
Nonlinear Model Predictive Path-Following
Control for fixed-wing Unmanned Aerial

Vehicles

Thomas Leirfall
A thesis presented for the degree of

Master of Science

Supervisors:
Professor Tor Arne Johansen, Dept. of Eng. Cybernetics, NTNU

PhD fellow Dirk Reinhardt, Dept. of Eng. Cybernetics, NTNU

Department of Engineering Cybernetics
Norwegian University of Science and Technology

Norway
June 2021

Abstract

This master’s thesis studies the path following problem. The path-following problem refers
to steering a vehicle and then keeping it close to a predefined geometric curve in the Eu-
clidean space. In contrast to trajectory tracking, the position along the path is a degree of
freedom such that the magnitude of the velocity vector is in most cases controlled indepen-
dently. Nonlinear model predictive controller (NMPC) can be used to follow geometrically
challenging curves, and at the same time performing optimally with respect to user-defined
cost function and constraints.

This thesis builds on the specialization project[1] which explored a straight-line path problem
with two different approaches. The first was a vector field-based path-following algorithm
for controlling the course and height in a successive loop closure. And an NMPC with a
simplified kinematic model. The kinematic model will be further developed in this thesis and
include a low-level autopilot in the inner-loop. There will also be a complete dynamic model
of the unmanned aerial vehicle (UAV) X8 Skywalker in the NMPC.

Will explored two ways to parameterize the path where the path is a straight line and a curved
path in the Euclidean space R3. Further, there will be a simulation study and comparing the
simplified kinematic and dynamic model NMPC to geometric controllers vector field-based
(VFB) for straight-line path and nonlinear differential geometric path-following (NDGPFG) for
the curved path.

A simulation of the results are seen at https://www.youtube.com/watch?v=SYCMKUfa-mk.

Page: I

https://www.youtube.com/watch?v=SYCMKUfa-mk

Preface

This thesis marks the end of a 2-year master’s degree in cybernetics and robotics at NTNU
Trondheim. The project assignment was specified and written by Tor Arne Johansen and
Dirk Reinhardt at the Department of Engineering Cybernetics NTNU.

I will use theory and methods on optimization, airplane kinematics, and dynamics and sim-
ulations to develop controllers for fixed-wing aerial vehicles in my thesis on subjects I have
acquired during the cybernetics and robotics courses at NTNU Trondheim.

I want to thank my supervisors Tor Arne Johansen and Dirk Reinhardt. Especially Dirk for
weekly feedback and to guide me to the path on theory and implementations of controllers.
Also, to all the contributors on the repository UAVlab.

Page: II

TABLE OF CONTENTS

Table of contents

1 Introduction 1
1.1 Project plan . 3
1.2 Limitations . 3
1.3 Structure of the thesis . 3

2 Notation and abbreviations 4

3 Theory 6
3.1 Kinematics and dynamics . 6
3.2 Path following problem . 14

3.2.1 Straight line path . 15
3.2.2 Curved path . 15

3.3 Successive loop closure . 16
3.4 Optimizing . 18
3.5 Nonlinear Model Predictive Control . 18

4 Control Algorithm Design 21
4.1 Path parameterization . 21
4.2 Nonlinear model predictive path-following controler 25

4.2.1 Optimal control problem . 25
4.2.2 Simplified kinematic model . 29
4.2.3 Dynamic model . 36
4.2.4 Straight-line path . 40
4.2.5 Curved path . 44

4.3 Model identification . 44
4.4 Geometric controllers . 45

4.4.1 Autopilot . 45
4.4.2 Path-following with vector-field based controller 46
4.4.3 Nonlinear differential geometric path-following controller 50

4.5 Gains for the autopilot controller . 53
4.5.1 Lateral-directional autopilot gains . 53
4.5.2 Longitudinal-directional autopilot gains 55
4.5.3 Airspeed controller gains . 56

5 Results 57
5.1 Tune controller . 57

5.1.1 Lateral-directional design parameters 57
5.1.2 Longitudinal-directional design parameters 59
5.1.3 Airspeed . 61

5.2 Model identification . 62
5.3 Introduction to simulation . 63

5.3.1 Controller configuration . 64
5.3.2 Intial states . 64
5.3.3 Wind . 65

Page: III

TABLE OF CONTENTS

5.4 Straight line path . 65
5.4.1 Kinematic model in NMPC with low-level autopilot 66
5.4.2 Dynamic model in NMPC . 67
5.4.3 VFB controller . 68

5.5 Curved path . 69
5.5.1 Kinematic model in NMPC with low-level autopilot 70
5.5.2 Dynamic model in NMPC . 71
5.5.3 NDGPFG . 72

5.6 Discussion . 73
5.6.1 Why use internal state vs. UAV states in the kinematic model NMPC . 73
5.6.2 Performance measurements . 73
5.6.3 Straight line . 74
5.6.4 Curved path . 78
5.6.5 Complexity of path and models . 81

6 Conclusion 84

7 Attachments 86
7.1 Overview of controller in the repository UAVlab 86
7.2 Skywalker X8 parameters . 87
7.3 Differentiate a rotation matrix . 88
7.4 Time differentiation a vector . 89
7.5 Relativ degree . 90
7.6 Kinematic model path followability . 91
7.7 Path parameter initialize . 92
7.8 Switch . 93
7.9 B-spline . 93
7.10 PID-gains . 97

8 Bibliography 100

100

Page: IV

1 Introduction

The applications for uses of drones and UAVs, both for private and professional service,
are growing. In the summer of 2020, Equinor completed the world’s first logistics operation
with a drone to an offshore installation [2]. During the terrible quick clay landslide in Gjer-
drum around New Year’s Eve in 2020, drones were used for surveillance and to find people.
Even though both these examples are multirotor drones, this shows the scope of unmanned
Aircraft System (UAS) and fixed-wing UAVs.

In this section, there will be a small overview of existing controllers that could solve the path
following problem. For path following, time is neglected, and the objective is to converge to
the path and follow. This makes it different from trajectory following which is time-dependent
on the path. Looking at a UAV under the influence of wind, the magnitude of the gust wind
will be significant to the speed of a small UAV. Consider this, the path following formulation
is preferred, where speed can be controlled separately.

The path following problems is solved in the literature with different controllers and ap-
proaches. Here are some examples.

As the name proposes, geometric controllers look at the geometric to define the differential
equations where the states are global. In [3] a controller make the UAV follow a nominal
path using a control algorithm that uses a Special Orthogonal group for the formulation of
the attitude control problem to avoid the singularity.

Lyapunov based design methods use a control-Lyapunov function (CLF) to design the con-
trol stable. Lyapunov stability is a well know tool for engineers to design system, and the
reader can look into [4] for more. In [5] a CLF is proposed to select control input which is
feasible with respect to the CLF in a trajectory tracking problem.

Backstepping technique is used to remove unwanted nonlinear terms, making the system
unstable when checking for Lyapunov stability. In [6] a robust recursive design technique is
presented when looking at the nonlinearity.

Virtual target is, as the name says, a targeting approach. In [7] a Serret-Frenet frame is
defined as the target, where the error dynamics is the error between target and UAV and the
Lyapunov-stability is proven.

Simply, a vector field can be described as a plane where there are vectors at each point
in the field with different directions and magnitude. Vector field-based controllers use this
principle and guide the UAV to the path using the direction and magnitude of the vectors.
Example are seen in [8] and [9]. Later in this thesis, the vector field-based controller from
[9] is used for comparison. In [10] is a survey of different guidance techniques for fixed-wing
UAV.

Page: 1

Guidance controllers can not solve for optimality on converging to the path, introducing the
optimal controller model predictive controller (MPC). Here the controller solves the optimal
control problem (OCP) for a time horizon and only uses the first input and discharges the
rest. Then the optimal trajectory to the path appears as a solution to the OCP. The benefit
about the MPC is that the input and states are explicitly constrained. Meaning that can
directly control the use of actuators through constraints.

Using the dynamic model of the UAV requires theoretical and observing the parameters of
the UAV. This process can be time-consuming and challenging because of experimental
studies (for example, wind tunnels). Therefore, a common solution is to use a simplified
parameterless and parameterised (explored later in this thesis) kinematic model in the MPC
solving the optimization problem in the outer loop, with an autopilot in the inner loop which
tracks the high-level commands.

The inner-loop of [11] and [12] is based on the coordinated turn [9]. Here the MPC solves the
optimal problem and sends the Euler angles reference to the lower-level autopilot to track.
The optimal problem for [11] in the MPC is position and course angle error.

In [13] a virtual state controlling the behavior on the path is introduced in an augmented
system. The path parameterization can be readily be changed. This approach is also imple-
mented in [14]. Other methods in the inner-loop are proposed in [15] a backstepping in the
longitudinal and integral-LQR in the lateral direction.

In [16] an auxiliary control law is proposed with an arbitrary small tube for which the UAV
should be within. Then the position error is used in OCP. The line-of-Sight controller uses a
lookahead distance to calculate the desired course angle for which the vehicle converges to
the path. Adding an integral, integral line-of-sight (ILOS), removes the steady-state offsets.
In [17] the lookahead ∆ is a decision variable in the OCP to give an optimal converge. In
[18] a virtual target approach is used with a MPC where the cost of the OCP is the error
between virtual target vehicle and the UAV.

Using MPC requires relatively fast computation time. Because at every time step, the OCP
is solved for an N time horizontal steps. For advanced models, this could be a time issue.
With the development of faster solvers, the use of MPC is more available. An example of
available solvers is ACADOS [19] and YALMIP.

There are different ways to defined the path. A straight-line path is a line between two points.
With more points, could use path planning with a Dubins path for which the most effective
route is found [20]. In [21] collision and obstacle avoidance, where an obstacle is avoided
on a straight line. The path could also be curved, with a nonlinear line between two or more
points. Bézier curves or B-spline are examples of creating a curved path. In [22] a dynamic
path planning with B-spline is proposed.

Page: 2

1.1 Project plan

1.1 Project plan

In this thesis, the following plan is defined

1. Identify a kinematic model with a low-level autopilot in the inner loop.

2. Extend the kinematic model with a dynamic model and implement a path-following
NMPC using the full model.

3. Implement a mechanism to initialize the path variable and for switching between path
segments.

4. Implement an additional path parameterization and test them with the developed con-
trollers.

5. Conduct a simulation study and compare the performance of the NMPC based on the
approximated kinematic model and the full dynamic model on the implemented paths.

6. Further compare both NMPCs to the vector field-based controllers implemented in the
specialization project[1].

1.2 Limitations

This thesis is limited to only computer simulation where full feedback is expected (no estima-
tion). Program libraries for aircraft dynamics and PID controler are used. ACADOs is used
to solve the NMPC.

1.3 Structure of the thesis

The thesis is divided into 7 chapters. Starting in chapter 3 with a focus on theory and
methods that are important for the concept. Then in chapter 4, a control algorithm design
is presented, with methods of the controllers. In chapter 5 the result is presented with a
discussion on how the controllers performed with a conclusion in chapter 6. The solutions
used are presented in Attachments.

Page: 3

2 Notation and abbreviations

The use of boldface symbols for vectors and matrices, where vectors are lowercase and
matrices are uppercase letter.

Acronyms

CLF control-Lyapunov function. 1

gc geometric controller. 21, 70, 84

ILOS integral line-of-sight. 2

MPC model predictive controller. 2, 18, 19, 81

NDGPFG nonlinear differential geometric path-following. I, 21, 45, 50, 52, 58, 70, 78–81,
84

NED north east down. 6, 38, 50

NMPC nonlinear model predictive controller. I, 3, 9, 17, 19, 21, 25, 28, 29, 32, 35, 36, 40,
45, 57, 58, 60, 61, 63, 64, 66, 68, 70–78, 80–85

OCP optimal control problem. 2, 19–21, 25, 27, 30, 37, 40, 64, 67, 68, 83

SSA smallest sign angle. 50

UAS unmanned Aircraft System. 1

UAV unmanned aerial vehicle. I, 1, 2, 6, 8, 9, 12–15, 21, 28, 29, 32, 34, 35, 37, 40, 42, 45,
46, 48–53, 57, 59, 61–64, 66–68, 73, 84, 85

VFB vector field-based. I, 21, 22, 45, 47, 58, 66, 74–77, 84

Page: 4

Acronyms

F i NED frame
Fv Vehicle frame
Fv1 Vehicle-1 frame
Fv2 Vehicle-2 frame
F b Body frame
F s Stability frame
Fw Wind frame
φ Roll
θ Pitch
ψ Yaw
Θ Euler angles [φ θ ψ]T
α Angle of attack
β Side-slip
S(·) Skew symmetric matrix
δa Aileron
δe Elevation
δr Rudder
δt Throttle
Q � 0 Positive definite matrix Q
‖x‖2 2-norm of vector
‖x‖2

Q xTQx
nx Number of state
nu Number of input
ny Number of output
z{i} Virtual state
v Virtual input
λ Path parameter
W Sequence of waypoints
w{i} Waypoint index i

Page: 5

3 Theory

In this section, some basic theory about UAVs and path following is presented. A theoretical
description in section 3.1 presents the kinematic and dynamic differential equations with
frames and angles. Included in this are the actuators and the forces and moments. The
definition of the path following problem is in section 3.2. Theory of control method including
successive loop closure in section 3.3, optimizing in section 3.4 which is the basics for the
MPC seen in section 3.5.

3.1 Kinematics and dynamics

Kinematics is looking at the motion of the UAV without the forces, While dynamics includes
the forces when looking at the motion. In this subsection the kinematic and dynamic equa-
tions will be explained. To do this, fist look at the frames where the states are express in and
the angles between the frames. These angles and the position builds the kinematic equa-
tions. Then forces and moments together with the actuators gives the dynamic equations.

The orientation of the UAV with respect to the world is expressed in frames. The important
frames, in this thesis, are the north east down (NED)-, body- and stability- frame, see figure 1
to 4.

Figure 1: NED and Vehicle
frame [9]

NED
In NED x pointing to the north, y east, and z down. The positive
direction for z is down. This frame is on the curve of the earth
and is a tangential frame. Assume that this frame is an inertial
frame, which is where the forces occur. The frame is denoted
F i. Also denote i, j and k to be x-,y- and z-axis, respectively.

Vehicle
Located at the center of UAV, and does not rotate, which
means that this has the same orientation as the NED-frame.
This frame is seen in figure 1.

Body
Rotation the Vehicle frame with the Euler angles yaw, pitch and
roll, denoted ψ, θ and φ, respectively, gives the body frame.
This rotates are seen in figure 2. Denote this frame as F b and
seen in figure 2c.

Page: 6

3.1 Kinematics and dynamics

(a) Yaw rotate around kv [9] (b) Pitch rotate around jv1 [9] (c) Roll rotate around iv2 [9]

Figure 2: Rotation steps from Fv to F b

The total rotation, seen in figure 2 has the rotation matrix

Rb
v(Θ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


︸ ︷︷ ︸

Around iv2

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

Around jv1

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Around kv

(1)

Note that this has a singularity if the pitch angle is ± 90°and motivates the use of quaternion,
which has no singularity.

Figure 3: Stability frame [9]

Stability and wind
The stability- and wind frame are for calculation purposes. Sta-
bility frame is used to calculate the decoupled lateral forces
and wind frame to define airspeed denoted as Va. Note that
when talking about the airspeed, this is the magnitude if not
express otherwise. The vector is denoted va.

Stability is the frame when rotating aroundF b y-axis with angle,
α, called the angle of attack. Denote this frame as F s and seen
in figure 3. If the positive angle of attack, the wings will create
lift, and the plane elevates and descend if negative. It is the airspeed that acts on the wings
to create lift.

Figure 4: Wind frame [9]

Wind frame is the frame when rotating around F s z-axis with
angle, β, called sideslip angle. Denote this frame as Fw and
seen in figure 4. The sideslip angle can be seen as an angle
the UAV sliding out. After this rotation, the iw is aligned with Va.
Gives the trivial representation of the airspeed vector denoted
in the wind frame.

vw
a =

[
Va 0 0

]T
(2)

The two rotation matrices are defined as

Page: 7

3.1 Kinematics and dynamics

Rs
b(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα


︸ ︷︷ ︸

Around jb

(3)

Rw
s (β) =

 cos β sin β 0
− sin β cos β 0

0 0 1


︸ ︷︷ ︸

Around ks

(4)

The Euler angles, defined above, represent the orientation of the UAV, and are

Θ =
[
φ θ ψ

]T
(5)

The yaw angle, ψ, can be replaced by the course angel, χ. In the wind triangle in figure 5
can see that the wind is acting on the UAV. UAV is crabbing into the wind, and the crab angle
is defined as the difference between the course and yaw angle.

χc = χ− ψ (6)

Also seen in figure 5 is the speed vectors. Airspeed is denoted as va, windspeed vw, and
groundspeed vg. The relationship between this speed are

va = vg − vw (7)

The groundspeed vector is defined in the F b

vb
g =

uv
w

 (8)

which are typically states in the system. In equation 2, the airspeed is denoted in Fw, rotating
this to F b gives

vb
a =

urvr
wr

 = Rb
w(α, β)vw

a (9)

where ur, vr and wr as the relative speed in the F b. The rotation from F b to Fw is

Rw
b (α, β) = Rw

s (β)Rs
b(α) (10)

The relationship gives
Va =

√
u2
r + v2

r + w2
r

α = arctan wr
ur

β = arcsin vr
Va

(11)

Page: 8

3.1 Kinematics and dynamics

In figure 5 the airspeed, groundspeed, and windspeed in shown. Both course and heading
angles can describe the direction of the UAV. The course angle is used to navigate airplanes
because of measures groundspeed with, for example, GPS. When using a compass, typ-
ically on boats, heading angle is preferred. In this thesis, the vector field-based controller
uses course angle, and the NMPC controllers use heading angle.

Figure 5: Horizontal wind triangle [9]

Typically overview of the states and description is seen in table 1.

Name Description
pn Postion along ii in F i
pe Postion along ii in F i
pd Postion along ki in F i
u Velocity along ib in F b
v Velocity along jb in F b
w Velocity along kb in F b
φ Roll angle defined with respect to Fv2

θ Pitch angle defined with respect to Fv1

ψ Heading (yaw) angle defined with respect to Fv
p Roll rate measured along ib in F b
q Pitch rate measured along jb in F b
r Yaw rate measured along kb in F b

Table 1: States

Kinematic states
The kinematic states are the position of the UAV in F i and the Euler angles, seen in table 1.
In the next paragraph, the kinematic states are defined. It is also common to use simplified
kinematic models to represent the UAV, where the angle rates are considered as input. The
simplified models use geometric representation.

Page: 9

3.1 Kinematics and dynamics

First start be looking at the translation states [pn pe pd]T . Time differential the position
gives, where [u v w]T is in Fv, gives

d

dt

pnpe
pd

 = Rv
b

uv
w

 (12)

With the properties of the rotation, the inverse is the same as the transpose matrix. The
expression for Rb

v, see equation 1. Then

ṗnṗd
ṗd

 = (Rb
v)T

uv
w

 (13)

Next is the rotation states. In the appendix 7.3 it is seen that time differentiate a rotation
matrix is

ω =

φ̇0
0

+ Rb
v2(φ)

0
θ̇
0

+ Rb
v2(φ)Rv2

v1(θ)

0
0
ψ̇



By some rearranging, and defined that ω = [p q r]T then:pq
r

 =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


φ̇θ̇
ψ̇

 (14)

Gives the state explicit φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 − sinφ sec θ cosφ sec θ


pq
r

 (15)

Equations 13 and 15 is the six full kinematic equations.

Dynamic states
The dynamic equation is affected by forces, moments and atmospheric disturbances. Find-
ing those equation uses the rigid-body dynamics. Starting by forces and newtons second
law gives ∑

f =ma∑
f b =mdvg

dti

(16)

Where the typical a is the groundspeed vector time differentiated. Example of time differen-
tiation a vector is seen in appendix 7.4. Note also that the force f b is defined in F b. Writing

Page: 10

3.1 Kinematics and dynamics

out the time differentiating gives for equation 16

∑
f b = m(d

dtb
vbg + ωbb/i × vg) (17)

Write that vbg = [u v w]T and ωbb/i = [p q r]T . Here ωbb/i is the angular rotation between
F i and F b denoted in F b. Writing this out, and rearrange for the explicit state gives: u̇v̇

ẇ

 =

rv − qwpw − ru
qu− pv

+ 1
m

∑
Fb (18)

Which is the dynamic equation for the translation. Next is the dynamic rotation equation.
Starting again with the newtons law for sum of moments, which is∑

m = Iα (19)

Where m is moments, I is interia of moments and α is the angular acceleration. This can be
rewritten as ∑

mb = dh
dti

(20)

Where h is the angular momentum. The moments m is defined in F b. The time differential
of h is:

h

dti
h = h

dtb
h + ωb/i × h (21)

Insert this into equation 20 gives

∑
mb = (d

dtb
hb + ωbb/i × hb) (22)

Where hb = Jωbb/i is defined, where J is the interia of moments. This is equivalent as in
equation 19. Insert this gives with the moments defined in F b

∑
mb = d

dtb
Jωbb/i + ωbb/i × Jωbb/i (23)

With the interia matrix constant this can write as

∑
mb = J

d

dtb
ωbb/i + ωbb/i × Jωbb/i (24)

Can get the states from d
dtb
ωbb/i = [ṗ q̇ ṙ]T , this gives

∑
mb = J

ṗq̇
ṙ

+ ωbb/i × Jωbb/i (25)

Page: 11

3.1 Kinematics and dynamics

Rearranging, then the state is explicitṗq̇
ṙ

 = J−1
(∑

mb − ωbb/i × Jωbb/i

)
(26)

Which is the dynamics of the rotation. Since the aircraft is assumed symmetric about zb and
xb, the inertia matrix J can be written as, with JXY = JY Z = 0

J =

 JX 0 −JXZ
0 JY 0

−JXZ 0 JZ

 (27)

Actuators
The actuators, except throttle, manipulated the air to create force and moments to control
the UAV.

Figure 6: Example of control surfaces on a
UAV [9]

Aileron, denoted δa, controls the roll, and it
is on the wings. To control pitch, the ele-
vators, denoted δe, moves the wing to make
the noise go up or down. Rudder, denoted
δr, is used to controlling the yaw and is on
the tail. Last, the throttle, denoted δr, con-
trols the UAVs speed.

The configuration of these control surfaces
are many, but in figure 6 it is an example.

Forces and moments
From the states equation 18 and 26 the sum
of forces and moments are: ∑

f b =

fxfy
fz

 = fg + fa + fp

∑
mb =

 lm
n

 = ma + mp

(28)

Where subscript g is gravity, a is aerodynamics, and p is propulsion. The aerodynamics
forces are lift and drag, which again gives a moment.

The gravity force is defined in Fv, which is oriented the same as F i. The f vg is defined as

f vg =

 0
0

mUAV g

 (29)

Page: 12

3.1 Kinematics and dynamics

Using the rotation matrix defined in equation 1 the gravity force can be expressed in F b as

f bg = Rb
v(Θ)f vg (30)

The lift, drag and moment m in longitudinal are

flift =1
2ρV

2
a SCL(α, q, δe)

fdrag =1
2ρV

2
a SCD(α, q, δe)

m =1
2ρV

2
a ScCm(α, q, δe)

(31)

where CL, CD and Cm is function of aerodynamic coefficients, S is platform area of wing and
c is mean chord of wing. CL, CD functions are nonlinear, but can be linearization to a given
range of α to avoid stall conditions.

In figure 7 the lift and drag forces and moments are seen. Both lift and drag are expressed
in F s.

Figure 7: Lift and drag force and moment created on the UAV wing[9]

Using the rotation matrix in equation 3 to express the forces is F b gives the forces in longi-
tudinal to be [

fx
fz

]
=
[
cos(α) − sin(α)
sin(α) cos(α)

] [
−fdrag
−flift

]
(32)

Note that F b and F s has the same y-axsis, therefore the rotation matrix can be simplify to

Page: 13

3.2 Path following problem

just rotation for x-z direction. In lateral the force and moments are

fy =1
2ρV

2
a SCY (β, p, r, δa, δr)

l =1
2ρV

2
a SbCl(β, p, r, δa, δr)

n =1
2ρV

2
a SbCn(β, p, r, δa, δr)

(33)

where CY , Cl and Cn is function of aerodynamic coefficients and b is the wingspan. In [23]
the aerodynamic functions are defined and also parameters of the X8 which is used later in
this thesis.

Propulsion forces are from the propeller thrust with a propeller torque which gives a moment.
This thesis will not go deeper into these.

From equation 32 and 33 the forces and moments are function of the angle of attack α and
sideslip angle β. Therefor the states [u v w]T from equation 18 can be change to be
[α β Va]T whcih is a good representation of the UAV and will be exploited in this thesis.

Last in this subsection, is the wind. There are two types of wind. Steady ambient wind in F i
and stochastic (gust) wind which is expressed F b. The wind vector is defined as, vb

w

vb
w =

uwvw
ww

 (34)

vb
w = Rb

v(Θ)

wnswes
wds

+

wngweg
wdg

 (35)

The way to get values for gust wind is to filter white noise through a Dryden transfer function.
Here the user can adjust for altitude (height of the airplane) and strength of turbulence. The
steady ambient wind is constant.

Trim conditions
Trim conditions means when the UAV is in a subset of states, and the dynamics are in
equilibrium. In this thesis, this means constant-altitude, wings-level steady flight.

3.2 Path following problem

The path is denoted P, and the goal is

lim
t→∞

∥∥∥∥y(t)− P(λ(t))
∥∥∥∥ = 0 (36)

Page: 14

3.2 Path following problem

where y is the position state of the UAV and path parameter λ. The error between the
position and the path is defined as

e(t) = y(t)− P(λ(t)) (37)

Throughout this thesis, the path is defined in the 3D-space, P ∈ R3. The path can be
expressed in different ways. Examples are linear-, quadratic- and cubed Bézier curves,
Dubins paths, and B-splines. In this thesis, a straight-line path and B-spline curve are used.

3.2.1 Straight line path

A straight-line can be defined with two coordinates, Pi ∈ R3 or waypoints wi ∈ R3 , and a
path parameter λ which track the location on the path. A linear Bézier is defined as

B(λ) =P0 + λ(P1 −P0)
=(1− λ)P0 + λP1

(38)

where 0 ≤ λ ≤ 1. In this thesis this linear line is formulated in two different ways, depending
on the properties associated with the controller.

In figure 8, it can be seen as a visual overview of the goal. In the beginning, the UAV aims at
w1, meaning λ = λ0. As time goes, λ → λ1 and the UAV aims more and more at w2. These
are the green lines in the figure. So for each step, the aiming is more and more at w2.

Figure 8: Illustration of path convergence

3.2.2 Curved path

B-spline is a set of Bézier curves joined end on end. A Bézier curve can be linear, quadratic
or cubed. Examples of this can be seen in figure 9. In figure 9a there is two points (x), start

Page: 15

3.3 Successive loop closure

and end. Adding one points (star), gives quadratic curve seen in figure 9b. It can be seen
that the path do not go through the point, but gives a bend to the curve. Last is the cubed
Bézier which is four points. Also here the path do not go through the two middle points(star),

Bézier curve

(a)

Bézier curve

(b)

Bézier curve

(c)

Figure 9: Example of linear, quadratic and cubed Bézier curves

B-spline is k degree curved with n+ 1 points. So for n points will be n− k + 1 Bézier curves
joint in the B-spline curve. The degree have to be at least two, which is quadratic. In this
thesis the degree will be k = 3. The B-spline is continuous through the joint of the Bézier
curves, meaning that the end of first Bézier curve is the same coordinate as the start of the
next Bézier curve. Same as for the derivatives of the last of one, and first of second. The
B-spline curve is defined as

C(λ) =
n∑
i=0

Ni,p(λ)Pi (39)

where Pi is control points, or waypoints. As seen later in section 4.2.5, the set of control
points used in the B-spline are a combination of internal control points and waypoints making
a desirable curve. The basis functions are

Ni,0(λ) = 1 if λi ≤ λ ≤ λi+1
0 else (40)

Ni,p(λ) = λ− λi
λi+p − λi

Ni,p−1(λ) + λi+p+1 − λ
λi+p+1 − λi+1

Ni+1,p−1(λ) (41)

here λ is the path parameter. The range of this is defined in the knot vector.

uknot =
[
λ0 . . . λm

]
(42)

where λ ∈ [λ0, λm]. Number of knots, m, is defined as m = k + n + 1. By chosen values for
the knot vector, the curve on the B-spline can be decided [22].

3.3 Successive loop closure

Successive loop closure is a principle for which the inner loop is fast enough to reach ref-
erence, that the outer loop can see this as a gain of 1. Typically the bandwidth of the inner
loop is 5-10 times faster than the outer loop[9].

Page: 16

3.3 Successive loop closure

This principle is in both the vector field-based controller and the autopilot in the inner loop
of the NMPC with a simplified kinematic model. In both of them, there is a reference on
yaw. From yaw, a PI controller is used to find the commanded roll. With a PD controller, the
commanded input on the aileron. This is seen in equation 44 and 43

φc = kpχ(χc − χ) + kiχ
s

(χc − χ) (43)

δa = kpψ(ψc − ψ)− kdψ ψ̇ (44)

The inner loop is roll to the aileron. This loop is closed, with a fast enough bandwidth, so
φc = φ. Then the outer loop from course to roll, threat the inner loop as a gain constant of 1.
An example of this in figure 10.

It is not wanted to have an integral effect in the inner loop because having an integral effect
inside a loop can cause bandwidth problems. Because an integral is time-consuming, and
this can slow down the inner loop. Meaning that the inner loop could possibly not have a gain
of 1. The integral effect on the outer loop can correct the steady-state error in both loops.

Outer−loop

Outer−loop

Inner−loop

Inner−loop

Kp

Ki

Plant

Kd

Kp 1/s Model

φ
c

δ
a

p

φ Χ

+
−

+

+

+

−
+

−

Χ
c

Kp

Ki

Model

φ
c
 φ Χ

+

+
+

−

Χ
c
 ≈ 1

Figure 10: Control architecture of a successive loop closure [9]

Page: 17

3.4 Optimizing

3.4 Optimizing

Optimizing is to minimize or maximise a cost function. In this context, minimize. With this
objective function, there is some constrains, which needs to be respected. There are equality
constrains, which means that something must be equal. And inequality, which means greater
or smaller. Typically denote:

min
z ∈ Rnz f(z) (45)

subject to:
ci(z) = 0, i ∈ E
ci(z) ≥ 0, i ∈ I

(46)

Here can see that E are the equality constraints, and I are the inequality constraints. f(z) is
the cost function, and z is the decision variable.

Some important terms

1. Feasible area: an area where all the constraints hold and can find a solution.

2. Constrains set: if the function is convex, then any two points on the function can con-
nect with a line that does not cross the function itself. Convexity can say if the solution
is a global or only local minimum. If convex, then global, and if not, then local.

A matrix, Q, is said to be positive definite if

xTQx ≥ 0 ∀x (47)

From here, the notation of this is Q � 0.

3.5 Nonlinear Model Predictive Control

As seen in section 3.4, optimization is to minimize. In a model predictive control, the goal is
to minimize an objective function, which can be the error between the wanted position and
actual position.

The MPC solve the optimizing problem over a time horizontal. When all is solved, the con-
troller only applies the first input and disregards the rest, which means that for every time
step, the MPC calculates the optimal solution—illustrated in figure 11. Here the upper part
of the figure shows how the MPC calculate the trajectory and only apply the first step to the
plant, the lower part.

Page: 18

3.5 Nonlinear Model Predictive Control

Figure 11: Illustration of how the MPC works [24]

A NMPC can be formulated based on the OCP.

min
z ∈ Rn

z

f(z) (48)

where

f(z) =
N−1∑
t=0

1
2xTt+1Qt+1xt+1 + dxt+1xt+1 + 1

2uTt Rtut + dutut + 1
2∆uTt R∆tut (49)

subject to
xt+1 = g(xt,ut) (50)

xo = given (51)

xlow ≤ xt ≤ xhigh (52)

ulow ≤ ut ≤ uhigh (53)

∆ulow ≤ ut ≤ ∆uhigh (54)

where
Qt �0
Rt �0

R∆t �0
(55)

The OCP in equation 49 is a quadratic function, with linear terms. If the OCP is ex the error,
this can be seen as computing the sum of all errors from time 0 to time N-1, and then finding
the optimal input to the system which gives the least error.

Page: 19

3.5 Nonlinear Model Predictive Control

The last term in the OCP, is to control input change, in this thesis, this is not relevant and
hence removed. This also includes the constraints on the change of input in 54.

50 - 54 is the constraints for the system. The 50 is the nonlinear equation. 51 is the start
condition for state and input. Notice that index 0 on the state, and -1 on the input. 52 and 53
is the constraint on the state and input.

The 55 is the gain matrix. Note that R∆t is removed (see above). All this matrix needs to be
positive invariant. This matrix is here time-variant, and in this thesis, this matrix is considered
time-invariant, meaning constant.

Page: 20

4 Control Algorithm Design

This section will investigate the methods of solving the problems formulated in section 1.1.
Begin in section 4.1 by looking at the different path parameterizations used throughout this
thesis. This overview will give the reader an understanding of the different path formulations
in the controllers.

The main focus of this thesis is the two optimal controllers seen in section 4.2. Begin in
section 4.2.1 by looking at the augmented system proposed by [13] together with the timing
law. Then the two models are formulated in section 4.2.2 and 4.2.3 together with the control
architecture. The path in this thesis will be both straight and curved. For the straight line,
there needs to be a switch mechanism between paths. This mechanism is described in
section 4.2.4 together with the initialize of the path parameter. The curved path is seen in
section 4.2.5.

Both NMPC will be compared against a geometric controller (gc). For straight line, a VFB
controller from [9] is used. This controller is seen in section 4.4.2. In the curved path, a
NDGPFG controller from [25] is used. This is described in seen in section 4.4.3.

Last, in section 4.5, the algorithm for choosing PI/PD gains for the lateral- and longitudi-
nal directional autopilot plus an airspeed controller. Both the VFB and NDGPFG uses this
autopilot. In the low-level autopilot in the NMPC the lateral autopilot is the same, but in
longitudinal, there is a pitch controller.

4.1 Path parameterization

For the straight line, the approach for the two different NMPC and the VFB is a bit different.
For the curved path, the two NMPC and the NDGPFG use the same B-spline function.

Straight-line
For the optimal controler NMPC, the approach is to treat the path parameter as an error,
which should be driven to zero. Then the path is defined as [13]

P = {y ∈ R3|λ ∈
[
λ0, λ1

]
} → P(λ) (56)

P(λ) = wi+1 − λ(wi −wi+1) (57)

where the path parameter λ ∈ [λ0, λ1] = [−1, 0]. Then the path parameter could be included
in the OCP as a virtual state to be minimized, shown in section 4.2.1. So this gives

lim
λ→ 0

[
pn pe pd

]T
→ wi+1 (58)

where [pn pe pd]T is the UAV position in F i.

Page: 21

4.1 Path parameterization

In the VFB controller the path parameter is λ ∈ [λ0, λ1] = [0, 1].

lim
λ→ 1

[
pn pe pd

]T
→ wi+1 (59)

This same straight-line as the linear Bézier seen in section 3.2. Then the path is defined as
[9]

Pline(r,q) = {x ∈ R3 : x = r + λq, λ ∈ R} → P(λ) (60)

Where the q ∈ R3 is defined as the difference between two waypoints

q = wi+1 −wi (61)

and r ∈ R3 is the first of the two waypoints, wi ∈ R3. This can be written out as

P(λ) = wi + λ(wi+1 −wi) (62)

Curve
Just using the waypoints as points could mean that the path takes shortcuts. This shortcut-
ting is not wanted, and an example of this in figure 12.

Bézier curve

Figure 12: Example of Bézier curve with short cutting without internal control points

In [22] the approach is to add two middle points in a cubed Bézier curve, which means that
from waypoint k to k+1, two internal control points force the path through the waypoint k+1.
Opposite from seen in figure 12 where two waypoints are untouched. An example of this in
figure 13.

Page: 22

4.1 Path parameterization

1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0
Waypoint
Internal point
Control Polygon
B-Spline

Figure 13: Example B-spline with internal control points [22]

The steps to find the two internal points is that the first internal point is tangential to the first
waypoint, and the second internal point is tangential to the second waypoint. An example of
the internal points with regards to the waypoints is in figure 13, where the internal points are
tangential to the closest waypoint. First, start by defining the waypoints as Qk. The vector
from waypoint k − 1 to k is

qk = wk −wk−1 (63)

The tangential vector to waypoint Qk is then given and illustrated in figure 14.

Vk = (1− αk)qk + αkqk+1 (64)

where αk is given by

αk = |qk−1 × qk|
|qk−1 × qk|+ |qk+1 × qk+1|

, k = 2, . . . , n− 1 (65)

q0 =2q1 − q2

q−1 =2q0 − q1

qn+1 =2qn − qn−1

qn+2 =2qn+1 − qn

(66)

Unit vector of the tangent vector is given by

Tk = Vk

|Vk|
(67)

Page: 23

4.1 Path parameterization

Figure 14: Tangent vector Vk[22]

Defining the intermediate calculations as

α =−b+
√
b2 − 4ac

2a
a =16− |Tk + Tk+1|2

b =12(Pk,3 −Pk,0)(Tk + Tk+1)
c =− 36|Pk,3 −Pk,0|2

(68)

Then the two internal points are given by

Pk,1 =Pk,0 + 1
3αTk

Pk,2 =Pk,3 −
1
3αTk+1

(69)

where Pk,0 = wk and Pk,3 = wk+1. Then, in this cubed Bézier curve is the four points:
wk Pk,1 Pk,2 wk+1. Loop through all the waypoints will give all the points

w0,P0,1,P0,2,P1,1, . . . ,Pn−2,2,Pn−1,1,Pn−1,2,wn (70)

Next is finding the knot vector. This is given by

U =
{

0, 0, 0, 0, ū1
ūn
, ū1
ūn
, ū2
ūn
, ū2
ūn
, · · · , ūn−1

ūn
, ūn−1

ūn
, 1, 1, 1, 1

}
(71)

where
ūk+1 = ūk + 3|Pk,1 −Pk,0| (72)

Looking at equation 71, the path parameter λ ∈ [0, 1]. This the gives

lim
λ→ 1

[
pn pe pd

]T
→ wn (73)

With the points in 70 and knots in 71 the B-Spline curve in equation 39 can be calculated.
This will be done using the script seen in appendix 7.9.

Page: 24

4.2 Nonlinear model predictive path-following controler

For the optimal controller, minimizing the error eλ = λ− 1 is included in the OCP as a virtual
state, shown in section 4.2.1.

Summary
In figure 15 is a summary of the convergence of the path parameter λ. It is ready to see
the difference between straight-line controllers and how they use the same function in the
curved path.

Path

Straight Curved

NMPC

λ→ 0

VFB

λ→ 1

B-spline

NMPC NDGPFG

λ→ 1

Figure 15: An overview of the path structure

4.2 Nonlinear model predictive path-following controler

This section will focus on the optimal controllers. In an optimal controller, the cost function is
minimized with the input as decision variables. Therefore in section 4.2.1, begin by looking
at how the OCP is defined to solve the path problem.

In the NMPC there will be a simplified kinematic model and a dynamic model. These mod-
els will be investigated in section 4.2.2 and 4.2.3. Regarding the two different path param-
eterizing from section 4.1, there is a difference in the formulation for the straight-line path,
section 4.2.4, and curved path, section 4.2.5.

4.2.1 Optimal control problem

Timing law
The path parameter λ is introduced as a virtual state. To be able to control this parameter,

Page: 25

4.2 Nonlinear model predictive path-following controler

the timing law is introduce[13].

g
(
λ(k), λ(k−1), ..., λ̇, λ, v

)
= 0

∀i ∈ {1, ..., k} : λ(i)(t0) = λ
(i)
0 , λ(t0) = λ0

(74)

The first line defined the timing law g(·), the second line defined the initialization condition
to the virtual states. The state v is the virtual input. This virtual input can be interpreted as
controlling the behavior along the path. Timing law is chosen as [13]:

λ(r̂+1) = v

λ(t0) = λ0 ∀j ∈ {1, ..., r̂} : λ(j)(t0) = 0
(75)

Where
r̂ = max{r1, ..., rny} (76)

Where {r1, ...rny} is the relevant degrees.

The relative degree is the number of times it is needed to derive the output y to get input u in
the states. Which method to use for this task is up to the reader, but ordinary time differential
can be used or Lie derivation. A system has relative degree ρ in a region D0 ⊂ D ⊂ Rn if [4]

LgL
i−1
f = 0 , 1 ≤ i ≤ ρ− 1

LgL
ρ−1
f h 6= 0

∀x ∈ D0 (77)

An example is found in appendix 7.5.

Where the system has more than one output, it is common to write.

r =(r1, ..., rny)

ρ =
ny∑
i=1

ri 6 nx
(78)

Where ny and nx are numbers of output and states, respectively.

Augmented system
Given that the nonlinear system is defined as:

ẋ(t) = f(x(t),u(t)), x(t0) = x0 (79)

y(t) = h(x(t)) (80)

The size of the state x is nx. Then the function h(x(t)) maps from nx to ny.

Page: 26

4.2 Nonlinear model predictive path-following controler

The virtual system is defined as

ż =Az + bv

=


0 · · · 1 · · · 0
...

... . . .
0 · · · 0 · · · 1
0 · · · 0 · · · 0


︸ ︷︷ ︸

A

z +


0
...
...
1


︸︷︷︸

b

v (81)

with
λ =cz

=
[
1 · · · 0

]
︸ ︷︷ ︸

c

z

=z1

(82)

In equation 81 the virtual input v is
zr̂+1 = v (83)

and the virtual states are
zk = zk+1 k = {1, ..., r̂} (84)

Adding the timing law with the virtual state and input, the augmented system is then defined
as: [

ẋ
ż

]
=
[
f(x,u)
l(z, v)

]
(85)

with the OCP [
e
λ

]
=
[
h(x)− P(z1)

z1

]
(86)

The size of the virtual state z is nz. Note the the state z is not an algebraic state. Where nz
is given by

nz = r̂ + 1 (87)

The total size of equation 85 is nx + nz.

Path Followability
For the system to be exactly followable, Definition 4.2 in [13] is

∀j, k ∈ {1, . . . , ny}, i = 1, . . . , rk−1 : ∂
∂uj

Lifhk(x) = 0

For at least onej ∈ {1, . . . , ny} : ∂
∂uj

Lrkifhk(x) 6= 0
(88)

Page: 27

4.2 Nonlinear model predictive path-following controler

and

A(x) =


∂
∂u1
Lr1f h1(x) . . . ∂

∂unu
Lr1f h1(x)

...
...

∂
∂u1
L
rny
f h1(x) . . . ∂

∂unu
L
rny
f h1(x)

 (89)

is full rank. Here ny and nu is the number of outout and input. ri is the relative degree vector

r =
[
r1 , . . . , rny

]
(90)

and Lifh(x) is the Lie derivative.

Cost function
From section 4.1 and equation 58 and 73 that the path parameter describes the position on
the path. Using this together with the error between the UAV and path in equation 36 this is
used to solved the path problem. This is seen in equation 86. It is also desirable to control
the airspeed, so the airspeed error is included in the cost function. This gives

F(e) = ‖(e)‖2
Q + ‖u, v‖2

R (91)

where e = [en ee ed Va − Va,ref z1 − z1,ref]T .

From section 3.5, the NMPC is defined (here with a integral) to minimize the cost function,
where

min
x(·),u(·)

∫ T

t=0
l(x(t),u(t))dt+ M(x(T)) (92)

subject to
0 = f(ẋ(t),x(t),u(t)), t ∈ [0, T + 1]
xo = given

xlow ≤ x(t) ≤ xhigh, t ∈ [0, T + 1]
ulow ≤ u(t) ≤ uhigh, t ∈ [0, T]

(93)

Equation 93 is dependent on which model that is used. Starting at the top, f(ẋ(t), x(t), u(t)) :
Rnx is the implicit differential equation of the augmented system. From equation 85 this gives

f(ẋ(t),x(t),u(t)) =
[
ẋ
ż

]
−
[
f(x,u)
l(z, v)

]
(94)

Next line in equation 93 is the initialization. At the beginning of the simulation, this is the trim
conditions. After that the previous state is used to initialize the next. The two last lines is the
constrains on the states and inputs. This, and the augmented system to the models will be
further describe in section 4.2.2 and 4.2.3. The fixed horizon length is denoted T .

Looking at the cost function in equation 92, this is the ACADOs form [19]. This is defined as

l
(
x(t),u(t)

)
= ‖Vxx + Vuu− yref‖2

W (95)

Page: 28

4.2 Nonlinear model predictive path-following controler

With the terminal cost
M(x) = ‖Ve

xx− yeref‖2
We (96)

Here the gain matrix W and W e

W = diag{
[
Q R

]
} (97)

W e = Q (98)

The matrix Vx and Vu maps from nx and nu to nNMPC
y , where nx, nu and nNMPC

y is the num-
ber of states, inputs and NMPC outputs, respectively. Where nNMPC

y = ny + nu, meaning
including the input as a part of the output. This gives Vxx = [en ee ed Va z1 01,nu]T ,
Ve
xx = [en ee ed Va z1]T and Vuu = [01,ny u]T . And yref = [0 0 0 Va,ref z1,ref 01×nu]T

with yeref = [0 0 0 Va,ref z1,ref]T . The matrix Q and R, which are Rnx×nx and Rnu×nu

respectively, is the diagonal positive defined gain matrix penalise the states and inputs, re-
spectively.

The virtual state z1, which is the path parameter, has a reference z1,ref . Seen in section 4.1
this was defined as z1,ref = 0 for straight-line path, and z1,ref = 1 for curved path.

4.2.2 Simplified kinematic model

In this section the simplified kinematic model will be investigated. Start by looking at the
model and propose a augmented system with virtual states defined in section 4.2.1 and
then prove followability. This augmented system is used in the NMPC described in equa-
tion 92 and the constrains in equation 93 is in this section defined. Then a proposed control
architecture where a low-level autopilot is used to track the high-level NMPC.

The kinematic models used is based on the kinematic equation from [7] describe as

ṗn =Va cosψ cos θ + wn

ṗe =Va sinψ cos θ + we

ṗd =− Va sin θ + wd

θ̇ =q
ψ̇ =r

(99)

Where pn, pe, pd is the UAVs position and the wind, wn, we, wd, all expressed in F i. The
states θ, ψ,Va is pitch, yaw and airspeed, respectively. Input is q and r. The airspeed can be
measured or be a state. For better control of pitch and yaw, and the assumptions that the
states cannot be directly change without any disturbances, these will be changed. In [9] a
first order approximated model

ẋ1 = bx1(xc1 − x1) (100)

Page: 29

4.2 Nonlinear model predictive path-following controler

where bx1 is a positive constant. In [11] a second order model

ẋ1 =x2

ẋ2 =b0x
c
1 − b1x2 − b2x1

(101)

where b{i} is positive constants.

To see which of the first or second order model is best, both will be explored. Where in
section 5.2 a model identifications study will be presented and one of the models will be
used.

First order model
For the first order model the pitch, yaw and airspeed are change to

V̇a =bVa(V c
a − Va)

θ̇ =bθ(θc − θ)
ψ̇ =bψ(ψc − ψ)

(102)

Adding equation 102 into 99
ṗn =Va cosψ cos θ + wn

ṗe =Va sinψ cos θ + we

ṗd =− Va sin θ + wd

V̇a =bVa(V c
a − Va)

θ̇ =bθ(θc − θ)
ψ̇ =bψ(ψc − ψ)

(103)

With the input
u =

[
V c
a θc ψc

]
(104)

From section 4.2.1 the OCP was defined as the error between position and path. Including
the control of airspeed, the output is defined as

y =
[
pn − P(z1)0 pe − P(z1)1 pd − P(z1)2 Va

]T
(105)

A timing law of r̂ = 2 is proposed and gives

ż1 =z2

ż2 =v
(106)

Which is the virtual state z1 and z2 and the virtual input v. Then the augmented system input
and output is

u =
[
V c
a θc ψc v

]
(107)

Page: 30

4.2 Nonlinear model predictive path-following controler

y =
[
pn − P(z1)0 pe − P(z1)1 pd − P(z1)2 Va z1

]T
(108)

Where the relative degree vector is

r =
[
2 2 2 2 1

]T
(109)

Looking at the values in equation 109 this was the motivation behind chosen the timing law
at equation 106.

Next is looking at path followability, seen in section 4.2.1. In appendix 7.6 matrix A is found
to be

A(x) =



bVacos(ψ)cos(θ) −Vabθcos(ψ)sin(θ) −Vabψcos(θ)sin(ψ) −∂P(z1)
∂z1

bVacos(θ)sin(ψ) −Vabθsin(ψ)sin(θ) Vabψcos(ψ)cos(θ) −∂P(z1)
∂z1

−bVasin(θ) −Vabθcos(θ) 0 −∂P(z1)
∂z1

0 0 0 1
bVa 0 0 0

 (110)

This must be full rank at x0, which is at trim conditions. Inserting the trim conditions from
section 5.3.2 and the two first waypoints, the matrix A is

A(x = x0) =


2.0997 −1.8859 0.3698 300
−0.1168 0.1049 6.6465 700
−0.0649 −61.1708 0 20

0 0 0 1
2.1040 0 0 0

 (111)

Witch is full rank. If θ0 = ±90deg, then matrix A is rank-deficient. But in this thesis, the
pitch angle will not be greater than ±35deg. Note that ∂P(z1)

∂z1
will be evaluated in section 4.2.4

and 4.2.5 for straight and curved path, respectively.

Then the proposed augmented system is

ėn =Va cosψ cos θ + wn −
dP(z1)0

dt

ėe =Va sinψ cos θ + we −
dP(z1)1

dt

ėd =− Va sin θ + wd −
dP(z1)2

dt
V̇a =bVa(V c

a − Va)
θ̇ =bθ(θc − θ)
ψ̇ =bψ(ψc − ψ)
ż1 =z2

ż2 =v

(112)

Page: 31

4.2 Nonlinear model predictive path-following controler

Where z{i} is virtual states and v is a virtual input. The system input is

u =
[
V c
a θc ψc v

]T
(113)

and the output
y =

[
en ee ed Va z1

]T
(114)

The proposed augmented system in equation 112 is explicit. Changing it to implicit, as in
equation 94, this is used in equation 93. Next is the constraints on the states and inputs.
The error states are en, ee and ed is chosen arbitrary big enough to not be violated.

The yaw angle can, in principle, be a multiple of 2π since the UAV can rotate around itself.
The yaw angle is chosen to be ±360deg. The feedback yaw angle is mapped in (−180, 180).
If the NMPC had this constraint on yaw angle, then instead of going from −179deg to 179deg,
which is 2deg the smallest way, it would go 358deg. So even though the constraints are
±360deg, the feedback is mapped in (−180, 180). With setting the constraints ±360deg, the
optimal solution in the time horizontal can go beyond ±180deg, and then the errors between
ψNMPC − ψUAV is mapped to prevent discontinuous jump. Want to avoid the ψNMPC close
to the constraint, which could make it unstable in the sense of a circular turn on the path to
correct the angle.

For the pitch angle, this angle has physical limits and is more constrained. If, for example,
the pitch angle is −90deg, then the UAVs noise is pointing to the ground. Therefore choose
to be ±35deg. A to high pitch angle can also led to stall conditions.

For airspeed the reference is a constant Va,ref = 18m
s

, therefor the max airspeed is chosen
to be 25m

s
with min 15m

s
.

The virtual states z1 are dependent on the path. If straight line then z1 ∈ [0,−1] or curved
z1 ∈ [0, 1], which is seen in section 4.1. The upper limit is chosen a bit higher to prevent
constraint violence when approaching the upper limit. This was the case in the specialization
project in [1]. Therefor z1 ∈ [−1, 2] or z1 ∈ [0, 4]. For z2 this is [0, 10], this gives that movement
on the path must be positive, and hence always along the path. Then



−1e5
−1e5
−1e5

15
−35 π

180
−2π
z1
0


︸ ︷︷ ︸

xlow

≤



en
ee
ed
Va
θ
ψ
z1
z2


≤



1e5
1e5
1e5
25

35 π
180

2π
z̄1
10


︸ ︷︷ ︸

xhigh

(115)

Page: 32

4.2 Nonlinear model predictive path-following controler

where z1 = −1 and z̄1 = 2 for straight line, and z1 = 0 and z̄1 = 4 for curved.

For the input, V c
a , θc and ψc is chosen the same as the upper and lower limit of their respective

state. The virtual input v is chosen arbitrarily.
15

−35 π
180

−2π
−10


︸ ︷︷ ︸

ulow

≤


V c
a

θc

ψc

v

 ≤


25
35 π

180
2π
10


︸ ︷︷ ︸

uhigh

(116)

Second order model
For the second order model, the pitch, yaw and airspeed is

V̇a =aa
ȧa =bVa,0V c

a − bVa,1aa − bVa,2Va
θ̇ =q
q̇ =bθ,0θc − bθ,1q − bθ,2θ
ψ̇ =r
ṙ =bψ,0ψc − bψ,1r − bψ,2ψ

(117)

where
d

dt
Va =aa
d

dt
θ =q

d

dt
ψ =r

(118)

and the input and output is the same as for the first order. Propose a timing law of r̂ = 3

ż1 =z2

ż2 =z3

ż3 =v
(119)

Then the relative degree is
r =

[
3 3 3 3 2

]T
(120)

Looking at the values in equation 120 this was the motivation behind chosen the timing law
at equation 119.

Then the matrix A is found, in the same way as for the first order model. Note that the A is

Page: 33

4.2 Nonlinear model predictive path-following controler

the same for the first and second order model.

A(x) =


bVa,0cos(ψ)cos(θ) −bθ,0Vacos(ψ)sin(θ) −bψ,0Vacos(θ)sin(ψ) −dP(z1)0

dt

bVa,0cos(θ)sin(ψ) −bθ,0Vasin(ψ)sin(θ) bψ,0Vacos(ψ)cos(θ) −dP(z1)1
dt

−bVa,0sin(θ) −bθ,0Vacos(θ) 0 −dP(z1)2
dt

0 0 0 1
bVa,0 0 0 0

 (121)

which is full rank in the trim conditions (same as the first order). The full augmented system
is

ėn =Va cosψ cos θ + wn −
dP(z1)0

dt

ėe =Va sinψ cos θ + we −
dP(z1)1

dt

ėd =− Va sin θ + wd −
dP(z1)2

dt
V̇a =aa
ȧa =bVa,0V c

a − bVa,1aa − bVa,2Va
θ̇ =q
q̇ =bθ,0θc − bθ,1q − bθ,2θ
ψ̇ =r
ṙ =bψ,0ψc − bψ,1r − bψ,2ψ
ż1 =z2

ż2 =z3

ż3 =v

(122)

Change equation 122 to implicit, this is used in equation 93. In the second order model
the additional state constrains are the rate states. This is chosen so that the states do not
change too much. The z3 is the acceleration on the path, and are chosen so the virtual
position z1 do not move to fast for the UAV.

−5
−10 π

180
−10 π

180
0
z3


︸ ︷︷ ︸

xlow

≤


V̇a
θ̇

ψ̇
z2
z3

 ≤


5
10 π

180
10 π

180
z̄2
z̄3


︸ ︷︷ ︸

xhigh

(123)

where z̄2 = 0.09, z3 = −0.002 and z̄3 = 0.002 for straight line, and z̄2 = 0.009, z3 = −0.0002
and z̄3 = 0.0002 for curved. Which makes sense that the acceleration along the path for
curved is less, because this is longer since this includes the whole path, compared to just a
line segment for the straight line-

Page: 34

4.2 Nonlinear model predictive path-following controler

For the second order model 
15

−35 π
180

−2π
−0.1


︸ ︷︷ ︸

ulow

≤


V c
a

θc

ψc

v

 ≤


25
35 π

180
2π

0.10


︸ ︷︷ ︸

uhigh

(124)

Disturbance observer
To compensate for any modeling error in the simplified kinematic model in down, a distur-
bance observer is used. This is done adding a disturbance parameter, dd, on the augmented
equation 112 or 122 for ed. This disturbance is found through.

∆pd(t) = p̂d(t)− pd(1|t− 1) (125)

where p̂d(t) is state of UAV and pd(1|t− 1) is:

pd(1|t− 1) = ed(1|t− 1) + p(z1(1|t− 1)) (126)

where ed(1|t− 1) is the NMPC state and p(z1(1|t− 1)) is the path function at z1(1|t− 1). The
t− 1 means last iteration. The disturbance is then found

dd(t) = dd(t) + lF∆pd(t) (127)

where the lF is the learning rate.

Control architecture
In figure 16 the architecture of the kinematic model in the NMPC with a low-level autopilot.
Here the pink and purple boxes are the initializing and switch. The autopilot gets the NMPC
states ψ and θ as commanded angles.

The feedback to the NMPC is position from the UAV, which are used to calculate the updatet
error and the virtual states. Find the values of z1 and [en, ee, ed]T is described later. The rest
of the internal states Va, θ, ψ, V̇a, θ̇, ψ̇, z2 and z3 are feedback to the NMPC

Page: 35

4.2 Nonlinear model predictive path-following controler

NMPC

.

P(λ) PD

PI

PI

UAV

δ
a

δ
e

δ
t
 V

a

NMPC

φ
c

θ
NMPC

PI
Ψ

NMPC

e
n
, e

e
, e

d
,

z
1

x
NMPC

Path

Ψ

V
a

θ

φ

p
n
,

p
e
,

p
d
,

Figure 16: Control architecture of a kinematic model in NMPC in the outer-loop and an
autopilot in the inner-loop

Output of the NMPC is

yNMPC =
[
en ee ed Va z1 V c

a θc ψc v
]T

(128)

The following equation describes the autopilot. Note that X8 has no rudder.

δt = KpVa
(V NMPC

a − V UAV
a) +

KiVa

s
(V NMPC

a − V UAV
a) (129)

φc = Kpψ(ψNMPC − ψUAV) +
Kiψ

s
(ψNMPC − ψUAV) (130)

δa = Kpφ(φc − φUAV)−Kdφp (131)

δe = Kpθ(θNMPC + θUAV)− Kiθ

s
(θNMPC − θUAV) (132)

4.2.3 Dynamic model

The differential equation in the full dynamic model is more complex than the kinematic model.
For this thesis, the dynamic models of the X8 Skywalker are used. This is retrieved from the

Page: 36

4.2 Nonlinear model predictive path-following controler

UAV autofly repository, which is a collaborative code network at NTNU. Which frame the
states are expressed in, and attitude representation can be chosen. The OCP is position
error and airspeed. Therefore it is desirable to choose the states [β α Va]T instead of
[u v w]T , described in section 3.1.

The states are then
x =

[
p Va β α Θ Ω δ

]T
(133)

where p = [pn pe pd]T , Θ = [φ θ ψ]T , Ω = [p q r]T and δ = [δe δa δr δt]T . The
frame is the stability and the rotation is rotmat, meaning the Euler-angles.

Input to the system is control surfaces rates.

u =
[
δ̇e δ̇a δ̇r δ̇t

]T
(134)

Choose the timing law r̂ = 3 which givesż1
ż2
ż3

 =

z2
z3
v

 (135)

The input and output is
u =

[
δ̇e δ̇a δ̇r δ̇t v

]T
(136)

y =
[
pn − P(z1)0 pe − P(z1)1 pd − P(z1)2 Va z1

]T
(137)

Then the relative degree is
r =

[
3 3 3 3 2

]T
(138)

Looking at the values in equation 138, this was the motivation behind chosen the timing law
at equation 135.

To prove exactly followable and matrix A to be full rank is done by the symbolic calculating
using CasADi [26] in Python. Matrix A needs to be full rank at x0 (trim conditions). The only
states that change in simulations is the yaw angle and positions. A configuration of the yaw
angle would not affect the full rank—the result when x0 is trim condition.

A(x = x0) =


0.106432 −0.205233 0 9.50851 −300
1.91282 0.0114195 0 −0.529068 −700

0 −12.3043 0 −0.294062 10
0 0 0 0 1
0 −0.20555 0 9.52322 0

 (139)

Which is not full rank. But the third column is the rudder input, which is basically not an
input. So, removing this column makes it full rank.

Page: 37

4.2 Nonlinear model predictive path-following controler

The proposed augmented system is then

ėn =ṗn −
dP(z1)0

dt

ėe =ṗe −
dP(z1)1

dt

ėd =ṗd −
dP(z1)2

dt
V̇a
β̇Va

α̇ cos β
= 1
m

Rw
b (fba + f bT) + Rw

b (Rv
b)T f vg − ωwnb × vwa

φ̇ =p+ q sinφ tan θ + r cosφ tan θ
θ̇ =q cosφ− r sinφ
ψ̇ =− q sinφ sec θ + r cosφ sec θ

ω̇sb/n =− ωss/b × ωsb/n + (Js)−1(Rs
bmb − ωsb/n × Jsωsb/n)

δ̇e =u1

δ̇a =u2

δ̇r =u3

δ̇t =u4

ż1 =z2

ż2 =z3

ż3 =v

(140)

[27] where ωbb/n = [p q r]T . To calculate the Euler angles differential equation, need to
use to rotation matrix to find the angular rotation

pq
r

 = Rb
sω

s
b/n (141)

Further on vwa = [Va 0 0]T , ωss/b = [0 α̇ 0]T , Js = Rs
bJb(Rs

b)T . Note the subscript on
ωsb/n, this is to keep the angular rotations ωsb/n and ωss/b separated. The subscript b/n can be
read as the body frames angular velocity with respect to NED frame and s/b as the stability
frame velocity with respect to body frame. Both of them expressed in stability frame. The
forces, moments and rotation matrix is defined in section 3.1.

The input and output are.
u =

[
δ̇e δ̇a δ̇r δ̇t v

]T
(142)

y =
[
en ee ed Va z1

]T
(143)

Page: 38

4.2 Nonlinear model predictive path-following controler

Next is the constraints on the states and input. The states en, ee, ed, yaw, pitch, and airspeed
are chosen the same as for the kinematic model. For the roll angle φ, sideslip β, and angle
of attack α, this is chosen from physical limits. With a too big angle of attack, stall conditions
can appear. The value for this is chosen from the repository alpha 0 = 27deg. The control
inputs elevator, aileron, and rudder have physical limits, with the throttle response to be from
0 to 1. The angular rates are chosen arbitrarily. The virtual states z1 and z2 are the same
as for the kinematic model, with z3 chosen arbitrarily. This can be negative because of the
ability to reduce the value of z2. Note that since there is no rudder, the upper and lower limit
is 0.



−1e5
−1e5
−1e5

15
−π

2
−27 π

180
−35 π

180
−35 π

180
−2π
−π
−π
−π
−35 π

180
−35 π

180
0
0
z1
0
−10


︸ ︷︷ ︸

xlow

≤



pn
pe
pd
Va
β
α
φ
θ
ψ
p
q
r
δe
δa
δr
δt
z1
z2
z3



≤



1e5
1e5
1e5
25
π
2

27 π
180

35 π
180

35 π
180

2π
π
π
π

35 π
180

35 π
180
0
1
z̄1
0
10


︸ ︷︷ ︸

xhigh

(144)

where z1 = −1 and ẑ1 = 2 for straight and z1 = 0 and ẑ1 = 2 for curved.

The input is the control surfaces rates and is chosen arbitrarily. A more realistic value for
the δ̇i could be to measured how the actual actuators perform and the rates they change.
Although the values in equation 145 are big, the gain matrix R decided how much the inputs
can be used, where a big value means that the input is expensive.


−100
−100
−100
−100
−25


︸ ︷︷ ︸

ulow

≤


δ̇e
δ̇a
δ̇r
δ̇t
v

 ≤


100
100
100
100
25


︸ ︷︷ ︸

uhigh

(145)

Page: 39

4.2 Nonlinear model predictive path-following controler

Control architecture
This can be seen in figure 17. The NMPC solves the OCP and sends the optimal δ-states to
the UAV. The UAV feedback the states to the NMPC and also the position to determine the
switch of waypoints. Note in figure 17 that input to the UAV is δa, δe and δt and not δr. This
is because the X8 do not have a rudder. But in the feedback, the δr appears. This is not a
mistake, this is simply a constant 0. Since the rudder is included in equation 140 this is also
included in the feedback in figure 17.

NMPC

δ
a
 δ

e
 δ

t

.

Path UAV

p
n
,

p
e
,

p
d
,

V
a
 , β , α , Φ , θ , Ψ , δ

a
, δ

e
, δ

r
, δ

t

P(λ)

e
n
, e

e
, e

d
,

z
1

Figure 17: Control architecture of a dynamic model in the NMPC

4.2.4 Straight-line path

Initializing path parameters
The straight-line is in section 4.1 defined as

P = wi+1 − λ(wi −wi+1) (146)

Seen in section 4.2.1 that z1 = λ. This parameter needs to be initialized as the closest
point on the path for the UAV. Also, with a set of waypoints, a change of path segments is
needed. The z2 and z3 can be seen as the movement and acceleration on the path. The

Page: 40

4.2 Nonlinear model predictive path-following controler

start movement and acceleration on the path is zero, hence z2 = z3 = 0, like the timing law.
Choose z1

z1(t0) = arg min
z1 ∈ [−1, 0]

∥∥∥∥pUAV − P(z1)
∥∥∥∥ (147)

Too initialize z1, the along track error seen in figure 21 is used. This error is not used in path
following problems, but in trajectory tracking. From [9] the error is describe as

epx = cos(χq)(pn − rn) + sin(χq)(pe − re) (148)

where p and r is the same as in section 4.4.2.

The epx is given in meters. Therefor normalized with the length of the path, wi to wi+1. Hence

z1init = min
(
− 1,−1 + epx

qnorm

)
(149)

where
qnorm = wi+1 −wi

‖wi+1 −wi‖
(150)

The function can be seen in appendix 7.7.

A switch mechanism NMPC
In [9] inserting a fillet between waypoint, segments can be used to find a suitable point for
which a switch can be made. The design parameter for this is the radius of the circle R, see
figure 18.

Figure 18: Illustration on the fillet between straight line path[9]

The angle ρ between the two lines, defined as

ρ = arccos(−qTi−1qi) (151)

Page: 41

4.2 Nonlinear model predictive path-following controler

Where
qi = wi+1 −wi

||wi+1 −wi||
(152)

Define S+ as the stopping point and S− as the start point. From figure 18 these two points
are

S+
i =wi −

 R

tan(ρ2)

qi−1

S−i =wi +
 R

tan(ρ2)

qi

(153)

The S+ vector is normalized

Zi = min
(
− 1,−1 + S

+

qi

)
(154)

Where Z is threshold value for a switch.

ifZi ≤ z1 switch
else pass (155)

S−i is set as the new starting point for the path, replacing wi. Meaning that the new path to
follow is

P(z1) = wi+1 − z1(S−i−1 −wi+1) (156)

Algorithm 1 Switch
1: Waypoints index idxw = 0
2: Find switch parameter Zidxw
3: Find new start S−idxw
4: for Simulation do
5: NMPC← (widxw ,widxw+1)
6: Get path parameter z1 from NMPC
7: if Zidxw ≤ z1 then
8: idxw ← idxw + 1
9: S−idxw ← eq 153

10: Zidxw ← eq 154
11: widxw ← S−idxw−1
12: z1 ← eq 149
13: else
14: Pass

In figure 19 an example of where the switch points are. It is also seen how the reference for
the UAV cut corners. The script can be seen in appendix 7.8

Page: 42

4.2 Nonlinear model predictive path-following controler

0 200 400 600 800 1000 1200 1400
East [m]

−600

−400

−200

0

200

400

No
rth

 [m
]

North East frame
−

⁺
⁺enter
ref

(a) NE-frame

No
rth

 [m
]

200
400

600
800

1000
1200East [m]

−600 −400 −200 0 200 400
Down [m

]

−210

−208

−206

−204

−202

−200

NED frame ref

−

⁺
⁺enter

(b) NED-frame

Figure 19: Example on switch points on a rectangular pattern of straight line path

Cost function
In the augmented systems 112, 122 and 140 the position error dynamics

ė = ṗUAV −
dP
dt

(157)

The time derivative of the path is:

dP
dt

=∂P
∂z1

ż1

=


∂P0
∂z1
∂P1
∂z1
∂P2
∂z1

 ż1

=



∂

(
wi+10−z1∆w0

)
∂z1

∂

(
wi+11−z1∆w1

)
∂z1

∂

(
wi+12−z1∆w2

)
∂z1

 ż1

=

−∆w0
−∆w1
−∆w2

 ż1

=−

∆w0
∆w1
∆w2

 ż1

(158)

Page: 43

4.3 Model identification

Where ∆w0
∆w1
∆w2

 = wi −wi+1 (159)

4.2.5 Curved path

Initializing path parameters
The curved path is described in section 4.1 and with the B-spline curve defined from equa-
tion 39, the curved path is

P(λ) = C(λ) (160)

Note again that z1 = λ. As for the straight-line, the path parameters z2 = z3 = 0 her as well.
Finding z1

z1(t0) = arg min
z1 ∈ [0, 1]

∥∥∥∥pUAV − P(z1)
∥∥∥∥ (161)

this is solved using the function project point to curve in NurbsCurve which solved it as a
NLP.

Cost function
The error dynamics in position is still

ė = ṗUAV −
dP
dt

(162)

The time derivative of the path is:
dP
dt

=∂P(z1)
∂z1

ż1

=∂C(z1)
∂z1

ż1

(163)

where C(z1) is the B-spline function. This calculation is done using jacobian mxfunction in
CasADi [26].

4.3 Model identification

For the model identification a cost function

J = ‖ymeasured − ymodel‖2
2 (164)

Page: 44

4.4 Geometric controllers

is defined, where ymeasured is measurements from the UAV. The ymodel is defined as

ymodel = x1 (165)

which is the state looking at. This is Va, θ and ψ. For the second order, chosen one of Va, θ
or ψ in equation 117, gives f(x) to be

f(x) =
[

x2
b0u− b1x2 − b2x1

]
(166)

where input u is same input as for the UAV. The goal is to fit the nonlinear model to mea-
surements. The constant, b{i}, are decision variables and the cost function minimized. Then
the optimizing problem is

min
b0, b1, b2

‖ymeasured − ymodel‖2
2 (167)

subject to
f(x)
x0

b00 , b10 , b20

(168)

where bi0 is the initial guess of the constants.

The solver is a Gauss-Newton solver with Runge Kutta 4 integrator. Then a single shooting
strategy is chosen to find the parameter value that fits the nonlinear model [26].

4.4 Geometric controllers

The two geometric controllers are included to be used for comparing the performance of
the kinematic and dynamic model NMPC. Start by looking at the VFB which is used for
compared the straight line path NMPC. For curved path, a NDGPFG is used.

4.4.1 Autopilot

Both geometric controllers uses a autopilot to track the commanded course/heading and
height. In this section the lateral and longitudinal autopilot and a airspeed controler is pre-
sented. The control architecture for the controllers are seen in figure 20 and 25 for the VFB
and NDGPFG, respectively.

Lateral autopilot
The outer-loop is to control the course/heading angle of the UAV. The high-level controler
gives the commanded course/heading angle. The PD controler is

φc = kpχ(χc − χ) + kiχ
s

(χc − χ) (169)

Page: 45

4.4 Geometric controllers

The inner-loop is a roll PD controler, defined as

δa = kpφ(φc − φ)− kdφp (170)

Longitudinal autopilot
The outer-loop is to controller the height of the UAV. The high-level controler gives the com-
manded height. The controller is defined as the PI controler

θc = kppd (pcd − pd) +
kipd
s

(pcd − pd) (171)

The inner-loop is to control the elevator input δe. The PD controller is defined as: beginequa-
tion

δe = kpθ(θc − θ)− kdθq (172)

Airspeed controler
The airspeed is set at a constant reference. The PI controller is defined as

δt = kpVa (V c
a − Va) +

kiVa
s

(V c
a − Va) (173)

The gains are described in section 4.5.

4.4.2 Path-following with vector-field based controller

This controller is a vector field-based controller, where the approach is to use successive
loop closure. In the lateral direction, the aileron controls the yaw to roll, and in the longitudinal
direction, the elevator controls the height to pitch. The airspeed uses a PI controller. An
overview of the system in figure 20. Note that the feedback to the PI controler in the course
segment is the UAV course angle, and for the PD controler the UAV roll angle. For the down
segment (midle), the PI controler is feedback on UAV altiude and for the PD controler the
pitch angle is feedback. For the airspeed PI controler the feedback is the UAV airspeed.

Page: 46

4.4 Geometric controllers

φ
c
 δ

a
 Χ

c

θ
c δ

e
p

d

cPath Path

.

PD

PD

PI

UAV

δ
t

V
a

c

PI

PI

Va ref

p
n
, p

e
, p

d

φΧ

θp
d

V
a

P(λ)

Figure 20: Control architecture of VFB controler for straight line path

Path
The path algorithm is based on vector field [9]. The output is the commanded course angle
and height. Since this is a path following, only consider the error along with the cross-track
error, defined as

epy = − sin (χq)(pn − rn) + cos (χq)(pe − re) (174)

where this is trigonometry from figure 21.

Page: 47

4.4 Geometric controllers

Figure 21: The cross track error epy and along track error epx for the UAV with respect to the
path P(λ(t)) [9]

Beard and McLain[9] prove stability, when driving the cross track error to zero, with the
following controller

χd = xq − χ∞
2
π

arctan (kpathepy) (175)

Here the χ∞ is the commanded coruse angle when the aircraft is far from the line, see
figure 22a . The gain kpath is a parameter to tune how fast the sigmoid function, arctan (·),
curve around zero, see figure 22b.

The correction of course, χq is defined as

χq = atan2(qe, qn) (176)

Where the q vector is defined as
q = wi+1 −wi (177)

where w is waypoints.

Page: 48

4.4 Geometric controllers

(a) Shows χ∞ angle when UAV far away, and χq
when close to path with the vector field in direc-
tion to path (b) Gain kpath which effects how quick to converge

Figure 22: Visually showed how vector field guides the UAV to path [9]

To get the commanded height, the trigonometry from figure 23b is used. Figure 23b is a
representation from where the q and k axis is merge. Then

−sd√
s2
n + s2

e

= −qd√
q2
n + q2

e

(178)

Rearrange this equation to
sd = −

√
s2
n + s2

e

qd√
q2
n + q2

e

(179)

Where the s vector is
si = epi − (epin)n (180)

Were the normal vector n is

n = n× ki

‖n× ki‖
(181)

and the error epi is

ep
i =

epnepe
epd

 = pi − ri =

pn − rnpe − re
pd − rd

 (182)

Where the ri is the first waypoint, and pi is the position for the aircraft.

Page: 49

4.4 Geometric controllers

The commanded height is then
pcd = hc = −rd − sd (183)

(a) NED frame with path and UAV
(b) Projection of the path line q in eq 177 to a
local frame with shared z-axis as NED

Figure 23: Frame for which the commanded height can be found [9]

Note then the smallest sign angle (SSA) function is used in the algorithm, which maps the
angle from [−π, π) to prevent discontinuous jumps in angles [28]. The function is called
SSA(·) where the input is angle in radians.

The whole algorithm in attachments 7.7.

Switch
The loop going from UAV to waypoints is the switch mechanism. This is if the UAV is within
a radius of the waypoint.

BOOL = ‖p−wi+1‖ ≤ R (184)

Where p is the position of UAV and wi+1 is the targeting waypoint, both expressed in Fn.
This gives the statement

ifBOOL switch
else pass (185)

4.4.3 Nonlinear differential geometric path-following controller

A NDGPFG from [25] proposed a guidance law design which is built on the principal of the
look-ahead point-based path-following guidance law. Here the normal guidance commanded

Page: 50

4.4 Geometric controllers

input is.
aNMcmd

= k(vMI
× L̂× vMI

) (186)

where k > 0 is the a gain, vMI
the inertial velocity of the UAV. The look-ahead vector L̂ is

defined as

L̂ = cos(θL)d̂ + sin(θL)T̂P (187)

where θL is the look-ahead angle and d̂ is normalize shift error vector, both seen in figure 24.
The tangent vector to the path is denoted T̂P . If ‖d‖ = 0, then

L̂ = T̂P (188)

Figure 24: Guidance geometry [25]

The normalize shift error vector is

d =e + dshiftsign(κP)N̂P

d̂ = d
‖d‖

(189)

Where there error e = P(λ) − PUAV , dshift is the radially shifted distance, seen in figure 24
as the distance between P and W. The variable κP is the curvature of the path, and N̂P is
unitary normal vector to the path. The radially shifted distance is defined as

dshift =
1−

(2
π

arccos |κP |
k

)2
 δBL

1− ε (190)

Page: 51

4.4 Geometric controllers

where δBL is the boundary-layer thickness, which is a design parameter, and ε is a arbitrary
small value.

The look-ahead angle in equation 187 is defined as

θL = π

2

√
1− (1− ε)sat

(‖d‖
δBL

)
(191)

where the saturation term is

sat(x) =x if |x| ≤ 1
sat(x) =sgn(x) if |x| ≥ 1

(192)

The aNMcmd
∈ R3 in equation 186 can be used in a minimising problem where the decision

variables are the UAV states expressed in F i. From this, the pd and ψ can be readily collected
and used as commanded input. Then a successive loop closure is used, in the same way
as described in section 4.4.2. The overview can be seen in figure 25.

φ
c
 δ

a
 Ψ

c

θ
c δ

e

p
d

c
Path

.

PD

PD

PI

UAV

δ
t

V
a

c

PI

PI

Va ref

x
i

P(λ)
Find

x
i

Guidance

controller

a
M

c

φΨ

θp
d

V
a

Figure 25: Control architecture of NDGPFG controler for curved path

Page: 52

4.5 Gains for the autopilot controller

4.5 Gains for the autopilot controller

In the lateral direction, there is a controller for heading/course and roll. The roll controller
is in the inner loop, with the heading/course in the outer, using successive loop closer from
section 3.3. For the longitudinal direction, the inner loop is the pitch, with the height in the
outer. The last controller is for the airspeed. An overview can be seen in table 2. Note that
the pitch controller for the low-level autopilot is a PI controller.

Lateral Longitudinal Speed
Yaw/course Roll Height Pitch Airspeed

Guidance controller PI PD PI PD PI
Low level PI PD - PI PI

Table 2: Overview PI/PD controllers

The following two subsections used the gain algorithm from [9], where the parameters of
the Skywalker X8 are from [23], see appendix 7.2. The script for the gains is seen in ap-
pendix 7.10.

4.5.1 Lateral-directional autopilot gains

Heading/course gains
The gains for the course controller are based on the concept of bank to turn. Here the
sideslip angle, β, is zero. If the aircraft has a rudder, then the sideslip angle can be kept
at zero. The X8 does not have a rudder, and the sideslip angle is not zero while turning. If
the sideslip angle is significant, the UAV can fall into the turning circle. Regardless, the gain
setup works and will therefore be used. For the vector-based controller, the course angle is
used. Note that the difference between the gains for the course and heading angle is that
for the course, the groundspeed, Vg is used, and for heading the airspeed, Va is used. The
proportional gain is

kpψ = 2ζψωψVa
g

(193)

Where g is gravity. The integral gain is

kiψ =
ω2
ψVa

g
(194)

where
ωψ = 1

Wψ

ωφ (195)

Page: 53

4.5 Gains for the autopilot controller

The bandwidth separation, Wψ, between the inner and outer loop and ζφ are the design
parameters.

Roll gains
For the lateral inner-loop, the proportional gain is

kpφ = δmaxa

emaxφ

sign(aφ2) (196)

where the max error, emaxφ , is a design parameter. This is the chosen max error between
state and reference. The natural frequency is

ωφ =
√
aφ2kpφ (197)

The derivative gain is

kdφ = 2ζφωφ − aφ1

aφ2

(198)

Where the damping ratio ζφ is the design parameter. The aψ{i} is based on parameters of
the X8.

aφ1 = −1
2ρV

2
a SbCpp

b

2Va
(199)

aφ2 = 1
2ρV

2
a SbCpp (200)

Where ρ is the air density, S is the wing area, b is the wingspan of the aircraft, and

Cpp = Γ3Clp + Γ4Cnp (201)

Where Clp is roll damping derivative and Cnp is nondimensional aerodynamic coefficients for
pitch and the inertia parameters

Γ3 = Jz
Γ (202)

Γ4 = Jxz
Γ (203)

Γ = JxJz − J2
xz (204)

All parameters can be seen in table 20.

Page: 54

4.5 Gains for the autopilot controller

4.5.2 Longitudinal-directional autopilot gains

Height gains
The natural frequency is

ωpd = 1
Wpd

ωθ (205)

Where bandwidth separation, Wpd, is a design parameter. The controller for the height is a
PI controller. Where the integral effect removes the steady-state pitch error. In a successive
loop closure, the inner loop is treated as a gain of 1. In the pitch case, the DC gain is not 1,
but

KθDC = kpθaθ3
aθ2 + kpθaθ3

(206)

Taking advantage of this, the proportional and integral gain are

kppd = 2ζpdωpd
KθDCVa

(207)

kipd =
ω2
pd

KθDCVa
(208)

Where the damping ratio, ζh, is a design parameter.

Pitch gains
With the same idea as for the proportional gain for roll, the proportional gain for pitch is

kpθ = δmaxe

emaxθ

sign(aθ3) (209)

where the max error, emaxθ , is a design parameter. The natural frequency is

ωθ =
√
aθ2kpθ (210)

And the derivative gain is

kdθ = 2ζθωθ − aθ1
aθ3

(211)

Where the damping ration, ζθ, is a design parameter.

The aθ{i} is based on the parameters of the X8.

aθ1 = ρV 2
a cS

2Jy
Cmq

c

2Va
(212)

Page: 55

4.5 Gains for the autopilot controller

aθ2 = ρV 2
a cS

2Jy
Cmα (213)

aθ3 = ρV 2
a cS

2Jy
Cmδe (214)

Where c is the mean chord of the wing, Jy is the y element of the inertia matrix, Cmq is pitch
damping derivative, Cmα stability derivative and Cmδe is the aerodynamic coefficients of the
elevator. All parameters can be seen in table 20.

4.5.3 Airspeed controller gains

The proportional and integral gains are

kpVa = 2ζVaωVa − av1

av2
(215)

kiVa = ω2
Va

av2
(216)

where the natural frequency, ωv, and damping ratio, ζv, are design parameters. The av{i} is
found

av1 = ρV ∗a S

m

[
CD0 + CDαα

∗ + CDδeδ
∗
e

]
+ ρSprop

m
CpropV

∗
a (217)

av2 = ρV ∗a S

m
Cpropk

2
motorδ

∗
t (218)

Where subscript ∗ is the trim conditions, CD0 is the drag coefficient predicted by the linear
model at zero angle of attack, CDα and CDδe are stability derivatives, Sprop is the area swept
out by the propeller, Cprop is a coefficient of the propeller, kmotor is a gain of the motor and m
is the mass of the X8.

Page: 56

5 Results

In this section, the results using the control algorithm design described in section 4 will be
presented. Start by looking at the gains used in the low-level autopilot for both geometric
controllers and the kinematic model NMPC. This is seen in section 5.1. In section 5.2 is
the results of the identification of the simplified kinematic model. Then in section 5.3 an
introduction to the simulation where the hard-and software is presented. Last is the results
of the simulation. Start with the straight-line in section 5.4 and the curved path in section 5.5.

The names of the simulation scripts is seen in appendix 7.1 and can be found in the reposi-
tory UAVlab autofly in the branch path following thomas.

5.1 Tune controller

In this section the design parameters from section 4.5 will be tuned. All the gains are func-
tions of Va, meaning they are adaptive. In table 3 is an overview of tunable parameters.
The tuning was done by looking at the step responses in a one-by-one state. Starting by
looking at the inner-loops, which is the roll and pitch. Then the outer-loop with yaw/course
and height. When tuning the outer-loop, it was also important to consider the inner-loop.
Especially when deciding the bandwith separation . Start by tuning without wind in the sim-
ulation. When all the parameters for both inner and outer-loop were found, the wind was
included in the simulation. Then some small adjustment was made to compensate for the
wind. Acceptable criteria are fast convergence to reference and also as small overshoot as
possible.

Damping ration Bandwith separation Max error Natural frequency
ζ{i} W{i} emax{i} ωi

ψ ζψ Wψ

φ ζφ emaxφ

pd ζpd Wpd

θ ζθ emaxθ

Va ζVa ωVa

Table 3: Design parameters

5.1.1 Lateral-directional design parameters

The lateral-directional includes the yaw/course and roll. With the actuator aileron to control
the UAV. Started by tuning ζφ and emaxφ in the roll-controler. For the two geometric controllers
this is equation 170 and for the NMPC this is 131. This roll controller gives the aileron input.

Page: 57

5.1 Tune controller

Finding emaxφ was intuitively selected, and having in mind that this is the only tunable param-
eter in the proportional gain, see equation 196. Whereas the ζφ influence the derivative gain,
see 198. So when the proportional gain was acceptable, the derivative gain through ζφ was
chosen.

Next, the ζψ and Wψ in the yaw/course controller. The gains for the yaw and course con-
trollers are the same. So for the two geometric controllers, this is equation 169. Note that the
VFB uses course angle, while NDGPFG uses heading. For the NMPC this is equation 130.
Important to remember here is to have the Wψ big enough. The bandwidth is used to decide
the natural frequency of the yaw/course controler, which is the only tunable parameter in the
integral gain, see equation 194. So started with tuning the ζψ which, together with the Wψ,
influence the proportional gain, see equation 193. So a value greater than 5 was applied
to the Wψ, then tuning the ζψ. When the proportional gain was acceptable, the integral gain
through the Wψ was chosen. When decided the Wψ it was important to also look at the
response for the roll. Because this inner-loop is assumed to be a gain of 1, see section 3.3.

The results in figure 27 without wind with a step input on heading. Through this, the com-
manded roll angle and aileron are found. Here the commanded yaw angle is set in fig-
ure 27a(top). At the beginning of the step response, the yaw angle is going oppositely.
This behavior is highlighted in figure 26. This happens because there is a zero at the right
half-plane, which makes it unstable. From [9] the transfer function for the course

Hχ =
2ζχωnχs+ ω2

nχ

s2 + 2ζχωnχs+ ω2
nχ

(219)

So, when the bandwith is close to the zero, it is unstable. Throughout the actual path sim-
ulations this has not been a problem. And it does not happen in figure 27b where there is
wind.

0 2 4 6 8 10
Time [s]

0

1

2

3

4

Ya
w

[d
eg

]

ψUAV

ψc

Figure 26: Minimum phase

It can be seen in figure 27a that both the yaw and roll controller are converging to reference.
In figure 27b it is simulated with wind. Here, the controller can not follow the reference. The
yaw controller is better to follow reference when it is not constant. This is seen figure 27c
where the commanded yaw angle is a sinus curved. Since it is not likely that the yaw ref-
erence is constant for this thesis, this is accepted. Can also see in figure 27a that the roll

Page: 58

5.1 Tune controller

controller has some overshoot, but this is small. The design parameters can be seen in
table 4.

0

2

4

Ya
w

[d
eg

] ψUAV

ψc

0.0

2.5

5.0

Ro
ll

[d
eg

] ϕUAV

ϕc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

5

10

Ai
le

ro
n

[d
eg

] δa

(a) Without wind

0

5

Ya
w

[d
eg

] ψUAV

ψc

−5

0

5

Ro
ll

[d
eg

]

ϕUAV

ϕc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

10

Ai
le

ro
n

[d
eg

] δa

(b) With wind

−50

0

50

Ya
w

[d
eg

] ψUAV

ψc

−25

0

25

Ro
ll

[d
eg

] ϕUAV

ϕc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

20

Ai
le

ro
n

[d
eg

] δa

(c) With wind

Figure 27: Lateral-directional - Yaw to roll with aileron response

Parameter Value
Wψ 20
ζψ 0.5
ζφ 1.8
emaxφ 15

Table 4: Lateral-directional design parameters

5.1.2 Longitudinal-directional design parameters

The longitudinal-directional includes the height and pitch with the actuator elevator to control
the UAV. This controler is used in the two geometric controllers, see equation 172. Start
by tuning the inner-loop, which is the pitch controler, and the parameter ζθ and emaxθ . Also,
here emaxθ is the only tunable parameter in the proportional gain, see equation 209. When
the proportional gain was acceptable, the derivative gain, see equating 211, through ζθ was
tuned.

Next was the height controler, and the parameters ζpd and Wpd. This is used in the two
geometric controllers, see equation 171. Started by tuning the proportional gain, which is
influence by the two tuneable parameter, see equation 207. So a value greater than 5 was
applied to Wpd, then tuning the ζpd. Then the integral gain, see equation 208, through Wpd

was tuned.

The result in figure 28 simulated without wind. For this, a step input on the height. Through
this, the commaned pitch angle and elevator are found. It can be seen in figure 28a that the
height is given a step input to 210 meters. This is achieved with a small overshoot, and both
the height controller and pitch controller are acceptable performance. In figure 28a the DC
gains in the pitch are seen(the middle). This steady-state error is removed with an integral

Page: 59

5.1 Tune controller

action in the height controller. It is not want to have an integral action in the inner loop. The
design parameters can be seen in table 5.

−210

−205

−200

Do
wn

 [m
] pUAVd

pcd

−25

0

25

Pi
tc

h
[d

eg
] θUAV

θc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−25

0

25

El
ev

at
or

 [d
eg

]

δe

(a) Without wind

−210

−205

−200

Do
wn

 [m
] pUAVd

pcd

−25

0

25

Pi
tc

h
[d

eg
] θUAV

θc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−25

0

25

El
ev

at
or

 [d
eg

]

δe

(b) With wind

Figure 28: Longitudinal-directional - Height to pitch with elevator response

Parameter Value
Wpd 10
ζpd 0.707
ζθ 1
emaxθ 15

Table 5: Longitudinal-directional design parameters

Pitch controller
In the low-level controller of NMPC, there is no commanded height, but pitch commaned.
Therefore, an integral effect is proposed on the pitch controller and makes it a PI controller,
see equation 132. The gain of the integral is found through trial and error. The result can
be seen in figure 29. In figure 29a is simulated without wind. Here the steady-state error is
integrated away. With wind can be seen in figure 29b. The pitch angle is oscillating around
the reference, but this is excepted. The values can be seen in table 6.

Page: 60

5.1 Tune controller

5

10

15

20

Pi
tc

h
[d

eg
]

θUAV

θc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−15

−10

−5

0

El
ev

at
or

 [d
eg

]

δe

(a) Without wind

0

5

10

15

20

Pi
tc

h
[d

eg
]

θUAV

θc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−15

−10

−5

0

5

El
ev

at
or

 [d
eg

]

δe

(b) With wind

Figure 29: PI pitch controler with elevator response

Parameter Value
ζθ 0.707
emaxθ 35
kiθ -0.8

Table 6: PI controller pitch parameters

5.1.3 Airspeed

The airspeed controller was the hardest to tune because of the wind. This controler is used
in both geometric controler, see equation 173 and in the low-level autopilot in the kinematic
NMPC, see equation 129. The approach for this tuning was a trial and error, since both
tuneable parameters, ζVa and ωVa, influence the proportion gain, see equation 215. The
integral gain can be seen in equation 216.

The airspeed controller has a steady-state error, seen in figure 30a. This is because the
anti-windup threshold removes the integral effect that should drive the steady-state error to
zero. If the windup threshold were higher, there would be much more oscillation. Therefore,
in choosing an oscillation around the reference or a steady-state error, the choice was a
small steady-state error. This error is about 0.05[m/s], which is not that much.

It is hard for a small UAV to follow a constant reference speed when wind is included. It can
be seen in figures 30b that the airspeed is oscillating around the reference. It is the throttle
that controls the airspeed. The throttle can not slow down the UAV, only increase the speed.
Therefore it is hard to follow the reference airspeed exact with gust wind. So it is expected
that the speed will oscillate around the reference when there is wind. So, this is acceptable.

Page: 61

5.2 Model identification

The design parameters can be seen in table 7. Also, note that the steady-state error is gone
when the wind is added.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

18

20

22

24

Ai
rs

pe
ed

 [m
/s

]

VUAV
a

Vc
a

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

[-]

δt

(a) Without wind

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

18

20

22

24

26

Ai
rs

pe
ed

 [m
/s

]

VUAV
a

Vc
a

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ttl
e

[-]

δt

(b) With wind

Figure 30: PI airspeed controler with throttle response

Parameter Value
ζVa 0.707
ωVa

π
2

Table 7: Airspeed design parameters

5.2 Model identification

In this section the model parameters in the two simplified kinematic model seen in equa-
tions 112 and 122 identified.

The UAV was given different step input on pitch, see figure 31a. Then the closed-loop pitch
dynamics of the UAV were measured. The simulation is without wind. This process was
repeated for yaw in figure 31b and airspeed in figure 31c, measuring the closed-loop loop
dynamics of the yaw and airspeed, respectively. Then the method of fitting a nonlinear model
to measurements described in section 4.3 is used to identify the pitch, yaw, and airspeed
model. For the first-order model this is equation 102, and here there is one parameter, bi, for
each state. The second-order model is equation 117, where there is three-parameter, ai,0,
ai,1 and ai,2, for each state.

The results can be seen in figure 31. Where the approximated models should follow the UAV
response to the different step inputs. The validation of the models can be seen in table 8.

Page: 62

5.3 Introduction to simulation

0 10 20 30 40 50 60
Time [s]

−20

−10

0

10

20

Pi
tc

h
[d

eg
]

θUAV

o1

o2

(a) Pitch

0 10 20 30 40 50 60
Time [s]

−10

−5

0

5

10

Ya
w

[d
eg

]

ψUAV

o1

o2

(b) Yaw

0 10 20 30 40 50 60
Time [s]

16

17

18

19

20

Ai
rs

pe
ed

 [m
/s

]

VUAV
a

o1

o2

(c) Airspeed

Figure 31: First order vs second order kinematic equations vs actual UAV response

Using the formula for average mean squared error to validate.

validation = 1−mean
([∥∥∥∥x0−u0

u0

∥∥∥∥ · · · ∥∥∥∥xi−uiui

∥∥∥∥]) i ∈ [0,Nsim] (220)

where NSIM is the number of simulations steps and ui is the UAV state. The validation of the
models are seen in table 8. Here the second order model is following the reference best for
all. Therefor, the second order kinematic model is used in the NMPC.

O1 O2

Va 98.83 % 99.07 %
θ 83.29 % 83.43 %
ψ 87.49 % 91.20 % %

Table 8: Validation on model

The parameters found is seen in table 9. Note that for airspeed, the bi,0 6= bi,2, which is the
case for pitch and yaw. Reason for this is the steady state error seen in figure 30a.

1 order 2 order
i bi,0 bi,0 bi,1 bi,2
Va 0.858938 1.833 1.98789 1.84107
θ 5.66121 189.444 33.0477 189.444
ψ 0.911763 3.51349 3.59127 3.51349

Table 9: Approximated model parameter in the simplified kinematic models

5.3 Introduction to simulation

This section is an introduction to the simulation. Look at some software choices and which
frequency the controllers run on. Also, the initial value of the UAV used in the simulation.

Page: 63

5.3 Introduction to simulation

5.3.1 Controller configuration

All the simulations are ran using operative system Ubuntu 18.04 using Oracle VirtualBox
Manager. The frequency of the controller on the UAV is 100Hz, and the NMPC frequency
is 20Hz. For the NMPC the prediction horizon Tf = 10, the number of discretization steps
N = 50. The maximum simulation time is 200[s], with a break statement if the UAV reaches
the end point. In table 10 is the options chosen for the OCP solver.

Quadratic programming solver PARTIAL CONDENSING HPIPM
nonlinear problem solver type SQP RTI
Hessian approx GAUSS NEWTON
Integrator type IRK
Sim method number stages 4
Sim method number steps 3
tolerance 1e− 4

Table 10: OCP solver options

5.3.2 Intial states

At every simulation, the UAV starts in trim condition, where the values are seen in table 11

From the repository a function to find the trim conditions for the UAV is used. Input is wanted
circle radius, airspeed, course angle and sideslip angle. The turning circle is infinity, meaning
no turning, airspeed is 18[m/s] and course and gamma is set to zero. This gives the following
initialized states:

Page: 64

5.4 Straight line path

state value
u 18.9 [m/s]
v 1.05 [m/s]
w 0.584 [m/s]

Roll 0.00 [deg]
Pitch 1.76 [deg]
Yaw -3.18 [deg]

p 0.00 [deg/s]
q 0.00 [deg/s]
r 0.00 [deg/s]

Va 18.0 [m/s]
beta 0.00 [deg]
alpha 1.76 [deg]
aileron 0.00 [deg]
elevator 2.10 [deg]
rudder 0.00 [deg]
throttle 0.121 [-]

Table 11: Trim condition

5.3.3 Wind

All the simulations are simulated with wind at a turbulence level 2.

5.4 Straight line path

In this section, the results for the straight-line path are presented. The straight-line path,
seen in section 4.2.4, is four waypoints that make up a rectangular pattern. These four
waypoints are also used in the making of the curved path, seen in section 4.2.5. Waypoints
w{i} are expressed in F i, is defined in table 12 and are used for all the straight-line path
simulations.

i N E D
1 100 100 -200
2 400 800 -250
3 0 1200 -200
4 -700 500 -250

Table 12: Waypoints

In figure 32 the path is shown

Page: 65

5.4 Straight line path

200 400 600 800 1000 1200
East [m]

−600

−400

−200

0

200

400

No
rth

 [m
]

Path0
Path1
Path2
Path3

(a) NE-frame

North [m]

200 400 600 800 1000 1200
East [

m]

−600
−400

−200
0

200
400

-D
ow

n
[m

]

−240

−230

−220

−210

Path0
Path1
Path2
Path3

(b) NED-frame

Figure 32: Straight-line pattern

For the straight line, the VFB controller is used to compare against the two NMPC. Start with
the two NMPC then the VFB. The simulation results of all the controller’s performance in NE-
and NED frame is seen in figure 42.

The switch and initializing for the two NMPC can be seen in section 4.2.4.

5.4.1 Kinematic model in NMPC with low-level autopilot

This controller uses the second-order kinematic model described in section 4.2.2 with the
model parameter found in table 9 with the NMPC defined in section 4.2.1. From equation 91
the two gain matrix Q and R must be defined. The higher the value on element in matrix
Q, the more the system punishing an error. Finding the values was done by trial and error.
The overall goal is to reduce the error on the path. Intuitive this would mean high value on
the element penalize the en, ee and ed. However, seen in equation 221 the element on error
airspeed is the highest. The airspeed is the only error state that should hold a constant
value. Moreover, have the smallest error compared to the other errors. For example, the
error in north and east has over 100m as intial error, with error in down constantly oscillation
around 0m, see figure 33a. The path parameter z1 has an initial error of 1, see figur 33b.
This means that to minimize the cost function, eqation 91, described in section 4.2.1, the
controller should focus on the other errors. Also, note that the feedback to the kinematic
model NMPC is the internal airspeed state, meaning that the airspeed is not affected by the
wind as the airspeed for the UAV. Therefore it should be relatively easy for control to keep
a constant value for airspeed. There, this element on Q is so high. Same argument for
why the element on ed is higher than for en and ed. The element on the path parameter is
reasonably high. The gain matrix on the states are

Q = diag
[
1e1 1e1 1e3 5e6 1e1

]
(221)

Page: 66

5.4 Straight line path

which penalize the en, ee, ed, Va − Va,ref and z1, respectively. For the matrix R high value
on elements would mean that this input is expensive to use. In equation 222 shows that
the input on pitch and yaw is costly. This high price is because if it were cheaper, these
angles would oscillate. So these high values are there to prevent this high oscillation. The
last element in equation 222 is the virtual input. This input is the acceleration for the path
parameter on the path. If this value is too high, the path parameter will move too slow
compared to the UAV, expensive to travel. Therefore it is set as reasonably cheap. The gain
matrix on the input is.

R = diag
[
1e1 1e4 1e3 1e− 2

]
(222)

penalize the V c
a , θc, ψc and v,respectively. For the kinematic model a disturbance observer,

describes on section 4.2.2, where the learning rate is 0.002. The control architecture can be
seen in figure 16.

The errors in the OCP is seen in figure 33. In figure 33a the error is between UAV and the
path. Here the spikes are because of a change in waypoints. It can be seen that the errors
converge to zero. In figure 33b is the airspeed and path parameter errors. For the airspeed,
the error is not converging to zero. To avoid this, could increase the airspeed element on the
gain matrix Q even more. This is not done because of two reasons. First, the UAV dos not
manage to follow the airspeed reference exactly, so an error of 0.15m

s
is not that important.

Second, by increase, the element in Q, the position error is less prioritized. Looking at
the gain matrix in equation 221 this element is already high. Overall, following the path is
considered more important. For the path parameter, from section 4.1, is driven to zero. This
is achieved in figure 33b. Note that the value only reaches zero at the end. This is because
the switch mechanism uses this z1 value to change waypoints. In figure 33c is the wind used
in the simulation.

−100

0

100

Er
ro

r n
or

th
 [m

]

en

−100

0

100

Er
ro

r e
as

t [
m

]

ee

0 25 50 75 100 125 150 175
Time [s]

−2

0

Er
ro

r d
ow

n
[m

]

ed

(a) North, east and down error

−0.15

−0.10

−0.05

0.00

Er
ro

r a
irs

pe
ed

 [m
/s

] eVa

0 25 50 75 100 125 150 175
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Er
ro

r p
at

h
pa

ra
m

et
er

 [-
]

ez1

(b) Airspeed and path param-
eter error

−5

0

5

W
in

d
no

rth
 [m

/s
]

wn

0

5

W
in

d
ea

st
 [m

/s
]

we

0 25 50 75 100 125 150 175
Time [s]

0

5

W
in

d
do

wn
 [m

/s
]

wd

(c) Simulated wind

Figure 33: Simulation results for the kinematic model in the NMPC for straight line path

5.4.2 Dynamic model in NMPC

This model is described in section 4.2.3. Also, here the gain matrix needs to be defined.
Here the element on en and ed are low compared to the others. If these elements were
higher, the constraint would be violated. They are therefore reasonably low. The element

Page: 67

5.4 Straight line path

on ed is the highest and is therefore prioritized the most. Compared to the kinematic model,
the element on airspeed error is much less. In the dynamic model, the UAV airspeed is
feedback, and hence not constant, see figure 34b. Therefore this is also reasonably low
together with the element on the path parameter. The gain matrix on the states are

Q = diag
[
1e− 2 1e− 2 1e1 1 1

]
(223)

which penalize the en, ee, ed, Va − Va,ref and z1, respectively.

For the matrix R the element is resonable cheap. The rudder is not used.

R = diag
[
1 1 1e− 3 1e− 1 1e− 1

]
(224)

penalize the δ̇e, δ̇a, δ̇r, δ̇t and v, respectively. The control architecture can be seen in figure 17.

The OCP errors can be seen in figure 34. Also here the position errors converge to zero,
seen in figure 34a. There are some oscillation for errors in north and east.

For the airspeed error in figure 34b this oscillates much more than seen in the second-order
kinematic model NMPC. This is because here, the UAV airspeed is used in feedback to the
NMPC, and hence the NMPC uses this to find the optimal throttle input which is applied to
the UAV. The kinematic model uses internal NMPC states as feedback and is, therefore,
oscillates much less. To compare the airspeed error for the kinematic and dynamic, the low-
level airspeed control must be used for the kinematic model. In figure 34c is wind used in
the simulation.

−100

0

100

Er
ro

r n
or

th
 [m

]

en

−100

0

100

Er
ro

r e
as

t [
m

]

ee

0 25 50 75 100 125 150 175
Time [s]

−2

0

2

Er
ro

r d
ow

n
[m

]

ed

(a) North, east and down error

−4

−2

0

2

Er
ro

r a
irs

pe
ed

 [m
/s

] eVa

0 25 50 75 100 125 150 175
Time [s]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Er
ro

r p
at

h
pa

ra
m

et
er

 [-
]

ez1

(b) Airspeed and path param-
eter error

−5

0

5

W
in

d
no

rth
 [m

/s
]

wn

0

5

W
in

d
ea

st
 [m

/s
]

we

0 25 50 75 100 125 150 175
Time [s]

−2.5

0.0

2.5

W
in

d
do

wn
 [m

/s
]

wd

(c) Simulated wind

Figure 34: Simulation results for the dynamic model in the NMPC for straight line path

5.4.3 VFB controller

This controller is described in section 4.4.2 and is used to compare against the two NMPC
for the straight-line path. The control architecture can be seen in figure 20.

The error can be seen in figure 35a. Here the error is the cross-track error defined in figure 21
which is the orthogonal distance to the path. This error can be seen converging to zero. The

Page: 68

5.5 Curved path

spikes are because of the waypoints change. Can also see the error in height converging
and oscillating around zero. In figure 35b is with the simulated wind.

−20

0

20

40

60

Cr
os

s-
tra

ck
 e

rro
r [

m
] epy

0 25 50 75 100 125 150 175 200
Time [s]

−5

0

5

He
ig

ht
 e

rro
r [

m
] ed

(a) Cross-track and height error

0

5

W
in

d
[m

/s
] we

−5

0

5

W
in

d
[m

/s
] wn

0 25 50 75 100 125 150 175 200
Time [s]

−5

0

5

W
in

d
[m

/s
] wd

(b) Simulated wind

Figure 35: Simulation results for VFB controler for straight line path

5.5 Curved path

Here the curved path results are presented. The curved path is defined by a B-spline where
the internal control points are

i N E D
1 256.74 304.97 -224.11
2 396.57 540.89 -246.28
3 402.75 1008.09 -252.97
4 207.21 1181.91 -207.32
5 -362.13 1231.61 -187.19
6 -638.83 858.50 -243.86
7 -758.06 159.67 -255.82
8 -240.20 154.87 -221.94

Table 13: Internal controll points

This is used for all the curved path simulations. In figure 36 the path is shown

Page: 69

5.5 Curved path

200 400 600 800 1000 1200
East [m]

 800

 600

 400

 200

0

200

400

No
rth
 [m

] Waypoint
Internal point
Control Polygon
B-Spline

(a) NE-frame

North [m]

200 400 600 800 1000 1200
Eas

t [m
]

−800
−600

−400
−200

0
200

400

Do
wn

 [m
]

−250
−240
−230
−220
−210
−200
−190

Waypoint
Inte nal point
Cont ol Polygon
B-Spline

(b) NED-frame

Figure 36: Curved path

For the curved path, a NDGPFG is used to compare against the two NMPC. Start by looking
at the gc, and then the two NMPC. The simulation results of all the controllers performance
in NE- and NED frame is seen in figure 47.

The initializing for the two NMPC can be seen in section 4.2.5.

5.5.1 Kinematic model in NMPC with low-level autopilot

This controller uses the second-order kinematic model. For the gain matrix Q, the elements
on en and ee are much higher compared to the straight line. This is because it is expected
that the errors will be smaller in the north and east because of the continuous path. See
figure 33a compared to 37a. The element on the path parameter is less, and this is because
the whole path is longer, meaning it included the whole path compared to the straight line,
which is just segments. To drive the path parameter to zero is achieved after a longer time.
The gain matrix on states are

Q = diag
[
1e3 1e3 1e4 1e5 1e− 1

]
(225)

which penalize the en, ee, ed, Va − Va,ref and z1 − z1,ref , respectively. For the gain matrix,
R the value on the elements pitch and yaw are less, meaning that it is a more aggressive
controller, with more oscillation. Also, the virtual input v is more expensive compared to the
straight line. This is because it is wanted to have less acceleration on path parameter.

R = diag
[
1e1 1e3 1e2 1

]
(226)

penalize the V c
a , θc, ψc and v. The error plots can be seen in figure 37. Note that for the

curved path, there are no spikes because of changes in waypoints. This is seen for the

Page: 70

5.5 Curved path

errors in figure 37a and the path parameter in figure 37b. For the errors in north and east,
the error starts with a big error and converges to zero. For the error in down (height), there
is a spike of over 2m in the beginning. For the NMPC to find an optimal solution, the NMPC
minimize the cost function more by reducing the errors in north and east, compared to the
error in down. It can be seen that almost all errors converge to zero at once. So this could
be the reason for the spike at the beginning for the down error. Again, the kinematic model
airspeed error does not converge to zero, see figure 37b. The argument is the same here
since this value is so small and that the low-level airspeed control does not exactly follow
the reference, this steady-state error is accepted. The path parameter is driven to 1 for the
curved path. So the error, z1 − 1 is driven to zero, seen in figure 37b. In figure 37c is the
wind used in the simulation.

−100

−50

0

Er
ro

r n
or

th
 [m

]

en

−100

−50

0

Er
ro

r e
as

t [
m

]

ee

0 25 50 75 100 125 150 175
Time [s]

0

2

Er
ro

r d
ow

n
[m

]

ed

(a) North, east and down error

−0.6

−0.4

−0.2

0.0

0.2

Er
ro

r a
irs

pe
ed

 [m
/s

]

eVa

0 25 50 75 100 125 150 175
Time [s]

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
at

h
pa

ra
m

et
er

 [-
]

ez1

(b) Airspeed and path param-
eter error

−5

0

W
in

d
no

rth
 [m

/s
]

wn

0

5

W
in

d
ea

st
 [m

/s
]

we

0 25 50 75 100 125 150 175
Time [s]

−5

0

5

W
in

d
do

wn
 [m

/s
]

wd

(c) Simulated wind

Figure 37: Simulation results for the kinematic model in the NMPC for curved path

5.5.2 Dynamic model in NMPC

Comparing to the straight-line path the elements on en and ee is higher. This to prevent
oscillation that occurs on the path. The element on the path parameter is less compared to
the straight-line. Here the same arguments as for the reason on the kinematic model for the
length of the path compared to the straight line. The gain matrix on states are

Q = diag
[
3e− 2 3e− 2 1e1 1 1e− 1

]
(227)

which penalize the en, ee, ed, Va − Va,ref and z1 − z1,ref , respectively. For the gain matrix R
this is almost the same as for the straight line, with the virtual input v more expensive. If
wanted less acceleration on the path, the same argument as above about the length of the
path compared to the straight line.

R = diag
[
1 1 1e− 3 1e− 1 1

]
(228)

penalize the δ̇e, δ̇a, δ̇r, δ̇t and v,respectively. The error plots can be seen in figure 38. There
is some oscillation for the errors in north, east and down. The straight-line path with the
dynamic model also had this oscillation. The error in airspeed, in figure 38b, is excepted.

Page: 71

5.5 Curved path

Even though the two big spikes at around 175s and 190s are a bit high. In figure 38c is the
wind used in the simulation.

−100

−50

0

Er
ro

r n
or

th
 [m

]

en

−100

−50

0

Er
ro

r e
as

t [
m

]

ee

0 25 50 75 100 125 150 175 200
Time [s]

−1

0

1

Er
ro

r d
ow

n
[m

]

ed

(a) North, east and down error

−6

−4

−2

0

2

Er
ro

r a
irs

pe
ed

 [m
/s

]

eVa

0 25 50 75 100 125 150 175 200
Time [s]

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
at

h
pa

ra
m

et
er

 [-
]

ez1

(b) Airspeed and path param-
eter error

−5

0

5

W
in

d
no

rth
 [m

/s
]

wn

0

5

W
in

d
ea

st
 [m

/s
]

we

0 25 50 75 100 125 150 175 200
Time [s]

−5

0

W
in

d
do

wn
 [m

/s
]

wd

(c) Simulated wind

Figure 38: Simulation results for the dynamic model in the NMPC for curved path

5.5.3 NDGPFG

This controller is described in section 4.4.3 with the control architecture seen in figure 25. It
is used to compare against the two NMPC for curved path. The boundary-laywer thickness
δBL = 50 and guidance gain k = 0.09. The error plot can be seen in figure 39a, where all the
errors converge to zero. In figure 39b is the wind used in the simulation.

0

50

100

Er
ro

r n
or

th
 [m

]

en

0

50

100

Er
ro

r e
as

t [
m

]

ee

0 25 50 75 100 125 150 175
Time [s]

−0.25

0.00

0.25

Er
ro

r d
ow

n
[m

]

ed

(a) North, east and down error

−5

0

5

W
in

d
no

rth
 [m

/s
]

wn

−5

0

5

W
in

d
ea

st
 [m

/s
]

we

0 25 50 75 100 125 150 175
Time [s]

0

5

W
in

d
do

wn
 [m

/s
]

wd

(b) Simulated wind

Figure 39: Simulation results for the gc for curved path

Page: 72

5.6 Discussion

5.6 Discussion

5.6.1 Why use internal state vs. UAV states in the kinematic model NMPC

In this control architecture, there is an autopilot in the lower-level loop to track the reference
from the NMPC. Feedback to the NMPC is the updated error and virtual state z1. This
means that the position of the UAV is feedback to the controler, which again updates the
virtual states and errors.

For pitch and yaw, the internal NMPC states are feedback. The reason for this is because
the frequency used in the NMPC and autopilot is not the same. This means that there is an
overshoot when using the UAV state as feedback, see figure 40. Looking at the NE-frame at
figure 40a the UAV is oscillating on the path, where the yaw angle has overshoot. The error
in down is good, which can be seen in figure 40b and the errors in figure 40c.

The errors en and ee are oscillating around zero. Note that the big spike is because of the
mapping of the yaw angle in ψ ∈ (−180, 180), because the UAV range is ψUAV ∈ (−180, 180).
Therefore, this error spikes happening at 80s is more a cosmetic error.

Looking at the figure 27b the yaw-controler can not follow the reference precisely because
of the wind, where the yaw angle is oscillating. Because of that, this motivates the internal
NMPC state feedback instead of UAV state feedback.

To not have state feedback to the control is only valid when there is assumed no parametric
disturbance.

−200 0 200 400 600 800 1000 1200 1400
East [m]

−600

−400

−200

0

200

400

No
rth

 [m
]

North East frame
Path
reference
UAV

(a)

North [m]

0 200 400 600 800 10001200
East [

m]

−600
−400

−200
0

200
400

Do
wn

 [m
]

−210
−208
−206
−204

−202

−200

NED frame Path
UAV

(b)

−100

−50

0

50

[m
]

en

−100

−50

0

[m
]

ee

0 50 100 150 200

−0.5

0.0

0.5

[m
]

eh

0 50 100 150 200

15

20

25

[m
/s

]

Va

Va
ubx
lbx

Error NMPC

(c)

Figure 40: UAV state feedback

5.6.2 Performance measurements

When looking at the performance, the following error measurements are used:

Jei = 1
T

T∑
0
|ei|dt (229)

Page: 73

5.6 Discussion

where dt is the time step of the simulation and T is simulation time. This is repeated for both
the use of actuators and Euler angles error for the autopilot. Since the NMPC do not have
a height controler, this is not used for comparison. The two following equation are for the
actuators and Euler angles

Jδi = 1
T

T∑
0
|δi|dt (230)

JeΘi = 1
T

T∑
0
|eΘi |dt (231)

5.6.3 Straight line

Converge to path with different start position
Test all the controllers to converge to path from different start positions. This can be seen in
figure 41. Here, the VFB converge the slowest for all the starts and the kinematic the fastest.
The dynamic has overshoot at start 2 and 3 compared to the kinematic and VFB that has no
overshoot. The VFB for start 3 does not converge to path because it changes path segment
before touching onto the path.

500 550 600 650 700 750 800 850
East [m]

200

250

300

350

400

450

No
rth

 [m
]

VFB
Kinematic
Dynamic

(a) Start 1

100 200 300 400
East [m]

100

150

200

250

300

350

400

No
rth

 [m
]

VFB
Kinematic
Dynamic

(b) Start 2

550 600 650 700 750 800 850 900 950
East [m]

200

250

300

350

400

450

No
rth

 [m
]

VFB
Kinematic
Dynamic

(c) Start 3

Figure 41: Converge to straight-line path for different start configurations

Simulation study and compare performance
For the straight-line path, all the controler performed well. The simulated results for the path
can be seen in figure 42. In figure 42a it can be seen in the zoom windows that all the
controllers are very close to the path. Looking at the NED frame, in figure 42b, the VFB
controller is off in height at the switch compared to the two NMPC who performs better at
the switch. It can also be seen that the dynamic controler is oscillating just before waypoint
3 and at the end of the simulation. This can also be seen in figure 42b and 38a.

Page: 74

5.6 Discussion

−500 0 500 1000 1500
East [m]

−600

−400

−200

0

200

400

No
rth

 [m
]

VFB
Kinematic
Dynamic

(a) NE-frame

North [m]0 200 400 600 800 1000 1200

East [m]
−600

−400
−200

0
200

400

Down [m
]

−240

−230

−220

−210

VFB
Kinematic
Dynamic

(b) NED-frame

Figure 42: Simulation results for straight-line path for VFB and the two NMPC

Comparing the error between VFB and the two NMPC is difficult because the VFB use the
cross-track error while the NMPC uses error in north, east and down. Another point is that at
the switch, the start error for the VFB is less than the start for the two NMPC. This is seen in
figure 33a , 34a and 35a. This is because the start point on the line for the NMPC is placed
further onto the path. Which is described in section 4.2.4 for the switch. Therefore, this initial
error after switch for the two NMPC is bigger. This is done so that the path is cut within the
predetermine fillet radius for a smoother convergence.

Page: 75

5.6 Discussion

To have a better error comparison, looping through the data and using the path parame-
ter initializing to find the closest point to path, the error in north, east and down can be
found. Comparing the controller error and corrected error for the two NMPC can be seen
in figure 43. One can see for both the kinematic and dynamic that the initial error after the
switch is much smaller. Note that since the VFB do not have an error in north and east, this
comparison is not included in figure 43.

−100

0

100

Er
ro

r n
or

th
 [m

]

corr
cntr

−100

0

100

Er
ro

r e
as

t [
m

]

corr
cntr

0 25 50 75 100 125 150 175
Time [s]

−10

0

Er
ro

r d
ow

n
[m

]

corr
cntr

(a) Kinematic model NMPC

−100

0

100

Er
ro

r n
or

th
 [m

]

corr
cntr

−100

0

100

Er
ro

r e
as

t [
m

]

corr
cntr

0 25 50 75 100 125 150 175
Time [s]

−5

0

5

Er
ro

r d
ow

n
[m

]

corr
cntr

(b) Dynamic model NMPC

Figure 43: The control error vs the corrected error for straight-line path

Now comparing the corrected kinematic and dynamic error with the VFB corrected error can
be seen in figure 44. Here the initial errors after the switch are the same, and the comparison
is much better.

0 25 50 75 100 125 150 175
Time [s]

−100

−75

−50

−25

0

25

50

75

Er
ro

r n
or

th
 [m

]

VFB
Kinematic
Dynamic

−1
0

(a) Error north

0 25 50 75 100 125 150 175
Time [s]

−100

−75

−50

−25

0

25

50

75

100

Er
ro

r e
as

t [
m

]

VFB
Kinematic
Dynamic

−1
0

(b) Error east

0 25 50 75 100 125 150 175
Time [s]

−10

−5

0

5

10

15

Er
ro

r d
ow

n
[m

]

VFB
Kinematic
Dynamic

(c) Error down

Figure 44: Comparing the corrected error for VFB and the two NMPC for straight-line path

Looking at the performance error, Jei, in table 14 the errors for the VFB is the highest for
north, east and down. The dynamic has the smallest error in all.

Page: 76

5.6 Discussion

Var VFB NMPC Kinematic NMPC Dynamic
Jen 6.436 5.924 5.250
Jee 8.642 8.234 7.798
Jed 1.397 0.8241 0.6523

Table 14: Position error performance for the controllers at straight-line path in m

Both the VFB and kinematic model NMPC use the same lateral autopilot, while different
for the longitudinal. Comparing the lateral, the VFB has a course command, while NMPC
heading. In figure 45a the two different commanded angels given to the autopilot is seen.
For the VFB the course angel is more stable, with constant reference. For the NMPC the
reference is oscillating more, and this affects the commanded roll angle in figure 45b, where
the oscillating is much more than the VFB. This is also seen in table 15. Her error values
are much less for the VFB. Also, note that the error value for yaw/course is much higher
compared to the pitch and roll. This is also seen in figure 27b and 28b that the autopilot is
struggling more to follow reference on yaw.

0 25 50 75 100 125 150 175
Time [s]

−200

−150

−100

−50

0

50

100

150

200

ψc
 [d

eg
]

Kinematic
VFB

(a) Commanded course angle for VFB and head-
ing for NMPC

0 25 50 75 100 125 150 175
Time [s]

−20

−10

0

10

20

30

ϕ
c [

de
g]

Kinematic
VFB

(b) Commanded roll angle

Figure 45: Comparing the commanded angles from the VFB and the kinematic model NMPC
for straight line path

Var VFB NMPC Kinematic
Jeθ 1.532 6.270
Jeψ 13.55 22.30
Jeφ 0.7815 9.839

Table 15: Autopilot error performance for straight line path in deg

In table 16 is the use of actuators. The dynamic use less throttle and elevator, while the VFB

Page: 77

5.6 Discussion

uses less aileron. For the kinematic NMPC the high oscillating commanded angles for the
kinematic is the reason for the much more use of aileron and also an elevator.

Var VFB NMPC Kinematic NMPC Dynamic
Juδa 1.603 23.15 2.076
Juδe 3.233 12.64 2.717
Juδt 0.1528 0.6100 0.1137

Table 16: Use of actuators for straight-line path in deg for aileron and elevator and dimen-
sionless throttle

5.6.4 Curved path

Converge to path with different start position
In figure 46 the controllers all converge to path. Can see that for start 1, both the NDGPFG
and the dynamic overshoot, while the kinematic has just a small overshoot onto the path.
This is also repeated in start 2 where the kinematic first converge, then the dynamic, and
last the NDGPFG with overshoot. In start 3, the NDGPFG goes almost perpendicular to the
path. While the dynamic aims further to the right. Also, here the kinematic converge first,
then the NDGPFG and last the dynamic.

400 500 600 700 800
East [m]

200

250

300

350

400

450

500

550

No
rth

 [m
]

NDGPFG
Kinematic
Dynamic

(a) Start 1

0 100 200 300 400 500
East [m]

50

100

150

200

250

300

350

400

450

No
rth

 [m
]

NDGPFG
Kinematic
Dynamic

(b) Start 2

400 500 600 700 800
East [m]

150

200

250

300

350

400

450

500

No
rth

 [m
]

NDGPFG
Kinematic
Dynamic

(c) Start 3

Figure 46: Converge to curved path for different start configurations

Simulation study and compare performance
Looking at the curved path and how the controllers worked can be seen in figure 47. Can
be seen in figure 47a and figure 38a that the dynamic is oscillating on path on multiple
cases. Simulation without wind removes this oscillation, so the effect of wind is causing
this phenomenon. Both the kinematic and the NDGPFG is handling the wind better and
are much tighter to the path. This is also seen in figure 48. Also, note that the dynamic is
taking a long turn at the start, compared to the kinematic and NDGPFG. This is the same
that occurred in figure 46 where the dynamic has a bigger turning than compared to the
kinematic. This start can also be seen in error figure 48a where there is an overshoot for the
dynamic.

Page: 78

5.6 Discussion

−500 0 500 1000 1500
East [m]

−600

−400

−200

0

200

400

No
rth

 [m
]

NDGPFG
Kinematic
Dynamic

(a) NE-frame

North [m]0 200 400 600 800 1000 1200

East [m]
−600

−400
−200

0
200

400

Down [m
]

−240

−230

−220

−210

−200

NDGPFG
Kinematic
Dynamic

(b) NED-frame

Figure 47: Simulation results for curved path

Looking at figure 48 it is easy to see the oscillation for the dynamic controler. This is seen
at 50s, 140s, 170s and 190s in figure 48a and 48b. In down, compared to the NDGPFG and
kinematic, the dynamic has some big errors. Where the value exceeds 1m at times.

Page: 79

5.6 Discussion

0 25 50 75 100 125 150 175 200
Time [s]

−100

−75

−50

−25

0

25

50

75

100

Er
ro

r n
or

th
 [m

]

NDGPFG
Kinematic
Dynamic

0
1

(a) Error in north

0 25 50 75 100 125 150 175 200
Time [s]

−100

−75

−50

−25

0

25

50

75

100

Er
ro

r e
as

t [
m

]

NDGPFG
Kinematic
Dynamic

−1
0

(b) Error in east

0 25 50 75 100 125 150 175 200
Time [s]

−1

0

1

2

3

Er
ro

r d
ow

n
[m

]

NDGPFG
Kinematic
Dynamic

(c) Error in down

Figure 48: Compared error for the NDGPFG and the two NMPC for curved path

The performance error is seen in table 17. Although the oscillations, the dynamic NMPC
had smaller errors than the NDGPFG for north and down. The kinematic had the smallest
error for north and east, and NDGPFG for down.

Var gc NMPC Kinematic NMPC Dynamic
Jen 2.275 1.790 1.615
Jee 2.995 2.475 2.741
Jed 0.057 0.0722 0.184

Table 17: Position error performance for the controllers at curved path in m

Also, the NDGPFG uses the same autopilot in the lateral direction, so comparing the com-
manded yaw angle against the NMPC is seen in figure 49. Also, here the commanded yaw
angle is oscillation more than the NDGPFG, see figure 49a. Which again leads to more os-
cillation in the commanded roll, see figure 49b. Note also that the reason that the NDGPFG
is finish before the NMPC, is because of the airspeed been different.

0 25 50 75 100 125 150 175
Time [s]

−150

−100

−50

0

50

100

150

ψc
 [d

eg
]

Kinematic
NDGPFG

(a) Commanded yaw angle

0 25 50 75 100 125 150 175
Time [s]

−20

0

20

40

60

ϕ
c [

de
g]

Kinematic
NDGPFG

(b) Commanded roll angle

Figure 49: Comparing the commanded angles from the NDGPFG and the kinematic model
NMPC for curved path

Page: 80

5.6 Discussion

Looking at the angle errors in the autopilot, this is seen in table 18. Here it is easier to see
that the errors for the kinematic are much higher than for the NDGPFG.

Var VFB NMPC Kinematic
Jeθ 1.144 9.048
Jeψ 1.364 20.813
Jeφ 1.2026 13.546

Table 18: Autopilot error performance for curved path in deg

This leads to the more use of actuators, which is seen in table 19. One can see that for
aileron, the dynamic is using the less amount. The NDGPFG is using the least amount
of elevator and throttle. The dynamic NMPC is the only controler where there are explicit
constraints on the use of actuators. As it is seen in table 16 and 19 that the dynamic do not
have drastic less use of these actuators. The goal in this thesis has not been to use the least
amount of actuators. Hence, the gain matrix R seen in section 5.4.2 and 5.5.2 is not making
the use of input expensive.

Var gc NMPC Kinematic NMPC Dynamic
Juδa 1.951 31.82 1.929
Juδe 2.370 12.05 2.690
Juδt 0.0338 0.5478 0.1099

Table 19: Use of actuators for curved path in deg for aileron and elevator and dimensionless
throttle

5.6.5 Complexity of path and models

The difference between the straight and curved path is that the curved path continues, mean-
ing there is no need for a switch between line segments. For a MPC the optimal input is found
over a time horizontal. In this time horizontal, the MPC do not know if a switch is inside this
time horizon. Meaning that the optimal path continues beyond this switch point. This is il-
lustrated in figure 50. Here, the thick black line is the actual movement, and the dotted lines
are the evolution of the path over time horizontal. It is hard to see, but the line pointing in
the northeast direction at the corner are dotted lines. This is where the optimal route goes
beyond the switch point and the waypoint itself.

Page: 81

5.6 Discussion

600 650 700 750 800 850 900 950
East

200

250

300

350

400

450

500
No

rth

Path0
Path1
Path2
Path3

Figure 50: Optimal path straight ahead

From figure 42 the most significant deviation from path is at the switch. This is, of course,
obviously when it is designed to cut corners, but in this corner-cutting, the controler is free
to calculated the converge to the path. From table 14 and 17 can see that the error for the
curved path is much lower, which is excepted.

There is also a difference in complexity between the straight line and the curved path. Cal-
culating the jacobian of the straight-line path is easily done, even by hand. For the curved
path, this needs to be evaluated at every iteration because the curves, meaning it is more
complex. This is seen when looking at the elapsed time comparing the straight line and the
curved, see figure 51. The mean time at each iteration is higher for the curved compared to
the straight for the same model.

Within the NMPC the complexity of the dynamic model is higher than compared to the kine-
matic, which is simplified. This is also seen in the calculation time in figure 51 where the
dynamic is using the most calculation time. Including in figure 51 is also a first-order kine-
matic model. So it is easy to see that the more complex, the more time. In this thesis,
the NMPC is running at a frequency of 20Hz, meaning every 0.05s, which means that from
figure 51b the only control that could have been used is the kinematic first-order model in
NMPC. Note that this simulation time is very dependent on the system it is running on. So
this does not mean that the controls using more time than 0.05s could not be used. This is
just meant as an example.

Page: 82

5.6 Discussion

0 20 40 60 80 100
Iteration

0.05

0.10

0.15

0.20

Ti
m

e
[s

]

s - Kin O1

s - Kin O2

s - Dyn
c - Kin O1

c - Kin O2

c - Dyn

Elapsed time

(a)

S - Kin O1 S - Kin O2 S - Dyn C - Kin O1 C - Kin O2 C - Dyn
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ti
m

e
[s

]

Mean elapsed time

(b)

Figure 51: Elapsed time for the NMPC comparing the complexity of both the models and the
straight vs curved path. S = straight, C = curved

The whole goal of the NMPC and the OCP is to minimize the cost function, equation 92.
Can see that for all models, the cost function is minimized, which is expected.

0 20 40 60 80 100
Iteration

102

103

104

105

106

107

108

lo
g(

co
st

)

S - Kin O1

S - Kin O2

S - Dyn
C - Kin O1

C - Kin O2

C - Dyn

Cost functions

Figure 52: Cost

Page: 83

6 Conclusion

In this thesis, the main focus has been control algorithm design for path following for fixed-
wing UAV influenced by wind. A solution based on a simplified kinematic model and a
full dynamic model used in the NMPC to solve the path following problem and compared
against a gc. The path has been straight and curved. Seen in section 5 that both NMPC
outperformed the VFB controller on error from path in the straight line. This was also the
case for the curved where the two NMPC outperformed the NDGPFG controller, except in
height.

Also a mechanism to initialize the path variable and for switching between path segments
has been has been successful made.

Kinematic model :

The kinematic is a more aggressive controller, where the use of actuators was much
higher than in the dynamic and geometric controllers. This could lead to wear and tear
on the actuators and is not wanted. With the high pitch and yaw angles oscillation, this
could mean that the simplified model is not a good enough approximating for the UAV.

The error from path is good and outperforms the gc for both straight and curved path.

Dynamic model :

This controller did good in straight and had the lowest path error, and used acceptable
actuators. The controller did have some unexpected oscillation, but they were small
enough to be accepted. In the curved path, this controller oscillation several times,
especially in height where the errors were greater than 2m. This could be improved.
If the overall goal is to example, save fuel or reduce the use of actuators, a higher
penalizing on the R matrix could be done.

Future work

Kinematic model :

With the high use of actuators, a low-pass filter could be introduced to reduce this
use. The simplified kinematic model could be further developed to minimize the high
oscillation. In this thesis, the model identification was done on the closed-loop dynamic
of UAV without wind. It could be tried to include wind in the model identification where
the UAV gets commanded steps under wind conditions. Then the model could be fitted
to the UAV closed-loop dynamic response. Could also include more validation sets
to test the model, with more configuration of step inputs with different patterns and
magnitude. An analysis of how the disturbance in the model affects the NMPC should
also be conducted. This can describe how much impact a possible model noise makes
the oscillation in states. Moreover, the simplified kinematic model structure could be
changed. One could treat the airspeed as an input to the NMPC instead of a part of

Page: 84

it. However, then the airspeed would have been constant over the time horizontal, and
one of the beneficial properties of the optimal controller be gone. A different approach
could be to include the dynamic airspeed controller with a kinematic model.

One could also use feedback from the UAV instead of the internal NMPC states.

Dynamic model :

In the curved path, this controller oscillation several times. This could be improved.
This also happens, but at a smaller scale for the straight-line path. The gain matrix
Q and R could have been tried to tune better. The best guess would be to try not to
update the path parameter at every iteration and tune the path parameter z1 in element
in matrix Q and virtual input v in matrix R better. Then maybe a better behaviour on
the path could be achieved.

Other things : For better comparisons, the controller could have been simulated with the
same wind.

Page: 85

7 Attachments

7.1 Overview of controller in the repository UAVlab

All the controllers are found the repository UAVlab autofly in the branch path following thomas

Kinematic model NMPC

For straight:

main : Thomas main NMPC kinematisk straight.py

acados : acados settings kinematisk straight.py

model : model NMPC kinematisk straight.py

For curved:

main : Thomas main NMPC kinematisk bspline.py

acados : acados settings kinematisk bspline.py

model : model NMPC kinematisk bspline.py

Dynamic model NMPC

For straight:

main : Thomas main NMPC dynamic straight.py

acados : acados settings dynamikk straight.py

model : model NMPC dynamisk UAV.py

For curved:

main : Thomas main NMPC dynamic bspline.py

acados : acados settings dynamikk Thomas bspline.py

model : model NMPC dynamisk UAV bspline.py

Page: 86

7.2 Skywalker X8 parameters

VFB

main : Thomas main vector field path.py

NDGPFG

main :Thomas main curved GUIDE.py

7.2 Skywalker X8 parameters

From [23] the values for the Skywalker X8 is collected, see table 20.

What Value
ρ 1.2250
c 0.3571
S 0.7500
b 2.1000
Clp -0.4042
Cnp 0.0044
Cmq -1.3012
Cmα -0.4629
Cmδe -0.2292
CD0 0.0197
CDα 0.0791
CDδe 0.0633
Sprop 0.1018
Cprop 1
kmotor 40
Jx 0.335
Jy 0.140
Jxz -0.029
m 3.3640

Table 20: Parameters Skywalker X8 [23]

Page: 87

7.3 Differentiate a rotation matrix

7.3 Differentiate a rotation matrix

Example 7.1. Differentiate a rotation matrix.
To find the time differentiation of a rotation matrix, have that

d

dt
R(t) = S(w(t))R(t) (232)

Where, R is a rotation matrix and S(·) is a skew symmetric matrix.
Starting with rotation matrix Rb

v

d

dt
Rb
v = d

dt
[Rb

v2(φ)]Rv2
v1(θ)Rv1

v (ψ) +Rb
v2(φ) d

dt
[Rv2

v1(θ)]Rv1
v (ψ) +Rb

v2(φ)Rv2
v1(θ) d

dt
[Rv1

v (ψ)]

=S(φ̇i)Rb
v(Θ) + S(Rb

v2(φ)θ̇j)Rb
v(Θ) + S(Rb

v2(φ)Rv2
v1(θ)ψ̇k)Rb

v(Θ)
=[S(φ̇i) + S(Rb

v2(φ)θ̇j) + S(Rb
v2(φ)Rv2

v1(θ)ψ̇k)]Rb
v(Θ)

Here we have utilize that fact that RS(a)RT = S(Ra). Using equation 232 we have that
the rotation velocity is given by:

ω = φ̇i +Rb
v2(φ)θ̇j +Rb

v2(φ)Rv2
v1(θ)ψ̇k

Where
i =[1 0 0]T

j =[0 1 0]T

k =[0 0 1]T
(233)

This represent the rotation rotate, so when say that i is in the first part, this is because
this rotation matrix is around x. So j is around y and k is around z.
This gives:

ω =

φ̇0
0

+Rb
v2(φ)

0
θ̇
0

+Rb
v2(φ)Rv2

v1(θ)

0
0
ψ̇



Page: 88

7.4 Time differentiation a vector

7.4 Time differentiation a vector

Example 7.2. Time differentiation a vector:
Given a vector expressed in body, where i,j,k is defined in equation 233

p = pxib + pyjb + pzkb (234)

Then the time differentiation in the inertia frame, i, is

d

dti
p = d

dtb
p + ωb/i × p (235)

Page: 89

7.5 Relativ degree

7.5 Relativ degree

Example 7.3. Given the system

ẋ =

 −x1 + 2u
x3

−x3 + x2x3 + u

 (236)

y = x2 (237)

Rewrite the system as
ẋ =f(x) + g(x)u
y =h(x)

(238)

Then the matrix f(x) and g(x) is defined as:

ẋ =

 −x1
x3

−x3 + x2x3


︸ ︷︷ ︸

f(x)

+

2
0
1


︸︷︷︸
g(x)

(239)

and h(x) = x2.

Lfh =∂h
∂x
ẋ

=∂h
∂x
f + ∂h

∂x
gu

=
[
0 1 0

]  −x1
x3

−x3 + x2x3

+
[
0 1 0

] 2
0
1

u
=x3

(240)

L1
fh =∂Lf

∂x
f + ∂h

∂x
gu

=
[
0 0 1

]  −x1
x3

−x3 + x2x3

+
[
0 0 1

] 2
0
1

u
=− x3 + x2x3 + u

(241)

Here we see that input u appears, and equation 77 holds, and hence the system has
a relative degree ρ = 2.

Page: 90

7.6 Kinematic model path followability

7.6 Kinematic model path followability

Rewrite the system as
ẋ =f(x) + g(x)u
y =h(x)

Then the matrix f(x) and g(x) is defined as:

ẋ =



Vacos(θ)cos(ψ) + wn
Vacos(θ)sin(ψ)we
−Vasin(θ) + wd

bV a(−Va)
bθ(−θ)
bψ(−ψ)
z2
0


︸ ︷︷ ︸

f(x)

+



0 0 0 0
0 0 0 0
0 0 0 0
bV a 0 0 0
0 bθ 0 0
0 0 bψ 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

g(x)


V c
a

θc

ψc

v


︸ ︷︷ ︸

u

with
y = h =

[
pn − p(z1) pe − p(z1) pd − p(z1) Va z1

]T
Where p(z1) is the path parameterization. Using Matlab the following Lie derivatives is
calculated:

Lfh(x) =


wn − p(z1)0z2 + Vacos(ψ)cos(θ)
we − p(z1)1z2 + Vacos(θ)sin(ψ)

wd − p(z1)2z2 − Vasin(θ)
z2

V c
a bVa − VabVa


Here the input V c

a appears in the last line. Note also that the the path p(z1)i the
subscript is the index.

L1
fh(x) =


V c
a bVaA− VabVaA− p(z1)0v − VabψψcB + VabψψB − VabθθcC + VabθθC

V c
a bVaB − VabVaB − p(z1)1v + Vabψψ

cA− VabψψA− VabθθcD + VabθθD
VabVas(θ)− V c

a bVas(θ)− p(z1)2v − Vabθθcc(θ) + Vabθθc(θ)
v

b2
Va(Va − V c

a)


where:

A =c(ψ)c(θ)
B =c(θ)s(ψ)
C =c(ψ)s(θ)
D =s(ψ)s(θ)

Page: 91

7.7 Path parameter initialize

Where s() and c() denote sin() and cos(). Here input appears in the four other lines.
This gives

r =
[
2 2 2 2 1

]T
(242)

Finding the matrix A given in equation 89

A(x) =



∂
∂u1
L2
fh1(x) ∂

∂u2
L2
fh1(x) ∂

∂u3
L2
fh1(x) ∂

∂u4
L2
fh1(x)

∂
∂u1
L2
fh2(x) ∂

∂u2
L2
fh2(x) ∂

∂u3
L2
fh2(x) ∂

∂u4
L2
fh2(x)

∂
∂u1
L2
fh3(x) ∂

∂u2
L2
fh3(x) ∂

∂u3
L2
fh3(x) ∂

∂u4
L2
fh3(x)

∂
∂u1
L2
fh4(x) ∂

∂u2
L2
fh4(x) ∂

∂u3
L2
fh4(x) ∂

∂u4
L2
fh4(x)

∂
∂u1
L1
fh5(x) ∂

∂u2
L1
fh5(x) ∂

∂u3
L1
fh5(x) ∂

∂u4
L1
fh5(x)


Using Matlab the matrix is

A(x) =



bVacos(ψ)cos(θ) −Vabθcos(ψ)sin(θ) −Vabψcos(θ)sin(ψ) −∂p(z1)
∂z1

bVacos(θ)sin(ψ) −Vabθsin(ψ)sin(θ) Vabψcos(ψ)cos(θ) −∂p(z1)
∂z1

−bVasin(θ) −Vabθcos(θ) 0 −∂p(z1)
∂z1

0 0 0 1
bVa 0 0 0


By inspection, the airspeed can not be 0, bVa is a positive constant, and the pitch angle
θ is constrained to not be π

2 . The jacobian of the path parameterization can not be zero,
because it must be differenctable. The heading angle ψ is constrant to be (−π, π). The
only thing making matrix A rank deficient is if θ = pi

2 , which is infeasible.
Meaning that the system 112 is followable.

7.7 Path parameter initialize

1 def z1_init (p,w1 ,w2):
2 p = np.array (p)
3 r = np.array (w1)
4 q_vec = np. array (w2)-np. array(w1)
5
6 r = r. flatten ()
7 q_vec = q_vec. flatten ()
8 q_norm = LA.norm(q_vec)
9

10 q = q_vec/ q_norm
11
12 chi_q = math. atan2 (q[1],q[0])
13 chi_q = SSA(chi_q)
14
15 e_px = np.cos(chi_q)*(p[0] -r[0])+np.sin(chi_q)*(p[1]-r[1])
16
17 return max(-1, -1 + e_px/ q_norm)

Page: 92

7.8 Switch

7.8 Switch

1 def Switch (w1 ,w2 ,w3):
2 R = 100
3
4 diff_1 = np.array(w2 -w1)
5 diff_2 = np.array(w3 -w2)
6
7 norm_1 = LA.norm(diff_1 . flatten ())
8 norm_2 = LA.norm(diff_2 . flatten ())
9

10 q_mi = diff_1 / norm_1
11 q_i = diff_2 / norm_2
12
13 angle = np. arccos (-np. transpose (q_mi) @ q_i)
14
15 pos_slutt = w2 - (R/np.tan(angle /2))*q_mi
16 diff_pos_slutt = np.array(w1 - pos_slutt)
17 len_pos_slutt = LA.norm(diff_pos_slutt . flatten ())
18
19 return -1+ len_pos_slutt / norm_1

7.9 B-spline

1 ’’’
2 Retrieved from internet :
3 https :// github .com/ casadi / casadi / issues /1484
4 ’’’
5
6 from casadi import if_else , logic_and
7 from abc import ABCMeta
8
9 class BSpline (object):

10 """
11 B- Spline base class.
12 """
13
14 __metaclass__ = ABCMeta
15
16 def basis(self , t, x, k, i):
17 """
18 Evaluate the B- Spline basis function using Cox -de Boor recursion .
19
20 Arguments :
21 x -- The point at which to evaluate
22 k -- The order of the basis function
23 i -- The knot number
24 """
25 if k == 0:
26 return if_else (logic_and (t[i] <= x, x < t[i + 1]) , 1.0, 0.0)
27 else:

Page: 93

7.9 B-spline

28 if t[i] < t[i + k]:
29 a = (x - t[i]) / (t[i + k] - t[i]) * self.basis(t, x, k - 1, i)
30 else:
31 a = 0.0
32 if t[i + 1] < t[i + k + 1]:
33 b = (t[i + k + 1] - x) / (t[i + k + 1] - t[i + 1]) * self.basis(t, x

, k - 1, i + 1)
34 else:
35 b = 0.0
36 return a + b
37
38
39 class BSpline1D (BSpline):
40 """
41 Arbitrary order , one - dimensional , non - uniform B- Spline implementation

using Cox -de Boor recursion .
42 """
43 def __init__ (self , t, w, k=3):
44 """
45 Constructor .
46
47 Arguments :
48 t -- Knot vector
49 w -- Weight vector
50 k -- Spline order
51 """
52
53 # Store arguments
54 self.t = t
55 self.w = w
56 self.k = k
57
58 def __call__ (self , x):
59 """
60 Evaluate the B- Spline at point x.
61
62 The support of this function is the half -open interval [t[0], t[-1]).
63 """
64 y = 0.0
65 for i in range(len(self.t) - self.k - 1):
66 y += if_else (logic_and (x >= self.t[i], x <= self.t[i + self.k + 1]) ,

self.w[i] * self.basis(self.t, x, self.k, i), 0.0)
67 return y

1 import numpy as np
2 from numpy import linalg as LA
3 import math
4 import casadi as ca
5 from casadi import *
6
7 from Thomas_ctrl_bspline . BsplineDefs import *
8
9 def FindMellomPoints (P1 ,P2 ,T1 ,T2):

10

Page: 94

7.9 B-spline

11 P1 = P1. flatten ()
12 P2 = P2. flatten ()
13
14 T1 = T1. flatten ()
15 T2 = T2. flatten ()
16 a = 16 - LA.norm(T1 + T2)**2
17 b = 12 * (P2 -P1) @ (T1+T2)
18 c = -36 * LA.norm(P2 -P1)**2
19
20 alpha = (-b+math.sqrt(b**2 -4*a*c)) /(2*a)
21
22 mel_P1 = P1 + 1/3* alpha * T1
23 mel_P2 = P2 - 1/3* alpha * T2
24
25 return [mel_P1 , mel_P2]
26
27
28 def alpha(q00 ,qkk ,q11 ,q22):
29 ’’’
30 q0 = q_k -1
31 qk = q_k
32 q1 = q_k +1
33 q2 = q_k +1
34
35 ’’’
36 return LA.norm(np.cross(q00 ,qkk)) / (LA.norm(np.cross(q00 ,qkk)) + LA.

norm(np.cross(q11 ,q22)))
37
38
39
40 def T_u_v(alpha ,qkk ,q11):
41 ’’’
42 unit tangent vector of V_n
43 qk = q_k
44 q1 = q_k +1
45 ’’’
46 V = (1- alpha)*qkk + alpha*q11
47 return V/LA.norm(V)
48
49
50 def PathGenerator (Q):
51 ’’’
52 Input:
53 Q --> ndarray
54 Output :
55 3x SX. Function
56 ’’’
57
58 nQ = len(Q)
59
60 q = dict ()
61
62 for k in range (1,nQ):
63 q[’{0} ’. format (k)] = Q[k]-Q[k -1]
64

Page: 95

7.9 B-spline

65 q[’0’] = 2*q[’1’] - q[’2’]
66 q[’-1’] = 2*q[’0’] - q[’1’]
67
68
69 q[str(nQ)] = 2*q[str(nQ -1)] - q[str(nQ -2)]
70 q[str(nQ +1)] = 2*q[str(nQ)] - q[str(nQ -1)]
71
72 new_points = []
73
74 xPoints ,yPoints , zPoints = [] ,[] ,[]
75
76 xPoints . append (Q [0][0])
77 yPoints . append (Q [0][1])
78 zPoints . append (Q [0][2])
79
80 u_hat = dict ()
81 u_hat[str (0)] = np.array ([0 ,0 ,0])
82
83 for k in range (0,nQ -1):
84 a1 = alpha(q[str(k -1)],q[str(k)],q[str(k+1)],q[str(k+2)])
85 T1 = T_u_v(a1 ,q[str(k)],q[str(k+1)])
86
87 a2 = alpha(q[str(k)],q[str(k+1)],q[str(k+2)],q[str(k+3)])
88 T2 = T_u_v(a2 ,q[str(k+1)],q[str(k+2)])
89
90 [n1 ,n2] = FindMellomPoints (Q[k],Q[k+1],T1 ,T2)
91
92 new_points . append ([n1 ,n2])
93
94 u_hat[str(k+1)] = u_hat[str(k)] + 3 * LA.norm(np. subtract (n1 ,Q[k]))
95
96 for corr in zip ([n1 ,n2]):
97 xPoints . append (corr [0][0])
98 yPoints . append (corr [0][1])
99 zPoints . append (corr [0][2])

100
101 xPoints . append (Q[nQ -1][0])
102 yPoints . append (Q[nQ -1][1])
103 zPoints . append (Q[nQ -1][2])
104
105 U_x = []
106 U_y = []
107 U_z = []
108 for j in range (2):
109 U_x. append (0)
110 U_y. append (0)
111 U_z. append (0)
112
113 for k in range(nQ):
114 for j in range (2):
115 U_x. append (u_hat[str(k)][0]/ u_hat[str(nQ -1)][0])
116 U_y. append (u_hat[str(k)][1]/ u_hat[str(nQ -1)][1])
117 U_z. append (u_hat[str(k)][2]/ u_hat[str(nQ -1)][2])
118
119 for j in range (2):

Page: 96

7.10 PID-gains

120 U_x. append (1)
121 U_y. append (1)
122 U_z. append (1)
123
124 x_arr = np.array(xPoints)
125 y_arr = np.array(yPoints)
126 z_arr = np.array(zPoints)
127
128 x_knot = np.array(U_x)
129 y_knot = np.array(U_y)
130 z_knot = np.array(U_z)
131
132 k = 3
133
134 bsplineX = BSpline1D (x_knot ,x_arr)
135 bsplineY = BSpline1D (y_knot ,y_arr)
136 bsplineZ = BSpline1D (z_knot ,z_arr)
137
138
139 uc = ca.SX.sym(’uc’ ,1)
140
141 bX = ca. Function (’bX’,[uc],\
142 [bsplineX (uc)])
143
144 bY = ca. Function (’bY’,[uc],\
145 [bsplineY (uc)])
146
147 bZ = ca. Function (’bZ’,[uc],\
148 [bsplineZ (uc)])
149
150 return [bX ,bY ,bZ]

7.10 PID-gains

1 import uav. models .X8 as model
2 import numpy as np
3 import math
4 P = model.P
5
6
7 def PitchGains (P,Va , integral =False):
8 rho = P[’rho ’]
9 c = P[’c’]

10 S = P[’S_wing ’]
11 Jy = P[’Jyy ’]
12 Cmq = P[’C_m_q ’]
13 Cma = P[’C_m_alpha ’]
14 Cmde = P[’C_m_delta_e ’]
15 delta_e_max = P[’elevator_max ’]
16
17 if integral :

Page: 97

7.10 PID-gains

18 e=35
19 zeta =0.707
20 else:
21 e = 15
22 zeta = 1
23
24 e_max = e * np.pi /180
25
26 a_theta_1 = - (rho*Va **2*c*S)/(2* Jy) * Cmq * c/(2* Va)
27 a_theta_2 = - (rho*Va **2*c*S)/(2* Jy) * Cma
28 a_theta_3 = (rho*Va **2*c*S)/(2* Jy) * Cmde
29
30 K_p_theta = delta_e_max /e_max * np.sign(a_theta_3)
31
32 omega_theta = math.sqrt(a_theta_2 + K_p_theta * a_theta_3)
33 K_d_theta = (2* zeta * omega_theta - a_theta_1) / a_theta_3
34 K_DC = K_p_theta * a_theta_3 / (a_theta_2 + K_p_theta * a_theta_3)
35
36 if integral :
37 K_i_theta = -0.8
38 K_d_theta = 0
39 else: K_i_theta = 0
40
41 return [K_p_theta ,K_i_theta ,K_d_theta , omega_theta ,K_DC]
42
43
44 def HeightGaings (Va ,omega_p ,K_DC ,bwsep = 10, zeta = 0.707) :
45 omega_h = 1/ bwsep * omega_p
46
47 K_p_h = 2* zeta* omega_h /(Va*K_DC)
48 K_i_h = omega_h **2/(Va*K_DC)
49 K_d_h = 0
50
51 return [-K_p_h ,-K_i_h ,-K_d_h]
52
53
54 def RollGains (P,Va ,zeta= 1.8, e = 15):
55 rho = P[’rho ’]
56 S = P[’S_wing ’]
57 b = P[’b’]
58 Clp = P[’C_l_p ’]
59 Cnp = P[’C_n_p ’]
60 Clda = P[’C_l_delta_a ’]
61 Cnda = P[’C_n_delta_a ’]
62 Jz = P[’Jzz ’]
63 Jxz = P[’Jxz ’]
64 Jx = P[’Jxx ’]
65 T = Jx*Jz - Jxz **2
66 T3 = Jz/T
67 T4 = Jxz/T
68 Cpp = T3 * Clp + T4*Cnp
69 Cpda = T3 * Clda + T4*Cnda
70 delta_a_max = P[’aileron_max ’]
71
72 e_max = e * np.pi /180

Page: 98

7.10 PID-gains

73
74 a_roll_1 = -1/2 * rho * Va **2 * S * b * Cpp * b/(2* Va)
75 a_roll_2 = 1/2 * rho * Va **2 * S * b * Cpda
76
77 K_p_r = delta_a_max /e_max * np.sign(a_roll_2)
78 omega_r = math.sqrt(a_roll_2 * K_p_r)
79 K_d_r = (2* zeta* omega_r - a_roll_1)/ a_roll_2
80
81 return [K_p_r ,K_d_r , omega_r]
82
83
84 def YawGains (Vg ,omega_r ,bwsep= 20, zeta= 0.5):
85 omega_y = 1/ bwsep * omega_r
86 g = 9.81
87
88 K_p_yaw = 2* zeta * omega_y * Vg/g #5
89 K_i_yaw = omega_y **2 * Vg/g #1
90 K_d_yaw = 0
91
92 return [K_p_yaw ,K_i_yaw , K_d_yaw]
93
94 def VaGains (P,Va_star ,alpha_star , elevator_star , throttel_star ,freq =0.5 , zeta =

1):
95 rho = P[’rho ’]
96 S_prop = P[’S_prop ’]
97 S = P[’S_wing ’]
98 m = P[’mass ’]
99 C_D_0 = P[’C_D_0 ’]

100 C_D_alpha = P[’C_D_alpha1 ’]
101 C_d_elevator = P[’C_D_delta_e ’]
102 C_prop = P[’C_prop ’]
103 k = P[’k_motor ’]
104
105 av1 = rho * Va_star * S / m * (C_D_0 + C_D_alpha * alpha_star +

C_d_elevator * elevator_star) + rho * S_prop /m * C_prop * Va_star
106 av2 = rho* S_prop /m * C_prop * k**2 * throttel_star
107 omega = 2*np.pi * freq
108
109 K_i_Va = omega **2/ av2
110 K_p_Va = (2* zeta*omega -av1)/av2
111 K_d_Va = 0
112
113 return [K_p_Va ,K_i_Va , K_d_Va]

Page: 99

8 Bibliography

[1] Thomas Leirfall. Specialization project (ttk455) - model predictive controller for path-
following, 2020.

[2] Equinor completes world’s first logistics operation with a drone to an off-
shore installation - equinor.com. https://www.equinor.com/en/news/
20200828-drone-transport-troll.html. (Accessed on 05/03/2021).

[3] Venanzio Cichella, Isaac Kaminer, Vladimir Dobrokhodov, Enric Xargay, Naira Hov-
akimyan, and Antonio Pascoal. Geometric 3d path-following control for a fixed-wing
UAV on SO(3). In AIAA Guidance, Navigation, and Control Conference. American In-
stitute of Aeronautics and Astronautics, jun 2011.

[4] Hassan K. Khalil. Nonlinear control, 2015.

[5] Wei Ren and R.W. Beard. Trajectory tracking for unmanned air vehicles with veloc-
ity and heading rate constraints. IEEE Transactions on Control Systems Technology,
12(5):706–716, 2004.

[6] Roger Skjetne, Thor I Fossen, and Petar V Kokotović. Robust output maneuvering for
a class of nonlinear systems. Automatica (Oxford), 40(3):373–383, 2004.

[7] Cunjia Liu, Owen McAree, and Wen-Hua Chen. Path-following control for small fixed-
wing unmanned aerial vehicles under wind disturbances. International Journal of Ro-
bust and Nonlinear Control, pages n/a–n/a, dec 2012.

[8] Hongda Chen, Kuochu Chang, and Craig S. Agate. Uav path planning with tangent-
plus-lyapunov vector field guidance and obstacle avoidance. IEEE Transactions on
Aerospace and Electronic Systems, 49(2):840–856, 2013.

[9] R.W Beard and McLain T.W. Small Unmanned Aircraft : Theory and Practice. Princeton
University Press, 2012.

[10] P.B. Sujit, Srikanth Saripalli, and Joao Borges Sousa. Unmanned aerial vehicle path
following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless.
IEEE Control Systems Magazine, 34(1):42–59, 2014.

[11] Thomas Stastny, Adyasha Dash, and Roland Siegwart. Nonlinear mpc for fixed-wing
uav trajectory tracking: Implementation and flight experiments. 2017.

[12] Thomas Stastny and Roland Siegwart. Nonlinear model predictive guidance for fixed-
wing uavs using identified control augmented dynamics. In 2018 International Confer-
ence on Unmanned Aircraft Systems (ICUAS). IEEE, jun 2018.

Page: 100

https://www.equinor.com/en/news/20200828-drone-transport-troll.html
https://www.equinor.com/en/news/20200828-drone-transport-troll.html

[13] Timm Faulwasser. Optimization-based solutions to constrained trajectory-tracking and
path-following problems. 01 2013.

[14] Jun Yang, Cunjia Liu, Matthew Coombes, Yunda Yan, and Wen-Hua Chen. Optimal
path following for small fixed-wing UAVs under wind disturbances. IEEE Transactions
on Control Systems Technology, 29(3):996–1008, may 2021.

[15] Francisco Gavilan, Rafael Vazquez, and Sergio Esteban. Trajectory tracking for
fixed-wing UAV using model predictive control and adaptive backstepping. IFAC-
PapersOnLine, 48(9):132–137, 2015.

[16] Andrea Alessandretti, A. Pedro Aguiar, and Colin N. Jones. Trajectory-tracking and
path-following controllers for constrained underactuated vehicles using model predictive
control. In 2013 European Control Conference (ECC). IEEE, jul 2013.

[17] Shulong Zhao, Xiangke Wang, Daibing Zhang, and Lincheng Shen. Model predictive
control based integral line-of-sight curved path following for unmanned aerial vehicle. In
AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics
and Astronautics, jan 2017.

[18] Alessandro Rucco, A. Pedro Aguiar, Fernando Lobo Pereira, and João Borges
de Sousa. A predictive path-following approach for fixed-wing unmanned aerial vehicles
in presence of wind disturbances. In Advances in Intelligent Systems and Computing,
pages 623–634. Springer International Publishing, dec 2015.

[19] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Niels van Duijkeren, Andrea
Zanelli, Branimir Novoselnik, Jonathan Frey, Thivaharan Albin, Rien Quirynen, and
Moritz Diehl. acados: a modular open-source framework for fast embedded optimal
control. arXiv preprint, 2019.

[20] Mark Owen, Randal W. Beard, and Timothy W. McLain. Implementing dubins airplane
paths on fixed-wing. In Handbook of Unmanned Aerial Vehicles, pages 1677–1701.
Springer Netherlands, aug 2014.

[21] Thomas J. Stastny, Gonzalo A. Garcia, and Shawn S. Keshmiri. Collision and obstacle
avoidance in unmanned aerial systems using morphing potential field navigation and
nonlinear model predictive control. Journal of Dynamic Systems, Measurement, and
Control, 137(1), aug 2014.

[22] Timothy Arney. Dynamic path planning and execution using b-splines. In 2007 Third
International Conference on Information and Automation for Sustainability. IEEE, dec
2007.

[23] Kristoffer Gryte, Richard Hann, Mushfiqul Alam, Jan Rohac, Tor Arne Johansen, and
Thor I. Fossen. Aerodynamic modeling of the skywalker x8 fixed-wing unmanned aerial
vehicle, 2018.

[24] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control. 03 2016.

Page: 101

[25] Namhoon Cho, Youdan Kim, and Sanghyuk Park. Three-dimensional nonlinear dif-
ferential geometric path-following guidance law. Journal of Guidance, Control, and
Dynamics, 38(12):2366–2385, dec 2015.

[26] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control. Mathe-
matical Programming Computation, In Press, 2018.

[27] B.L. Stevens, F.L. Lewis, and E.N. Johnson. Aircraft Control and Simulation: Dynamics,
Controls Design, and Autonomous Systems. Wiley, 2015.

[28] Thor I Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley,
Hoboken, 1. aufl. edition, 2011.

Page: 102

	Introduction
	Project plan
	Limitations
	Structure of the thesis

	Notation and abbreviations
	Theory
	Kinematics and dynamics
	Path following problem
	Straight line path
	Curved path

	Successive loop closure
	Optimizing
	Nonlinear Model Predictive Control

	Control Algorithm Design
	Path parameterization
	Nonlinear model predictive path-following controler
	Optimal control problem
	Simplified kinematic model
	Dynamic model
	Straight-line path
	Curved path

	Model identification
	Geometric controllers
	Autopilot
	Path-following with vector-field based controller
	Nonlinear differential geometric path-following controller

	Gains for the autopilot controller
	Lateral-directional autopilot gains
	Longitudinal-directional autopilot gains
	Airspeed controller gains

	Results
	Tune controller
	Lateral-directional design parameters
	Longitudinal-directional design parameters
	Airspeed

	Model identification
	Introduction to simulation
	Controller configuration
	Intial states
	Wind

	Straight line path
	Kinematic model in NMPC with low-level autopilot
	Dynamic model in NMPC
	VFB controller

	Curved path
	Kinematic model in NMPC with low-level autopilot
	Dynamic model in NMPC
	NDGPFG

	Discussion
	Why use internal state vs. UAV states in the kinematic model NMPC
	Performance measurements
	Straight line
	Curved path
	Complexity of path and models

	Conclusion
	Attachments
	Overview of controller in the repository UAVlab
	Skywalker X8 parameters
	Differentiate a rotation matrix
	Time differentiation a vector
	Relativ degree
	Kinematic model path followability
	Path parameter initialize
	Switch
	B-spline
	PID-gains

	Bibliography
	

