
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Strandlie

Routing in MySQL

A memory-aware approach

Master’s thesis in Computer Science
Supervisor: Norvald Ryeng

June 2021

M
as

te
r’s

 th
es

is

Håkon Strandlie

Routing in MySQL

A memory-aware approach

Master’s thesis in Computer Science
Supervisor: Norvald Ryeng
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis looks at implementations of routing / shortest path calculation in
databases and argues that while there exists an implementation for PostgreSQL,
its imperative approach is suboptimal in a database system. To demonstrate an
alternative, the thesis implements a prototype of a declarative routing module
in MySQL and examines some of the consequences of a declarative interface. The
prototype is experimentally evaluated and found to use large amounts of I/O, with
large time consumption as a consequence. A more effective buffering strategy is
suggested based on the results from the evaluation.

iii

Acknowledgement

I am very grateful to Norvald Ryeng for being the best kind of advisor, giving in-
sights, answering questions, and always being available for inspiring discussion
and helpful feedback throughout the work with this thesis. I would also like to
thank Adam Wulkiewicz and Torje Digernes at Oracle, for helping me with learn-
ing and understanding MySQL, Boost and C++. Without you, this thesis would
not have been the same.

v

Contents

Abstract . iii
Acknowledgement . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
1 Introduction . 1
2 Background . 5

2.1 The problem . 5
2.1.1 Problem representation as a graph 5
2.1.2 Graph representation in memory 7
2.1.3 Geometry . 8

2.2 Theory and concepts . 9
2.2.1 Routing Methods . 9
2.2.2 Algorithms . 11
2.2.3 Optimizations . 15
2.2.4 Imperative vs. declarative . 16
2.2.5 Declarative routing . 17
2.2.6 Cache Replacement Policies . 18
2.2.7 Spatial Access Methods . 19

2.3 Existing implementations . 20
2.3.1 MySQL and GIS . 20
2.3.2 pgRouting . 21
2.3.3 Oracle . 22
2.3.4 Boost Graph Library . 22

3 Evaluation . 25
3.1 Experimental setup . 25

3.1.1 Datasets . 25
3.1.2 Implementation . 27
3.1.3 Hardware . 34
3.1.4 Measurements . 34
3.1.5 Evaluations . 34

3.2 Results . 35
3.2.1 Summary of the results . 36

vii

viii H. Strandlie: Routing in MySQL

3.2.2 Memory consumption . 37
3.2.3 Time consumption . 37
3.2.4 I/O . 37
3.2.5 Impact of pruning . 38
3.2.6 Memory limit . 38

4 Discussion . 47
4.1 Datasets . 47
4.2 Results . 48

4.2.1 Practial usability . 48
4.2.2 Better performance with lower memory limit 48
4.2.3 Importance of hit ratio . 48

4.3 Implementation . 49
4.3.1 RVector . 49
4.3.2 Interface . 54
4.3.3 Pruning . 54
4.3.4 Algorithms . 56

4.4 Validation . 56
5 Conclusion . 57

5.1 Future work . 58
Bibliography . 59
A Additional Details . 65

A.1 Dataset export . 65
A.2 Dataset handling . 65
A.3 Implementation details . 66

A.3.1 Aggregation function and routing 67
A.3.2 Serialization . 68
A.3.3 Parser . 69

A.4 Test details . 69
A.4.1 Measuring memory . 70
A.4.2 Measuring time . 70
A.4.3 Measuring buffer performance, and I/O 71

A.5 Query Profiling . 72
A.6 Raw vertex IDs . 75
A.7 Tables in pgRouting . 75

Figures

2.1 Example of a graph, and corresponding memory representations
for the graph. Figures adapted from [2] 6

2.2 An example of the reach of vertices. For clarity, the reach of nodes
s, v y, z and t are not shown. 10

2.3 Example of contraction when adding a shortcut from s to t. Original
path is shown with dashed line, shortcut is shown with solid line. . 16

3.1 Map corresponding to the small dataset. Bounding box: (long, lat)
(63.42860, 10.39780), (63.43710, 10.42570)
© OpenStreetMap contributors . 26

3.2 Map corresponding to the medium dataset. Bounding box: (long,
lat) (62.92400, 9.03630), (64.01570, 11.62900)
© OpenStreetMap contributors . 26

3.3 An example query and returned result. No shortest path was found
for this query. 30

3.4 Figures showing RVector . 33
3.5 Map showing an example of vertex pruning when routing from the

purple square to the orange square. Edges outside the black circle
are discarded.
© OpenStreetMap contributors . 33

3.6 Memory usage (green bars) and max memory usage (blue line) at
any point in the query for vertex pair 1 in the medium dataset (1) 44

3.7 Memory usage (green bars) and max memory usage (blue line) at
any point in the query for vertex pair 1 in the medium dataset (2) 45

3.8 Graphs showing maximum memory consumption (green bars) through
a query exceeding the memory limit (blue line) set for that query,
for vertex pair 1 in the medium dataset 46

4.1 Map showing an example of the actual vertex set with the current
implementation (red circle) and the required vertex set for a correct
shortest path (green circle) when traveling from the purple square
to the orange square.
© OpenStreetMap contributors . 55

ix

Tables

3.1 Number of edge weights, distinct edge weights and the associated
percentage for the three datasets . 29

3.2 Number of vertices, and average number of other vertices a vertex
is connected to in the datasets . 29

3.3 Summary of the time and memory results from test runs on the
small dataset . 39

3.4 Summary of the time and memory results from test runs on the
medium dataset . 40

3.5 Summary of the time and memory results from test runs on the
large dataset . 41

3.6 Summary of the I/O results from test runs on the medium dataset . 42
3.7 Summary of the I/O results from test runs on the large dataset . . . 43

4.1 Average time-slowdown and average hit-ratio for vertex pairs in
the large datasets . 49

4.2 Examples of pairs of local-global IDs in the dataset 52

A.1 Definition for table ways generated by osm2pgrouting 76
A.2 Definition for table ways_vertices_pgr generated by osm2pgrouting 76

xi

Code Listings

2.1 The syntax for calling the routine for directed graphs in SQL/MM . 17
2.2 Syntax for performing Dijkstra’s algorithm in pgRouting 21
3.1 Definition of Adjacency List used in the implementation 29
3.2 Example query for the ROUTE function 30
3.3 A simplified outline of the function used to build the graph edge by

edge. It returns the newly added edge 31
3.4 The procedure for calculating which on-disk file an element is placed

in, based on the index of the element in RVector 32
3.5 The procedure for calculating what index in a given on-disk file an

element will have, based on the elements index in RVector 32
3.6 The procedure for selecting a random vertex-pair in a dataset 35
A.1 Example of export to Well Known Text 66
A.2 Example of operations when importing data to MySQL 66
A.3 How the call to Dijkstra’s algorithm in BGL happens 68
A.4 Example of non-intrusive serialization 69
A.5 The new lines added to the parser in yacc.yy 69
A.6 Definition of a std::vector with RoutingAllocator 70
A.7 Definition of Routing Allocator . 70
A.8 The definition of the method changeWorkingSet in RVector 71
A.9 Methods for reading and writing to file 71
A.10 Procedure to collection information about the memory usage of a

query . 72
A.11 Procedure to export information about the memory usage of a query

into CSV . 74

xiii

Chapter 1

Introduction

Questions like “Where am I?” and “How do I get to where I want to be?” are asked
every day. More and more often, these questions are answered in computer sys-
tems using geospatial data, and as existing data is improved and new data is col-
lected, support for operations on these data is in increasing demand from a range
of systems. Several database systems, with MySQL as an excellent example, now
supports storing and processing geospatial data, and MySQL 8.0 made geospatial
data a first-class citizen in the system[1].

To build on this excellent support, this thesis implements a working prototype
of a routing module in MySQL, and the prototype is evaluated using real data
from OpenStreetMap. Many routing systems have previously been implemented
and are well known to end-users through services such as Google Maps and GPS
guidance systems in vehicles. These systems often have routing implemented as
an application-level service, where the shortest path is calculated on a server or a
client, based on geospatial data returned from a database. To save the application
layer from having to perform this task, it is useful to have the ability to perform
routing in the database system, since this will reduce the amount of data trans-
ferred from the database. pgRouting in PostgreSQL is an example of an existing
implementation of routing in a database system. The SQL interface to pgRouting
requires the user to specify which algorithm to use when calculating the shortest
path, i.e. it takes an imperative approach. This is a significant mismatch with what
the user of a SQL-based database system would expect since SQL is a declarative
query language. Additionally, it places the responsibility of memory management
on the user, since the memory usage of a given algorithm is deterministic from the
size of the graph. This means the user needs to be aware of the memory usage of
a routing query because the implementation has no other option but to abort the
query if memory usage is too high.

1

2 H. Strandlie: Routing in MySQL

This thesis examines the following research questions:

RQ1: How can we create an SQL interface to a routing module that allows the
database system to optimize the execution similarly to how it optimizes a
normal query?

RQ2: What are some of the factors that impact the performance of a system with
an interface as in RQ1 when the system is memory limited?

Answering RQ1 leads to question about whether the interface should be impera-
tive or declarative, which places different requirements on the user, the dataset,
and the system, depending on what approach is taken, as discussed in Section
2.2.4.

For RQ2 it is important to consider that datasets containing the entire world or the
solar system are not inconceivable, so routing systems where the system optimizes
the query must be able to handle the case where datasets are so large that they do
not fit into memory. As a prototype of this approach, the thesis also implements
the aggregation function ROUTE, which presents a declarative interface to rout-
ing functionality. Existing implementations and their limitations are examined,
as well as possible algorithms and some optimizations, and the consequences of
such a declarative approach are explored, such as a necessary hands-on approach
to memory management, and an effective cache/buffer replacement policy. The
implementation introduces RVector, an STL container compliant data structure
for storing the vertices in the graph. RVector observes a memory limit, maintains
a memory buffer, and moves data to disk when the memory limit is exceeded. It
attempts to use the available resources as efficiently as possible, and then degrade
gracefully when the resources are exhausted.

To achieve the result of this thesis, significant work was performed with integrat-
ing custom buffer functionality with the existing implementation of MySQL, which
is a large and mature system, and with the Boost Graph Library. Getting a correct
and working implementation of this required substantial investments of time and
effort. Fortunately, the goal was reached and a working routing module is pre-
sented in the thesis, together with performance results, and directions for future
improvements.

Chapter 2 examines the details of the routing problem, together with details of a
graph representation of the problem, and the relationship between routing and
geometry data. It also looks at background information relevant for the imple-
mentation, such as algorithms and some optimizations on these, cache replace-
ment policies, and spatial access methods. The distinction between imperative
and declarative interfaces, and the consequences of a declarative interface is vis-
ited, and details about MySQL, GIS, and the current state of routing in MySQL, as
well as existing implementations in PostgreSQL, Oracle, and Boost Graph Library

Chapter 1: Introduction 3

are also examined. Chapter 3 describes the experimental evaluation that was per-
formed on the implementation, including details about the datasets and details
about the implementation of RVector. Chapter 4 discusses the results, including
the advantages, disadvantages, and practical usability of the current implementa-
tion, and possible improvements based on the results from the test.

Chapter 2

Background

This chapter contains background information that is important to a solution to
the routing problem. Section 2.1 defines the problem, then Section 2.2 examines
relevant theory and concepts, before Section 2.3 looks at some existing implemen-
tations.

In this section, the graph notation from [2] is used, in which a graph is given as
G = (V, E) and we access the set of vertices in the graph using G.V , and the set of
edges by G.E. We also find adjacent vertices (neighbors) of a vertex v ∈ G.V with
G.Ad j[v].

2.1 The problem

Routing, or shortest-path selection, is the task of selecting a path from n sources
to m targets where n, m ∈ [1, N]. It is a well known problem in the literature, and
it is used to solve several real-world problems, such as Internet packet switch-
ing and the Traveling Salesperson Problem[3]. With the emergence of geographic
data and geo-tagging on the internet[4] routing with geographic data is in in-
creasing demand.

2.1.1 Problem representation as a graph

The routing problem must be transferred into a manageable form to be reasoned
about and solved, and this is usually accomplished by mapping the problem do-
main into a graph. A graph representation maps a problem domain to a graph
G = (V, E) where G is directed if the edges e ∈ E are ordered[2], and an edge is
ordered if the edge e1 = (v1, v2) is not equal to the edge e2 = (v2, v1) and v1 is not
equal ot v2. Otherwise, the graph is undirected. Each of these edges can have a
weight associated with it, provided by a weight function w : E −→ R. This function
typically represents distance, time or price in the problem domain. More infor-

5

6 H. Strandlie: Routing in MySQL

(a) Example of a directed graph with 5 nodes, and 5 edges with
edge weights.

(b) Adjacency list memory representation of
the graph in Figure 2.1a

(c) Adjacency matrix representation of the
graph in Figure 2.1a. Blank spaces represent
no edge between corresponding nodes.

Figure 2.1: Example of a graph, and corresponding memory representations for
the graph. Figures adapted from [2]

mally, this mapping can be to take a dataset and create a data structure as shown
in Figure 2.1a, which shows an example of a directed graph with edge weights and
its associated possible memory representations. Here, each edge could represent
a road and each vertex could represent intersections between these roads.

Although other representations than a graph exist, as discussed in Section 2.2.1,
representing the problem as a graph is usually the preferred solution, since graphs
are well studied in the literature. This means that many algorithms, data struc-
tures, and optimization techniques exist for applications in many fields[5], and
many of these are often used in the industry which means that they are well tested.

Chapter 2: Background 7

Given that a graph representation is used, the problems that can be solved can be
categorized into four categories:

Single-Source Shortest Paths: Given a graph G = (V, E) and a source vertex
s ∈ G.V , find a shortest path in the graph from s to each other vertex v ∈ G.V

Single-Destination Shortest Paths: Given a graph G = (V, E) and a target ver-
tex t ∈ G.V , find a shortest path in the graph from each other vertex v ∈ G.V
to t. By reversing the direction of each edge e ∈ G.E, the problem is equiv-
alent to Single-Source Shortest Path.

Single-Pair Shortest Path: Given a graph G = (V, E) and two vertices u, v ∈ G.V ,
find a shortest path in the graph from u to v

All-Pairs Shortest Paths: Given a graph G = (V, E), find a shortest path in the
graph for all pairs of u, v ∈ G.V where u 6= v

For this thesis, Single-Source Shortest Path and especially Single-Pair Shortest
Path are most relevant, since they are the problems usually solved by a routing sys-
tem. All-Pairs Shortest Paths can be used for pre-processing, for example when
calculating reach, as described in Section 2.2.1.

2.1.2 Graph representation in memory

There are two standard ways to represent a graph in memory[2]. Representing
the graph as an Adjacency List is usually preferred over representing the graph
as an Adjacency Matrix since most graphs encountered in applications are sparse
and Adjacency List provides a way to store these efficiently. As an example, see
Figure 2.1, where an example graph with 5 vertices and 5 edges is shown. In
Figure 2.1b the memory representation of an Adjacency List can be seen, which
shows an array of 5 adjacency lists - one list for each vertex present in the graph.
Similarly, in Figure 2.1c the memory representation of Adjacency Matrix can be
seen, which has one column and one row for each vertex, such that an edge be-
tween two vertices is indicated by the presence of a number in the cell in the
intersection of the row for the source and the column for the target. Note that the
blank spaces in Figure 2.1c represent that no edge with source row and target
column exists. As a consequence of this structure, checking whether there is an
edge that connects two given vertices, or adding and removing such edges, can
be performed in O(1) time. The disadvantage is that it will have a memory cost
of O(|V |2) no matter how few edges the graph contains, and for this reason the
memory cost of O(|E|+|V |) of Adjacency List is usually preferred for sparse graphs.

8 H. Strandlie: Routing in MySQL

2.1.3 Geometry

In MySQL a geometry is defined as a point or an aggregate of points represent-
ing anything in the world that has a location[6]. The OGC Simple Feature Access
standard[7] defines a POINT datatype. MySQL complies with this standard, and
implements a POINT datatype which is defined as a representation of "a single lo-
cation in coordinate space", and the LINESTRING datatype is defined as a sequence
of points or a "Curve with linear interpolation between Points" to create a geom-
etry with a continuous curve. Other geometric datatypes also exist, but for our
purposes the POINT and LINESTRING are most relevant.

One way to store the data describing a graph is by using these two data types.
Since the data for a routing graph will often consist of roads, which will intersect
with other roads at some points, LINESTRINGs can be used to store a road with
curves and bends, and these LINESTRINGs can run between POINTS which store
intersections between roads. From this, the distance of a path can be found by
summing the lengths of all the LINESTRINGs which constitute this path. All geo-
metric datatypes in MySQL inherit from the GEOMETRY root class[8] and thus have
coordinates and length information that can be calculated from the coordinates.

On the other hand, we do not need this geometric information directly to perform
routing when using a graph representation, and we can take an approach where
the geometry is decoupled from the routing operation. The only requirements for
building a graph are to have some way to identify vertices, i.e. a vertex ID, and
to have some metric for the length of edges. In the datasets used in this thesis
(Section 3.1.1) the distance of edges was supplied as a separate field. This dis-
tance is calculated as a straight-line distance using the coordinates of vertices in
the LINESTRING[9] (or Way, as it is called in the tool we used to export data from
OpenStreetMap[10]), and consequently, it can be seen that the geometric infor-
mation is used in the toolchain. But at the same time, it is worth noting that the
routing operation itself does not require any geometric information.

The SQL/MM standard[11] takes the approach where it, as seen in Code Listing
2.1, assumes a column that stores edges as geometries, and source and target
vertices are specified as POINTs, i.e. geometries. In other words, an SQL/MM-
compliant implementation cannot be decoupled from the geometries during the
calculation of routes. This could require making geometric operations more of-
ten at query time to determine lengths of edges which could result in substantial
overhead for a large graph, while a decoupled approach calculates this as a pre-
processing step.

Chapter 2: Background 9

2.2 Theory and concepts

This section will describe some relevant theory and concepts for the thesis. First,
Section 2.2.1 will take a look at different methods used when routing, which is
another way to categorize routing algorithms, different than the categorization
presented in Section 2.1.1. Then, Section 2.2.2 will examine some algorithms in
detail, together with some optimization techniques for reducing the cost of these
algorithms in Section 2.2.3. Section 2.2.4 and 2.2.5 will look at the differences be-
tween imperative and declarative routing, and examine some of the consequences
of a declarative routing system, before Section 2.2.6 and 2.2.7 look at Cache Re-
placement Policies and Spatial Access Methods.

2.2.1 Routing Methods

Section 2.1.1 categorized graph algorithms based on the number of sources and
targets a shortest path was calculated for, i.e. Single-Pair Shortest Path and All-
Pairs Shortest Path. This section will take a look at the underlying method and
idea used when calculating the shortest path. The methods in this section mainly
solve the Single-Pair Shortest Path problem, and except for round-based rout-
ing, they assume a graph representation. Round-based routing is included as an
example of another method.

Relaxation-based routing

The origin of the word relaxation is in [12] given as the following:

The notion of "relaxation" comes from an analogy between the esti-
mate of the shortest path and the length of a helical tension spring,
which is not designed for compression. Initially, the cost of the shortest
path is an overestimate, likened to a stretched-out spring. As shorter
paths are found, the estimated cost is lowered, and the spring is re-
laxed. Eventually, the shortest path, if one exists, is found and the
spring has been relaxed to its resting length.

In other words, relaxation takes initial overestimates for the distance along paths,
and iteratively improves them until an optimal solution is reached. This is the tech-
nique used in well-known algorithms such as Dijkstra’s algorithm, the Bellman-
Ford algorithm, and the Floyd-Warshall algorithm. This method produces optimal
results, but their space and time complexities can be prohibitive for large graphs.

10 H. Strandlie: Routing in MySQL

Figure 2.2: An example of the reach of vertices. For clarity, the reach of nodes s,
v y, z and t are not shown.

Reach-based routing

In relaxation-based algorithms, an attribute called reach[13] can be added to ver-
tices in the graph. It is mainly used when routing in road networks, and it is
defined as r(v, P) = min{m(s, v, P), m(v, t, P)} where v is a vertex on a shortest
path P, m(u, v, P) is some reach metric, and s, t are source and target vertices. In-
formally, given a shortest path P the value r(v, P) denotes how far one can travel
on P from v, and this value will be high if v is close to the middle of P, and P is
a long shortest path. Thus, it signifies the importance of v in the graph, and it in-
dicates whether a vertex should be considered during relaxation. In practice, this
means that large parts of the search space are pruned, as less important vertices
are ignored.

In Figure 2.2 an example can be seen of the calculation of reach for u, w and
x where P is the shortest path from s to t. Here, the sum of the edge weights
from u to v is used as the reach metric m(u, v, P), and reach for w is calculated as
r(w, P) = min{m(s, w, P), m(w, t, P)}= min{5,8}= 5. It can also be seen that if u
is removed from the graph, the shortest path from s to t goes through v, and the
reach of w is increased to 8 since it is now in the center of a shortest path which
is now longer. This means that w can now reach farther in both directions, which
provides a better understanding of the meaning of the word.

When calculating shortest paths with reach, some pre-processing of the graph is re-
quired since, to calculate reach for a vertex v, we need a shortest paths P. One way

Chapter 2: Background 11

to do this is to calculate All-Pairs Shortest Paths using e.g. the Floyd-Warshall al-
gorithm[2], but the paper[13] argues that in total, the approach avoids extensive
pre-processing, while computed paths are "provably optimal" and that it delivers
speed comparable to existing industry approaches. It is also worth noting that
while the original paper uses Dijkstra’s algorithm, reach works well with A* be-
cause the pruning mechanism of reach works similarly to the pruning mechanism
in A*[14].

ALT

ALT is an acronym for algorithms that use the A* algorithm, Landmarks and the
Triangle inequality[15]. Landmarks are vertices that are selected by some random
or domain-specific criterion and elevated into a more significant status. As a pre-
processing step, the shortest path between all vertices in the graph and these
landmarks is pre-computed and stored, and this information together with the
triangle inequality provides lower bounds on distances between vertices. In other
words, we can then quickly look up a distance between two vertices, and we know
that the true distance is no less than this distance. This quickly and effectively
prunes a large number of vertices from the search space without having to relax
its corresponding edges, and very fast search of a graph can be accomplished.

Round-based routing

Round-based routing is an example of an alternative method not based on edge re-
laxation. It is a method that does not use an underlying graph representation, and
it is developed for use on public transport networks, on which it exploits properties
that are difficult to handle efficiently by relaxation-based methods[16]. Buses and
trains operate on pre-defined lines, and this can be used to create an algorithm
that explores routes from source to target with an increasing amount of transfers
between lines. This means that it iteratively finds routes with k transfers, where
k ∈ [0, 1,2, ..., n], i.e. it initially searches for a direct route (0 transfers), then
a route with 1 transfer, 2 transfers, and so on. When no further improvements
were found to a previously calculated route, the algorithm can be terminated.
The method does not rely on pre-processing, which means that it works in sce-
narios where public transportation is constantly ahead or behind schedule, and it
computes Pareto-optimal journeys.

2.2.2 Algorithms

This section examines some algorithms. The main algorithm is Dijkstra’s algorithm
which is the algorithm that is implemented in the prototype, but it also takes a
look at Bidirectional Dijkstra, A*, and Relational Bidirectional Set-Dijkstra respec-
tively, which are variants of Dijkstra’s algorithm optimized for specific use cases.

12 H. Strandlie: Routing in MySQL

In addition to this, the RAPTOR algorithm is described, which is an example of
round-based routing.

Dijkstra’s algorithm

E. W. Dijkstra developed an algorithm based on relaxation[17] which solves the
Single-Source Shortest Path problem. It assumes a graph G = (V, E) which can
have both directed and undirected edges with and without edge weights, but if
it has edge weights these must be non-negative. Each vertex v ∈ G.V has the
following two attributes:

• v.d: Distance from source s ∈ G.V to v.
• v.π: The predecessor (node before) v when traversing the shortest path in

the graph from the source s to v

Algorithm 1 INITIALIZE SINGLE SOURCE(G, s) Algorithm from [2]

for each vertex v ∈ G.V do
v.d =∞
v.π= N I L

end for
s.d = 0

Algorithm 2 RELAX(u, v, w) Algorithm from [2]

if v.d > u.d +w(u, v) then
v.d = u.d +w(u, v)
v.π= u

end if

Algorithm 3 DIJKSTRA(G, w, s) Algorithm from [2]
INITIALIZE-SINGLE-SOURCE(G, s)
S = Ø
Q = G.V
while Q != Ø do

u= EXTRACT-MIN(Q)
S = S ∪ u
for each vertex v ∈ G.Ad j[u] do

RELAX(u, v, w)
end for

end while

The algorithm is given in Algorithm 3 which is adapted from [2], but the reader is
also encouraged to watch a video simulation of the algorithm, such as [18]. From
this, it can be seen that algorithms based on relaxation such as Dijkstra’s algorithm

Chapter 2: Background 13

begins with estimates for the distances between the source and the other vertices
which are initially overestimated. In Dijkstra’s algorithm, this initialization is done
in Algorithm 1, where v.d is set to infinity, except for the source which is set to 0,
and all predecessors are set to NIL.

Next in Algorithm 3, the set S is initialized to empty, and Q which is a min-priority
queue[2] that is ordered using the distance v.d of v ∈ V , is initialized with all the
vertices in the graph. S will throughout the runtime of the algorithm contain all
the finalized vertices, which are the vertices where the length of the shortest path
from the source have been determined.

Now, the main loop of Algorithm 3 is reached, where the vertex u with the mini-
mum distance u.d is extracted from Q. Then, each neighbor of u is relaxed (Algo-
rithm 2) and u is inserted into S and thus finalized. When Q is empty the algorithm
terminates.

It is worth noting that Dijkstra’s algorithm produces the optimal shortest path
and that most known shortest-path algorithms are based on the idea of edge re-
laxation[2], which is the basic idea first seen in Dijkstra’s algorithm.

Bidirectional Dijkstra’s algorithm

This algorithm performs simultaneous (but not parallel) forward and backward
searches[19]. The forward search starts at the given source vertex, while the back-
ward search starts at the given target vertex, and this technique will typically re-
duce the number of total visited vertices in a search. Formally, the forward search
is performed on the normal graph G = (V, E), while the backward search is per-
formed on the graph Ḡ = (V, Ē) where Ē = (u, v) | (v, u) ∈ G.E, i.e. the edges
are reversed. Both the forward and the backward graph will have its own set for
the finalized vertices (S f and Sb) and its own priority queue (Q f and Qb). The
algorithm terminates when the vertex v ∈ G.V (note that G.V is common to the
two graphs) is found in S f ∪Sb, i.e. the two searches have reached the same vertex.

One useful fact of bidirectional Dijkstra’s algorithm is that it does not need to
make additional assumptions compared to the regular Dijkstra’s algorithm.

A*

A*[20] is an extension of Dijkstra’s algorithm which changes the ordering of the
priority queue Q of Dijkstra’s algorithm to reflect not only the distance from the
source vertex s but also reflect a heuristic which expresses the desirability of a
vertex, similar to reach-based routing in Section 2.2.1. This new ordering directs
the search of a target node towards the goal and effectively prunes a large part of
the search space by ignoring vertices that seem to lead away from the goal when
selecting the next vertex to relax. The reader is encouraged to watch [21] for a

14 H. Strandlie: Routing in MySQL

visualization of the difference in visitation pattern of Dijkstra’s algorithm and A*,
and consequently the difference in performance for the two algorithms resulting
from the lower number of edges that are relaxed.

Looking at A* in more detail, it can be seen that Q is ordered by the ordering func-
tion f (v) = v.d+h(v)where v.d is the distance from the source vertex for a vertex
v ∈ G.V , and h(v) is the heuristic function which estimates the cheapest path from
v to the target. An often used h(v) is the shortest possible distance (straight line
in a Cartesian coordinate system) from v to the target. A* is guaranteed to return
a path with the least possible cost from source to target when h(v) never overes-
timates the actual cost from v to the target. In this case we call h(v) admissible,
and this is clearly true for the shortest possible distance discussed above. It is also
worth noting that when h(v) = 0, A* is equal to Dijkstra’s algorithm.

A* makes the same assumptions as Dijkstra’s algorithm and additionally needs to
assume an admissable heuristic function.

Relational bidirectional Set Dijkstra

An interesting approach is called Bidirectional Set Dijkstra[22]. It uses new fea-
tures of recent SQL Standards and performs an efficient version of bidirectional
Dijkstra’s algorithm with normal tables in a relational database, SQL operators,
and window functions. This approach also handles the case where the graph does
not fit into memory, and this is achieved by storing both the graph and all relevant
runtime information in normal tables, and fetching this information into memory
by SQL statements as the algorithm progresses.

The naíve implementation of this approach results in an excessive need for joins,
and thus gives poor performance. Window functions and merge statements, new
features of the SQL standard at the time, were used to improve this performance.
Additionally, the approach evaluates sets of vertices at a time, instead of one sin-
gle vertex at a time, since this takes better advantage of scheduling in modern
database management systems.

Since this method is just an implementation of Dijkstra’s algorithm with SQL op-
erators, it has equal assumptions to Dijkstra’s algorithm.

RAPTOR

Round bAsed Public Transit Optimized Router (RAPTOR) is an example of an al-
gorithm which is not based on relaxation. This is a round-based algorithm, which
exploits the inherent structure present in public transportation. The paper[16]
specifically defines the problem as the Arrival Problem, in which a source stop
ss, a target stop st and a time of departure td is used to calculate a journey which

Chapter 2: Background 15

departs ss no earlier than td , and where the arrival at st is as early as possible.

In place for a graph, RAPTOR introduces the concept of a timetable. The timetable
contains all available information for a public transport domain (e.g. Transport
of London), and the timetable also maps departures of public transport to stops
and points in time. A journey is calculated from an entry stop to an exit stop and
works in rounds as described in Section 2.2.1.

2.2.3 Optimizations

Reducing the cost of routing is a well-studied problem, and researchers have come
up with various approaches depending on their focus. Since none of these address
the exact problem of this thesis, this subsection is a brief overview of related re-
sults.

The most common focus in the literature is to reduce the time cost of routing,
and the authors of [19] discuss several techniques for speeding up Dijkstra’s algo-
rithm. Three well-known techniques are to change the execution of the algorithm
such that it is performed from both source and target simultaneously (Bidirec-
tional Dijkstra), to add a heuristic to the ordering of the priority queue, and make
it a goal-oriented search (A*), or using landmarks.

Another approach is to exploit a domain-specific hierarchy in the problem. This
technique is a part of a broader set of pre-processing techniques[23] that performs
some processing of the graph earlier than query time and stores this information
in a way that keeps the routing algorithm from having to traverse the entire graph,
and thus reduce the cost of routing. Since routing on road networks is a common
task, and roads can be classified from dusty local roads to interstate highways, this
is a commonly used domain-specific hierarchy. It is called Highway Hierarchies.
In this case, highways are deemed most important and are for this reason selected
in the shortest path before less important roads, with only a slight modification
of Dijkstra’s algorithm. An example of Highway Hierarchies is the special case
of Contraction Hierarchies[23], in which a process called contraction calculates
and adds shortcuts to the graph. This results in the expansion of fewer vertices
during the execution of the search for the shortest path, and an example figure
based on the top part of Figure 2.1a can be seen in Figure 2.3. Here, a shortcut
is added from s to t, and it can be seen that by using the shortcut (solid line) the
path has the same cost, but fewer vertices have to be expanded in between than if
using the old path (dashed line), which results in less work and lower cost. When
performing this contraction, the vertex selected for contraction is selected based
on a prioritization of the vertices, in which the most important factor is how many
edges would be removed (or added) to the graph if this vertex was contracted.

16 H. Strandlie: Routing in MySQL

Figure 2.3: Example of contraction when adding a shortcut from s to t. Original
path is shown with dashed line, shortcut is shown with solid line.

In [13] it is argued that this approach cannot guarantee the optimality of the re-
turned result, and the same paper also proposes reach-based routing which is
discussed in Section 2.2.1.

It is much less common to see memory cost as the focus, even though a conse-
quence of some of the speed-up techniques in [19] are prohibitively large memory
cost. This is somewhat understandable since it is often less cost and effort to add
more memory to a system than it is to add more computational power.

It is also worth noting that memory cost is often called memory requirement in
the literature, which indicates an approach where the algorithm "requires what it
requires". One example where memory cost is considered is Dial’s implementation
of Dijkstra’s algorithm[24]where the assumption of a low number of distinct edge
weights leads to a memory optimization by placing vertices into buckets based on
their distance from the source. The approach will not be detailed here since the
required assumption about the data cannot be made in the implementation.

2.2.4 Imperative vs. declarative

SQL is a mostly declarative language, i.e. a language where a user describes what
the wanted result is. This is often contrasted with procedural / imperative lan-
guages, where the user describes how the wanted result should be obtained. C++
is an example of a language that is imperative by default, even though it has re-
cently introduced functional lambda functions which makes it more declarative.

As mentioned in Section 2.3.2 the SQL interface of pgRouting makes the user
choose what algorithm to use, i.e. how the result should be obtained, and this
makes the approach more imperative than declarative. This is a significant mis-
match with the declarative nature of SQL, and it places the important respon-
sibility of choosing the appropriate algorithm on the user such that the routing
executes efficiently and correctly. Some users have this knowledge, similarly to

Chapter 2: Background 17

how some users know how to most efficiently execute a join of several tables. But
it can be argued that most users do not have this knowledge, and would prefer
the database system to make this choice based on available data. For these rea-
sons, a declarative syntax to trigger the computation of the shortest path would
be preferable. This is also the suggested approach in the SQL/MM standard[11]
which defines the two routines ST_ShortestUndPath and ST_ShortestDirPath
for exposing functionality for shortest path computation in SQL.

Code listing 2.1: The syntax for calling the routine for directed graphs in
SQL/MM

SELECT * FROM ST_ShortestDirPath(
paths_table_name variable length character string,
path_id_column_name variable length character string,
geometry_column_name variable length character string,
path_start_column_name variable length character string,
edge_weight_column_name variable length character string,
start_point ST_Point,
end_point ST_Point)

The syntax for ST_ShortestDirPath is shown in Listing 2.1 as an example. Here
we see that the user specifies the names of tables and columns which contain the
relevant data, in addition to the start and endpoints. No choice of algorithm is left
to the user. The syntax for ST_ShortestUndPath is similar, and is found in [11].

2.2.5 Declarative routing

Since SQL provides a declarative user interface, as described in Section 2.2.4, a
declarative way to invoke the computation of the shortest path would be prefer-
able and ideally, it would also be compliant with the SQL/MM standard.

Making this choice has some implications. Firstly, it means that the choice of al-
gorithm has to be decided within the routing module. Fortunately, this type of
choice is common in a DBMS, since the optimizer always attempts to choose an
efficient and cost-effective plan for every query made[25], while maintaining a se-
mantically equivalent result. There are several relevant criteria, for example, the
existence of negative cycles in the graph which would eliminate Dijkstra’s algo-
rithm for the benefit of Bellman-Ford’s algorithm, and if an all-pairs shortest path
computation is to be performed it would benefit from choosing the Floyd-Warshall
algorithm[2].

Another implication is that memory usage becomes a determining factor. When
the user chooses the algorithm, the DBMS cannot control how much memory is
used, since this is deterministic from the algorithm chosen and the size of the
graph. Consequently the DBMSs only choice is to abort the query if excessive
memory usage is detected, and thus the responsibility for choosing the right algo-
rithm is on the user. When the DBMS chooses the algorithm it must instead use

18 H. Strandlie: Routing in MySQL

available statistics about the graph and the runtime environment to optimize the
choice of algorithm, similar to the way a non-routing query is optimized, since the
user of the declarative interface will expect the query to finish in a reasonable time
without considering technicalities such as available memory. Therefore the DBMS
would have to solve any challenges, including exceeding memory limits, and this
can be seen as a shift from a query having a memory requirement as discussed in
Section 2.2.3, to the query having a memory limit, which then becomes another
criterion for the choice of algorithm.

As mentioned in Section 2.3.1, MySQL runs on installations ranging from small
single servers such as a Raspberry Pi to larger clusters working in distributed set-
tings. The variation in available memory for queries in this range of installations,
and the possible variation in the number of simultaneous users, makes it challeng-
ing to make assumptions about the available memory in the installations MySQL
runs on. As a consequence of all this, the routing module must be able to handle
the entire range, and display a gradual degradation of the quality of service but
also make sure a result is returned eventually and within a reasonable time.

2.2.6 Cache Replacement Policies

Given a dataset D of size n blocks, and a cache C ∈ D of size m blocks where m< n,
the cache is only useful if it provides faster access to the data than does the main
storage medium. In [26] design issues relating to cache design is categorized into
the following categories:

• Cache size
• Block size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Number of Cache Levels

For our purposes, the most relevant parts are the Mapping Function and the Re-
placement Algorithm. The Mapping Function decides what location out of the
m blocks in the cache a new block of data will occupy when it is read into the
cache. This is related to the Replacement Algorithm because when a new block
is read in another block will have to be replaced unless the cache is not yet filled.
A flexible Mapping Function provides the Replacement Algorithm with more
scope to design an algorithm that maximizes the number of hits per miss, which
we want as large as possible. A reasonably effective Replacement Algorithm is
the Least Recently Used (LRU) algorithm[26]. When a new element is to be in-
serted into the cache, a decision has to be made about which element should be
removed. The LRU algorithm then finds the element that has been in the cache
the longest without being referenced. Other, less effective algorithms are First-in,
First-out (FIFO) and Clock.

Chapter 2: Background 19

2.2.7 Spatial Access Methods

In databases, the performance of queries can usually be increased by introduc-
ing an index. In datasets where data is mainly accessed by a single key (or ID)
performance can e.g. be increased by using a B-tree[27]. When data is not eas-
ily identified or accessed by a single key or multiple keys with a total ordering,
which is the case with geographic data that is often accessed using 2 or more co-
ordinates, the B-tree is not efficient anymore.

To efficiently index spatial data, Spatial Access Methods (SAMs)[27]were created
using a different construction principle than B-trees, and most of the SAMs follow
one of the following two approaches:

• Space-driven structures: The space in which the objects to index are placed,
is partitioned into equally sized, rectangular cells, independently of the dis-
tribution of data objects. The objects are then mapped to these cells using
some geometric mapping function.

• Data-driven structures: The set of objects, not the space, is partitioned into
cells of different sizes such that the partitioning is adapted to the distribution
of the objects in the space.

The purpose of a spatial index is to efficiently assign spatial objects to a disk page.
In both space-driven and data-driven structures, this happens by assigning each
cell to a disk page - the difference is how nodes get assigned to these cells. The
R-tree[27] is a data-driven spatial index that can handle large volumes of spatial
data. It is based on two simple concepts:

• Containment: Nodes in the index are organized in a hierarchy of rectangles,
where a lower level rectangle is contained within a higher level rectangle

• Directory Rectangle: The minimal bounding box which contains the rect-
angles of any child nodes of a rectangle

When reading from the index, the tree is traversed from the root and any Direc-
tory Rectangles which contain the query is further examined until a root node is
found. A useful consequence of the tree structure is that access is logarithmic in
the number of nodes.

When inserting into the index, the tree is searched for the smallest Directory Rect-
angle that contains the Minimum Bounding Rectangle of the object to be inserted.
When the leaf node for such a Directory Rectangle is found, the object is either
inserted if the leaf node exists, or a new leaf node is created if it does not.

More details on reading and inserting to an R-tree are found in [27].

20 H. Strandlie: Routing in MySQL

2.3 Existing implementations

This section examines previous work which this thesis builds upon, including pre-
vious work in GIS in MySQL, and the implementations of pgRouting and the
Oracle Routing Engine which are implementations of routing modules in other
database systems than MySQL.

2.3.1 MySQL and GIS

As discussed in [28], MySQL is the most common choice for a relational database
in modern web applications. It is used in both small installations such as a single
server, and large, distributed clusters, and everything in between.

At the time of this writing, the latest released version of MySQL is 8.0.25. It has
good support for GIS data, which is data that is related to a geographic posi-
tion[28]. In other words, MySQL can be used for storing and querying information
and the geographic data this information is related to, as well as perform opera-
tions on this data. Data about geometries such as POINTs, LINESTRINGs and POLY-
GONs can be stored[29], and operations such as functions that create geometries
in various formats and operations that describe relations between two geometries
("Do these geometries intersect" or "What is the distance between these two ob-
jects"?) can be performed on this data [30]. The implementation conforms to the
OGC OpenGIS Implementation Standard for Geographic information[7], and it is
based on Boost Geometry which is an efficient, generic, and peer-reviewed C++
library for geometric operations.

In the 8.0.23 release of MySQL[31] two functions called ST_HausdorffDistance()
and ST_FrechetDistance are added to MySQL. These are functions that reflect
how similar the shapes of geometries are, and one use case is to examine the sim-
ilarity of two routes from A to B. Additionally, it can be used when comparing a
planned route and an actual route, to see if the planned route was followed.

In the 8.0.24 release of MySQL[32], two other functions called ST_LineInterpolate-
Point() and ST_LineInterpolatePoints() are added to MySQL. These are func-
tions which take a LINESTRING and fractional_distance arguments and return
one or several geographic POINT(s) along the route of the LINESTRING with the
fractional_distance between them, not necessarily equal to the points that
made the original LINESTRING. Since routing is usually performed on a collection
of roads and intersections, as described in Section 2.1.3, this functionality can
be used to split a LINESTRING into smaller points with an appropriate distance to
create points that can function as intersections. Generally, these functions can be
useful as pre-processing steps of the dataset before building the graph.

Chapter 2: Background 21

Currently, MySQL 8.0 cannot be used to answer routing queries such as "give me
the shortest path from A to B". Supporting these types of queries would be a log-
ical extension of the currently supported geographic queries, and would enable
users with existing GIS data to compute shortest paths, especially since aggrega-
tion function such as SUM or AVERAGE already exist, and Single-Source routing can
be seen as an aggregation of rows of a table describing a graph. Additionally, as
discussed above, Oracle is very recently adding functionality that is related to and
useful when executing routing operations to MySQL, and thus routing function-
ality is a natural fit in the future direction of MySQL.

2.3.2 pgRouting

PostgreSQL, a Database Management System (DBMS) that is one of the open-
source competitors to MySQL, has a project called pgRouting[33] which is an
extension to PostgreSQL that provides "routing and other network analysis func-
tionality"[34]. pgRouting assumes a graph representation of the problem and im-
plements most of the known algorithms for computing shortest paths in graphs.
The graph representation for the routing problem is discussed in more detail in
Section 2.1.1.

To compute a shortest path, an SQL query is sent to a PostgreSQL server that has
the pgRouting extension enabled. The SQL query is of the form shown in Code
Listing 2.2. The first parameter to pgr_dijkstra is a text string that must contain
a SQL sub-query that pgr_dijkstra executes to fetch the rows from a table that
describes the edges of a graph. From these rows, a graph is built as an internal
data structure on which the shortest path is performed.

Code listing 2.2: Syntax for performing Dijkstra’s algorithm in pgRouting

SELECT * FROM pgr_dijkstra(edges_sql, start_vertex, end_vertex)

Note that the user here is required to specify which algorithm to use for the rout-
ing. Dijkstra’s algorithm is only one of many possible, well-known choices, and
examples of other possible choices in pgRouting is Bellman-Ford’s algorithm, or
to perform a topological sort.

As mentioned in [33], one limitation of pgRouting is that it needs to process and
add all edges that are returned from the edges_sql SQL query to the graph, to
compute a path through the resulting graph. Moreover, pgRouting has no mecha-
nism for controlling memory usage when computing a path, which consequently
can lead to a situation where a large graph can make the server executing the
algorithm run out of memory.

The format of the tables used in pgRouting are found in Appendix A.7.

22 H. Strandlie: Routing in MySQL

2.3.3 Oracle

The Oracle Relational Database Management System (Oracle RDBMS) has an in-
teresting implementation of routing, called the Oracle Routing Engine. The func-
tionality is implemented as a web service in the Oracle RDBMS[35]. This means
that it is outside of the database management service, and is not available by SQL,
but it is available by XML/HTTP requests as a web service. Single-Source Short-
est Path routing is supported, and it can be performed to one or several targets,
and it can have several intermediary targets along the way. The problem with sev-
eral intermediary targets can be solved as an instance of the Traveling Salesperson
Problem (TSP)[3]where the web service tries to optimize the order of the targets,
but since TSP is NP-complete the user is also given a choice to specify an order of
the targets, which results in a possibly sub-optimal solution. Apart from this opti-
mization choice which asks the user to specify how the result should be obtained,
the user is only asked to specify the source, target, and intermediate targets, if
any, and the web service thus provides a mainly declarative interface to routing,
since the user is not given options on what algorithms to use, or asked to provide
any further detail. The Routine Engine also takes memory limitation into account,
since it only loads the subsets of the graph (called partitions in [35]) that are rele-
vant into memory, and this partitioning is done as pre-processing when the graph
is loaded into the database. This implementation is interesting since it applies the
ideas discussed above of a declarative interface, as well as an active approach to
memory management.

2.3.4 Boost Graph Library

Boost is a collection of C++ libraries that has a common goal of being portable
between different systems while maintaining exceptional quality and good inter-
operability with the C++ Standard Library[36]. Boost Graph Library (BGL) is one
such library, and it is implemented by graph algorithm experts. Furthermore, all
Boost libraries go through peer-review, and consequently, BGL is generally thought
of as near-optimal and error-free.

BGL has since the beginning had a strong emphasis on generic programming. For
example, this means that it is not tied to specific data structures or algorithms,
and it displays great flexibility in extending the available data structures and al-
gorithms. Consequently, developers can tailor their use of BGL to take advantage
of data structures that fit the needs of their application, or implement their own
if needed.

Different types of graphs have different requirements, and BGL is adaptable to
many of these requirements.[36] One example is the directionality of edges, and
BGL supports undirected, directed and bidirectional edges. Informally and from
a programmers perspective, in a directed graph the programmer has access to
two lists of edges for each vertex v ∈ G.V , known as the in_edge_list and the

Chapter 2: Background 23

out_edge_list which provides the edges that can be traversed to reach v and the
edges that can be traversed from v to other vertices, respectively. In the undi-
rected graph every edge from v is an out-edge and thus only the out_edge_list is
available. The bidirectional graph is very similar to the undirected graph, except
that it takes up twice the amount of space since each edge always appears in both
in_edge_list and out_edge_list.

Users can also specify what type of memory representation to use for the graph,
from the two representations discussed in Section 2.1.2. Given that an Adjacency
List representation is chosen, which is the most common, BGL lets the user choose
what data structures to use to store the vertices and out-edges (the list of edges
out from a vertex). Additionally, all edges are stored in a separate data structure
which is referenced by out-edges of vertices, and the type of this data structure is
also chosen by the user. Details about the different choices are found in [37].

Chapter 3

Evaluation

This section will evaluate a possible implementation of routing in MySQL which
observes a memory limit. In the case where memory consumption reaches a limit,
this implementation maintains a memory buffer which is subsequently swapped
to and from disk as needed.

Section 3.1 provides details about the evaluation that was performed, such as
the datasets and how they were imported, details about the implementation, the
hardware used for the tests, how the measurements were acquired, and specifi-
cally what the test was. Section 3.2 gives the results and discusses what memory
and time consumption was observed, and what impact the pruning of vertices
had. It also makes some observations about the impact of large I/O volumes in
the current implementation.

3.1 Experimental setup

To implement routing in MySQL a built-in function was implemented, map ex-
tracts were acquired from OpenStreetMap, map data was loaded into MySQL ta-
bles, and the function was used to perform routing while statistics were collected.

3.1.1 Datasets

The implementation uses three datasets, which are extracts from OpenStreetMap’s
data in Norway. The datasets are of three sizes: small, medium and large. Each
smaller dataset is a complete subset of the larger subset(s), and the contents of
the datasets are as following:

Small: Møllenberg. A residential block in Trondheim city centre, Norway. See Fig-
ure 3.1

Medium: Trøndelag. The southern part of Trøndelag, Norway. See figure 3.2

Large: Norway. The entire graph of Norway. No figure is supplied.

25

26 H. Strandlie: Routing in MySQL

Figure 3.1: Map corresponding to the small dataset.
Bounding box: (long, lat) (63.42860, 10.39780), (63.43710, 10.42570)
© OpenStreetMap contributors

Figure 3.2: Map corresponding to the medium dataset.
Bounding box: (long, lat) (62.92400, 9.03630), (64.01570, 11.62900)
© OpenStreetMap contributors

Chapter 3: Evaluation 27

The source of the datasets is OpenStreetMap[38] (OSM). OSM is an openly acces-
sible map database distributed under the Open Database Licence[39] and thus the
data is considered Open Data and can be used for any purposes without charge.
The geographic data is collected by a community, and any registered member
can make changes to the data. The veracity of such community-driven data can
be questioned, and there are examples of incorrect maps and vandalism in the
project, but for the most part, the data is available and correct and fits our pur-
poses nicely. As an additional precaution, the data used for development was from
the local area in Trondheim and could thus be verified for correctness, and no dis-
crepancies were ever encountered.

There is currently no tool to import data from OpenStreetMap into MySQL. A tool
called osm2pgrouting[10] exists for PostgreSQL, and this was used to transform
data to an appropriate format and load it into MySQL. Data was stored as two
tables called ways and vertices, containing edges and vertices respectively. De-
tails about this process, and a more detailed description of the dataset is found in
Appendix A.2.

3.1.2 Implementation

Implementing a working routing module in an existing database system such as
MySQL is a time-consuming task. MySQL is already a large and mature system,
and to get the routing module correctly integrated, several other existing mod-
ules such as the query parser and existing aggregation functions must be well
understood. Furthermore, the routing functionality must be implemented using
Boost Graph Library, and buffer replacement in RVector which includes proper
handling of I/O using file handlers and (de)serialization using Boost Serializa-
tion, must be correctly performed. Integrating these was a significant challenge,
especially since the author did not have any prior experience with any of these
modules, and reaching the goal of a working prototype of a routing module with
successful memory management is an important achievement in this thesis.

This section explains the reasoning behind some of the choices that were made in
the implementation and describe the current functionality to the degree necessary
to understand the test results. Further details are found in Appendix A.3.

Choices

There are many ways to implement functions in MySQL. An aggregation function
(e.g. SUM or AVERAGE) takes rows according to some predicate and calculates a
single, aggregate value for these rows. Routing in a graph can be seen as taking
rows of edges, creating a graph from these, and calculating a shortest path for
these edges, and thus an aggregation function provides a suitable environment
for this operation. A disadvantage of this approach is that the shortest path is

28 H. Strandlie: Routing in MySQL

returned as a string value, which is difficult to process further unless it is in a
standardized format.

Another relevant type of function would be a table function, where the returned
result is a table. This would allow the calculated path to be returned as a table
of rows, where each row could be the ID of a vertex in the shortest path and
would allow easier further processing. This would allow the result to be further
used in a query, i.e. in joins or selections. This is also the approach defined in
the SQL/MM standard[11]. Table functions are more difficult to implement in
MySQL, and time constraints prevented the implementation from using a table
function. Furthermore, the correctness and prototype quality are not impacted by
having the less optimal return value.

Consequently, routing was implemented as an aggregation function in MySQL.
This implementation assumes all edges are undirected. The information to cor-
rectly handle one- and two-way streets as directed edges is present in the dataset,
but only 0,6% of streets in the large dataset were known to be one-way only. Ad-
ditionally, as discussed in Section 2.2.2, a consequence of storing directed edges
is an increase in space requirement. Since most roads are bidirectional, the re-
quired space would be close to the case for a bidirectional graph, i.e. almost 2x
the space requirement for a undirected graph. Modeling a directed system as an
undirected graph is a potential cause for incorrect routes, but because of the low
amount of directed edges in the dataset, the risk was judged as low, especially in a
prototype. Also note that since we have chosen a declarative approach this would
permit choosing appropriate graph representations depending on the dataset, al-
though this was not implemented here.

There are many possible algorithms for finding the shortest path, and the declar-
ative approach chosen here would allow many to be implemented. As noted in
Section 2.2.2, most shortest-path algorithms are based on Dijkstra’s algorithm,
and this makes including it a natural starting point when implementing a proto-
type for a routing module. Many optimizations of Dijkstra’s algorithm exists, and
the alternative implementation of Dial[40] initially looks promising for decreasing
memory usage. Unfortunately, the savings are predicated on having a low num-
ber of (integer) edge weights, and since most of the edge weights in the dataset
are float-valued and distinct as seen in Table 3.1, in addition to the algorithm not
being implemented in Boost Graph Library, the basic implementation of Dijkstra’s
algorithm in BGL was chosen. Again, the declarative approach would allow this
approach to be chosen if the graph was found to have a low number of distinct
edge weights.

As seen in Table 3.2 vertices in the graph created from OSM-data are not close
to being connected to every other vertex. For example, we see that on average
every vertex in the medium dataset is connected to 1.6 other vertices. For all the

Chapter 3: Evaluation 29

Dataset Edge weights Distinct edge weights Distinct percentage

Small 2064 2059 99,76%
Medium 159 580 159 503 99,95%
Large 1 198 126 1 197 547 99,95%

Table 3.1: Number of edge weights, distinct edge weights and the associated
percentage for the three datasets

Dataset Vertex count Avg. number of edges from vertex

Small 1544 1.44
Medium 132 471 1.58
Large 1 147 572 1.27

Table 3.2: Number of vertices, and average number of other vertices a vertex is
connected to in the datasets

datasets the average number of edges out from a vertex is lower than 2, and for
the small and large datasets, it is closer to 1. This means that the graph is (very)
sparse, and as discussed in Section 2.1.2, the Adjacency List representation is
most efficient in that case.

The full definition of the Boost Adjacency List is shown in Code Listing 3.1. This
is a little cryptic, but it configures the graph as the following:

• vecS: Use a std::vector to store the OutEdgeList, i.e. the list of edges out
from each vertex.

• rVectorS: Use RVector (the custom container developed in this project) to
store the VertexList, i.e. the global list of all vertices in the graph

• undirectedS: The graph is undirected. This choice is justified in Section
3.1.2.

• no_property: No VertexProperties are defined, i.e. no extra information
about each vertex is stored other than their ID.

• property<edge_weight_t, double>: Store the weight of each edge as an
EdgeProperty, i.e. as extra information about the edge

• no_property: No GraphProperties are defined, i.e. no extra information
about the graph is stored.

• vecS: Use a std::vector to store the EdgeList, i.e. the global list of all the
edges to which OutEdgeList refers.

The implementation has been checked and verified for memory leaks using ASAN.

Code listing 3.1: Definition of Adjacency List used in the implementation

adjacency_list<
vecS, rVectorS, undirectedS, no_property,
property<edge_weight_t, double>, no_property, vecS>

30 H. Strandlie: Routing in MySQL

Figure 3.3: An example query and returned result. No shortest path was found
for this query.

Syntax

To execute the routing function, the word ROUTE was added to the grammar of
the MySQL parser. It matches queries of the form shown in Listing 3.2. The first 7
arguments to the ROUTE function are column names in the ways table, containing
relevant information. The last 2 arguments are constants describing the source
and target to route between in the graph.

Code listing 3.2: Example query for the ROUTE function

SELECT ROUTE(source_ids_column_name,
target_ids_column_name,
cost_column_name,
source_longitude_column_name,
source_latitude_column_name,
target_longitude_column_name
target_latitude_column_name,
source_vertex_id,
target_vertex_id)

FROM edge_table_name

An example query is shown in Figure 3.3. This shows a query where no shortest
path was found because results with shortest paths tend to have paths with many
vertices, which do not fit in the format of this thesis. In the figure, the returned
statistics are shown, as well as the elapsed time.

From the information passed to the ROUTE function, a graph is built from the re-
sulting data. To perform the actual routing, Dijkstra’s algorithm was performed
using Boost Graph Library, as described in Section 2.3.4.

Memory limit

The implementation takes the data in the ways table, together with the source
and target constants passed to the ROUTE function and creates a data structure

Chapter 3: Evaluation 31

on which it can perform the routing using Boost Graph Library. Because BGL is
generic the programmer has a choice of what data structures to use when stor-
ing the edges and vertices in the adjacency_list representation, and these can
also be custom data structures supplied by the programmer. Since all supported
data structures in BGL are in-memory, a custom data structure called RVector is
created, and it is used to store all vertices in the graph and observes the maxi-
mum allowed memory footprint for the routing function. It is worth noting that
the graph is created by adding edges between vertices by calling the function out-
lined in Code Listing 3.3, which omits some details about the add_edge function
for clarity. When adding these edges BGL will at any time make sure the number
of elements in the data structure containing the vertices is equal to the largest
value for source or target encountered so far. For example this means if we have
a graph consisting of the edges (1, 2), (2, 3) and (3, 1000) the data structure
would have 1001 elements where only index 1, 2, 3 and 1000 would ever be used.

Code listing 3.3: A simplified outline of the function used to build the graph edge
by edge. It returns the newly added edge

Edge add_edge(unsigned long source, unsigned long target, double weight);

The value of the memory limit, which is further discussed in Section 4.3.1, is by
default set to 16 777 216 bytes, or approximately 17MB, on the system used for
testing. Details about the test hardware are found in Section 3.1.3

RVector is implemented as a container adaptor[41], which is a container class that
encapsulates an underlying container to provide additional functionality without
having to re-implement functionality that already exists in another container type.
RVector encapsulates a std::vector as the underlying container, and since the
interface mimics the interface of std::vector the two can be used interchange-
ably. When the size of RVector is estimated to become larger than the maximum
allowed memory footprint for the routing function it will split the data into several
sub-buffers of smaller size and start to move data between a memory buffer and
files on disk as needed. We call this operation swapping the memory buffer, and
it happens when an index is requested that is not currently kept in the memory
buffer (buffer miss). It consists of writing out the current contents of the memory
buffer to a file and then reading the contents of the file containing the requested
index. Since RVector presents the interface of std::vector any index can be ran-
domly accessed at any time. To minimize time spent waiting on I/O, file handles
were opened once and kept open until the end of the query. The maximum al-
lowed memory footprint is given by the minimum of the two system variables
tmp_table_size and max_heap_table_size, which existed in MySQL from be-
fore this implementation[42].

32 H. Strandlie: Routing in MySQL

When the size does not exceed the limit, as shown in Figure 3.4a, all vertices are
held in the memory buffer and routing is performed as if the vertices were stored
in a std::vector. When the size does exceed the limit, as shown in Figure 3.4b,
RVector will start to write and load data to and from disk files to keep the in-
memory buffer within the limit.

To keep the RVector as generic as possible, the mapping from in-memory ob-
jects to files on disk was made using minimal domain knowledge. As discussed in
Section 4.3.1, this may have been a constraint that unnecessarily impaired perfor-
mance. Two procedures were created, shown in Code Listing 3.4 and 3.5. These
procedures are fairly simple, and both calculate the maximum number of ele-
ments of type T that can fit in memory given a memory limit and the size of
T. From this, the file index and element index are calculated using division and
modulus respectively. As an example, assume an adjustment factor of 1 for now.
Given a memory limit of 6, n = 7 and sizeof(T)= 2 the file index would be
f ileIndex = 7/(6 ∗ 1/2) = 2 since we are performing integer division which is
equal to the floor-function.

The adjustment factor is the only bit of domain knowledge introduced in this
calculation. It effectively adjusts the size of T to make it closer to its real size.
The reason for this inaccuracy in size and possible improvements are discussed in
Section 4.3.1.

Code listing 3.4: The procedure for calculating which on-disk file an element is
placed in, based on the index of the element in RVector

size_type getFileIndex(size_type n) const {
const size_type max_vec_size = ram_limit_ * ADJUSTMENT_FACTOR / sizeof(T);
return n / max_vec_size;

}

Code listing 3.5: The procedure for calculating what index in a given on-disk file
an element will have, based on the elements index in RVector

size_type getElementIndex(size_type n) const {
const size_type max_vec_size = ram_limit_ * ADJUSTMENT_FACTOR / sizeof(T);
return n % max_vec_size;

}

To reduce the number of vertices in the graph, the implementation performs prun-
ing based on the geographic position of vertices, as shown in Figure 3.5. The
geographic midpoint between the source and target is calculated using boost::-
geometry::distance, and edges with a distance of more than the source-target
distance from the midpoint are discarded. Since the efficient selection of vertices
is not the focus of this project, the distance was set experimentally without much
further consideration, but some edge cases where this might lead to sub-optimal
results are discussed in Section 4.3.3.

Chapter 3: Evaluation 33

(a) RVector when routing
can be performed within
memory limit (b) RVector when routing will exceed memory limit

Figure 3.4: Figures showing RVector

Figure 3.5: Map showing an example of vertex pruning when routing from the
purple square to the orange square. Edges outside the black circle are discarded.
© OpenStreetMap contributors

34 H. Strandlie: Routing in MySQL

The code is available from https://github.com/strandlie/mysql-server/tree/routing
and is explained in detail in Appendix A.3.

3.1.3 Hardware

The tests in this section were performed on a 2016 MacBook Pro laptop. It has
a 2,7 GHz quad-core Intel i7 CPU and 16GB of RAM, which was sufficient for
most operations. One exception is the handling and loading of the large dataset
into MySQL, in which it ran out of memory. This processing was done on a larger
server based in AWS. The MacBook Pro is a common consumer laptop used by
many developers, but it is not a typical computer for running a production MySQL
server. This is a limitation of this test, and further experimentation running on a
wider range of more typical servers would be interesting further work.

3.1.4 Measurements

The evaluation measures memory usage, time consumption, the number of times
the memory buffer was replaced, and I/O in bytes read and written. To measure
memory usage MySQL has integrated instrumentation, and this data is stored in
a performance table when a custom allocator is supplied to STL containers such
as std::list or std::vector. Memory usage is then sampled at a given inter-
val, and it measures only the memory used by RVector. Two sampling intervals
were used, every 0,1 seconds for memory limited queries and every 0,001 seconds
for non-memory limited queries. This distinction was made because the memory-
limited queries ran for a long time, and the log files became very large without
adding any more information. Further details about this are found in Appendix
A.4.

Data on time consumption was also collected from MySQL directly since it reports
elapsed time when completing a query.

The metrics other than memory and time was collected using counters in the im-
plementation. Since the I/O was handled by the implementation, the number of
bytes read and written from disk was readily available using the tellp() and
tellg() functions of std::ofstream and std::ifstream respectively. The num-
ber of swaps was also increased whenever a buffer miss was encountered.

3.1.5 Evaluations

The evaluation setup used the three datasets described in Section 3.1.1. From
each of these datasets, 5 pairs of vertices were randomly selected using the query
in Code Listing 3.6. For each of these 15 vertex pairs, 4 test runs of the code were
performed and evaluated. For some of the pairs, no shortest path existed and the
query returned an empty result, but most did have a path and the shortest path

https://github.com/strandlie/mysql-server/tree/routing

Chapter 3: Evaluation 35

was returned.

Code listing 3.6: The procedure for selecting a random vertex-pair in a dataset

SELECT id FROM vertices_<dataset> ORDER BY RAND() LIMIT 2;

For the small and medium datasets, and for each of the 5 randomly selected vertex
pairs in each dataset, the query is run 4 times where the only difference is that
the memory limit is set to a fraction of the default memory limit. For each run, it
is set to:

• 1: 6/6 of standard - 16 777 216 bytes
• 2: 4/6 of standard - 11 184 810 bytes
• 3: 2/6 of standard - 5 592 064 bytes
• 4: 1/6 of standard - 2 796 203 bytes

The MySQL server is shut down and restarted between each run of the test to reset
any statistics and give each query a similar starting point.

Because of time constraints, and because the implementation performed large
amounts of I/O and thus was very slow for larger graphs, the selection of vertex
pairs from the large dataset was not random for vertex pair 4 and 5. The query
in Code Listing 3.6 was used, but it was run several times until vertex pairs that
pruned larger amounts of edges were found, such that the evaluation would com-
plete in time. This is a weakness in the experimental evaluation, but since we have
one vertex pair with a low amount of pruning some useful insights were still found.

Further details on how the evaluation was performed on a code level are found
in Appendix A.4.

3.2 Results

Memory and time consumption results are given in Table 3.3, 3.4 and 3.5, in ad-
dition to Figure 3.6 and 3.7. In the tables, memory and time usage is presented as
relative amounts (in percent) to the baseline, to clearly show the trends in how
memory and time consumption varies together since the absolute values have a
large number of digits and can be difficult to comprehend. The baseline is a test
run without any memory restriction.

I/O results are given in Table 3.6 and 3.7. Since the baseline is a test run without
any memory restriction, it does not have any I/O, and the I/O results are conse-
quently given as absolute values.

36 H. Strandlie: Routing in MySQL

Within each dataset, the vertex pairs are numerated from 1 to 5. For reproduction
purposes, the ids from OpenStreetMap are found in Appendix A.6.

For space, the columns of the tables were given brief names. The full meaning of
these are:

• Pair: The identifier of the vertex pair used in a test run
• Pruned: The percentage of edges pruned from the policy described in Sec-

tion 3.1.2.
• Limit: A fraction of the standard memory limit, as described in Section 3.1.5
• Limited: If the memory usage of the test run was actually limited by the

limit
• Memory: How much memory the test run consumed, relative to a test run

when the query ran without a memory restriction. Can be thought of as
memory savings

• Time: How much time the test run consumed, relative to a test run when
the query ran without a memory restriction. Can be thought of as slowdown

• Hit ratio: The percentage of requests to RVector which found its content in
the buffer, relative to all requests to RVector throughout the test run

• Num. files: The number of disk files created for the test run
• Max file size: The size of the largest disk file created in the test run
• Total I/O: The sum of the number of bytes read and written during the test

run

3.2.1 Summary of the results

From the results, it is evident that the implementation is successful in limiting
the amount of memory consumed, but when memory is limited and I/O is per-
formed it is slowed down significantly. The least amount of slowdown when the
query is memory limited (the best performance) is seen for vertex pair 3 in the
medium dataset with the 2 / 6 memory limit, in which the time consumption is
84 000 % higher than when the query is not memory limited. This query performs
4,6 GB of I/O, which is the lowest amount. The highest amount of slowdown (the
worst performance) is seen for vertex pair 1 in the large dataset with the standard
memory limit, in which the time consumption is 8 913 867 % higher than without
any memory limitation. This query performs 3,7 TB of I/O, which is the highest
amount.

From this, it can be seen that performance is mainly impacted by the amount of
I/O performed. High amounts of I/O lead to poor performance, and low amounts
lead to better performance. One might expect that a higher hit ratio in the buffer
would also lead to better performance, and this is the case for vertex pairs in the
medium dataset where more than 40 % of edges are pruned away, i.e. vertex pair
1, 3, and 5. But it is not the case for the vertex pairs with the least amount of

Chapter 3: Evaluation 37

pruned edges in the medium dataset (vertex pairs 2 and 4), and all vertex pairs in
the large dataset. Thus, the results show that when a graph has many edges, such
as in the large dataset or the medium dataset with little pruning, it is beneficial
to have more files of a smaller size, and thus reduce the overall amount of I/O,
and the benefit of this shadows the benefit of a better hit ratio. Where the graph
contains fewer edges, the hit ratio is the determining factor of the performance.

We also see that the number of files was equal for a given memory limit across
vertex pairs, which is as expected since the assignment to files is decided with the
memory limit as the only varying factor, as discussed in Section 3.1.2.

3.2.2 Memory consumption

From the results, we see that the memory usage for a given memory limit is equal
for all vertex pairs (i.e in Table 3.4 all runs with the limit 4/6 has a memory usage
of 56% relative to an unrestricted run). This means that the implementation is
successful in limiting the actual memory usage. It is also interesting to note that
the number of files increases as the memory limit is decreased. Since the size of
the available buffer is smaller, and the entire file is read into the buffer when an
element is referenced from it, decreasing file sizes indicate that the memory limit
is respected.

3.2.3 Time consumption

For the small dataset in Table 3.3 we see that the test runs complete without any
slowdowns because they are not memory limited. For the medium dataset, it does
not look so good. The test runs that run with standard and 4/6 memory limit
complete without slowdowns, but the test runs with 2/6 and 1/6 memory limit
show slowdowns between 84 000% in the best case, and 6 038 158% in the worst
case. For the large dataset, we see similar figures with slowdowns between 328
407 % and 8 913 867 %. These increases in time consumption could be justified
if the memory consumption was decreasing at a similar rate, but as seen in table
3.4 and 3.5 this is not the case. The best time-to-memory-change ratio is found
for vertex pair 5 in the large dataset.

3.2.4 I/O

Looking at the I/O results in Table 3.6 and 3.7, it can also be seen that time slow-
down is strongly correlated with the amount of I/O performed. For all vertex pairs
in the large dataset, more time consumed is followed by larger amounts of I/O.
The medium dataset has a similar situation, except for vertex pair 2, in which the
situation is reversed.

38 H. Strandlie: Routing in MySQL

Generally, the implementation shows very large amounts of I/O, and reducing this
to a minimal amount seems to be an important step towards improving perfor-
mance.

3.2.5 Impact of pruning

The impact of pruning is best shown in the results for the medium and large
datasets. In the medium dataset, comparing vertex pairs 3 and 4 in which 88 %
and 0 % of edges were pruned respectively, it can be seen that the differences
are significant. When it is possible to prune many edges, it leads to a decrease in
consumed time by at least an order of magnitude, in addition to an increased hit
ratio, while consuming the same amount of memory.

It is worth noting that if the implementation did not perform pruning, all vertex
pairs in the medium dataset would have approximately the same performance as
vertex pair 4 in which no edges are pruned. In other words, even the unsophisti-
cated pruning in this implementation is effective.

3.2.6 Memory limit

It can be observed from Figure 3.8 that the implementation does impose a memory
limit, but this memory limit is higher than the number calculated by the imple-
mentation. In other words, the implementation consumes more memory than it
"should". Figure 3.8 is the taken from vertex pair 1 in the medium datasets, but
the same behavior was observed for all vertex pairs in all datasets.

Chapter 3: Evaluation 39

Pair Pruned Mem. limit Limited Memory Time Hit ratio

1 15% Standard No 100 % 100 % 100 %
1 15% 4 / 6 No 100 % 100 % 100 %
1 15% 2 / 6 No 100 % 100 % 100 %
1 15% 1 / 6 No 100 % 100 % 100 %

2 23 % Standard No 100 % 100 % 100 %
2 23 % 4 / 6 No 100 % 100 % 100 %
2 23 % 2 / 6 No 100 % 100 % 100 %
2 23 % 1 / 6 No 100 % 100 % 100 %

3 85 % Standard No 100 % 100 % 100 %
3 85 % 4 / 6 No 100 % 100 % 100 %
3 85 % 2 / 6 No 100 % 100 % 100 %
3 85 % 1 / 6 No 100 % 100 % 100 %

4 66 % Standard No 100 % 100 % 100 %
4 66 % 4 / 6 No 100 % 100 % 100 %
4 66 % 2 / 6 No 100 % 100 % 100 %
4 66 % 1 / 6 No 100 % 100 % 100 %

5 27 % Standard No 100 % 100 % 100 %
5 27 % 4 / 6 No 100 % 100 % 100 %
5 27 % 2 / 6 No 100 % 100 % 100 %
5 27 % 1 / 6 No 100 % 100 % 100 %

Table 3.3: Summary of the time and memory results from test runs on the small
dataset

40 H. Strandlie: Routing in MySQL

Pair Pruned Limit Limited Memory Time Hit ratio

1 44 % Standard No 100 % 100 % 100 %
1 44 % 4 / 6 No 100 % 100 % 100 %
1 44 % 2 / 6 Yes 56 % 1 739 800 % 92 %
1 44 % 1 / 6 Yes 28 % 2 290 000 % 82 %

2 18 % Standard No 100 % 100 % 100 %
2 18 % 4 / 6 No 100 % 100 % 100 %
2 18 % 2 / 6 Yes 56 % 5 895 700 % 89 %
2 18 % 1 / 6 Yes 28 % 4 524 800 % 81 %

3 88 % Standard No 100 % 100 % 100 %
3 88 % 4 / 6 No 100 % 100 % 100 %
3 88 % 2 / 6 Yes 56 % 84 000 % 98 %
3 88 % 1 / 6 Yes 28 % 162 900 % 92 %

4 0 % Standard No 100 % 100 % 100 %
4 0 % 4 / 6 No 100 % 100 % 100 %
4 0 % 2 / 6 Yes 56 % 6 038 158 % 87 %
4 0 % 1 / 6 Yes 28 % 5 917 105 % 79 %

5 63 % Standard No 100 % 100 % 100 %
5 63 % 4 / 6 No 100 % 100 % 100 %
5 63 % 2 / 6 Yes 56 % 695 806 % 96 %
5 63 % 1 / 6 Yes 28 % 1 342 903 % 86 %

Table 3.4: Summary of the time and memory results from test runs on the
medium dataset

Chapter 3: Evaluation 41

Pair Pruned Mem. limit Limited Memory Time Hit ratio

1 12 % Standard Yes 17 % 8 913 867 % 89 %
1 12 % 4 / 6 Yes 14 % 6 354 609 % 88 %
1 12 % 2 / 6 Yes 7 % 4 131 563 % 84 %
1 12 % 1 / 6 Yes 3 % 3 087 773 % 76 %

2 61 % Standard Yes 17 % 2 766 197 % 93 %
2 61 % 4 / 6 Yes 17 % 2 114 742 % 92 %
2 61 % 2 / 6 Yes 7 % 1 483 380 % 89 %
2 61 % 1 / 6 Yes 3 % 1 127 371 % 83 %

3 46 % Standard Yes 17 % 4 477 892 % 92 %
3 46 % 4 / 6 Yes 14 % 3 346 814 % 91 %
3 46 % 2 / 6 Yes 7 % 2 296 471 % 87 %
3 46 % 1 / 6 Yes 3 % 1 671 078 % 81 %

4 70 % Standard Yes 17 % 1 256 827 % 95 %
4 70 % 4 / 6 Yes 14 % 1 135 301 % 94 %
4 70 % 2 / 6 Yes 7 % 785 422 % 92 %
4 70 % 1 / 6 Yes 3 % 624 177 % 86 %

5 93 % Standard Yes 17 % 1 173 077 % 94 %
5 93 % 4 / 6 Yes 14 % 898 626 % 93 %
5 93 % 2 / 6 Yes 7 % 523 901 % 93 %
5 93 % 1 / 6 Yes 3 % 328 407 % 91 %

Table 3.5: Summary of the time and memory results from test runs on the large
dataset

42 H. Strandlie: Routing in MySQL

Pair Pruned Mem. limit Limited Num files Max file size Total I/O

1 44 % Standard No
1 44 % 4 / 6 No
1 44 % 2 / 6 Yes 2 2,2 MB 111,0 GB
1 44 % 1 / 6 Yes 4 1,2 MB 146,7 GB

2 18 % Standard No
2 18 % 4 / 6 No
2 18 % 2 / 6 Yes 2 2,6 MB 219,2 GB
2 18 % 1 / 6 Yes 4 1,4 MB 242,1 GB

3 88 % Standard No
3 88 % 4 / 6 No
3 88 % 2 / 6 Yes 2 1,4 MB 4,6 GB
3 88 % 1 / 6 Yes 4 0,73 MB 9,1 GB

4 0 % Standard No
4 0 % 4 / 6 No
4 0 % 2 / 6 Yes 2 3,0 MB 361,9 GB
4 0 % 1 / 6 Yes 4 1,5 MB 362,7 GB

5 63 % Standard No
5 63 % 4 / 6 No
5 63 % 2 / 6 Yes 2 1,5 MB 26,6 GB
5 63 % 1 / 6 Yes 4 0,97 MB 59,5 GB

Table 3.6: Summary of the I/O results from test runs on the medium dataset

Chapter 3: Evaluation 43

Pair Pruned Mem. limit Limited Num files Max file size Total I/O

1 12% Standard Yes 5 8,0 MB 3,7 TB
1 12% 4 / 6 Yes 7 5,5 MB 2,8 TB
1 12% 2 / 6 Yes 14 2,8 MB 1,8 TB
1 12% 1 / 6 Yes 27 1,4 MB 1,2 TB

2 61% Standard Yes 5 4,3 MB 820,7 GB
2 61% 4 / 6 Yes 7 3,0 MB 638,2 GB
2 61% 2 / 6 Yes 14 2,1 MB 422,2 GB
2 61% 1 / 6 Yes 27 0,85 MB 307,4 GB

3 46% Standard Yes 5 5,4 MB 1,3 TB
3 46% 4 / 6 Yes 7 3,6 MB 1,0 TB
3 46% 2 / 6 Yes 14 1,7 MB 687,9 GB
3 46% 1 / 6 Yes 27 1,0 MB 492,8 GB

4 70% Standard Yes 5 3,9 MB 442,4 GB
4 70% 4 / 6 Yes 7 2,5 MB 363,9 GB
4 70% 2 / 6 Yes 14 1,5 MB 245,8 GB
4 70% 1 / 6 Yes 27 0,75 MB 197,3 GB

5 93% Standard Yes 5 1,6 MB 224 GB
5 93% 4 / 6 Yes 7 1,2 MB 168,0 GB
5 93% 2 / 6 Yes 14 0,61 MB 100,7 GB
5 93% 1 / 6 Yes 27 0,40 MB 61,8 GB

Table 3.7: Summary of the I/O results from test runs on the large dataset

44 H. Strandlie: Routing in MySQL

(a) Standard memory limit

(b) Memory limit of 4 / 6 of standard

Figure 3.6: Memory usage (green bars) and max memory usage (blue line) at
any point in the query for vertex pair 1 in the medium dataset (1)

Chapter 3: Evaluation 45

(a) Memory limit of 2 / 6 of standard

(b) Memory limit of 1 / 6 of standard

Figure 3.7: Memory usage (green bars) and max memory usage (blue line) at
any point in the query for vertex pair 1 in the medium dataset (2)

46 H. Strandlie: Routing in MySQL

(a) Max memory: 12,58 MB Limit: 16,78 MB (b) Max memory: 12,58 MB Limit: 11,18 MB

(c) Max memory: 6,99 MB Limit: 5,59 MB (d) Max memory: 3,49 MB Limit: 2,80 MB

Figure 3.8: Graphs showing maximum memory consumption (green bars)
through a query exceeding the memory limit (blue line) set for that query, for
vertex pair 1 in the medium dataset

Chapter 4

Discussion

This section provides discussion on the datasets chosen, found in Section 4.1, and
presents some thoughts on the results in Section 4.2, such as the practical usability
of the current implementation, the importance of the hit ratio in the buffer, and
the fact that better performance was observed with lower memory limits in the
larger datasets. Then, in Section 4.3 details about the implementation of RVector,
such as the buffering strategy and the memory limit is discussed, before some dis-
cussion on the current interface and the impact of pruning is presented in Section
4.3.2 and 4.3.3.

4.1 Datasets

As described in Section 3.1.5, we selected 5 vertex pairs from the small, medium
and large datasets. This setup was chosen because it represents the experience
of several types of users. Some users have very small datasets, some have very
large datasets, while most have datasets of a size somewhere in between, and we
wanted to test the experience for all of these. It can be argued that users of very
small datasets will have no use for this since the small datasets most likely will fit
within the memory limit. Nevertheless, it can also be argued that users with small
datasets also have less powerful computers, and thus this should be a valuable
test setup. Using this setup lets us test three sets of 5 queries of approximately the
same size, instead of 15 queries of unknown size. This is especially important for
managing time spent on running tests.

Additionally, it is worth noting that if we selected 15 vertex pairs from the largest
dataset instead, and accidentally got the same vertex pairs as in the current setup,
the implementation would mostly behave the same as now because of pruning,
except that the vertices would be spread across more files. This would happen be-
cause vertices are indexed and placed into files with a local ID, and the keyspace
for these local IDs is larger in the larger dataset since there are more vertices.
Details about this local ID are found in Section 4.3.1.

47

48 H. Strandlie: Routing in MySQL

4.2 Results

This section discusses some important aspects of the results obtained in Chapter
3.

4.2.1 Practial usability

As seen in Table 3.4, we see slowdowns of orders of magnitude when the query is
limited by the memory limit. This limits the practical usability of the implementa-
tion since a query that finishes in less than a second when it is not memory limited
can take hours or days to finish when it is limited.

4.2.2 Better performance with lower memory limit

For vertex pair 2 and 4 in the medium dataset, and all vertex pairs in the large
dataset (Table 3.4 and 3.5) we observe an increase in performance (less time
consumed) when the memory limit is decreased, when the opposite would be ex-
pected since the hit ratio is also lowered. The reason for this likely is that when
the memory limit is decreased for vertex pairs with many edges, less data must
be read and written to disk each time, which again leads to less time waiting for
I/O, compared to when reading and writing larger files. This indicates that re-
placing the entire buffer each time we get a buffer miss might be decreasing the
performance significantly due to excessive I/O, and more files of a smaller size is
a better strategy.

These results also seem to indicate that when moving from small to large datasets
with varying degrees of pruning, the amount of I/O, which is a result of the size
of the disk files, becomes a more important factor in the time consumption, than
the hit ratio. This can be seen from the results of the medium dataset in Table 3.4
and 3.6, where vertex pair 1, 3, and 5 experiences higher time consumption with
a lower memory limit, while vertex pair 2 and 4 experiences the opposite. Since
vertex pairs 2 and 4 have the least amount of pruned edges, and all vertex pairs
in the large dataset in Table 3.5 and 3.7 experience lower time consumption with
a lower memory limit, some limit seems to exist in the medium dataset with the
current implementation where file size becomes the determining factor.

It is also worth noting that the implementation still has very poor performance
with lower memory limits, even if it is better.

4.2.3 Importance of hit ratio

From Table 3.4 we also see the importance of the hit ratio. Hit ratio is defined as
the proportion of requests that find their data present in the buffer, relative to all
requests. For the small dataset, where all test runs fit into memory, we get a 100
% hit ratio and excellent performance. For the medium and large datasets, we

Chapter 4: Discussion 49

Vertex pair Average time-slowdown Average hit-ratio

1 5 621 953 % 84,25 %
2 1 872 923 % 89,25 %
3 2 948 064 % 87,75 %
4
5 731 003 % 92,75 %

Table 4.1: Average time-slowdown and average hit-ratio for vertex pairs in the
large datasets

observe a decrease in hit ratio when the memory limit is decreased, as expected.
As discussed above, the effect of this is not observed as clearly as expected, par-
ticularly within test runs with the same vertex pair with a lowering memory limit.
When comparing between vertex pairs, however, for example by calculating the
average time consumption and average hit ratio, as seen in Table 4.1, we see that
the average time consumption is lowest for the highest average hit-ratio, and vice
versa. From this, we conclude that optimizing the hit ratio is still important.

4.3 Implementation

4.3.1 RVector

Using RVector for the entire graph

As discussed in Section 2.3.4 and 3.1.2, when using Boost Graph Library with the
graph represented as an Adjacency List, the programmer can choose what data
structures to use for storing the lists of edges and vertices independently (called
EdgeList and VertexList from now, respectively). In this thesis, the RVector is only
used for the VertexList, while it could also be used for the EdgeList. To simplify the
evaluation and get clear results the project only introduces RVector for the Ver-
texList, and thus keeps the number of "moving parts" as low as possible. Also using
RVector for the EdgeList would have complicated the implementation, mainly in
the serialization logic where the contents of the RVector is written to disk since
serialize-functions are customized for many types used within the Adjacency List
data structure. Given that the author had very limited experience with C++, Boost
Libraries and MySQL server code this seems a reasonable choice in the available
time frame.

50 H. Strandlie: Routing in MySQL

On the other hand, not using RVector for the EdgeList does come with a substan-
tial disadvantage. The memory usage of the routing module is not entirely under
control, since the EdgeList can in general have any size, which can make the rout-
ing module exceed its memory limit. For this reason, it would be useful to look at
using RVector for the EdgeList as well, even if the dataset used in this project is
sparse as discussed in Section 3.1.2.

Genericity of RVector

RVector is implemented as a template class in C++. The ability to store a sequence
of any element, similarly to std::vector, has obvious advantages and this was
the rationale for doing it that way. As the implementation progressed, however,
the issue of serialization arose. When writing the contents of RVector to disk, the
elements and all their member variables need to have a procedure defined for
serialization. This can either be defined in the class (i.e. by Boost Graph Library)
or the implementation can define custom serialization (called non-intrusive seri-
alization). BGL does define a serialization procedure for a full graph, but since
our goal here is to serialize a partial graph, a large part of the work with this im-
plementation became to define non-intrusive serialization logic for internal types
used in the Adjacency List implementation. The advantage of this is that the im-
plementation has great control over the serialization process. The disadvantage
is that RVector is not really generic anymore, since using it with elements of new
types requires new non-intrusive serialization methods to be implemented. An al-
ternative solution would be if serialization support was implemented directly in
BGL for Adjacency List, and serialization procedures were required for using el-
ements with RVector. This would be a natural requirement since the purpose of
RVector is to be able to spill over elements to disk when it gets too large.

Details about the implementation of serialization are found in Appendix A.3.2.

Buffering strategy

The buffering strategy (i.e. the cache replacement policy) in the current imple-
mentation is functional, but it has several disadvantages. Although the current
implementation is limited by excessive amounts of I/O and not by hit-ratio to the
same degree, this section argues that improving the buffering strategy would both
increase the hit-ratio and decrease the amount of I/O.

Using the concepts from Section 2.2.6 and the implementation details from Sec-
tion 3.1.2, we see that the two procedures getFileIndex(n) and getElementIn-
dex(n) are effectively the Mapping Function of the buffer. These functions make
a very inflexible Mapping Function since elements are deterministically assigned
to files and positions within these files based on their index, and for this reason, all
test runs for a given dataset with a given memory limit will have the same amount
of files on disk. For example, any test run on any vertex pair in the large dataset

Chapter 4: Discussion 51

with the 2/6 memory limit will always create 14 files on disk. As a consequence,
the Replacement Algorithm is almost non-existent. It consists of checking the
file index of an element given its index, and if this file index is not equal to the
index of the file currently in memory, replace the contents of the buffer, which
is currently the entire contents of the current file, with the entire contents of the
new file.

The main advantage of this policy is its simplicity. It is very easy to follow and
implement correctly. Also, this strategy performs very well for queries that are not
limited by the memory limit since the buffer does not have to be "warmed" with
elements at the beginning of the query, but performs like any other std::vector.
This can be seen in the results from the small dataset in Table 3.3. Lastly, if
"closeness" in element index in RVector entailed closeness in access patterns,
i.e. if it were true that when index 10 was accessed it was more likely that in-
dices 5 through 15 would be accessed next, this buffering strategy would be
much more effective. Unfortunately, this is not always the case, because when
the OpenStreetMap-data are loaded into MySQL tables using the procedure de-
tailed in Appendix A.2, vertices are given a local ID in the database in addition to
their global ID given by OSM. This local ID is used as an index into RVector when
fetching vertices and their corresponding edge lists as part of edge relaxation in
Dijkstra’s algorithm, and since the number of vertices BGL creates is equal to the
largest vertex ID encountered, as described in Section 3.1.2, this contraction of the
keyspace saves significant space compared to using the global OSM id as an index
and makes sure every index in RVector is a real vertex in the graph. The downside
of this approach is that, as seen in Table 4.2 there is not a one-to-one correspon-
dence between local and global IDs. The global IDs make jumps when the local
IDs do not and they consequently diverge. Thus any "closeness" or distance that
might be expressed through the indices will be over- or underrepresented which
will decrease the efficiency of the principle of locality, which is the main motiva-
tion for using buffers. Thus, using the local index to assign vertices to disk files
leads to poor performance since the principle of locality is not utilized efficiently.

Unfortunately, time constraints prohibited implementing an improved solution,
but the following paragraphs will present a promising idea for improvement.
Mainly we need to make our Mapping Function more flexible, since assigning file
position based on the local index does not give satisfactory performance. The cur-
rent implementation uses the geographic coordinates of the vertices for pruning
the graph but then discards the coordinates. It is possible in BGL to store proper-
ties of a vertex[43], and by storing these coordinates as properties of the vertices
the implementation could store and retrieve vertices from disk based on their geo-
graphic position, and essentially create a spatial index for the vertices. Fortunately,
the database literature and industry have developed several spatial indices which
could be useful here. The R-tree, as described in Section 2.2.7, could be very use-
ful here. The R-tree maps geographic locations to disk pages, but transferring the

52 H. Strandlie: Routing in MySQL

Local ID OSM ID

20 78 272
21 78 273
22 78 274
23 78 275
24 78 277
25 78 278
26 78 299
27 78 309
28 78 311
29 78 312
30 78 315

Table 4.2: Examples of pairs of local-global IDs in the dataset

concept to files and thus mapping geographic locations to disk files would enable
storing neighboring vertices in the same file, regardless of their local ID, and con-
sequently lead to fewer misses in the buffer. The disadvantage of this approach is
that it would require the implementation to store some information about which
files vertices are stored in after insertion, while the current implementation just
calculates this for each index without storing any information. Regardless, this
would be an acceptable trade-off since it would increase the hit ratio significantly.

Here we have assumed that, similarly to the current implementation, the entire
file is read into memory on a buffer miss. The advantage of this is the non-complex
implementation of not having to keep track of and replace individual vertices in
the buffer. On the other hand, this approach can lead to large data volumes being
read and written if often accessed vertices are stored in different files, which leads
to much time spent waiting on I/O, as demonstrated by the results. As discussed in
Section 2.2.6, better performance can be achieved by replacing individual vertices
in the buffer as they are referenced. Using the LRU policy on a vertex level, or
even the FIFO policy would further increase performance based on the current
implementation, particularly if combined with the R-Tree when fetching the vertex
from disk. This would be an improvement since a single buffer miss would not evict
all vertices from the buffer when the buffer can possibly contain vertices that will
be referenced in the near future. Additionally, it is worth noting that as Dijkstra’s
algorithm works through the vertices it does so in a sweeping manner, as seen in
[18], such that a buffer that tries to keep recently references vertices could work
well. Such an implementation would have to take care to not create files of too
large size to avoid the performance issues of this thesis, but since an RTree is data-
driven it will adapt to the distribution of vertices and create files of approximately
equal size.

Chapter 4: Discussion 53

Does the memory limit work?

As discussed in Section 3.1.2, the implementation introduces a constant adjust-
ment factor when calculating the file index and element index of a given vertex.
This adjustment factor essentially makes the size of the type of the element T
which is stored in RVector closer to its true size. The reason why sizeof(T), as
seen in Code Listing 3.4 and 3.5, is inaccurate is that the sizeof-operator is C++
does not calculate a "deep size", i.e. the collective size of the elements in any mem-
ber containers is not calculated into the size. As an example described in Section
3.1.2, each vertex has a list of varying sizes of all the edges it is connected to. Thus
the actual memory footprint of a vertex is impacted by the number of vertices, as
well as other factors. The implementation used an adjustment factor of 2, mean-
ing that the assumption is that the actual memory footprint is twice as large as
sizeof(T). As seen in Figure 3.8, the actual memory footprint exceeds the limit
by between 13% and 25 %, which implies that the adjustment factor of 2 does not
work with the dataset.

This challenge is quite tied to the current implementation since the adjustment
factor is needed every time the position of a vertex is to be calculated. On the other
hand, the maximum size of the memory buffer would have to be enforced in any
implementation, so it would be useful to have better solutions to this problem.
One possibility is to set the adjustment factor at the beginning of the query, based
on statistics or sampling of the dataset to obtain an adjustment factor proportional
to the actual memory footprint of the vertices present for the query. At this time,
the current, actual memory usage of the query is not available to RVector, but
given the availability of this, the adjustment factor could be set quite easily based
on data such as the average number of edges for each vertex, as shown in Table
3.2.

As mentioned in Section 3.1.2, the memory limit is set to the minimum of the
two system variables tmp_table_size and max_heap_table_size. This choice was
made because this value is available as the variable ram_limitation in MySQL
server code, and thus using it as a limit would impose a limit limit on the routing
module which is equal to the limit imposed on another, existing MySQL module
which also has a possibly large memory usage. These system variables are not in-
tended for the routing module, and can consequently be changed without care for
it. Additionally, a user may want to increase the memory limit for heap tables and
temporary tables, without wanting to increase the memory for the routing module,
something that is impossible in the current implementation. On the other hand,
it provides a realistic memory limitation since it is already present in MySQL.

54 H. Strandlie: Routing in MySQL

4.3.2 Interface

The interface to the routing functionality as currently implemented in MySQL
differs from the interface defined in SQL/MM standard, as seen in Code Listing
2.1. The current interface can be seen in Code Listing 3.2. The reason for this is
partly the choice to implement the function as an aggregation function, as dis-
cussed in Section 3.1.2. This type of function takes rows from a table as input,
where the table name is given in the FROM edge_table_name of Code Listing 3.2,
while SQL/MM defines that the table name should be given as a parameter to the
function. Other than this, the interfaces differ mostly because SQL/MM relies on
geometric data to define an edge, and as such only takes the geometry (geom-
etry_column_name) and the start of the edge(path_start_column_name) as argu-
ments. The implementation explicitly takes arguments for the source (source_id_column_name)
and target id (target_id_column_name).

The reason for this is mainly because of the prototype nature of this implementa-
tion, and also because the source and target ids are the data that is immediately
available in the dataset. Additionally, BGL creates an edge from source and target
id, i.e. from the data available, thus using the geometry input from the function
would require a layer of indirection. On the other hand, the geometry-information
is also available in the dataset and it would be possible to implement this inter-
face, given that we didn’t implement it as an aggregation function, but the simple
solution was chosen in this prototype.

4.3.3 Pruning

The implementation prunes edges that are outside a given radius from the mid-
point between the source and the target. This helps reduce the memory footprint
of the implementation, by eliminating edges that are most likely irrelevant to the
shortest path. As mentioned in Section 3.1.2, the focus of this project is not to
efficiently select vertices, and consequently, the radius from the midpoint was set
experimentally by the rationale that the shortest path between a source and a tar-
get will very likely not travel more than 50% of the distance to the target in the
wrong direction.

One example where this fails, which can be classified as an edge-case but nev-
ertheless is interesting, is the following. If you are traveling, as shown in Figure
4.1, from the purple square in Trondheim to the orange square in Vanvikan on the
other side of the fjord and cannot use a boat, the implementation will erroneously
give the answer that no route exists. This happens because the implementation
prunes all edges outside the red circle, which is the defined radius from the mid-
point, while we need all edges within the green circle to compute the optimal
shortest path. Note that if a ferry/boat is an option, which it usually is, the red
circle does contain the shortest path, so this is an edge case. As a result, the im-
plementation loses the optimality of Dijkstra’s algorithm due to edge pruning in

Chapter 4: Discussion 55

Figure 4.1: Map showing an example of the actual vertex set with the current
implementation (red circle) and the required vertex set for a correct shortest path
(green circle) when traveling from the purple square to the orange square.
© OpenStreetMap contributors

this case. It is not difficult to imagine other similar cases which can lead to similar
results. Thus, we have to ask the question if it is necessary to have pruning. In
the current implementation, it is necessary, because when the requested vertices
are scattered almost randomly across files the I/O volumes quickly become large
when files are read and written into memory often. On the other hand, if we had
a more efficient buffering strategy, as discussed in Section 4.3.1, which is better
at keeping the relevant vertices in memory, the number of vertices stored on disk
would not be an issue, at least in the context of this thesis, and with the low cost
of storage today it would probably not be an issue in many other applications ei-
ther. This is especially true if one considers the disk space the cost to guarantee
optimality from Dijkstra’s algorithm.

56 H. Strandlie: Routing in MySQL

4.3.4 Algorithms

This thesis only implements Dijkstra’s algorithm. As discussed in Section 2.2.4 a
central part of the implementation is its declarative nature, i.e. the possibility to
implement other algorithms and let the module choose which algorithm to use
based on the context. It would have been interesting to see the performance of
the implementation with other algorithms, but given the current performance, it
would not have changed the conclusion. With an improved buffering strategy, the
current implementation is a useful platform to build on with other algorithms, but
the current implementation would not have benefited from more algorithms due
to its performance issues.

4.4 Validation

It is worth noting that we have not validated most of the shortest paths calculated
here against an external source. At the beginning of the project, we calculated
shortest paths in the local environment of Trondheim, where we could validate
paths against our local knowledge. The result from this was very promising since
the calculated paths matched well with our knowledge. Also since the Boost Graph
Library implementation of Dijkstra’s algorithm is used, we can be fairly certain
that it performs correctly, as discussed in Section 2.3.4. Nevertheless, validation
of results would be valuable, especially if the solution was getting ready for pro-
duction.

Chapter 5

Conclusion

This thesis examines some of the relevant questions when implementing routing
in a database system. It looks at how we can create an SQL interface to a routing
module that allows the database system to optimize the execution similarly to how
it optimizes a regular query and argues that such a routing module should have
a declarative interface, which transfers much of the responsibility for choosing
algorithms and managing memory usage to the database system. An examination
of existing approaches, with pgRouting and the Oracle Routing Engine can be
found in Section 2.3.2 and 2.3.3, and an argument for the declarative interface
can be found in Section 2.2.4. A discussion of the interface in the current imple-
mentation is found in Section 4.3.2.

The thesis examines two research questions:

RQ1: How can we create an SQL interface to a routing module that allows the
database system to optimize the execution similarly to how it optimizes a
normal query?

RQ2: What are some of the factors that impact the performance of a system with
an interface as in RQ1 when the system is memory limited?

A routing prototype was implemented in MySQL to answer RQ1. It is implemented
as an aggregation function in MySQL and uses Boost Graph Library to perform Di-
jkstra’s algorithm, and a custom data structure called RVector to handle memory
management of vertices in the graph and enforce a memory limit. Details about
the implementation are found in Section 3.1.2, and some choices and insights
from the evaluation are discussed in Section 4.3. The routing function presents a
declarative interface, and Section 2.2.4 and 2.2.5 examines some consequences of
this choice, and argues that it is the preferable choice in an SQL database system.

To answer RQ2, the implementation was experimentally evaluated, and the re-
sults from this evaluation are found in Section 3.2. The implementation works and
calculates correct routes while observing and respecting a memory limit. From the

57

58 H. Strandlie: Routing in MySQL

evaluation, it is found that the amount of I/O performed by the implementation
is an important factor in the performance, as seen in Section 3.2. The amount
of I/O performed correlates strongly with the time slowdown of a query. Addi-
tionally, for queries where the amount of I/O is lower and the system is not so
limited by waiting on I/O, the hit-ratio in the buffer is found to be an important
factor. Section 4.3.1 discusses the weaknesses of the current buffering strategy
and argues that the hit ratio can be improved while the amount of I/O can be
decreased. Additionally, it is found in Section 4.3.3 that pruning of unnecessary
edges is an important factor for the performance of the system and that effective
pruning is a strategy for reducing the memory footprint of the system, even with
the unsophisticated pruning that is performed in the current implementation.

5.1 Future work

In the future, it would be interesting to see how storage cost and performance are
impacted when the graph uses directed edges instead of undirected edges, as it
does now. This would improve the quality of shortest paths that are calculated,
but since the amount of directed edges in the dataset is low it requires some more
insight.

The tests in this thesis were only run on one computer. It would be useful to see
how it performs on other computers, especially since the point of the prototype is
to make any type of computer able to run the routing module.

Right now, the implementation prunes edges based on a simple distance from the
midpoint between the source and target. It would be very interesting to see how
more intelligent pruning would impact performance, such as taking the mode of
transportation (walking, bike, car) into consideration and pruning based on how
far it is possible to get with the current mode. Another option would be to identify
the average distance shortest paths move in the wrong direction before moving
in the right direction as a pre-processing step and using this to prune all unusable
edges.

To simplify the implementation, RVector was only used for VertexList and not
for EdgeList. A natural extension of this thesis would be to also use RVector for
EdgeList, and thus further control the memory usage of the entire application,
and also observe the performance in this case.

It would also be interesting to examine the impact of using geometries to store
the edges and to define the source and target vertices when compared to using
the vertex ID and edge length as done in this thesis.

Bibliography

[1] N. Ryeng, “Spatial support in mysql,” FOSS4G, 2019, [Online]. Available:
https://www.slideshare.net/NorvaldRyeng/spatial-support-in-
mysql.

[2] T. Cormen, C. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms. Cambridge, Massachusets, US: The MIT Press, 2009, 3rd edition.

[3] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large scale travel-
ing salesman problem,” Journal of the Operations Research Society of Amer-
ica, vol. 2, no. 4, pp. 393–410, 1954.

[4] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” Proc. VLDB Endow., vol. 2, no. 1, pp. 337–348,
Aug. 2009, ISSN: 2150-8097. DOI: 10.14778/1687627.1687666. [Online].
Available: https://doi.org/10.14778/1687627.1687666.

[5] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route plan-
ning algorithms,” in Algorithmics of Large and Complex Networks: Design,
Analysis, and Simulation, J. Lerner, D. Wagner, and K. A. Zweig, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 117–139, ISBN: 978-3-
642-02094-0. DOI: 10.1007/978-3-642-02094-0_7. [Online]. Available:
https://doi.org/10.1007/978-3-642-02094-0_7.

[6] Oracle Corporation. (May 3, 2021). “Spatial data types,” [Online]. Avail-
able: https://dev.mysql.com/doc/refman/8.0/en/spatial-types.
html.

[7] “OpenGIS® Implementation Standard for Geographic information - Sim-
ple feature access - Part 1: Common architecture,” Open Geospatial Con-
sortium Inc., Standard, 2011.

[8] Oracle Corporation. (Jun. 8, 2021). “11.4.2.2 geometry class,” [Online].
Available: https://dev.mysql.com/doc/refman/8.0/en/gis-class-
geometry.html.

[9] pgRouting Community. (Jun. 8, 2021). “Implementation of node class in
osm2pgrouting,” [Online]. Available: https://github.com/pgRouting/
osm2pgrouting/blob/main/src/osm_elements/Node.cpp.

59

https://www.slideshare.net/NorvaldRyeng/spatial-support-in-mysql
https://www.slideshare.net/NorvaldRyeng/spatial-support-in-mysql
https://doi.org/10.14778/1687627.1687666
https://doi.org/10.14778/1687627.1687666
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/gis-class-geometry.html
https://dev.mysql.com/doc/refman/8.0/en/gis-class-geometry.html
https://github.com/pgRouting/osm2pgrouting/blob/main/src/osm_elements/Node.cpp
https://github.com/pgRouting/osm2pgrouting/blob/main/src/osm_elements/Node.cpp

60 H. Strandlie: Routing in MySQL

[10] pgRouting Community. (Nov. 29, 2020). “Osm2pgrouting - import osm data
into pgrouting database,” [Online]. Available: http://pgrouting.org/
docs/tools/osm2pgrouting.html.

[11] “Information technology - Database languages - SQL multimedia and appli-
cation packages,” International Organization for Standardization, Geneva,
CH, Standard, 2015.

[12] L. L. Larmore. (Dec. 3, 2020). “Pathing,” [Online]. Available: http://web.
cs.unlv.edu/larmore/Courses/CSC269/pathing.

[13] R. Gutman, “Reach-based routing: A new approach to shortest path algo-
rithms optimized for road networks.,” Jan. 2004, pp. 100–111.

[14] A. Goldberg, H. Kaplan, and R. Werneck, “Reach for a*: Efficient point-to-
point shortest path algorithms,” Tech. Rep. MSR-TR-2005-132, Jan. 2006,
Technical Report for CLASSiC FP7 European project, p. 41. [Online]. Avail-
able: https://www.microsoft.com/en- us/research/publication/
reach-for-a-efficient-point-to-point-shortest-path-algorithms/.

[15] A. Goldberg and C. Harrelson, “Computing the shortest path: A search
meets graph theory,” eng, ser. SODA ’05, Society for Industrial and Applied
Mathematics, 2005, ISBN: 9780898715859.

[16] D. Delling, T. Pajor, and R. F. Werneck, “Round-based public transit rout-
ing,” Transportation science, vol. 49, no. 3, pp. 591–604, 2015.

[17] E. W. Dijkstra, “A note on two problems in connexion with graphs,” NU-
MERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.

[18] Computer Science. (Dec. 8, 2020). “Graph data structure 4. dijkstra’s short-
est path algorithm,” [Online]. Available: https://www.youtube.com/
watch?v=pVfj6mxhdMw.

[19] D. Wagner and T. Willhalm, “Speed-up techniques for shortest-path compu-
tations,” in STACS 2007, W. Thomas and P. Weil, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 23–36, ISBN: 978-3-540-70918-3.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Sci-
ence and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. DOI: 10.1109/TSSC.
1968.300136.

[21] K. Wang. (Dec. 7, 2020). “Compare a* with dijkstra algorithm,” [Online].
Available: https://www.youtube.com/watch?v=g024lzsknDo.

[22] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang, “Relational approach
for shortest path discovery over large graphs,” Proc. VLDB Endow., vol. 5,
no. 4, pp. 358–369, Dec. 2011, ISSN: 2150-8097. DOI: 10.14778/2095686.
2095694. [Online]. Available: https://doi.org/10.14778/2095686.
2095694.

http://pgrouting.org/docs/tools/osm2pgrouting.html
http://pgrouting.org/docs/tools/osm2pgrouting.html
http://web.cs.unlv.edu/larmore/Courses/CSC269/pathing
http://web.cs.unlv.edu/larmore/Courses/CSC269/pathing
https://www.microsoft.com/en-us/research/publication/reach-for-a-efficient-point-to-point-shortest-path-algorithms/
https://www.microsoft.com/en-us/research/publication/reach-for-a-efficient-point-to-point-shortest-path-algorithms/
https://www.youtube.com/watch?v=pVfj6mxhdMw
https://www.youtube.com/watch?v=pVfj6mxhdMw
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://www.youtube.com/watch?v=g024lzsknDo
https://doi.org/10.14778/2095686.2095694
https://doi.org/10.14778/2095686.2095694
https://doi.org/10.14778/2095686.2095694
https://doi.org/10.14778/2095686.2095694

Bibliography 61

[23] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route plan-
ning algorithms,” in Algorithmics of Large and Complex Networks: Design,
Analysis, and Simulation, J. Lerner, D. Wagner, and K. A. Zweig, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 117–139, ISBN: 978-3-
642-02094-0. DOI: 10.1007/978-3-642-02094-0_7. [Online]. Available:
https://doi.org/10.1007/978-3-642-02094-0_7.

[24] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algorithms:
Theory and experimental evaluation,” eng, Mathematical programming, vol. 73,
no. 2, pp. 129–174, 1996, ISSN: 0025-5610.

[25] R. Elmasri, Fundamentals of database systems, eng. Boston , Mass: Pearson,
2016, 7th edition, ISBN: 1-292-09761-2.

[26] W. Stallings, Operating systems : Internals and design principles, eng, Harlow,
England, 2018.

[27] P. Rigaux, M. Scholl, and A. Voisard, “6 - spatial access methods,” eng, in
Spatial Databases, Elsevier Inc, 2002, pp. 201–266, ISBN: 1558605886.

[28] H. Strandlie, “Geospatial routing in dbmss,” Autumn Project -NTNU, 2020.

[29] Oracle Corporation. (Jun. 8, 2021). “The opengis geometry model,” [On-
line]. Available: https://dev.mysql.com/doc/refman/8.0/en/opengis-
geometry-model.html.

[30] Oracle Corporation. (Jun. 8, 2021). “Spatial analysis functions,” [Online].
Available: https://dev.mysql.com/doc/refman/8.0/en/spatial-
analysis-functions.html.

[31] Oracle Corporation. (May 3, 2021). “Changes in mysql 8.0.23 (2021-01-
18, general availability), spatial data support,” [Online]. Available: https:
//dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-23.html#
mysqld-8-0-23-spatial-support.

[32] Oracle Corporation. (May 3, 2021). “Changes in mysql 8.0.24 (2021-04-
20, general availability), spatial data support,” [Online]. Available: https:
//dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-24.html#
mysqld-8-0-24-spatial-support.

[33] R. R. Sankepally and K. S. Rajan, “Improving path query performance in
pgrouting using a map generalization approach,” ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. XLII-4/W8, pp. 191–198, 2018. DOI: 10 . 5194 / isprs - archives -
XLII- 4- W8- 191- 2018. [Online]. Available: https://www.int- arch-
photogramm- remote- sens- spatial- inf- sci.net/XLII- 4- W8/191/
2018/.

[34] pgRouting Contributors. (Apr. 19, 2021). “Pgrouting introduction,” [On-
line]. Available: https://docs.pgrouting.org/latest/en/pgRouting-
introduction.html.

https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://dev.mysql.com/doc/refman/8.0/en/opengis-geometry-model.html
https://dev.mysql.com/doc/refman/8.0/en/opengis-geometry-model.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-analysis-functions.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-analysis-functions.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-23.html#mysqld-8-0-23-spatial-support
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-23.html#mysqld-8-0-23-spatial-support
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-23.html#mysqld-8-0-23-spatial-support
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-24.html#mysqld-8-0-24-spatial-support
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-24.html#mysqld-8-0-24-spatial-support
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-24.html#mysqld-8-0-24-spatial-support
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/191/2018/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/191/2018/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/191/2018/
https://docs.pgrouting.org/latest/en/pgRouting-introduction.html
https://docs.pgrouting.org/latest/en/pgRouting-introduction.html

62 H. Strandlie: Routing in MySQL

[35] R. Kothuri, A. Godfrind, and E. Beinat, Pro Oracle Spatial for Oracle Database
11g. New York, US: Springer-Verlag New York, Inc, 2007.

[36] J. Siek, L. Lee, and A. Lumsdaine, The Boost Graph Library. Upper Saddle
River, New Jersey, US: Pearson Education, Inc., 2002.

[37] J. Siek. (Apr. 26, 2021). “Choosing the edgelist and vertexlist,” [Online].
Available: https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/
using_adjacency_list.html#sec:choosing-graph-type.

[38] OpenStreetMap Foundation. (Nov. 21, 2020). “About openstreetmap,” [On-
line]. Available: https://www.openstreetmap.org/about.

[39] Open Knowledge Foundation. (Nov. 21, 2020). “Open data commons open
database licence (odbl,” [Online]. Available: https://opendatacommons.
org/licenses/odbl/.

[40] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algorithms:
Theory and experimental evaluation,” in Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’94, Arlington, Vir-
ginia, USA: Society for Industrial and Applied Mathematics, 1994, pp. 516–
525, ISBN: 0898713293.

[41] cplusplus.com. (May 24, 2021). “Containers,” [Online]. Available: https:
//www.cplusplus.com/reference/stl/.

[42] Oracle Corporation. (May 31, 2021). “Mysql dynamic system variables,”
[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/
dynamic-system-variables.html.

[43] D. Gregor. (May 28, 2021). “Boost graph library - bundled properties,”
[Online]. Available: https://www.boost.org/doc/libs/1_42_0/libs/
graph/doc/bundles.html.

[44] OpenStreetMap Foundation. (Nov. 29, 2020). “Export - openstreetmap,”
[Online]. Available: https://www.openstreetmap.org/export.

[45] Overpass Community. (Nov. 30, 2020). “Overpass api,” [Online]. Available:
https://www.overpass-api.de.

[46] Geofabrik GmbH. (Nov. 29, 2020). “Download openstreetmap data for nor-
way,” [Online]. Available: https://download.geofabrik.de/europe/
norway.html.

[47] Oracle Corporation. (Sep. 11, 2020). “11.4.5 spatial reference system sup-
port,” [Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/
spatial-reference-systems.html.

[48] wiki.GIS.com Community. (Nov. 30, 2020). “Well-known text,” [Online].
Available: http://wiki.gis.com/wiki/index.php/Well-known_text.

[49] The PostgreSQL Global Development Group. (Nov. 30, 2020). “Pg_dump,”
[Online]. Available: https://www.postgresql.org/docs/9.3/app-
pgdump.html.

https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/using_adjacency_list.html#sec:choosing-graph-type
https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/using_adjacency_list.html#sec:choosing-graph-type
https://www.openstreetmap.org/about
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
https://www.cplusplus.com/reference/stl/
https://www.cplusplus.com/reference/stl/
https://dev.mysql.com/doc/refman/8.0/en/dynamic-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/dynamic-system-variables.html
https://www.boost.org/doc/libs/1_42_0/libs/graph/doc/bundles.html
https://www.boost.org/doc/libs/1_42_0/libs/graph/doc/bundles.html
https://www.openstreetmap.org/export
https://www.overpass-api.de
https://download.geofabrik.de/europe/norway.html
https://download.geofabrik.de/europe/norway.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-reference-systems.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-reference-systems.html
http://wiki.gis.com/wiki/index.php/Well-known_text
https://www.postgresql.org/docs/9.3/app-pgdump.html
https://www.postgresql.org/docs/9.3/app-pgdump.html

Bibliography 63

[50] R. Ramey. (Jun. 4, 2021). “Serialization - overview,” [Online]. Available:
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/
index.html.

[51] R. Ramey. (Jun. 4, 2021), [Online]. Available: https://www.boost.org/
doc/libs/1_76_0/libs/serialization/doc/tutorial.html#serializablemembers.

[52] R. Ramey. (Jun. 4, 2021), [Online]. Available: https://www.boost.org/
doc/libs/1_76_0/libs/serialization/doc/tutorial.html#nonintrusiveversion.

[53] Oracle Corporation. (Dec. 1, 2020). “Memory summary tables,” [Online].
Available: https : / / dev . mysql . com / doc / refman / 8 . 0 / en / memory -
summary-tables.html.

[54] N. Ryeng. (Apr. 17, 2021). “Query profiling in mysql,” [Online]. Available:
https://github.com/nryeng/dbama-query-profiling.

https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/tutorial.html#serializablemembers
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/tutorial.html#serializablemembers
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/tutorial.html#nonintrusiveversion
https://www.boost.org/doc/libs/1_76_0/libs/serialization/doc/tutorial.html#nonintrusiveversion
https://dev.mysql.com/doc/refman/8.0/en/memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/memory-summary-tables.html
https://github.com/nryeng/dbama-query-profiling

Appendix A

Additional Details

This appendix contains some more details that are informative, but not neces-
sary to reach the conclusion of the thesis. This includes details about the dataset,
how the dataset was imported into MySQL, as well as code-level details about the
implementation and the evaluation.

A.1 Dataset export

To export data from OpenStreetMap, three different strategies were needed. The
small dataset was exported using the export functionality[44] found on the OSM
website. The medium dataset was exported with the Overpass API[45]. The ex-
port functionality used for the small dataset has a vertex limit of a maximum of 50
000 vertices in a single export, and we also experienced error messages informing
of exports hitting memory limits in the Overpass API used for the medium, so
the large dataset was downloaded from Geofabrik[46], and not any of the former
sources.

The small and medium XML files used can be found at
https://drive.google.com/drive/folders/1Rfn33w07TDt5Fw4Kpgjy4T1GDcDUh6b3.

The large dataset used can be downloaded from [46]. It is tagged with the date
2020-11-26 03:31. The small and medium datasets were exported in October
2020 and may have changed if they are downloaded from the sources and not the
link given above.

A.2 Dataset handling

The next step, after exporting the data, was to load it into a pgRouting-enabled
PostgreSQL database with the help of osm2pgrouting[10]. This import results in
several tables, of which we use two: ways and ways_vertices_pgr. The first con-
tains data about all edges found in the graph, such as the source and target of

65

https://drive.google.com/drive/folders/1Rfn33w07TDt5Fw4Kpgjy4T1GDcDUh6b3

66 H. Strandlie: Routing in MySQL

each edge, the coordinates for the source and target, and the costs of traveling
the edge in each direction. The definition of the ways table can be seen in Table
A.1. Each source and target of edges in the ways table is a vertex, and these are
described in the ways_vertices_pgr table, and the definition is found in Table A.2.
ways_vertices_pgr also contains additional information about vertices, such as the
coordinates of each vertex, and in total, this is enough to build a graph.

A column named the_geom of type GEOMETRY is present is both ways and ways-
_vertices_pgr which describes the edges and points of the tables when they are
placed in a Spatial Reference System[47]. Migrating this column to MySQL from
PostgreSQL was not straightforward, but it was solved by creating a new column
which had the type TEXT and exporting the geometry to Well-known text[48].
Well-known text is a markup language for representing geometries in a portable
way in GIS, which is supported by PostgreSQL and MySQL, and it can be used to
export and import between them. This operation can be seen in Code Listing A.1.

Code listing A.1: Example of export to Well Known Text

ALTER TABLE ways ADD COLUMN the_geom_line TEXT;
UPDATE ways SET the_geom_line = ST_AsText(the_geom);
ALTER TABLE ways DROP COLUMN the_geom;

Next, we need to dump the contents of the pgRouting database in PostgreSQL into
INSERT statements. Since these are standardized, they can be executed in MySQL
and used to load the dataset into MySQL. The pg_dump tool[49] performs this
job and dumps an entire PostgreSQL database into INSERT statements, but some
manual post-processing is necessary to adapt the syntax to MySQL.

At last, the dumped and post-processed data is run in MySQL, and the correspond-
ing the_geom column is created and filled with data converted from the column
containing the Well-known text. See an example in Code Listing A.2.

Code listing A.2: Example of operations when importing data to MySQL

ALTER TABLE ways ADD COLUMN the_geom GEOMETRY;
UPDATE ways

SET the_geom = ST_GeomFromText(the_geom_line, 4326, "axis-order=long-lat");
ALTER TABLE ways DROP COLUMN the_geom_line;

A.3 Implementation details

The code for the implementation can be found at https://github.com/strandlie/mysql-
server/tree/routing on the branch routing. The code which is discussed below can
be found in the commit with the hash: aa894e0ec34e362bd3 f 309a98b45 f 554a3de7 f ee.

https://github.com/strandlie/mysql-server/tree/routing
https://github.com/strandlie/mysql-server/tree/routing

Chapter A: Additional Details 67

A.3.1 Aggregation function and routing

As mentioned in Section 3.1.2 the prototype is implemented as an aggregation
function. This was done by changing the mysql-server/sql/item_sum.h/cc files
and defining a custom aggregation function which we call Item_sum_route. In
MySQL, aggregation functions are C++ classes with member variables and func-
tions which are called by the server to execute the function and calculate the
result. There are several such functions, but the two main functions for an aggre-
gation function are:

ClassName::add() Called when a new row from the table is ready to be pro-
cessed.

ClassName::val_<type_of_data>() Called after processing all rows to produce
an aggregated result. <type_of_data> can be be one of str, decimal, int,
and real. The val_str()-method was implemented here, since a route can-
not be easily represented by a numeric value.

Item_sum_route::add() is called for each edge in the dataset. The current im-
plementation does some preliminary pruning at this point. This pruning is very
limited in scope because the coordinates of the source and target vertex are not
included as parameters to the ROUTE function, and no easy way was found to fetch
information from other tables in the database from code in an aggregation func-
tion. Consequently, we do not know what the coordinates for the source and target
vertex are, and cannot calculate a midpoint, until edges with the source and target
vertex at either end have been processed by the add() function. This means, that
until we have processed such edges, all edges must be added to the graph and the
amount of pruning is dependent on when the source and target vertices appear
in edges in the graph. Initially, we used only this strategy for pruning, which rou-
tinely pruned only 5-15% of edges and not every edge outside the radius.

Item_sum_route::val_str() aggregates the result by constructing an instance
of the Graph_routing, and getting the id of the source and target which is sup-
plied to the ROUTE function. All logic related to routing, together with Boost Graph
Library calls are contained within the Graph_routing class. Graph_routing also
makes another pass through the edges that were added in the add()-function. At
this point, the coordinates for the source and target vertex are known as long
as they exist as vertices in the dataset, and the midpoint can be calculated. All
edges outside the defined radius from the midpoint are pruned, and we are left
with all edges which have at least one point within the radius. This pruning strat-
egy is much more effective, and it has been observed to prune up to 93% of edges.

The Graph_routing class encapsulates all calls to Boost Graph Library, and the
call to Dijkstra’s algorithm is shown in Code Listing A.3. It can be found on line
93 in mysql-server/sql/routing/graph_routing.cc. It simply takes the graph,

68 H. Strandlie: Routing in MySQL

source vertex, an array to store distances in (to look at when the algorithm com-
pletes, this is not used in the current implementation), and an array to store pre-
decessors in (to look at when the algorithm completes, used to output the shortest
path in the current implementation). From this, it is apparent that the implemen-
tation stores some state about what source the routing was last performed for, and
stores this state until it is output at the end. It is also clear that implementing more
algorithms is straightforward since an equivalent function to executeDijkstra-
(Vertex source) can be added for other algorithms.

Code listing A.3: How the call to Dijkstra’s algorithm in BGL happens

void Graph_router::executeDijkstra(Vertex source) {
dijkstra_shortest_paths(
G, source,
b::distance_map(&distances[0]).predecessor_map(&predecessors[0]));

currentSource = source;
}

At the end of Item_sum_route::val_str(), a result string is created from the
predecessors found in the shortest path, and it is returned.

A.3.2 Serialization

The main challenge when developing this prototype was understanding and cor-
rectly implementing serialization for graph vertices in Boost. Initially, a naive ap-
proach was taken where the « operator was used directly to write out data objects
to a file, but this turned out to not work for the more complex and nested ver-
tex data type in Boost Graph Library. For this reason, Boost Serialization[50] was
used. Initially, the expectation was that support for Boost Serialization should be
built into Boost Graph Library, which would help implement serialization without
many bugs and much work. Unfortunately, this is not the case and we had to im-
plement serialization manually for every relevant data type.

It is not difficult to implement serialization for Boost Serialization. Mainly it can
be done in one of two possible ways:

• 1: The class of the object has defined a serialize-method, which describes
how serialization is performed for such objects[51]

• 2: The class of the object does not define a serialize-method, and we have
to use non-intrusive serialization[52]

This thesis used alternative 2, since we did not want to change Boost Graph Li-
brary. It is simply a function named serialize, as seen in Code Listing A.4, which
takes an archive (can be thought off as a file reference), an object and a version
number, and performs both read from and write to file using the operator in C++.
The disadvantage to this approach is that it does not have access to private or
protected members in the data-object seen in Code Listing A.4. This created a bug
with the implementation, which finally had to be fixed by changing the visibility of
a variable in the class stored_ra_edge_iter in boost/graph/detail/adjacency-

Chapter A: Additional Details 69

_list.hpp from protected to public. In other words, we had to change the code
in an imported library, which is not ideal, but it is documented in the README of
the mysql-server/sql/routing directory, and if native support for serialization
is implemented in BGL, as proposed in this thesis, it would not be necessary.

Code listing A.4: Example of non-intrusive serialization

template <class Archive>
void serialize(Archive &ar, stored_vertex_t &data,

__attribute__((unused)) const unsigned int version) {
ar &data.m_out_edges;
ar &data.m_property;

}

A.3.3 Parser

To make the MySQL Server call our function, the word ROUTE was added to the
parser grammar, and to achieve this we changed sql/yacc.yy, which contains
parser rules which assign expressions and their arguments to different, underlying
functions. This can be found on lines 10485 to 10488 in mysql-server/sql/sql-
_yacc.yy, and the important lines are seen in Listing A.5. ROUTE_SYM is defined in
sql/lex.h as a SYM_FN and at line 1267 in sql/yacc.yy similar to existing code
there. expr_list is a rule that quickly allowed us to get the parser to recognize
our query, and it defines a function that takes any list of arguments. One current
disadvantage of this is that the type of these arguments are not checked, which
would be necessary future improvement before releasing into production.

Code listing A.5: The new lines added to the parser in yacc.yy
ROUTE_SYM ’(’ expr_list ’)’ opt_windowing_clause
{

$$= NEW_PTN Item_sum_route(@$, $3, $5);
}

A.4 Test details

Each test run with each of the vertex pairs found by the query in Code Listing
3.6 followed a specific procedure, to make sure the results were as comparable as
possible. First, only one test was run at a time. Then, for each test the following
was performed:

1: Restart the MySQL server if it was previously running

2: Set the memory limit by setting the max_heap_table_size system variable

3: Start the monitoring procedure in Appendix A.5

4: Execute the query

70 H. Strandlie: Routing in MySQL

5: Wait for the query to finish. Unfortunately, this usually takes hours or days

6: Export the data from the test into CSV files with the procedure in Code Listing
A.11

The test uses three mechanisms for measuring data, which are found in the sec-
tions below.

A.4.1 Measuring memory

To measure memory, the implementation uses a custom allocator called Rout-
ing_allocator which gives std::vectors an unique key in the performance-
_schema.memory_summary_by_thread_by_event_name table[53] when allocated
when the program is run. This means that MySQL keeps track of every byte that
is allocated and freed, and also maximum and minimum amounts, in that vector.
In the implementation we find this in mysqlserver/sql/routing/rvector.h on
line 36, seen in Code Listing A.6.

The definition of Routing_allocator is shown in Code Listing A.7, which shows
that the Routing_allocator is just a wrapper around Malloc_allocator in MySQL,
and initializes it with key_memory_routing, which is a custom key equal to "mem-
ory/sql/routing".

Code listing A.6: Definition of a std::vector with RoutingAllocator

std::vector<T, Routing_allocator<T>> vec_;

Code listing A.7: Definition of Routing Allocator

template <typename T>
class Routing_allocator: public Malloc_allocator<T> {
public:
Routing_allocator(): Malloc_allocator<T>(key_memory_routing) {}

};

To capture this memory and store it during a run of the query, the memory usage
is stored with the procedure in Code Listing A.10, and exported into CSV with the
procedure in Code Listing A.11.

A.4.2 Measuring time

Time consumption of the query was recorded by the internal time recorder in
MySQL. An example of this time consumption is shown in Figure 3.3. No addi-
tional custom code was implemented to measure time consumption.

Chapter A: Additional Details 71

A.4.3 Measuring buffer performance, and I/O

To measure the number of hits and misses in the buffer, as well as the num-
ber of I/O bytes read and written, the implementation has some simple coun-
ters. This can be seen in mysqlserver/sql/routing on line 365, which is also
shown in Code Listing A.8. Here the lines RoutingStats::numBufferHits += 1
and RoutingStats::numSwaps += 1 count the occurrences of a buffer hit or miss,
respectively. These numbers are stored as static member variables of the Routing-
Stats class and are reported at the end of the query.

Additionally, since we are manually handling file objects (the getInfileForFileNr(i)
and getOutfileForFileNr(i) just returns an open file object, or creates it if it
does not exist) I/O is measured using the tellg() and tellp() methods of std-
::ifstream and std::ofstream. This can be seen in Code Listing A.9, and works
because we are always replacing the entire buffer, which means that we can al-
ways start reading and writing from the beginning of the respective file. By call-
ing file.seekg(0) and fileseekp(0) we are resetting reading and writing to the
start of each file, and the amount of bytes written / read can be directly read from
the tellg()/tellp() methods.

Code listing A.8: The definition of the method changeWorkingSet in RVector

void changeWorkingSet(size_t new_idx) {
if (new_idx == currentFileIdxInMem) {
RoutingStats::numBufferHits += 1;
return;

}
RoutingStats::numSwaps += 1;
fh.pushVectorWithIdx(currentFileIdxInMem, vec_);
vec_ = std::vector<T, Routing_allocator<T>>();
vec_ = fh.readVectorWithNumber(new_idx);
currentFileIdxInMem = new_idx;

}

Code listing A.9: Methods for reading and writing to file

template <typename T>
void routing_file_handler<T>::readVectorWithNumber(size_t file_nr,

std::vector<
T,
Routing_allocator<T>

>& vec) {
std::ifstream &file = getInfileForFileNr(file_nr);
file.seekg(0);
if(file.is_open()) {
boost::archive::text_iarchive ia(file);
ia >> vec;

}
RoutingStats::numBytesRead += file.tellg();

}

template <typename T>
void routing_file_handler<T>::pushVectorWithIdx(

size_t file_nr, std::vector<T, Routing_allocator<T>> vec) {

72 H. Strandlie: Routing in MySQL

std::ofstream &file = getOutfileForFileNr(file_nr);
file.seekp(0);
boost::archive::text_oarchive oa(file);
oa << vec;
RoutingStats::numBytesWritten += file.tellp();
file.flush();

}

A.5 Query Profiling

Below, the SQL procedure which is used to collect information about the mem-
ory usage of a query in MySQL can be found. It is adapted from [54] and useful
documentation about usage is found in the README. It is worth noting that this
procedure samples the memory usage at given intervals, which is apparent from
the DO SLEEP(0.1); towards the middle of the procedure. This means that the
column which shows the current memory usage can miss spikes and valleys in
memory usage. Fortunately, this is not an issue because performance_schema-
.memory_summary_by_thread_by_event_name also stores the maximum amount
of allocated memory at any point, even if this happens "between" sampling inter-
vals. For the results, we rely on this HIGH_NUMBER_OF_BYTES_USED amount when
measuring memory usage.

Code listing A.10: Procedure to collection information about the memory usage
of a query

DROP PROCEDURE IF EXISTS monitor_connection;
DELIMITER $$
CREATE PROCEDURE monitor_connection(
IN conn_id BIGINT UNSIGNED,
IN sleep_interval FLOAT

)
BEGIN
DECLARE thd_id BIGINT UNSIGNED; -- P_S thread ID of connection conn_id
DECLARE state VARCHAR(16); -- Current connection state
DECLARE stage_ignore_before BIGINT UNSIGNED; -- Ignore history before this TS
DECLARE stage_min_ts BIGINT UNSIGNED; -- Earliest timestamp in stage history

-- Thread ID is used as key in P_S,
-- so get the thread ID of the suppliced connection ID.
SET thd_id = (SELECT THREAD_ID

FROM performance_schema.threads
WHERE PROCESSLIST_ID=conn_id);

-- Get the current maximum stage history table timestamp.
-- All new events will have a more recent timestamp.
SET stage_ignore_before = (SELECT MAX(TIMER_END)

FROM performance_schema.events_stages_history_long
WHERE THREAD_ID=thd_id);

Create a table to log memory usage data.
DROP TABLE IF EXISTS monitoring_data;
CREATE TABLE monitoring_data AS
SELECT

Chapter A: Additional Details 73

NOW(6) AS ’TS’,
THREAD_ID,
EVENT_NAME,
COUNT_ALLOC,
COUNT_FREE,
SUM_NUMBER_OF_BYTES_ALLOC,
SUM_NUMBER_OF_BYTES_FREE,
LOW_COUNT_USED,
CURRENT_COUNT_USED,
HIGH_COUNT_USED,
LOW_NUMBER_OF_BYTES_USED,
CURRENT_NUMBER_OF_BYTES_USED,
HIGH_NUMBER_OF_BYTES_USED

FROM performance_schema.memory_summary_by_thread_by_event_name
WHERE THREAD_ID = thd_id AND EVENT_NAME = ’memory/sql/routing’;

SELECT CONCAT (’Waiting␣for␣connection␣’, conn_id, ’␣(thread␣’, thd_id,
’)␣to␣start␣executing␣a␣query’) AS ’Status’;

Wait for query to start.
REPEAT
SET state = (SELECT PROCESSLIST_COMMAND

FROM performance_schema.threads
WHERE THREAD_ID=thd_id);

UNTIL state = ’Query’ END REPEAT;

SELECT ’Connection␣monitoring␣starting’ AS ’Status’;

Repeat until query finishes.
REPEAT
SET state = (SELECT PROCESSLIST_COMMAND

FROM performance_schema.threads
WHERE THREAD_ID=thd_id);

INSERT INTO monitoring_data
SELECT
NOW(6) AS ’TS’,
THREAD_ID,
EVENT_NAME,
COUNT_ALLOC,
COUNT_FREE,
SUM_NUMBER_OF_BYTES_ALLOC,
SUM_NUMBER_OF_BYTES_FREE,
LOW_COUNT_USED,
CURRENT_COUNT_USED,
HIGH_COUNT_USED,
LOW_NUMBER_OF_BYTES_USED,
CURRENT_NUMBER_OF_BYTES_USED,
HIGH_NUMBER_OF_BYTES_USED

FROM performance_schema.memory_summary_by_thread_by_event_name
WHERE THREAD_ID = thd_id AND EVENT_NAME = ’memory/sql/routing’
;

DO SLEEP(sleep_interval);
UNTIL state = ’Sleep’ END REPEAT;

SELECT ’Connection␣monitoring␣ended’ AS ’Status’;

Get the minimum timestamp in query stage history.

SET stage_min_ts = (SELECT MIN(timer_start)
FROM performance_schema.events_stages_history_long

74 H. Strandlie: Routing in MySQL

WHERE THREAD_ID=thd_id
AND timer_start > stage_ignore_before);

SELECT stage_min_ts AS ’stage_min_ts’,
stage_ignore_before AS ’stage_ignore_before’;

Timestamps in picoseconds, divide by 10^12.
SELECT
EVENT_NAME,
SOURCE,
timer_start,
timer_end,
(timer_start - stage_min_ts) / 1000000000000 AS start,
(timer_end - stage_min_ts) / 1000000000000 AS end
FROM performance_schema.events_stages_history_long
WHERE THREAD_ID = thd_id AND timer_start > stage_ignore_before
ORDER BY timer_start;

Dump it to a table, too:
DROP TABLE IF EXISTS monitoring_stages;
CREATE TABLE monitoring_stages AS
SELECT
EVENT_NAME,
SOURCE,
timer_start,
timer_end,
(timer_start - stage_min_ts) / 1000000000000 AS start,
(timer_end - stage_min_ts) / 1000000000000 AS end
FROM performance_schema.events_stages_history_long
WHERE THREAD_ID = thd_id AND timer_start > stage_ignore_before
ORDER BY timer_start

;
END $$
DELIMITER ;

Code listing A.11: Procedure to export information about the memory usage of
a query into CSV

SET @min_ts = (SELECT UNIX_TIMESTAMP(MIN(TS)) FROM monitoring_data);
(SELECT ’wall_clock’,

’relative␣time’,
’number_alloced_mb’,
’number_free_mb’,
’current_used_mb’,
’high_used_mb’)

UNION
(SELECT

TS AS the_ts,
UNIX_TIMESTAMP(TS) - @min_ts,
SUM_NUMBER_OF_BYTES_ALLOC / 1000 / 1000 AS SUM_ALLOC_MB,
SUM_NUMBER_OF_BYTES_FREE / 1000 / 1000 AS SUM_FREE_MB,
CURRENT_NUMBER_OF_BYTES_USED / 1000 / 1000 AS CURRENT_USED_MB,
HIGH_NUMBER_OF_BYTES_USED / 1000 / 1000 AS HIGH_USED_MB

FROM monitoring_data
WHERE EVENT_NAME=’memory/sql/routing’)
INTO OUTFILE ’~/tmp/prosjektoppgave/out.csv’
FIELDS TERMINATED BY ’,’
OPTIONALLY ENCLOSED BY ’"’
;

Chapter A: Additional Details 75

A.6 Raw vertex IDs

We selected 5 vertex pairs randomly from each dataset, which totals to 15 vertex
pairs. For each of these vertex pairs, the test was run 4 times, while gradually
lowering the memory limit. In the thesis these vertex pairs were called Pair 1, Pair
2 etc. within each dataset. For reproducability, the global IDs from OSM for these
15 vertex pairs are as following:

Small dataset

Pair 1: Source: 8092361144, target: 653883113

Pair 2: Source: 258602783, target: 92273967

Pair 3: Source: 4835581659, target: 2467059117

Pair 4: Source: 1410398764, target: 4371567909

Pair 5: Source: 5218806429, target: 4427833373

Medium dataset

Pair 1: Source: 685711897, target: 7289575479

Pair 2: Source: 5502941627, target: 5763744238

Pair 3: Source: 7975080722, target: 837762674

Pair 4: Source: 6955626827, target: 5765354460

Pair 5: Source: 244137822, target: 2428432088

Large dataset

Pair 1: Source: 3252828955, target: 3134795820

Pair 2: Source: 5920192410, target: 2134589062

Pair 3: Source: 7310206959, target: 477237402

Pair 4: Source: 7154118225 , target: 6982207831

Pair 5: Source: 3409028252, target: 1957304984

A.7 Tables in pgRouting

This section shows the definitions of the tables produced by osm2pgrouting for use
in pgRouting.

76 H. Strandlie: Routing in MySQL

Table A.1: Definition for table ways generated by osm2pgrouting

Column name Type Nullable

gid BIGINT NOT NULL
osm_id BIGINT
tag_id INTEGER
length DOUBLE PRECISION
length_m DOUBLE PRECISION
name TEXT
source BIGINT
target BIGINT
source_osm BIGINT
target_osm BIGINT
cost DOUBLE PRECISION
reverse_cost DOUBLE PRECISION
cost_s DOUBLE PRECISION
reverse_cost_s DOUBLE PRECISION
rule TEXT
one_way INTEGER
oneway TEXT
x1 DOUBLE PRECISION
y1 DOUBLE PRECISION
x2 DOUBLE PRECISION
y2 DOUBLE PRECISION
maxspeed_forward DOUBLE PRECISION
maxspeed_backward DOUBLE PRECISION
priority DOUBLE PRECISION
the_geom GEOMETRY(LineString, 4326)

Table A.2: Definition for table ways_vertices_pgr generated by osm2pgrouting

Column name Type Nullable
id BIGINT NOT NULL
osm_id BIGINT
eout INTEGER
lon NUMERIC(11, 8)
lat NUMERIC(11,8)
cnt INTEGER
chk INTEGER
ein INTEGER
the_geom GEOMETRY(Point, 4326)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Strandlie

Routing in MySQL

A memory-aware approach

Master’s thesis in Computer Science
Supervisor: Norvald Ryeng

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Acknowledgement
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Background
	The problem
	Problem representation as a graph
	Graph representation in memory
	Geometry

	Theory and concepts
	Routing Methods
	Algorithms
	Optimizations
	Imperative vs. declarative
	Declarative routing
	Cache Replacement Policies
	Spatial Access Methods

	Existing implementations
	MySQL and GIS
	pgRouting
	Oracle
	Boost Graph Library

	Evaluation
	Experimental setup
	Datasets
	Implementation
	Hardware
	Measurements
	Evaluations

	Results
	Summary of the results
	Memory consumption
	Time consumption
	I/O
	Impact of pruning
	Memory limit

	Discussion
	Datasets
	Results
	Practial usability
	Better performance with lower memory limit
	Importance of hit ratio

	Implementation
	RVector
	Interface
	Pruning
	Algorithms

	Validation

	Conclusion
	Future work

	Bibliography
	Additional Details
	Dataset export
	Dataset handling
	Implementation details
	Aggregation function and routing
	Serialization
	Parser

	Test details
	Measuring memory
	Measuring time
	Measuring buffer performance, and I/O

	Query Profiling
	Raw vertex IDs
	Tables in pgRouting

