx , xhi , psi);

[~, deta_dyy] = gradient(deta_dy , xhi , psi);

% Surface gaussian curvature , the product of the principal curvatures

surf_gaus_curv = (deta_dxx .*deta_dyy -deta_dxy .^2)./...

(1 + deta_dx .^2 + deta_dy .^2).^2;

% Surface mean curvature , the mean of the principal curvatures

surf_mean_curv = ((1+ deta_dy .^2).* deta_dxx + (1+ deta_dx .^2).* deta_dyy ...

- 2* deta_dx .* deta_dy .* deta_dxy )./(1 + deta_dx .^2 + deta_dy .^2).^(3/2);

% Inicializing principal curvatures

surf_prin_curv_1 = zeros (256 ,256);

surf_prin_curv_2 = zeros (256 ,256);

% Setting the principal curvatures

for i = 1:256

for j = 1:256

surf_II_form = [deta_dxx(i,j) deta_dxy(i,j); ...

deta_dxy(i,j) deta_dyy(i,j)]...

./sqrt(1 + deta_dx(i,j)^2 + deta_dy(i,j)^2);

prin_curv = eig(surf_II_form );

surf_prin_curv_1(i,j) = max(prin_curv );

surf_prin_curv_2(i,j) = min(prin_curv );

end

end
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% Mean surface elevation

surf_mean = mean(surf_elev ,’all ’);

%% Finding vortices

% Getting the middel eigenvalue at each point (lambda), the vorticity inn

% all trhee directions at each point (omega) and the sum og eignevalues Q

[lambda , omega , Q] = lambda_omega_Q(u, v, w, zz, insp_ind ,...

surf_elev , deta_dx , deta_dy );

% Checking for votices

vortex_pos = zeros (256 ,256); % Initializing variable

vortex_omega = zeros (256 ,256);

% When the second eigenvalue (lambda_2) is negative we have a vortex core

% When it is positive we don ’t, leaving that at 0

% Bathtub vortices will mainly have vorticity in the z directiions

if length(insp_ind) == 1

vortex_pos = lambda (: ,: ,1).*( lambda (:,:,1)<0);

% z-direction vorticity for bathtub vortices

omega_z = reshape(omega (:,:,1,3),[256 256]);

vortex_omega(lambda <-cutoff_lambda) = omega_z(lambda <-cutoff_lambda );

else

vortex_pos = lambda(:,:,z_ind ).*( lambda(:,:,z_ind )<0);

% z-direction vorticity for bathtub vortices

omega_z = reshape(omega(:,:,z_ind ,3) ,[256 256]);

vortex_omega(lambda(:,:,z_ind)<-cutoff_lambda) = ...

omega_z(lambda(:,:,z_ind)<-cutoff_lambda );

end

% Calculating enstrophy

enstrophy = sum(omega .^2 ,4);

% Defining x and y coordinates for som bathtub vortices

[pos_x_vec , pos_y_vec] = bathtub_pos_vec(data_index );

% Defining some random bathtub vortices locations

true_vortex_strength(data_index) = ...

sum(enstrophy .*( vortex_pos <-1.5), ’all ’)*dA;

vortex_elev_strength(data_index) = ...

sum(surf_elev .*( vortex_pos <-1.5), ’all ’)*dA;

%% Isotropic Wavelet transformation

% Wavelet name

wname_iso = "mexh";

wname_iso_full = "Mexican hat";

% Scale range for transform

scale_range = logspace(0, log10 (2^3), 25);

% Wavelet transformation of the surface

cwt_elev_iso = cwtft2(surf_elev , ’wavelet ’, wname_iso , ...

’scales ’, scale_range );
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% Matrix the coefficients at each frequency

wlt_elev_iso = reshape(cwt_elev_iso.cfs(:,:,1,:), ...

[256 256 length(scale_range )]);

angles_coeff_lev = angle(wlt_elev_iso ); % Phase angle of the coefficients

[wlt_iso , wlt_iso_len_scale] = ...

wavelet_length_scale(scale_range(wlt_scale), surf_elev , wname_iso );

% Vortex position circles from wavelet transformation and vortex strength

% based on the transform of the elevation

[vortex_wlt_strength(data_index), vor_circles , vor_radii] = ...

wlt_surface_vortices(wlt_elev_iso (:,:,1), surf_mean_curv );

% Calculating vortex strength based on the transform of the elevation

% vortex_wlt_strength(data_index) = vortex_wavelet_strength(vor_circles ,...

% vor_radii , wlt_elev_iso (: ,: ,1));

fprintf("Timestep %5.2f done , nr %3d of %d \n" ,...

timestamps(data_index), data_index , length(timestamps ))

end

%% Ploting

if data_index == 160

figure (1), clf

plot(timestamps , true_vortex_strength ./ vortex_wlt_strength)

xlim([ timestamps (1) timestamps(end )])

title("Comparison of vortex strength at each timestep")

else

figure (1), clf

pcolor(x_2d , y_2d , surf_elev)

hold on

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface elevation at time = " + timestamps(data_index ))

hold off

figure (2), clf

pcolor(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale ))

hold on

contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [0.9 0.9]*0.5*10^ -4 , ’r’, ...

’linewidth ’, 1)

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% title (" Wavelet transform of surface elevation at scale = " ...

% + scale_range (1))
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hold off

figure (3), clf

% contourf(x_2d , y_2d , surf_gaus_curv , [0 0]*10^ -4)

contour(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale ).*( surf_gaus_curv >0), ...

[0.5 0.5]*10^ -4 ,’ linewidth ’, 2)

hold on

shading flat

% contour(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale ).*( surf_gaus_curv >0), ...

% [0.5 0.5]*10^-4, ’ linewidth ’, 2)

% colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface gaussian curvature")

hold off

figure (4), clf

% contour_levels = [cutoff_lambda cutoff_lambda ];

contourf(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale), [0.5 0.5]*10^ -4)

% contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [0.7 0.7]*0.5*10^ -4 , ...

% ’linewidth ’, 2)

hold on

contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [0.9 0.9]*0.5*10^ -4 , ’r’, ...

’linewidth ’, 1.5)

viscircles(vor_circles , vor_radii , "LineWidth", 0.8, "Color", ’b’, ...

"LineStyle", ":");

shading flat

% colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% title (" Wavelet transform positive values and attached vortices ")

hold off

figure (5), clf

pcolor(x_2d , y_2d , surf_mean_curv)

hold on

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface mean curvature")

hold off

% figure (6), clf

% contourf(x_2d , y_2d , wlt_elev_iso (:,:, wlt_scale), [1 1]*10^ -4)

% hold on

% viscircles(vor_circles ,vor_radii );

% contour(x_2d , y_2d , -vortex_pos *0.5*10^ -4 , [1.5 1.5]*0.5*10^ -4 ,...

% ’linewidth ’, 1.5)

% shading flat

% % colorbar

% xlim ([0,2*pi])
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% ylim ([0,2*pi])

% xlabel ("x axis")

% ylabel ("y axis")

% title (" Attached vortex positions from wavelet transformation ")

% hold off

end
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up- and downwellings detection

%% Surface upwelling and downdraghts detection

clear

% Referance scales and flow variables

Re = 2500; % Reynold ’s Number

Fr = sqrt (0.01); % Frode ’s Number

l_ref = 2*pi; % Reference length

H_bar = 5*pi; % Domain height

a_0 = 0.1; % Forcing parameter

u = a_0*l_ref; % Referance velocity

nu = 1/Re; % Kinematic viscosity

% Loading surface elevation and timesteps

[eta0 , timestamps] = load_surface_data ();

% Cutoff value for veortex inspection

cutoff_lambda = 2;

% Wavelt scale index for inspection (i.e. the index in the scale vector for

% the scale of intereset)

wlt_scale = 1;

% Taylor microscale very close to the surface

[u_rms , taylor_scale] = taylor_length_scale ();

% Differential area used for integration

dA = (2*pi /255).^2;

% Loading z coordinates

[~,~,~,~,zz] = load_near_surf_velocities (1);

% Important to note that zz is 1 at the suirface and decreas as we go

% further down in the domain

% Surface mesh

x_range = linspace(0, l_ref , 256);

y_range = linspace(0, l_ref , 256);

[x_2d , y_2d] = meshgrid(x_range , y_range );

[x_ver , z_ver] = meshgrid(x_range , zz);

% Index of horizontal slice for inspection

% insp_ind = 1: length(zz);

insp_ind = 1;

z_ind = 1;

% Preallocation some variables

scars_loc_corr = zeros(1,length(timestamps ));

scars_loc_corr_iso = zeros(1,length(timestamps ));

%% Velocity field comparison at different timesteps

for data_index = 5

% Data index for the timestamp we are looking at

% Loading subsurface velocities (u,v,w) and the presure (p)

[v,u,w,p,zz] = load_near_surf_velocities(data_index );
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% Surface elevation at this time index

surf_elev = reshape(eta0(data_index ,: ,:) ,[256 256]);

%% Finding the derivatives

% Grid variables in the x ang y directions

xhi = linspace(0,l_ref ,256);

psi = linspace(0,l_ref ,256);

% The relevant derivatives

[deta_dx , deta_dy] = gradient(surf_elev , xhi , psi);

% Calculating velocity derivatives

[du_dx , ~, ~] = vel_derivatives(u, zz, insp_ind ,...

surf_elev , deta_dx , deta_dy );

[~, dv_dy , ~] = vel_derivatives(v, zz , insp_ind ,...

surf_elev , deta_dx , deta_dy );

% Surface gradient and surface curvature

% Finding the second order derivatives

[deta_dxx , deta_dxy] = gradient(deta_dx , xhi , psi);

[~, deta_dyy] = gradient(deta_dy , xhi , psi);

% Surface gaussian curvature , the product of the principal curvatures

surf_gaus_curv = (deta_dxx .* deta_dyy - deta_dxy .^2)./...

(1 + deta_dx .^2 + deta_dy .^2).^2;

% Surface mean curvature , the mean of the principal curvatures

surf_mean_curv = 0.5*((1+ deta_dy .^2).* deta_dxx + (1+ deta_dx .^2).* deta_dyy ...

- 2* deta_dx .* deta_dy .* deta_dxy )./(1 + deta_dx .^2 + deta_dy .^2).^(3/2);

% Inicializing principal curvatures

surf_prin_curv_1 = zeros (256 ,256);

surf_prin_curv_2 = zeros (256 ,256);

% Setting the principal curvatures

for i = 1:256

for j = 1:256

surf_II_form = [deta_dxx(i,j) deta_dxy(i,j); ...

deta_dxy(i,j) deta_dyy(i,j)]...

./sqrt(1 + deta_dx(i,j)^2 + deta_dy(i,j)^2);

prin_curv = eig(surf_II_form );

surf_prin_curv_1(i,j) = max(prin_curv );

surf_prin_curv_2(i,j) = min(prin_curv );

end

end

%% Finding up and downwellings

% Surface divergence

surf_div = du_dx + dv_dy;

% Probable location of up and downwellings

[surf_upwelling , surf_downwelling] = surface_wellings_locations(surf_div );

%% Isotropic Wavelet transformation

% Wavelet name
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wname_iso = "mexh";

wname_iso_full = "Mexican hat";

% Scale range for transform

scale_range = logspace(0, log10 (2^3), 25);

% Wavelet transformation of the surface

cwt_elev_iso = cwtft2(surf_elev , ’wavelet ’, wname_iso , ...

’scales ’, scale_range );

% Matrix the coefficients at each frequency

wlt_elev_iso = reshape(cwt_elev_iso.cfs(:,:,1,:), ...

[256 256 length(scale_range )]);

%% Nonisotropic wavelet transformation

wname_mexh_non = {"mexh", {2,4,1}}; % Mexican hat wvaelet 2D

wname_morl_non = {"morl", {6,1,1}}; % Morlet wavelet 2D

% Scale range for transform

scale_range = logspace(0, log10 (2^3), 25);

% Angles used in the transform

angles = linspace(-pi/2, pi/2, 13);

% angles = [0 15 30 45 60 75 90 105]/180* pi;

cwt_elev_non = cwtft2(surf_elev , ’wavelet ’, wname_mexh_non , ...

’angles ’, angles , ’scales ’, scale_range );

wlt_elev_non = reshape(cwt_elev_non.cfs , [256 256 ...

length(scale_range) length(angles )]);

[wlt_non , wlt_non_len_scale] = ...

wavelet_length_scale(scale_range(wlt_scale),surf_elev ,wname_mexh_non );

wlt_scars = zeros (256, 256);

for i = 1: length(angles)

wlt_scars = wlt_scars + (real(wlt_elev_non (:,:,wlt_scale ,i)) < -0.9*10^ -4);

end

wlt_scars = wlt_scars .*( surf_mean_curv <0);

%% Correltaion between the up and downwellings lovations

% Anisotropic wavelet

% Location matrix of the wellings found by the wavelet transform

wlt_scars_loc = ones (256).*( wlt_scars >1*10^ -4);

% Location matrix of the wellings according to the surface divergense

surf_scars_loc = ones (256).*(( surf_upwelling >0.1) + (surf_downwelling >0.1));

% Correlations between the two

scars_loc_corr(data_index) = corr2(wlt_scars_loc ,surf_scars_loc );

% Isotropic wavelet

60



wlt_iso_scars = ones (256).*( wlt_elev_iso (:,:, wlt_scale ) < -0.8*10^ -4);

% Correlation with the isotropci wavelet

scars_loc_corr_iso(data_index) = corr2(wlt_iso_scars ,surf_scars_loc );

fprintf("Timestep %5.2f done , nr %3d of %d \n", ...

timestamps(data_index), data_index , length(timestamps ))

end

%% Plotting

if data_index == 160

figure (1), clf

plot(scars_loc_corr)

ylim ([0.1 0.7])

% title (" Surface welling location correlation ")

figure (2), clf

plot(scars_loc_corr_iso)

ylim ([0.1 0.7])

% title (" Surface welling location (isotropic wavelet )")

else

figure (1), clf

pcolor(x_2d , y_2d , surf_elev)

hold on

shading flat

contour(x_2d , y_2d , surf_downwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10^-4, [0.1 0.1]*10^ -4 ,...

’r’, ’linewidth ’, 1)

% colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface elevation at time = " + timestamps(data_index ))

hold off

figure (2), clf

% pcolor(x_2d , y_2d , wlt_coeff (:,:,1))

% contourf(x_2d , y_2d , -wlt_elev_iso (:,:, wlt_scale), [1 1]*10^ -4)

% contourf(x_2d , y_2d , real(-wlt_elev_non (:,:,wlt_scale , wlt_angle )) ,...

% [1 1]*10^ -4)

contourf(x_2d , y_2d , wlt_scars , [0.1 0.1]*10^ -4)

% contourf(x_2d , y_2d , -surf_mean_curv , [0.03 0.03])

hold on

% contourf(x_2d , y_2d , -wlt_coeff (:,:,1), [1 1]*10^ -4)

% contour(x_2d , y_2d , -surf_mean_curv *10^-4, [0.02 0.02]*10^ -4 ,...

% ’linewidth ’, 1.5)

contour(x_2d , y_2d , surf_downwelling *10^-5, [0.1 0.1]*10^ -5 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10^-5, [0.1 0.1]*10^ -5 ,...

’r’, ’linewidth ’, 1)
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% contourf(x_2d , y_2d , 10* wlt_coeff (:,:,1), [1 1]*10^ -3)

shading flat

% colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% legend (" Wavelet transform", "Downwellings", "Upwellings ")

% title (" Wavelet transform negative and posisive values comparison ")

hold off

figure (3), clf

subplot (1,2,1)

pcolor(x_2d , y_2d , surf_scars_loc)

hold on

shading flat

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface wellings according to surface divergence")

hold off

subplot (1,2,2)

pcolor(x_2d , y_2d , wlt_scars)

hold on

shading flat

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface wellings fond from wlt tranform")

hold off

wlt_angle = 7;

figure (4), clf

pcolor(x_2d , y_2d , real(wlt_elev_non (:,:,wlt_scale , wlt_angle )))

hold on

% contour(x_2d , y_2d , -real(wlt_elev_non (:,:,wlt_scale , wlt_angle )) ,...

% [0.9 0.9]*10^ -4)

shading flat

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

% title (" Anisotropic mexh transform with angle = " ...

% + angles(wlt_angle )/pi*180)

hold off

figure (5), clf

pcolor(x_2d , y_2d , surf_div)

hold on

contour(x_2d , y_2d , surf_downwelling *10, [0.001 0.001]*10 ,...

’g’, ’linewidth ’, 1)

contour(x_2d , y_2d , surf_upwelling *10, [0.001 0.001]*10 ,...

’r’, ’linewidth ’, 1)

shading flat
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colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

title("Surface divergence")

legend("Surface Divergence", "Downwellings", "Upwellings" ,...

"Location", "best")

hold off

figure (6)

pcolor(x_2d ,y_2d ,surf_mean_curv)

hold on

shading flat

colorbar

xlim ([0 ,2*pi])

ylim ([0 ,2*pi])

xlabel("x axis")

ylabel("y axis")

hold off

% % Line on the surface at

% y = 1;

% y_ind = round(y*256/(2* pi));

% figure (6), clf

% subplot (4,1,1)

% quiver(reshape(u(:,y_ind ,:) ,[256 59])’, reshape(w(:,y_ind ,:) ,[256 59])’)

% xlim ([0 ,256])

% ylim ([45 60])

%

% subplot (4,1,2)

% plot(xhi , surf_elev(y_ind ,:))

% xlim ([0,2*pi])

%

% subplot (4,1,3)

% pcolor(surf_elev)

% hold on

% shading flat

% contour(surf_downwelling *10^-2, [0.1 0.1]*10^ -2 , ’g’, ’linewidth ’, 1)

% contour(surf_upwelling *10^-2, [0.1 0.1]*10^ -2 , ’r’, ’linewidth ’, 1)

% ylim([y_ind -5,y_ind +5])

% hold off

%

% subplot (4,1,4)

% plot(xhi , surf_div(y_ind ,:))

% xlim ([0,2*pi])

%

% figure (7), clf

% % quiver(x_2d , y_2d , u(:,:,1), v(:,:,1))

% pcolor(x_2d , y_2d , w(:,:,1))

% hold on

% quiver(x_2d , y_2d , u(:,:,1), v(:,:,1), ’w’)

% contour(x_2d , y_2d , surf_downwelling *10^-2, [0.1 0.1]*10^ -2 ,...

% ’g’, ’linewidth ’, 1)

% contour(x_2d , y_2d , surf_upwelling *10^-2, [0.1 0.1]*10^ -2 ,...

% ’r’, ’linewidth ’, 1)

% shading flat

% xlim ([0,2*pi])

% ylim ([0,2*pi])
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% title (" Horisontal velocity at the surface ")

% hold off

end
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Load surface data from the hdf5 file

function[eta0 , timestamps] = load_surface_data ()

% Scrip to load the surface data into a 3D Matrix containing all the

% surface elevations extracted from the full data set in

% get_surface_elevation

surf_data_info = h5info("surf_data");

num_of_timestamps = length(surf_data_info.Groups.Datasets );

timestamps = h5read("surf_data", "/timestamps");

eta0 = zeros(num_of_timestamps , 256, 256);

for i = 1: num_of_timestamps

path = "/eta0/" + num2str(timestamps(i));

eta0(i,:,:) = h5read("surf_data", path);

end

end
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Load near surface velocities and pressure from the hdf5 file

function[u,v,w,p,zz] = load_near_surf_velocities(timeindex)

% Scrip to load the veloviteis and the pressure near the surface into 4

% 3D matrices containin the

% surface data into a 3D Matrix containing all the

% surface elevations extracted from the full data set in

% get_surface_elevation

timestamps = h5read("near_surf_velocities", "/timestamps");

zz = h5read("near_surf_velocities", "/zz");

height = length(zz);

% Initializing matrices

u = zeros (256, 256, height );

v = u;

w = u;

p = u;

% Path to the velocities ’ location

u_path = "/u/" + timestamps(timeindex );

v_path = "/v/" + timestamps(timeindex );

w_path = "/w/" + timestamps(timeindex );

p_path = "/p/" + timestamps(timeindex );

% Getting near surface velocities from file

u(:,:,:) = h5read("near_surf_velocities", u_path );

v(:,:,:) = h5read("near_surf_velocities", v_path );

w(:,:,:) = h5read("near_surf_velocities", w_path );

p(:,:,:) = h5read("near_surf_velocities", p_path );

end
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Calculate the derivatives of the velocities

function[du_dx , du_dy , du_dz] = vel_derivatives(u, zz, z_index ,...

surf_elev , deta_dx_2D , deta_dy_2D)

% Function for finding all derivativatices at a certain elevation.

% Saves computational saving space since the derivatives are not

% calculated everywhere.

H_bar = 5*pi; % initializing domain height

l_ref = 2*pi; % reference length scale

% Grid variables in the x ang y directions

xhi = linspace(0, l_ref , 256);

psi = linspace(0, l_ref , 256);

% Differentioation with the grid tranformed variables

[du_dxhi , du_dpsi , du_dzeta] = gradient(u,xhi ,psi ,zz);

% Temporary variable for matrix calculations

tmp = zeros (256, 256, length(zz));

% Correction to the x derivative

for i = z_index

tmp(:,:,i) = zz(i)* deta_dx_2D; end

du_dx = du_dxhi(:,:,z_index) - ...

tmp(:,:,z_index ).* du_dzeta (:,:,z_index )./( surf_elev + H_bar);

% Correction to the y derivative

for i = z_index

tmp(:,:,i) = zz(i)* deta_dy_2D; end

du_dy = du_dpsi(:,:,z_index) - ...

tmp(:,:,z_index ).* du_dzeta (:,:,z_index )./( surf_elev + H_bar);

% Correction to the z derivative

du_dz = du_dzeta (:,:,z_index )./( surf_elev + H_bar );

end

67



Vortex cores algorithm and vorticity

function[lambda , omega , Q] = lambda_omega_Q(u, v, w, zz, z_index ,...

surf_elev , deta_dx_2D , deta_dy_2D)

% Calculating velocity derivatives

[du_dx , du_dy , du_dz] = vel_derivatives(u, zz, z_index ,...

surf_elev , deta_dx_2D , deta_dy_2D );

[dv_dx , dv_dy , dv_dz] = vel_derivatives(v, zz, z_index ,...

surf_elev , deta_dx_2D , deta_dy_2D );

[dw_dx , dw_dy , dw_dz] = vel_derivatives(w, zz, z_index ,...

surf_elev , deta_dx_2D , deta_dy_2D );

% Initializeing the matrices. For each point in the grid we have a 3x3

% matrix for the strain and rotaion stresses. Giving these 5 dimensions

S = zeros (256,256 , length(z_index ),3,3);

O = S;

% Setting the values for the stress tensor at each point

S(:,:,:,1,1) = 0.5*( du_dx + du_dx );

S(:,:,:,1,2) = 0.5*( du_dy + dv_dx );

S(:,:,:,1,3) = 0.5*( du_dz + dw_dx );

S(:,:,:,2,1) = 0.5*( dv_dx + du_dy );

S(:,:,:,2,2) = 0.5*( dv_dy + dv_dy );

S(:,:,:,2,3) = 0.5*( dv_dz + dw_dy );

S(:,:,:,3,1) = 0.5*( dw_dx + du_dz );

S(:,:,:,3,2) = 0.5*( dw_dy + dv_dz );

S(:,:,:,3,3) = 0.5*( dw_dz + dw_dz );

% Setting the values for the rotation tensor at each point

O(:,:,:,1,1) = 0.5*( du_dx - du_dx );

O(:,:,:,1,2) = 0.5*( du_dy - dv_dx );

O(:,:,:,1,3) = 0.5*( du_dz - dw_dx );

O(:,:,:,2,1) = 0.5*( dv_dx - du_dy );

O(:,:,:,2,2) = 0.5*( dv_dy - dv_dy );

O(:,:,:,2,3) = 0.5*( dv_dz - dw_dy );

O(:,:,:,3,1) = 0.5*( dw_dx - du_dz );

O(:,:,:,3,2) = 0.5*( dw_dy - dv_dz );

O(:,:,:,3,3) = 0.5*( dw_dz - dw_dz );

% Initializing the eigenvalues matrix

lambda = zeros (256 ,256, length(z_index )); % Median eigenvalues matrix

omega = zeros (256,256 , length(z_index ),3); % Voticity matrix

Q = lambda; % Sum og eigenvalues matrix

% Retrieving second largest eigenvalue (lambda_2) and Q matrix values

for i = 1:256

for j = 1:256

for k = z_index

% Temporary index to make the logic fit

if length(z_index )==1

tmp_ind = 1;

else

tmp_ind = z_index(k);

end

S_2D = reshape(S(i,j,tmp_ind ,:,:),[3 3]);

O_2D = reshape(O(i,j,tmp_ind ,:,:),[3 3]);

tmp = eig(S_2D^2 + O_2D ^2);

lambda(i,j,tmp_ind) = median(tmp);
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omega(i,j,tmp_ind ,:)=[ dw_dy(i,j,tmp_ind) - dv_dz(i,j,tmp_ind ),...

du_dz(i,j,tmp_ind) - dw_dx(i,j,tmp_ind ),...

dv_dx(i,j,tmp_ind) - du_dy(i,j,tmp_ind )];

Q(i,j,tmp_ind) = -0.5*sum(tmp);

end

end

end

end
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Known attached vortices positions

function [pos_x_vec , pos_y_vec] = bathtub_pos_vec(data_index)

% This function lists alle bathtub vortices x and y locations according to

% the timestep given. I had found these locations by hand and recorded them

% here.

switch data_index

case 1 % 1st timestep in the data

pos_x_vec = [4.16 , 4.52, 1.87, 0.65, 2.93, 5.02];

pos_y_vec = [6.15 , 1.99, 2.31, 0.88, 1.85, 0.60];

case 2 % 2nd timestep in the data

pos_x_vec = [4.37 , 3.02, 2.04, 4.41];

pos_y_vec = [1.75 , 1.66, 2.35, 1.62];

case 3 % 3rd timestep in the data

pos_x_vec = [4.25 , 4.01, 5.34, 3.37, 4.29, 4.26];

pos_y_vec = [1.58 , 5.63, 0.15, 1.75, 0.81, 1.44];

case 4 % 3rd timestep in the data

pos_x_vec = [4.27 , 3.95, 1.17, 4.20, 4.34];

pos_y_vec = [1.49 , 5.75, 0.96, 0.63, 1.34];

case 5 % 5th timestep in the data

pos_x_vec = [3.00 , 1.20, 1.43, 3.90, 5.93, 4.15, 4.21, 5.12];

pos_y_vec = [1.46 , 0.62, 1.00, 5.85, 6.15, 0.46, 0.62, 6.12];

case 6 % 6th timestep in the data

pos_x_vec = [3.05 , 1.52, 1.75, 3.83, 5.95, 4.12, 4.10];

pos_y_vec = [1.40 , 0.41, 1.32, 5.96, 6.00, 0.42, 0.25];

otherwise

pos_x_vec = [];

pos_y_vec = [];

end

end
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Vortex strength by integrating the enstrophy

function v_strength = vortex_strength_by_int(vortex_pos , enstrophy , pos_x , pos_y)

% Function to calculate the strenght of a vortex at a ceratin level near

% the surface by integrationg the enstrophy (magnitude of the vorticity

% squared , or omega ^2)

% Making a square around the surface structure for inspection

ds = 0.09; % Square half side lenght

% Mesh points number for sqaure half side length

ds_ind = floor(ds *256/(2* pi));

% Center indices for the structure

x_ind = floor(pos_y /(2*pi )*256); % x index for structure

y_ind = floor(pos_x /(2*pi )*256); % y index for structure

% Differential area used for integration

% Here 2*pi/255 is the distance between two grid points in either the x or

% y direction since the grid is structured

dA = (2*pi /255).^2;

% Extracting index on the grid for the relevatn structue

% x interval for vortex structure

x_interval = [x_ind - ds_ind , x_ind + ds_ind ];

% y interval for vortex structure

y_interval = [y_ind - ds_ind , y_ind + ds_ind ];

% focusing on points close to the vortex core

vortex_pos = reshape(vortex_pos(x_interval (1): x_interval (2)...

, y_interval (1): y_interval (2)), [2* ds_ind +1 2* ds_ind +1]);

enstrophy = reshape(enstrophy(x_interval (1): x_interval (2)...

, y_interval (1): y_interval (2)), [2* ds_ind +1 2* ds_ind +1]);

% Filtering out the enstrophy to only the areas around the vortex core ,

% defined by when vortex_pos is bigger than 0

enstrophy_corr = enstrophy .*( vortex_pos <0);

% Integrating enstrophy to find estimate for vortex strength

v_strength = sum(enstrophy_corr ,’all ’).*dA;

% surf(enstrophy_corr)

% shading flat

% colorbar

end
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Locating up- and downwelling with the surface divergence

function [surf_upwelling , surf_downwelling ]= ...

surface_wellings_locations(surf_div)

% Variable interval space averaging half square length

W = 0.22;

% Maximun indexing for the grid. Since the whole surface is 256 by 256,

% and half square length for the variable interval cannot excede the

% domain

W_ind = ceil(W*256/(2* pi));

% Differential area used for integration

dA = (2*pi /255).^2;

% Surface divergence root mean square

surf_div_rms = sqrt(sum(surf_div .^2, ’all ’)/(256^2));

surf_div_pos = surf_div .*( surf_div >0);

surf_div_neg = surf_div .*( surf_div <0);

% Initializing some variables

surf_div_mean_pos = zeros (256);

surf_div_mean_neg = zeros (256);

surf_div_var_pos = zeros (256);

surf_div_var_neg = zeros (256);

% Variabel interval space -averaging for surface divergence

for i = 1:256

for j = 1:256

x_int = max(i-W_ind ,1): min(i+W_ind ,256);

y_int = max(j-W_ind ,1): min(j+W_ind ,256);

% Variabel interval space -averaging quantity

surf_div_mean_pos(i,j) = dA/(4*W^2).*...

(sum(surf_div_pos(x_int ,y_int), ’all ’));

surf_div_mean_neg(i,j) = dA/(4*W^2).*...

(sum(surf_div_neg(x_int ,y_int), ’all ’));

% Localized varience for the surface divergence

surf_div_var_pos(i,j) = surf_div_pos(i,j).^2 - surf_div_mean_pos(i,j).^2;

surf_div_var_neg(i,j) = surf_div_neg(i,j).^2 - surf_div_mean_pos(i,j).^2;

end

end

% Criterion for a up or downwelling is that the surface local maximum

% variance is 5 times larger than the surface divergence rms value.

surf_upwelling = surf_div_var_pos .*( surf_div_var_pos >5* surf_div_rms .^2);

surf_downwelling = surf_div_var_neg .*( surf_div_var_neg >5* surf_div_rms .^2);

end
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Vortex response in wavelet space of known vortices

function [v_wlt_max , v_wlt_int] = vortex_wlt_trans(vortex_pos ,...

wlt_coeff , pos_x , pos_y)

% Function to calculate the strenght of a vortex at a ceratin level near

% the surface by integrationg the enstrophy (magnitude of the vorticity

% squared , or omega ^2)

% pos_x and pos_y are coordinates for a surface dimple. Due to the finite

% domain size these values have limits. Minimum for both is ds, and

% maximum is 2*pi-ds since the domain is between 0 and 2*pi

% Making a square around the surface structure for inspection

ds = 0.09; % Square half side lenght

% Mesh points number for sqaure half side length

ds_ind = floor(ds *256/(2* pi));

% The scale chosen is defined by this index. So 1 is the smallest scale ,

% and so on till the largest (which depends on the number of scales used in

% the tranformation in the main code

scale_index = 2;

% Center indices for the structure

x_ind = floor(pos_y /(2*pi )*256); % x index for structure

y_ind = floor(pos_x /(2*pi )*256); % y index for structure

% Differential area used for integration. Here 2*pi/255 is the distance

% between two grid points in either the x or y direction since the grid

% is structured

dA = (2*pi /255).^2;

% Extracting index on the grid for the relevatn structue

% x interval for vortex structure

x_interval = [x_ind - ds_ind , x_ind + ds_ind ];

% y interval for vortex structure

y_interval = [y_ind - ds_ind , y_ind + ds_ind ];

% focusing on points close to the vortex core

vortex_pos = reshape(vortex_pos(x_interval (1): x_interval (2)...

, y_interval (1): y_interval (2)), [2* ds_ind +1 2* ds_ind +1]);

wlt_coeff = reshape(wlt_coeff(x_interval (1): x_interval (2)...

, y_interval (1): y_interval (2), scale_index), [2* ds_ind +1 2* ds_ind +1]);

% Filtering out the enstrophy to only the areas around the vortex core ,

% defined by when vortex_pos is bigger than 0

% v_transform = wlt_coeff .*( vortex_pos <0);

v_transform = wlt_coeff .*( wlt_coeff >0);

% Integrating enstrophy to find estimate for vortex strength

v_wlt_int = sum(v_transform ,’all ’).*dA;

v_wlt_max = max(v_transform ,[],’all ’);

% surf(v_transform)

% shading flat

% colorbar

end
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Length scale of a wavelet

function [wlt , wlt_length] = wavelet_length_scale(scale , surf_elev , wname)

% Function to fint the size of the wavelet used at each scale. This is

% based on the cwtft2 function in MATLAB. Since cwtft2 uses fft to

% calculated the fourier transfomr it multiplies the fft og the signal with

% the complex conjugate og the fft of the wavelet to calculate the

% convolution needed for the wavelet transform

if iscell(wname)

name = wname {1};

var = [wname {2}{:}];

else

name = wname;

var = [];

end

fimg = fft2(surf_elev ); % fft of the surface elevation

S = size(fimg); % Size of the fft

W = S(1); % Width of the fft

% We only use the widht here since our domain is square

W2 = floor ((W -1)/2); % Half width parameter used in cwtft2

W_puls = 2*pi/W*[ 0:W2 (W2 -W+1): -1 ]; % Frequency range in the transform

[xx,yy] = meshgrid(W_puls ,W_puls ); % Meshgrid of the frequencies

xx = scale .*xx; % Scaling of the frequencies

yy = scale .*yy; % Scaling of the frequencis

% fft of the wavelet using the scaled frequencies from the fft of the

% original surface elevation

switch name

case "mexh"

if isempty(var)

var = [2,1,1];

% For the Mexican hat wavelet the first value , here 2, is

% called the order , it has the effect of adding valleys and

% tops to the wavelet. I have not found a reason for it yet.

% The second and third are the stretching if the x and y

% direction respectively , used for creating asymmetry in the

% wavelet making it anisotropic

end

fft_wlt = scale .* (-2*pi) * (xx.^2 + yy .^2).^( var (1)/2).*...

exp(-((var (2)*xx).^2 + (var (3)*yy ).^2)/ 2);

case "morl"

if isempty(var)

var = [6,1,1];

% For the non isotropic Morlet wavele the first values is used

% to adjust the frequency of the sine wave in the gaussina

% evenlope. The sencond os for stretching the envelope , and the

% third for stretchin the envelope in just the y axis.

end

fft_wlt = exp( - var (2)^2*(( xx - var (1)).^2 + (var (3)*yy ).^2)/2 );

otherwise

error("Not implemented for this wavelet yet")

end

% Inverse fft of the wavelet to give us the actual wavelet

ifft_wlt = ifft2(conj(fft_wlt ));

% Preallocating the wavelet
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wlt = zeros(W,W);

% Rearragin the wadrants of the inverse to remake the wavelet

wlt (1:W/2,1:W/2) = ifft_wlt(end -W/2+1:end , end -W/2+1: end);

wlt(end -W/2+1:end ,1:W/2) = ifft_wlt (1:W/2, end -W/2+1: end);

wlt (1:W/2,end -W/2+1: end) = ifft_wlt(end -W/2+1:end , 1:W/2);

wlt(end -W/2+1:end ,end -W/2+1: end) = ifft_wlt (1:W/2, 1:W/2);

% Cut of the whole wavelet going throught the peak of the mexican hat or

% other wavelet

switch name

case "mexh"

if var(2)>var (3)

wlt_cut = wlt(W/2+1:end , W/2+1);

else

wlt_cut = wlt(W/2+1, W/2+1: end);

end

case "morl"

wlt_cut = real(wlt(W/2+1, W/2+1: end ));

end

% Zooming in at the values around the center of the wavelet

% wlt = wlt(W/2 -18:W/2+21 ,W/2 -18:W/2+21);

% For the mexican hat wavelet the next part is to calculte the location of

% where the wavelet first crosses the x axis.

for i = 2:W/2-1

if wlt_cut(i+1)< wlt_cut(i), break , end

end

% Where the wavelet crosses the x-axis

zero_loc = interp1(wlt_cut (1:i), 1:i, 0);

switch name

case "mexh"

% Then I used the fact that zero crossin is 1/sqrt (3) parts of the

% legnth to the bottom of the valley in the mexican hat. I’m using

% the distande to the walley as my wavelet scale. The lengthscale

% for the wavelet is then the distance between the two valleys in

% the mexican hat wavelet

wlt_length = 2*( zero_loc*sqrt (3))/W * (2*pi);

case "morl"

% The length scale here is the distance between the two closest

% valleys in the morlet wavelet , since these are is the smalles

% scale the wavelet can detect. For the whole wavelet , multiply by

% about half the frequency (var (1)/2). That shoul give a good

% estimate for the witdh of the whole wavelet

wlt_length = 4*( zero_loc )/W * (2*pi);

end

end
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Taylor length scale close to the surface

function [u_rms , taylor_scale] = taylor_length_scale ()

% This is a funtion to fint the taylor microscale for the turbulence

% structures in the data given by Gou and Shen near the surface. It is

% based on function (36) & (38) from the 2009 paper from Gou and Shen "On

% the generation and measurement of waves and turbulence in simulations of

% the free surface turbulence ". In essence we calculate the microscale in

% the bulk region using the forcing used and the Reynolds number. The use

% the conversion funtion in (38) to find the length scale in the free

% region above.

% Forcing term used in the bulk region (the same as the one used in the Gou

% and Shen article from 2010 "INteraction of a deformable free surface with

% statistically steady homogeneous turbulence ". It is the same as the one

% in this simulation , but for the different viscosity giving a different

% Reynolds number.

a_0 = 0.1;

% Reynolds number for this simulation

Re = 2500;

% Constant used in the eq 38 in Gou & Shen 2009, for a damping region of

% pi/2 the values for these are listed in table 2 in the same article

C_l = -1.0124;

D_l = 0.2085;

C_u = 4.3016;

D_u = -0.9681;

% B_l = 0.4245;

% B_u = 0.3114;

% This is the distace from the center og the domain where we are tying to

% find the Taylor length scale

z_c = 3*pi/2 + pi/2 + 0.5*pi/2;

% Taylor length scale in the bulk region , see eq 36 in Gou & Shen 2009

bulk_scale = 2.24/ sqrt(a_0*Re);

u_rms_bulk = 0.57* a_0*2*pi;

% The taylor scale wery close to the surface

taylor_scale = bulk_scale * exp(C_l + D_l*z_c);

u_rms = sqrt(u_rms_bulk ^2 * exp(C_u + D_u*z_c));

% taylor_scale = bulk_scale * B_l * z_c;

% u_rms = u_rms_bulk * B_u / z_c;

end
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Some 2D wavelet testing

% Wavelet transform responses

clear

W = 256;

x_range = linspace (-2*pi ,2*pi ,W);

y_range = x_range;

[x,y] = meshgrid(x_range ,y_range );

func_i = 1;

switch func_i

case 1

func = sin(x);

case 2

func = sin(x)+sin(y);

case 3

func = exp(-(x.^2)/2);

case 4

func = exp(-(x.^2+y.^2)/2);

case 5

func = 0.5* exp(-((x -2.5).^2)/2) - exp(-((x+2.5).^2)/2);

case 6

func = exp(-((x-y.^2).^2)/2);

otherwise

disp("Fnnction number not specified")

func = x;

end

func_scaling = 5;

func = func.* func_scaling;

wname = "mexh";

scale_range = logspace(0, log10 (2^3), 25);

wlt_scale = 17;

[wlt , wlt_length_scale] = wavelet_length_scale(scale_range(wlt_scale), func , wname );

disp(wlt_length_scale)

cwt_1 = cwtft2(func , ’wavelet ’, wname , ’scales ’, scale_range );

wlt_coeff_1 = reshape(cwt_1.cfs(:,:,1,:),[W W length(scale_range )]);

[df_dx , df_dy] = gradient(func , x_range , y_range );

[df_dxx , df_dxy] = gradient(df_dx , x_range , y_range );

[~, df_dyy] = gradient(df_dy , x_range , y_range );

mean_curv = ((1+ df_dy .^2).* df_dxx + (1+ df_dx .^2).* df_dyy ...

- 2* df_dx.* df_dy.* df_dxy )./(1 + df_dx .^2 + df_dy .^2).^(3/2);

figure (1), clf

surf(x,y,func)

shading flat

colorbar

figure (2), clf

surf(x,y,wlt_coeff_1 (:,:, wlt_scale ))
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shading flat

colorbar

figure (3), clf

surf(x,y,df_dxx+df_dyy)

shading flat

colorbar
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Isolating attached vortices with Hough circle transform

function [vor_wlt_strength , vor_circles , vor_radii] = ...

wlt_surface_vortices(wlt_elev_iso , surf_mean_curv)

% This function tries to isolate the attached vortices at the surface by

% using the wavelet tranform og the surface elevation. It uses Hough circle

% transfomrs to do so.

% Mesh for the original domain

x_orig = linspace (0,2*pi ,256);

y_orig = x_orig;

[x_orig ,y_orig] = meshgrid(x_orig ,y_orig );

% Interpolation mesh

int_size = 2000;

x = linspace(0, 2*pi, int_size );

y = x;

[x,y] = meshgrid(x,y);

% Threshold for the contour

cont_thresh = 0.5*10^ -4;

% Interpolating surface elevation for more points to use in later

% algorithms

wlt_elev_int = interp2(x_orig , y_orig , wlt_elev_iso , x, y);

wlt_elev_thresh = ones(int_size ).*( wlt_elev_int >cont_thresh );

wlt_elev_pos = wlt_elev_int .*( wlt_elev_int >0);

% contour matrix with all the edges of the contoru isolines

cont_mat = contourc(wlt_elev_int , [cont_thresh cont_thresh ]);

cont_loc = {};

% Since the matrix is set up in a wierd way I extract the edges of the

% contour line in a matrix.

i = 1;

cont_num = 1;

while i<length(cont_mat (1 ,:))

current_cont = zeros(cont_mat(2,i),2);

current_it = 1;

for i = i+1:i+cont_mat(2,i)

current_cont(current_it ,:) = ...

[round(cont_mat(2,i)),round(cont_mat(1,i))];

current_it = current_it + 1;

end

cont_loc{cont_num} = current_cont;

cont_num = cont_num + 1;

i = i + 1;

end

tot_cont = zeros(int_size );

for i = 1: length(cont_loc)

for j = 1: length(cont_loc{i})

tot_cont(cont_loc{i}(j,1), cont_loc{i}(j,2)) = 1;

end

end
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circles = [];

radii = [];

chosen_cont = zeros(int_size );

for radius = 7:45

current_cont = zeros(int_size );

circum_up_thresh = radius *2*pi *1.3;

circum_low_thresh = radius *2*pi*0.8;

for i = 1: length(cont_loc)

cont_circum = 0;

query = cont_loc{i};

for j = 1: length(cont_loc{i})-1

cont_circum = cont_circum + sqrt (...

(query(j+1,1) - query(j ,1))^2 +...

(query(j+1,2) - query(j ,2))^2);

end

if cont_circum >circum_up_thresh || cont_circum <circum_low_thresh

continue

end

% mean_x_ind = max(mean(query (: ,1))*(256/ int_size ),1);

% mean_y_ind = max(mean(query (: ,2))*(256/ int_size ),1);

% if surf_mean_curv(round(mean_x_ind),round(mean_y_ind )) < 0

% continue

% end

for j = 1: length(cont_loc{i})

current_cont(cont_loc{i}(j,1), cont_loc{i}(j,2)) = 1;

chosen_cont(cont_loc{i}(j,1), cont_loc{i}(j,2)) = 1;

end

end

method = "TwoStage";

switch method

case "TwoStage"

[circ , rad] = imfindcircles(current_cont , [radius -1 radius +5] ,...

"Sensitivity", 0.96, "Method", "TwoStage");

% Sensitivity for cutoff = 0.83

% Sensitivity for contour points = 0.92

case "PhaseCode"

[circ , rad] = imfindcircles(current_cont , [6, 30] ,...

"Sensitivity", 0.95, "Method", "PhaseCode");

otherwise

circ = [];

rad = [];

end

if ~isempty(circ)

circles = [circles; circ];

radii = [radii; rad];

end

end

% Removing all circles not in an area of positive surface curvature (since

% the mean curvature has to be positive at an attached vortex)

i = 1;

while i < length(circles)

x_ind = max(round(circles(i ,2)*(256/ int_size )) ,1);

y_ind = max(round(circles(i ,1)*(256/ int_size )) ,1);

if surf_mean_curv(x_ind ,y_ind) < 0

circles(i,:) = [];

radii(i) = [];
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else

i = i + 1;

end

end

% Setting return coordinates and radii for the circles (2*pi x 2*pi grid)

vor_circles = circles .*(2* pi/int_size );

vor_radii = radii .*(2* pi/int_size );

figure (6), clf

pcolor(chosen_cont)

shading flat

viscircles(circles ,radii );

% Preallocating total strength variable

vor_wlt_strength = 0;

% Differential area used in integration

dA = (2*pi/int_size ).^2;

% ds = round(max(vor_radii )*2);

for i = 1: length(circles)

% Side length for integration domain for each vortex

ds = round(radii(i)*2.5);

% Indeces for circle centers

x_ind = round(circles(i,2));

y_ind = round(circles(i,1));

% Integration area indeces

x_inter = [max(x_ind - ds , 1), min(x_ind + ds , int_size )];

y_inter = [max(y_ind - ds , 1), min(y_ind + ds , int_size )];

% Preallocating partition of the total area

par_wlt_elev = wlt_elev_pos(x_inter (1): x_inter (2)...

,y_inter (1): y_inter (2));

for x = 1: length(x_inter)

for y = 1: length(y_inter)

if sqrt(( x_inter(x) - x_ind )^2 + (y_inter(y) - y_ind )^2) > ds

par_wlt_elev(x,y) = 0;

end

end

end

% Integrating wavelet transform in the location of the found vortices

vor_wlt_strength = vor_wlt_strength + dA*sum(par_wlt_elev ,’all ’);

end

end
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Initial 1D wavelet transform testing

clear

clc

load kobe

load mtlb

load noisdopp

data = noisdopp;

% data(end+1:end +1000) = 0;

%% Continous wavelet transform with filterbank

wname = ’amor ’;

fb = cwtfilterbank(’Wavelet ’, wname , ’SignalLength ’,length(data), ...

’VoicesPerOctave ’,20, ’Boundary ’,’periodic ’);

[coeff , freq , cone_of_inf] = wt(fb,data);

% [coeff , freq , cone_of_inf] = cwt(data ,wname , ’VoicesPerOctave ’,20,...

% ’NumOctaves ’, 7);

t = 0: length(data)-1;

% Plotting the original signal

figure (1), clf

plot(data)

% Plotting of the continous wavelet transform

figure (2), clf

pcolor(t, freq , abs(coeff))

hold on

plot(t, cone_of_inf ,’w-’,’LineWidth ’,3) % cone of influence

set(gca , ’YScale ’, ’log ’)

shading flat

y_max_tick = log10(max(freq ));

y_min_tick = log10(min(freq ));

y_tick_vec = logspace(y_min_tick ,y_max_tick ,10);

yticks(y_tick_vec)

yticklabels(arrayfun(@num2str ,round(scal2frq(y_tick_vec ,’morl ’)) ,...

’UniformOutput ’,0))

% color_lim = [min(min(abs(coeff ))) max(max(abs(coeff )))];

colorbar

% caxis(color_lim)

xlabel("x")

ylabel("scale")

xlim ([0 length(data )])

hold off

data_recon = icwt(coeff , wname , freq , [min(freq) max(freq )]);

figure (3), clf

plot(data), hold on

plot(data_recon)

xlabel(’x’)

ylabel(’y’)

legend("Original signal", "Reconstruction", "Location", "best")

xlim ([0 length(data )])
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%% Testing out descrete wavelet transform

wname = ’bior6 .8’;

[cA, cD] = dwt(data , wname );

% Plotting

figure (4), clf

plot(cA)

hold on

plot(cD)

hold off

%

% set(gca , ’YScale ’, ’log ’)

% shading flat

% colorbar

% xlim ([0 length(data )])

%% 2D continous wavelet transform

data_woman = load(’woman ’);

data_2D = data_woman.X;

wname = ’morl ’;

scales = 2.^(0:0.1:5);

angles = 0:pi /8:2*pi -pi/8;

cwtmorl = cwtft2(data_2D , ’wavelet ’, wname , ...

’scales ’,scales , ’angles ’, angles , ’plot ’);

figure (5), clf

pcolor(data_2D(end:-1:1,:)), hold on

colormap(’pink ’)

shading flat

axis off

hold off

figure (6), clf

pcolor(abs(cwtmorl.cfs(end:-1:1,:,1,1))), hold on

colormap(’pink ’)

shading flat

hold off

% coeff_2D = [];

% coeff_2D (:,:,:) = cwtmorl.cfs(end:-1:1,:,:);
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