

NTNU in Trondheim

Report 2020

MPC for path-following
TTK4551 Specialization Project

Report 2020

Thomas Leirfall

Trondheim, 22/12/2020

NTNU In Trondheim
PROJECT ASSIGNMENT

Tittel:

MPC for path-following
Candidate number (name):

Thomas Leirfall

Date: Code: Subject: Document access:

22/12/2020 TTK4551 Specialization Project Public

Studium: Nr. pages/attachments: Bibl. nr:

Cybernetics and Robotics 73 / 6

Supervisor:

Dirk Reinhardt

Tor Arne Johansen

This assignment is an answer performed by a student at NTNU in Trondheim.

TABLE OF CONTENTS

Table of contents

1 INTRODUCTION 6
1.1 Background . 6
1.2 Project plan . 6
1.3 Limitations . 6
1.4 Structure of the thesis . 6

2 NOTATION 7

3 THEORY 9
3.1 Frames . 9

3.1.1 NED . 9
3.1.2 Vehicle . 10
3.1.3 Vehicle-1 . 10
3.1.4 Vehicle-2 . 11
3.1.5 Body . 11
3.1.6 Stability and wind . 12

3.2 Wind . 14
3.3 Air- and groundspeed . 14
3.4 Course and heading angle . 15
3.5 Flight path angle . 16
3.6 Dynamics . 16

3.6.1 Translation . 16
3.6.2 Rotation . 17

3.7 Rigid-body Dynamics . 19
3.8 Forces and Moments . 20
3.9 Control surfaces . 21
3.10 Successive loop . 22
3.11 Straight-line Path Following . 23
3.12 Optimizing . 25
3.13 Positive definite . 26
3.14 Nonlinear Model Predictive Control . 26
3.15 Acados form . 28
3.16 Path parameterizing . 28
3.17 Timing law . 30
3.18 Augmented system . 30

4 Control Algorithm Design 32
4.1 Implement a switching logic and follow a rectangular pattern 32
4.2 Path-following algorithms for straight lines . 32
4.3 MPFC . 35
4.4 MPFC alternative . 41

5 RESULTS 43
5.1 Path-following algorithms for straight lines . 43

Side 3 av 73

TABLE OF CONTENTS

5.2 Path-following algorithms for straight lines with a switching logic and follow a
rectangular pattern . 44

5.3 MPFC straight lines in the longitudinal plane). 45
5.4 MPFC for following straight lines in both planes 48

6 DISCUSSION 50
6.1 Path-following algorithms for straight lines . 50
6.2 Path-following algorithms for straight lines with a switching logic and follow a

rectangular pattern . 50
6.3 MPFC straight lines . 50

7 CONCLUSION 52

8 ATTACHMENTS 53
8.1 Switching logic . 53
8.2 Straight-line Algorithm . 54
8.3 Main Straight-line Algorithm . 56
8.4 Model MPC . 61
8.5 Acados settings . 64
8.6 Main NMPC . 68

References 73

Side 4 av 73

TABLE OF CONTENTS

SUMMARY

In my thesis, I will use theory and methods on optimization, airplane dynamics and simula-
tions to develop a controller for fixed-wing aerial vehicles. Through the thesis, I will focus on
subjects I have acquired during the cybernetics and robotics courses at NTNU Trondheim.

model predictiv controller (MPC) can be used to follow geometrically challenging curves,
and at the same time performing optimal with respect to user-defined cost function and con-
straints is that of (nonlinear) model predictive controllers (MPCs). Given a set of waypoints
for the MPC to follow, there are different ways to frame a path that the vehicle can follow in
order to pass them. However, their design has an impact on how well the MPC converges
to a solution of the underlying optimization problem.

The thesis is made up of 8 chapters where the project plan is formulated in chapter 1 which
is then answered in chapter 4. Theory, methods, results, and discussions are described in
the following sections:

• In section 1 is an introduction to the thesis.

• In section 2 is the notation and abbreviations.

• In section 3 presents relevant theory divided into 18 different subsections.

• In section 4 the control algorithm are described. Here the path-following algorithms for
straight lines are presented along with the successive loops controlling the airplane.
Also, the optimal control problem is chosen for the Nonlinear model predictiv controller
(NMPC).

• In section 5 the results of the controller are presented.

• In section 6 is a discussion on how the controllers did.

• Section 7 concludes in relation to the methods and solutions chosen on the optimal
control problem presented in section 4 to follow the line and further work needed.

• In the Appendix the programs are included.

Side 5 av 73

1 INTRODUCTION

1.1 Background

This report is a preparation for my master’s thesis in the field of cybernetics and robotics at
NTNU Trondheim. The thesis is about model predictive control for path-following control of
autonomous fixed-wing aerial vehicles.

1.2 Project plan

In this project the following plan is defined

1. Learning Ubuntu.

2. Familarize yourself with casadi and acados, which we use to implement the MPCs.

3. Implement the path-following algorithms for straight lines.

4. Implement a switching logic and follow a rectangular pattern.

5. Implement a model predictive path-following control (MPFC) (straight lines in the lat-
eral/longitudinal plane).

6. Implement a MPFC (for following straight lines in R3).

1.3 Limitations

This thesis is limited to only computer simulation with approximated models. Furhter on,
program libraries for PID controllers as well as libraries for aircraft dynamics are used for the
simulation, and acados are used for solving the NMPC.

1.4 Structure of the thesis

The thesis is divided into 8 chapters. Starting with focus on theory and methods that are
important for the concept and the solutions used are presented in Attachments.

Side 6 av 73

2 NOTATION

Acronyms

DAE Differential algebraic equation. 41

KKT Karush–Kuhn–Tucker. 26

MPC model predictiv controller. 5, 26, 32

MPFC model predictive path-following control. 6, 41, 50, 52

NED north east down. 9, 10, 14, 16, 17

NMPC Nonlinear model predictiv controller. 5, 6, 27, 41

OCP optimal control problem. 27, 28, 31, 37, 38, 41, 46, 48

ODE Ordinary differential equation. 41

SSA Smallest sign angle. 25

UAV Unmanned aerial vehicle. 23, 50, 52

Side 7 av 73

Acronyms

F i NED frame
Fv Vehicle frame
Fv1 Vehicle-1 frame
Fv2 Vehicle-2 frame
F b Body frame
F s Stability frame
Fw Wind frame
φ Roll
θ Pitch
ψ Yaw
Θ Euler angles [φ θ ψ]T
α Angle of attack
β Side-slip
S(·) Skew symmetric matrix
δa Aileron
δe Elevation
δr Rudder
δt Throttle
Q � 0 Positive definite matrix Q
‖x‖2 2-norm of vector
‖x‖2

Q xTQx
nx Number of state
nu Number of input
ny Number of output
wi Waypoint index i
θ Path parameter
v Virtual input

Side 8 av 73

3 THEORY

In this section I am going trough some basic concepts need to understand the airplane
theory. First, we are going to look some important angles on the plane, and then some
reference planes and coordinate systems.

3.1 Frames

There is some important coordinate system for the plane we need to look at. The follow-
ing flow chart can be defined for the plane. The orange is the frames, the white is either
translation or angles between the frames. Also see figure 2 to 7.

NED

Vechicle

Vechicle-1

Vechicle-2

Body

Staility

Wind

Translate

Yaw

Pitch

Roll

Angle of attack

Sideslip

Figure 1: An overview of frames, angles and translation.

3.1.1 NED

north east down (NED) means North-East-Down, where this is the direction the plane is
pointing. So, we have x pointing to the north, y to the east, and z down. Note that we say
that downwards is positive. This frame is on the curve of the earth and is a tangential frame.
We assume that this frame is an inertial frame, which is where the forces occur

Side 9 av 73

3.1 Frames

We denote the NED frame as F i. Also denote i, j and k to be x-,y- and z-axis, respectively.

3.1.2 Vehicle

This frame is located at the plane, and does not rotate. Meaning that this has the same
orientation as the NED-frame. This is seen in figure 2.

Figure 2: NED and Vehicle frame [1]

The rest of the frames has the same origo as the vehicle frame, there is only rotation differ-
ence.

3.1.3 Vehicle-1

Going from vehicle to vehicle-1 we rotate around the F i z-axis. We denote this as around ji.
This is the plane’s yaw angle, and we denote the yaw angle as ψ. This is seen in figure 3,
where a positive direction is shown. We denote this frame as Fv.

Side 10 av 73

3.1 Frames

Figure 3: Vehicle-1 frame [1]

3.1.4 Vehicle-2

Next rotation is around jv, y-axis of Fv1. This is the plans pitch angle, and we denote this as
θ. See figure 4, where positive direction is shown.

Figure 4: Vehicle-2 frame [1]

3.1.5 Body

The last plane configuration for rotation is the roll or bank angle. This is around the x-axis of
Fv2. We denote the roll angle as φ. The body frame is denoted F b. This is seen in figure 3,
where a positive direction is shown.

Figure 5: Body frame [1]

Side 11 av 73

3.1 Frames

We denote the euler angles as

Θ =

φθ
ψ

 (1)

The total rotation matrix from Vehicle to Body is

Rb
v(Θ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


︸ ︷︷ ︸

Around iv2

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

Around jv1

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Around kv

(2)

Note that this has a singularity if the pitch angle is ± 90°. We could therefore use quaternion
instead, which do not give us singularity.

3.1.6 Stability and wind

The stability- and wind frame is used for calculation purposes. We use the stability frame to
calculate the decoupled lateral forces. While we define the speed over ground in the wind
frame.

To understand these two frames, we need to look at some features first. Starting with the
angle of attack, denoted α. This is the angle we rotate around jb. If we have a positive angle
of attack, the wings will create a lift and the plane will rise. In other words, it is the airspeed,
denoted as Va, that hits the wings to create lift. Note that Va is the magnitude of the relative
velocity vector, see equation 13. If we look at figure 6 we can see how the stability frame is
denoted.

Figure 6: Stability frame [1]

Side 12 av 73

3.1 Frames

Going from stability to wind frame, we rotate around ks with an angle called β. This is the
sideslip angle. This can be seen as an angle the plane is sliding out of straight forward along
the ib direction.

After this rotation, we see that now the iw is aligned with Va. This means that we can denote
the matrix for Va as

Vw
a =

Va0
0

 (3)

With just one element in the x-direction. This is trivial. The frame can be seen in figure 7.

Figure 7: Wind frame [1]

The two rotation matrices can be defined as

Rs
b(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα


︸ ︷︷ ︸

Around jb

(4)

Rw
s (β) =

 cos β sin β 0
− sin β cos β 0

0 0 1


︸ ︷︷ ︸

Around ks

(5)

Side 13 av 73

3.2 Wind

3.2 Wind

There are two types of wind: the steady ambient wind in NED frame and stochastic (gust)
wind which is defined body frame. The wind vector is defined as, Vb

w denoted in the body
frame.

Vb
w =

uwvw
ww

 (6)

Vb
w = Rb

v(Θ)

wnswes
wds

+

wngweg
wdg

 (7)

The way to get values for gust wind is to filter white noise through a Dryden transfer function.
Here the user can adjust for altitude (height of the airplane) and strength of turbulence. The
steady ambient wind is constant.

3.3 Air- and groundspeed

Airspeed is denoted as Va, with wind, Vw, and the groundspeed, Vg. The relationship
between this speed is

Va = Vg −Vw (8)

The groundspeed vector is defined in the body frame

Vb
g =

uv
w

 (9)

which are states in the system.

In equation 3, the airspeed is denoted in the wind frame, rotating this to body gives

Vb
a =

urvr
wr

 = Rb
w(α, β)Vw

a (10)

where ur, vr and wr as the relative speed in the body frame. The roation from body to wind
is

Rw
b (α, β) = Rw

s (β)Rs
b(α) (11)

Side 14 av 73

3.4 Course and heading angle

Vg = Va + Vw (12)

The relationship gives
Va =

√
u2
r + v2

r + w2
r

α = arctan wr
ur

β = arcsin vr
Va

(13)

In figure 8 we can see airspeed, ground speed, and wind speed.

3.4 Course and heading angle

Both course and heading angle can describe the direction of the aircraft. The yaw angle ψ
is the heading angle.

The course angle, χ, which is much used in the navigation of airplanes, can be seen in
figure 8, and is the angle going from the north (y-axis of NED) and to ground speed.

The reason why the course is typical used instead of yaw is that we usually use speed
sensors on a plane or GPS, and we can then measure the ground speed of the aircraft.
Velocity is usually estimated. While for boats, we could use a compass (which shows the
north) and then get the yaw angle.

The last angle is the crab angle χc. This is defined as:

χc = χ− ψ (14)

And is the aircraft crab into the wind.

Figure 8: Wind triangle [1]

Side 15 av 73

3.5 Flight path angle

3.5 Flight path angle

This is in the vertical plane. Earlier seen the pitch angle θ and angle of attack α. The flight
path angle γ is the angle between the horizontal plane, which is the iv1 (same as iv) and the
ground speed. The last angle is the air-mass-reference flight path angle γa, and is the angle
from horizontal to airspeed. This can be seen in figure 9.

Figure 9: Wind triangle vertical plane [1]

3.6 Dynamics

Here the states of the aircraft is defined the states of the aircraft, see table 1.

Name Description
pn Postion along ii in NED
pe Postion along ii in NED
pd Postion along ki in NED
u Velocity along ib in body
v Velocity along jb in body
w Velocity along kb in body
φ Roll angle defined with respect to vehicle 2
θ Pitch angle defined with respect to vehicle 1
ψ Heading (yaw) angle defined with respect to vehicle
p Roll rate measured along ib in body
q Pitch rate measured along jb in body
r Yaw rate measured along kb in body

Table 1: States

3.6.1 Translation

The first 6 states are the translation states. This is [pn pe pd u v w]T .

Side 16 av 73

3.6 Dynamics

All the states need to be defined in body, however, position is defined in NED.

[u v w]T is in vehicle frame. Time differential of the position gives:

d

dt

pnpe
pd

 = Rv
b

uv
w

 (15)

The properties of the rotation matrix give that the inverse is the same as the transpose
matrix. The expression for Rb

v, see equation 2. Then

ṗnṗd
ṗd

 = (Rb
v)T

uv
w

 (16)

3.6.2 Rotation

The total rotation from vehicle to body is a total of three rotations: yaw, pitch and roll. This is
the equation 2, again here:

Rb
v(Θ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


︸ ︷︷ ︸

Rbv2(φ)

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

Rv2
v1(θ)

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Rv1
v (ψ)

(17)

Side 17 av 73

3.6 Dynamics

Example 3.1. Differentiate a rotation matrix.

To find the time differention of a rotation matrix, we have that

d

dt
R(t) = S(w(t))R(t) (18)

Where, R is a roation matrix and S(·) is a skew symetric matrix.
Starting with rotation matrix Rb

v

d

dt
Rb
v = d

dt
[Rb

v2(φ)]Rv2
v1(θ)Rv1

v (ψ) +Rb
v2(φ) d

dt
[Rv2

v1(θ)]Rv1
v (ψ) +Rb

v2(φ)Rv2
v1(θ) d

dt
[Rv1

v (ψ)]

=S(φ̇i)Rb
v(Θ) + S(Rb

v2(φ)θ̇j)Rb
v(Θ) + S(Rb

v2(φ)Rv2
v1(θ)ψ̇k)Rb

v(Θ)
=[S(φ̇i) + S(Rb

v2(φ)θ̇j) + S(Rb
v2(φ)Rv2

v1(θ)ψ̇k)]Rb
v(Θ)

Here we have utilize that fact that RS(a)RT = S(Ra). Using equation 18 we have that
the rotation velocity is given by:

ω = φ̇i +Rb
v2(φ)θ̇j +Rb

v2(φ)Rv2
v1(θ)ψ̇k

Where
i =[1 0 0]T

j =[0 1 0]T

k =[0 0 1]T
(19)

This represent the rotation we rotate, so when we say that i is in the first part, this is
because this rotation matrix is around x. So j is around y and k is around z.
This gives:

ω =

φ̇0
0

+Rb
v2(φ)

0
θ̇
0

+Rb
v2(φ)Rv2

v1(θ)

0
0
ψ̇



Continue from the example, by some rearranging, and defined that ω = [p q r]T then:pq
r

 =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


φ̇θ̇
ψ̇

 (20)

Gives the state explicit φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 − sinφ sec θ cosφ sec θ


pq
r

 (21)

Side 18 av 73

3.7 Rigid-body Dynamics

3.7 Rigid-body Dynamics

Starting with the typical newtons second law,∑
F =ma∑
F =mdVg

dti

(22)

The time differentiation of the ground speed vector is the acceleration.

Example 3.2. Time differentiation a vector:
Given a vector expressed in body, where i,j,k is defined in equation 19

p = pxib + pyjb + pzkb (23)

Then the time differentiation in the inertia frame, i, is

d

dti
p = d

dtb
p + ωb/i × p (24)

This gives for equation 22, that:

∑
F =m(d

dtb
Vg + ωb/i ×Vg)

∑
F b =m(d

dtb
Vb
g + ωbb/i ×Vg)

(25)

Write that Vb
g = [u v w]T and ωbb/i = [p q r]T , and get that:

 u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+ 1
m

∑
F b (26)

Next is to find the angular acceleration. Finding the sum of moments∑
M =Iα∑
M =dh

dti

(27)

Where M is total moments, I is interia of moments and h is the angular momentum. As for
forces can write out the h to be:

h

dti
h = h

dtb
h + ωb/i × h (28)

Side 19 av 73

3.8 Forces and Moments

Insert this into equation 27 gives

∑
M =(d

dtb
h + ωb/i × h)

∑
M b =(d

dtb
hb + ωbb/i × hb)

(29)

Where hb = Jωbb/i is defined, where J is the interia of moments. Insert this gives

∑
M b = d

dtb
Jωbb/i + ωbb/i × Jωbb/i (30)

With the interia matrix constant, can write∑
M b = J

d

dtb
ωbb/i + ωbb/i × Jωbb/i (31)

Can get the states from d
dtb
ωbb/i = [ṗ q̇ ṙ]T , this gives

∑
M b = J

ṗq̇
ṙ

+ ωbb/i × Jωbb/i (32)

Rearranging, then the state is explicitṗq̇
ṙ

 = J−1
(∑

M b − ωbb/i × Jωbb/i

)
(33)

Since the aircraft is assumed symmetric, the inertia matrix J can be written as, with JXY =
JY Z = 0

J =

 JX 0 −JXZ
0 JY 0

−JXZ 0 JZ

 (34)

3.8 Forces and Moments

From the states equation 26 and 33 we defined the sum of forces and mometns to be:∑
F b =fg + fa + fp∑
M b =ma + mp

(35)

Here the subscript g is gravity, a is aerodynamics and p is due to propulsion. Superscript b
is body. The aerodynamics forces are divided into lift and drag, which again give a moment.
Propulsion forces are given from example propeller thrust with a propeller torque which give
a moment. This thesis will not go deeper into these forces and moments.

Side 20 av 73

3.9 Control surfaces

3.9 Control surfaces

To control the aircraft we have what we call control surfaces. Which we use to control the air
around the aircraft to pitch, roll or yaw the aircraft. There is

• Aileron

• Elevator

• Tail rudder

• Throttle

Aileron
This is used to control the roll of the flight and it is on the wings of the plain. Meaning, to
turn the plain. Usually, the ailerons on the two wings move in the opposite direction, which
makes sense so the plain roll. If the aileron moves in the same direction, we could use this
as an elevation.

Elevation
Controls the pitch of aircraft. Moves the tail wing with an angle to make the noise go up or
down.

Rudder
On the tail of the aircraft. Makes the plane yaw.

Throttle
We also have the throttle which controls the aircraft’s speed

There is a lot of different ways these control surfaces can be designed, but in figure 10 we
see an example. We denote

Symbol Name
δa Aileron
δe Elevation
δr Rudder
δt Throttle

Table 2: Control surfaces

Side 21 av 73

3.10 Successive loop

Figure 10: Control surfaces [1]

3.10 Successive loop

Here the goal is to close a loop inside another loop. When the inner loop is closed, this inner
loop must be faster than the outer loop. With a ratio of 5-10 times faster. The concept is that
we want the inner loop to be stabilized, meaning finishing so that we can approximate this
inner loop to a gain constant of 1 [1].

In, for example, a bank to turn, the successive loop is used. Here the inner loop is the control
of the roll, PD controller, see equation 36. The outer loop is the course control, PI controller
see equation 37.

δa = kpψ(ψc − ψ)− kdψ ψ̇ (36)

φc = kpχ(χc − χ) + kiχ
s

(χc − χ) (37)

The inner loop is the transfer function from roll to the aileron. This loop is closed, with a fast
enough bandwidth, so that φc = φ. Then the outer loop from course to roll, threat the inner
loop as a gain constant of 1.

It is not wanted to have an integral effect in the inner loop, because having an integral effect
inside a loop can cause a problem with bandwidth. This is because an integral is time-
consuming, and this can slow down the inner loop. This means that the inner loop no longer
has the gain of 1. This could mean that φc 6= φ, and we chasing our tail. The integral effect
on the outer loop can correct the steady-state error in both loops.

Side 22 av 73

3.11 Straight-line Path Following

3.11 Straight-line Path Following

In Beard and McLain [1] a straight-line path following is described as

P(r,q) = {x ∈ R3 : x = r + λq, λ ∈ R} (38)

Since this is a path following, the position of the Unmanned aerial vehicle (UAV) along the
path, and only consider the error in y, the cross-track error, to be driven to zero. The cross-
track error is defined as

epy = − sin (χq)(pn − rn) + cos (χq)(pe − re) (39)

where this is trigonometry from figure 11

Figure 11: North East plane [1]

Beard and McLain[1] prove stability, when driving the cross track error to zero, with the
following controller

χd = xq − χ∞
2
π

arctan (kpathepy) (40)

Here the χ∞ is the commanded coruse angle when the aircraft is far from the line, see
figure 12a . The gain kpath is a parameter to tune how fast the sigmoid function, arctan (·),
curve around zero, see figure 12b.

The correction of course, χq is defined as

χq = atan2(qe, qn) (41)

Where the q vector is defined as
q = wi+1 −wi (42)

Side 23 av 73

3.11 Straight-line Path Following

where w is waypoints.

(a) Vector field [1]
(b) kpath [1]

Figure 12: Paramters

To get the commanded height, the trigonometry from figure 13b is used. Figure 13b is a
representation from where the q and k axis is merge. Then

−sd√
s2
n + s2

e

= −qd√
q2
n + q2

e

(43)

Rearrange this equation to
sd = −

√
s2
n + s2

e

qd√
q2
n + q2

e

(44)

Where the s vector is
si = epi − (epin)n (45)

Were the normal vector n is

n = n× ki

‖n× ki‖
(46)

and the error epi is

ep
i =

epnepe
epn

 = pi − ri =

pn − rnpe − re
pd − rd

 (47)

where the ri is the first waypoint, and pi is the position for the aircraft.

Side 24 av 73

3.12 Optimizing

The commanded height is then
hc = −rd − sd (48)

(a) Full plane [1]
(b) Norm of plane[1]

Figure 13: Planes

Note then the Smallest sign angle (SSA) function is used in the algorithm, which maps the
angle from [−ππ) to prevent discontinuous jumps in angles [2]. The function is called SSA(·)
where the input is an angle in radians.

The whole algorithm can be found in attachments 8.2.

3.12 Optimizing

Optimizing is to minimize or maximise a cost function. In this context, we will minimize. With
this objective function, there is some constrains, which needs to be respected. There are
equality constrains, which means that something has to be equal. And inequality, which
means greater or smaller. Typically we denote it:

min
z ∈ Rn f(z) (49)

subject to:
ci(z) = 0, i ∈ E
ci(z) ≥ 0, i ∈ I

(50)

Side 25 av 73

3.13 Positive definite

Here we see that E are the equality constraints, and I are the inequality constraints. f(z) is
the cost function and z is the decision variable.

Some important terms

1. Feasible area: an area where all the constraints hold, and we can find a solution

2. Convex: if the function is convex, then we can connect any two points on the function
with a line that does not cross the function itself. With this, we can say if our solution
is a global minimum or only local. If convex, then we can say it is global, if not, we
could have a locally. Intuitive explanation, if water flows down the mountainside. If
there are no obstacles (think of a U-shape), then the water flows to the bottom, and it
is convex and we have a global minimum. If there are obstacles, then the water can be
collected there, and we only have a local minimum. With this, it is not convex, because
the obstacles will clearly block the line.

3. Karush–Kuhn–Tucker (KKT) conditions: define necessary conditions for optimality. For
more information, the read should look into [3] or [4].

3.13 Positive definite

A matrix, Q, is said to be positive invariant if

xTQx ≥ 0 ∀x (51)

From here, the notation of this is Q � 0.

3.14 Nonlinear Model Predictive Control

As seen in section 3.12, optimization is to minimize. In a model predictive control, the goal
is to minimization an objective function, which for example can be the error between the
wanted position and actual position.

The MPC solve the optimizing problem over a time horizontal. When all is solved, the con-
troller only applies the first input, and disregard the rest. Meaning that for every time step,
the MPC calculates the optimal solution. This is illustrated in figure 14. Here the upper part
of the figure shows how the MPC calculate the trajectory and only apply the first step to the
plant, the lower part.

Side 26 av 73

3.14 Nonlinear Model Predictive Control

Figure 14: MPC [3]

A NMPC can be formulated based on the optimal control problem (OCP).

min
z ∈ Rn f(z) (52)

where

f(z) =
N−1∑
t=0

1
2x

T
t+1Qt+1xt+1 + dxt+1xt+1 + 1

2u
T
t Rtut + dutut + 1

2∆uTt R∆tut (53)

subject to
xt+1 = g(xt, ut) (54)

xo = given (55)

xlow ≤ xt ≤ xhigh (56)

ulow ≤ ut ≤ uhigh (57)

−∆uhigh ≤ ut ≤ ∆uhigh (58)

where
Qt �0
Rt �0
R∆t �0

(59)

The OCP in equation 53 is a quadratic function, with linear terms. If the OCP is ex the error,
this can be seen as computing the sum of all errors from time 0 to time N-1, and then finding
the optimal input to the system which gives the least error.

Side 27 av 73

3.15 Acados form

The last term in the OCP, is to control input change, in this thisi this is not relevant and hence
removed. This also includes the constraints on the change of input in 58.

The 54 is the nonlinear equation for the system. 55 is the start condition for state and input.
Notice that index 0 on the state, and -1 on the input. 56 and 57 is the constraint on the state
and input.

The 59 is the gain matrix. Note that R∆t is removed (see above). All this matrix needs to be
positive invariant, see section 3.13. This matrix is here time-variant, and in this thesis this
matrix is considered time-invariant, meaning constant.

3.15 Acados form

From this point, the notation of the OCP while be on the Acados form [5]. Here the OCP is
defined as

l
(
x(t), z(t), u(t)

)
= ‖Vxx+ Vuu+ Vzz − yref‖2

W (60)

With the terminal cost
m(x) = ‖Ve

xx− yeref‖2
W e (61)

Here the gain matrix W is
W = diag{

[
Q R

]
} (62)

Where the matrix Q and R can be recognized as weight parameters controlling the stats and
inputs, respectively. Where both Q and R is positive definite and diagonal.

Note also the algebraic state z, which should not be confused with the virtual state introduce
in section 3.18.

The matrix Vx and Vu maps from nx and nu to ny, where nx, nu and ny is the number states,
input and output, respectively.

3.16 Path parameterizing

In this thesis the problem is a path following. Meaning, the goal is for the plane to follow
a line. Time is not important here, meaning that the as long as on the line is good, and
where on the line at given time not. The reference is denoted as path, P [6], and it is given
parametrized regular curve in the output space, in general

P = {y ∈ Rny |θ ∈
[
θ0, θ1

]
} → p(θ) (63)

Side 28 av 73

3.16 Path parameterizing

Here the variable θ is the scalar path parameter. The range of θ is bounend by θ0 and θ1.θ0
can be choosen as a negativ number, but θ1 must be zero. This is because the goal is to
end up at the end point. In this thises, this values are given as θ0 = −1 and θ1 = 0. The path
equation is in this thisis defined as

p(θ) = w2 − θ(w1 − w2) (64)

Where the w1 and w2 is waypoints in cartesian coordinates defined in F i. Where w1 is the
start waypoint and w2 is the end, define as:

wi1 =
[
wi1x wi1y wi1z

]T
wi2 =

[
wi2x wi2y wi2z

]T (65)

From equation 64, it can be seen that when the path parameter is θ0, the p(θ) = w1. And at
θ1, p(θ) = w2. This means that the goal is for θ → θ1 when t→∞.

In figure 15, it can be seen as a visual overview of the goal. In the beginning, the airplane
aims at w1, meaning θ = θ0. As time goes, θ → θ1 and the airplane aims more and more at
w2. These are the green lines in the figure. So for each step, the aiming is more and more
at w2.

Figure 15: Illustration of path

Side 29 av 73

3.17 Timing law

The overall goal is then that:

lim
t→∞

∥∥∥∥y(t)− p(θ(t))
∥∥∥∥ = 0 (66)

where y is the position state of the airplane. Note that this is the error between the position
and the path, so the error can be defined as:

e(t) = y(t)− p(θ(t)) (67)

3.17 Timing law

The path parameter θ is introduce as a virtual state. This needs to be controlled, and here
the timing law is introduce.

g
(
θ(k), θ(k−1), ..., θ̇, θ, v

)
= 0

∀i ∈ {1, ..., k} : θ(i)(t0) = θ
(i)
0 , θ(t0) = θ0

(68)

The first line defined the timing law g(·), the second line defined the initialization condition
to the virtual states. The state v is the virtual input. This can be seen as an input to control
behavior along the path.

Timing law is chosen as [6]:

θ(r̂+1) = v

θ(t0) = θ0 ∀j ∈ {1, ..., r̂} : θ(j)(t0) = 0
(69)

Where
r̂ = max{r1, ..., rny} (70)

Where {r1, ...rny} is the relevant degrees.

3.18 Augmented system

Given that the nonlinear system is defined as:

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (71)

y(t) = h(x(t)) (72)

The size of the input u and state x is nu and nx. The size of output is ny. The function h(x(t))
maps from nx to ny.

Side 30 av 73

3.18 Augmented system

The virtual system is defined as

ż =Az + Bv

=


0 · · · 1 · · · 0
...

... . . .
0 · · · 0 · · · 1
0 · · · 0 · · · 0


︸ ︷︷ ︸

A

z +


0
...
...
1


︸︷︷︸

B

v (73)

θ =Cz
=
[
1 · · · 0

]
︸ ︷︷ ︸

C

=z1

(74)

In 73 the virtual input v is
zr̂+1 = v (75)

and the states are
zk = zk+1 k = {1, ..., r̂} (76)

Adding the timing law with the virtual state and input, the augmented system is then defined
as: [

ẋ
ż

]
=
[
f(x, u)
l(z, u)

]
(77)

[
e
θ

]
=
[
h(x)− p(z1)

z1

]
(78)

The size of virtual state z, is nz. Note the the state z is not an algebraic state. Where nz is
given by

nz = r̂ + 1 (79)

The total size of equation 77 is nx + nz. Equation 78 is the OCP. Where error dynamics can
be extended according to section 3.17.

Side 31 av 73

4 Control Algorithm Design

For comparison, there will be designed to types of system. One with MPC and one with
successive loops.

4.1 Implement a switching logic and follow a rectangular pattern

If the airplane is within a radius of a threshold, then switch to the next waypoints. The code
for this function is in attachemnts 8.1.

4.2 Path-following algorithms for straight lines

The dynamics, introduce in section 3.6, for the airplane is choosen from the UAV lab folder.
Next, the system will be exposed for gust wind (3.2). The control inputs (3.9 is aileron and
rudder.

The approach is to use two successive loops, 3.10, where subsystem 1 uses aileron to
control the roll and in subsystem 2 elevator the pitch. An overview of the system can be
seen in figure 16. Here the subsystem 1 is called course, and subsystem 2 is height. A path
algorithm design by Beard and McLain [1] will be used. The output is the desired course
angle and height.

Side 32 av 73

4.2 Path-following algorithms for straight lines

Path

Kp

Ki

Plant

Kd

Kp 1/s Model

φ
c

δ
a

p

φ Χ

+
−

+

+

+

−
+

−

Χ
c

Kp

Ki

Plant

Kd

Kp 1/s Model

θ
c δ

e q

θ h
+

−

+

+

+
−

+

−

h
c

Course

Height

Figure 16: Flow chart system[1]

Subsystem 1

The upper loop is to control the course angle of the airplane. Path gives the commanded
course angle. The light blue boxes is the PI controller for the roll. This is the outer loop. The
controller is defined as

φc = kpχ(χc − χ) + kiχ
s

(χc − χ) (80)

This desired roll angle can be used to find the aileron input, defined as the PD controller,
which is the blue boxes and the inner loop. Defined as

δa = kpφ(φc − φ)− kdφp (81)

The gains are found through tuning.

Side 33 av 73

4.2 Path-following algorithms for straight lines

Subsystem 2

The lower loop is to controller the height of the airplane. Path gives the commanded height
of the airplane. The outer loop, the green boxes, is the controller for the pitch angle θ. The
controller is defined as the PI controller:

θc = kph(hc − h) + kih
s

(hc − h) (82)

The inner loop is to controll the elevator input δe, which is the dark green boxes. The PD
controller is defined as: beginequation

δe = kpθ(θc − θ)− kdθq (83)

The output of the algorithm is commanded course and height, as seen above.

Since the underlying model dynamics is collected from a library, the gains are found through
trial and error. The following gains are defined for subsystem 1

Gains Value
kpφ 5
kdφ 0.1
kpχ 2
kiχ 1.4

Table 3: Subsystem 2 gains

And for subsystem 2:

Gains Value
kpθ -1.2
kdθ -0.1
kph -0.2
kih -0.1

Table 4: Subsystem 2 gains

Path

To defined the path to follow, the straight-line path algorithm of descried in section 3.11 is
used. The algorithm can be seen in attachments 8.2.

Side 34 av 73

4.3 MPFC

4.3 MPFC

The model is chosen from Beard and McLain [1] where it is assumed that the autopilot
controls airspeed, altitude and course angle, denoted V c

a , hc and χc respectively. From
equation 9.19 in Beard and McLain[1] the guidance model is

ṗn =Va cosψ + wn

ṗe =Va sinψ + we

χ̈ =bχ̇(χ̇c − χ̇) + bχ(χc − χ)
ḧ =bḣ(ḣc − ḣ) + bh(hc − h)
V̇a =bVa(V c

a − Va)

(84)

Where the heading angle ψ is defined as:

ψ = χ− arcsin
(1
Va cos γa

[
wn
we

]T [− sinχ
cosχ

])
(85)

and the air-mass-referenced flight path angle γa = 0. Inserting this into equation 85

ψ = χ− arcsin
(1
Va

[
wn
we

]T [− sinχ
cosχ

])
(86)

Also introduce the time differenceti V̈ a

V̈a = bVa(V̇ c
a − Va) + bVa(V c

a − Va) (87)

Define the states to be:



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11



=



pn
pe
h

ḣ
χ
χ̇
Va
V̇a
V c
a

hc

χc



(88)

Side 35 av 73

4.3 MPFC

We have that ẋ(t) = f(x(t), u(t), and define

f(x, u) =



ṗn
ṗe
ḣ

ḧ
χ̇
χ̈
V̇a
V̈a
V̇ c
a

ḣc

χ̇c



=



Va cosψ + wn
Va sinψ + we

ḣ

bḣ(ḣc − ḣ) + bh(hc − h)
χ̇

bχ̇(χ̇c − χ̇) + bχ(χc − χ)
bVa(V c

a − Va)
bVa(V̇ c

a − Va) + bVa(V c
a − Va)

V̇a
c

ḣc

χ̇c



(89)

Choose the following input to the system:

u =

u1
u2
u3

 =

 ḣ
c

χ̇c

V̇a
c

 (90)

And the output to be

y =


pn
pe
h
Va

 (91)

Where bḣ, bh, bχ̇ and bχ is constants, and wn and we is wind defined in the NED frame, and
the direction is north and east respectively. Note also that heading angle ψ is defined as
equation 86, but for simplicity it is not inserted in equation 89.

In section 3.2 was described, here the wind vector is set to a constant,

Vw =

wnwe
wd

 =

3
3
0

 (92)

The other constants are defined as

bḣ =(ωh)2

KθVa

bh = 2ζωh
KθVa

(93)

[1] And

ḃχ =ωχ
Vg
g

bχ =2ζωχ
Vg
g

(94)

Side 36 av 73

4.3 MPFC

[1] And
bVa = 0.69 (95)

Where variables are choosen to be.

ζ 1
ωh 0.5
Kθ 1.2
Va 20
ωχ 0.5
Vg 24.2
g 9.81

Table 5: Constants

Note that the ground speed is defined as equation 12, so Vg = Va+Vw = 20+
√

32 + 32 = 24.2.

Next is to find the OCP, and here to error between position and path is chosen. The path
parameter and timing law is described in section 3.16 and 3.17. The error is

The augmented state dynamics 3.18is defined as

f(x, u) =



ṗn
ṗe
ḣ

ḧ
χ̇
χ̈
V̇a
V̈a
V̇ c
a

ḣc

χ̇c

ż1
ż2



=



Va cosψ + wn
Va sinψ + we

ḣ

bḣ(ḣc − ḣ) + bh(hc − h)
χ̇

bχ̇(χ̇c − χ̇) + bχ(χc − χ)
bVa(V c

a − Va)
bVa(V̇ c

a − Va) + bVa(V c
a − Va)

V̇a
c

ḣc

χ̇c

z2
v



(96)

From equation 69, the r̂ = 2, this gives that the timing law is

z1 =θ
ż1 =z2

ż2 =v
(97)

Which is what is in equation 96. Reasoning for why r̂ = 2 is that if two times time difference
the output in equation 91 then the inputs are delivered, from equation 90.

Side 37 av 73

4.3 MPFC

The state virtual state z1 can be seen as the position on our path line. And z2 is the velocity
on the line. Note that this is not the actual speed of the airplane, but a virtual state. The
airplane needs enough speed to create lift to maintain height and to basically fly. So the
movement on the line can not be zero or small due to lift. The following constraint is defined:

− 1 < z1 ≤ 0 (98)

z2min < z2 ≤ z2max (99)

Including the virtual input, and get

u =


u1
u2
u3
u4

 =


ḣc

χ̇c

V̇ c
a

v

 (100)

To the defined the OCP, one option is to choose to minimize the error between the actual
position agings the path. This could be seen as

lim
t→∞‖

[
pn pe h

]T
− p(θ(t))‖2 = 0 (101)

Where the the error is defined:

e =

pnpe
h

− p(θ)

=

pnpe
h

−

w

i
2y

wi2x
wi2z

− θ
w

i
1y − w

i
2y

wi1x − w
i
2x

wi1z − w
i
2z




=

pnpe
h

−

w

i
2y

wi2x
wi2z

− θ
dwydwx
dwz




(102)

Where
dw = w1 − w2 (103)

Side 38 av 73

4.3 MPFC

and the error dynamics

ė =

ẋ1
ẋ2
ẋ3

−

∂p1
∂θ
∂p2
∂θ
∂p3
∂θ

 θ̇

=

ṗnṗe
ḣ

−


∂

(
wi2y−z1dwy

)
∂z1

∂

(
wi2x−z1dwx

)
∂z1

∂

(
wi2z−z1dwz

)
∂z1

 θ̇

=

ṗnṗe
ḣ

−
−dwy−dwx
−dwz

 θ̇

=

ṗnṗe
ḣ

+

dwydwx
dwz

 θ̇

(104)

and time differnce one more time gives:

ë =

p̈np̈e
ḧ

+

dwydwx
dwz

 θ̈ (105)

Define the optimal problem states to be

xocp =



en
ee
eh
ėn
ėe
ėh
Va
V̇a
V c
a

h

ḣ
hc

χ
χ̇
χc

z1
z2



(106)

Side 39 av 73

4.3 MPFC

en ee eh ėn ėe ėh Va θ

uocp =


ḣc

χ̇c

V̇ c
a

v

 (107)

The objectiv function is defined as

F (e, ė, Va, θ) = ‖(e, ė, Va, θ)‖2
Q (108)

This gives that ny = 8 + 4 = 12, where there is 8 states and 4 inputs.

Want this on Acados form 3.15, meaning

l
(
x(t), z(t), u(t)

)
= F (e, ė) (109)

Define the system inside the norm, to be:

l
(
x(t), z(t), u(t)

)
= Vxxocp + Vuuocp − yref (110)

The matrix Vx is to map from xocp to yocp and Vu to uocp to yocp.

Vx is designed so that is chosen form equation 106, and Vu is designed so that al inputs
in 107 is choosen. The following stacking is wanted

l
(
x(t), z(t), u(t)

)
= ‖



en
ee
eh
ėn
ėe
ėh
Va
θ
0
0
0
0


︸ ︷︷ ︸
Vxxocp

+



0
0
0
0
0
0
0
0
ḣc

χ̇c

V̇ c
a

v


︸ ︷︷ ︸
Vuuocp

−yref‖2
W (111)

Need the following python scripts:

1. model

Side 40 av 73

4.4 MPFC alternative

2. acados settings

3. main

Where in model the xocp and uocp is defined with the state equation defined in 96. Along with
the start conditions and constraint on states, which is need in NMPC, see section 3.14.

In acados settings the gain matrix W, Vx and Vu, yref is deifined along with simulation
settings and creating the solver. Main is just for simulations.

The overall system is then defined as in figure 17. Note that the state estimation is neglected
away in this thesis.

Figure 17: Flow chart system of the MPFC

4.4 MPFC alternative

On alternative way of solving the OCP is to treat the system as a Differential algebraic
equation (DAE) instead of Ordinary differential equation (ODE) which is presented above.
With an DAE system introduce the algebraic states as the error between state and path. For
example

z =

pn − w2 + p(θ)(w1 − w2)
pe − w2 + p(θ)(w1 − w2)
h− w2 + p(θ)(w1 − w2)

 (112)

Side 41 av 73

4.4 MPFC alternative

where z is the algebraic state.

Side 42 av 73

5 RESULTS

5.1 Path-following algorithms for straight lines

This system is described in section 4.2. The results can be seen in figure 18. Here the goal
is to follow a straight line. In the figure, the airplane is able to follow the line. Moreover, it can
be seen in figure 19 that the states are able to follow the commanded course and height.

0 100 200 300 400
East [m]

0

200

400

600

800

No
rth

 [m
]

North East frame

Wavepoint 1
Wavepoint 2
Path 1 (q)
Flight start (p)
Flight path

North [m]

0
100

200
300

400

Ea
st [

m]

0

200

400

600

800

-D
ow

n
[m

]

−450

−400

−350

−300

−250

−200

−150

−100

−50

NED f ame
Path 1 (q)
Flight path

Figure 18: Result path-following algorithms for straight lines

Side 43 av 73

5.2 Path-following algorithms for straight lines with a switching logic and follow a
rectangular pattern

t
−300

−200

−100

0

100

Er
ro
r

epy

t

0

20

40

Er
ro
r

eh

t

−100

0

100

de
g

ψ
χc

t

−1250

−1000

−750

−500

−250

m

h
hc

0 25 50 75 100 125 150 175 200
t

−20

0

20

de
g

ϕ
ϕref

0 25 50 75 100 125 150 175 200
t

−20

0

20

de
g

θ
θref

Figure 19: Overview of states

5.2 Path-following algorithms for straight lines with a switching logic
and follow a rectangular pattern

Here the switch logic is included, from section 4.1, and the results can be seen in figure 20,
with the controller in figure 21. Here, the goal is to follow the given path. When a waypoint is
intersected, a new path is desired to follow. Also here the airplane is following the path quite
good.

Side 44 av 73

5.3 MPFC straight lines in the longitudinal plane).

0 250 500 750 1000 1250 1500
East [m]

0

200

400

600

800

1000

1200

No
rth

 [m
]

North East frame

Wavepoint 1
Wavepoint 2
Wavepoint 3
Wavepoint 4
Wavepoint 5
Path 1 (q)
Path 2 (q)
Path 3 (q)
Path 4 (q)
Flight start (p)
Flight path

North [m]

0
200

400
600

800
1000

1200
1400

Ea
st
[m
]

0
200

400
600

800
1000

-D
ow

n
[m

]

−250

−225

−200

−175

−150

−125

−100

−75

−50

NED frame
Path 1 ()
Path 2 ()
Path 3 ()
Path 4 ()
Flight path

Figure 20: Result PID

t
−50

0

50

100

150

200

Er
ro
r

epy

t
−5

0

5

10

Er
ro
r

eh

t
−200

−100

0

100

de
g

ψ
χc

t
−200

−180

−160

−140

−120

−100

m

h
hc

0 50 100 150 200 250 300
t

−40

−20

0

20

de
g

ϕ
ϕref

0 50 100 150 200 250 300
t

−20

0

20

de
g

θ
θref

Figure 21: Result PID

5.3 MPFC straight lines in the longitudinal plane).

This system is described in section 4.2. The results can be seen in figure 22. Here the goal
is to follow a line in R2. The airplane is here following the line quite good, to the point where

Side 45 av 73

5.3 MPFC straight lines in the longitudinal plane).

there is doodles. Also see that in the 3-D plots, that it looks like the airplane is moving very
much in the vertical plane, but the movement is very small (see the axis).

0 100 200 300 400 500 600 700 800
East [m]

0

100

200

300

400

No
rth

 [m
]

North East frame
Path
reference
Flight path

North [m]

0 100 200 300 400 500 600 700 800

Eas
t [m

]

0
100

200
300

400

Do
wn

 [m
]

+1
e2

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

NED frame
Path
reference
Flight path

Figure 22: Result MPC path-following, straight lines in the longitudinal plane

In figure 23, figure 23a, 23b, Va from figure 23c and z1 from figure 23d is the output of the
OCP. The inputs is in figure 23e. The rest in figure 23c and 23d is states and virtual state.
In figure 23c it can be observed that Va is not following its reference which is 20m/s.

Side 46 av 73

5.3 MPFC straight lines in the longitudinal plane).

0 100 200
−100

−75

−50

−25

0

en

0 100 200

−100
−75
−50
−25

0
25

ee

0 100 200
0.0000

0.0001

0.0002

0.0003

eh

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Error

(a) Error

0 100 200

0

10

20

30

̇en

0 100 200

10

20

30

40

50

̇ee

0 100 200

−0.0002

0.0000

0.0002

0.0004

0.0006
̇eh

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Erroṙdot

(b) Error dot

0 50 100 150 200 250
14

16

18

20

22

Va

Va
ref

0 50 100 150 200 250
−4

−2

0

2

4

̇Va

0 50 100 150 200 250
12.5

15.0

17.5

20.0

22.5

25.0
Vc
a

0 50 100 150 200 250
0.0000

0.0001

0.0002

0.0003

̇1e2 h

0 50 100 150 200 250

−0.0002

0.0000

0.0002

0.0004

0.0006
ḣ

0 50 100 150 200 250

−0.02

0.00

0.02

0.04
̇1e2 hc

0 50 100 150 200 250
−3

−2

−1

0

1

2

χ

0 50 100 150 200 250

−2

0

2

̇χ

0 50 100 150 200 250

−2

0

2

χc

State

(c) States

0 50 100 150 200 250
−1.0

−0.8

−0.6

−0.4

−0.2

0.0
z1

0 50 100 150 200 250
0.00

0.02

0.04

0.06
z2

Virtual state

(d) Virtual states

0 100 200

−0.2

−0.1

0.0

0.1

̇hc

0 100 200
−10

−̇

0

̇

10
̇χc

0 100 200
−10

−̇

0

̇

10
̇Vc
a

0 100 200
−0.07̇

−0.0̇0

−0.02̇

0.000

0.02̇

0.0̇0

v

Input

(e) Inputs

Figure 23: Overview of states and inputs

Side 47 av 73

5.4 MPFC for following straight lines in both planes

5.4 MPFC for following straight lines in both planes

Here the path to follow is in R3. This means including a change in height. A result of this can
be seen in figure 24. Here the same doodles from figure 22 happens. Other than that, the
aircraft is following the path good. In the 3-D plot the aircraft manage converge to the path
right before the doodle happens.

0 100 200 300 400 500 600 700 800
East [m]

0

100

200

300

400

No
rth
 [m

]

North East frame
Path
reference
Flight path

North [m]

0 100 200 300 400 500 600 700 800
Eas
t [m

]

0
100

200
300

400

Do
wn
 [m

]

100

120

140

160

180

200

NED frame
Path
reference
Flight path

Figure 24: Result NMPC

In figure 25, figure 25a, 25b, Va from figure 25c and z1 from figure 25d is the output of the
OCP. The inputs is in figure 25e. The rest in figure 25c and 25d is states and virtual state.
In figure 25c the Va is not following its reference which is 20m/s.

Side 48 av 73

5.4 MPFC for following straight lines in both planes

0 100 200
−100

−75

−50

−25

0

en

0 100 200

−100
−75
−50
−25

0
25

ee

0 100 200

−4
−2
0
2
4
6

eh

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Error

(a) Error

0 100 200

10

20

30

40

̇en

0 100 200

20

40

60

̇ee

0 100 200
0

2

4

6

8

̇eh

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Erroṙdot

(b) Error dot

0 50 100 150 200 250

16

18

20

22

24
Va

Va
ref

0 50 100 150 200 250

−4

−2

0

2

4

̇Va

0 50 100 150 200 250

15̇0

17̇5

20̇0

22̇5

25̇0

Vc
a

0 50 100 150 200 250
100

120

140

160

180

200
h

0 50 100 150 200 250
0

1

2

3

4

5

ḣ

0 50 100 150 200 250
100

120

140

160

180

200

hc

0 50 100 150 200 250

−2

0

2

χ

0 50 100 150 200 250

−2

0

2

̇χ

0 50 100 150 200 250

−2

0

2

χc

State

(c) States

0 50 100 150 200 250
−1.0

−0.8

−0.6

−0.4

−0.2

0.0
z1

0 50 100 150 200 250
0.00

0.02

0.04

0.06
z2

Virtual state

(d) Virtuel states

0 100 200
−10

−5

0

5

10
̇hc

0 100 200
−10

−5

0

5

10
̇χc

0 100 200
−10

−5

0

5

10
̇Vc
a

0 100 200

−0̇050

−0̇025

0̇000

0̇025

0̇050

v

Input

(e) Inputs

Figure 25: NMPC 2

Side 49 av 73

6 DISCUSSION

6.1 Path-following algorithms for straight lines

The aircraft is taking a long detour before converging to the path, see figure 18. This is be-
cause the aircraft starts at a trim condition, set up by the UAV library. The aircraft converges
faster if a change in the trim conditions is made. Other than that, the performance was within
reasonable accuracy. The controller was capable of following the commanded course and
height. And also for the inner loop to follow the reference, roll and pitch, respectively. The
cross-track error and height error both converged to zero, which is wanted. See figure 19.

6.2 Path-following algorithms for straight lines with a switching logic
and follow a rectangular pattern

The results in section 5.2 with path-following algorithms for straight lines with a switching
logic and following a rectangular pattern work very well. There was a bit of overshoot at the
change of waypoints, but this as expected.

One could tune the gains to avoid such overshoot. Another way to handle this could be
to increase the circle radius of which the operator predetermined accepted that the aircraft
is close enough to waypoints to go to the next one. In the simulation, this radius was 10
meters.

From figure 21, where the control is seen, there is noise at the yaw angle. This is because
the angle is right between 0 and 180 degrees, and there is then a discontinuous jump. In
the controller, this is solved using the function SSA(·), which maps angles between −π and
π [2]. So this is solved.

From figure 21 the cross-track error and height error was oscillating with a very small value
around zero, which is wanted. Comparison for commanded height and height is very good.
Same for roll and pitch, where they followed the reference good.

6.3 MPFC straight lines

For the MPFC, in section 5.3 and 5.4 the aircraft manage to follow the reference quite good
in the start.

The virtual state z1 in figure 23d, is converging towards zero, which is wanted. From sec-
tion 3.16, when z1 = θ = 0, the aircraft is at waypoint 2 (target waypoint). In figure 23e
there is a loot of saturation of the inputs for χ̇c and V̇ c

a . This can be seen when the spikes

Side 50 av 73

6.3 MPFC straight lines

are removed from the plo. It is not wanted to increase the constraints on input mentioned,
because of physically reasons.

In figure 23a, the error is converging to zero, then, around 100 iterations, the error starts to
oscillate. This can also be seen in figure 22 where at the end, it is bad and do not follow
anything. This is because the z1 values is reaching its constraints, which is 0. This can be
seen in figure 23d. While it is wanted that z1 = 0, it is also destroys the simulation because
of constraints. In figure 23d from 0 to 100 iterations (in x-direction), the value is increasing
steady, while beyond 100 iterations, z1 increases slowly. So to fix this doodling, there could
be introduced a new waypoint when, for example z1 is greater than a threshold. For example
−0.2. The same incident is happening in figure 24.

Overall, the aircraft manage to follow the path adequately

Side 51 av 73

7 CONCLUSION

In this project, the main focus has been control algorithm design for following a path for
fixed-wing aerial vehicles. Two different solution has been deigned, where they have been
divided into two subproblems, where the task is in four parts:

Path-following algorithms for straight lines : Using the path algorithm of Beard and McLain
[1] a successful path algorithm with two separate successive loops for controll of the
commanded course and height was designed. This worked very well and the results
where good.

Path-following algorithms for straight lines with a switching : A switch was designed
which made the aircraft change to a new path when the aircraft was close enough to a
(desired) waypoint. A successful simulation of a route with 4 waypoints in rectangular
pattern was completed.

MPFC for following straight lines in the longitudinal plane : An MPFC was designed with
the path parameterizing from Faulwasser[6]. The MPFC worked well until the end,
where z1 became to small, a possible solution is pointed out under future work.

MPFC for following straight lines in R3 : Same MPFC as above, did relative good to the
point where the results was bad, obviously.

Future work

Path-following algorithms for straight lines : One could tune the gains to avoid over-
shoot at the corners. Another way to handle this could be to increase the radius of the
circle of which the operator predetermined accepted that the aircraft is close enough
to waypoints to go to the next one. In the simulation, this radius was 10 meters.

MPFC for following straight lines in R3 : Implement a switch so the MPFC is following a
new waypoint before z1 is too small. Using the value of z1 for the switch can be used.
One can include it so that the rectangular movement can be achieved, as in figure 20.
The wind is now constant, so the wind could be included, the same way as introduced
in section 3.2. The system uses simplified dynamics. So it is natural to try to expand
to more advanced dynamics. For the path-following algorithms, the dynamics were
from the UAV library. Also, in figure 23c, the controller did not manage to follow the
reference on the airspeed. So this is also something that could be done better.

Side 52 av 73

8 ATTACHMENTS

8.1 Switching logic

1 def HitWavePoint (p,w):
2 tresh = 10
3 for i in range(len(p)):
4 if not abs(p[i]-w[i]) < tresh:
5 return False
6 return True

Side 53 av 73

8.2 Straight-line Algorithm

8.2 Straight-line Algorithm

1 import numpy as np
2 from numpy import linalg as LA
3 import math
4
5
6 def SSA(angle):
7 return (angle + np.pi) % (2 * np.pi) - np.pi
8
9 def StraightLine (p,w1 ,w2 , chi_inf =math.pi/2, k_path =0.02) :

10 ’’’
11 Input:
12 w1 : Wavepoint 1 (3x1 array) (NED)
13 w2 : Wavepoint 2 (3x1 array) (NED)
14 p : Start pos plane (3x1 array) (NED)
15
16 chi_inf : Desired course angle far from path -line
17 Defult pi/2 (90 deg)
18 k_path : Gain to the sigmond funksion atan.
19 Desied when to follow chi_inf or chi_d
20 Defult 0.02
21
22
23 Output :
24 h_c : Commanded hight (desired)
25 chi_c : Commanded coruse (desired)
26
27 ’’’
28
29 p = np.array(p)
30 r = np.array(w1)
31 q_vec = np.array(w2)-np.array(w1)
32
33 ## Height :
34 r = r. flatten ()
35 q_vec = q_vec. flatten ()
36 p = p. flatten ()
37 e_i_p = p-r
38 q = q_vec/LA.norm(q_vec)
39 k = np.array ([0 ,0 ,1])
40 cross_q_k = np.cross(q, k)
41 n = cross_q_k / LA.norm(cross_q_k)
42
43 s_i = e_i_p - np.outer(n, n)@ e_i_p
44
45 s_d = math.sqrt(s_i [0]**2+ s_i [1]**2) *(q[2]/ (math.sqrt(q [0]**2+ q

[1]**2)))
46 h_c =r[2]+ s_d
47
48 ## Course :
49 chi_q = math.atan2(q[1],q[0])
50 chi_q = SSA(chi_q)
51

Side 54 av 73

8.2 Straight-line Algorithm

52 e_py = -math.sin(chi_q)*(p[0]-r[0])+math.cos(chi_q)*(p[1]-r[1])
53 chi_c = chi_q - chi_inf *2/ np.pi * math.atan(k_path *e_py)
54
55 return [h_c , chi_c ,e_py]

Side 55 av 73

8.3 Main Straight-line Algorithm

8.3 Main Straight-line Algorithm

1 from lib. casadi_lib import state
2 from lib. casadi_lib import trim
3 from lib. filter . fir_lowpass import Fir_lowpass
4 from lib.wind. dryden import generateWindGust
5 import uav. models .X8 as model
6 import matplotlib . pyplot as plt
7 import numpy as np
8 import casadi as cs
9 from uav. controllers import PID

10 from uav import uav_v2
11 import importlib
12 importlib . reload (uav_v2)
13
14
15 from AddOnsPlott import *
16 from StraightLineAlg import *
17
18 from numpy import linalg as LA
19 from mpl_toolkits . mplot3d import Axes3D
20
21
22 def Main(wavepoints):
23 # Set up simulation
24 dt = 0.02
25 t0 = 0
26 tf = 800.0
27 t = np. arange (t0 , tf , dt)
28 N = t.shape [0]
29 space , frame , rotation = ’full ’, ’b’, ’quat ’
30 idx = state. convert_idx_to_numpy (state.idx[’full ’][’b’][’quat ’])
31 wind_static_n = np.array ([1, 1, 0])
32 wind_gust_n = generateWindGust (dt , tf , turbulenceLevel =1) [0]
33 w = wind_static_n + wind_gust_n
34
35 # Initialize trimmed vehicle
36 Va = 20
37 gamma = 0*np.pi /180
38
39 R = np.inf
40 nx , nu , nw = state. get_dim_x_u_wind (space , frame , rotation)
41 x = trim.trim(Va , R, gamma , model , print_level =5, wind= wind_static_n)
42 x = state. convert_rotation [space][frame][’euler ’](cs.SX(x), rotation)
43 x = cs.DM(x).full (). flatten ()
44 u = np.zeros(nu)
45
46 uav = uav_v2 . Vehicle (x, u, wind_static_n , model , {})
47 delta_trim = x[-4:]
48
49 # Design PID for speed/ attitude
50 P = model.P
51 pidV = PID (0.69 , 1.0, 0.0, -0.9, 0.9, 1.0, P[’throttle_min ’], P[’

throttle_max ’])

Side 56 av 73

8.3 Main Straight-line Algorithm

52 piYaw = PID (2, 1.4, 0., -0.9, 0.9, 0.1, -30*np.pi /180 , 30* np.pi /180)
53 pdRoll = PID (5, 0, 0.1, -0.9, 0.9, 0.1, P[’aileron_min ’], P[’aileron_max

’])
54 piHeight = PID (-0.2, -0.1, 0., -0.9, 0.9, 0.1 , -0.5 ,0.5)
55 pdPitch = PID (-1.1, 0.0, -0.1, -.1, 0.1, 0.1 , P[’elevator_min ’], P[’

elevator_max ’])
56
57 # Plane start:
58 plane_start = uav.x[idx[’pos ’]]
59
60 ref = dict ()
61
62 ref[’Va’] = uav.get(’Va’) * np.ones(N)
63
64 X = np.zeros ((N, nx))
65 euler = np.zeros ((N, 3))
66 euler_ref = np.zeros ((N, 3))
67 delta = np.zeros ((N, 4))
68
69 errors = np.zeros ((N, 2))
70 hight = np.zeros ((N ,2))
71
72 waypoint = 0
73
74 print("\n\ nSTART :::::: ")
75
76 for k in range(t.shape [0]):
77 rpy = uav.get(’euler ’)
78 roll , pitch , yaw = rpy [0], rpy [1], rpy [2]
79
80 wavepoint1 = wavepoints [waypoint]
81 wavepoint2 = wavepoints [waypoint +1]
82
83 [h_c ,chi_c ,ep_y] = StraightLine (uav.get(’pos ’),wavepoint1 , wavepoint2

)
84
85 ## Coruse (yaw) Control :
86 yawError = SSA(chi_c - yaw)
87 ref_roll = piYaw. update (t[k], yawError)
88 ddelta_a = pdRoll . update (t[k], ref_roll - roll)
89
90 ## Hight control :
91 hightError = h_c - uav.get(’pos ’)[2]
92 ref_pitch = piHeight . update (t[k], hightError)
93 ddelta_e = pdPitch . update (t[k], ref_pitch - pitch)
94
95 ## Throttle :
96 ddelta_t = pidV. update (t[k], ref[’Va’][k] - uav.get(’Va’))
97
98 ## Output :
99 u = delta_trim + np.array ((ddelta_a , ddelta_e , 0, ddelta_t))

100 u = np.clip(u,
101 np.array ((P[’aileron_min ’], P[’elevator_min ’], P[’

rudder_min ’], P[’throttle_min ’])),

Side 57 av 73

8.3 Main Straight-line Algorithm

102 np.array ((P[’aileron_max ’], P[’elevator_max ’], P[’
rudder_max ’], P[’throttle_max ’])))

103
104 ## Update UAV:
105 uav. update (uav. solver .t + dt , u, w[k, :])
106
107 euler[k, :] = rpy
108 euler_ref [k ,:] = [ref_roll ,ref_pitch ,chi_c]
109
110 errors [k ,:] = [ep_y , hightError]
111 hight[k ,:] = [h_c ,uav.get(’pos ’)[2]]
112
113 X[k ,:] = uav.x#uav.get(’pos ’)#uav.x
114 delta[k, :] = u
115
116 if HitWavePoint (uav.get(’pos ’),wavepoint2):
117
118 print("Hit wavepoint {0}". format (waypoint +1))
119
120 if waypoint < len(wavepoints) -2:
121
122 waypoint +=1
123
124
125
126 # NE and NED frame:
127
128 limits = SetLimits (X[:,0],X[:,1],X[:,2], wavepoints)
129 q_lines = GetQPlot (wavepoints)
130
131 fig = plt. figure ()
132 ax=plt. subplot (1, 2, 1)
133 ax. set_title (’North East frame ’)
134 for i in range(len(wavepoints)):
135 ax.plot(wavepoints [i][0] , wavepoints [i][1] , ’.r’, label=’Wavepoint

{0} ’. format (i+1))
136 for i in range(len(q_lines)):
137 ax.plot(q_lines [i][0] , q_lines [i][1] , ’g’, label=’Path {0} (q)’.

format (i+1))
138 ax.plot(plane_start [0], plane_start [1], ’.b’, label=’Flight start (p)’)
139 ax.plot(X[:,0],X[:,1],’m’,label=’Flight path ’)
140 ax. legend (loc=’lower right ’)
141 ax. set_xlabel (’East [m]’)
142 ax. set_ylabel (’North [m]’)
143 ax. set_xlim ([limits [’xmin ’], limits [’xmax ’]])
144 ax. set_ylim ([limits [’ymin ’], limits [’ymax ’]])
145
146 ax = fig. add_subplot (1, 2, 2, projection =’3d’)
147 ax. set_title (’NED frame ’)
148 for i in range(len(q_lines)):
149 ax. plot3D (q_lines [i][0] , q_lines [i][1] , q_lines [i][2] , ’g’, label=’

Path {0} (q)’. format (i+1))
150 ax. plot3D (X[:,0],X[:,1],X[:,2], ’m’,label=’Flight path ’)
151 ax. set_xlim ([limits [’xmin ’], limits [’xmax ’]])
152 ax. set_ylim ([limits [’ymin ’], limits [’ymax ’]])

Side 58 av 73

8.3 Main Straight-line Algorithm

153 ax. set_zlim ([limits [’zmin ’], limits [’zmax ’]])
154 ax. set_xlabel (’North [m]’)
155 ax. set_ylabel (’East [m]’)
156 ax. set_zlabel (’-Down [m]’)
157 ax. legend (loc=’upper left ’)
158
159 fig , ax = plt. subplots (3, 2, sharex =True)
160 ax[1, 0]. plot(t,euler [: ,2]* 180/ np.pi , label=r’ψ ’)
161 ax[1, 0]. plot(t, euler_ref [: ,2]* 180/ np.pi , label=r’$\chiˆc$ ’)
162 ax[1, 0]. set_xlabel (’t’)
163 ax[1, 0]. set_ylabel (’deg ’)
164 ax[1, 0]. legend (loc=’upper right ’)
165
166 ax[2, 1]. plot(t,euler [: ,1]* 180/ np.pi , label=r’θ ’)
167 ax[2, 1]. plot(t, euler_ref [: ,1]* 180/ np.pi , label=r’$\ theta_ {ref}$ ’)
168 ax[2, 1]. set_xlabel (’t’)
169 ax[2, 1]. set_ylabel (’deg ’)
170 ax[2, 1]. legend (loc=’lower right ’)
171
172 ax[2, 0]. plot(t,euler [: ,0]* 180/ np.pi , label=r’ϕ ’)
173 ax[2, 0]. plot(t, euler_ref [: ,0]* 180/ np.pi , label=r’ϕ_{ref} ’)
174 ax[2, 0]. set_xlabel (’t’)
175 ax[2, 0]. set_ylabel (’deg ’)
176 ax[2, 0]. legend (loc=’upper right ’)
177
178 ax[1, 1]. plot(t,hight [:,1], label=r’h ’)
179 ax[1, 1]. plot(t,hight [:,0], label=r’$hˆc$ ’)
180 ax[1, 1]. set_xlabel (’t’)
181 ax[1, 1]. set_ylabel (’m’)
182 ax[1, 1]. legend (loc=’lower right ’)
183
184 ax[0, 1]. plot(t, errors [:,1], label=r’e_{h} ’)
185 ax[0, 1]. set_xlabel (’t’)
186 ax[0, 1]. set_ylabel (’Error ’)
187 ax[0, 1]. legend (loc=’lower right ’)
188
189
190
191 ax[0, 0]. plot(t, errors [:,0], label=r’e_{py}’)
192 ax[0, 0]. set_xlabel (’t’)
193 ax[0, 0]. set_ylabel (’Error ’)
194 ax[0, 0]. legend (loc=’lower right ’)
195
196
197 plt.show ()
198
199
200
201
202
203 if __name__ == ’__main__ ’:
204
205 # Wavepoint 1:
206 w1 = [100 ,100 , -200]
207 # Wavepoint 2:

Side 59 av 73

8.3 Main Straight-line Algorithm

208 w2 = [100 ,1100 , -100]
209 # Wavepoint 3:
210 w3 = [1500 ,1100 , -200]
211 # Wavepoint 4:
212 w4 = [1500 ,100 , -200]
213
214 w_all = [w1 ,w2 ,w3 ,w4 ,w1]
215
216 Main(w_all)

Side 60 av 73

8.4 Model MPC

8.4 Model MPC

1 import casadi as cs
2 import numpy as np
3 import math
4
5 def uav_model_t ():
6 # define structs
7 constraint = cs.types. SimpleNamespace ()
8 model = cs.types. SimpleNamespace ()
9 model_name = " Thomas_NMPC "

10
11 # To ddot{h}:
12 zeta = 1
13 omega_h = 0.5
14 K_theta = 1.2
15 Vaa = 20
16
17 b_h_d = omega_h **2 / (K_theta *Vaa)
18 b_h = 2* zeta* omega_h /(K_theta *Vaa)
19
20
21 # To ddot {\ chi }:
22 zeta = 1
23 omega_chi = 0.5
24 Vgg = 24.2
25 g = 9.81
26
27 b_chi_d = omega_chi * Vgg/g
28 b_chi = 2* zeta* omega_chi * Vgg/g
29
30 # To dot{V_a }:
31 b_va = 0.69
32
33
34 def compute_path_reference (theta , wp):
35 return wp [1] - theta *(wp [0] - wp [1])
36
37 def compute_psi_chi (chi , Va , wind):
38 return chi - cs. arcsin ((-cs.sin(chi)*wind [0] + cs.cos(chi)*wind [1])/

Va)
39
40 nx = 17
41 x = cs.SX.sym(’x’, nx)
42 # e_pos = x[0:3]
43 # de_pos = x[3:6]
44 Va = x[6]
45 dVa = x[7]
46 Va_c = x[8]
47 h = x[9]
48 dh = x[10]
49 h_c = x[11]
50 chi = x[12]
51 dchi = x[13]

Side 61 av 73

8.4 Model MPC

52 chi_c = x[14]
53 # z1 = x[15]
54 z2 = x[16]
55
56 nu = 4
57 u = cs.SX.sym(’u’, nu)
58 dh_c = u[0]
59 dchi_c = u[1]
60 dVa_c = u[2]
61 dz2 = u[3]
62
63 nparam = 9
64 p = cs.SX.sym(’p’, nparam)
65 wp = [p[0:3] , p [3:6]]
66 wind = p[6:]
67
68 dx = cs.SX.sym(’dx’, nx)
69
70 # algebraic variables
71 z = cs. vertcat ([])
72
73 psi = chi
74
75 ddVa = b_va *(dVa_c - dVa) + b_va *(Va_c -Va)
76 dwp = wp [0] - wp [1]
77 dwx = dwp [0]
78 dwy = dwp [1]
79 dwz = dwp [2]
80
81 f_expl = cs. vertcat (
82 Va*cs.cos(psi) + wind [0] +z2*(wp [0][0] - wp [1][0]) ,
83 Va*cs.sin(psi) + wind [1] +z2*(wp [0][0] - wp [1][0]) ,
84 dh + z2*(wp [0][2] - wp [1][2]) ,
85 dVa * cs.cos(psi) - Va*dchi * cs.sin(psi) + dz2 * dwx ,
86 dVa * cs.sin(psi) + Va*dchi * cs.cos(psi) + dz2 * dwy ,
87 b_h_d *(dh_c - dh) + b_h * (h_c - h) + dz2 * dwz ,
88 dVa ,
89 ddVa ,
90 dVa_c ,
91 dh ,
92 b_h_d *(dh_c -dh) + b_h * (h_c - h),
93 dh_c ,
94 dchi ,
95 b_chi_d * (dchi_c - dchi) + b_chi * (chi_c - chi),
96 dchi_c ,
97 z2 ,
98 dz2
99)

100
101 model.x0 = np.zeros(nx)
102
103 # Define model struct
104 model. f_impl_expr = dx - f_expl
105 model. f_expl_expr = f_expl
106 model.x = x

Side 62 av 73

8.4 Model MPC

107 model.xdot = dx
108 model.u = u
109 model.z = z
110 model.p = p
111 model.name = model_name
112
113 return model , constraint

Side 63 av 73

8.5 Acados settings

8.5 Acados settings

1 from acados_template import AcadosModel , AcadosOcp , AcadosOcpSolver
2 import scipy. linalg
3 import numpy as np
4 from model_new import *
5
6 def acados_settings (Tf , N, x0 , wp , wind):
7
8 # create render arguments
9 ocp = AcadosOcp ()

10
11 # export model
12 model , constraint = uav_model_t ()
13
14 # define acados ODE
15 model_ac = AcadosModel ()
16 model_ac . f_impl_expr = model. f_impl_expr
17 model_ac . f_expl_expr = model. f_expl_expr
18 model_ac .x = model.x
19 model_ac .xdot = model.xdot
20 model_ac .u = model.u
21 model_ac .z = model.z
22 model_ac .p = model.p
23 model_ac .name = model.name
24 ocp.model = model_ac
25
26
27 nx = model.x.size () [0]
28 nu = model.u.size () [0]
29 ny = 12#
30 ny_e = 8#
31 ns = 0
32 nsbx = 0
33 nsh = 0
34
35 ocp.dims.nx = nx
36 ocp.dims.np = model.p.size () [0]
37 ocp.dims.ny = ny
38 ocp.dims.ny_e = ny_e
39 ocp.dims.nsbx = 0
40 ocp.dims.nu = nu
41 ocp.dims.N = N
42 ocp.dims.nsh = 0
43 ocp.dims.nh = 0
44 ocp.dims.ns = 0
45
46 ocp. parameter_values = np. concatenate ([wp[0], wp[1], wind])
47
48 ## Gains Q and R
49 # Q
50 q1 = 100
51 q2 = 100
52 q3 = 100

Side 64 av 73

8.5 Acados settings

53
54 q4 = 0.5* q1
55 q5 = 0.5* q2
56 q6 = 0.5* q3
57
58 q7 = 1000 # Va
59
60 q11 = 1 # Theta
61
62 # R
63 r1 = 1e-3
64 r2 = 1e-2
65 r3 =1e-3
66 r4 = 1e-3
67
68 # discretization
69 ocp.dims.N = N
70 Q = np.diag ([q1 ,q2 ,q3 ,q4 ,q5 ,q6 ,q7 ,q11])
71 Qe = Q
72 R = np.diag ([r1 ,r2 ,r3 ,r4])
73 ocp.cost. cost_type = " LINEAR_LS "
74 ocp.cost. cost_type_e = " LINEAR_LS "
75 unscale = N / Tf
76 ocp.cost.W = unscale * scipy. linalg . block_diag (Q, R)
77 ocp.cost.W_e = Qe / unscale
78
79 Vx = np.zeros ([ny ,nx])
80 Vx [0:6 ,0:6] = np. identity (6)
81 Vx [6 ,6] = 1
82 Vx[7, 15] = 1
83 ocp.cost.Vx = Vx
84
85 Vx_e = Vx[:ny_e ,:]
86 ocp.cost.Vx_e = Vx_e
87
88 Vu = np.zeros ([ny ,nu])
89 Vu [8:ny ,:]= np. identity (nu)
90 ocp.cost.Vu = Vu
91
92 ocp.cost.zl = 100 * np.ones ((ns ,))
93 ocp.cost.zu = 100 * np.ones ((ns ,))
94 ocp.cost.Zl = 0 * np.ones ((ns ,))
95 ocp.cost.Zu = 0 * np.ones ((ns ,))
96
97 # set intial references
98 ocp.cost.yref = np.array ([0 ,0 ,0 ,0 ,0 ,0 ,20 ,0 ,0 ,0 ,0 ,0])
99 ocp.cost. yref_e = ocp.cost.yref [:8]

100
101 # setting constraints
102 ocp. constraints .lbx = np.array ([])
103 ocp. constraints .ubx = np.array ([])
104 ocp. constraints .idxbx = np.array ([])
105
106 lbx = np.array ([-1e3 ,
107 -1e3 ,

Side 65 av 73

8.5 Acados settings

108 -1e3 ,
109 -1e3 ,
110 -1e3 ,
111 -1e3 ,
112 10,
113 -10,
114 10,
115 0,
116 -10,
117 0,
118 -np.pi ,
119 -np.pi ,
120 -np.pi ,
121 -1,
122 0])
123
124 ubx = np.array ([+1e3 ,
125 +1e3 ,
126 +1e3 ,
127 +1e3 ,
128 +1e3 ,
129 +1e3 ,
130 30,
131 +10,
132 30,
133 1e3 ,
134 10,
135 1e3 ,
136 +np.pi ,
137 +np.pi ,
138 +np.pi ,
139 0,
140 1e3])
141
142 ocp. constraints .lbx = lbx
143 ocp. constraints .ubx = ubx
144 ocp. constraints .idxbx = np. arange (nx)
145
146 lbu = np.array ([-10, -10, -10, -10])
147 ubu = -lbu
148 ocp. constraints .lbu = lbu
149 ocp. constraints .ubu = ubu
150 ocp. constraints .idxbu = np. arange (nu)
151
152 ocp.dims.nbx = ocp. constraints .idxbx.shape [0]
153 ocp.dims.nbu = ocp. constraints .idxbu.shape [0]
154
155 # # set intial condition
156 ocp. constraints .x0 = x0
157
158 # set QP solver and integration
159 ocp. solver_options .tf = Tf
160 # ocp. solver_options . qp_solver = ’FULL_CONDENSING_QPOASES ’
161 ocp. solver_options . qp_solver = " PARTIAL_CONDENSING_HPIPM "
162 ocp. solver_options . nlp_solver_type = " SQP_RTI "

Side 66 av 73

8.5 Acados settings

163 ocp. solver_options . hessian_approx = " GAUSS_NEWTON "
164 ocp. solver_options . integrator_type = "IRK"
165 #ocp. solver_options . integrator_type = "ERK"
166 ocp. solver_options . sim_method_num_stages = 4
167 ocp. solver_options . sim_method_num_steps = 3
168 # ocp. solver_options . nlp_solver_step_length = 0.05
169 # ocp. solver_options . nlp_solver_max_iter = 1000
170 ocp. solver_options .tol = 1e-4
171 # ocp. solver_options . nlp_solver_tol_comp = 1e-1
172
173 # create solver
174 acados_solver = AcadosOcpSolver (ocp , json_file =" acados_ocp .json")
175
176 return constraint , model , acados_solver

Side 67 av 73

8.6 Main NMPC

8.6 Main NMPC

1 from acados_template import AcadosModel , AcadosOcp , AcadosOcpSolver
2 import scipy. linalg
3 from casadi import *
4 import numpy as np
5 import math
6 import matplotlib . pyplot as plt
7 from acados_settings import *
8
9 from mpl_toolkits . mplot3d import Axes3D

10 # Set up mpc
11 Tf = 10.0 # prediction horizon
12 N = 50 # number of discretization steps
13 T = 50.00 # maximum simulation time[s]
14
15
16 # Waypoints
17 wp1 = np.array ((100 , 100, 100))
18 wp2 = np.array ((400 , 800, 100))
19
20 wp = [wp1 , wp2]
21
22 wind = np.array ((3, 3, 0))
23
24 Nsim = int(T * N / Tf)
25
26 # Initial position
27 pos_init = np.array ((0, 600, 100))
28
29 # Airspeed reference
30 Va_ref = 20
31
32 Va_ref_dat = Va_ref * np.ones ((Nsim , 1))
33
34 NameStates = [’en’,’ee’,’eh’,’en_dot ’,’ee_dot ’,’eh_dot ’,’Va’,’Va_dot ’,’

Va_com ’,’h’,’h_dot ’,’h_com ’,’chi ’,’chi_dot ’,’chi_com ’,’z1’,’z2’]
35
36 sim_res_state = {’t’: 10,
37 ’en’ : np.zeros ((Nsim , 1)),
38 ’ee’ : np.zeros ((Nsim , 1)),
39 ’eh’ : np.zeros ((Nsim , 1)),
40 ’en_dot ’ : np.zeros ((Nsim , 1)),
41 ’ee_dot ’ : np.zeros ((Nsim , 1)),
42 ’eh_dot ’ : np.zeros ((Nsim , 1)),
43 ’Va’ : np.zeros ((Nsim , 1)),
44 ’Va_dot ’ : np.zeros ((Nsim , 1)),
45 ’Va_com ’ : np.zeros ((Nsim , 1)),
46 ’h’ : np.zeros ((Nsim , 1)),
47 ’h_dot ’ : np.zeros ((Nsim , 1)),
48 ’h_com ’ : np.zeros ((Nsim , 1)),
49 ’chi ’ : np.zeros ((Nsim , 1)),
50 ’chi_dot ’ : np.zeros ((Nsim , 1)),
51 ’chi_com ’ : np.zeros ((Nsim , 1)),

Side 68 av 73

8.6 Main NMPC

52 ’z1’ : np.zeros ((Nsim , 1)),
53 ’z2’ : np.zeros ((Nsim , 1))}
54
55
56 NameInput = [’h_c_d ’,’chi_c_d ’,’Va_c ’,’v’]
57
58 sim_res_input = {’h_c ’: np.zeros ((Nsim , 1)),
59 ’h_c_d ’ : np.zeros ((Nsim , 1)),
60 ’chi_c_d ’ : np.zeros ((Nsim , 1)),
61 ’Va_c ’ : np.zeros ((Nsim , 1)),
62 ’v’ : np.zeros ((Nsim , 1))}
63
64 sim_res_pos = {’pe’ : np.zeros ((Nsim , 1)),
65 ’pn’ : np.zeros ((Nsim , 1)),
66 ’h’ : np.zeros ((Nsim , 1)),
67 ’Va’ : np.zeros ((Nsim , 1))}
68
69 def find_initial_path_variable (pos , wp):
70 return -1*(1 - max ([0, np.inner(pos , wp [0])/np.inner(wp [1] - wp[0], wp

[1] - wp [0])]))
71
72 def compute_path_reference (theta , wp):
73 return wp [1] - theta *(wp [0] - wp [1])
74
75 def compute_psi_chi (chi , Va , wind):
76 return chi - np. arcsin ((-np.sin(chi)*wind [0] + np.cos(chi)*wind [1])/Va)
77
78 theta_init = find_initial_path_variable (pos_init , wp)
79 pos_ref_init = compute_path_reference (theta_init , wp)
80 e_init = pos_init - pos_ref_init
81
82 chi_init = math.atan2(wp [1][1] - pos_init [1], wp [1][0] - pos_init [0])
83 Va_init = Va_ref
84 psi_init = compute_psi_chi (chi_init , Va_init , wind)
85
86 chidot_init = 0
87 hdot_init = 0
88 Vadot_init = 0
89
90 pndot_init = Va_init *np.cos(psi_init) + wind [0]
91 pedot_init = Va_init *np.sin(psi_init) + wind [1]
92
93 edot_init = np.array ((pndot_init , pedot_init , hdot_init))
94
95 h_init = pos_init [2]
96
97 h_c_init = h_init
98 Va_c_init = Va_init
99 chi_c_init = chi_init

100
101 z1_init = theta_init
102 z2_init = 0
103
104 x_init = np.array ([e_init [0],
105 e_init [1],

Side 69 av 73

8.6 Main NMPC

106 e_init [2],
107 edot_init [0],
108 edot_init [1],
109 edot_init [2],
110 Va_init ,
111 Vadot_init ,
112 Va_c_init ,
113 h_init ,
114 hdot_init ,
115 h_c_init ,
116 chi_init ,
117 chidot_init ,
118 chi_c_init ,
119 z1_init ,
120 z2_init])
121
122 ref_init = compute_path_reference (theta_init , wp)
123
124 constraints , model , acados_solver = acados_settings (Tf , N, x_init , wp , wind)
125 acados_solver .set (0, "x", x_init)
126
127 # simulate
128 Vx = acados_solver . acados_ocp .cost.Vx
129 Vx_e = acados_solver . acados_ocp .cost.Vx_e
130 Vu = acados_solver . acados_ocp .cost.Vu
131 W = acados_solver . acados_ocp .cost.W
132 W_e = acados_solver . acados_ocp .cost.W_e
133 y_init = Vx @ x_init
134
135 epos = np.zeros ((Nsim , 3))
136 pos = np.zeros ((Nsim , 3))
137 ref_pos = np.zeros ((Nsim , 3))
138 for i in range(Nsim):
139 print(" Finished {}/{}. ". format (i, Nsim))
140 for j in range(N):
141 yref = np.array ([0,0,0,0,0,0, Va_ref ,0 ,0 ,0 ,0 ,0])
142 acados_solver .set(j, "yref", yref)
143
144 yref_N = np.array ([0,0,0,0,0,0, Va_ref ,0])
145 acados_solver .set(N, "yref", yref_N)
146
147 # solve ocp
148 status = acados_solver .solve ()
149
150 if status != 0:
151 print(" acados returned status {} in closed loop iteration {}.".

format (status , i))
152 break
153
154
155 # get solution
156 x0 = acados_solver .get (0, "x")
157 u0 = acados_solver .get (0, "u")
158
159

Side 70 av 73

8.6 Main NMPC

160 for ver ,name in enumerate (NameStates):
161 sim_res_state [name][i] = x0[ver]
162
163 for ver ,name in enumerate (NameInput):
164 sim_res_input [name][i] = u0[ver]
165
166 # update initial condition
167 x0 = acados_solver .get (1, "x")
168
169
170 epos[i, :] = x0 [:3]
171 theta = x0 [15]
172 ref_pos [i, :] = compute_path_reference (theta , wp)
173 pos[i, :] = epos[i, :] + ref_pos [i, :]
174
175 acados_solver .set (0, "lbx", x0)
176 acados_solver .set (0, "ubx", x0)
177
178
179 fig = plt. figure ()
180 ax=plt. subplot (1, 2, 1)
181
182 #fig , ax = plt. subplots ()
183 ax.plot ([wp [0][1] , wp [1][1]] , [wp [0][0] , wp [1][0]])
184 ax.plot(ref_pos [:, 1], ref_pos [:, 0])
185 ax.plot(pos [:, 1], pos [:, 0])
186 ax. set_title (’North East frame ’)
187 ax. legend ([’Path ’, ’reference ’, ’Flight path ’])
188 ax. set_xlabel (’East [m]’)
189 ax. set_ylabel (’North [m]’)
190
191 ax = fig. add_subplot (1, 2, 2, projection =’3d’)
192 ax. set_title (’NED frame ’)
193 ax.plot ([wp [0][1] , wp [1][1]] , [wp [0][0] , wp [1][0]] , [wp [0][2] , wp [1][2]])
194 ax.plot(ref_pos [:, 1], ref_pos [:, 0], ref_pos [:, 2])
195 ax.plot(pos [:, 1], pos [:, 0], pos [:, 2])
196 ax. legend ([’Path ’, ’reference ’, ’Flight path ’])
197 ax. set_xlabel (’North [m]’)
198 ax. set_ylabel (’East [m]’)
199 ax. set_zlabel (’Down [m]’)
200
201
202 fig , ax = plt. subplots (2, 2)
203 ax[0, 0]. set_title (r’e_n ’)
204 ax[0, 0]. plot(sim_res_state [’en’],’b’)#,label=’en ’)
205 ax[0, 1]. set_title (r’e_e ’)
206 ax[0, 1]. plot(sim_res_state [’ee’],’b’)#,label=’ee ’)
207 ax[1, 0]. set_title (r’e_h ’)
208 ax[1, 0]. plot(sim_res_state [’eh’],’b’)#,label=’eh ’)
209
210 fig. suptitle (’Error ’, fontsize =16)
211 fig , ax = plt. subplots (2, 2)
212 ax[0, 0]. set_title (r’$\dot{e_n}$’)
213 ax[0, 0]. plot(sim_res_state [’en_dot ’],’b’)#,label=’en_dot ’)
214 ax[0, 1]. set_title (r’$\dot{e_e}$’)

Side 71 av 73

8.6 Main NMPC

215 ax[0, 1]. plot(sim_res_state [’ee_dot ’],’b’)#,label=’ee_dot ’)
216 ax[1, 0]. set_title (r’$\dot{e_h}$’)
217 ax[1, 0]. plot(sim_res_state [’eh_dot ’],’b’)#,label=’eh_dot ’)
218 fig. suptitle (’Error dot ’, fontsize =16)
219
220 fig , ax = plt. subplots (3, 3)
221 ax[0, 0]. set_title (r’V_a ’)
222 ax[0, 0]. plot(sim_res_state [’Va’],’b’,label=’Va’)
223 ax[0, 0]. plot(Va_ref_dat ,’g’, label=’ref ’)
224 ax[0, 0]. legend (loc=’lower right ’)
225 ax[0, 1]. set_title (r’\dot{V}_a ’)
226 ax[0, 1]. plot(sim_res_state [’Va_dot ’],’b’,label=’Va’)
227 ax[0, 2]. set_title (r’$V_aˆc$ ’)
228 ax[0, 2]. plot(sim_res_state [’Va_com ’],’b’,label=’Va’)
229 ax[1, 0]. set_title (’h’)
230 ax[1, 0]. plot(sim_res_state [’h’],’b’)#,label=’h’)
231 ax[1, 1]. set_title (r’\dot{h}’)
232 ax[1, 1]. plot(sim_res_state [’h_dot ’],’b’)#,label=’h_dot ’)
233 ax[1, 2]. set_title (r’$hˆc$ ’)
234 ax[1, 2]. plot(sim_res_state [’h_com ’],’b’)#,label=’h_com ’)
235 ax[2, 0]. set_title (r’χ ’)
236 ax[2, 0]. plot(sim_res_state [’chi ’],’b’)#,label=’chi ’)
237 ax[2, 1]. set_title (r’$\dot {\ chi}$ ’)
238 ax[2, 1]. plot(sim_res_state [’chi_dot ’],’b’)#,label=’chi_dot ’)
239 ax[2, 2]. set_title (r’$\chiˆc$ ’)
240 ax[2, 2]. plot(sim_res_state [’chi_com ’],’b’)#,label=’chi_com ’)
241
242 fig. suptitle (’State ’, fontsize =16)
243 fig , ax = plt. subplots (nrows =2, ncols =1)
244 ax [0]. set_title (r’z_1 ’)
245 ax [0]. plot(sim_res_state [’z1’],’b’)#,label=’z1 ’)
246
247 ax [1]. set_title (r’z_2 ’)
248 ax [1]. plot(sim_res_state [’z2’],’b’)#,label=’z2 ’)
249
250 fig. suptitle (’Virtual state ’, fontsize =16)
251
252 fig , ax = plt. subplots (2, 2)
253 ax[0, 0]. set_title (r’$\dot{hˆc}$’)
254 ax[0, 0]. plot(sim_res_input [’h_c_d ’],’b’)#,label=’h_c_d ’)
255 ax[0, 1]. set_title (r’$\dot {\ chiˆc}$’)
256 ax[0, 1]. plot(sim_res_input [’chi_c_d ’],’b’)#,label=’chi_c_d ’)
257 ax[1, 0]. set_title (r’$\dot{V}_aˆc$ ’)
258 ax[1, 0]. plot(sim_res_input [’Va_c ’],’b’)#,label=’Va_c ’)
259 ax[1, 1]. set_title (’v’)
260 ax[1, 1]. plot(sim_res_input [’v’],’b’)#,label=’v’)
261
262 fig. suptitle (’Input ’, fontsize =16)
263
264 plt.show ()

Side 72 av 73

REFERENCES

References

[1] R.W Beard and McLain T.W. Small Unmanned Aircraft : Theory and Practice. Princeton
University Press, 2012.

[2] Thor I Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley,
Hoboken, 1. aufl. edition, 2011.

[3] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control. 03 2016.

[4] Jorge Nocedal. Numerical optimization, 2006.

[5] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Niels van Duijkeren, Andrea
Zanelli, Branimir Novoselnik, Jonathan Frey, Thivaharan Albin, Rien Quirynen, and
Moritz Diehl. acados: a modular open-source framework for fast embedded optimal
control. arXiv preprint, 2019.

[6] Timm Faulwasser. Optimization-based solutions to constrained trajectory-tracking and
path-following problems. 01 2013.

Side 73 av 73

	INTRODUCTION
	Background
	Project plan
	Limitations
	Structure of the thesis

	NOTATION
	THEORY
	Frames
	NED
	Vehicle
	Vehicle-1
	Vehicle-2
	Body
	Stability and wind

	Wind
	Air- and groundspeed
	Course and heading angle
	Flight path angle
	Dynamics
	Translation
	Rotation

	Rigid-body Dynamics
	Forces and Moments
	Control surfaces
	Successive loop
	Straight-line Path Following
	Optimizing
	Positive definite
	Nonlinear Model Predictive Control
	Acados form
	Path parameterizing
	Timing law
	Augmented system

	Control Algorithm Design
	Implement a switching logic and follow a rectangular pattern
	Path-following algorithms for straight lines
	MPFC
	MPFC alternative

	RESULTS
	Path-following algorithms for straight lines
	Path-following algorithms for straight lines with a switching logic and follow a rectangular pattern
	MPFC straight lines in the longitudinal plane).
	MPFC for following straight lines in both planes

	DISCUSSION
	Path-following algorithms for straight lines
	Path-following algorithms for straight lines with a switching logic and follow a rectangular pattern
	MPFC straight lines

	CONCLUSION
	ATTACHMENTS
	Switching logic
	Straight-line Algorithm
	Main Straight-line Algorithm
	Model MPC
	Acados settings
	Main NMPC

	References

