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Abstract 
Additive manufacturing (AM) such as fused filament fabrication (FFF) is a disruptive 

technology that introduces the possibility to manufacture products in new ways. 

However, it is facing challenges in terms of product quality and process failures due to 

the complexity of controlling FFF process. This has resulted in a considerable amount of 

research around the monitoring systems of FFF. Nevertheless, research is primarily 

focused on the implementation of external sensors rather than using internal data from 

FFF machine. Therefore, this study aims at investigating the potential of acquiring 

internal data for the possibility of detecting process failures. Studied machines are 

Original Prusa i3 MK3S, Markforged Mark Two, and Ultimaker 3 Extended. Experimental 

work consisted of creating a data acquisition system based on existing systems, printing 

and data acquisition. Lastly, the printed models from each machine were measured in a 

coordinate measuring machine (CMM). Where the methods for acquiring the data were 

the use of application programming interface (API) and web scraping. Additionally, data 

analysis was performed from acquired data in order to analyze the quality of the data.  

The results of the study show that it is possible to acquire internal data from machines, 

which include not just sensory data, but also additional machine data. However, in order 

to acquire the data, there is a need for communication with the FFF system, where only 

two of three studied machines provided the possibility. To establish communication with 

the last machine it was needed for additional hardware such as Raspberry Pi running 

software such as OctoPrint. Additionally, the type of data and quality of acquired data 

varied from machine to machine. The data acquired for each machine provided the 

possibility to identify patterns in form of temperature fluctuation at specific moments 

during the printing process. However, it was not found any relation between deviations in 

CMM measurements and the acquired data. Moreover, based on the listed process 

failures and acquired data, it could be possible to detect some process failures, however, 

a further study of running machines to failure would be required in order to confirm it.  
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Sammendrag 
 Additiv produksjon (AM) slik som smeltet filamentfabrikasjon (FFF) er en disruptiv 

teknologi som introduserer muligheten til å produsere produkter på nye måter. Imidlertid 

står den ovenfor utfordringer når det kommer til produktkvalitet og prosessfeil på grunn 

av kompleksiteten av å kontrollere en FFF prosess. Dette har resultert i en betydelig 

mengde med forskning rundt overvåkningssystemene for FFF. Likevel er forskningen 

primært fokusert på implementeringen av eksterne sensorer heller enn å bruke intern 

data fra FFF maskiner. Derfor sikter denne studien seg mot å undersøke potensiale for å 

innhente data for muligheten for å oppdage prosessfeil. De studerte maskinene er Prusa 

i3 MK3S, Markforged Mark Two, og Ultimaker 3 Extended. Det eksperimentelle arbeidet 

besto av å lage et datainnsamlingssystem basert på eksisterende systemer, printing og 

datainnhenting. Til slutt var de printeded modellene fra hver maskin målt in en 

koordinatmålemaskin (CMM). Metodene brukt for innhenting av data var bruken av 

programmeringsgrensesnitt (API), og nettskraping. I tillegg var en dataanalyse utført fra 

de innhentede dataene for å analysere kvaliteten på dataene.  

Resultatene av studien viser at det er mulig å innhente intern data fra maskinene, som 

ikke bare inkluderer sensorisk data, men også ytterlige data fra maskinen. For å kunne 

hente inn dataen er det behov for kommunikasjon med FFF-systemet, der bare to av tre 

studerte maskiner ga muligheten. For å etablere kommunikasjon med den siste maskinen 

var det nødvendig med ekstra maskinvare som Raspberry Pi, som kunne kjøre en 

programvare OctoPrint. Tilgjengelig data og kvaliteten på innhentede data varierte fra 

maskin til maskin. Dataene som var innhentet fra hver maskin ga muligheten til å 

identifisere mønstre i form av temperatursvingninger på spesifikke hendelser i løpet av 

printerprosessen. Imidlertid ble det ikke funnet noen sammenheng mellom avvik i CMM-

målinger og den innsamlede dataen. Videre, basert på listede prosessfeil og innhentede 

data, kan det være mulig å oppdage noen prosessfeil, men det ville kreve videre 

undersøkelser av å kjøre maskiner til de svikter for å kunne bekrefte dette. 
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Additive manufacturing (AM) technology is one of the most recent manufacturing 

technologies, which was introduced in the 1980s. Since then the growth of AM, also 

commonly referred to as 3D printing (3DP) has been increasing at a rapid paste 

(JEMGHILI, TALEB and MANSOURI, 2020). It is a type of formative manufacturing 

technology that is capable to manufacture 3-dimensional objects with few geometrical 

restrictions (Kretzschmar et al., 2018). This introduces the possibility to produce 

products in a new way, which was challenging or not possible before with conventional 

manufacturing processes (JEMGHILI, TALEB and MANSOURI, 2020). AM is considered to 

be a disruptive technology, due to its characteristics of ability to manufacturing products 

from digital models, and a possibility to produce customized products without much 

complexity. Which would have an impact on various processes such as production, supply 

chain, logistics, and product life cycle planning (van Bracht, Kleer and Piller, 2017).  

An example of AM capabilities of adapting to changes showed during the coronavirus 

disease 2019 (COVID-19) when health and medical sectors had a shortage of equipment. 

During COVID-19 numerous product designs such as face masks frames, nasal swabs, 

oxygen valves, were developed and made available as open-source. Which provided the 

possibility for companies to manufacture these products based on the models. Where 

companies that participated were Volkswagen, Prusa Research, Stratasys, Formlabs, and 

many more (Mwema and Akinlabi, 2020).  

In this thesis work, the focus is set only on the material extrusion type of additive 

manufacturing, also called fused filament fabrication (FFF), in particular desktop FFF. 

Where FFF has been used in a wide area of application within civil, biomedical, medical 

(Fu et al., 2020), aerospace (Brenken et al., 2018), automotive industries, etc (Osswald, 

Puentes and Kattinger, 2018). Although it has been several decades since it was 

introduced, AM technology has yet to reach its maturity for industrial purposes 

(Kretzschmar et al., 2018). The challenges in FFF are within product quality, robustness, 

material properties, controllability, etc (Wu, Yu and Wang, 2019). This is primarily due to 

the complexity of controlling the process (Kretzschmar et al., 2018). In FFF these 

challenges commonly result in the need for trial-and-error methods in order to meet the 

desired product quality (Wu, Yu and Wang, 2019). Which is primarily done by offline 

optimization of process parameters (Liu et al., 2019). However, due to FFF being a 

complex process in itself with high variation, optimal process parameters might still be 

insufficient. Therefore, for some process parameters, it might be required of continuous 

changes during the process. To avoid this trial and error approach and have the ability to 

understand when the process parameters need to be changed continuously, there is 

firstly a need for data (Liu et al., 2019).  

Therefore, to assess these challenges, there has been a considerable amount of research 

on implementing external sensors for online monitoring systems in FFF (Liu et al., 2019). 

The research about monitoring FFF process failures shows that it is monitored both 

product quality, but also machine failures. Where the failures could be caused by material 

runout, over/under-extrusion, temperature variation, process parameters, material 

quality, vibration, etc. Where numerous types of external sensors have been employed to 

monitor both states such as acoustic emission, encoders, thermocouples, optical and 

1 Introduction 
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thermal cameras, current sensors, accelerometers, and many more (Fu et al., 2021). In 

addition to sensors, techniques such as coherent gradient sensing and physics-based 

compressive sensing, and sensor fusion approach were applied (Yi, Lee and Cho, 2018). 

Finally to make use of the data to create some predictive models, commonly a form of 

machine learning algorithms are applied (Fu et al., 2021). Wu, Wang and Yu (2016) 

observed feeding and extrusion system with a non-intrusive acoustic emission sensor. 

Where support vector machines (SVM) were used to classify failures such as material 

runout, material flow, and extrusion blockage. Jin, Zhang and Gu (2019) used camera 

sensor with computer vision and deep learning techniques to monitor real-time extrusion 

states of over and under-extrusion. Whereas Saluja, Xie and Fayazbakhsh (2020) used a 

camera with computer vision system and deep learning algorithms to identify warping 

defects. Additionally, a closed-loop system was implemented to stop the FFF process if 

warping was identified. Malekipour, Attoye and El-Mounayri (2018) used an infrared (IR) 

camera to observe temperature distribution during different deposition layers in real-

time. Where the thermal interaction such as thermal stress between layers has an impact 

on failures such as warping and curling. Li, Y. et al. (2019) used two vibration sensors to 

detect process failure such as extruder jam, material leakage, and warping where 

machine learning methods such as SVM, back propagation neural network (BPNN), and 

least squares support vector machine (LS-SVM) were applied. Rao et al. (2015) studied 

effect of the use of heterogeneous sensors to detect abnormal extrusion and nozzle 

clogging. In the study, it was used thermocouples, IR temperature sensor, borescope and 

accelerometers. Anderegg et al. (2019) studied FFF machines nozzle state with help of 

thermocouples and pressure sensor. Their study shows that temperature fluctuation 

significantly affects the pressure build up inside the nozzle which causes defects such as 

material leaking from nozzle, inconsistent extrusion, and stringing.  With the data from 

the sensors, they were able to implement a proportional, integral, derivative (PID) 

system which controls the temperature fluctuation and reduces the pressure inside the 

nozzle. While Li, Z. et al. (2019) used thermocouples, IR temperature sensor, and 

accelerometer sensors to investigated product quality during FFF process in form of 

surface roughness. Moretti, Bianchi and Senin (2020b) used camera, encoders and 

thermocouple sensors in order to detect process failures such as misalignments, nozzle 

clogging. However, the same authors also stated that in order to acquire maximize the 

external sensor data quality, a redesign of FFF machines might be needed.  

Although the literature shows that external sensors can observe a specific phenomenon 

of interest, it introduces complexity in form of additional components. While other studies 

go as far as redesigning the FFF machine to implement sensors. Considering desktop FFF 

machines are low-cost machines, these modifications, and additional components might 

result in exceeding machine cost. In addition, FFF machines are built differently, 

therefore sensor placements from the literature are machine specific. However, FFF 

machines are already equipped with some sensors. Considering FFF machines contain 

some sensors, such as temperature sensors, which are some of the process failures 

influenced by. Nevertheless, there has been found only a single study that investigated 

the internal sensors within FFF machines, by Liu et al. (2016). The study showed also 

that in addition to sensor data, the machines contain additional internal data which could 

be valuable in terms of failure detection.  
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1.1 Research questions  

This study aims at investigating the potential of acquiring internal data from FFF machines. 

Where the goal is to identify if the internal data could provide some value in terms of failure 

detection of FFF. In order to answer this, it is needed to answer some research questions: 

RQ1. What types of internal data exist in FFF machines? 

Firstly, there is a need of identifying what type of sensors are present in FFF machines. In 

addition, like mentioned in the Introduction section, a study by Liu et al. (2016) showed 

that machines contain more than just internal sensor data. Where the additional data could 

provide data that regular sensors might not be able to capture.  

RQ2. What types of internal data are possible to acquire, and how could it be obtained? 

To develop a monitoring system, there is a need for data acquisition, therefore RQ2 aims 

at addressing the possibility of acquiring internal data based on the results RQ1. 

Additionally, as multiple FFF machines will be studied, it will be investigated the possibility 

of generalizing the results of data acquisition for all FFF machines.  

RQ3. How could internal data alone be used for failure detection in the FFF process, and 

when are additional sensors required?  

RQ3 aims at investigating the possibility of using only internal data for failure detection. 

The result of that would provide further understanding if external sensors are necessary in 

order to detect failures in the FFF process.  

1.2 Study scope and limitations 

This study is valid only for the studied machines which are Original Prusa i3 MK3S, 

Ultimaker 3 Extended, and Markforged Mark Two, as illustrated in Figure 1.1. This is 

because FFF machines are built differently both mechanically and firmware-wise, which 

could potentially cause results to differ for other FFF machines. Additionally, this study 

will utilize already existing systems to access the data. This is due to the complexity and 

time requirements to develop new systems, especially for three different FFF machines. 

Lastly, this study will contain data acquisition methods over a network, and since the 

main focus is investigating the potential use of internal data of FFF machines. It is 

therefore not considered the cyber-security aspect of the data acquisition methods. 

Lastly, due to the large selection of available material on the market for the FFF process, 

material-related aspects are not investigated in this work.  

 

Figure 1.1 Studied FFF machines 
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1.3 Thesis outline 

Thesis is split into six chapters, where the following chapter will be presenting:  

Chapter 2 provides theoretical knowledge to support this thesis background. Firstly, 

generic about AM and its technologies will be introduced. Then it will be presented about 

FFF, in form of how FFF works and its process flow. Additionally, it will be looked into what 

impacts the process in terms of process parameters, failures, and materials. Lastly, it will 

be presented about monitoring systems nowadays, but also about specific data acquisition 

methods that will be used in this thesis work.  

Chapter 3 describes the methodological approach used which includes methods such as a 

literature review and experimental work.  

Chapter 4 presents the results of this thesis based on research questions. The results are 

split into three separate sections, according to each RQ.  

Chapter 5 is the discussion part, here the results and their meaning will be discussed 

according to the theoretical background.  

Chapter 6 provides the concluding statement of the thesis.  



16 

 

2.1 Additive manufacturing 

AM is commonly referred as rapid prototyping (RP) as it provides the possibility to create 

new objects quickly, without the need of changing machinery tools (Gibson et al., 2014). 

This introduces the possibility to prototype products in the early stages of development 

without great expenses at rapid paste as the name suggests. Commonly in traditional 

manufacturing, to manufacture a part it is needed to have a complete analysis of the 

part's geometry, which allows understanding of what tools, processes, etc, is needed to 

manufacture the part. However, in AM the main aspect is knowing the machine's 

capabilities and basic geometrical data from the model. Although AM is commonly 

referred to as rapid prototyping, it is not because of the speed of the manufacturing 

process itself. It is due to the speed of the product development process, as you are 

using computers to generate models and AM machines that need little to no adjusting to 

be able to manufacture the models into physical parts. It also provides the possibility to 

cut down process steps, as no matter what geometrical complexity the part contains, it is 

still manufactured in a single process. Whereas in traditional manufacturing, the more 

complex the part contains the more processes it requires to go through to be 

manufactured (Gibson et al., 2014).  

The working principle of AM is made by creating layers where the material is added layer 

by layer. The result of the layering method introduces the importance of part orientation 

during the process, as it will influence its properties (Leirmo and Martinsen, 2019a). 

Where the layers are illustrated in Figure 2.1, the lower the layer height, the finer the 

quality of the 3d printed part is. However, increasing the number of layers increases the 

production time, as more layers need to be gone through. Today all commercialized AM 

technologies utilize this type of layer-based approach, the major difference in different 

AM technologies is the way the layers are produced, how the layers bond together, and 

the choice of material (Gibson et al., 2014). Nevertheless, there has been some 

development of a new type of AM technology, Computed Axial Lithography. This type of 

technology eliminates layers, as the objects are no longer created layer by layer, instead, 

the entire geometry is created at once (Kelly et al., 2017). The result of these differences 

in AM technologies will define the mechanical properties of the parts, dimensional 

accuracy, amount of post-processing, AM machine size,  costs of the entire process, but 

also how quickly a part can be manufactured (Gibson et al., 2014). 

2 Theoretical background 
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Figure 2.1: Illustration of layers on a sphere (a) ideal shape, (b) illustrates high layer 
heights, (c) finer layers  (Amza, Zapciu and Popescu, 2017) 

2.1.1 AM technologies 

AM technologies are categorized into seven types: Binder jetting, directed energy 

deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, vat 

photopolymerization (ISO/ASTM, 2017). Powder bed fusion utilizes powder which is 

contained in a build platform as the raw material form to produce the product with 

thermal energy (ISO/ASTM, 2017). It is used either laser or electron beam to melt or 

fuse the layers of powder together (Adekanye et al., 2017). Binder jetting uses powder 

as a material as well, however, instead of thermal energy, it is used a binder agent to 

bond the powder selectively (Adekanye et al., 2017; ISO/ASTM, 2017). Whereas in 

material jetting the powder material is selectively deposited instead of a binder agent 

(ISO/ASTM, 2017). Direct energy deposition uses powder or wire as a material and 

melting process is through thermal energy with laser or electron beam, where the 

material is melted continuously as it is being deposited (Adekanye et al., 2017). Sheet 

lamination is where sheets of material are bonded which creates the part. Vat 

photopolymerization is where liquid light-sensitive polymer is used as a material in a vat, 

where it is cured selectively by a light source. In material extrusion or FFF, it is extruded 

in selected areas through a nozzle (ISO/ASTM, 2017). Table 2.1 provides with a 

description of some main key advantages and disadvantages of AM technologies. As 

mentioned in the Introduction chapter, the focus of this study will be on FFF, which will 

the following 2.2 section go more in detail about. 

Table 2.1: Advantages and disadvantages of different AM technologies 

AM technology Advantages Disadvantages Source 

Powder bed fusion Good Mechanical 

Properties 

Less anisotropy than 

other AM processes 

 

 
 

Rough surfaces 

Additional post-processing required 

(Ligon 

et al., 

2017; 

Hunter 

et al., 

2020) 
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Binder jetting Fast process 

Multi-material 

Low-temperature 

process 

Limited strength 

Rough surfaces 

(Ligon 

et al., 

2017) 

Material jetting Fast process 

Multi-material 

Limited material choice (Ligon 

et al., 

2017; 

Gibson 

et al., 

2021) 

Direct energy 

deposition 

High resolution 

High dimensional 

accuracy 

Rough surfaces 

Complex process 

(Saboori 

et al., 

2019) 

Sheet lamination Compact machine Limited materials 

Low resolution 

High anisotropy 

(Ligon 

et al., 

2017) 

Vat 

photopolymerization 

Great surface quality 

Good precision 

Mechanical properties are limited (Ligon 

et al., 

2017) 

Material extrusion Low-cost machine and 

materials 

Rough surfaces 

High process temperatures 

(Ligon 

et al., 

2017) 

 

2.2 Fused filament fabrication 

In Fused filament fabrication (FFF) material is extruded through a preheated nozzle. The 

material is then laid layer by layer by having the XYZ axis move to selected locations and 

deposit material (Adekanye et al., 2017). However due to the layered method in FFF, the 

strength of the object is dependent on the orientation it is processed, as the layered 

method introduces an anisotropic structure (Aw et al., 2018; Vosynek et al., 2018; 

Camargo et al., 2019).  

Figure 2.2 (a) illustrates generic components FFF machine. The material in form of 

continuous filament is being fed through a cold end into the hot end, where the filament 

is heated into a semi-molten state and finally extruded on the build platform through the 

nozzle. Where the filament diameter is either 1.75mm or 2.85mm (Kuznetsov, Tavitov 

and Urzhumtcev, 2019). Figure 2.2 (b) illustrates a more detailed overview of the cold 
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and hot end, also called Extruder. Cold end is the feeding system responsible for feeding 

and retracting filament. It consists of an idler pulley that holds filament in the correct 

position and with help of a loaded spring presses towards drive gear or a hobbed bolt. 

Where the driver gear is mounted on an stepper motor also called extruder motor which 

provides the possibility to feed and retract the filament. Hot end consists of a heat sink, 

heater block, nozzle, and fans for the heatsink and nozzle. These components aid in a 

controlled process of heating material to the correct temperature of a semi-molten 

filament which could be extruded through a nozzle (Fu et al., 2021) 

 

Figure 2.2 (a) Generic components in FFF machine (b) Components of extruder (Fu et al., 
2021) 

Furthermore, the feeding system placement varies depending on the type of FFF 

machine. When the feeder is placed distant from the hot end, commonly on machines 

body frame as illustrated in Figure 2.2 (a). It is called bowden type of extrusion, as it 

commonly consists of a bowden tube between cold and hot end where the filament is 

feed through. Additionally, there exists direct extrusion, when the feeder is placed 

directly over the hot end, similarly as illustrated in Figure 2.2 (b). Both types of extrusion 

setups have their own benefits and disadvantages (Fu et al., 2021); 

• Direct extrusion: Since motors are placed directly over the hot end, less torque is 

required to control the filament movement, which introduces better extrusion and 

retraction control. However, since the extruder motor is placed on a moving axis, 

increased weight adds limitations to the printing speed but also possibility for 

reduced accuracy in movements (Fu et al., 2021). Examples of machines that are 

direct extrusion are Original Prusa i3 MK3S (Kuznetsov, Tavitov and Urzhumtcev, 

2019), Monoprice Maker Select Plus, Qidi X-Pro, etc (Miller, 2021) 

• Bowden extrusion: Increased the ability to print faster and maintain accuracy as 

the motors are placed on the frame. However, feeding through a longer distance 

with bowden tube introduces the potential for friction hence more torque is 

required from the motors. The increased distance between cold and hot end also 

increased the response time. Additionally, some materials such as abrasive and 

flexible might wear or tangle up with the bowden setup (Fu et al., 2021). 

Examples of machines that use the bowden type of extrusion are Ultimaker 2, 

3DQ mini, Delta WASP 2040 (Kuznetsov, Tavitov and Urzhumtcev, 2019), but also 

Ultimaker 3 extended and Markforged Mark Two. 

Although in FFF it is possible to manufacture complex geometries, it comes with some 

limitations. Geometries that contain steep angles or when there are no layers below the 

next layer are called overhangs (Allen and Trask, 2015). In order to print these 
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geometries, it results in the need for a support structure (Medellín-Castillo and Zaragoza-

Siqueiros, 2019). However, the support structure in essence is a waste of material as it 

will be required to be removed and has no real meaning for the final product. In addition 

objects with support structures increase the production time (Mwema and Akinlabi, 

2020).  

One of the main limiting factors with FFF is the surface roughness it creates. This is a 

result of the layering method in AM where the consequent layers need to fuse with 

previous layers, which is known as a stair-stepping effect, as illustrated in Figure 2.3. 

Comparing to computer-aided design (CAD) surface, these stairs introduce surface 

roughness in the range of micrometers. To some extent it possible to control the stair-

stepping effect through process parameters, with the cost of production time. However, 

for some applications that might not be enough, which would result in the need for post-

processing. If not treated it can lead to the possibility of moisture absorption, which 

could affect the properties of the object. Post-processing of FFF parts could be done 

chemically or mechanically. Most commonly it is used mechanical post-processing 

methods, including polishing, sanding, machining, abrasion, and barrel finishing. For 

chemical post-processing, it is used coating, heating, painting, vapor deposition. Whereas 

the choice of post-processing method highly depends on the application and material of 

the object (Mwema and Akinlabi, 2020). Additionally, in transition between layers, when 

the Z-axis moves to the next layer, nozzle stays still for a moment. During that moment, 

nozzle leaks some material which introduces a minor seam defect. These defects are 

natural occurrences in FFF, however, it is possible to control their position in slicing 

software’s (Zapciu, Tasca and Amza, 2018). Another challenge with FFF is that the 

quality of the process is affected by external factors such as vibration, ambient 

temperature, and moisture (Khan et al., 2020; Mwema and Akinlabi, 2020). 

 

Figure 2.3: Stair stepping effect and STL conversion errors from CAD (Leirmo and 

Martinsen, 2019a) 

FFF contains a considerable number of failures that could occur during the process. These 

types of failures will be presented in section 2.2.6. Nevertheless, due to the complexity of 

controlling the process, it could lead to an economically costly process. This is because 

commonly FFF process has to be manually observed, and if a failure was detected, the 

processed object usually results in becoming waste, and the FFF process has to be 

restarted again (Mwema and Akinlabi, 2020). 
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2.2.1 FFF process steps 

Figure 2.4 illustrates the FFF process steps. (1) To be able to 3d print you need a virtual 

representation of the part that completely describes the external geometry. This can be 

done either using CAD software to create a solid or surface of the model. If the part 

exists physically, it is also possible to reverse engineer the part by scanning it, such as 

optical scanners to create the visual model (Gibson et al., 2014).  

(2) Once the virtual 3d model is obtained, the model is converted into standard triangle 

language (STL), which creates a triangular mesh of the CAD model (Leirmo, Semeniuta 

and Martinsen, 2020). It will describe the model's external surfaces from the CAD model 

(Gibson et al., 2014).  

(3) STL file is then transferred into printer software, often called slicing software. Here 

are all the process parameters selected, which include things such as printing speed, 

type of material, models geometry size, etc (Ravi and Shiakolas, 2021). Once the model 

parameters are set, it is then exported into a set of commands that the machine can 

understand, most commonly G-code language (Ćwikła et al., 2017). 

(4) Before starting the printing process it is also important to check if the machine is 

calibrated (Steuben, Van Bossuyt and Turner, 2015) and having loaded enough material 

(Gibson et al., 2014). If the FFF machine is not properly calibrated or runs out of material 

during the process it could result in process failures. 

(5) FFF process is automatic, however, during the process, it is important to observe if it 

is going how it is supposed to, especially early in the process of first layers. Where some 

anomalies could be observed such as improper bonding to the build platform, or general 

visual defects (Mwema and Akinlabi, 2020). 

(6) Once the FFF process is complete, the part needs to be removed from the build 

platform (Gibson et al., 2014). Additionally, the build platform might require cleaning, 

especially if adhesives were used (Mwema and Akinlabi, 2020). 

(7) After the object is removed from the build platform the parts might require some 

post-processing before they can be used for the designed purpose (Gibson et al., 2014). 

Where the methods and purpose of post-processing were mentioned in section 2.2.  

(8) Once the part is removed and/or post-processed, it can be used for its application. 

The application might vary, such as used for assembling to a final product (Gibson et al., 

2014), it could also be an additional treatment to prepare the product for its final use 

(Leirmo and Martinsen, 2019b). 

 

Figure 2.4: FFF process steps 

2.2.2 Slicer software 

A slicer is software that creates layers and the path of movement out of the STL file. The 

software has to consider features such as the geometry of the model to be printed, but 
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also the physical features of the FFF machine. Knowing these features allows 

understanding what orientation the model needs to be printed in, but also if it requires 

any support structure. Additionally, in the software, you have the possibility to choose 

different machine parameters which will assure that the product will meet your needs 

(Horvath and Cameron, 2015). The choice of configurable parameters varies depending 

on the slicer software used (Kabir, S. M. F., Mathur, K. and Seyam, A.-F. M., 2020). 

Many different slicing softwares work on most FFF machines such as PrusaSlicer, 

Simplify3D, Cura, etc (Mwema and Akinlabi, 2020). Additionally, there is some 

proprietary slicing software such as Eiger for Markforged(Galati and Minetola, 2019). 

Once everything is prepared in the slicer software, it is possible to generate a code of the 

path and chosen machine parameters that a FFF machine will understand, most 

commonly G-code (Horvath and Cameron, 2015).  

2.2.3 G-code 

G-code is a programming language that was initially designed to control machine tools 

with the use of a computer. Although it is considered an old language from the 1950s, it 

still brings the benefit of using minimal computational power. This type of code is read in 

a sequence one by one. This means if a FFF machine receives a command, it performs 

the action that it is supposed to do and only once the first command is performed, then 

the next action is executed (Horvath and Cameron, 2015). Most FFF machines utilize 

RepRap G-code language, however, nowadays there exist many different types of FFF 

machine firmware’s, this results in some machine use different variations of G-codes 

(RepRap, 2021) 

2.2.4 Process Parameters in FFF 

Process parameters play a crucial role in achieving the desired quality out of the FFF 

process, either it is in form of mechanical strength, dimensional accuracy, or output 

speed. The process of selecting the right process parameters is by identifying the 

influence of each parameter and then deciding the best combination of the parameters. 

Mwema and Akinlabi (2020) Has classified process parameters into two categories, 

machine parameters, and material selection, as illustrated in Figure 2.5. Machine 

parameters are parameters that will decide how the object is going to be printed which 

are usually selected in slicing software. Whereas material selection is the process of 

selecting the right materials for the process. 

 

Figure 2.5: Process parameters in FFF 

Machine Parameters: 

• Raster width: Width of the raster, Figure 2.6 (Mohamed et al., 2016). 

• Raster angle: Is the direction the material is deposited on the build platform, as 

illustrated in Figure 2.6. Various raster angles could lead to different mechanical 

properties (Liu, Lei and Xing, 2019) and material flowability (Mwema and Akinlabi, 

2020) 
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• Air gap: Is the gap between adjacent raster’s, Figure 2.6(Mohamed et al., 2016; 

Dey and Yodo, 2019) 

• Contours: is the number of solid layers in the vertical direction, Figure 2.6 

(Mohamed et al., 2016) 

• Contour width: Width of the contours (Rathee et al., 2017) 

 

Figure 2.6: Illustration of raster width, raster angle, air gap, and number of contours 
(Mohamed et al., 2016) 

• Topp and bottom layers: Amount of solid horizontal layers on top and bottom of 

the object (Elkaseer, Schneider and Scholz, 2020). 

• Build orientation: Describes at which angle and position the object will be printed 

in (Mwema and Akinlabi, 2020) 

• Layer thickness: Also called layer height is the minimal height between layers, the 

variation could vary from several micrometers to millimeters, depending on 

machines capabilities and its application (Mwema and Akinlabi, 2020) 

• Extrusion temperature: Is the hot end temperature where the semi-molten plastic 

is extruded (Mwema and Akinlabi, 2020). 

• Build Platform temperature: Is the temperature on the build platform, it improves 

the adhesion properties of the plastic to the build platform. If the plastic doesn’t 

adhere to the bed correctly, it can influence dimensional accuracy and lead to 

failures as the nozzle gradually blocks the flow of the extrusion. However, some 

FFF machines do not contain a heated build platform, in those cases, the use of 

adhesives such as glue could be an alternative (Mwema and Akinlabi, 2020) 

• Printing speed: Is the speed of the print head and build platform (Domingo-Espin 

et al., 2018).  

• Travel speed: Speed of print head during non-printing (Ultimaker, 2020b). 

• Feed rate: In G-code travel and printing speed are described by one parameter, 

which is Feed rate (RepRap, 2021). 

• Extrusion speed: Extrusion speed determines the speed of the extrusion, where 

the amount of extrusion speed results in different material widths (Domingo-Espin 

et al., 2018). 

• Flow rate: Describes the amount of material being extruded (Tagami et al., 2017). 

• Infill pattern: Is the internal structure of the model Figure 2.7, there are various 

types of patterns that are used to optimize strength and durability (Dey and Yodo, 

2019)  

• Infill density: As the name suggests, it is the density of the internal structure, 

which greatly influences the resulting mass and strength of the printed object 

(Dey and Yodo, 2019).  
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Figure 2.7: Examples of different infill patterns (a) linear, (b) diamond, (c) hexagonal 
(Dey and Yodo, 2019) 

• Retraction: Process of retracting filament during non-printing states, such as 

movements between surfaces or while it is paused. Retraction parameter consists 

of retraction speed and length. When the material is retracted it reduces pressure 

inside the nozzle and minimizes material leakage (Greeff and Schilling, 2018) 

• Z-offset: Is the distance between nozzle and build platform (Shembekar et al., 

2018). 

• Jerk: Is the maximum instantaneous speed change of print head (Bui, 2019) 

Additionally, some of these parameters could be subdivided into smaller categories of 

parameters, which specify parameters for specific states. Such as printing speed for 

contours, infill, first and top layers, etc. (Mendricky and Fris, 2020; Elkaseer, Schneider 

and Scholz, 2020).  

Material selection 

When looking at the materials, the determining factor for the glass transitioning 

temperature of the material is the chemical properties, but also printed parts quality. 

Thermal properties affect the melting point and flow through the nozzle and melting 

conditions. Mechanical properties are the determining parameter for the rigidity of the 

printed part, depending on mechanical properties it can also result in a clogged nozzle, 

due to strength and friction from the material in a semi-molten state (Mwema and 

Akinlabi, 2020). Moreover, it is also noted by Mwema and Akinlabi (2020) that 

information of material properties by filament brands might be inaccurate and therefore 

is recommended doing own testing of the properties to be sure. 

2.2.5 Materials in FFF 

Materials in FFF could be classified into three classes; single, composites, and blends. 

Single materials are polymer materials that are not mixed with other materials. 

Acrylonitrile butadiene styrene (ABS) is one of the most widely used polymers in FFF, 

provides great chemical resistance, toughness, and dimensional accuracy (Garcia et al., 

2010). Whereas polylactic acid (PLA) is the second most used polymer in FFF (Peterson, 

2019), due to its low cost, low process temperature, however, it contains low 

crystallization which results in poor mechanical properties (Harris et al., 2019). Poly 

carbonate (PC) is another material that contains great mechanical, properties, which are 

even better than ABS. However, it is a considerably more difficult material to process, 

which is also sensitive to moisture and can lead to brittle processed products (Peterson, 

2019). Nylon is a flexible material that contains good mechanical and chemical 

properties, however, just like PC, it absorbs moisture (Harris et al., 2019). Additionally, 

there are many more single materials that are available in FFF, such as High impact 

polystyrene (HIPS), polyurethane (TPU), polyethylene terephthalate (PET), polyethylene 

terephthalate glycol (PETG) (Harris et al., 2019; Peterson, 2019).  
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However, these are commercial polymers, there are also non-commercial such as 

polyether ether ketone (PEEK). PEEK can provide superior mechanical properties 

compared to alternative FFF materials. Nevertheless, it is one of the most complicated 

materials to process, due to the need for high and narrow ranges of temperature (Harris 

et al., 2019).  

Composites introduce the possibility to manufacture parts that contain significantly more 

strength than just pure single materials. Which can provide better mechanical, 

conductive, and thermal properties. Where the composites could be either in form of 

synthetic such as fibers of carbon, kevlar, glass, metal, etc. It could also be in form of 

natural such as fibers of hemp, jute, wood, etc. Composites are also split into two 

categories, continuous and discontinuous. Continuous reinforcement is being deposited 

directly on top of polymer during the process to attain impregnation. Whereas 

discontinuous are powder or nanotubes of fibers that are short, micro, or nano, which are 

mixed with polymer (Harris et al., 2019). One of the studied machines is Markforged 

Mark two, it processes both continuous and discontinuous composite materials. Where 

the discontinuous material Onyx is nylon with chopped carbon fibers, where the fiber 

volume is approximately 15-20% (Tantillo, 2019). 

Blends are another type of material class, which consists of blending different polymer 

materials. As mentioned in the section 2.2 that FFF introduces anisotropic structure, 

however, studies show that blend materials could potentially minimize or even eliminate 

anisotropy (Spreeman, Stretz and Dadmun, 2019). Where the goal is to blend printable 

materials with non-printable materials. Some examples of blend materials are polylactic 

acid graft maleic anhydride (PLA-g-MA), styrene-ethylene butylene styrene (SEBS), 

styrene-maleic anhydride copolymer (SMA), etc (Harris et al., 2019). 

2.2.6 Process failures in FFF 

In FFF there is a wide range of process failures that can occur during the process. These 

failures can occur due to incorrect process parameters, material choice, mechanical and 

electrical components. In this study, a process failure is considered something that 

occurs during the process without consideration of failures due to solely caused by 

mechanical component wear.  

Material runout 

Material runout is type of process failure which leads to machine running out of the 

material. This would result in that the processed object is not finished and since it is a 

single step process, it would be required to be started over again [12].  

Ghosting 

Ghosting is type of process failure that produces visual artifacts in form of waves on 

surface of the model. Ghosting occurs primarily due to excessive vibration on FFF 

machine, which could come from the rapid movements of the print head and build 

platform. However, if the vibration is large enough it could lead to complete failure of the 

printed model (Duan, Yoon and Okwudire, 2018). In form of process paramters, feed 

rate has strong influence on vibration of the machine (Li, Y. et al., 2019). 

Warping 

Warping is a type of adhesion failure which causes corners of the printed object's base to 

lift, as illustrated in Figure 2.8. This type of failure introduces dimensional errors, 
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structural defects, pores, and cracks on the processed object (Mwema and Akinlabi, 

2020). Warping occurs mainly due to material shrinkage during the process. During the 

extrusion process, material expands, but once it starts to cool down it starts to shrink. If 

the shrinkage is too large, the corners of the printed object bend and lift from the build 

platform. Warping is affected by several causes, such as material properties, adhesion to 

the build platform, print parameters (Ultimaker, 2020d), and ambient temperature (Khan 

et al., 2020). Material properties affect in form of having different shrinkage properties 

than others, which could result in some materials warping more than others. Adhesion to 

the build platform is critical as without proper adhesion object might warp or become 

completely loose from the build platform. To achieve proper adhesion, it is critical to 

have the build platform calibrated.  

Additionally, having an enclosure or a heated build platform is recommended, 

alternatively use of adhesives. Looking at print parameters, the use of a raft of brim 

could be required to achieve proper adhesion, which is some additional layers around the 

printed object to keep it more rigid to the build platform. The first layers of the process 

are critical in terms of warping failure. Therefore, choosing the right initial layer speed 

and layer height could greatly influence the adhesion. Lowering the initial speed would 

allow material to adhere properly and increasing first layer height results in calibration of 

the build platform to have be not as critical (Ultimaker, 2020d). 

 

Figure 2.8: Illustration of warping in corners (Ultimaker, 2020d) 

Pillowing 

Pillowing is a type of failure which creates holes and bumps in the printed object, as 

illustrated in Figure 2.9. This type of failure occurs due to print parameters such as not 

having enough horizontal layers, or inadequate cooling during the process. Where the 

choice of horizontal layers depends on the layer height, the lower layer height the more 

horizontal layers are needed (Ultimaker, 2020a).   

 

Figure 2.9: Pillowing defect (Ultimaker, 2020a) 
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Sagging 

Sagging is a type of failure occurs during printing of complex geometries which have 

some form of overhangs. Where the cause of this failure is mainly due to parameters 

such as material properties, insufficient cooling, extrusion temperatures, and layer 

thickness (Kuznetsov et al., 2019). Commonly, an additional support structure is 

required when an object contains angles above 45° (Hsiang Loh et al., 2020).  

Over and Under-extrusion 

Under-extrusion is a type of failure which is caused by restricted material flow, whereas 

over-extrusion is caused by excessive material flow (Ultimaker, 2020c; Jin, Zhang and 

Gu, 2019). The result of under-extrusion would be rough surface, thin and incomplete 

layers. While for over-extrusion it would be excessive material on the object, containing a 

rough surface. Both types of failures could potentially lead to total failure of the printed 

object (Ultimaker, 2020c; Mwema and Akinlabi, 2020). Figure 2.10 illustrates good 

printing quality, over and under-extrusion. This type of failure is more challenging to 

solve due to the causes might be many things. It could be the print parameters are not 

set according to the material choice, or machine is not properly calibrated.  

In terms of machine parameters, flow rate has a direct impact on the amount of material 

flow, as mentioned in section 2.2.4 about process parameters. Additionally, a 

combination of parameters such as print speed, layer height, and hot end temperature is 

strongly dependent on the amount of flow that is possible through the nozzle. If the layer 

height and print speed are increased while the temperature is maintained the same, it 

might cause under-extrusion, due to the amount of material being extruded. 

Furthermore, the nozzle diameter size has an influence on over and under-extrusion 

(Ultimaker, 2020c).  

Looking at the mechanical parts of the machine, feeder of the filament might not be 

properly calibrated, where the tension on the idler might be too lose or too tight. Which 

would result in not enough material moving to the nozzle or grinding of material 

respectively. Additionally, grinding of filament could introduce other problems such as 

particles of grinded material ends up in the bowden tube where the material is fed. 

Where the particles in tube could create friction and restrict the flow of the material to 

the hot-end(Ultimaker, 2020c). Moreover, other possible causes are entangled filament 

or moisture in filament (Ultimaker, 2020c). 

 

Figure 2.10: Illustration of good quality, under and over-extrusion (Jin, Zhang and Gu, 
2019) 
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Stringing 

Stringing also called oozing (Shaqour et al., 2021; Baş, Elevli and Yapıcı, 2019) is a type 

of failure that results in the model containing thin plastic strings (Khan et al., 2020), 

which causes poor surface roughness, as illustrated in Figure 2.11. This type of failure is 

impacted by material properties and machine parameters. Looking at machine 

parameters, there are mainly three main critical parameters that cause this type of 

failure. It is retraction settings (Ultimaker, 2020e; Greeff and Schilling, 2018), hot end 

temperature, print, and travel speed. When the print head moves between surfaces, 

material has to be retracted through the movement to avoid material leakage from the 

nozzle. Having the proper hot end temperature results in the right material consistency, 

if hot end temperature is too high for the material it could also cause material leakage. 

Finally, speed of the printing process and travel movements should be set accordingly, as 

slow speeds might build up too much plastic from both movements between surfaces, 

but also while printing. However, print speed and hot end temperature have to be set 

accordingly, otherwise, if the temperature is too low and speed is too high, it could 

potentially cause under-extrusion (Ultimaker, 2020e). Where in terms of material 

properties, poor quality of filament could introduce stringing (Hsiang Loh et al., 2020). 

 

Figure 2.11: Illustration of stringing (Ultimaker, 2020e) 

Clogged nozzle: 

A clogged nozzle is when material builds up in the nozzle. Sign of clogged nozzle is 

primarily restricted extrusion flow, which is commonly caused due to incorrect extrusion 

temperature settings (Hsiang Loh et al., 2020).  This type of failure is a significant 

process failure, this is because it affects the quality of produced objects in form of 

dimensional accuracy, surface roughness, and mechanical properties. Additionally, it 

could be caused by collection of dust inside hot end, nozzle being too close to the printed 

object which could happen due to a warped object restricting the flow of the nozzle 

(Tlegenov, Hong and Lu, 2018). Additionally, nozzle clogging is more common during the 

extrusion of discontinuous materials with fiber, where the density of the fiber influences 

the cause of clogging (Croom et al., 2021).   

Extruder jams 

Extruder jams are when filament does not flow properly from the feeder to the hot end. 

This is commonly caused by variation in filament diameters, which could potentially 

break or coil up the filament in the extruder. The result of extruder jams restricts the 

extrusion process which could cause under-extrusion (Ultimaker, 2020c) or damaging the 

extruder motor (Soriano Heras et al., 2018). 
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Defects due to nozzle offset 

If the nozzle is not properly calibrated according to the build platform, it could print too 

close or too far from the build platform. If the nozzle is too close it could result in 

damaging the layers. Whereas if the nozzle is too far, it could result in material cooling 

down before it has properly bonded with adjacent layers, which would affect the 

mechanical properties of the object (Khan et al., 2020). 

Curling and rough corners 

Curled and rough corners commonly occur due to extrusion temperature being set too 

high for the material which causes it to curl as illustrated in Figure 2.12 (Baş, Elevli and 

Yapıcı, 2019). This is due to the material not having enough time to properly cool down, 

which is also influenced by the fan speed (Hsiang Loh et al., 2020) 

 

Figure 2.12: Curled edges (Baş, Elevli and Yapıcı, 2019) 

Layer defects 

During the FFF process, there are some common layered defects could occur. Figure 2.13 

(a) illustrates missed layers, which commonly occur due to signs of under extrusion, too 

high printing speed, or mechanical issues with the Z-axis (Baş, Elevli and Yapıcı, 2019). 

Separated layers, Figure 2.13 (b), are commonly caused due to low extrusion 

temperature which does not allow layers to bond properly. Additionally, layer height 

influences the bonding, it is recommended to use lower layer height than the diameter of 

the nozzle (Baş, Elevli and Yapıcı, 2019). Misalignments are when stepper motors are 

incorrectly performing movements due to lost steps (Moretti, Bianchi and Senin, 2020a) 

and causing misaligned layers, as illustrated in Figure 2.13 (c). This type of failure is 

commonly caused by fast printing or acceleration speed (SIMPLIFY3D, 2021). Moreover, 

other causes for misalignment could be electrical and mechanical, such as overheated 

extruder motors or not properly calibrated mechanical components of the machine (Baş, 

Elevli and Yapıcı, 2019). 

 

Figure 2.13: Layer defects (a) missed layers (b) separated layers (c) misaligned layers 
(Baş, Elevli and Yapıcı, 2019) 
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2.3 Monitoring systems nowadays 

With the advancement of technologies, the amount of data acquired has been 

significantly increasing (Syafrudin et al., 2018). As the manufacturing processes become 

more complex nowadays, it results in additional process parameters and system 

conditions that are necessary to be monitored (Lu and Wang, 2019). Monitoring systems 

are being used for various applications such as, improving production, reduce expenses, 

predicting diseases, and warning systems (Syafrudin et al., 2018). For monitoring of 

industrial machinery states, commonly condition monitoring is implemented, where the 

focus is on detecting failures as early as possible, in order to maximize productivity 

(Márquez et al., 2012). Event monitoring is the process of detecting a certain occurrence 

of events (Lai et al., 2018). In computing systems, system monitoring is commonly used 

to track the performance of the system and possible attacks (Gao et al., 2018). 

Monitoring systems are mainly composed of a combination of data acquisition and data 

analytics. Where the data can be various things such as events, images, sensor data, 

process logs, etc (Syafrudin et al., 2018). 

As the focus of this study is failure detection during FFF manufacturing process, it will 

primarily be focused on condition monitoring (CM). Which is the process of detection of 

faults based on monitoring machine parameters and their deviation from targeted values. 

CM primary focus diagnosing, predicting machine health, and fault detection.  CM could 

be categorized into three types, offline, online, and real-time. Offline CM is when data is 

acquired and analyzed at unspecific times. Online CM is when data acquistion happens 

with some specific time intervals, however, the analysis and corrective measures are not. 

Whereas, in real-time CM both data acquistion and corrective measures are done with 

some specific controlled intervals (Wong, Chuah and Yap, 2020).  

Although implementing CM systems could be complex and costly, it provides the 

possibility of detecting gradual failures, rather than just sudden failures. In 

manufacturing sudden failures result in no way to detect the failure before it has 

occurred, therefore it is an unwanted behavior. Whereas, with CM it is possible to 

observe the gradual failures, which allow taking corrective measures (Wong, Chuah and 

Yap, 2020).  

The process of acquiring internal data is not something new, it has been used in terms of 

tool CM in CNC milling. Just like FFF machines, CNC machines are also equipped with 

some sensors, they provide the possibility to detect some failures, without the need for 

the complexity of external sensors. However, it is also noted that internal sensors are 

limited with information that they can provide. This could be from various reasons, such 

as the sensor not capable of capturing the area of interest, which could be due to sensor 

placement being too distant from the process, which also affects the quality of the data 

(Wong, Chuah and Yap, 2020).  

Therefore, in order to know if external sensors are required, it is important to understand 

what is being measured. If the internal sensors are not capable of capturing the process, 

there is a need for external sensors. Sensor placement plays a crucial role in the quality 

of the data acquisition, where the placement is figured out through trial and error or 

expert experiences (Wong, Chuah and Yap, 2020). 

Additionally, the choice of the sensor also plays a major role in terms of cost and 

complexity of the system (Soman et al., 2019). This is because choosing the right type of 

sensor might reduce or even eliminate noise factors that other sensors would have 
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observed. An example was a study by Tlegenov, Hong and Lu (2018) which investigated 

FFF process failure nozzle clogging. Their study showed that it was possible to monitor 

nozzle clogging by observing vibrations of the FFF machine. This was because as the 

nozzle starts to get clogged, vibrations increased around the print head. However, their 

study noted also that additional noise vibrations can occur from the machine itself. This 

introduces complexity of separating between vibrations caused by clogging or external 

noise. Moreover, the Tlegenov, Lu and Hong (2019) investigated the same type of 

failure, nozzle clogging. But this time the choice was to observe nozzle clogging through 

changes in current. As the nozzle starts to clog, the extruder motors need to exert more 

torque, this introduces changes in currents of the motor. This resulted in monitoring of 

nozzle condition with less complexity as it was not susceptible to noise as monitoring by 

observing vibrations. Moreover, sensor durability has to be considered according to its 

environment, as some environments might be to harsh for some sensors (Ghosh et al., 

2019). 

It is also important to consider that not all machine failures could be measured directly. 

Direct methods are capable of measuring wear or defects directly, where it could be in 

form of visual detection such as machine vision or optical microscopy that is applied. 

Commonly in CNC tool wear, these direct methods are challenging to apply on online 

monitoring or without stopping the process occasionally (Wong, Chuah and Yap, 2020). 

However, in terms of FFF this is not necessarily the case, as most of the described 

process failures introduce some form of visual defects on the processed part. Therefore it 

could be possible to implement direct online methods in form of a vision system, as it has 

been done by (Shen, Sun and Fu, 2019) in FFF. While indirect methods focus on 

acquiring the data of process parameters of interest. However, indirect methods are less 

accurate but are also easier to apply in an online CM (Wong, Chuah and Yap, 2020).  

During the data acquisition, it is also important to consider what types of data to acquire. 

As collecting all types of data might not be relevant or practical in online and real-time 

systems. However, in some cases it might be needed to acquire large amounts of data, 

these systems introduce a need of data acquisition methods that are capable of handling 

large amounts of data (Di Paolo Emilio, 2013). This is because the more data collected it 

introduces need for better memory and processing power to have the ability to collect 

and process data with minimal delays (Sirojan, Phung and Ambikairajah, 2018). There 

are three types of data, static, dynamic, and intermediate. Static data is a form of 

constant, which maintains the same value over a period of time. Although acquiring 

static data does not change during the process, it has a significant role in identifying 

information about the process. Dynamic data is a type of data that changes during the 

process, such as describes process state. Where the dynamic data directly indicates the 

process state and quality. Lastly, intermediate data is the data which is computed based 

on static and dynamic data (Hu et al., 2018). 

Furthermore, data acquistion commonly requires a form of storage of the data (Syafrudin 

et al., 2018). There are mainly two types databases relational and non-relational. Where 

the choice of database highly depend on type of data acquired. An example is a 

comparison between SQL which is relational and NoSQL which is non-relational 

databases. where one of the key differences is that SQL works with structured data, 

while NoSQL works with unstructured data (Sumalatha, Vookanti and Vannala, 2021). 

Additionally , other factors that could be of importance during the choice of a database is 

scalability, availability, and flexibility (Syafrudin et al., 2018).  



32 

 

With the large amount of data gathered, it introduces complexity in analyzing the data. 

Machine learning (Syafrudin et al., 2018) and Neural networks are some of the common 

processing methods that are applied in the field of monitoring (Wong, Chuah and Yap, 

2020).  

In terms of acquiring data from physical phenomena from external sensors, commonly it 

is used a data acquisition card to acquire and process data. The fundamental process 

flow aspect of data acquisition system is shown in Figure 2.14. Sensors provide the 

possibility to detect different physical conditions such as electrical signals, radiant 

energy, mechanical energy, magnetic energy, thermal energy, and movements. Their 

task is to convert the energies observed into electric signals. Where the type of sensor 

used is dependent on the type of physical condition that is of interest. When the data 

from the sensor is observed it is then sent into signal conditioning. Signal conditioning is 

the process of modifying or amplifying the signal that it meets the needs of the next 

system (Di Paolo Emilio, 2013). This could be done with numerous types of techniques 

such as voltage amplification, filtering, timekeeping, etc. (Todd, 2014). Once the signal is 

conditioned it is then converted from analog to digital form, which allows computer to 

understand the data. Finally, a computer is used to visualize, store, and analyze the data 

(Di Paolo Emilio, 2013).  

 

Figure 2.14: data acquisition system process flow 

However, the machines are becoming more advanced with more integrated sensors 

which also have the ability to communicate over a network. This introduces the 

possibility of data acquisition over a network, without any external physical connectivity 

required. In addition to eliminating the need for a physical connection between the 

devices, data acquisition could reduce costs and increase efficiency (Hu et al., 2018).  

In data acquisition of manufacturing process, commonly data consist of primarily 

dynamic data, due to focus on observing the actual process. However, acquiring dynamic 

data introduces complexity, as machines are equipped with numerous sensors, but also 

commonly acquisition of data is of various types of machines. This is especially 

challenging as industrial machines commonly contain their proprietary communication 

and interface protocols. Additionally, the process of data acquisition becomes complex 

when different machine data are being acquired, especially if they contain different types 

of data (Hu et al., 2018). As the data acquisition happens over a network, a 

communication layer is required. Communication standards such as OPC UA are specially 

designed for monitoring of industrial equipment, which also assesses the challenges with 

interoperability. MTConnect is another communication protocol that has been used in 

monitoring and data acquisition of machinery.  

Moreover, the data acquisition methods keep evolving which provides easier access to 

the data. Data that is publicly available on the websites is possible to acquire through 

web scraping methods (Tao et al., 2018). Whereas it is also becoming more common 

that machines are already equipped with sensors and some logic in form of a computer 

from the manufacturers. This results in the possibility for machine manufacturers to 
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provide the ability to access the data of sensors directly, such as through application 

programming interfaces (API) (Xiao, Huang and Zhao, 2018).  

2.3.1 REST API 

API is a way two applications can communicate with each other based on a set of 

specifications and rules, most commonly communication happens over a network 

(Jacobson, Brail and Woods, 2012; Wu et al., 2020). Essentially it provides a simple and 

reliable way to access data quickly between different parties such as between a provider 

and a consumer (Jacobson, Brail and Woods, 2012). 

Generally, to access the data from APIs a code has to be written, and this can be a 

complex task (Alrashed et al., 2020). However, some APIs are made to be accessible to 

the public by the providers (Maleshkova, Pedrinaci and Domingue, 2010) and their 

documentation (Jacobson, Brail and Woods, 2012). Public APIs bring the advantage of 

increased development by having them published to the consumers, without them 

needing to reinvent the wheel and rather focus on building on top of it. However, public 

APIs expose themselves to some risks such as attacks against information and APIs 

(Jacobson, Brail and Woods, 2012). 

Representational State Transfer (REST) is a lightweight software architecture that is built 

on hypertext transfer protocol (HTTP) that provides interoperability over the internet for 

computer systems. Whereas REST API is an API that utilizes the REST architecture. REST 

API works as request-response communication, which allows to request systems to 

access and manipulate resources through HTTP methods in form of stateless operations 

(Chen et al., 2017). Figure 2.15 illustrates the REST API communication between a client 

which requests and a server that responds to the request. The request methods could be 

different things such as modifying something (POST, PUT, DELETE) or requesting 

information back (GET) (Gao, Zhang and Sun, 2011). The response is commonly in a 

JavaScript object notation (JSON) data format (Bertoli et al., 2021). REST API focuses 

more on Uniform Resource Identifier (URI) resources, which essentially means that each 

object has a unique URI identification that could be accessed directly (Gao, Zhang and 

Sun, 2011). 

 

 

Figure 2.15 REST API communication (Bertoli et al., 2021) 

Commonly REST API contains a structured hierarchical manner of accessing the data 

relative to its origin path (Surwase, 2016). An example of Ultimaker API is illustrated in 

Table 2.2. Where firstly the “/printer” data various types of data of FFF machine. 

Whereas “/printer/bed” describes a more specific type of data which is the data of build 
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platform. This type of structure allows accessing API data of specific resources directly, 

without the need for much processing.  

Table 2.2 Ultimaker REST API structured path for accessing build platform temperature 

Resource path Description 

/api/v1/printer Different data available from FFF machine 

/api/v1/printer/bed FFF build platform data  

/api/v1/printer/bed/temperature FFF build platform temperature data 

/api/v1/printer/bed/temperature/current FFF build platform current temperature data 

 

2.3.2 Web scraping 

Nowadays with the increased connectivity, it has increased the amount of information out 

on the world wide web (WWW) also know as web (Chaulagain et al., 2017). Although the 

web provides with possibility to access the data, there is no direct functionality in form of 

storing the available data, especially if public web APIs are not available to directly 

access data. This results in the need of manually copying the data and storing it, which is 

nor practical or possible realistically possible with dynamic real-time data. Additionally, 

extracting the data is complex as most web pages are written in HTML format and in an 

unstructured manner. This resulted in development of tools such as web scraping, which 

are automated tools for extracting the data from the web. Web scraping is being used in 

a wide area of applications to store data from the web. Such as web research, data 

integration, monitoring weather data, price comparison (Singrodia, Mitra and Paul, 

2019). However, it has also been used of monitoring sensor data through the web (Rao 

et al., 2015). There are many different types of web scraping library tools such as 

Scrapy, BeatifulSoup, and Grab. Nevertheless, these types of libraries only work on static 

pages, which contain no dynamic data (Chaulagain et al., 2017). In order to scrape 

dynamic data, web scraping tools such as Selenium is specially designed for these type of 

tasks (Ramya, Sindhura and Sagar, 2017).  

Although web scraping comes with great possibilities of extracting data, it has several 

limitations. These limitations are primarily within availability in form of you are limited to 

acquiring data that is only displayed at the web. Additionally, you have no control over 

what happens on the web, if the website is not available to access, it results in no 

possibility of acquiring the data (Ghosh et al., 2019). Additionally, if the web page 

changes the structure, it results in need of maintenance of the web scraping code 

(Gladen and Staudt, 2020). Nevertheless, although web scraping contains questionable 

reliability, studies show also that web scraping is an efficient tool in form of speed of 

acquisition. Which showed that it had possibility of acquiring data from the web faster 

than with use of API (Dongo et al., 2020). 

Selenium WebDriver 
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Web pages contain document object model (DOM), DOM ensures that web page elements 

are structured, in form of a node-like data structure (Brucker and Herzberg, 2018). 

Selenium WebDriver is a framework that uses locator strategies that are based on DOM. 

Figure 2.16 illustrates the Selenium WebDriver architecture. Scripts are a form of client 

that sends selenium commands in JSON Wire Protocol. Which is a REST API that uses 

JSON format messages over HTTP (Raghavendra, 2021). Where the scripts allow to 

control browsers and acquire data using different language bindings such as Python, 

Java, Ruby, etc (García et al., 2020). Web driver works by identifying elements on a web 

page and executing actions such as acquiring the specific elements data on the real 

browser. Where in order to access the elements there is need for locators, which identify 

where the elements are located on the web page. Theese locators could be id, name, 

cascading style sheets (CSS), XML path language (XPath), etc (Patil and Temkar, 2017). 

Additionally, the web driver must be according to the type of browser, such as Chrome 

browser uses chromedriver, and Firefox uses geckodriver, etc. Where the communication 

between driver and browser is through HTTP protocol (García et al., 2020). 

 

Figure 2.16 Selenium WebDriver architecture 
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In this section it will firstly be presented the related stakeholders and how this thesis is 

related to their goals. Additionally, applied research methods such as literature review 

and experimental work will be described in detail. 

3.1 Related stakeholders 

This study is conducted in collaboration with Centre for Research-based Innovation (SFI) 

manufacturing and Manufacturing Technology Norwegian Catapult Centre (MTNC). One of 

the research areas of SFI manufacturing is robust and flexible automation, where in-

process monitoring and real-time control is one of the focused topics. This study relates 

to the monitoring aspect of their research area in terms of that the primary objective in 

this study is to develop a data acquisition system.  

MTNC plans to include additive manufacturing in the form of desktop FFF machines in a 

flexible production line, coordinated with other processes with the possibility of 

automation, robot handling of printed parts, and in-line quality control. Where the thesis 

provides the first steps towards their goal in form of the ability to acquire data of the FFF 

machines of their interest (Markforged Mark Two and Ultimaker 3 Extended).  

3.2 Research methods 

This research consists of both practical activities in form of experimental work and a 

literature review. Figure 3.1 illustrates the process of answering RQs, where all of them 

contained a mix of literature study and practical activities. In order to answer RQ1, it was 

investigated what types of data exist in FFF machines, which was primarily based on 

literature but also experimental work to confirm the available data. Based on RQ1 it was 

possible to explore RQ2 on what data is possible to acquire and how it could be acquired. 

Where literature provided with possible methods to acquire the data. Whereas 

experimental work was to establish data acquisition, which identified types of possible 

data to acquire. Additionally, it was investigated the possibility of generalizing data 

acquisition for studied FFF machines. Finally, RQ3 aimed at comparing the studied FFF 

machines in form of data quality through experimental work. Where data analysis was 

performed of the acquired data and compared to the literature if any of the described 

failures could potentially be identified with internal FFF machine data.  

To conduct the experimental work, some activities are included in this study. These 

consist of creating a data acquisition system, FFF printing, data gathering, measurements 

of dimensional accuracy, and analysis of the acquired data.  Whereas a literature review 

was performed both in order to support that the studied field is a relevant research topic, 

but also to support choices for experimental work.  

3 Methodology 



37 

 

 

Figure 3.1: Process of answering research questions 

3.3 Litterature review 

In order to establish a solid background of the studied topic, it was first searched about 

generic about AM, on what it is, different types of AM technologies, and their key 

advantages and disadvantages. Keywords used were “Additive manufacturing”, “Additive 

manufacturing technologies”, “Advantages and disadvantages of different AM 

technologies”. 

Since this study is focused on FFF, which is a type of AM, it was research in more detail 

about it. Where the goal was to identify how FFF works and what is the process of FFF, 

which provided knowledge for experimental work. Here the keywords searched were 

“Fused filament fabrication”, “Fused Deposition Modeling”, “3D printing”, “FFF printing 

process”. 

Once the fundamentals of FFF were identified it was then possible to look into what 

influences the FFF process in form of the most critical process parameters and type of 

failures that occur during the FFF process. These provide with knowledge about important 

data for RQ1 and the types of failures that occur for RQ3. Where keywords searched was 

“FFF process parameters”, “FFF process failures”  

Lastly, it was searched for what type of monitoring systems there are nowadays and how 

they work. This is to support the choices for RQ2 as this study is focused on real-time 

data acquisition of FFF machines. Additionally, it was also searched what are the 

challenges with such systems. Where the keywords used were “Monitoring systems”, 

“Monitoring system challenges, “Real-time data acquisition systems”. 

3.4 Experimental work 

Experimental work consists of four separate activities, where Table 3.1 provides a 

description of the hardware and software used for each activity. First experiment is 

focused on creating a data acquisition system for all studied FFF machines. As in order to 

understand if internal data could identify some failure in the FFF process, there is a need 

for data. The second experiment consist of FFF printing and data collection, this is for 

establishing a connection between an object and data. Based on printed objects, 

measurements were performed on a coordinate measuring machine (CMM). This is to 

compare the studied FFF machines and see if the collected data could potentially identify 
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some anomalies during FFF process. Lastly, data analysis is performed in order to 

investigate the quality of the acquired data.  

Table 3.1: Experimental work setup 

Activity Hardware Software 

 
 

FFF Printing 
  

Original Prusa i3 
MK3S 

PrusaSlicer 

Ultimaker 3 Extended Ultimaker Cura 

Markforged Mark Two Eiger 

Measurements  ZEISS DuraMax  Calypso 

PiWeb 

Data acquisition Computer Python 

Chromedriver 

Chrome browser 

Raspberry Pi OctoPrint 

Data analysis Computer Python (Jupyter notebook) 

3.4.1 Creating a data acquisition system 

Since this study was based on already existing systems to access the data. This resulted 

in the need of investigating what are the existing systems for each FFF machine and if 

there is a need for additional components to access data.  Based on that it was found 

that some FFF machines contained several methods of acquiring the data. Where the 

process of acquiring the data was chosen based on the literature on which was a more 

reliable method. The amount of data availability depended on the machine, such as 

Markforged Mark Two contained little access to the data, while Original Prusa i3 MK3S 

and Ultimaker 3 Extended contained considerably more. However, not all the data was 

chosen to acquire. Where the choice of the acquired data based on data that could 

describe process either in form of identifying the cause of failure or data which provided 

a possibility to identify when an event occurred. Additionally, the data was stored in a 

time-series format which is essential in order to have the ability to identify when a 

certain occurrence happened chronologically (Fu, 2011).  

The code for data acquisition was generated in Python 3 programming language. A 

GitHub repository was created in order to share the code used in this study: 

https://github.com/KlaudijusN/Klaud_thesis.git. In addition, this repository contains raw 

data from this study experiments and code of other activities such as data analysis of 

printing and CMM data. For the data acquisition Python libraries included were (requests, 

json, time, sqlite3, datetime, selenium, and webdriver_manager). Where it was both 

acquired and stored data in SQLite database format. As the focus is on creating a real-

time data acquisition, therefore the choice was SQLite as it is being used widely for 

various applications because it is a lightweight database system (Wang et al., 2019). 

Additionally, the code went through iterations of testing and refurbishment to minimize 

the need for post-processing of the data for data analysis.  

https://github.com/KlaudijusN/Klaud_thesis.git
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Finally, delays of the data acquisition were investigated. This is because the time of 

acquiring the data plays a significant role in form of data quality when looking at real-

time data acquisition systems. Delays were investigated in form of comparing the data 

acquisition time for each FFF machine. Figure 3.2 illustrates the process of investigating 

acquisition delay. The data acquisition code was using a “while loop” in Python, which is a 

code to be executed repeated times. This repeated execution is the process of acquiring 

and storing FFF machine data for that specific moment. Whereas the acquisition delays 

were calculated based on the amount of time the while loop statement took to be 

executed. Where the difference in time of acquisition are delays. Additionally, the 

acquisition delays were investigated with the use of two different python time counters, 

which were “time” and “perf_counter”. As to develop real-time systems the data quality 

in form of data acquisition delays should be minimal. If the data acquisition process 

contains too high delays, it might result in no longer being real-time data acquisition as it 

is not capable of capturing the actual process.  

 

Figure 3.2 Process of investigating acquisition delays 

Moreover, the type of computer has the potential to impact the quality of data 

acquisition, as it requires processing power to run the code. Table 3.2 provides a 

description of the computer and its main components.  

Table 3.2 Computer used for data acquisition. 

Computer Microsoft Surface Pro 6 

Processor Intel Core i5 8250U (1.6 GHz) 

RAM 8 GB 

 

3.4.2 FFF printing and data acquisition 

In order to investigate the quality of the data and compare between FFF machines if the 

data could provide some value in form of identifying some process failure, it was 

performed experimental FFF printing of an object. During the FFF process, it was used 

the created data acquisition to collect the data. FFF machines were located in different 

locations. Where Markforged and Ultimaker were at MTNC premises and Prusa at the 

author's home. Model for printing and CMM measurement path were acquired from the 

author of (Leirmo and Semeniuta, 2021) which was used in a study about dimensional 

accuracy of laser-based powder bed fusion AM technology. Figure 3.3 illustrates the 

printed object. 
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Figure 3.3 Experimental object (Leirmo and Semeniuta, 2021) 

All the studied machines are not new and have been used, and since FFF machines 

contain many mechanical components, calibration and maintenance are necessary. 

Therefore, it is also important to state the author's experience with the studied 

machines, as although the process of FFF machines is the same. The way machines are 

built differently and result in different ways to calibrate and maintain them. Table 3.3 

describes the authors experience with machines based on levels, where level 3 is the 

most knowledge and 1 is the lowest.  

Table 3.3 Authors FFF machine knowledge level 

FFF machine Knowledge level 

Original Prusa i3 MK3S 3 

Markforged Mark Two 2 

Ultimaker 3 Extended 1 

 

Additionally, Markforged and Ultimaker have two extruders that can deposit material. 

However, Markforged has dedicated one for polymer material and a second one for fiber 

material. While Ultimaker has two extruders where any of its available materials can be 

printed from both extruders, where the choice of the extruder for experimental work was 

based on which had been least used. Table 3.4 provides an additional description of each 

machine, such as material type and brand, estimated process time, nozzle size, filament 

diameter, and more. 

Table 3.4 Additional description of parameters used in the experimental printing 

 
Original Prusa i3 

MK3S 
Ultimaker 3 Extended Markforged Mark Two 

Nozzle size 0.4mm 0.4mm 0.4mm 

Filament diamter 1.75mm 2.85mm 1.75mm 

Material (brand) PLA (PrintWithSmile) PLA (3DNet) Onyx (Markforged) 

Material density 1.24 g/cm3 (Abdullah 
et al., 2019) 

1.24 g/cm3 (Abdullah et 
al., 2019) 

1.2 g/cm3 (Markforged, 
2020e) 

Estimated process time 2 hours 51 minutes 2 hours 31 minutes 3 hours 2 minutes 
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Filament placement Open Open Dry box 

Machine enclosure Open Open Fully enclosed 

Class Consumer Prosumer Industrial 

 
Figure 3.4 illustrates the process flow of FFF printing and data acquisition. Before the 

experimental work of printing, each machine went through a testing phase, where it was 

printed some test objects to observe the current machine states. If some critical printing 

anomalies were detected, the machine went through a calibration phase. Which included 

things such as leveling the build platform and adjusting the distance between nozzle and 

build platform. Additionally, since Markforged does not contain a heated build platform, it 

was chosen to use adhesives for each printing process, as recommended by Markforged 

(Markforged, 2020d).   

After machines were calibrated, it was then G-code was generated in slicing software 

with selected process parameters. In order to minimize variation and make the process 

most identical for all machines. Slicer settings were set to be most identical as possible, 

however, as mentioned in section 2.2.2 that on a slicer software available settings vary 

for each software. 

 

Figure 3.4: Process flow of FFF printing and data acquisition 

Slicer parameters were selected to be as identical as possible for each machine. 

However, Markforged was limited with relatively few process parameters that were 

possible to select, Table 3.5 provides a description of selected process parameters for 

each Machine. Additionally, each slicer software contains somewhat different options for 

the same parameters, such as infill type and seam position. Where the options were 

chosen to be the most similar for each machine. Nevertheless, differences in how 

machines are built, some process parameters were not changed. As mentioned in section 

2.2, the differences between Prusa having direct-extrusion, while Ultimaker having 

bowden-extrusion. Therefore, parameters such as retraction length and speed were the 

recommended settings from the slicer for Prusa and Ultimaker. Fan speed was selected 

to be standard for Prusa and Ultimaker, which were 100% fan speed except for the first 5 

layers. Where the first layer starts at 0% and increases by 33% for every layer until 

reaching maximum fan speed.  

Table 3.5: Selected process parameters for the printing process. 

Parameters Original Prusa i3 MK3S Ultimaker 3 
Extended 

Markforged Mark 
Two 

Hot end temperature 200°C 200°C 275°C 
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Build platform temperature 60°C 60°C 
 

Infill type Rectilinear Grid Rectangular 

Infill density 15% 15% 15% 

Contours 3 3 3 

Top layers 3 3 3 

Bottom layers 3 3 3 

Layer thickness 0.2mm 0.2mm 0.2mm 

Contour width 0.4mm 0.4mm N/A 

Raster width 0.4mm 0.4mm N/A 

Raster angle [45, 135] [45, 135] N/A 

Seam Position Aligned Sharpest corner N/A 

Fan speed 100%* 100%* N/A 

Flow rate 100% 100% N/A 

Travel speed 180mm/s 180mm/s N/A 

Initial layer speed 20mm/s 20mm/s N/A 

Top layer speed 50mm/s 50mm/s N/A 

Bottom layer speed 50mm/s 50mm/s N/A 

Infill speed 70mm/s 70mm/s N/A 

External contour speed 30mm/s 30mm/s N/A 

Internal contour speed 60mm/s 60mm/s N/A 

Acceleration 1000mm/s2 1000mm/s2 N/A 

Contour acceleration 800 mm/s2 800mm/s2 N/A 

External contour acceleration N/A 400mm/s2 N/A 

Internal contour acceleration N/A 800mm/s2 N/A 

Travel acceleration N/A 5000mm/s2 N/A 

Jerk 8mm/s 8mm/s N/A 

Retraction length 0.8mm 6.5mm N/A 

Retraction speed 35mm/s 25mm/s N/A 

 

Before each printing process, it was inspected if the machine is cleaned and contains 

loaded material. While after each printing process, the build platform was cleaned and 

the objects were removed and stored in a box with dehumidifiers.  
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The data was collected only during the actual printing process, additionally, the computer 

was used for normal tasks during the process of data collection. Also, during the printing 

process, it was considered some of the FFF challenges, in form of not exposing the 

machine to external vibration and abnormal humidity and temperature. Moreover, during 

the printing process, the data was collected with a preset acquisition time of 1 second. 

Where the data of each FFF machine are stored in separate files.  

3.4.3 Measurements of printed objects 

Measuring of dimensional accuracy of the printed objects was done on a coordinate 

measuring machine (CMM), using a 3mm diameter tip stylus. The process of 

measurements was done in a combination of manual and automatic work. Firstly, the 

model was fixed to the fixture, which was also provided by the same author who created 

the object (Leirmo and Semeniuta, 2021). The printed parts did not contain any post-

processing except around the base plate if there were some strings of left plastic, which 

could have hindered fixing model to the fixture. Then it was performed manual probing to 

identify the plane alignment, this is to assess the variation between objects. Figure 3.5 

illustrates the manual probing, where (a) red dots represent manual probing points to 

identify the base plane which represents the Z-axis, and (b) represents points to identify 

the X and Y-axis. Once manual probing of identifying each axis is done, CMM turns into 

automatic mode, which performs measurements based on the generated path. For this 

study, only a few features were selected out to perform the measurements. Features 

measured were in form of geometric and dimensional characteristics. Where the selected 

features are roundness and diameter of CC1 and flatness of the base plate. Moreover, 

the measurements were performed three times on each object, this is in order to 

minimize the variation of the measurements. This included reinserting the part to the 

fixture for each measurement.  

 

Figure 3.5: Manual probing points (a) Points for identifying Z-plane, (b) Points for 
identifying XY-plane  (Leirmo and Semeniuta, 2021) 

3.5 Data analysis 

Data analysis was performed in Python Jupyter notebook. For the data analysis, Python 

libraries that were used were pandas, sqlite3, datetime, matplotlib, and seaborn. The 

steps involved in data analysis were structuring, cleaning, and visualization of the data. 

How the data analysis is performed plays a significant role on the results, therefore each 

data analysis step is described in the following subsections.  

3.5.1 Structuring 

In order to easily analyze the data, it has to be structured. This means that data should 

not contain nested data, which is data within data (Mertens, 2017). Therefore, the data 
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should be in each separate row. Additionally, the data which will be used for analysis 

should be raw numbers without containing any text in them. Figure 3.6 illustrates an 

example of how the data was structured. However, as mentioned earlier in section 3.4.1 

about the creation of data acquisition, that the code was generated in order to minimize 

post-processing of the data. Therefore, some of this process was already done in the 

process of creating the data acquisition for each machine. 

 

Figure 3.6: Structuring (a) unstructured data, which contains nested and text data (b) 
structured data 

3.5.2 Cleaning 

In order to perform data analysis, the data has to be cleaned, which involves steps of 

removing invalid and unreliable data (Mertens, 2017). Here the invalid data represents 

data captured during the non-printing process.  

Although the code was generated to capture when machine state is “Printing”, it was still 

observed that the data provided with some false positives. Since the focus is only on 

analyzing the actual printing process, it involved cleaning of data which were from other 

processes that were considered printing process, such as pre-heating, starting 

calibration, but also when the process stops. This is because machines during these 

processes might not have reached the target temperature and could potentially influence 

the rest of the data set. However, the types of data possible to acquire from each FFF 

machine and how the machine worked varied from machine to machine. The process of 

identifying when the machine actually started processing and ended varied.  

In terms of unreliable data, it is a type of data that did not represent the actual process. 

During cleaning of unreliable data, it was looked into missing data and outliers. Where 

with the missing data it was investigated where that specific event occurred. It was then 

evaluated if that specific data variable would be used for further analysis. If the missing 

data of a specific variable was not used for further analysis, however, other variables for 

the same rows were used, which resulted in keeping the data rows. Additionally, it was 

investigated if those occurrences of missing data had some pattern of when it appeared. 

Moreover, it was looked into outliers also called extreme values. However, due to the 

amount of data collected in the process, it was challenging to investigate each data point. 

Therefore, it was used descriptive statistics to investigate extreme values in form of 

maximum and minimum values. Where based on these values it was possible to identify 

if there were some anomalies in the data. Where the anomalies were looked into in more 

detail of why and when they happened. Based on that it was possible to choose if the 

anomaly was describing the actual event or it was an error in the data. The result of 

these allowed the choice of keeping or removing the data from the dataset.  
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3.5.3 Visualization 

In order to provide a better understanding of the data, data visualization is performed, in 

form of a graphical illustration of the data. Additionally, it is provided with statistical 

description in cases visualization is not optimal. Visualization is essential to have the 

ability to interpret outliers and results, therefore it is performed during all stages of data 

analysis. Furthermore, visualization provides the readers with the ability to understand 

the causes and relationships of the analyzed data. Where the visualizing tools used are 

scatter, line, swarm, and bar plots. 
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The result section is divided into three sections, where each corresponds to each RQ. 

Section 4.1 will be presenting the available data in FFF machines. Section 4.2 provides 

the methods used to acquire data from each machine. It will be described what data are 

possible to acquire from each machine based on the chosen methods. In addition, it will 

be presented the possibility of generalization of the data acquisition and challenges with 

it. Lastly, section 4.3 will be aiming at presenting the quality of acquiring data. Here will 

also the described failures be compared to the acquired data. 

4.1 RQ1 Types of internal data in FFF machines 

The internal data of FFF machines could be split into three categories, sensor, g-code, 

and firmware data. Sensor data is the type of data that is directly gathered from sensors. 

FFF machines are equipped with limited sensors. Table 4.1 describes sensors that are 

present in studied machines. Proximity sensor provides the possibility to identify the 

distance between the nozzle and build platform at different points. The result of 

measuring different points of the build platform could provide information of not just 

distance from the nozzle to the build platform, but also the build platforms alignment. IR 

sensors identify the presence of the filament, where an additional mechanical lever 

supplements the ability to detect filament and avoid errors (Research, 2021). Whereas 

thermistors are being used on every machine to identify temperature for aspects such as 

build platform, proximity sensors, electronics, but also each hot end temperature. 

Ambient temperature influences the accuracy of proximity sensors (Guo et al., 2019). 

Ultimaker and Prusa contain proximity sensors, however, it was not found whether the 

proximity sensor on Ultimaker contains a thermistor. Nevertheless, Ultimaker may 

contain a thermistor for proximity, as during the printing process it performs calibration 

of measuring the distance from the nozzle to build platform only after machine has been 

heated. Limit switches are being used in machines to find its origin coordinates when 

starting a new process. Where Prusa uses specific stepper motor drivers, that allows 

sensorless homing of all axis (Prusa Research, 2021). Lastly, a camera that is able to 

capture video of the process.  

Table 4.1: Types of sensors in studied FFF machines 

Sensor Description Prusa Ultimaker Markforged 

Proximity sensor Measures the distance between the nozzle 
and build platform 

X X 
 

IR sensor Identifies the presence of a filament 
material 

X 
  

Mechanical lever   

Hot-end 
thermistor 

Measures the temperature of the nozzle X X X 

Build platform 
thermistor 

Measures temperature of the build 
platform 

X X  

4 Results 
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Proximity 
thermistor 

Measures temperature of proximity sensor X N/A  

Electronics 
thermistor 

Measures ambient temperature around 
electronics 

X X  

Limit-switches Detects XYZ-axis presence  X X 

Camera Captures video of the process  X  

 

G-code data is the type of data that describes all the necessary details for the FFF 

machine to be capable of printing the object. It contains data in form of all the preset 

process parameters from the slicer software, additionally the different XYZ axis 

movements but also extrusion (E). It includes the different selected process parameters 

from the slicer software. 

Although G-code is already available when it is generated from slicer software, it is very 

challenging to manually access the specifics of the data. There are some exceptions such 

as preset process parameters that could be accessed directly from the G-code and they 

are static values that do not change. However, data such as path movement, feed rate, 

fan speed, and layer height are all dynamic in the sense that they change depending on 

where in the print process machine is and/or what kind of geometry is being processed. 

Therefore, to understand when some failure occurs, it is needed to know where the 

machine was and what was the feed rate there.  

Finally, there are firmware data that is stored internally in the FFF machine, which 

communicates with hardware devices. Where the type of data is print head position, but 

also firmware version and configuration.  

In order to access these sensors, g-code and firmware data are needed for 

communication with the firmware. This is commonly done by implementing a computer 

or microcomputer which contains software that establishes the communication. Where 

the communication happens primarily through a terminal. When communication is 

established, the g-code data is being automatically published to the terminal as the code 

is being executed by the machine. Whereas in order to access the firmware and most 

sensor data, it is done by sending G-code commands to the FFF machine through the 

terminal. Table 4.2 provides some relevant data to access through G-codes.  

Table 4.2: G-code commands for accessing data through terminal communication. 

G-code Description 

M105 Reports current and target 
temperature of all thermistors 

M73 Process progress 

M114 Current print head position 

M503 Reports firmware settings 

M115 Reports firmware version 
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However, some G-code commands to access data are exclusively firmware specific, which 

results in some firmware’s does not contain the possibility to access that data or G-code 

commands are different (RepRap, 2021). An example is retrieving proximity sensor data, 

Table 4.3 provides with Prusa-specific G-code, which requires a sequence of G-codes to 

retrieve data.  

Table 4.3: Original Prusa i3 MK3S G-code for retrieving proximity sensor data. 

G-code command Description 

G28 W Homes XYZ-axis 

G80 N7 Performs measurements on build platform in 
7x7 grid 

G81 Reports results of each measurement 

 

Nevertheless, for Ultimaker and Markforged there was limited access to the machine, 

therefore it was not possible to physically acquire the firmware or G-code data. However, 

Ultimaker uses much of the same G-code commands (Cavdir, 2020) as by RepRap G-

commons (RepRap, 2021). Which could mean if physical access to the machine was 

established, it could be possible to access the data. Whereas for Markforged it was not 

found any literature on how internal communication happens in the machine.    

4.2 RQ2 Methods for acquiring data  

4.2.1 Original Prusa i3 MK3S Data acquisition 

Original Prusa i3 MK3S contains a motherboard (Prusa Research, 2021), which is 

primarily a controller board which is the logic behind the machine. It is the part of the 

machine that is responsible for transforming G-code into motion and temperature control 

(Carolo, 2021). However, it does not provide additional functionality such as accessing 

machine data. Therefore, in order to acquire the data from the machine, there is a need 

to establish communication with the machine. This was done by using a Raspberry Pi 

containing OctoPrint. Figure: 4.1 (a) illustrates the connection of Prusa to Raspberry Pi 

through a universal serial bus (USB), where a computer can access OctoPrint through 

WIFI. OctoPrint is an open-source application that provides a possibility to monitor and 

control FFF machines through a web interface (Needs et al., 2019).  In addition, 

OctoPrint contains plugins that provide additional functionality, in this case, additional 

data with the use of “DisplayLayerProgress” plugin (OllisGit, 2021). The selected data for 

data acquisition are described in Table 4.4.  

The data acquisition was possible with both web scraping but also API’s. The choice of 

data acquisition method was chosen based on section 2.3.2, the limitations of web 

scraping. Web scraping has a lot of dependencies such as the need for access to the web 

interface and that the information provided on the web can change. Although API also 

requires a server that provides access to APIs, its access to data maintains the same 

through unique resource identifiers (URI). These differences between API and web 

scraping resulted in the choice of API.  
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Figure: 4.1 Data acquisition with API (a) Prusa with OctoPrint API, (b) Ultimaker API 

Table 4.4: Prusa API acquired data 

 

 

Moreover, it was not possible to acquire positional data, nor IR and proximity sensor 

data. When it comes to positional data, it is like mentioned in 4.1 that positional data is 

Data Description 

Hot end temperature Current temperature of the hot end 

Hot end target 
temperature 

Targeted temperature of the hot end 

Build platform 
temperature 

Current build platform temperature 

Build platform target 
temperature 

Targeted temperature of the build platform 

Feed rate Describes travel and printing speed 

Machine state Current state of the machine 

Current layer Current layer in the process 

Total layers Total amount of layers for printed object 

Z coordinate Current height of the print head 

Object Name of the processed object 

Fan speed Current fan speed in percentage 

Process progress Progress of the process in percentage 

Process time Time in process 

User User that initiated the printing process 

Average layer duration Average layer duration 

Last layer duration Amount of time it was used on previous layer 
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acquired by sending out G-code commands. In order to track the current position of the 

print head, it would require having constantly sending out the G-code. Where founder of 

OctoPrint stated that this would result in challenges as there is a limitation in 

communication between the FFF machine and Raspberry Pi due to USB-serial connection 

(Häußge, 2017). Additionally, for the IR sensor, it was not found any ways to acquire or 

access the data, nevertheless, it was observed that Prusa had integrated features with 

the IR sensor. Once the filament runs out, the process pauses until the filament has been 

changed, where it resumes from where it paused. Proximity sensor data was possible to 

acquire through terminal communication as described in results of 4.1, however, there 

was not found any existing method to acquire data from the terminal, nor was the author 

able to do it.  

4.2.2 Ultimaker 3 Extended data acquisition 

Unlike Prusa, Ultimaker 3 extended contains both a control board, but also an additional 

computer (Daid, 2016), which provides REST APIs (Ultimaker, 2021) and web interface 

monitoring (Kohut, 2020). Ultimaker is the only studied FFF machine that contains a 

camera sensor. Since most presented process failures could be identified visually, a 

camera sensor could be an important factor. Accessing camera video was only possible 

through the Ultimaker web interface, Appendix 1 illustrates camera perspective and 

quality during the process. However, it seemed like the camera contained low frames per 

second, which resulted in the choice of not focusing on acquiring camera stream. 

Additionally, unlike Prusa with OctoPrint, the web interface on Ultimaker is very limited 

on the type of data displayed. This resulted in a choice of API for data acquisition, where 

the connection is illustrated in Figure: 4.1 (b). Whereas Table 4.5 describes all the data 

gathered during the printing process. Additionally, as mentioned in 3.4.2, Ultimaker 

contains two hot ends that are possible to print out off, however, for this study we 

focused only on a single one. Where the choice of the hot end was the least used one, 

based on data from “hot end material extruded”. Therefore, the data acquired was only 

for that specific hot end, however, it is possible to acquire data for both hot ends.  

Table 4.5: Ultimaker API data 

Data Description 

Machine state Describes current machine state, such as if it is idle 
or printing. 

Build platform 
temperature 

Temperature of the build platform at current 
moment 

Hot end temperature Hot end temperature at current moment 
 

Target temperature of 
build platform 

The current targeted temperature of build platform 

Target hot end 
temperature 

The current target temperature of hot end 

Position XYZ-axis position 

Fan speed Current fan speed in percentage 
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Object Name of the processed object 

Process progress Progress of the process in percentage 

Head acceleration Acceleration of the print head in XY-axis 

Hot end material 
extruded 

Amount of material extruded through the hot end in 
mm 

Hot end time spent 
hot 

Amount of time the hot end has been in a heated 
state 

Hot end max 
temperature exposed 

The maximum temperature hot end has been 
exposed to 

Z-axis offset Offset between build platform and hot end from 
manual calibration 

Feeder jerk Jerk settings of feeder 

Feeder acceleration Acceleration of feeder 

Feeder max speed Maximum speed of feeder 

 

4.2.3 Markforged Mark Two data acquisition 

Markforged Mark Two, just like Ultimaker contains also both a control board and a 

computer (Markforged, 2020b). These components provide with Eiger cloud software, 

which is a web-based slicer and user interface to monitor. However, Markforged machine 

and Eiger software is a very closed system (Aslanzadeh et al., 2018; Korkees, Allenby 

and Dorrington, 2020), where communication with the machine is only through Eiger 

software. It was also not found any literature that investigated the potential of data 

acquisition of internal Markforged data. Additionally, it is not provided with any accessible 

APIs for the users, although API is being used for updating process state on Eiger web 

interface (Markforged, 2021). These limitations resulted in web scraping as a data 

acquisition method. Where Selenium WebDriver was the specific data acquisition method, 

due to the possibility of acquiring dynamic data from the web pages.   

Moreover, Markforged G-code is not accessible due to encryption (Grimm, Pongratz and 

Ehrlich, 2020). This makes accessing specifics from the G-code such as preset process 

parameters but also additional information inaccessible. On Eiger, it is possible to access 

the history of printed objects, which contain information on what process parameters 

were selected when the model was sliced in slicer software. However, in Eiger slicer 

software there are only limited process parameters that that is possible to adjust. 

Therefore the data acquired from the print history would be limited (Kabir, S., Mathur, K. 

and Seyam, A.-F. M., 2020). Based on these restrictions, the choice of data acquisition 

method was web scraping, where the data access is limited to what is provided on the 

web interface.  

Table 4.6 provides a description of the data collected. As mentioned in 3.4.2, that only 

one hot end was used for experimental work, which was polymer hot end. Therefore, 

data of fiber material such as type of material in use and temperature of the fiber hot 

end was not collected during the acquisition process.  
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Additionally, although the data acquisition is conducted only during the printing process, 

it was observed, during the development of the code and testing phase, that Markforged 

contains several different machine states. These machine states could have the potential 

in identifying a failure. Markforged is a closed system, it contains some features that can 

identify some process failures, such as fiber hot end jam (Markforged, 2020a). Once the 

jam is detected it was observed that the machine state identifies type of state, which was 

fiber jam. Additionally, if the data were collected during the non-printing process, it is 

also possible to capture other machine states such as when maintenance was performed.  

Table 4.6: Markforged web scraping data 

Data Description 

Polymer material Current material polymer hot end 

Polymer hot end 
temperature 

Current temperature of the polymer hot end 

Machine state Current machine state 

Current layer Identifies in which layer the machine is processing currently 

Total layers Total amount of layers for printed object 

Object Name of the processed object 

User User that initiated the printing process 

Time left Estimated time left of process 

 

4.2.4 Possibility of generalizing data acquisition of FFF machines 

In order to generalize the results of data acquisition for all FFF machines, the machines 

must provide with the same type of possible methods to acquire data. Table 4.7, 

provides a description of possible data acquisition methods for each studied machine. 

Although Markforged, Ultimaker, and Prusa (with OctoPrint) provide with web-interface, 

the amount of data is limited compared to alternative methods for Prusa and especially 

for Ultimaker. Therefore, the result of generalizing the acquisition would impact the 

quality of the data in form of the type of data accessible and the reliability of the 

acquisition method. This would lead to sacrificing the quality of the data in order to 

generalize the data acquisition. Since the main goal of this study is to investigate if the 

internal data provides any value in failure detection. Therefore, the choice of the data 

acquisition method for Prusa and Ultimaker was based on the availability of the data, but 

also the more reliable data acquisition method.  

Table 4.7: Possible data acquisition methods for each studied FFF machine 

 
Web scraping API 

Prusa X X 

Ultimaker X X 

Markforged X 
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4.3 RQ3 Quality of acquired data  

The results of section 4.2 identified the possible methods for acquiring data and the types 

of data that were acquired. Appendix 2 lists all data that was used to acquire for each 

machine. In terms of failure detection all of the studied machines provided with a 

possibility to acquire hot end temperature data, in form of current temperature but also 

targeted. Although Markforged does not directly provide targeted temperature, it 

provides data in form of current material use which could be described as targeted 

temperature. Looking back at 2.2.6 about process failures. Types of failures that have 

the potential to be caused by hot end temperature are; stringing, sagging, curled edges, 

separated layers, over and under-extrusion. Whereas build platform temperature, which 

Ultimaker and Prusa provide, has the potential in identifying failures such as warping that 

is directly related to build platform temperature. While acceleration and feed rate have 

the potential of identifying failures related to speed. Which could have an impact on 

failures such as misalignments, missed layers, warping, stringing, over and under-

extrusion. Data of fan speed provides the potential of identifying failures such as 

sagging, pillowing, and layer bonding. Nevertheless, it is important to note that failures 

have potential causes due to several variables as mentioned in section 2.2.6. Z-axis 

offset data has the potential in identifying offset values from manual calibration of the 

nozzle, which has an impact on failures related to defects caused by nozzle offset. 

Furthermore, observing data related to the feeder could identify issues related to 

stringing, as feeder is directly responsible for retraction parameters.  

In terms of identifying where a specific event occurs in the process, various types of data 

could be used in detecting the event. Data such as current layer, total layer, XYZ 

coordinates, process progress, process time, process time left, machine state, hot end 

material extruded and time spent hot, average and last layer duration) provide with 

some form of identification of process. 

Additionally, data that provide some statistics of the machines usage state, such as hot 

end state, in form of material extruded, time spent hot, maximum exposed temperature, 

could have an influence in terms of failure detection. Where material extruded could 

identify the failure of running out of material. Markforged and Ultimaker have no sensors 

to identify this failure. Although there has not been linked any direct potential failure 

caused by exposing hot end to extreme temperatures, there is still a certain limit to 

which components in the hot end could be exposed too. Exposure to higher temperatures 

could potentially cause some failures.  Whereas the combination of these parameters and 

the amount of time hot end has been heated could identify the state of the hot end and 

thereby be a factor in terms of failures. 

The following subsections will present the acquisition delays from the data acquisition of 

printed objects. Then it will be presented results of acquired data from each FFF machine. 

Lastly, the results of CMM measurements and their relation to the data will be presented.  

4.3.1 Data acquisition delays 

The data acquisition delays were investigated during the printing process of all objects 

for each machine. Acquisition delays are critical in terms of real-time monitoring 

systems, as it describes the minimal acquisition time interval possible to capture between 

different events. The influence of delays could also result in capturing data of process 

which does not correspond to actual process time. Considering real-time systems, it is 

therefore critical to have low acquisition delays, as it is needed to capture the actuall 
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process. FFF printing is a continuous process with constant motion, therefore, it is 

important to capture data through the entire process with short intervals. Intervals for 

the acquisition were chosen to be 1 second for experimental work, however, these 

intervals might be needed to be even lower to capture the entire process. 

Although the data acquisition delays were measured with the use of two python clock 

counters, data analysis showed minimal differences. Therefore, it was selected only 

“perf_counter” as it is also supposed to be the more accurate one (Dunn, 2015). Figure 

4.2 illustrates a statistical description of acquisition delays in seconds. The data count 

numbers varied highly due to differences in processing time, but also the influence of 

acquisition delays. Looking at mean values, Markforged data provided the lowest mean of 

0.146 seconds, Prusa with 0.312 while Ultimaker provided the highest of 1.123 

acquisition delays. Considering the acquisition interval being 1 second and the mean of 

Ultimaker acquisition delays result in an average of over 2.1 seconds between each data 

captured. This also means that even if the acquisition interval was set to be 0, it would 

still take over 1 second to acquire the data. Standard deviation was also significantly 

higher for Ultimaker with 0.281, while Prusa and Markforged contained similar values of 

0.032 and 0.033. This type of spread of data acquisition delays introduces uncertainty in 

the data acquisition process. In terms of maximal values, there were some extreme 

values that were chosen to keep during data analysis. This is due to the uncertainty of 

the true reason behind the anomalies in acquisition delays. A potential cause for such 

high values could be since a computer was used for regular tasks during the acquisition 

process, which might have impacted it. It also important to note the differences in data 

dimensionality, Markforged contained only 12 data types, Prusa 19, and Ultimaker 22. 

The result of these differences could have an impact on the acquisition delays as more 

data is being acquired.  

 

Figure 4.2: Statistical description of acquisition delays for each machine (unit in 
seconds) 

4.3.2 Markforged data 

As previously mentioned in 4.2.3, that Markforged data is quite limited, which provides 

only a single variable in terms of identifying process failure in form of hot end 

temperature. Looking at Markforged temperature data, statistical description in Figure 

4.3 (a), it was observed that there were some occasions where temperature varied from 

271 to 279 °C. It was investigated where these values occurred by looking at the current 

layer and time in the process, which provided an approximation of where in the process 
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this occurred. Figure 4.3 (b) scatterplot illustrates where the more extreme values 

occurred based on the current layer, which was primarily at the start of the process. 

Additionally, the scatterplot illustrates the type of hot end temperature values that 

possible to acquire, which are integer numbers without any decimals behind them. Where 

the cause of only acquiring whole numbered data is primarily of limitations that the Eiger 

web interface provides. This type of temperature data might be less reliable as it is 

unknown if the decimals are rounded up or not, and hence the possible reason for high 

standard deviation of Markforged temperature. The more extreme values that occurred 

primarily during the start of the process were visualized. Figure 4.4 illustrates that this 

type of event occurred during every printing process. 

 

Figure 4.3: Hot end temperature data (a) statistical description, (b) scatter temperature 
during the process 

 

Figure 4.4: Hot end temperature data of extreme values and scatterplot of temperatures. 

 

Moreover, during the printing and data acquisition process there occurred some 

challenges with data acquisition. Markforged acquisition utilizes Selenium Webdriver web 

scraping as a method. During the process, the chromedriver crashed several times, 

which resulted in the need of restarting the entire printing and acquisition process. 

However, the cause is error is unknown and was not observed during the testing phase.  
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4.3.3 Prusa data  

Results of Prusa data showed that it contained extreme values, however, it seemed like it 

was natural process occurrence. Prusa statistical descriptions of temperature data are 

provided in Figure 4.5 (a). It was observed that the maximal hot end temperature 

deviated only with 1.6°C from the targeted temperature of 200°C. However, the minimal 

temperature significantly more deviated with 5.4°C from the targeted temperature. 

Therefore, during data analysis it was investigated where this event occurred and if it 

was a pattern. Due to data such as current layer in the process, fan speed, and process 

time, it was found when the event occurred and possible cause. Figure 4.5 (b) illustrates 

a scatterplot of all prints where these extreme minimum temperature values occurred, 

which was primarily during the second layer. This resulted in investigating further on 

what happens during the second layer. Figure 4.6 illustrates that this event occurs during 

the start of the second layer and occurred during every print. And as mentioned in 

section 3.4.2, that fan speed starts with 0% at the first layer and increases by 33% for 

every layer. Therefore, there is a potential that due to fan speed turning on to 33% it 

might have influenced the hot end temperature to drop, as the temperature quickly 

stabilizes back to the targeted temperature.  

 

Figure 4.5 Temperature data (a) statistical description, (b) scatterplot of hot end 
temperature 

 

Figure 4.6: Hot end temperature changes during fan speed changes from 0 to 33% 

Furthermore, Prusa Feed rate, which describes the speed of different movements in the 

XY-axis. All of the preset slicer settings of speed were identified there, however, some 

additional speeds were observed, which were unknown. Their occurrence showed to 

appear commonly during the process of each part. Additionally, these speeds were not 
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identified anywhere in the slicing software, which could be a form of uncontrollable 

parameters generated by the slicer software. 

4.3.4 Ultimaker data 

Data from Ultimaker provided some anomalies in form of outliers and missing values. 

Outliers were detected during the printing process which showed that the temperature 

suddenly dropped from approximately the targeted temperature of 200°C to below 130°C 

and back to 200°C within few seconds, as illustrated in Figure 4.7. This event was only a 

single occurrence through all the printed objects, therefore it was chosen to exclude it 

from the dataset.  

 

Figure 4.7: Ultimaker hot end temperature data anomaly 

Additionally, some missing data was observed, in particular only for one data type, Z-axis 

coordinates. Missing values occurred during printing of all objects, in total 16 missing 

values. It was inspected where in the progress this event occurred by looking at data of 

process progress, part number, and time, it showed that these events occurred 

randomly, which is shown in Appendix 3. Therefore, the reason for this event is 

unknown. In terms of failure detection, Z coordinate variable could have significant 

importance as it identifies where in the process an event occurred. Although the progress 

of the process and time identify wherein the process it occurred, Ultimaker API does not 

contain layer data. Therefore Z coordinate is the only information that identifies where in 

form of height this event occurred. 

However, the rows of missing z coordinate values were chosen to keep, due to the 

presence of other column data in these rows, and since it was not done any further 

analysis on Z-axis coordinate data. While, the temperature data of the build platform and 

hot end was used for statistical description, therefore it could have potentially impacted 

the results if they were to be removed. Where Figure 4.8 (a) provides with statistical 

description after the outlier had been removed, which shows that maximal and minimal 

values for hot end are somewhat stable around the targeted. Additionally, Figure 4.8 (b) 

illustrates a graph of hot end temperature of the same moment time frame as Figure 4.7. 
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Figure 4.8 Temperature data after removed outlier (a) statistical description (b) line plot 

Figure 4.9 (a) illustrates a scatterplot of hot end temperature, here the extreme values 

also occur during the early stages of the process. Whereas Figure 4.9 (b) illustrates the 

build platform temperatures during the process, which shows that most of the time the 

temperature was below the target. However, most of the data deviated within the range 

of 1°C of the targeted build platform temperature of 60°C.   

 

Figure 4.9: Scatterplots of (a) hot end temperature, (b) build platform temperature. 

It was also analyzed if the same event as with Prusa occurs of hot end temperature 

dropping once fan speed changes. Figure 4.10 illustrates that this event occurs also with 

Ultimaker. However, the temperature drop is less significant, which is within 2°C of the 

targeted temperature, whereas, Prusa dropped below 5°C. 

 

Figure 4.10 Hot end temperature changes during fan speed changes from 0 to 33% 
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Other data was also investigated, such as print head acceleration, and feeder data. 

Feeder data were static data that did not change during the process. However, it was not 

found any process parameters in slicing software that allowed control of these variables. 

Whereas with print head acceleration, all the preset acceleration parameters were 

identified during the process. However, just like with feed rate from Prusa, acceleration 

data contain some also unknown acceleration values. Nevertheless, these unknown 

acceleration values were only identified a total of 39 times of the 12465 data points 

collected.  

4.3.5 Measurement data 

Two groups of quality metrics in form of dimensional and geometric characteristics were 

measured. Geometric characteristic is represented as flatness and roundness. 

Dimensional characteristic is represented as a diameter. In total 3 parts were printed 

from each studied machine, where each part was measured three times to account for 

measurement errors. Figure 4.11 illustrates the measured errors in millimeters for each 

part characteristic. Where the measured error was calculated by subtracting the 

measured value from the targeted value for each characteristic. All measured parts from 

each machine contained some deviations between parts for the same characteristics. 

Markforged part 1 Figure 4.11 (a) roundness cylinder 16mm deviated considerably more 

from parts 2 and 3. Ultimaker Figure 4.11 (b) had the highest differences on the flatness 

of the base plate. Whereas Prusa Figure 4.11 (c) had also the highest deviation between 

parts on the flatness of the base plate.  

Although sections 4.3.2, 4.3.3, and 4.3.4 presented some anomalies related to 

temperature deviation for each machine during the printing process, they occurred 

primarily at the earliest stages of the process. Highest and lowest temperatures occurred 

during the first 5 layers of the printing process. However, features of these layers were 

not measured, due to the fixture of the part to the CMM was covered . During later 

stages of the printing process, it was not observed any significant deviations between 

printed parts. Appendix 4 provides a statistical description of each part for each machine. 

In addition, it was compared with differences in process time between each part, as it 

could be assumed that the longer process time it takes, the finer quality would be of the 

parts. However, no relation was observed, therefore dimensional and geometrical 

features of FFF parts might require additional sensors.   
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Figure 4.11: Measured error of features for each part, (a) Markforged, (b) Ultimaker, (c) 
Prusa. 
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5.1 RQ1 Types of internal data in FFF machines  

Although most of the research around the monitoring of FFF machines shows that they 

implement external sensors in order to obtain data about the process. The results of RQ1 

showed that FFF machines are equipped with few sensors. Looking at each machine 

separately the most expensive machine Markforged contains the least amount of sensors, 

with only available temperature sensor for each hot end. However, it might be possible 

that Markforged contains internal sensing systems that were just not found through 

experimental work and in literature. This is because as mentioned in section 4.2.3 that 

machine was able to observe fiber hot end jams. While the less costly machines such as 

Prusa and Ultimaker contain considerably more sensors. This raises the question of why 

the cheaper machines contain more sensors. Therefore, in future work, it would be 

relevant to investigate the use of these sensors in terms of reliability. A possibility is that 

although some machines are equipped with more sensors, they might be prone to errors 

which could cause more harm than good in terms of failure detection. An example is that 

previously Ultimaker 3 contained a filament run-out sensor, and according to a member 

from the Ultimaker team, it caused errors which resulted in being removed from 

Ultimaker 3 (SandervG, 2017). Nonetheless, Prusa contained both an IR sensor and a 

mechanical lever to observe the presence of a filament. Considering FFF being a single-

step process, running out of material would result in part being a waste and need of 

restart of the process.  

Although all studied FFF machines require manual calibration to align the height of the 

nozzle to the build platform, it is not something that is done during each process, rather 

occasionally. Therefore, proximity sensor data identifies the approximate distance from 

the nozzle and build platform, during each process. Having the possibility to acquire 

proximity data could be important, as the machines contain mechanical parts, which 

could result in the manual calibrated alignment to deviate with time.  

In addition to sensor data, it was presented that machines contain additional internal 

data. These data were in form of firmware data and G-code data. Where the G-code 

described the process and firmware data provide with positional data and machine 

configuration. Although data of firmware version and configuration was chosen to not be 

acquired, due to the primary focus on acquiring data of the process parameters. These 

data could have value in terms of identifying process failures, by providing additional 

information about machine and system. However, to access these data directly, there 

was a need to establish communication between FFF machine and computer, which was 

limited for both Markforged and Ultimaker. Nevertheless, Ultimaker provided some of 

these data through API. Where Markforged did not directly provide the possibility to 

access any form of data. 

  

5 Discussion 
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5.2 RQ2 Methods for acquiring data 

The results of RQ2 showed that the studied machines which contained internal computer 

provide a possibility to access some data. Whereas machine such as Prusa which only 

had a control board, did not provide access to the data. This resulted in need for 

implementation of additional hardware and software, such as Raspberry Pi and OctoPrint. 

In addition to the studied FFF machines, OctoPrint supports many different types of 

consumer-grade FFF machines (OctoPrint, 2020). Therefore, there is a possibility that the 

same acquisition method would work on other FFF machines that support OctoPrint. 

Although Ultimaker and Prusa with OctoPrint provide the same method of acquiring the 

data through API, the code for data acquisition is different. This is primarily due to the 

reason that it was not found a hierarchical structure to access specific resources of data 

for Prusa API. Instead, each time data was requested it was called for a list of resources 

where they had to be further processed to select the specific resources. Whereas 

Ultimaker API provided a structured way to access the specific resources relative to its 

origin API path. Nevertheless, both methods work, which firstly resulted in the choice of 

creating code of Ultimaker API as similar to Prusa. However, Ultimaker contained already 

high acquisition delays even by accessing the specific resources. When using the method 

of Prusa API for Ultimaker by accessing a list of data and then selecting out the specific 

resources of interest, the acquisition delays increased significantly more. This resulted in 

the choice of separating the API codes from Ultimaker and Prusa. Therefore, it is also 

important to note that if accessing specific resources was known or possible for Prusa 

API, it could potentially have reduced acquisition delays.  

While Markforged machine did not provide any dedicated methods to acquire the data, 

although as mentioned in section 4.2.3 that Eiger uses API internally. However, they 

were not available for the users. This could potentially be the result of what has been 

mentioned in section 2.3.1 about API, which could come with a security threat. And since 

Markforged is greatly focused on information security as they are the only additive 

manufacturing company that has been ISO 27001 certified (Markforged, 2020c). Lastly, 

the possibility of generalizing data acquisition was presented, it showed that in order to 

generalize data acquisition for all machines, it would come with a cost of data quality. 

Nevertheless, looking broader at other FFF machines which provide API or support 

OctoPrint, could provide the possibility of generalizing the methods for data acquisition.   

5.3 RQ3 Quality of acquired data  

Looking at the data as a whole, it was possible to observe patterns and specific 

occurrences during the printing process. In terms of the development of predictive 

models, these patterns could provide the possibility to distinguish natural process 

occurrences from possible process failures. Additionally, it could be potentially possible to 

control unwanted process patterns with a combination of monitoring with predictive 

models and control systems for machines with API. As the API provides the possibility of 

not just acquiring the data, but also send data to control FFF machines through G-code 

commands.  

In terms of identifying process failures with internal data, all machines provide hot end 

temperature data and some form of identifying where in the process they are. In the 

theoretical background, it was described several process failures related to temperature 

data. Although they were none of the failures were solely caused by hot end 

temperature, instead, it was a combination of different process parameters. Therefore, it 

is not possible to state that every studied machine could provide the possibility to 

identifying a specific process failure. 
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Moreover, Prusa and Ultimaker provided additional process parameter data, such as build 

platform temperature, fan speed, print speed, travel speed, and acceleration speeds. 

These data were also some of the key process parameters in terms of described process 

failures.  

However, it is important to note that G-code data is just generated data from the slicer 

software, where the data acquisition captures these data at specific moments. Data such 

as feed rate, fan speed, and acceleration are parameters that the machine executes 

based on where in the process it is. Prusa provided with feed rate, however, it does 

provide acceleration, while Ultimaker provides the opposite. Although speed could be set 

to 60mm/s for a specific geometry, it does not indicate that the machine would reach 

that speed before moving on to another part of geometry with different set speeds. It is 

also unknown if the machines are accurate with these data, such as if the acceleration of 

1000mm/s2 is actually true or different value. Therefore, based on these types of data, it 

could be considered implementing external sensors such as optical with a vision system, 

especially since many described process failures show visual defects. The use of optical 

sensors allows the possibility of implementing to any FFF machines, without the need of 

modifying the machine or having as critical machine-specific sensor placement.   

Furthermore, the acquired data for each machine was investigated and presented. It 

showed that feed rate and print head acceleration data contained additional variables 

which were not set by the user nor were they available in slicing software. These 

variables would need further studying in order to determine if these are uncontrollable 

parameters set by slicers or some errors. Additionally, Ultimaker API was the only of the 

studied machines which provided with missing and extreme values from the data 

acquisition process. These type of errors impacts the quality of the data.  

Although acquisition delays were measured, they describe only the time it takes to 

acquire and store the data. It does not provide with any information on how synchronized 

the acquired data is compared to the actual sensor data. This is especially important for 

Markforged with use of web scraping methods. As you are completely limited to what 

data does web interface provide, which could have a large delay from the actual sensor 

data. Therefore, a possible future work would be investigating these aspects, as this 

would have a significant impact on the quality of the data.  

The CMM measurement data of printed models were presented. Measurements of 

characteristics were compared between parts from the same machines. It was also 

investigated if the acquired data could capture the deviation between parts. However, 

results showed that it was not found any relation of printing data to the deviation 

between parts. Therefore, as future work, it could be considered to run the FFF process 

until failure during the data acquisition process. This would provide a more detailed 

understanding if the acquired data could identify some form of process failures. This 

would also provide an understanding in terms of the need for external sensors. A possible 

external sensor that could potentially have a significant impact on the monitoring of 

process failures would be a camera with a vision system. This is primarily due to that 

many of the listed process failures lead to some form of visual defects. But also when 

comparing to other sensors, such as vibration, thermocouple, etc. These sensors require 

strict specific placements on the FFF machine in order to provide accurate data. Whereas 

camera does not require as strict placement, which can result that this could be 

integrated into any FFF machine without the need of modifying any components on the 

machine.  
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The goal of this thesis is in introducing the possibility for acquiring internal data of 

studied FFF machines in order to provide the possibility for failure detection. As the 

research is primarily focused on failure detection through the use of external sensors. It 

introduces complexity in form of additional components, but also the potential of needing 

to modify machines, which could also become costly. Study findings showed FFF 

machines contain sensory data, but also additional data from internal communication 

with the machine. Where each studied machine provided some form of accessibility to 

the data, although, Prusa required additional hardware and software in order to access 

the data. 

A data acquisition code was created for each machine based on what FFF machines 

provided, which included acquisition methods of web scraping and API. Markforged was 

the most closed machine and provided with only access through its cloud web interface. 

Whereas, Prusa and Ultimaker had both data on the web, but also provided with APIs to 

acquire data. Although the type of data varied from machine to machine, all machines 

provided with some process parameters that could have an impact on process failure, but 

also where the specific events occurred.  

Data analysis was performed from the acquired data, where the goal was to investigate 

data quality. The acquisition delays showed that Markforged web scraping methods 

provided with the lowest acquisition delays. Ultimaker API had the highest acquisition 

delays. From all the studied machines, Markforged provided with the least possible data 

to acquire that were related to process failures. Hot end temperature was one of the 

process parameters that had an impact on many of the listed process failures. Ultimaker 

and Prusa provided with the possibility to observe not just temperature fluctuation, but 

also where it occurred and possible cause for fluctuation. Additionally, it was observed 

that although slicer software provides a large selection of process parameters, additional 

parameters were observed for feed rate and acceleration, which were not found 

anywhere in the slicer software. In terms of controlling the FFF process to avoid process 

failures, having control over all process parameters could be critical.  

Although in the theoretical background it was described the types of failures that can 

occur due to different process parameters, and results identified the possible data to 

acquire. It has not been stated directly on what types of process failures it can identify, 

rather which it could potentially identify. This is because there is a need for further study 

in order to identify the potential of identifying the process failures. In addition, a 

recommendation of a possible external sensor, such as a camera could provide additional 

functionality in terms of identifying process failures. Which is a sensor that neither 

requires modifying machine nor very specific placement. 

  

6 Conclusion 
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Appendices 



 

Appendix 1: Ultimaker Camera perspective and quality 

  



 

 

Appendix 2: Comparison of available data between each studied FFF machine 

Data Ultimaker 3 
Extended 

Original 
Prusa i3 
MK3S 

Markforged Mark Two 

Current Hot end temperature X X X 

Target hot end temperature X X 
 

Current Build platform 
Temperature 

X X 
 

Target Build platform 
temperature 

X X 
 

Machine state X X X 

Current layer 
 

X X 

Total layer 
 

X X 

Z coordinate X X 
 

Fan speed X X 
 

Process progress X X 
 

Feed rate 
 

X 
 

Material in use 
  

X 

User 
 

X X 

Process time left 
  

X 

Process time 
 

X 
 

XY - position X 
  

Object X X X 

Average layer duration 
 

X 
 

Last layer duration 
 

X 
 

Head acceleration X 
  

Hot end material extruded X 
  

Hot end time spent hot X 
  

Hot end max temperature 
exposed 

X 
  

Z-axis offset X 
  

Feeder jerk X     



 

Feeder acceleration X     

Feeder max speed X     

 

  



 

 

Appendix 3: Ultimaker API missing values of Z coordinates  

 

  



 

 

Appendix 4: Printing data for each machine, includes process time and 

statistical description for each part 
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