
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Markus Rud

Power and energy consumption in
hardware implemented SPI master
devices

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet
Co-supervisor: Øystein Moldsvor

June 2021

M
as

te
r’s

 th
es

is

Markus Rud

Power and energy consumption in
hardware implemented SPI master
devices

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet
Co-supervisor: Øystein Moldsvor
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

This thesis presents an analysis of two different VHDL designs of the SPI master

device implemented onto a model of a FPGA. The analysis is focused at power and

energy consumption in the devices compared with provided functionality. The two

devices differ in their design strategy where one is created as a simple design where

only the required logic to conduct a SPI transmission are implemented. The second

one is a more complex design where it is possible to adjust transmission parameters

such as setup and hold time after implementation and a more complex interface to

the controlling logic which controls the SPI masters. The complex implementation

also implement two FIFO registers to store multiple messages during transmission and

reception.

The conducted analysis is based upon different tests in order to give an understanding

of which elements of a SPI master who impact the energy consumption in the device.

These tests look into the impact of operating frequency, communication frequency,

operation mode and alternation to the utilized logic. The designs are implemented

onto a model of a FPGA using the development tool Vivado. The two designs are also

power optimized using the build in power optimizer in Vivado.

The results from the analysis show that when implementing a SPI master, it is nec-

essary with a trade of between functionality and energy consumption. The different

implementations are analysed over a frequency span of 1 MHz to 15 MHz where it

is seen that the complex master requires 27.2% more energy than the simple master

on average. It is therefore seen that a higher complexity in the design requires more

energy. The complex master utilize more than twice as much logic, but not twice as

much energy, so the energy cost of added functionality is therefore heavily dependent

on the switching activity in the added logic. The results also show that it is preferable

to operate the tested SPI masters at the highest frequency possible within the tested

frequencies since this gives the lowest energy consumption. This result is to some ex-

tend limited by the implementation method as the implementation of the SPI master

onto a FPGA removes some potential benefits of operating the design at a low fre-

quency such as smaller transistor sizes and lower operating voltage. It is also seen that

the two SPI designs react relatively similar to adjustments to transmission parameters

such as communication frequency and operating mode since their percentage energy

difference with adjustments are approximately similar for both designs.

The analysis consist of some limitations. The SPI masters are analysed as standalone

devices not connected to any controlling device which limits the energy analysis due

to missing timing delays. The SPI masters are also relatively small designs so when

implemented on a large FPGA compared to the designs, a large static power overhead is

added which can hide the actual static power consumption for the designs themselves.

i

Sammendrag

Denne oppgaven tar for seg en analyse av to ulike VHDL-design av master enheten

p̊a en SPI-buss implementert p̊a en FPGA modell. Analysen er i hovedsak fokusert

rundt effekt og energi forbruk sammenliknet med enhetenes funksjonalitet. De to en-

hetene er designet basert p̊a ulike strategier hvor den første er designet som et simpelt

design hvor kun den nødvendige logikken for å gjennomføre en SPI-overføring er imple-

mentert. Det andre designet er et mer komplekst design hvor det er mulig å modifisere

overførings parametere etter implementasjon samt et mer komplekst grensesnitt inn

mot kontrollogikken som styrer SPI masterne. Den komplekse implementasjonen im-

plementerer ogs̊a to FIFO registre for å mellomlagre meldinger under overføring og

mottagelse.

Analysen er basert p̊a ulike tester som er gjennomført med form̊al om å skape en

forst̊aelse av hvilke elementer i en SPI master som p̊avirker energiforbruket. Disse

testene tar for seg p̊avirkningen fra driftsfrekvens, kommunikasjonsfrekvens, drifts-

modus og modifikasjon av implementert logikk. Disse designene er implementert p̊a

en modell av en FPGA ved bruk av verktøyet Vivado. Designene er ogs̊a optimalisert

med tanke p̊a effektforbruk ved bruk av den innebygde effekt-optimalisereren i Vivado.

Resultatene viser at ved implementasjon av en SPI master, er det nødvendig å vurdere

behovet for funksjonalitet opp mot energi forbruk. De ulike implementasjonene er anal-

ysert over et frekvensomr̊ade fra 1 MHz til 15 MHz hvor man kan se at den komplekse

masteren trenger gjennomsnittlig 27.2% mer energi enn den simple masteren. Dette

viser at en høyere kompleksitet gir et høyere energiforbruk. Den komplekse masteren

trenger mer enn dobbelt s̊a mye logikk, men ikke dobbelt s̊a mye energi. Dette viser at

energikostnaden er svært avhengig av svitsje-aktiviteten i den ekstra logikken. Resul-

tatene viser ogs̊a at det er gunstig å drifte de to SPI-masterne p̊a høyest mulig frekvens

innenfor det testede frekvensomr̊adet siden dette gir det laveste energiforbruket. Dette

resultatet er til en viss grad begrenset av hvordan designene er implementert siden man

ved å benytte en FPGA mister noen fordeler ved lav driftsfrekvens som mindre tran-

sistorstørrelser og lavere driftsspenning. De to designene responderer ogs̊a relativt

likt til modifikasjoner i overføringsparametere som ulik kommunikasjon frekvens og

driftsmodus siden den prosentvise endringen etter modifikasjon er tilnærmet lik for

begge designene.

Analysen best̊ar av enkelte begrensninger. SPI masterne er analysert som selvstendige

enheter som ikke er koblet til en kontrollenhet. Dette begrenser energianalysen p̊a

grunn av manglende tidsforsinkelser i systemet. SPI masterne er ogs̊a relativt sm̊a

design sammenliknet med størrelsen p̊a FPGAen s̊a et stort statisk effektforbruk blir

lagt til og kan skjule det faktiske statiske forbruket i selve designene.

ii

Acknowledgement

This master thesis is written as a finalization of the 5 year master degree program

Electronics Systems Design and Innovation at the Norwegian University of Science

and Technology (NTNU) in Trondheim. It has been 5 very interesting years where I

have learned and experienced a lot both on and off campus.

I would like to thank my supervisors professor Snorre Aunet from NTNU and Øystein

Moldsvor from Disruptive Technologies for their guidance throughout this project.

They have helped me figuring out how to proceed with the research and pointed out

when results and methods have seem weird.

Trondheim June 18, 2021

Markus Rud

iii

Contents

List of Figures vi

List of Tables viii

Acronyms ix

1 Introduction 1

2 Theoretical background 4

2.1 Energy and power consumption in electrical systems 4

2.1.1 Dynamic power consumption . 4

2.1.2 Static power consumption . 5

2.2 Low power techniques . 5

2.2.1 Frequency scaling . 5

2.2.2 Clock gating . 6

2.2.3 Capacitance reduction . 6

2.3 FPGA . 6

2.3.1 FPGA design process . 7

2.3.2 Power consumption in a FPGA 7

2.4 FPGA vs ASIC . 8

2.4.1 Clock networks . 8

2.5 Communication in digital wired systems 9

2.6 External interface of SPI . 10

2.7 Internal design of SPI masters . 12

2.7.1 Simple implementation . 13

2.7.2 Complex implementation . 16

3 Method 19

3.1 Implementation of the SPI masters . 19

3.2 Simulation and estimation methodology 19

3.2.1 Design constraints . 20

3.2.2 Simulation testbench . 21

3.2.3 Power estimation . 22

3.3 Conducted tests . 23

3.3.1 Frequency . 23

3.3.2 Alternation of operating mode 24

3.3.3 Internal changes to the complex master 25

3.3.4 Power optimization . 25

4 Results 26

iv

4.1 System frequency . 27

4.2 SCLK division . 31

4.3 Alternation of operating mode . 35

4.4 Internal changes to the complex master 37

4.5 Power optimization . 39

5 Discussion 44

5.1 Estimation method . 44

5.1.1 Reliability of estimations . 45

5.2 System frequency . 46

5.3 SCLK division . 47

5.4 Alternation of operating mode . 48

5.5 Internal changes to the complex master 49

5.6 Power optimization . 49

5.7 Deviating results . 50

5.8 Tool evaluation . 51

6 Conclusion 52

7 Further work 54

7.1 SPI . 54

7.2 Considerations regarding MBus . 54

References 56

A Simulation/estimation parameters 59

v

List of Figures

2.1 Alternative ways of communicating in digital systems, from [6] 9

2.2 Setup of bus directions in communication, from [6] 10

2.3 Example of external SPI interface, from [6] 11

2.4 Different operating modes in SPI transmission with alternations to CPOL

and CPHA, modified from [18] . 12

2.5 I/O-connections for simple implementation of SPI master 13

2.6 State machine for simple implementation of SPI master 15

2.7 I/O connections for complex implementation of SPI master 16

2.8 State machine for complex implementation of SPI master 18

4.1 Average dynamic power consumption in both implementations of the

SPI master applying different system clock frequencies. 27

4.2 Energy per SCLK iteration in the different implementations of the SPI

master divided into static and dynamic consumption. 28

4.3 Total consumption of energy per clock iteration in both implementations

of the SPI master . 29

4.4 Energy per SCLK iteration in the different implementations of the SPI

master with separation of clock contribution to dynamic energy con-

sumption . 30

4.5 Average dynamic power consumption for different divisions between the

system clock and SCLK at different system clock frequencies 31

4.6 Static energy consumption per SCLK iteration for different divisions

between the system clock and SCLK at different system clock frequencies 32

4.7 Dynamic energy consumption per SCLK iteration for different divisions

between the system clock and SCLK at different system clock frequencies 33

4.8 Total energy consumption at one SCLK iteration for different divisions

between the system clock and SCLK at different system clock frequencies 33

4.9 Static energy per SCLK iteration for different operating modes of the

SPI masters at different system clock frequencies. Modes displayed as:

CPOL CPHA . 35

4.10 Dynamic energy per SCLK iteration for different operating modes of

the SPI masters at different system clock frequencies. Modes displayed

as: CPOL CPHA . 36

4.11 Average dynamic power consumption in the complex SPI implemen-

tation with the use of FIFO registers or not at different system clock

frequencies . 37

4.12 Energy consumption per SCLK iteration in the complex SPI implemen-

tation with the use of FIFO registers or not at different system clock

frequencies . 38

vi

4.13 Total energy consumption per clock iteration in the complex SPI im-

plementation with the use of FIFO registers or not at different system

clock frequencies . 38

4.14 Average dynamic power consumption for the different SPI implementa-

tions with and without power optimization enabled 40

4.15 Static energy per SCLK iteration for the different SPI implementations

with and without power optimization enabled 40

4.16 Dynamic energy per SCLK iteration for the different SPI implementa-

tions with and without power optimization enabled 41

4.17 Total energy per SCLK iteration for the different SPI implementations

with and without power optimization enabled 42

vii

List of Tables

2.1 Description of I/O-connections for simple implementation of SPI master 14

2.2 Description of I/O-connections for complex implementation of SPI master 17

3.1 Available programmable logic in the applied SoC 19

3.2 Port constraints in SPI implementation 21

4.1 Increased energy in percent from simple master to complex master . . . 29

4.2 Utilized resources in the FPGA with percentage of utilized FPGA re-

sources in parenthesis . 31

4.3 Average energy increase going from SCLK division 4 to other divisions . 34

4.4 Average energy decrease with removal of FIFO registers 39

4.5 Utilized resources in the FPGA with and without FIFO registers. The

percentage use of FPGA resources are displayed in parenthesis 39

4.6 Average total energy decrease from power optimizations 42

4.7 Utilized resources in the FPGA with power optimization enabled. The

percentage use of FPGA resources are displayed in parenthesis 43

A.1 Transmitted/received data in testbench 59

A.2 Environmental parameters in power estimation 59

A.3 Voltage parameters in power estimation based on typical values for the

operating conditions in the datasheet for the SoC[34] 60

viii

Acronyms

ASIC Application-Specific Integrated Circuit. 8, 45, 54

CPHA Clock Phase. 11, 22, 35, 49

CPOL Clock Polarity. 11, 22, 35, 49

FIFO First In, First Out. i, ii, 17, 25, 37, 49

FPGA Field-Programmable Gate Array. i, ii, 2, 6, 19, 30, 44, 52, 54

HDL Hardware Description Language. 7, 14

I/O Input/Output. 2, 7, 19, 30, 44

I2C Inter-Integrated Circuit. 1, 54

IoT Internet of Things. 1

IP Intellectual Property. 2, 44

LSB Least Significant Bit. 16

LUT Look-Up Table. 7, 19, 31, 44

MISO Master In Slave Out. 10, 21

MOSI Master Out Slave In. 10, 21

MSB Most Significant Bit. 16

RTL Register Transfer Level. 7, 19, 30, 51

SCLK Serial Clock. 10, 20, 26, 46, 52

SLOC Source Lines Of Code. 30, 47

SoC System on Chip. 19

SPI Serial Peripheral Interface. i, ii, 1, 5, 10, 19, 26, 44, 52, 54

SS Slave Select. 10

VHDL VHSIC Hardware Description Language. i, ii, 7, 21

ix

1 Introduction

One of the largest concerns when designing an electrical systems in the modern era

is power and energy consumption. The requirements and expectations for electrical

systems grow rapidly with the growing Internet of Things (IoT) era where an important

element is a long life time for a device from a limited energy source such as a battery[1].

One estimate predicts that more than 41 billion IoT devices can exist by 2027[2] which

gives large market opportunities for devices with a low energy consumption. The

importance of energy management is not only limited to the IoT area, but also for all

other electrical systems as well since energy consumption has a large environmental

impact[3]. This creates a demand for devices with a low energy consumption which

can have a long battery life time or low power draw.

An electrical system such as an IoT-device often consists of multiple subsystems where

each subsystem has its own consumption of power and energy. Naturally it is the total

energy consumption for the combined system who is of importance when trying to

lower the energy consumption, but due to the combination of subsystems it can be

beneficial to focus the effort in energy reduction to a subsystem-level. The different

subsystems will often communicate between each other to exchange data and depend-

ing on the system, the energy consumption from such internal communication could

be of a significant amount and an effort in energy reduction could be beneficial.

Multiple communication methods between subsystems are already defined as commu-

nication protocols and made publicly available. These differ with a large variety of

communication concepts such as digital or analog, and wired or wireless where the

different methods often includes different functionality and area of usage. This thesis

is focused on digital wired communication mainly for internal use within an embedded

system such as between a sensor and a microprocessor, but it still exists a variety

of different protocols with different advantages and disadvantages within this area of

usage. Examples of such protocols are SPI, I2C, MBus1[4] and more. A new special-

ized communication method could naturally be created for each new system, but the

utilization of a commonly used communication protocol could shorten design time and

make it easier to include already created devices such as a sensor made by a different

company into the new system.

When implementing a communication protocol into a system, the designer must choose

whether the communication functionality should be provided by software or by dedi-

cated hardware. For instance could the communication protocol be implemented in a

general purpose processor as a part of the software, or it might be designed as specific

modules with dedicated hardware just for communication. There are naturally advan-

1Some considerations regarding MBus are described in subsection 7.2 for readers especially inter-
ested in the development of this protocol

1

tages and disadvantages for each of the implementation strategies where one advantage

of the hardware implementation is a tendency of a lower energy consumption than a

software solution[5], but at the cost of extra area requirements.

With a large amount and variety in established communication protocols, it could be

a difficult task to choose the proper one for a specific system. As presented in [6] the

proper communication protocol heavily depends on system specifications and require-

ments such as energy consumption, available I/O, available devices and more. The

communication protocol therefore has to be chosen on a case-to-case basis based upon

the requirements. The specifications of a communication protocol often only specifies

the external interface for how the subsystems should be connected and interact. This

gives a large amount of freedom to the designer regarding the implementation of a

communication module since as long as the module fulfills the external specifications,

the implementation of the modules can be designed freely. This gives the possibility

to implement communication modules with different complexity levels such as addi-

tional data handling or additional internal communication to a subsystem controlling

the communication module. A simple implementation of the communication module

where only the bare minimum in order to fulfill the external requirements is imple-

mented might therefore use a lower amount of energy than a complex implementation

where added functionality such as temporary storage or other features are implemented

due to a simpler implementation.

During the design of a larger system, a designer could typically utilize a premade

Intellectual Property (IP) to add functionality or speed up the design process where a

communication module is an example of a typical IP to add to the system. Often it

is not desired to largely modify such IPs or it might not be possible since they can be

encrypted[7]. This creates a need to have an understanding of how the complexity level

of the design impact different aspects such as energy consumption and area requirement

in order to choose the proper IP or design to include in the system.

This thesis presents an analysis of the energy consumption for two different premade

designs of the master device for the SPI protocol. One where only the minimum amount

of required functionality in order to operate the external interface is implemented

which can be considered a simple design and one with more internal functionality

such as more feedback to the controlling subsystem and adjustment of transmission

parameters and can therefore be considered a more complex design. These designs are

implemented in hardware on a model of a FPGA using the development tool Vivado

and their power and energy consumption are estimated and analysed. In order to

understand how the differences between the implementations affect the power and

energy consumption, multiple tests are conducted. These tests include alternating

the operating and communication frequency, different operating modes, modifying the

2

internal hardware and power optimization. A look at already conducted studies on

wired communication in embedded systems show that multiple studies compare the

different communication protocols towards each other. However, the research done on

how different implementations of the same protocol differ within the specifications are

limited and is the reason for this study to be conducted.

The different tests are conducted over different operating frequencies ranging from 1

MHz to 15 MHz. The results from these tests show that the complex implementa-

tion requires an average of 27.2% more energy than the simple master at the different

frequencies. The results also show that the two implementations respond relatively

similarly to alternations in communication frequency and operating mode as the per-

centage energy change are relatively similar throughout the tests. However, due to the

larger overall energy consumption for the complex master, the consequence of increase

for the complex master is larger even if the percentage increase is similar. Lastly it is

seen that performing power optimization on such a small design as a SPI master might

have the opposite effect where the energy consumption increased with 5.2% and 1.3%

for the simple and complex master respectively after power optimization when it would

be more reasonable for the energy consumption to decrease. These results however has

certain uncertainties based on the implementation method on the FPGA. The SPI

masters are implemented as standalone devices on the FPGA which not gives a com-

pletely realistic environment for the designs due to missing control logic. The use of a

FPGA is also seen to be unfortunate when the energy consumption of the SPI masters

themselves are of interest since the FPGA has an additional energy consumption due

to the re-configurable functionality of a FPGA.

This thesis is organized by first presenting some required background knowledge, in-

formation about the external interface of the SPI protocol and a description of the

differences in the two SPI master implementations in section 2. In section 3 are the

Vivado tool and the method for development and analysis presented together with de-

tails regarding the applied tests. The results from the different tests are presented in

section 4 and discussed in section 5 together with an evaluation of the applied analysis

method. Lastly the conclusion is presented in section 6 and some recommendation for

future work and some information regarding the MBus protocol are given in section 7

3

2 Theoretical background

Some basic knowledge about electrical concepts and systems are expected from the

reader, but specific details are presented in this section.

2.1 Energy and power consumption in electrical systems

The total energy E of an electrical system or design-implementation is equal to the

integral of the instantaneous power P (t) over some time interval T as shown in equa-

tion 2.1[8]. This equation leads to the following two options for reducing the total

energy consumption in a system; either make the design use less power, and/or power

the design for a shorter time interval. For instance can a design with a high power

consumption still have a low energy consumption as long at the time period is short

enough.

E =

∫ T

0
P (t)dt (2.1)

The total power consumption Ptotal for a system is a combination of two types of power

dissipation as shown in equation 2.2. These are the dynamic power Pdynamic and the

static power Pstatic where the total power is the sum of these.

Ptotal = Pdynamic + Pstatic (2.2)

The average power consumption Pavg in a system is shown in equation 2.3 and is given

as the total energy consumption divided by the total time interval.

Pavg =
E

T
(2.3)

2.1.1 Dynamic power consumption

The dynamic power consumption in a design is caused by changing signals and consist

of both power from switching and from “short-circuits” as shown in equation 2.4. The

short circuit power is generated in the brief moments when both the pMOS and nMOS

stacks are partially on. This happens when the transistors in the design switches and

a path is created directly between the supply voltage VDD and ground GND[8].

Pdynamic = Pswitching + Pshortcircuit (2.4)

The main contributor to the dynamic power consumption is the switching power as it

normally contributes to more than 90% of the total dynamic power[8]. The switching

4

power is again affected by a variety of factors as shown in equation 2.5 where α is the

activity factor, C is the capacitance and f is the switching frequency. The activity

factor is seen as the probability for a node in the circuit switches from 0 to 1.

Pswitching = αCV 2
DDf (2.5)

2.1.2 Static power consumption

As mentioned the other element contributing to the total power dissipation in a design

is the static power consumption. The equation for this consumption is shown in equa-

tion 2.6 where Ileakage is the total leakage current in the design. The different elements

contributing to the total Ileakage is further described in [8], but since the details are

not necessary for the understanding of this thesis, they are not presented. In opposite

to the dynamic power consumption only being consumed when it is switching activity

in the circuit, the static power consumption is a passive consumption and is therefore

consumed as long as the system is powered.

Pstatic = IleakageVDD (2.6)

2.2 Low power techniques

As seen from the equations in subsection 2.1 the total energy consumption is based on

several factors. When designing a low power system, these factors should be optimized

as much as possible with a focus at reducing the power consumption and it exists

several design methodologies for such an optimization. One of these are voltage scaling

by lowering the operating voltage VDD which has a quadratic effect on the dynamic

power in equation 2.5 as well as affecting the static power in 2.6 and is therefore often

considered the a key element to optimize. However having multiple voltage domains

in a system may add different challenges and since the SPI master always will be a

part of a larger system and therefore often have to adjust to the operating voltage of

the rest of the system, this option is not further explored. Some other more easily

adaptable low power techniques for the SPI master itself are described below, but it

exists multiple more who could be further explored[8].

2.2.1 Frequency scaling

As seen from equation 2.5 the dynamic switching power consumption is proportional

to the operating frequency f where a larger frequency gives a larger consumption and

a system should therefore not run faster than necessary. A reduction in frequency

also gives the possibility to use downsized transistors or a lower supply voltage[8]. A

system can have different frequency domains in different parts of the system where for

5

instance a bus interface can run on a lower operating frequency than the operating

clock for the entire system.

A lower frequency gives a larger on-time for the system which could give a larger total

energy consumption as seen in equation 2.1 due to an increased time period T . Even

if the dynamic power consumption is reduced at a lower frequency, the static power

consumption is constant and with a larger time interval, the static contribution to the

total energy consumption increases. Therefore the designer must find the best balance

between static and dynamical consumption by finding the optimal operating frequency

with the lowest total energy consumption.

2.2.2 Clock gating

Clock gating is a technique where some enable logic are added to the clock in order to

stop it propagating to certain elements of the hardware. Such clock gating logic can

be added in a variety of ways, but the concept is based upon adding either logic or a

specific signal who can turn on and off a gate and by such stop the switching clock

signal to reach a section of idle blocks of registers[8]. This method prevents switching

in the registers and stop the activity in downstream logic. Since the clock has a large

activity factor the possible power reduction using clock gating may be large depending

on the amount of gated elements. The clock gating comes with an overhead where

extra logic, interconnects and switching activity are added to the design in order to

provide the gating functionality. This overhead gives an extra power consumption to

the design, and gating should therefore only be used in cases where the power savings

are higher than the clock gating power overhead[9, 10].

2.2.3 Capacitance reduction

Switching capacitance in a digital design comes from wires and transistors in the

circuit. Many circuits are dominated by the wire capacitance and the importance of

minimizing wiring through good floorplanning and placement is high. The switching

energy required by a wire is set by its capacitance where the longer the wire is, the

more capacitance it has[8]. In order to reduce the power required by all the capacitance

in the circuit, it is desirable to reduce the amount of wiring and logic.

2.3 FPGA

A Field-Programmable Gate Array (FPGA) is a re-configurable device made up of a

combination of configurable logic blocks and configurable routing fabric. These ele-

ments can implement the logic part of a system-design into logic blocks and route these

together. This gives the possibility to re-configure the logic in the FPGA to implement

different digital hardware designs. In order to make the FPGA re-configurable, the

6

logic blocks are implemented as Look-Up Table (LUT)s and it is required to use a

large number of multiplexers in order to make the routing flexible[11]. A FPGA device

also consist of flip-flops used as registers to store data values between clock pulses and

I/O-ports to transmit or receive signals from other systems.

2.3.1 FPGA design process

When creating a system-design for a FPGA, the designprocess goes through different

steps which can affect the systems performance in different ways. The design can for

instance start as a RTL specification of the design specified as code in for instance the

HDL-languages Verilog or VHDL. This design specification is then synthesized into

an actual circuit consisting of gates, flip-flops and different types of logical elements.

The result of this process is a design netlist where all the required logical elements

needed for the different parts of the design are listed. The final part of the process is

the implementation of the design. In this step the synthesized netlist is mapped into

the FPGA. This process places the required logic onto the device based upon available

resources in the FPGA and routes these together[12, 13].

2.3.2 Power consumption in a FPGA

The power consumption in a FPGA can be divided into three components: device static

PdevStat, design static PdesStat and design dynamic PdesDyn[14]. The total power draw

Ptotal from the voltage supplies of the FPGA is given by the sum of these components

as seen in equation 2.7 and the total static power Pstatic draw is given by the sum of

the device static and design static as seen in equation 2.8.

Ptotal = PdevStat + PdesStat + PdesDyn (2.7)

Pstatic = PdevStat + PdesStat (2.8)

The device static power represents the power required to make the FPGA available for

programming where a large portion is due to leakage in transistors used for holding

the device configuration. This power consumption is mostly dependent on manufac-

turing, process properties, applied voltage and the device junction temperature and is

independent of the implemented design. The design static power is the static power

consumption when the FPGA is configured with the created design, but there is no

activity. This is mainly due to I/O terminations, clock managers and other circuits

who consumes power without any design activity. These blocks are enabled depending

on the requirements of the design and has a set amount of static power consumption.

Lastly the design dynamic power is generated from the design activity and depends

7

on capacitance and activity of utilized resources and scales with the applied voltage

level[14].

2.4 FPGA vs ASIC

A different option to implement the design on a FPGA is to use an Application-

Specific Integrated Circuit (ASIC). It gives the same possibilities for designing a digital

design in hardware, but with some major differences. In opposite of the re-configurable

hardware in the FPGA, the ASIC is not re-configurable and each chip is customized

and produced for its specific usage. When designing a digital system it is therefore

important to choose whether the design should be implemented to a FPGA or an

ASIC. All the pros and cons for the different devices are not presented here since this

is not the main focus of this thesis. Due to the possibility to re-configure the logic in

a FPGA, it is chosen to use this device due to the nature of the thesis where different

designs are tested out at the same device.

Based on research a FPGA can be 7-14 times less energy efficient than an ASIC and the

implemented design can be 5-35 times larger in area[15]. This is because the ASIC can

be fully optimized to the implemented design while the FPGA has additional circuitry

and transistors in order to make them re-configurable and able to implement a variety

of different designs. As the focus of this thesis is to compare different SPI master

designs, the gap between FPGAs and ASICs is not necessary of a great importance,

but it can affect the size of the power and energy consumption in the results and should

therefore be taken into consideration when looking at the individual numbers and will

be further discussed later in this thesis.

2.4.1 Clock networks

A clock network has a large impact on the power consumption in a digital design. This

is due to the high activity factor α and a large fanout since it is connected to a large

amount of logic blocks which gives a large capacitance C. These two factors can give

a large dynamic power consumption which can range from 25% to 50% of the total

dynamic power depending of the implementation of the design[16]. The importance

of optimizing the clock networks in order to save energy is therefore important in all

digital implementation, but due to the larger energy consumption in a FPGA compared

to an ASIC, the clock optimization is of even greater importance in a FPGA[17].

8

2.5 Communication in digital wired systems

As mentioned in the introduction there exists a variety of methods for communication

and this thesis is focused at digital wired communication in embedded systems. As also

mentioned there still exists a large variety of communication methods and protocols

within these limitation. These can be sorted into two categories as shown in figure

2.1 where the difference is whether the bits are transferred in serial or in parallel. In

the serial case, the bits b1−8 are sent one by one on the same line after each other,

while in the parallel case all the bits b1−8 are sent at the same time, but over multiple

lines. This lead to a longer transmitting time for the serial case, but with a lower

area footprint since the parallel design requires more space due to all the required

connections.

Transmitter Receiver

b7b8 b5b6 b1b2b3b4

(a) Serial communication

Transmitter Receiver

b7
b8

b1
b2
b3
b4
b5
b6

b7
b8

b1
b2
b3
b4
b5
b6

(b) Parallel communication

Figure 2.1: Alternative ways of communicating in digital systems, from [6]

Another important aspect of communication is to ensure all the communicating devices

are able to interpret the message correctly. A part of this is to have a common under-

standing between the devices of when to read of the different bits in the message. Again

it is a split into two different communication styles, synchronous communication and

asynchronous communication. In the synchronous style a clock signal is transferred on

a separate line at the same time as a message is transferred. The sender and receiver

will have a predefined or chosen understanding on when on the clock flank the data

bit should be read or sent. In the asynchronous case there is no such common clock

signal. Since the devices still need to know when to read the bits, the devices often has

a common preset communication speed. The data message will then typically begin

with a specified start bit and the data bits will then be read or sent at the specified

time intervals.

The communication lines in the design are also an elements of flexibility. As shown in

figure 2.2 it mainly exist three options for the different usage. The first is the simplex

design where the communication only goes from the transmitter to the receiver over

9

one line. This gives a low area and pin footprint, but it is not possible for the receiver to

transmit data back to the transmitter. In the half duplex design the data is transmitted

both to and from both of the devices over the same data line. This still gives a low

area and pin footprint, but gives a lower communication speed since the data can only

be transmitted one way at the time. In the full duplex design data can still go both to

and from both the devices, but on different lines. This gives the possibility to transmit

data both ways at the same time and could therefore be more efficient than the half

duplex design, but at the cost of more required area and I/O-pins due to the required

two lines.

Transmitter Receiver

Simplex

Transmitter Receiver

Half duplex

Transmitter Receiver

Full duplex

Figure 2.2: Setup of bus directions in communication, from [6]

2.6 External interface of SPI

The Serial Peripheral Interface (SPI) is one of the most common and used communica-

tion protocols in low level communication in embedded systems[6]. It was created by

Motorola in the mid 1980s and has since then been developed into different variations,

but the original and most common implementation is the protocol explored in this the-

sis. The design of a SPI device can be divided into two parts. Firstly it is the external

side which specify the external interface from required connections and interactions

between different devices on the bus. The second side is the internal side which gen-

erates the functionality required to operate the external interface. The external side

can therefore be considered more of a written set of specifications of what a SPI bus

requires while the internal side is the actual hardware or software implementation to

fulfill the external specifications. The conventional design of the external interface

is a full duplex, synchronous and serial communication bus between a single master2

device and one or more peripheral devices[18]. An example of a possible setup of the

external interface is presented i figure 2.3 where its seen one master device connected

to two peripherals named Slave1 and Slave2. The conventional setup of the SPI bus

consists of the signal wires Serial Clock (SCLK), Master Out Slave In (MOSI), Master

In Slave Out (MISO) and Slave Select (SS). The signals SCLK, MOSI and MISO are

shared between all the devices while each slave has a separate SS signal as seen in the

figure.

2Some sources states that the SPI can be a multi-master bus while other states that it is a single-
master bus. A multi-master functionality can be achieved, but creates challenges to the slave select
procedure and is therefore not common[18].

10

Master

Slave 1

Slave 2

SCLK

SCLK

SCLK

MOSI

MOSI

MOSI

MISO

MISO

MISO

SS

SS

SS2
SS1

Figure 2.3: Example of external SPI interface, from [6]

A SPI transmission is initialized by the master device by first lowering the SS-signal for

the desired slave. Then the clock signal SCLK is initialized and the data is transmitted

onto the data-lines MOSI and MISO depending on the desired operation. Due to the

full duplex connection in the bus, a transmission can occur in both directions at the

same time. When the transmission is done, the SS-signal is raised and the bus is ready

for another transmission. From the specifications there is no specified communication

frequencies at the clock signal, and the communication speed can therefore be chosen

freely be the designer. However the frequency is limited by the timing limitations for

the hardware so some conditions must be met. Often the SCLK signal is created as a

division from the system clock. For the SPI protocol the only overhead for transmission

is the lowering of the SS-line. As this signal is applied on a separate connection-line

and the switching on the SCLK-line is initialized slightly after, the SPI device is able

to transmit data at all cycles of the SCLK without any overhead in SCLK cycles which

means that for the SPI transmission, the SCLK frequency equals the bitrate during

transmission.

From the SPI specifications there exist different operation modes as presented in figure

2.4 where the modes are defined by the adjustment of Clock Polarity (CPOL) and Clock

Phase (CPHA). The SPI devices might be able to freely change the operating mode

between transmissions by adjusting the settings for CPOL and CPHA or the devices

might be locked into certain predefined operating modes. This is dependent on the

implementation of the SPI device. Both the master and the slave must operate in the

same mode in order to properly communicate together. The CPOL determines if the

clock is considered active high or low, where 0 at CPOL specifies an active clock on a

rising edge and a 1 at CPOL specifies an active clock on a falling clock edge. As seen

from the figure, the CPHA bit determines when the data is sampled. When CPHA is

set to 1, the data is sampled at the second edge of the clock pulse and when CPHA is

set to 0, the data is sampled at the first edge of the clock pulse. The different operation

11

modes are named 0, 1, 2 and 3 based upon the bits combined for CPOL and CPHA

as 00, 01, 10, 11.

SCLK (CPOL = 0)
SCLK (CPOL = 1)

SCLK sample
edge nr. 1 2 3 4 5 6 ...

CPHA = 1
MOSI/MISO

CPHA = 0
MOSI/MISO

CPHA = 1
SAMPLE

CPHA = 0
SAMPLE

SS

Figure 2.4: Different operating modes in SPI transmission with alternations to CPOL
and CPHA, modified from [18]

2.7 Internal design of SPI masters

The external SPI interface presented in the previous section can be considered a min-

imum for what a SPI device should be able to do, but it does not specifies how the

internal hardware should be designed or connections to other internal subsystems of

the complete system. These loose specifications for the internal requirements can give

a large variety of possible implementations where the SPI device could be highly spe-

cialized for the overall systems requirements where examples of additional functionality

are presented in the following subsections. Two different implementations of the SPI

master device are presented below with different levels of complexity3. These SPI

masters are selected among a large variety of publicly available SPI masters so they

only represents a small selection of possible implementations. These two implementa-

tions are selected due to their different implementation strategies where the first one

has a simple design where only the minimum of requirements to operate the external

interface are implemented while the second one includes additional features who will

be described in subsection 2.7.2.

3The full RTL descriptions of the implemented SPI masters are not presented in this thesis due to
copyright agreements, but are available in the presented references

12

2.7.1 Simple implementation

The first explored SPI master is an implementation modified from [19] with the I/O-

connection to internal logic and external devices as shown in figure 2.5. The internal

logic in the figure represents the internal logic or subsystems controlling the SPI master

device and could for instance be a microprocessor or some other control logic. Since the

SPI master often is a module purely used for communication, a device only consisting

of a SPI master will have a very limited functionality and the SPI master is therefore

in all cases connected to some other control logic or component. The external device

will typically be a SPI slave device. A description of the different input and output

ports of the connection between the internal logic and the SPI master is presented in

table 2.1. The connections to the external device is as described in section 2.6, but in

this case four slaves are connected to the SPI master as seen from the four SS lines.

This implementation of the SPI master can be considered a simple implementation

based upon a review of the RTL, functionality and connections to internal logic. This

is because the design does not add any additional functionality other than the one

required to fully operate the external interface. The functionality and connections to

internal logic could however be further reduced by specifying a fixed operation mode

and clock division in the module and thereby remove some connection ports and logic,

but since this functionality is required for further tests, this is not removed.

System Clk
Reset

Rx data

CPOL
Enable

CPHA
Clk Div
Address
Tx Data
Busy

SCLK

SS [1:4]

MISO

MOSI

SPI Master

Internal Logic External
devices

16

16

8
2

Figure 2.5: I/O-connections for simple implementation of SPI master

As seen in table 2.1 the different connection ports have different directions and widths

based on the utilization of the port. The Tx data and Rx data port have a bit-width

of 16. This allows the internal logic to load or read 2 bytes of data into the transmission

buffer or from the receive buffer at the time. As seen the width of the address port is 2

bits. This allows for a total of 4 connected slaves which corresponds to the connected

devices as shown in figure 2.5.

13

Table 2.1: Description of I/O-connections for simple implementation of SPI master

Port Direction Width Description

System Clk Input 1 Operating clock from controlling system
Reset Input 1 Asynchronous active low reset
Enable Input 1 Start transmission
CPOL Input 1 SCLK polarity
CPHA Input 1 SCLK phase
Clk div Input 8 SCLK division from system clock
Address Input 2 Address to target slave
Tx data Input 16 Data to transmit
Busy Output 1 Busy signal, set to 1 during transmission
Rx data Output 16 Received data from slave

The implementation of this SPI master is done using the Hardware Description Lan-

guage (HDL) VHDL. However due to some limitations in the simulation tool who is

further described in section 3.2.2, the design is synthesized to a Verilog netlist and

some modifications to the original design are therefore applied as described in the list

below due to the crossover between languages. These alternations does not affects the

functionality of the design, but might add some extra components compared to the

original implementation.

• The input ports for Clk div and Address were originally of VHDL integer type,

but this datatype is not allowed in a VHDL instantiation in Verilog in the utilized

tool. These input ports were therefore changed to STD LOGIC VECTOR type and

converted to integers as a part of the SPI master design[20].

• The output ports SCLK and Slave were originally implemented as buffer di-

rectives, but this is changed due to the same reason as the previous point as

this directive is unsupported by the tool in the mixed language implementation.

Instead dummy registers are implemented as buffers and the output ports are

connected to these registers[20].

• Originally the SPI master had functionality for continuous transmission of data

where the last transmitted data were repeated until new data arrived. This is

removed in the analysed design in order to simplify the functionality as much as

practically possible.

The internal functionality of the implementation is based on synchronous operation on

a rising clock edge of the system clock. The internal processes are implemented using

a single state-machine handling both the data transmission and reception onto the

MOSI and MISO lines in addition to generation of the SCLK. A simplified overview of

the state-machine is shown in figure 2.6. In this figure it is seen that the design is set

to the READY state upon reset and stays in this state until a transmission is initialized.

14

The downscaling of the system clock frequency down to the specified SCLK frequency

is done using a counter who counts each system clock pulse. The end number of the

counter is specified by the Clk div port and halfway during the count and at the end

before counter reset, the SCLK signal is toggled and a output communication clock

signal is generated. The counter also controls the proper time for writing to the MOSI

line and reading from the MISO line.

Not end of transmission;
Increase counter

or
write/read to SPI pins

IDLE EXECUTE

Enable = 1

End of transmission

Enable = 0

Reset = 0

Not end of transmission;
Increase counter

or
write/read to SPI pins

Figure 2.6: State machine for simple implementation of SPI master

This implementation of this SPI master module does not contain any form of storage

and depends on the controlling logic to send the next data for transmission after the

previous data transmission is finished.

15

2.7.2 Complex implementation

In opposite of the more simple SPI master implementation presented in the previous

subsection, the implementation presented by [21] includes more internal functionality

and possible adjustments with the same external interface. The connections to the

design are presented in figure 2.7 with a further description in table 2.2. The internal

logic and external devices will be of the same device-type as for the simple implemen-

tation where the internal logic for instance can be a microcontroller and the external

devices can be different SPI slaves. As seen in the figure the external interface is similar

as for the simple SPI master, but the internal interface has more connections.

System Clk
Reset

Rx data

CPOL
Enable

CPHA
Clk Div
Address
Tx data SCLK

SS [1:4]

MISO
MOSI

SPI Master

Internal Logic External
devices

8
2

16
16

CS

Rx ready
Tx error
Rx error
Setup cycles

Tx2Tx cycles
Hold cycles

Interrupt

LSB first
Tx ready

Rd
WR

8
8
8

Figure 2.7: I/O connections for complex implementation of SPI master

The additional connection ports are required as a result of the additional functionality

in the implementation. As mentioned table 2.2 gives a further description of the

functionality of the ports. Compared to the connections for the simple implementations

presented in table 2.1 it can be seen that the port Busy is removed and all the ports

from CS and down are added. The ports CS, WR and Rd add the possibility to select

this SPI master in the same way as a SPI slave is selected with the SS-signal and

choosing whether the controlling logic want to write or read transmission data into

or from the SPI master. The LSB first port gives the possibility to choose if the

Least Significant Bit (LSB) or the Most Significant Bit (MSB) of the data should be

transmitted first onto the MOSI line. The Tx/Rx ready/error ports are used to report

different system statuses regarding transmission and reception back to the controlling

logic in case an error occurs or the SPI master is ready for a new transmission or

has received some data. The ports Setup cycles, Hold cycles and Tx2Tx cycles

16

are used for adjustment to the transmission behavior and is further described later in

this section. Lastly it is implemented an interrupt functionality at port Interrupt to

signal the controlling logic that one of the status ports are set or one of the internal

FIFO registers, who will be described later, are full.

Table 2.2: Description of I/O-connections for complex implementation of SPI master

Port Direction Width Description

System Clk Input 1 Operating clock from controlling system
Reset Input 1 Asynchronous active high reset
Enable Input 1 Start transmission
CPOL Input 1 SCLK polarity
CPHA Input 1 SCLK phase
Clk div Input 8 SCLK division from system clock
Address Input 2 Address to target slave
Tx data Input 16 Data to transmit
Rx data Output 16 Received data from slave

CS Input 1 Active low chip select

WR Input 1 Active low write enable
Rd Input 1 Active high read enable
LSB first Input 1 Choose if LSB or MSB is transmitted first
Tx ready Output 1 Transmitter ready
Rx ready Output 1 Receiver ready
Tx error Output 1 Transmission error
Rx error Output 1 Receive error
Setup cycles Input 8 SPI setup time
Hold cycles Input 8 SPI hold time
Tx2Tx cycles Input 8 Interval between transmissions
Interrupt Output 1 Interrupt from SPI master

The design is based upon the HDL VHDL, but with a Verilog top-module so it is fully

compatible with the simulation tool without any modifications. It is also based on

a synchronous operation on the rising edge of the clock. The internal processes are

divided up into two paths, one for the SCLK generation and one for the data handling,

however the SCLK signal is used for shifting the data onto and from the MOSI and

MISO lines, so the logic paths are not completely separated.

The implementation is based around a state machine which is seen in a simplified

version in figure 2.8. This state machine consists of 5 states and controls both the

generation of the SCLK in addition to the data handling. As seen in the figure the

machine has the states IDLE, SETUP, DATA TX/RX, HOLD and WAIT. The master stays in

state IDLE until a transmission is started and then goes through all the states unless

a reset is invoked. In the states SETUP, HOLD and WAIT, the designer can specify an

amount of clock cycles the design should delay from a transmission is initialized to the

bits are transmitted onto the SPI lines, how long time the final bit should be held at the

17

data lines and lastly the time interval between each transmission of messages. These

settings can be changes during operation through the Setup cycles, Hold cycles

and Tx2Tx cycles ports shown in figure 2.7. The data at the MOSI and MISO lines

are transmitted and received in the DATA TX/RX state.

DATA TXDATA TX/RX

IDLE SETUP
Enable = 1

Enable = 0

Reset = 1

WAIT HOLD

SPI setup
done

SPI setup
not done

All bits
transmitted

Still bits to
transmit

SPI hold
done

SPI ready for new
transmission

SPI setup
not done

Delay between
transmissions

Figure 2.8: State machine for complex implementation of SPI master

For this implementation of the SPI master, two 16x16 bits deep FIFO registers are

implemented. One for data to be transmitted, and one for the received data. This

allow the controlling device in the internal logic to send multiple bytes of data to the

SPI master in one operation and the SPI master will then handle all the transmissions

based upon the specified settings as mentioned above. It also allows the SPI master

to receive multiple bytes of data without the need for the controlling logic to read it

out from the SPI master between each reception.

18

3 Method

This section presents the methodology for analysing the two SPI designs. Firstly the

development and simulation tool is presented before the different applied tests are

described.

3.1 Implementation of the SPI masters

In order to analyse the SPI master designs and evaluate them, the designs are synthe-

sized and implemented onto a virtual model of the Zynq-7000 SoC using device xc7z020

with package clg400 and speed grade -1[22]. This device provides 28 nm Xilinx pro-

grammable logic equivalent to an Artix-7 FPGA and has the available programmable

logic as shown in table 3.1. The SoC consists of a variety of different subsystems,

but only the programmable logic is utilized in this analysis and will be refereed to

as the FPGA. The designs are synthesized and implemented using the Vivado Design

Suite[23]. This tool gives the possibility to instantiate a virtual model of the mentioned

FPGA and can handle the entire design process presented in section 2.3.1 from RTL

development to implementation of the design onto the virtual FPGA. The synthesis

and implementation process are timing driven in Vivado and in order to meet the re-

quired timing requirements for the implemented designs together with accurate power

estimations, a set of timing constraints must be gives to the tool[24]. The applied

timing constraints and further details are described in subsection 3.2.1.

Table 3.1: Available programmable logic in the applied SoC

Resource Amount

LUTs 53200
Flip-flops 106400
I/O ports 125

3.2 Simulation and estimation methodology

As mentioned the Vivado Design Suite is used for synthesis and implementation of

the designs. The tool also gives the possibility to simulate the behavior of the design

and estimate different parameters such as power consumption. Since the designs are

implemented on a model of the FPGA device, the results are estimates of the actual

consumption and could therefore be slightly different than measurements on a physical

FPGA device depending on the fidelity of the model. This is further discussed in section

5.1.1.

19

3.2.1 Design constraints

When implementing a RTL description into a FPGA device both physical and timing

constraints can be applied in the implementation process to give the tool different

guidelines on how the design should be implemented. The physical constraints are

applied to for instance specify I/O location, cell locations or routing limitations while

timing constrains are applied to specify which clock frequency the system run at, I/O

delays or other clock and delay elements who affects the design. Based on the specified

constraints, the tool might do alternations when synthesising or implementing the

design in order to meet the required constraints. For instance might different logic

blocks be implemented closer together if their timing constraints are violated in order

to reduce the distance between the logic blocks and thereby the required time it takes

for a signal to travel between the them[24]. Since there are no requirements for the

physical implementation of the designs in this analysis, no physical constraints are

applied, but some timing constraints are applied to make sure the design meets the

typical timing requirements for a SPI design.

The timing constraints are not just important for the implementation step of the pro-

cess, but also important for an accurate power estimation[25]. The timing constraints

are a way to tell the tool about timing requirement outside of what can be seen in

the design itself. For instance may this include system and communication frequencies

and I/O-delays as previously mentioned which can have an impact on the dynamic

power consumption as presented in equation 2.5. For the SPI master two clock con-

straints are provided. Firstly a constraint based upon the system clock frequency from

the internal control logic. Secondly the frequency of the SCLK who also needs to be

constrained since it contributes to the power dissipation. The SCLK is for both of the

designs implemented as a downscaled version of the system clock and the constraint

is therefore given as a scaling of the system clock. Since the required clock constraints

will change based on the applied system clock, no common clock constrains are applied

to all tests since these span over different frequencies as presented later in this section.

The I/O-constraints of the design are dependent on the up- and downstream devices of

the design, i.e. the internal logic controlling the SPI master as the upstream device and

the connected SPI slave as the downstream device. The SPI masters are analysed as

stand alone devices with a testbench directly connected to the design and are therefore

not connected to a specific upstream device. This leads to difficulties when specifying

the delays on the internal side of the module since these delays will depend on the

implementation strategy and hardware mapping of the combined system of internal

logic and SPI master. The exact mapping is not determined until the combined system

is implemented onto a FPGA and the exact I/O-delays are therefore also unknown until

the complete implementation. Therefore it is not specified any I/O-constraints for the

20

internal connections of the SPI masters. For the external connections the constraints

depend on the requirements of the applied SPI slave device. The applied constraints on

the MISO and MOSI ports are shown in table 3.2 and are based upon the requirements

of a representative SPI slave device[26]. Since the MISO port is an input to the SPI

master device, an input constraint is specified for this port. For the MOSI port it

is opposite and an output constraint has been specified since it is an output from

the designs. All the constraints are specified relative to the SCLK since this clock is

used for clocking of the communication, and the requirements from the SPI slave are

relative to this clock. The setup and hold times then specify when the data should be

ready relative to the specified clock where a negative time on the output constraint

means that the data is sent before the clock edge[27]. As seen in the table the data is

transmitted on the MOSI line 2 ns before the SCLK flank due to the negative value,

and held stable 2 ns after the clock flank. For the MISO line the data arrives 55 ns

before the SCLK flank and is held 55 ns after the SCLK flank.

Table 3.2: Port constraints in SPI implementation

Port Setup time Hold time Unit

MISO 55 55 ns
MOSI -2 2 ns

3.2.2 Simulation testbench

Another important part of a confident energy estimation is to have a representative

simulation of the internal switching activity in the module. This switching activity

is naturally dependent on the circuits design and can be monitored by running a

simulation using representative stimuli on the input ports. For an increased accuracy

in the estimations, it is preferable to run the simulation after the design is implemented

and routed onto the model of the FPGA[25]. This makes it possible for the simulation

to use the actual timing delays of the design. By running a post-implementation timing

simulation, the simulation is the closest emulation of the switching activity in the

design compared to actually download and run the design on a physical FPGA[28].

The switching activity should represent either typical or worst case stimuli for an

increased accuracy in the simulation and not consist of invalid data or commands as

this will give an inaccurate power estimation for normal operation[25]. The switching

activity is extracted into a SAIF-file which is back annotated into the power estimation.

The post-implementation timing simulation in Vivado is limited to only use Verilog

sources. Some elements of the designs and the applied testbench are implemented in

VHDL, so in order to run the proper simulation, the simulation netlist is synthesized

in Verilog even if the design source is VHDL[29].

The applied testbench works by sending a total of 16 messages each consisting of 16

21

bits. The transmitted messages are displayed in table A.1 in appendix A and consists

of a selection of different representative messages and no invalid data. As presented in

subsection 2.6 the SPI transmission can operate in four different modes based on the

value of CPOL and CPHA. As a default most of the tests except the one analyzing

different operating modes are analysed using mode 00 since this is the most common

one. The testbench is modified to match the functionality of each of the SPI masters

in order to give a similar testing behavior. The tests are therefore conducted over the

same amount of time with the same amount of time between each transmission. For

the complex master the possible flexibility regarding setup, hold and transmission to

transmission cycles are modified to behave as closely to the simple master as possible.

The testbench controls the designs so the specified messages are transmitted to the

MOSI line, but the testbench also provides stimuli to the MISO line so the modules

receive the same 16 messages in order to stimulate the receive part of the designs.

3.2.3 Power estimation

The end result and goal is to get a power estimation for the different designs. Vi-

vado is also used for this purpose in order to report the power consumption of the

designs. The power consumption in a design may differ over time due to different

operations being conducted at different times. For instance may the SPI master have

a larger power consumption during transmission, but a lower consumption between

transmission. Vivado reports the average power consumption as given by equation 2.3

separated into a static contribution and a dynamic contribution. The time variations

in power consumption are therefore removed. Each power estimation is conducted

using the environmental parameters and operating voltages as specified in table A.2

and A.3 in appendix A.

Static power estimation

As mentioned in section 2.3.2 static power consumption in a FPGA is due to both

device and design static power. The reported static power consumption in Vivado

during power estimation is the total static power Pstatic which is the sum of device

static power and design static power as seen in equation 2.8. The design static power

could therefore be hidden by a larger device static power. For the analysis of the two

SPI masters the main interest is the design static power since the device static power

is independent of the implemented design. In order isolate the design static power

consumption, the device static consumption for the FPGA with only a single gate that

never toggles is estimated and subtracted from the total static power consumption[25,

30]. The device static power estimations for only the single gate is extracted using the

Xilinx Power Estimator tool[31] which is a tool provided to determine power consump-

tion for SoCs and FPGAs even before the logic is designed. The static consumption of

the design with only one gate is estimated using the same environmental and voltage

22

parameters as in the Vivado analysis.

Dynamic power estimation

The dynamic power estimation for the different implementations is directly extracted

using Vivado and a vector based power estimation[25]. The vector based approach

utilize the actual switching activity in the design with the use of the information in

the SAIF-files generated during simulation and the use of probabilistic estimation of

the activity is therefore reduced. The reported dynamic power is separated into the

consumption of different elements such as clocks, logic, I/O and signals.

3.3 Conducted tests

When analysing the power and energy consumption of the two different SPI implemen-

tations it is of interest to figure out how they differ and the reason for their potential

differences in consumption. It is also of interest to get an understanding of how the

different implementations reacts when modifications and adjustments are done to the

designs and compare them to each other and themselves. A series of different tests are

therefore set up to get an understanding of the consequences of choosing one imple-

mentation over another when implementing a SPI master device.

Most of the tests are conducted over a set of different system clock frequencies ranging

from 1 MHz to 15 MHz with a power estimation at each integer frequency. Most of

the tests are also conducted with a SCLK division of 4 from the system clock giving

SCLK frequencies in the range of 250 kHz to 3.75 MHz. Since the SPI protocol does not

specify any communication clock frequency, it is possible to operate a SPI transmission

outside of this interval as well if the communicating devices support other frequencies,

but this interval can be considered a representative window of frequencies[18]. As

stated is most of the tests conducted over this frequency span and SCLK division, but

some of the tests are conducted using other parameters. For the test regarding SCLK

alternation is different SCLK divisions applied and for the operation mode tests were

only a selection of the frequencies between 1 MHz and 15 MHz analysed.

3.3.1 Frequency

As shown in equation 2.5 and presented in section 2.4.1 the frequency is of great

importance to the power consumption in both in the SPI masters design and the

FPGA implementation itself. Based on equation 2.5 the dynamic power consumption

will decrease when the operating frequency is lowered. However, a lower operating

frequency gives a longer on time for the system which based on equation 2.1 might

increase the total energy consumption even with a lower dynamic power. It is therefore

desirable to find the optimal operating frequency with the lowest energy consumption.

23

For a SPI master the design consists of two types of clocks. First it is the system

clock based upon the operating frequency in the internal logic. The other one is the

communication clock SCLK. Both of these clocks cause a large amount of switching

activity in the design and are therefore of great importance to optimize with regards

to power consumption.

System frequency

The system clock given to the SPI module is often based upon the operating frequency

the rest of the system is running at, but it can still be interesting to know the optimal

operating frequency for the SPI module alone since modern systems often consists of

multiple frequency domains or it might be other possibilities of frequency adjustments.

This test is conducted with the previously described frequency span of 1 MHz to 15

MHz where each of the two SPI master implementations are uploaded separately onto

the FPGA and estimated.

SCLK division testing

The system clock frequency for operation of a digital system is as mentioned of great

importance for the energy consumption. However the energy consumption of the SPI

master is also dependent on the frequency of outputted clock SCLK since also a fair

amount of logic are clocked by this clock. Since the impact to the energy consumption

generated from the SCLK is dependent on how the module is implemented and how

much this signal is integrated into the design, it is interesting to see how the different

designs respond to different divisions of the system clock.

This test is as already described conducted using different divisions of the system

clock. The divisions 4, 8, 16 and 32 are applied as these are a selection of common

divisions[18]. This gives the SCLK frequency intervals of 250 kHz to 3.75 MHz, 125

kHz to 1.875 MHz, 62.5 kHz to 937.5 kHz and 31.25 kHz to 468.75 kHz respectively.

3.3.2 Alternation of operating mode

As shown in figure 2.4 the SPI transition can operate in different operating modes

with different sampling-edges and dataalignment relative to the SCLK depending on

the settings for CPOL and CPHA. Which operating mode to use might largely depend

on the requirements from the used SPI slave device, but since both the explored SPI

master designs give the possibility to choose the desired operating mode, it can be

interesting to see how the choice of operating mode affects the power and energy

consumption. As seen in figure 2.4 the operational behavior is quite similar with the

same amount of switching in the external interface, so it could therefore be reasonable

to think that the power consumption also would be similar between the operating

modes. The different operating modes may however invoke different switching activity

24

in the internal designs due to different sampling behavior so some differences between

the modes may occur.

The power estimation for the different operation modes are conducted over a selection

of five different frequencies in the range of 1 MHz to 15 MHz since this is enough to

give a good understanding of how the modules are affected by the differences.

3.3.3 Internal changes to the complex master

The two implementations of the SPI master present two different thoughts for imple-

mentation where one either could simplify the design to a minimum implementation or

add additional functionality and status reporting. However it can also be done internal

modifications to the designs themselves. Due to the simple and minimum implemen-

tation presented in the simple master, no alternations other than the ones presented

in section 2.7.1 are done. For the complex master a wider span of alternations are

possible due to the more complex nature of the design. One of these alternations is

to not implement the FIFO registers. This will reduce the functionality of the design

to give a more similar functionality as the simple design and give an understanding of

where in the complex master the power consumption is created and the cost of added

functionality.

The removal of the FIFO registers alternates the original functionality of the SPI design

presented in subsection 2.7.2 where the SPI master no longer can handle multiple

messages for transmission and reception so the internal logic must write and read each

message between transmission and reception.

3.3.4 Power optimization

As a feature during the implementation phase in Vivado where the synthesized netlist is

placed and routed onto the model of the FPGA, the tool is able to analyse the behavior

of the design and add clock gating to turn off the system clock for idle logic[32]. As a

part of the process some LUTs are added to control the gating, but it does not adds

levels of logic to the original logic paths[9]. As presented in section 2.2.2 the effect of

the gating may vary depending on the amount of gated logic and its power savings

compared to the overhead in power by including additional clock gating logic. This

test is not necessary a test who presents a correct representations of the differences

between the SPI masters as it heavily depends on the tools ability to optimize the

designs. However since these designs are implemented on a FPGA their ability to map

efficiently down to the logic on the FPGA are of importance and in this case it might

be differences in the designs.

25

4 Results

This section presents the results from the tests described in subsection 3.3. Be aware

that in some of the presented figures the complex and simple master are plotted to-

gether, while in some they are plotted separately. The difference is described in the

figure title where each SPI master is explicitly written when they are plotted separately.

The results are presented showing plots of dynamic power together with dynamic and

static energy. The plots for power consumption is plotted based on the reported power

from the power estimation in Vivado. The presented energy is the energy required for

one iteration of the SCLK which consists of multiple system clock pulses. For instance

for the SCLK division of 4 does one SCLK pulse consists of 4 system clock pulses.

The energy consumption is then calculated by multiplying the specific average power

consumption with the period for one SCLK pulse as seen in equation 2.3 where the

average power consumption is Pavg and the period of the SCLK pulse is T . Since

one iteration of the SCLK transmits one bit at the datalines, the energy per SCLK

iteration is the same as energy per bit for the SPI transmission.

26

4.1 System frequency

As described the power and energy consumption for the two implementations are

analysed over a frequency span from 1 MHz to 15 MHz at every integer frequency

in between. The results of this analysis is presented as a variety of different plot

presenting both power consumption and energy consumption with different details.

As seen in figure 4.1 the dynamic power consumption of the different implementations

follow an approximately linearly increase in power consumption with the increase in

system clock frequency. This corresponds to the theory presented in equation 2.5 for

the switching power where it is seen that the dynamic power has a linear relationship

with the frequency. For the system frequencies 10 MHz and 11 MHz the power esti-

mations for the complex master has a small deviation from the linear behavior. The

figure also shows that the dynamic power consumption for the complex master is larger

than for the simple master with an increased gap with an increase in frequency. The

percentage increase for the two implementations are further presented in the energy

analysis later in this subsection.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

400

P
ow

er
 [

W
]

Dynamic Power at different system frequencies

Complex master Simple master

Figure 4.1: Average dynamic power consumption in both implementations of the SPI
master applying different system clock frequencies.

The calculated energy estimations for the two implementations are presented in figure

4.2 and are presented as the static contribution and the dynamic contribution to the

energy. As seen in figure 4.2a the static energy consumption decreases with an increase

in system frequency. With a larger frequency the time period of each of the SCLK

pulses is shortened from the relationship between frequency and period. From equation

2.1 it is seen that with a shorter time interval the energy is decreased even if the static

27

power consumption of the implementation is frequency independent. It is seen in the

figure that the energy decreases rapidly between low frequencies, but decreases slower

between larger frequencies. This can be explained by the nature of the relationship

between frequency and period where the time-difference between 1 MHz to 2 MHz is

500 ns, but for at difference between 14 MHz and 15 MHz it is only approximately 4.7

ns. As also seen in the figure the complex master has a slightly higher static energy

consumption than the simple master.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Static energy per SCLK iteration

Complex master Simple master

(a) Static energy

0 5 10 15

System clock frequency [MHz]

70

75

80

85

90

95

100

105

110

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration

Complex master Simple master

(b) Dynamic energy

Figure 4.2: Energy per SCLK iteration in the different implementations of the SPI
master divided into static and dynamic consumption.

In figure 4.2b it can be seen that the dynamic energy consumption has a relatively

stable consumption independent of frequency. The small deviation in the dynamic

power for the complex master at 10 MHz and 11 MHz naturally also gives a deviation

from the stable energy consumption, but for the dynamic energy consumption the

deviation can be seen more clearly. The dynamic energy consumption for the complex

master can be seen to be larger than for the simple master which is reasonable since

the energy consumption is directly related to the power consumption.

Figure 4.3 show the total energy consumption with the static and dynamic contribution

added together. It can be seen in the figure that the complex master has a larger total

energy consumption than the simple master and the dots in the figure follow the

same curve as for the static energy consumption just shifted up with the dynamic

energy consumption. The energy consumption per transmitted bit for the analysed

SPI masters is seen to be of the same magnitude as other conventional SPI master

28

implementations and communication protocols[4, 33].

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Total energy per SCLK iteration

Complex master Simple master

Figure 4.3: Total consumption of energy per clock iteration in both implementations
of the SPI master

The percentage increase in energy from the simple master to the complex master is

shown in table 4.1 where it is seen for the static energy that the percentage increase

grows with a higher frequency, while for the dynamic energy the increase is relatively

stable. Again as seen in the plots, the deviation of the estimations at the dynamic

consumption for the complex master affects the results as it is seen that the increase

at frequency 10 MHz and 11 MHz are deviating from the other percentages. It can

also be seen in the table that the total increase in energy also rises with frequency.

Table 4.1: Increased energy in percent from simple master to complex master

Frequency [MHz]
Energy type 1 2 3 4 5 6 7 8

Static [%] 1.3 2.6 4.0 5.4 7.0 8.6 10.3 12.0
Dynamic [%] 37.1 36.2 36.2 36.2 36.1 36.2 36.1 36.2
Total [%] 10.9 17.0 21.2 24.3 26.5 28.3 29.6 30.8

Frequency [MHz]
Energy type 9 10 11 12 13 14 15 Average

Static [%] 13.9 15.6 17.6 20.2 22.5 25.0 27.8 12.9
Dynamic [%] 36.1 30.6 29.8 34.3 34.1 34.4 34.9 35.0
Total [%] 31.7 27.9 27.8 32.3 32.6 33.3 34.1 27.2

In figure 4.4 the dynamic energy consumption is separated into two plots, one where the

contribution from clock consumption is removed and one where only the contribution

29

from the clock consumption is shown. For the plot in figure 4.4a the remaining dynamic

energy consumption is the contribution from logic, signals and I/O where for the plot

in figure 4.4b the dynamic energy consumption is created by clocking from the system

clock, but also from the generation of SCLK. The sum of these plots equals the plot

shown in figure 4.2b.

0 5 10 15

System clock frequency [MHz]

20

25

30

35

40

45

50

55

60

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Without clock consumption

Complex master Simple master

(a) Without clock consumption

0 5 10 15

System clock frequency [MHz]

20

25

30

35

40

45

50

55

60

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Only clock consumption

Complex master Simple master

(b) Only clock consumption

Figure 4.4: Energy per SCLK iteration in the different implementations of the SPI
master with separation of clock contribution to dynamic energy consumption .

As seen in the plot in figure 4.4a the dynamic energy consumption in the two implemen-

tations is relatively similar however with a slightly larger consumption for the complex

master. In figure 4.4b it is seen that the energy consumption caused by clocking is

larger for the complex master than for the simple master and that the differences in

dynamic energy consumption is mainly caused by clocking. From the figures it can also

be seen that for the complex master the dynamic energy consumption from clocking is

larger than the consumption from the remaining elements while for the simple master

it is seen that the dynamic energy consumption from clocking is smaller than from the

remaining elements.

The utilized logic is presented in table 4.2 where it is seen that the complex master

utilizes more resources than the simple master, but that both implementations still

utilizes a small part of the available resources in the FPGA. It can also be seen that

the complex master has approximately 10 times more Source Lines Of Code (SLOC)

than the simple master. The numbers for SLOC are based upon the RTL description

for the SPI masters as it is, but with empty lines and comments removed.

30

Table 4.2: Utilized resources in the FPGA with percentage of utilized FPGA resources
in parenthesis

Resource Simple Complex

LUTs 60 (0.11%) 169 (0.32%)
Flip-flops 108 (0.10%) 224 (0.21%)
I/O ports 55 (44.00%) 87 (69.60%)
SLOC 119 1165

4.2 SCLK division

For the tests with different divisions of the communication clock SCLK it is interesting

to see how the power and energy consumption differ with different internal adjustments.

The implementations are as mentioned tested with 4 different divisions of the system

clock. The resulting dynamic power consumption is shown in figure 4.5 with the results

from the simple and complex master separated. The red dots in the figures are similar

to the ones in figure 4.1 since these are estimated using the same clock divider. As

seen for the plots in figure 4.5 all the power estimations follow an approximately linear

pattern as already described for the results in the system frequency test. The lowest

clock division of 4 can be seen to give the highest dynamic power consumption and the

highest clock division of 32 can be seen to give the lowest dynamic power consumption

for most frequencies. For the complex master in figure 4.5b it can be seen that at

frequencies from 5 MHz and below, the division of 16 and 32 has a more overlap than

at other frequencies and has a small deviation from the linear behavior.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

400

P
ow

er
 [

W
]

Dynamic power at different system frequencies
Simple master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

400

P
ow

er
 [

W
]

Dynamic power at different system frequencies
Complex master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(b) Complex master

Figure 4.5: Average dynamic power consumption for different divisions between the
system clock and SCLK at different system clock frequencies

31

The static energy consumption for the two implementations are presented in figure 4.6.

As seen in the figures the static energy estimations are largest for the highest SCLK

division of 32 and lowest for the lowest SCLK division of 4. It can also be seen that

the energy-gap between the different divisions decreases with an increase in frequency

due to the overall static energy consumption decreasing with frequency. This is caused

by smaller differences in the period of the different frequencies as described for the

system clock results.

0 5 10 15

System clock frequency [MHz]

0

500

1000

1500

2000

2500

E
ne

rg
y

[p
J]

Static energy per SCLK iteration at different system frequencies
Simple master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

500

1000

1500

2000

2500

E
ne

rg
y

[p
J]

Static energy per SCLK iteration at different system frequencies
Complex master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(b) Complex master

Figure 4.6: Static energy consumption per SCLK iteration for different divisions be-
tween the system clock and SCLK at different system clock frequencies

In figure 4.7 is the dynamic contribution to the energy consumption presented. As seen

in the plots the highest clock division of 32 has the largest dynamic energy consumption

as well and the lowest SCLK division of 4 has the lowest dynamic energy consumption.

As seen in the plots the dynamic energy consumption for the simple master is lower for

all clock divisions than for the complex master at the same SCLK division. As earlier

mentioned the complex master has some deviations from the overall results behavior

at frequencies below 5 MHz. It can be seen for 1 MHz and 2 MHz that the dynamic

energy consumption is higher than for other system frequencies for especially divisions

16 and 32. It can also be seen for frequency 4 MHz and 5 MHz that the dynamic

energy consumption from the 32 division also deviates. The deviation at frequency 10

MHz and 11 MHz for the SCLK division of 4 presented in the results of the system

clock test, are barely visible in the plot in figure 4.7b due to the increased energy span

at the y-axis of the plot. It shows that the deviations for SCLK division 16 and 32 are

remarkably larger than for the ones seen with SCLK division 4.

32

0 5 10 15

System clock frequency [MHz]

0

100

200

300

400

500

600

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration at different system frequencies
Simple master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

100

200

300

400

500

600

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration at different system frequencies
Complex master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(b) Complex master

Figure 4.7: Dynamic energy consumption per SCLK iteration for different divisions
between the system clock and SCLK at different system clock frequencies

For the total energy consumption per SCLK iteration are the dynamic and static energy

consumption added and presented in figure 4.8 where it can be seen that the results

follow the behavior of the static energy consumption shifted up with the dynamic

energy consumption.

0 5 10 15

System clock frequency [MHz]

0

500

1000

1500

2000

2500

E
ne

rg
y

[p
J]

Total energy per SCLK iteration at different system frequencies
Simple master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

500

1000

1500

2000

2500

E
ne

rg
y

[p
J]

Total energy per SCLK iteration at different system frequencies
Complex master with different divisjons of SCLK

SCLK div 4 SCLK div 8 SCLK div 16 SCLK div 32

(b) Complex master

Figure 4.8: Total energy consumption at one SCLK iteration for different divisions
between the system clock and SCLK at different system clock frequencies

33

The average total energy increase in going from a system clock division of 4 to the other

divisions are presented in table 4.3. It can be seen in this table that the percentage

increase is larger for a larger downscale of SCLK and that the increase in energy is

relatively similar for the two SPI implementations as it is only small differences in the

percentage increase.

Table 4.3: Average energy increase going from SCLK division 4 to other divisions

Division change Simple Complex

4 to 8 [%] 62.1 61.6
4 to 16 [%] 188.4 188.8
4 to 32 [%] 448.9 449.0

34

4.3 Alternation of operating mode

The different operating modes of the SPI transmission are as mentioned also tested

by analysing the different implementations with different adjustments for CPOL and

CPHA. The energy consumption for these tests are presented in figure 4.9 and 4.10

for static and dynamic energy respectively. Due to the small differences between the

modes, the power plots are omitted since the differences in the plots were not visible.

As seen in figure 4.9 the difference in static energy consumption between the modes is

not visible as well and the different modes are therefore plotted with different dot sizes

for visibility so the difference in circle size of the results are just for visual purposes.

The dots for mode 00 corresponds to the results presented in figure 4.2a just with some

difference in frequency for some of the dots. It can therefore be seen that the results

follow the same curvature as described for the system frequency test.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

E
ne

rg
y

[p
J]

Static energy per SCLK iteration
Simple master in different operating modes

Mode 00 Mode 01 Mode 10 Mode 11

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

E
ne

rg
y

[p
J]

Static energy per SCLK iteration
Complex master in different operating modes

Mode 00 Mode 01 Mode 10 Mode 11

(b) Complex master

Figure 4.9: Static energy per SCLK iteration for different operating modes of the SPI
masters at different system clock frequencies. Modes displayed as: CPOL CPHA

The dynamic energy consumption is presented in figure 4.10 where the results for mode

00 corresponds to the results in figure 4.2b. As seen in figure 4.10a the simple master

have a relatively similar dynamic energy consumption for the different modes while for

the complex master in figure 4.10b it is seen a small difference between the modes. Be

aware of the y-axis of the plots as it span over a shorter range than the plots in figure

4.2b. This can especially be seen for the results at 11.5 MHz as the deviation seems

larger in the plot in figure 4.10b, but is actually in the range of the deviations of 10

MHz and 11 MHz as seen in figure 4.2b. The average percentage difference between

35

the mode with the largest total energy consumption and the mode with the lowest

total energy consumption are 0.008% and 0.109% for the simple and complex master

respectively.

0 5 10 15

System clock frequency [MHz]

65

70

75

80

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Simple master in different operating modes

Mode 00 Mode 01 Mode 10 Mode 11

(a) Simple master

0 5 10 15

System clock frequency [MHz]

90

95

100

105

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Complex master in different operating modes

Mode 00 Mode 01 Mode 10 Mode 11

(b) Complex master

Figure 4.10: Dynamic energy per SCLK iteration for different operating modes of the
SPI masters at different system clock frequencies. Modes displayed as: CPOL CPHA

36

4.4 Internal changes to the complex master

The changes to the complex master is as described in subsection 3.3.3 to remove the

two FIFO registers used for temporal storage of the transmission and reception data.

The resulting dynamic power consumption with these registers removed is presented

in figure 4.11 where it can be seen that the implementation without the FIFO register

uses less dynamic power than the implementation with the FIFO register. The plotted

results for the implementation with FIFO registers included are the same as presented

in the results for the system clock test in figure 4.1. As seen in figure 4.11 the dynamic

power consumption without FIFO registers still follow an approximately linear line

and has no clear deviation from the linear behavior.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

400

P
ow

er
 [

W
]

Dynamic power at different system frequencies
Complex master with and without FIFO registers

With FIFO Without FIFO

Figure 4.11: Average dynamic power consumption in the complex SPI implementation
with the use of FIFO registers or not at different system clock frequencies

The static and dynamic energy consumption by the complex master with and without

the FIFO registers implemented are presented in figure 4.12. In figure 4.12a it is seen

that the difference in static energy consumption is relatively small as the dots overlap.

In figure 4.12b it can be seen that the dynamic energy is reduced with approximately

5-7 pJ for most of the frequencies except the ones where the implementation with

FIFO registers has a deviation in dynamic energy consumption. The implementation

without the use of FIFO register has no large deviation in the results as the as the

dark red dots are relatively aligned.

37

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Static energy per SCLK iteration
Complex master with and without FIFO registers

With FIFO Without FIFO

(a) Static energy

0 5 10 15

System clock frequency [MHz]

70

75

80

85

90

95

100

105

110

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Complex master with and without FIFO registers

With FIFO Without FIFO

(b) Dynamic energy

Figure 4.12: Energy consumption per SCLK iteration in the complex SPI implemen-
tation with the use of FIFO registers or not at different system clock frequencies

The total energy for both the implementation with and without the two FIFO registers

are presented in figure 4.13. Here it is seen that for all frequencies the implementa-

tion with the FIFO registers use more energy than the implementation without FIFO

registers.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Total energy per SCLK iteration
Complex master with and without FIFO registers

With FIFO Without FIFO

Figure 4.13: Total energy consumption per clock iteration in the complex SPI imple-
mentation with the use of FIFO registers or not at different system clock frequencies

38

The percentage decrease in energy is shown in table 4.4. Here it is seen that the

removal of the FIFO registers has a larger impact on the dynamic energy consumption

than at the static energy consumption.

Table 4.4: Average energy decrease with removal of FIFO registers

Energy type Percentage decrease

Static [%] 0.4
Dynamic [%] 6.3
Total [%] 4.6

In table 4.5 is the utilized resources for the different implementations of the complex

master presented. In the table it can be seen that the removal of the FIFO registers

has the an impact on the utilized LUTs and flip flops, but no impact on the utilized

I/O-ports.

Table 4.5: Utilized resources in the FPGA with and without FIFO registers. The
percentage use of FPGA resources are displayed in parenthesis

Resource With FIFO Without FIFO Percent decrease

LUTs 169 (0.32%) 143 (0.27%) 15.4%
Flip-flops 224 (0.21%) 160 (0.15%) 28.6%
I/O ports 87 (69.60%) 87 (69.60%) 0%

4.5 Power optimization

Vivado has as earlier described possibilities for optimizing the utilized logic and do

alternations to the design in order to optimize for a lower power consumption. The

dynamic power consumption after optimization can be seen in figure 4.14 together with

the dynamic power consumption from the system frequency test earlier presented in

figure 4.1. In figure 4.14 it can be seen for the complex master that the dynamic power

after optimization closely follows the dynamic power without power optimization. It

can be seen that the optimized results has a deviation from the linear behavior of

the results at frequency 6 MHz and 7 MHz and no deviation at 10 MHz and 11 MHz

where the unoptimized implementation has a deviation as previously described. For

the simple master it can be seen that it is a deviation from the linear behavior at 15

MHz and also a deviation at 1 MHz and 2 MHz, but the last two deviations are not

easily seen in the plot. It can be seen in the plot that the dynamic power consumption

after optimization is larger than before power optimization for all frequencies for the

simple master.

39

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

400

P
ow

er
 [

W
]

Dynamic power at different system frequencies
Impact from power optimalization

Complex master without power opt Simple master without power opt
Complex master with power opt Simple master with power opt

Figure 4.14: Average dynamic power consumption for the different SPI implementa-
tions with and without power optimization enabled

The static energy consumption for the different implementations are presented in figure

4.15. In these figures it can be seen that the difference in static energy consumption

between the power optimized and not power optimized design is relatively small and

not visible in the plots for neither the simple nor the complex implementation.

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Static energy per SCLK iteration
Simple master with impact from power optimalization

Without power opt With power opt

(a) Simple master

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Static energy per SCLK iteration
Complex master with impact from power optimalization

Without power opt With power opt

(b) Complex master

Figure 4.15: Static energy per SCLK iteration for the different SPI implementations
with and without power optimization enabled

40

For the dynamic energy consumption in figure 4.16 are the differences in dynamic power

consumption more visual. For the complex master it can be seen that for frequencies

up to 9 MHz the power optimization gives a slightly lower dynamic energy consumption

except for 6 MHz and 7 MHz due to the deviation. For 10 MHz and up it can be seen

that the energy optimization gives a larger energy consumption than the unoptimized

design. For the simple master it is seen that for all frequencies the energy optimized

design gives a larger energy consumption than for the unoptimized implementation.

For frequencies 1 MHz, 2 MHz and 15 MHz the dynamic energy consumption after

optimization for the simple master is lower than for the other frequencies and deviates

from the constant behavior of the other estimates.

0 5 10 15

System clock frequency [MHz]

70

75

80

85

90

95

100

105

110

E
ne

rg
y

[p
J]

Dynamic energy per SCLK iteration
Impact from power optimalization

Complex master without power opt Simple master without power opt
Complex master with power opt Simple master with power opt

Figure 4.16: Dynamic energy per SCLK iteration for the different SPI implementations
with and without power optimization enabled

The total energy consumption per clock iteration for the optimized and unoptimized

implementations are presented in figure 4.17 where it can be seen that for the complex

master the total difference in energy is relatively small and not visual in the plots except

for the frequencies where either of the implementation deviate from the estimation

trends. For the simple master it is a small increase in the total energy due to the

increased dynamic energy consumption.

41

0 5 10 15

System clock frequency [MHz]

0

50

100

150

200

250

300

350

E
ne

rg
y

[p
J]

Total energy per SCLK iteration
Impact from power optimalization

Complex master without power opt Simple master without power opt
Complex master with power opt Simple master with power opt

Figure 4.17: Total energy per SCLK iteration for the different SPI implementations
with and without power optimization enabled

In table 4.6 can the average decrease in total energy when using power optimization

be seen. Multiple of the percentages are negative which means that it actually is an

increase in energy which corresponds to the results in the previous figures. The average

decrease in energy for the simple master is -5.2% and for the complex master it is -

1.3%. As the negative decrease actually is an increase, it can be seen that the simple

master has a larger increase in energy than the complex master after optimization.

Table 4.6: Average total energy decrease from power optimizations

Frequency [MHz]
Implementation 1 2 3 4 5 6 7 8

Simple [%] -1.0 -1.7 -4.3 -5.0 -5.5 -5.8 -6.1 -6.3
Complex [%] 0.4 0.3 0.3 0.3 0.3 -3.7 -3.4 0.3

Frequency [MHz]
Implementation 9 10 11 12 13 14 15 Average

Simple [%] -6.5 -6.8 -7.0 -6.2 -6.3 -6.5 -3.4 -5.2
Complex [%] 0.2 -4.5 -5.0 -1.1 -1.2 -1.1 -1.6 -1.3

42

The utilized resources for the power optimized design are presented in table 4.7. Based

upon the utilized logic for the unoptimized implementations in table 4.2 it can be seen

that both the simple and complex master has an increase of 4 LUTs after optimization

while the other resources are unchanged.

Table 4.7: Utilized resources in the FPGA with power optimization enabled. The
percentage use of FPGA resources are displayed in parenthesis

Resource Simple Complex

LUTs 64 (0.12%) 173 (0.33%)
Flip-flops 108 (0.10%) 224 (0.21%)
I/O ports 55 (44.00%) 87 (69.60%)

43

5 Discussion

The discussion is structured by firstly discussing concerns regarding the estimation

methodology before discussing the different results and lastly a brief evaluation of the

tool Vivado.

The two implemented SPI masters are analysed as close to their original implementa-

tion as possible just with some alternations to enable for comparison as described in

subsection 2.7. It is uncertain how well these implementation are optimized regarding

power consumption so it could be possible to modify the designs in order to provide a

lower power and energy consumption with the same functionality. However for many

situations when designing a system, the designer would use premade modules such as

IPs to speed up the design process. To modify these device will to some extend go

against the reason of utilizing premade designs as it might add development time or

the design could be encrypted and unavailable for modifications and the designer must

use the design as delivered[7].

5.1 Estimation method

When analysing a digital design implemented onto a model of a FPGA, multiple un-

certainties could be introduced. For instance may the utilized method introduce chal-

lenges such as inaccurate estimations or limitations to how the analysed design actually

would work when it is properly implemented as a part of a larger system. When con-

ducting an analysis on a model of an actual FPGA, the fidelity of the model is also of

importance since an inaccurate model would give inaccurate power estimations.

Firstly as seen in table 4.2 the amount of utilized resources in the FPGA is below 1% for

both the utilized LUTs and flip-flops for both implementations. For designs utilizing

such a small amount to the logic, some challenges arises. As described in subsection

2.3.2 may a FPGA have a device static power consumption independent of utilized

logic. This could mask out the actual design static power consumption of the design

under test as it consists of such a small amount of logic. This challenge is solved by

subtracting the device static consumption for the FPGA without the analysed design,

but some uncertainty to the presented results are added since the tools not presents the

exact details of the contributions to the different static power consumptions. Another

result of the issues regarding the small design size can be seen for the estimation of

power optimization in subsection 4.5 where the design actually uses more power and

energy after optimization. This is further described in subsection 5.6.

Another element affecting the power and energy estimation is the applied timing con-

straints for the I/O-ports of the design. As described in subsection 3.2.1 the applied

timing constraints may have an impact on the power estimations and are important for

44

the confidence level of the estimations[25]. As also described in subsection 3.2.1 are the

correct I/O-constraints for the design not possible to determine without implementing

the SPI master as a part of a larger system with the required control logic. The applied

testbench creates representative stimuli for the SPI masters, but does not provide the

requirements for timing constraints. Another issue regarding the implementation of

the SPI masters as stand alone devices is the I/O-ports utilized for the designs as seen

in table 4.2. Such I/O-ports could add a fair amount of energy consumption[25] and

when the SPI master is implemented as a part of a larger system, the connections to

the internal logic will be connected to internal logic instead of an I/O-port and there-

fore not necessary consume the additional power drawn by the I/O-ports. However

the external interface of the SPI master will typically utilize an amount of I/O-ports

and it is therefore not possible to just remove the I/O-contributions in the estimations

since it is not separated into individual port consumptions. Wiring to other internal

logic would also require some amount of energy so the additional I/O-ports can be con-

sidered replacements for these connections. These uncertainties could give a change

to the estimated energy consumption and the numbers themselves should be consid-

ered with care. However, as both of the implementations are analysed with the same

limited set of constraints together with alternative I/O-connections, the comparison

between the modules is still of interest even if the numbers themselves are uncertain.

On the other hand are the values seen to be of the same magnitude as for other SPI

masters as stated in section 4.1 which means they might be in the range of the actual

consumption.

As presented in section 2.2.1 a lower operating frequency could give the possibility to

downsize transistors in the circuit and thereby give a lower power consumption. Since

the analysis is conducted at a model of a FPGA with fixed transistor sizes, is the

option to downsize the transistors not possible. If the design were implemented onto

an ASIC it could be easier to downsize the transistors which could make an impact on

the energy consumption for lower frequencies. As mentioned a lower frequency would

also give a possibility to use a lower operating voltage VDD for the circuit. It is to

some extend possible to alternate the operating voltages for the FPGA, but it has to

stay within relatively strict operating conditions[34] so the adjustments for operating

voltage are limited. Also as previously mentioned the operating voltage of a system

is unlikely to be decided by the optimal operating voltage for the relatively small SPI

master and modifications on alternating voltages are therefore not explored.

5.1.1 Reliability of estimations

The power estimations of the two SPI masters are as mentioned conducted on a model

of the FPGA. When using a model of an actual physical component a concern is always

how well the model represents the actual design, i.e. the fidelity of the model. For

45

the tools utilized in this analysis are the error deviation between the estimated power

and actual produced silicon measurements ±20% for the XPE tool and ±10% for the

Vivado power estimation[25, 35]. This error is due to process variation. These error

deviations strengthens the concern regarding the true values of the power and energy

measurements, and should also be considered when looking at the comparison between

the two modules since the differences presented in the estimations may differ for an

actually implemented SPI master in physical hardware.

5.2 System frequency

As seen for the results presented in section 4.1 the overall results show that the complex

master has a larger power and energy consumption than the simple master. However it

is multiple interesting elements to look further into. Firstly one important element to

consider is the mentioned deviation from the overall trends of the results for frequency

10 MHz and 11 MHz for the complex master. The exact reason for this deviation is

uncertain, but throughout the different tests and analysis some details are discovered.

However since these discoveries are dependent on results from different tests, they are

discussed later in this section in subsection 5.7 and the following discussion of the

results is therefore based upon the overall trend of the estimations.

The power consumption presented in figure 4.1 has as mentioned an approximately

linear behavior which corresponds to the linear frequency dependency of the switching

power in equation 2.5. As later presented in figure 4.4 where the dynamic energy

consumption from the clocking is extracted, it is seen that the difference between

the two implementations with regards of dynamic power and energy consumption is

mainly due to the clock switching and generation. As presented in subsection 2.4.1 is

a large part of a digital designs total dynamic energy consumption related to clocking,

which can be seen in the results where the clocking uses approximately 44% and 56%

of the dynamic energy in the simple and complex master respectively. This dynamic

energy consumption caused by the clock is in the upper and above the typical energy

contributions from the clock presented in section 2.4.1, but due to the nature of a SPI

master where the design not only has a dynamic power consumption because of the

clock, but also generate the clock SCLK, this can be considered a reasonable estimate.

The clocking in the complex master has a larger dynamic energy consumption than

for the simple master. This can be due to the larger fanout for the clock networks in

the complex master due to the utilization of more hardware. A larger clock fanout

requires more wiring which increases the capacitance of the circuit which increases the

dynamic power consumption based of the switching power in equation 2.5. For the

other elements contributing to the overall dynamic energy consumption presented in

figure 4.4a, the difference between the simple and complex master is relatively small.

This result show that the amount of utilized logic and I/O ports only slightly directly

46

affects the dynamic energy consumption. However as more logic requires a larger

fanout for the clock network, it contributes to the dynamic energy increase seen for

the clocking.

As seen in table 4.1 the percentage increase in energy between the simple and complex

master depends on the type of energy. For the static energy consumption it is seen that

the percentage increase is smallest for the lowest frequency, but increases for larger

frequencies. This can be explained by the nature of the static energy consumption.

Both SPI implementations has a constant static power draw which is almost constant

at all frequencies which means that the difference between the modules in static power

is relatively constant at different frequencies. However, with a higher frequency the

period for a clock pulse is shortened and the static energy therefore decreases with

frequency. The difference in static energy consumption between the implementations

is still constant, but for a higher frequency the difference has a larger share of the

implementations static energy consumption at that frequency. For the dynamic en-

ergy consumption it can be seen that the percentage increase is relatively stable at

the different frequencies only with some small variations. What can be seen for this

comparison is that the energy cost in implementing the complex master increases with

higher frequencies since for an operating frequency of 1 MHz the additional energy for

the complex master is 10.9% while for 15 MHz it is 34.1%.

The complex master requires more than twice as many LUTs and flip-flops than the

simple master as seen in table 4.2, but does not require twice as much energy. This

could be due to a lot of the added logic in the complex master is used to provide a

flexible design where transmission settings such as setup and hold time can be changed

after implementation. The switching however in these logic block are relatively limited

which can explain why twice as much logic does not require twice as much energy. The

complex master also has approximately 10 times more SLOCs than the simple master.

This is not an elements who directly affects the energy consumption as the content

in these lines may invoke different amounts of logic. However it presents another

consideration with exploring the requirements for the design. The complex master has

more functionality than the simple master, but it also requires a more complex design

process.

5.3 SCLK division

The test with different divisions of the SCLK gives a set of interesting changes to look

at both between the SPI masters, but also how the implementations themselves reacts

to the different divisions. Firstly it is seen for the dynamic power in figure 4.5 that

lowest SCLK division of 4 has the largest dynamic power consumption. Since a lower

division of the system clock gives a higher frequency of the SCLK it is natural that it

has the largest power consumption as seen from equation 2.5 for the switching power.

47

The power consumption by the complex master is also higher for all divisions than

the simple master which also is natural based on the discussion of the results for the

system frequency test.

When looking at the energy consumption in figure 4.6 and 4.7 it is seen that the

division of 32 has the largest energy consumption and the order is flipped compared to

the dynamic power plot. This is not necessary surprising since the energy is given per

SCLK iteration and the period of the on-time of the circuit grows when the division is

larger. It is therefore seen that the reduction in power consumption for the 32 division

is not enough to counter the added on-time and the 32-division therefore uses the most

energy of the tested divisions. The energy consumption almost doubles between each

division which is natural as the SCLK frequency is halved between each division.

The percentage increase in energy for each of the SPI implementations from division 4

to the other divisions in table 4.3 are seen to be very similar which show that the two

implementations reacts similarly to the modifications in SCLK division and that the

type of implementation therefore does not affects the percentage increase in energy.

However as the complex master has a larger amount of energy consumption than the

simple master, the consequence of an increase in energy is larger for the complex master

in a system with limited energy resources.

As presented in subsection 5.1 in the beginning of the discussion, the complete benefit

in energy consumption of running the design on a lower frequency is not achieved due

to the fixed transistor size and limitations in operating voltage. This is also a consid-

eration for the SCLK frequency. As the SCLK frequency for some SPI slaves could be

used to clock the SPI slave during transmission, a slower SCLK clock can save energy

in the SPI slave which can make it beneficial to use a higher SCLK division. However

the effect of this is not explored in this thesis and is therefore just a consideration.

5.4 Alternation of operating mode

The results from the tests where the implementations are analysed using different

operating modes show that the choice in operating mode has a relatively small impact

on the energy consumption in the SPI masters. According to the theory this is not a

surprising result as both the transmission time, switching activity and other parameters

are similar for all the modes just with some alternations in when the data is sampled

and at which clock flank.

However some difference are seen in the results which does not have a large impact

on the energy consumption, but gives a picture of the nature of the implementations.

For the static energy consumption in figure 4.9 it is no clear difference either between

the implementations nor the different modes and the results are similar to the ones

described for the system frequency test. For the dynamic energy consumption in figure

48

4.10 some difference can be seen. For the simple master the different operating modes

does not have an impact on the energy consumption, but for the complex master

some variations between the operating modes is seen. This variation however can be

considered relatively small as the average difference between the mode using the most

dynamic energy and the one using the least amount is 0.15 pJ. Weather it is the size

of the implementations or how the functionality for modifying CPOL and CPHA is

designed who causes the difference seen in the implementations are uncertain, but the

results at least presents that how additional functionality is implemented may have an

impact on the systems performance.

5.5 Internal changes to the complex master

The removal of the FIFO registers give as seen not surprisingly a lower power and en-

ergy consumption since the implementation utilizes less logic than the implementation

with FIFO registers. Most of this energy reduction is in the dynamic energy even with

a significant reduction in utilized logic. A FIFO register may introduce a large amount

of switching activity due to a lot of data switching which naturally is removed when

the FIFO register is removed.

The removal of the FIFO registers give as seen in figure 4.13 a design with a lower

energy consumption. However since the SPI master always will be a part of a larger

system, the removal of the FIFO registers does not necessary gives a lower energy

consumption for the overall system. Without the FIFO registers the controlling logic

will have to regularly send or read data to and from the SPI master while with the

use of FIFO registers, the controlling logic can send or read a large amount of data in

one operation. This could free the controlling logic which could do other operations or

utilize other power savings techniques. The actual energy savings for an overall system

is therefore important with the consideration the use of FIFO registers and will have

to be further looked into upon implementation of a complete system.

5.6 Power optimization

When analysing the power optimized implementations the result where surprising as

the implementations turned out to have a larger or relatively similar energy consump-

tion as the unoptimized designs. For the complex master the optimized design required

both slightly less and slightly more energy depending on the system frequency while

for the simple master the optimized implementation required more energy at all fre-

quencies as seen in figure 4.17. The optimized designs introduces 4 more LUTs to the

implementation, but this small increase in logic should not necessary give such a large

increase in energy based upon the results from the tests without the FIFO registers.

It can be seen by the results in figure 4.15 and 4.16 that the main difference in energy

is related to the dynamic energy consumption.

49

In Vivado the the key element of the power optimization technique is to add internal

clock gating to parts of the designs. This addition of extra logic and controlling of the

clock gates require some amount of extra energy as described in section 2.2.2. As stated

in subsection 5.1 in the beginning of this section the SPI masters can be considered as

relatively small designs and utilizes a small amount of the available logic. This creates

an issue where the tool adds extra logic for clock gating, but the gated elements are

so small that the gated logic does not save enough energy in order to compensate for

the added overhead in energy from clock gating. It is seen in table 4.6 that for the

complex master the average increase in energy is smaller than for the simple master.

The complex master consists of a larger amount of logic than the simple master and

therefore has a larger potential to clock gate larger logic blocks.

5.7 Deviating results

It can be seen in multiple of the results that some estimations for the dynamic con-

sumption deviate from the overall trends of the estimates. It is mostly seen for the

complex master, but is also shown after power optimization for the simple master. The

exact reasons for these deviations is unknown, but it is seen for different frequencies

throughout the analysis. For instance in the system frequency test a closer analysis

for surrounding frequencies is conducted and the deviation is seen to occur at a range

of frequencies from slightly lower than 10 MHz to slightly higher than 11 MHz, and

not just for the exact integer frequencies as presented in figure 4.2b. The deviation is

also seen to occur at different frequencies when the different tests are applied and also

deviates in both directions so for some frequencies the consumption is larger, and for

some it is lower.

As seen in figure 4.4b the deviation is seen to be generated from the dynamic energy

consumption by clocking. For the complex master it is also seen that with the removal

of the FIFO register the deviation does not occur as presented in figure 4.12b. After

analysis of the power consumption in the complex design, it is seen that the deviation

does not directly occur in the FIFO registers, but as a part of the datapath in the

design where the registers are connected. For the simple master some deviations are

also seen for the power optimized design which confirms that the deviation is not only

due to the FIFO registers.

The estimation deviations are therefore caused by energy consumption due to clocking

in the data path, but unfortunately no further reason for the deviation is discovered.

However, since for all the results the majority of the estimations follow the same pattern

where only a few estimates deviate, the analysis is based on the general patterns of the

results. Therefore some considerations must be taken that the deviating results either

may be wrong, or that some frequencies match the design better or worse than others

to give a lower or higher energy consumption. A closer examination of these deviating

50

results could therefore be of interest for further studies.

5.8 Tool evaluation

As seen throughout this thesis the applied tool Vivado has a large impact on both how

the designs are implemented onto the hardware as well as the method for estimation

of the power consumption. This means that the tool has a large impact on the results

of this thesis and should therefore also be considered for evaluation.

One of the most important aspects when analysing the power parameters of the design

is naturally the reported power consumption. Vivado gives to some extend details

around the power consumption on a module basis or utilization level such as power

consumption in different logic types. A further detailed view of the power consumption

in each of the components are not discovered. This could for instance been interesting

to look into in order to further analyse the reason for the deviations in the estimations.

Exact details regarding the contributions to the different power estimations such as

what the power consumption from for instance clocking actually includes, are also

limited which introduces some uncertainty of what the reported power actually shows.

The procedures and methods of extracting the necessary power estimations are based

upon the user guides for the Vivado environment. These user guides give a good

explanation of how the tool functions and how to set various settings. However the

consequence and meaning of the different settings are rarely described and the method

provided in this thesis is therefore based upon trial, error and considerations of what

can be considered reasonable results for the estimations. Since Vivado is a complex

tool with a large amount of possibilities, some considerations must be taken that there

might be better methods or tools to conduct the presented analysis than the one

presented in this thesis.

The reported power estimations also depend on how well the given RTL description

maps down to the FPGA device. How well this is done depends not only on the tools

quality, but also the author of the RTL as the RTL can can be written in different ways

with different mappings to the FPGA even with same behavior. Different mappings

could consist of different amounts of logic which naturally will require different amounts

of power.

51

6 Conclusion

As discussed in the previous section the two different implementations of the SPI

master has a difference in their requirement for energy, but they also responds similarly

to applied modifications. What can be seen is that the complex master implementation

has a larger power and energy consumption than the simple master for all conducted

tests. When tested over a frequencyspan over 1 MHz to 15 MHz it is seen that on

average the complex master requires 27.2% more energy than the simple master when

all other parameters are unchanged. This increase in energy is mainly caused by the

differences in dynamic energy due to clocking in the design. The complex master

utilize more than twice as much logic as the simple master, which increases the energy

consumption due to a larger capacitance in the circuit from both the logic and the

wiring in between. It is seen that the percentage energy cost in adding the additional

functionality for the complex master rises with frequency since at 1 MHz the complex

master only requires 10.9% more energy while at 15 MHz it requires 34.1% more.

The complex master includes a variety of addition functionality such as access to

the current status of the transmission and the possibility of adjusting transmission

setting during operation. The extra energy consumption is therefore the cost of the

additional functionality and a trade of between energy consumption and functionality

might therefore be required when implementing a SPI master into a system. However it

is seen that the complex master does not double the energy consumption even with the

double amount of logic, so the energy cost in additional functionality heavily depends

on the switching activity in the added logic. The two implementations still responds

relatively similar to adjustments made to the design where the percentage increase in

energy with different SCLK divisions applied are relatively similar.

It is seen that within the tested operating frequencies it is preferable to operate the

design using the largest system clock as possible with a low division to the commu-

nication clock SCLK since this would give the lowest total energy consumption, but

with the consideration that due to the implementation of the design on a FPGA, some

benefits of operating the design at a low frequency such as smaller transistor-sizes and

lower operating voltage were not possible.

It is seen throughout this analysis that the method of analysis has certain limitations.

The SPI master will always be a part of a large system and it is therefore to some extend

not profitable to look at it as a standalone device. Especially can this be concerned

when the design is implemented onto a FPGA since the rest of the system can largely

affect the energy consumption of the SPI master. The SPI masters implemented here

are also of relatively small size and when implemented onto a large FPGA compared

to the SPI designs, the resulting estimations are affected by a static overhead in the

FPGA. This can however to some extend be corrected, but as seen when the design is

52

power optimized during implementation, the tool overestimate its optimization due to

the small design and actually cause the energy to increase when the goal is a decreased

energy consumption.

53

7 Further work

This thesis could to some extend be considered a preliminary study due to the different

limitations in the analysis. In order to have an exact analysis of the true energy

consumption for the different implementations of the SPI master, the SPI master

must be implemented as a part of a combined system with control logic in order to

create a more realistic environment.

7.1 SPI

As presented in this thesis there is multiple adjustments who could be introduced to

conduct a better analysis of the SPI masters. Since an ASIC device has a lower energy

consumption than the FPGA due to its customizable possibilities it can be the desired

choice when implementing a ultra low power device. It could therefore be interesting

to look into how different SPI implementations would behave when implemented onto

an ASIC device. This would also eliminate many of the difficulties encountered in this

thesis such as additional device static power and could give a more accurate estimation

of the true consumption of the SPI master devices.

7.2 Considerations regarding MBus

As stated in the introduction it is a large variety of different possibilities when it comes

to the choice in which communication protocol to use. Most of these are well docu-

mented in a variety of different resources online, but in the research during this thesis

additional updated information regarding the communication protocol Mbus4[4] are

discovered and some of it is presented here since the publicly available documenta-

tion and design-files are outdated. Hopefully this information can be useful to others

exploring the possibilities of this protocol.

As stated in the published and available online research, this communication protocol

is designed to function as a competitor to the I2C-protocol, but with a significant

reductions in power and energy consumption with promising results. The available

public presence is not currently updated and the newest version of the protocol can

be sort of considered more a platform where the entire system must be designed from

ground around the MBus system. The MBus is therefore no longer just an intercon-

nection between modules in a system as presented in the available public research. The

protocol has also been highly customized for other system designed by the creators of

MBus and no other systems can effectively utilize the beneficial power consumption

of the MBus[36]. The utilization of the newest version of the MBus protocol is there-

fore impossible to implement without further communication with the creators and

4This should not be mixed with the more common M-Bus(Meter-bus) as these as completely dif-
ferent communication systems.

54

access to the implementation files. Due to their commercialization of systems utilizing

the MBus as a core component, the possibilities of access to further details regarding

the protocol are unknown, but the platform may be distributed in the future if it is

considered beneficial by the designers[36].

55

References

[1] Ahmadreza Motaqi. “Energy-performance management in battery powered re-

configurable processors for standalone IoT systems”. In: International Journal

of Information Technology 12.3 (Sept. 2020), pp. 653–668. issn: 2511-2112. doi:

10.1007/s41870-020-00454-4. url: https://doi.org/10.1007/s41870-

020-00454-4.

[2] Peter Newman. THE INTERNET OF THINGS 2020: Here’s what over 400

IoT decision-makers say about the future of enterprise connectivity and how

IoT companies can use it to grow revenue. Mar. 2020. url: https://www.

businessinsider.com/internet-of-things-report?IR=T (visited on Dec. 13,

2020).

[3] European Environment Agency. Environmental impact of energy. url: https:

//www.eea.europa.eu/help/glossary/eea- glossary/environmental-

impact-of-energy (visited on June 5, 2021).

[4] P. Pannuto et al. “MBus: An ultra-low power interconnect bus for next gen-

eration nanopower systems”. In: 2015 ACM/IEEE 42nd Annual International

Symposium on Computer Architecture (ISCA). 2015, pp. 629–641.

[5] Richard Mc Sweeney, Christian Spagnol, and Emanuel Popovici. “Comparative

study of software vs. hardware implementations of shortened Reed-Solomon code

for Wireless Body Area Networks”. In: 2010 27th International Conference on

Microelectronics Proceedings. 2010, pp. 223–226. doi: 10.1109/MIEL.2010.

5490471.

[6] Markus Rud. Evaluation of digital serial communication for a flexible sensor

interface. Project Thesis in Electronics at NTNU. Dec. 2020.

[7] Khaled Salah Mohamed. IP Cores Design from Specifications to Production.

Springer International Publishing Switzerland, 2016.

[8] Neil H. E. Weste and David Money Harris. Integrated Circuit Design. Forth

edition. Pearson Education, 2011.

[9] Smitha Sundaresan and Frederic Rivoallon. Analysis of Power Savings from In-

telligent Clock Gating (XAPP790). v1.0. Xilinx. Aug. 2012.

[10] Shmuel Wimer and Israel Koren. “The Optimal Fan-Out of Clock Network for

Power Minimization by Adaptive Gating”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 20.10 (2012), pp. 1772–1780. doi: 10.1109/

TVLSI.2011.2162861.

[11] Julien Lamoureux and Wayne Luk. “An Overview of Low-Power Techniques for

Field-Programmable Gate Arrays”. In: 2008 NASA/ESA Conference on Adap-

tive Hardware and Systems. 2008, pp. 338–345. doi: 10.1109/AHS.2008.71.

[12] Vivado Design Suite User Guide; Design Flows Overview (UG892). v2020.2.

Xilinx. Feb. 2021.

56

https://doi.org/10.1007/s41870-020-00454-4
https://doi.org/10.1007/s41870-020-00454-4
https://doi.org/10.1007/s41870-020-00454-4
https://www.businessinsider.com/internet-of-things-report?IR=T
https://www.businessinsider.com/internet-of-things-report?IR=T
https://www.eea.europa.eu/help/glossary/eea-glossary/environmental-impact-of-energy
https://www.eea.europa.eu/help/glossary/eea-glossary/environmental-impact-of-energy
https://www.eea.europa.eu/help/glossary/eea-glossary/environmental-impact-of-energy
https://doi.org/10.1109/MIEL.2010.5490471
https://doi.org/10.1109/MIEL.2010.5490471
https://doi.org/10.1109/TVLSI.2011.2162861
https://doi.org/10.1109/TVLSI.2011.2162861
https://doi.org/10.1109/AHS.2008.71

[13] HardwareBee. The Ultimate Guide to FPGA Design Flow. url: https : / /

hardwarebee.com/ultimate- guide- fpga- design- flow/.html (visited on

May 9, 2021).

[14] Power Methodology Guide (UG786). v14.5. Xilinx. Apr. 2013.

[15] Ian Kuon and Jonathan Rose. “Measuring the Gap Between FPGAs and ASICs”.

In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 26.2 (2007), pp. 203–215. doi: 10.1109/TCAD.2006.884574.

[16] I. Brynjolfson and Z. Zilic. “Dynamic clock management for low power applica-

tions in FPGAs”. In: Proceedings of the IEEE 2000 Custom Integrated Circuits

Conference (Cat. No.00CH37044). 2000, pp. 139–142. doi: 10.1109/CICC.2000.

852635.

[17] Alireza Rakhshanfar and Jason H. Anderson. “An integer programming place-

ment approach to FPGA clock power reduction”. In: 16th Asia and South Pa-

cific Design Automation Conference (ASP-DAC 2011). 2011, pp. 831–836. doi:

10.1109/ASPDAC.2011.5722305.

[18] SPI Block Guide V04.01. Motorola, Inc. July 2004.

[19] DigiKey Electronics (Scott 1767). SPI Master (VHDL). Mar. 2021. url: https:

//forum.digikey.com/t/spi-master-vhdl/12717 (visited on Apr. 26, 2021).

[20] Vivado Design Suite User Guide: Synthesis (UG901). v2020.2. Xilinx. Jan. 2021.

[21] SPI Master Controller. FPGA-RD-02174-1.1. Lattice Semiconductor. Feb. 2020.

url: https : / / www . latticesemi . com / products / designsoftwareandip /

intellectualproperty/referencedesigns/referencedesign03/spimastercontroller.

[22] Zynq-7000 SoC Data Sheet: Overview. DS190 (v1.11.1). Xilinx. July 2018.

[23] Xilinx. Vivado Design Suite - HLx Editions. url: https://www.xilinx.com/

products/design-tools/vivado.html (visited on May 25, 2021).

[24] Vivado Design Suite User Guide; Using Constraints (UG903). v2018.1. Xilinx.

Apr. 2018.

[25] Vivado Design Suite User Guide; Power Analysis and Optimization (UG907).

v2020.2. Xilinx. Nov. 2020.

[26] nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification. v1.0. Nordic

Semiconductor. Sept. 2008.

[27] UltraFast Design Methodology Guide for the Vivado Design Suite (UG949). v2020.2.

Xilinx. Feb. 2021.

[28] Vivado Design Suite User Guide: Logic Simulation (UG900). v2020.2. Xilinx.

Nov. 2020.

[29] Xilinx. AR# 57127: Vivado Simulator - Post Synthesis and Post Implementation

Timing simulation options are greyed out in my VHDL Vivado project, how can

I run VHDL timing simulations? May 2014. url: https://www.xilinx.com/

support/answers/57127.html (visited on May 1, 2021).

57

https://hardwarebee.com/ultimate-guide-fpga-design-flow/.html
https://hardwarebee.com/ultimate-guide-fpga-design-flow/.html
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1109/CICC.2000.852635
https://doi.org/10.1109/CICC.2000.852635
https://doi.org/10.1109/ASPDAC.2011.5722305
https://forum.digikey.com/t/spi-master-vhdl/12717
https://forum.digikey.com/t/spi-master-vhdl/12717
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/referencedesigns/referencedesign03/spimastercontroller
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/referencedesigns/referencedesign03/spimastercontroller
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/answers/57127.html
https://www.xilinx.com/support/answers/57127.html

[30] Ruzica Jevtic and Carlos Carreras. “Power Measurement Methodology for FPGA

Devices”. In: IEEE Transactions on Instrumentation and Measurement 60.1

(2011), pp. 237–247. doi: 10.1109/TIM.2010.2047664.

[31] Xilinx. Xilinx Power Estimator (XPE). url: https : / / www . xilinx . com /

products/technology/power/xpe.html (visited on May 25, 2021).

[32] Vivado Design Suite Tcl Command Reference Guide (UG835). v2020.2. Xilinx.

Nov. 2020.

[33] Christopher J. Lukas and Benton H. Calhoun. “A 0.38 pj/bit 1.24 nW chip-

to-chip serial link for ultra-low power systems”. In: 2015 IEEE International

Symposium on Circuits and Systems (ISCAS). 2015, pp. 2860–2863. doi: 10.

1109/ISCAS.2015.7169283.

[34] Zynq-7000 SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and Z-7020): DC

and AC Switching Characteristics. DS187 (v1.21). Xilinx. Dec. 2020.

[35] Xilinx. AR# 59456: 2015.2 Vivado Power - What is the deviation between dy-

namic power analysis and the actual production silicon measurements? url:

https://www.xilinx.com/support/answers/59456.html (visited on May 28,

2021).

[36] Email correspondence with Yejoong Kim, senior research engineer at the Univ of

Michigan and related to the creation of MBus. Feb. 2021.

58

https://doi.org/10.1109/TIM.2010.2047664
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://doi.org/10.1109/ISCAS.2015.7169283
https://doi.org/10.1109/ISCAS.2015.7169283
https://www.xilinx.com/support/answers/59456.html

A Simulation/estimation parameters

This appendix presents multiple parameters and settings who have been set and used

during the power estimations.

Testbench parameters/data

Table A.1: Transmitted/received data in testbench

Data

16’b 0011100000011000
16’b 0000000000000001
16’b 1000000000000000
16’b 1111111111111111
16’b 0010101010101010
16’b 0100110011001101
16’b 1111000011111111
16’b 1111111111111110
16’b 0111111111110000
16’b 0000111111110001
16’b 1111111111111111
16’b 1000000000000000
16’b 0010101010101010
16’b 1111111111111111
16’b 1111000011100000
16’b 1111111111111110

Power estimation parameters

Table A.2: Environmental parameters in power estimation

Parameter Setting/Value

Temp grade Commercial
Process Typical
Output Load 0 pF
Ambient temperature 25 °C
Airflow 250 LFM
Heat sink None
θSA 0°C/W
Board selection Medium (10”x10”)
Number of board layers 8 to 10 layers
θJA 11.5°C/W
Board temperature 25°C

59

Table A.3: Voltage parameters in power estimation based on typical values for the
operating conditions in the datasheet for the SoC[34]

Source Voltage [V]

Vccint 1.000
Vccaux 1.800
Vcco33 3.300
Vcco25 2.500
Vcco18 1.800
Vcco15 1.500
Vcco135 1.350
Vcco12 1.200
Vccaux io 1.800
Vccbram 1.000
MGTAVcc 1.000
MGTAVtt 1.200
MGTVccaux 1.800
Vccpint 1.000
Vccpaux 1.800
Vccpll 1.800
Vcco ddr 1.500
Vcco mio0 1.800
Vcco mio1 1.800
Vccadc 1.800

60

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Markus Rud

Power and energy consumption in
hardware implemented SPI master
devices

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet
Co-supervisor: Øystein Moldsvor

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Theoretical background
	Energy and power consumption in electrical systems
	Dynamic power consumption
	Static power consumption

	Low power techniques
	Frequency scaling
	Clock gating
	Capacitance reduction

	FPGA
	FPGA design process
	Power consumption in a FPGA

	FPGA vs ASIC
	Clock networks

	Communication in digital wired systems
	External interface of SPI
	Internal design of SPI masters
	Simple implementation
	Complex implementation

	Method
	Implementation of the SPI masters
	Simulation and estimation methodology
	Design constraints
	Simulation testbench
	Power estimation

	Conducted tests
	Frequency
	Alternation of operating mode
	Internal changes to the complex master
	Power optimization

	Results
	System frequency
	SCLK division
	Alternation of operating mode
	Internal changes to the complex master
	Power optimization

	Discussion
	Estimation method
	Reliability of estimations

	System frequency
	SCLK division
	Alternation of operating mode
	Internal changes to the complex master
	Power optimization
	Deviating results
	Tool evaluation

	Conclusion
	Further work
	SPI
	Considerations regarding MBus

	References
	Simulation/estimation parameters

