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Abstract
This paper presents an independent stereo-vision based positioning system for docking operations. The low-cost system 
consists of an object detector and different 3D reconstruction techniques. To address the challenge of robust detections in an 
unstructured and complex outdoor environment, a learning-based object detection model is proposed. The system employs a 
complementary modular approach that uses data-driven methods, utilizing data wherever required and traditional computer 
vision methods when the scope and complexity of the environment are reduced. Both, monocular and stereo-vision based 
methods are investigated for comparison. Furthermore, easily identifiable markers are utilized to obtain reference points, 
thus simplifying the localization task. A small unmanned surface vehicle (USV) with a LiDAR-based positioning system 
was exploited to verify that the proposed vision-based positioning system produces accurate measurements under various 
docking scenarios. Field experiments have proven that the developed system performs well and can supplement the traditional 
navigation system for safety-critical docking operations.

Keywords  Autonomous docking · Vision-based navigation · Fiducial markers · Convolutional neural network · Object 
detection · Computer vision

1  Introduction

The maritime industry has shown increased attention to 
autonomy over the past decade. By promising reduced costs 
and improved safety, autonomous vessels may revolution-
ize industries such as shipping, public transportation, and 
remote surveillance (Kretschmann et al. 2017). However, 
several challenges remain before autonomous vessels are 
ready to enter the commercial market. In particular, autono-
mous vessels must provide highly robust navigation solu-
tions for safety-critical operations to be widely accepted by 
authorities, classification societies, and the general public 
(Bolbot et al. 2020).

Global Navigation Satellite Systems (GNSS) are used as 
the main positioning system onboard most ships today. The 
technology is well-established, and GNSS onboard ships 
often hold a high standard. However, satellite-based navi-
gation systems are vulnerable to a number of cyber-physical 
attacks such as spoofing, meaconing, and jamming (Carroll 
2003). Hence, the satellite signals can easily be manipulated 
by such attacks (Grant et al. 2009), thereby posing signifi-
cant security threats for autonomous vessels. For example, 
the vessel can be hijacked, potentially causing a collision 
with other vehicles or the harbor itself. Such an attack is dev-
astating for the industry and the trust among the general pub-
lic. Because of this, vendors and the class societies require 
an independent navigation system that is less vulnerable to 
cyber-physical attacks (Androjna et al. 2020).

Among maritime operations, the docking of a vessel is 
considered to be one of the most critical. This is because the 
vessel operates in a constrained area where highly accurate 
positioning measurements are required. Unfortunately, com-
mercial GNSS estimates position with errors in the orders of 
meters (Aqel et al. 2016), and Differential GNSS typically 
provides 1 m global accuracy (Monteiro et al. 2005). These 
errors are considered too significant for critical applications 
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that require centimeter accuracy, such as autonomous dock-
ing. Real-time kinematic (RTK) GNSS can be used to 
determine position in centimeters. However, RTK GNSS is 
an expensive solution and has a large number of dropouts 
(Gryte et al. 2017). It is therefore of interest to supplement 
the traditional navigation system with alternative sensors. If 
such sensors can increase positioning accuracy and redun-
dancy, autonomous vessels have the potential to operate reli-
ably under safety-critical docking operations.

Many researchers have shown increased interest in visual-
based localization systems because they are more robust and 
reliable than other sensor-based localization systems (Aqel 
et al. 2016). The car industry has already adopted vision-
based sensors, e.g., cameras, for autonomous navigation 
for many years (Badue et al. 2021), and we believe that the 
maritime sector will follow. Compared to proximity naviga-
tion sensors, optical cameras are low-cost sensors that pro-
vide a large amount of information. In terms of docking, 
they show another advantage over the GNSS: Since GNSS 
is an absolute positioning system, it usually requires exact 
global coordinates for the target position, e.g., a floating 
dock, which is impractical. In contrast, cameras can provide 
relative positioning directly as long as easily recognizable 
features from the docking station are available. For this rea-
son, relative positioning is preferred over absolute position-
ing under docking operations, especially since the docking 
control system regulates the relative position to zero.

The two main approaches to estimate the camera pose 
are based on natural features (Engel et al. 2014; Mur-Artal 
et al. 2015; Zhong et al. 2015), e.g., keypoints and textures, 
and artificial landmarks (Ababsa and Mallem 2004; Olson 
2011; Garrido-Jurado et al. 2014), respectively. The first 
approach requires no intervention in the environment, thus 
proving to be a flexible choice. It is, however, computa-
tionally expensive and typically fails in textureless areas. 
It also tends to fail in case of blurring due to camera move-
ments. For these reasons, the second approach with arti-
ficial landmarks is the most common method if accuracy, 
robustness, and speed are essential (Mondjar-Guerra et al. 
2018). In robotic applications, fiducial markers such as ART-
ags (Fiala 2005), ARToolkit (Kato and Billinghurst 1999), 
ArUco (Garrido-Jurado et al. 2014), AprilTag (Olson 2011) 
and AprilTag2 (Wang and Olson 2016) have been of cru-
cial importance for obtaining an accurate pose estimate of 
the marker. However, detecting and locating fiducial mark-
ers in complex backgrounds is a challenging step. This is 
because electro-optical (EO) cameras are highly sensitive 
to environmental conditions such as light conditions, illu-
mination changes, shadows, motion blur, and textures (Aqel 
et al. 2016). Zhang et al. (2006) propose a method to detect 
non-uniformly illuminated and perspectively distorted 1D 
barcode based on textual and shape features, while Xu and 
McCloskey (2011) developed an approach for detecting blur 

2D barcodes based on coded exposure algorithms. These 
methods show high detection rates on certain barcodes, but 
their performance may be affected by environmental con-
ditions, i.e., they are based on handcrafted features using 
prior knowledge of specific conditions. On the other hand, 
Convolutional Neural Networks (CNNs) have shown out-
standing robustness in terms of detecting objects in arbitrary 
orientations, scales, blur, and different light conditions with 
complex backgrounds as long as such examples are widely 
represented in the data set, e.g., as demonstrated by Chou 
et al. (2015). In the context of a complex harbor environ-
ment, this paper aims to show how a learning-based method, 
i.e., a CNN, can be used for robust detections of fiducial 
markers. We also aim to demonstrate how traditional com-
puter vision methods produce robust and accurate position-
ing of an unmanned surface vehicle (USV) when the harbor 
complexity is reduced.

1.1 � Related work

In relation to model-based methods, Jin et al. (2017), Kall-
wies et al. (2020), and Zakiev et al. (2020) benchmark and 
improve fiducial marker systems, e.g., ArUco and AprilTag, 
influenced by elements such as gaussian noise, lighting, 
rotation, and occlusion. However, the experimental data 
is limited to synthetic data or indoor environments. dos 
Santos Cesar et al. (2015) evaluate ArUco, ARToolkit, and 
AprilTag in underwater environments, but do not propose 
any methods to improve performance compared to existing 
fiducial marker systems.

Of learning-based methods, Hu, Detone and Malisiewicz 
present Deep ChArUco (Hu et al. 2019), a deep CNN sys-
tem trained to be accurate and robust for ChArUco marker 
detection and pose estimation under low-light, high-motion 
scenarios. Instead of a regular deep CNN for object detec-
tion, e.g., Yolo (Redmon et al. 2016) or Single Shot Detector 
(Liu et al. 2016), they use a deep learning-based technique 
for feature point detection. Although they show very prom-
ising detection results on image data influenced by extreme 
lighting and motion, it is limited to synthetic data or indoor 
environments. Mondjar-Guerra et al. (2018) benchmark 
different types of classifiers, i.e., Multilayer Perceptron, 
CNN, and Support Vector Machine, against the state-of-
the-art fiducial marker systems, i.e., ArUco and AprilTag, 
to detect fiducial markers in both outdoor and indoor sce-
narios. Hence, they cover challenging elements such as 
motion blur, defocus, overexposure, and non-uniform light-
ing. Still, the indoor environment is overrepresented, and 
the outdoor environment is limited to one single scenario. 
At last, Li et al. (2020) compare the detection rate between 
the traditional ArUco detector and the deep learning model 
Yolov3 (Redmon and Farhadi 2018) in an unmanned aerial 
vehicle landing environment. They show that Yolov3 slightly 
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outperforms the ArUco detector at distances up to 8 m, 
under no occlusion. They also demonstrate that Yolov3 per-
forms well under various occlusion conditions, even under 
30% occlusion coverage.

In terms of relevant outdoor environments, Mateos (2020) 
benchmarks his proposed AprilTag3D framework, a redun-
dant system of two coupled Apriltags, against the tradi-
tional AprilTag detector. His experiments showed that the 
AprilTag detector had an 85% detection rate in the indoor 
swimming pool and a 60% detection rate under outdoor tests 
in the river, while his proposed framework achieved a 99% 
and 95% score in the same settings, respectively. At last, 
Dhall et al. (2019) investigate landmark-based navigation, 
where naturally occurring cones on the track are used as 
reference objects for local navigation of a racing car under 
varying lighting and weather conditions. They use learning-
based methods to estimate the points of a cone and Perspec-
tive n-Point (PnP) to estimate the camera pose relative to 
the cone.

The work described above examined different approaches 
for vision-based detection and pose estimation of reference 
objects, e.g., fiducial markers and natural landmarks. While 
much of the work is limited to indoor experiments or syn-
thetic data, some work tests their proposed methods in rel-
evant outdoor scenarios. In particular, Mateos demonstrates 
the closest application-specific work where a vision-based 
USV and fiducial markers are used in open water influenced 
by environmental elements similar to the harbor environ-
ment. However, he only tests his model-based framework 
in close-range scenarios, i.e., up to 2 m, and it is unknown 
how an increasingly complex environment is handled. Dhall, 
Dai, and Gool, however, demonstrate the closest method-
specific work. This is because they employ a similar hybrid 
data-driven and model-based scheme where a learning-based 
object detector is used to reduce detection complexity. In 
contrast to our work, they also design a CNN for keypoint 
detection on the cone. However, we believe the ArUco detec-
tor for corner detection in a much smaller and less complex 
image to provide sufficient accuracy and robustness. We also 
prefer to rely on model-based methods wherever possible to 
increase the interpretability of the method.

1.2 � Main contributions

This paper demonstrates how low-cost cameras mounted 
on a USV (see Fig. 1) can be used for auto-docking and 
relative positioning in the harbor environment. The main 
objective is to develop an independent vision-based posi-
tioning system to increase the redundancy and accuracy of 
autonomous vehicles’ navigation systems under the terminal 
docking phase. None of the related works deal with vision-
based auto-docking of small USVs in comparable docking 
environments.

We present two novel contributions in this paper. First, 
we describe and examine a hybrid model-based and data-
driven scheme, based on existing frameworks and tools, i.e., 
ROS, OpenCV, and Yolov3, to perform vision-based posi-
tioning of a USV under various docking operations. More 
specifically, we use a learning-based method, e.g., Yolov3, 
for robust detection of fiducial markers and model-based 
computer vision methods, i.e., ArUco, point triangulation, 
and PnP, for accurate corner detections and subsequent 3D 
reconstruction when the harbor complexity is reduced. Both 
monocular and stereo vision methods are investigated for 
comparison. The developed methods are characterized by 
incremental improvements and adjustments that require 
extensive testing in the field to work reliably, especially 
since we combine model-based and data-driven methods. 
The final design choices in Sect. 2 are reflected by this. Sec-
ondly, we use a LiDAR sensor for experimental verification 
of the proposed methods. A subsequent evaluation of the 
accuracy and reliability of the methods is highly relevant for 
the maritime industry. In particular, small high-tech compa-
nies that manufacture low-cost unmanned vehicles and even 
large-scale companies developing navigation solutions for 
ferries are interested in vision-based docking.

Source code and instructions have been made available 
in a public Github repository (Volden 2020), thus provid-
ing a recipe to develop low-cost vision-based positioning 
systems. The work is based on the master thesis ”Vision-
Based Positioning System for Auto-Docking of Unmanned 
Surface Vehicles (USVs)” (Volden 2020) submitted January 
20, 2020, under the direction of Professor Thor I. Fossen. 
However, it is further extended with more experimental 

Fig. 1   The Otter USV from Maritime Robotics is armed with two 
(EO) cameras and a LiDAR for vision-based navigation. The guid-
ance, navigation, and control (GNC) computer to control the vehicle 
is located in the grey box. The image is reproduced with kind permis-
sion of Maritime Robotics, https://​www.​marit​imero​botics.​com

https://www.maritimerobotics.com
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data and field experiments followed up by an analysis of the 
experimental results and how they relate to existing work 
in the field.

1.3 � Outline

This paper is organized as follows. Section 2 describes a 
step-by-step methodology in which design choices and algo-
rithms for robust vision-based detection and positioning are 
introduced. Section 3 describes the hardware used in the 
experiments and experiment-specific details. It also includes 
results and discussions regarding the experiments. Finally, 
we summarize the most important findings in Sect. 4.

2 � Design, algorithms and implementation

The final working system employs a complementary modu-
lar approach that uses a combination of data-driven deep 
learning methods, utilizing data wherever required, and 
at the same time uses traditional computer vision meth-
ods when the scope and complexity of the environment 
are reduced. Two implementations are proposed, referred 
to as Design 1 and Design 2, respectively. Implementation 
details and differences are discussed in Sect. 2.4. However, 
the functionality of the methods shares many commonalities. 
Following is a brief introduction to the high-level design 
with a focus on stereo vision, as seen in Fig. 2.

2.1 � Pipeline overview

Initially, the object detector receives image data from the 
cameras through the camera driver. Once a marker is vis-
ible, we use the object detector twice to output detections, 
i.e., one per camera view. Furthermore, we concatenate the 

detections into a bounding box pair representing the same 
marker seen from a stereoscopic view. Then, the bound-
ing box pair is fed into a corner detector. Since the corner 
detector outputs the corner positions in the same clockwise 
order, we match corresponding marker corners directly. 
Furthermore, we utilize image rectification to simplify the 
correspondence problem, i.e., we search for corresponding 
points along horizontal scanlines. Once the stereo pairs are 
matched, we use a triangulation algorithm to compute the 
disparity map. Finally, we use the disparity map to obtain 
the relative position between the left camera and the marker 
corners.

2.2 � Camera integration

We use a ROS compatible camera driver (Shah 2020) to 
simplify the communication and data transmission between 
the cameras and the object detection model. The camera 
driver let us specify which cameras to connect and which 
camera to be master for triggering the other camera, e.g., 
for a stereo setup. In particular, the camera driver supports 
hardware triggering to enable reliable, low-latency synchro-
nization between the cameras. This is particularly important 
for accurate 3D reconstruction with stereo vision in a rapidly 
changing environment.

2.3 � Object detection pipeline

This section discusses the steps necessary to obtain a fine-
tuned object recognition model using data-driven methods. 
An overview of the process can be seen in Fig. 3.

Fig. 2   The figure gives an over-
view of the proposed vision-
based positioning system with 
stereo vision. The main idea 
is to input the relative position 
of the USV during the docking 
operation. A slightly different 
design with monocular vision is 
discussed in Sect. 2.4
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2.3.1 � Step 1—data preparation and marker configurations

In the field of supervised learning, data is essential for train-
ing CNNs. Data is used to give ground truth examples rel-
evant to the predefined learning task. The first step includes 
the construction of custom datasets representing examples of 
the features that the model should learn. Hence, data collec-
tion was conducted to gather image data of different mark-
ers in the harbor environment. Two custom datasets, i.e., 
custom dataset 1 and custom dataset 2, were constructed to 
test the proposed solution in realistic docking environments. 
The first dataset includes colored image data recorded with 
a GoPro camera, while the second dataset includes mono-
chrome image data recorded with a Blackfly S GiGE camera, 
as seen in Fig. 10. Only relevant examples, i.e., images that 
show at least one marker, from the records were included in 
the custom datasets. The relevant records were downsam-
pled to a rate of 2 Hz. The custom datasets was randomly 

shuffled before 80% was assigned to training, while 10% 
was assigned to validation and testing, respectively. Table 1 
shows the amount of images for each data set. This separa-
tion ensures that the training, test, and validation set are 
independent, which is essential when evaluating the accu-
racy of the trained model on unseen data.

Two types of marker configurations are used in this work. 
Marker configuration 1 relates to custom dataset 1, while 
marker configuration 2 relates to custom dataset 2. Both 
configurations use low dictionary size, i.e., 4 × 4, such that 
feature extraction of the inner codification is possible for 
low-resolution images. For object detection, we assign one 
marker type per class during the training scheme. In that 
sense, object tracking is simplified as we assume the pre-
dicted objects to represent distinct markers for a well-trained 
CNN. We refer to Table 2 for more marker-specific details.

2.3.2 � Step 2—labeling process

Ground truth labels are used to guide the supervised model 
towards the correct answer. We use the annotation program, 
Yolo Mark, to create ground truth labels. That is, rectangle-
shaped bounding boxes are dragged around the markers in 
the scene. Consequently, the features to fine-tune the model 
are those to recognize ArUco markers, i.e., combinations of 
black and white pixels representing the inner codification of 
the marker. Notice that precise labeling is essential for the 
learning process. Unexpected learning is often a result of 
inaccurate labels, e.g., only label parts of the object can be 
dangerous as the model then interprets this is as the com-
plete object.

2.3.3 � Step 3—training and validation procedure

For this work, we apply transfer learning. It is a popular 
approach where a pre-trained model is used as a starting 
point to fine-tune the model for the final detection task. The 
pre-trained model parameters are trained on the ImageNet 
dataset (Deng et al. 2009), a dataset with more than 14 mil-
lion hand-annotated, labeled images. As seen in Fig. 3, the 
pre-trained weights, and the training data are used as input to 
the model during the training scheme. The original YOLOv3 
network architecture with spatial pyramid pooling (SPP) is 
chosen as it achieves the highest Mean average Precision 

Fig. 3   The figure shows the necessary steps to obtain a fined-tuned 
object recognition model. First, images are prepared and labeled to 
obtain ground truth for the supervised CNN to learn. Labeled data 
are then fed into the data-driven detection model, together with pre-
trained model weights, to fine-tune the model. A validation set is used 
for model selection to decide when the model should stop training. 
Finally, the fine-tuned model is tested on unseen data to evaluate its 
accuracy, e.g., by using the mean average precision (MaP) metric. If 
results are satisfying, the final model weights are used for object rec-
ognition tasks in the prediction phase

Table 1   Split between training, validation, and test images for the 
custom datasets

Training, validation and test data

Dataset Training Validation Test

Custom dataset 1 666 84 84
Custom dataset 2 683 85 85
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(MaP) value (60.6%) on the COCO dataset (Lin et al. 2014) 
when a 0.5 Intersection over Union (IOU) threshold was 
used. To balance the detection accuracy vs. inference time 
tradeoff, we resize the training images to 416 × 416 resolu-
tion. The remaining hyperparameters, i.e., those to control 
the learning process, are shown in Table 3, thus summa-
rizing the final choice of training parameters used for the 
experiments.

The validation set is a sub-part of the custom dataset, 
usually left away from training and used for model selection, 
thus picking the model that performs the most accurately 
on unseen data. We mainly use MaP to validate the training 
data. Hence, we compute the MaP on the validation set for 

every thousand iterations and identifies a peak across itera-
tions per model. By this, we ensure that model parameters 
are not overfitted. For the model parameters trained on cus-
tom dataset 1 and custom dataset 2, we found such a peak 
in the MaP value after 7000 iterations and 6000 iterations, 
respectively. As a result, we choose the model parameters 
corresponding to 7000 iterations and 6000 iterations for the 
first and second model, respectively. We emphasize that we 
use one custom dataset per model during the training and 
validation scheme.

2.3.4 � Step 4—test procedure

Finally, the chosen models are tested on new unseen data, 
i.e., the test set, to verify how the models work in reality. 
Again we use MaP as the quantitative metric. In general, 
the model is accepted if the MaP achieves an acceptable 
high score. Intuitively, we expect the CNN to produce high 
MaP values on the test sets as the datasets contain easily 
identifiable markers. The final models was tested on the test 
sets, i.e., 84 and 85 unseen randomized images from custom 
dataset 1 and custom dataset 2, respectively. As a result, 
the first model, trained on custom dataset 1, achieved a 
99.05% score. The second model, trained on custom dataset 
2, achieved a 99.40% MaP score. These model parameters 
will be used for the final experiments.

2.3.5 � Step 5—prediction phase

If results from the test sets are satisfying, the final model 
weights are used for object recognition tasks in the predic-
tion phase, e.g., for commercial use. We use a GoPro camera 
and BlackFly S GiGE cameras to input image data during 
the prediction phase, as seen in the rightmost part of Fig. 3. 

Table 2   The marker configurations consist of two and three ArUco markers, respectively, each associated with their class names during the 
training scheme

Marker configuration 1

Class name Marker type Dictionary size Marker ID Marker size (m) Ground 
truth 
labels

m1 ArUco 4 × 4 151 0.2628 827
m2 ArUco 4 × 4 13 0.2628 822
m3 ArUco 4 × 4 219 0.2628 819

Marker configuration 2

Class name Marker type Dictionary size Marker ID Marker size (m) Ground 
truth 
labels

m1 ArUco 4 × 4 151 0.2628 835
m2 ArUco 4 × 4 13 0.2628 829

Table 3   The table shows the 
final choice of hyperparameters 
used for the Yolov3-spp 
architecture

Training model and parameters

Architecture Yolov3-spp

Batch size 64
Subdivision 32
Width 416
Height 416
Channels 3
Momentum 0.9
Decay 0.0005
Learning rate 0.001
Burn in 1000
Max batches 10000
Policy steps
Steps 8000,9000
Scales 0.1,0.1
Angle 0
Saturation 1.5
Exposure 1.5
Hue 0.1
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These cameras provide on-camera pre-processing to deliver 
crisp, high-quality images with low image noise.

2.4 � 3D reconstruction pipeline

Following a hybrid data-driven and model-based scheme, 
corner detection and 3D reconstruction are performed on 
a sub-part of the whole image, thus reducing the number 
of potential outliers. In particular, we assume the ArUco 
detector to be less vulnerable to environmental elements 
in the harbor when accurate bounding box predictions are 
handled rather than the whole image. In the following, we 
introduce some common design choices for both techniques, 
i.e., monocular and stereo vision, before specific character-
istics for each design are discussed.

2.4.1 � Some common design choices

As a design choice, the predicted bounding boxes were sent 
along with their coordinates relative to the whole image 
from one ROS node to the other using the publish&subscribe 
scheme in ROS. This way, we can compare both 3D recon-
struction techniques at once. As both methods are imple-
mented in OpenCV’s C++ interface for high-performance 
computing, we assume them to be performed approximately 
at the same time. This makes them attractive for direct com-
parison. Both designs are also strongly dependent on the 
corners to be visible inside the bounding box. Therefore, we 
extend the bounding box slightly to ensure that the ArUco 
detector can recognize the markers in case of inaccurate 
bounding box predictions, as seen in Fig. 4. To be robust to 
scale, e.g., different ranges, the bounding boxes are resized 
as a function of their size.

2.4.2 � Camera calibration

In order to determine the camera location in the scene, we 
need to perform camera calibration. 3D world points and 
their corresponding 2D image projections were obtained 
using 48 images of a 7 × 10 checkerboard taken from differ-
ent views and orientations, i.e., 24 images per view. Then, 
the length of the checkerboard square was measured and 
used as input to the Stereo camera calibrator app (2019). A 
regular camera model was chosen, and the distortion param-
eters were estimated with three radial distortion coefficients 
and two tangential distortion coefficients. The final calibra-
tion resulted in a 0.13 reprojection error, measured in pixels. 
We consider this as acceptable results with 1280 × 1024 
image resolution.

2.4.3 � Stereo vision design

As seen in Fig. 5a, we use the ArUco detector twice to locate 
the four marker corners inside the bounding boxes relative 
to the left and the right camera view, respectively. To iden-
tify the marker type, it searches for marker ids within the 
specified dictionary. If correctly identified with four marker 
corners available, the next step concerns corner matching. 

Fig. 4   The figure shows an illustration of how the bounding box is 
extended. Initially, the CNN predicts the inner bounding box, which 
may not include all the marker corners. As a consequence, the red, 
original corner point (x, y), and the height (h) and the width (w) of the 
bounding box are resized as a function of the bounding box size to 
include all the marker corners (color figure online)

Fig. 5   a Design 1 represents 3D reconstruction with stereo vision. 
b Design 2 represents 3D reconstruction with monocular vision. A 
flowchart of the corresponding OpenCV functions is shown in Fig. 11
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Since the ArUco detector always return the marker corners 
in the same clockwise order for both cameras, we match 
them directly. We also express the coordinates of the stereo 
pairs relative to the whole image. For 3D reconstruction, a 
fixed rectification transforms for each head of a calibrated 
stereo camera is computed, given the calibration parameters. 
Such transforms allow us to search for corresponding points 
along horizontal scanlines in the new rectified coordinate 
system for each camera. Finally, we triangulate the cor-
responding points to obtain the relative position between 
the left camera and the marker corners. We transform the 
four triangulated points from their corner positions into the 
center of the marker to compare directly with monocular 
vision. We also compute the median of the four shifted 3D 
points to produce a robust positioning estimate.

2.4.4 � Monocular vision design

In the same manner, we apply the ArUco detector to detect 
where the marker corners are located in the bounding box. 
However, the monocular vision design relies on single-view 
geometry to reconstruct 3D points. That is, we use PnP to 
solve the pose of a square planar object defined by its four 
corners. As seen in Fig. 5b, we pass the detected corners and 
the calibration parameters to the monocular pose estima-
tion algorithm, which then output the marker pose relative 
to each camera individually. To overcome scale ambiguity, 
we also input the actual size of the marker. As before, we 
include an offset such that the detected corners are expressed 
relative to the whole image. Note that the monocular pose 
estimation algorithm returns translation and rotation vectors 
relative to the marker frame, i.e., centered in the middle of 
the marker with the z-axis perpendicular to the marker plane. 
In contrast, the triangulation algorithm returns 3D points 
relative to the camera frame, i.e., centered in the left camera.

3 � Experimental setup and testing

Following the description of the proposed vision-based 
positioning system, we move over to the experiments. The 
experiments are divided into two parts, where each focuses 
on different aspects related to the proposed solution. The 
first experiment investigates the performance of the pro-
posed detection model, as described in Sect. 2.3. The sec-
ond experiment benchmarks the proposed positioning sys-
tem against a LiDAR-based positioning system, as described 
in Sect. 2.4. For each experiment, we describe how it was 
conducted and the obtained results. Finally, we make some 
remarks regarding the obtained results.

3.1 � Experiment 1: detection accuracy

The first experiment investigates how well the proposed 
detector, i.e., Yolov3-spp, detects ArUco markers in the har-
bor environment compared to the traditional ArUco detector. 
It covers two docking scenarios in the harbor environment, 
where both include marker configuration 1. The learning-
based method, Yolov3-spp, uses custom dataset 1 to train for 
the detection task. To ensure independence, the image data 
from the two scenarios are not included in custom dataset 1. 
We refer to Table 4 for the image specifications. For evalua-
tion of the detectors, we use the statistical metrics precision 
and recall. Given the four possible outcomes of a binary 
classifier, i.e., true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN), we define precision 
and recall as 

 where p denotes the precision and r denotes the recall. If a 
detection exceeds a 0.25 IOU threshold, we consider it as 
a TP.

3.1.1 � Experimental description

To test the detectors in a realistic setting, we include two 
docking scenarios in the first experiment where environmen-
tal elements such as non-uniform lights and water reflec-
tions are presented. The first scenario shows a USV dock-
ing with marker configuration 1 located at the dockside, as 
seen in Fig. 6a, b. The video sequence, sampled at a rate 
of 5 Hz, is divided into two parts. They present image data 
of the initial and the terminal part of the docking phase, 
respectively. The second scenario covers a USV undocking 
from another dockside in the same harbor using the same 
marker configuration, as seen in Fig. 6c, d. Again, the video 
sequence is sampled at a rate of 5 Hz, and divided into two 
parts. In that sense, they present image data of the dock-
ing phase in reverse order. Table 5 shows the largest and 

(1a)p =
TP

TP + FP

(1b)r =
TP

TP + FN

Table 4   Camera specifications for Experiment 1

Camera settings

Model name GoPro Herro Session 5
Resolution 1706 × 748
Pixel format RGB
Sample rate 5 Hz
Camera mode Wide field of view
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smallest bounding box size of the relevant markers in the 
two scenarios.

3.1.2 � Results

Table 6 summarizes the detection accuracy, i.e., represented 
by precision and recall, for Yolov3-spp and ArUco on image 
data from the first experiment. Since all images include the 
three markers from marker configuration 1, the True Nega-
tive (TN) outcome is not of relevance. As shown in Table 6, 

Yolov3-spp achieve the highest precision and recall score 
in both scenarios. In particular, Yolov3-spp significantly 
outperforms the ArUco detector in terms of the recall score. 
However, Yolov3-spp only achieve a marginally higher pre-
cision score except for the second part of scenario 2.

3.2 � Experiment 2: Positioning accuracy

In the second experiment, we benchmark the positioning 
accuracy of the proposed solution. We use custom dataset 

Fig. 6   a–d show the different 
docking scenarios in the harbor 
environment with markers 
detected by Yolov3-spp

Table 5   The table shows the upper and lower pixel resolution of the ground truth bounding boxes in the first experiment. The markers, i.e., m1, 
m2, and m3, correspond to those defined in the first marker configuration in Table 2

Scenario 1

Bounding box 
resolution

Part 1 Part 2

m1 m2 m3 m1 m2 m3

Lower limit 16 × 16 16 × 18 20 × 18 23 × 25 23 × 25 29 × 27
Upper limit 24 × 24 25 × 25 29 × 26 36 × 32 49 × 41 72 × 52

Scenario 2

Bounding box 
resolution

Part 1 Part 2

m1 m2 m3 m1 m2 m3

Lower limit 23 × 20 21 × 19 20 × 18 13 × 14 13 × 14 13 × 15
Upper limit 25 × 22 21 × 20 20 × 21 19 × 17 17 × 17 17 × 16
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2 to train Yolov3-spp for marker detection. For simplicity, 
we only consider the first marker, i.e., m1, from the second 
marker configuration. As described in Sects. 2.4.3 and 2.4.4, 
we use ArUco and OpenCV for corner detection and relative 
positioning, respectively. Regarding the image data, we use 
the monochrome pixel format as it provides high sensitiv-
ity suitable for light-critical conditions. It also requires less 
bandwidth and processing. For a visual representation of the 
scene, some images can be seen in Fig. 10b. Furthermore, 
we use a LiDAR-based positioning system for experimental 
verification. In the following, we highlight some necessary 
assumptions to consider such that the second experiment can 
be conducted with meaningful results.

•	 Sensor locations and transformations: We assume both 
the LiDAR and the cameras to produce measurements 
located at their centers. Furthermore, since the cam-
eras and the LiDAR are fixed to each other and point 
in the same direction, we assume a static position offset 
between the sensors. Based on these assumptions, the 
LiDAR positioning measurements are mapped into the 
left camera coordinate system for verification.

•	 Reference system: The reference system is fixed to the left 
camera with its origin at the center-of-projection of the 
camera, its z-axis aligned with the camera optical axis, 
x-axis and y-axis aligned with the horizontal and vertical 
axes of the image plane, respectively. Rather than treat-
ing the distance along the x-axis and z-axis separately, 
we merge them into a 2D Euclidean distance between 
the middle point of the marker and the center of the left 
camera, as seen in Fig. 7.

•	 Ground truth: The relative position between the LiDAR 
sensor and the middle point of the marker can be obtained 
accurately in the point cloud by using the 3D visualiza-
tion tool Rviz. With a static position offset, we express 
the relative position with respect to the left camera frame. 
At last, we compute the resulting Euclidean distance. The 
LiDAR measurements are recorded with ROSbags. The 
ROSbag includes the global start time such that we can 
compare the camera and LiDAR measurements directly.

3.2.1 � Hardware setup

Figure 8 shows an overview of the hardware components 
used for the second experiment. As seen, the Guidance, 
navigation, and control (GNC) computer supply the pay-
load system with power and an ethernet connection for 
communication. We perform the experiments on an Nvidia 
Jetson Xavier (Developer Kit), an efficient edge-computing 
unit with a small form factor applicable for USVs. Of sen-
sors, we use two cameras/lenses for monocular and stereo 
vision and a mid-range LiDAR for verification of the camera 
measurements. We refer to Table 7 for the details. We also Ta
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use a general-purpose input/output cable for the hardware 
synchronization of the cameras and Power over Ethernet 
(PoE) for fast and reliable data and power transmission in 
one cable per camera. At last, we use DC/DC converters for 
power interfacing between the onboard battery system and 
the hardware components.

3.2.2 � Experimental description

The second experiment includes four distinct scenarios for 
USV docking in the harbor environment. A visual repre-
sentation of the paths, generated through monocular vision 
and stereo vision, can be seen in Figs. 12, 13, 14, 15. While 
USV path 1 shows a straight-line docking maneuver, USV 
paths 2–4 represent various undocking maneuvers. The 
main objective is to evaluate the positioning accuracy as 
a function of the range under different docking scenarios. 

The paths show the position of the left camera relative to 
marker m1. Hence, we only use the first marker m1 as a ref-
erence throughout the second experiment. The LiDAR and 
the camera measurements are originally sampled at 10 Hz 
and 7.5 Hz, respectively. However, we use a rate of 1 Hz for 
experimental verification.

3.2.3 � Results

Figure 9 shows the error in Euclidean distance between 
the ground truth LiDAR and the camera measurements as 
a function of the ground truth Euclidean distance for each 
USV path. The camera measurements concern the Euclid-
ean distance of the left camera relative to marker m1. Both 
methods, i.e., stereo vision and monocular vision, are com-
pared to the ground truth LiDAR at the same timestamps. 
As seen, monocular vision produces lower error than stereo 
vision across any range. The error also tends to increase 
linearly with the Euclidean distance from the dockside for 
both methods. At last, Figs. 12, 13, 14, 15 confirms the high 
detection ratio of the ArUco detector when bounding box 
predictions are processed rather than the whole image.

3.3 � Discussion of results

In the first experiment, we found Yolov3-spp to significantly 
outperform the ArUco detector. The ArUco detector demon-
strates poor performance for robust detection in the harbor 
environment, especially since it rarely detects the markers 
at large distances. This is likely because the ArUco detector 
typically fails under non-uniform light and when the mark-
ers are seen at low resolutions, as pointed out by Mondjar-
Guerra et al. (2018). In contrast, Yolov3-spp achieves much 
higher detection rates at longer distances, thus proving to be 
considerably more robust to environmental elements in the 
harbor. We believe this is because the markers are widely 

Fig. 7   From a top-down view, 
the two cameras are shown with 
the LiDAR in between. The left 
camera is used as the reference 
system. The static offset to 
transform between the LiDAR 
frame and the left camera frame 
is shown with green arrows, 
while the red line shows the 
Euclidean distance between 
the marker and the left camera 
(color figure online)

Fig. 8   The figure gives an overview of the hardware components 
used to design the vision-based positioning system. It also shows the 
power and ethernet interface between the hardware components and 
the GNC computer



	 Ø. Volden et al.

1 3

represented in the training data in other but similar contexts. 
However, Yolov3-spp also produces a certain amount of FPs, 
mainly at large distances. As seen in Table 5 and Fig. 6, the 
pixel resolution is rather low at such distances. Hence, the 
features to distinguish between the markers are rather low, 
even for small dictionary sizes. Therefore, it is likely that 
the decision boundaries to classify the markers are blurred, 
potentially leading to more FPs.

Regarding the detection results, Mateos (2020) shows 
that his proposed “AprilTag3D” framework achieves a 95% 
detection rate under outdoor tests in the river. His marker 
configuration consists of two AprilTags that are not lying in 
the same plane. In that sense, at least one tag can be detected 
in highly reflective environments, e.g., outdoor in open 
water. The marker size length is 0.13 m, i.e., half the size 
compared to ours, and they also use a larger dictionary size 
(8 × 8). However, he does only test the framework for close-
range applications, i.e., it is limited to a 2-m range. Our 
most comparable scenario, i.e., the second part of scenario 
1, shows slightly better performance in terms of precision 
and recall, as seen in Table 6.

In the second experiment, we found monocular vision 
to outperform stereo vision across any range. We believe 
high-demanding processing and subsequent failures in sys-
tem architecture caused lower accuracy for the stereo vision 
method. In particular, we experienced that the use of two 

full-speed CNNs for object detection induced heat issues. 
Subsequently, we used sleep functions to reduce computa-
tional effort, resulting in 5 Hz positioning measurements. 
The cameras provide a slightly higher acquisition rate, 
approximately 7.5 Hz per camera. In that sense, the stereo 
pairs to reconstruct 3D points may not represent the same 
timestamp since the algorithm runs on two individual ROS 
nodes. Consequently, the position accuracy may be affected 
slightly if the scene is changing rapidly. We also experienced 
that the cameras were slightly moved out of their fixed, 
original orientation under physical perturbations, e.g. if the 
USV hit the dockside. The transformation matrix to relate 
the cameras may therefore be negatively affected. We also 
emphasize that the chosen lens provides a limited field of 
view (82.4◦ ). Hence, the stereoscopic view is even lower for 
close-range applications since it requires the target marker to 
be visible in both camera views for matching and triangula-
tion. In contrast, monocular vision provides a less complex 
design based on single-view geometry and is not limited by 
this requirement. It can even combine the cameras to extend 
the total field of view, thus proving to be a flexible choice for 
both close and long-range applications. It also takes advan-
tage of the actual marker size to overcome scale ambiguity.

For comparison of monocular positioning accuracy, Dhall 
et al. (2019) achieve a 5% error relative to the ground truth 
Euclidean distance at a 5 m distance. We produce a 1.31% 

Table 7   Sensor specifications for the second experiment

Camera

Model name BFS-PGE-13Y3C-C
Resolution 1280 × 1024
Pixel format Monochrome
Sample rate 7.5 Hz
Sensor type CMOS
Interface GiGE PoE

Lens

Focal length 3.5 mm (fixed)
Aperture f/2.4
Field of View 82.4 ◦

Distortion < 0.4 %
Working distance 100 mm - ∞

LiDAR

Model name Ouster OS1-16 Gen 1
Vertical resolution 16 beams
Horizontal resolution 1024 beams
Sample rate 10 Hz
Range 0.5-120 m
Range resolution 1.2 cm
Horizontal field of view 360◦

Vertical field of view +16.6◦ to -16.6◦
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mean error among USV paths 1–4 at the same distance. 
Note that they use a 2-megapixel camera, while we use a 
1.3-megapixel camera. Although our proposed monocular 
vision method induces a relative error closer to 5% when the 
USV is at a 7 m range or more, we believe the accuracy is 
sufficient in the terminal docking phase of a small USV, i.e., 

within a 10 m range. However, for large-scale vessels operat-
ing in larger areas, it might be necessary to increase image 
resolution and marker size. We also assume corner refine-
ment methods to provide more precise 2D corner detections, 
thus improving the positioning accuracy for both methods at 
the cost of a more computational step.

4 � Conclusions

This paper demonstrates how a complete vision-based posi-
tioning system can be used for auto-docking and relative 
positioning of USVs in the field, thus providing an inde-
pendent positioning system to complement the traditional 
navigation system under safety-critical operations. In terms 
of detection accuracy, we found Yolov3-spp to significantly 
outperform the ArUco detector. As a result, we believe the 
learning-based detector, i.e., Yolov3-spp, to be a suitable 
choice if the day-to-day variation and complexity of the har-
bor environment are entirely covered in the training data. In 
terms of positioning accuracy, we found monocular vision to 
outperform the stereo vision method. We learned throughout 
the experiments that several elements related to the hard-
ware and the physical design influenced the stereo vision 
design. In contrast, the monocular vision method proved 
to be less complicated and vulnerable to these elements. 
Through experiments conducted using the proposed meth-
ods, we have shown that a hybrid data-driven and model-
based scheme outperforms work proposed by other authors 
in relevant outdoor scenarios. The proposed solution shows 
promising results under certain outdoor conditions, i.e., 
sunny and cloudy weather incluenced by non-uniform light 
and water reflections in the harbor. However, system perfor-
mance under other adverse conditions is not tested yet. In 
future work, we plan to overcome some of these limitations 
by collecting more adverse weather data. We also plan to 
provide all necessary motion states to implement the pro-
posed methods in feedback control.

A custom datasets

See Fig. 10.
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Fig. 9   a–d show the error between the ground truth LiDAR and the 
camera measurements as a function of the ground truth Euclidean 
distance for USV paths 1, 2, 3, and 4, respectively. A visual repre-
sentation of the corresponding USV paths can be seen in Figs. 12, 13, 
14, 15
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B Computer vision algorithms

See Fig. 11.

Fig. 10   a Custom dataset 1 
contains colored images of 
the first marker configuration 
relevant to the docking phase. 
The first marker configuration 
is located at two different docks 
in the harbor environment. 
b Custom dataset 2 contains 
greyscale images of the second 
marker configuration relevant to 
the docking phase. The second 
marker configuration is located 
at one specific dock station
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C USV paths

See Figs. 12, 13, 14, 15.

Fig. 11   a The figure shows a flowchart of the OpenCV functions to 
reconstruct 3D corner points using stereo vision. Observe that a fixed 
rectification transform is obtained from the calibration parameters 
offline. b The figure shows a flowchart of the OpenCV functions to 
reconstruct 3D corner points using monocular vision. An offset in 
both methods is included such that the detected corners are expressed 
with respect to the whole image
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Fig. 12   The figure shows the first USV path from the second experi-
ment. The path consists of position measurements of the left camera 
relative to marker m1, computed with monocular and stereo vision 
algorithms, where marker m1 is located in the origo
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Fig. 13   The figure shows the second USV path from the second 
experiment. The path consists of position measurements of the left 
camera relative to marker m1, computed with monocular and stereo 
vision algorithms, where marker m1 is located in the origo
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Fig. 14   The figure shows the third USV path from the second experi-
ment. The path consists of position measurements of the left camera 
relative to marker m1, computed with monocular and stereo vision 
algorithms, where marker m1 is located in the origo
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