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A B S T R A C T   

During the early phases of offshore oil field development, field planners must decide upon general design fea
tures such as the required number of wells and maximum oil processing capacity (field plateau rate), usually by 
performing sensitivity studies. These design choices are then locked in subsequent development stages and often 
prevent from achieving optimal field designs in later planning stages when more information is available and 
uncertainties are reduced. 

In the present study, we propose using numerical optimization of net present value (NPV) to advice field 
planners when deciding on the appropriate number of wells, maximum oil processing capacity (plateau rate) in a 
Brazilian offshore oil field. Differential Evolution (DE) is employed for solving the optimization models. The 
uncertainties considered are well productivity and initial oil-in-place, handled by (1) using the mean of the 
distributions and (2) Monte Carlo simulation. A multi-objective optimization was also formulated and solved 
including ultimate recovery factor in addition to net present value. 

The proposed method successfully computes probability distributions of optimal number of wells, plateau rate 
and NPV. If one wishes to compute the mean of such distributions only, for most cases it is adequate to run an 
optimization using the mean of the input values instead of performing Monte Carlo sampling. The multi-objective 
optimization allows to find field designs with high ultimate recovery factor and high NPV. In this case, the value 
of NPV is similar to the optimum NPV value when optimizing NPV only. The methods described could provide 
decision support to field planners in early stages of field development.   

Introduction 

The field development process is complex, demanding large sums of 
capital (CAPEX) and operational (OPEX) expenditures to produce hy
drocarbons. In early stages of development, field planners must decide, 
with limited information, upon the approximate number of wells 
required, maximum capacities of topside facilities and field production 
schedule. These parameters have a large impact on the economic 
feasibility of the project [1,2]. A high number of wells and high pro
cessing capacities increase extraction rates, thus selling hydrocarbons 
earlier and minimizing the effect of cash flow discounts, which improves 
the net present value of the project. However, this strategy implies 
higher drilling expenditures and expensive topside facilities. Therefore, 
the project net present value (NPV) is reduced. 

When starting a field development plan, reservoir characteristics and 
well performance are often highly uncertain. As the field is developed 

and the reservoir is produced, more information is obtained about 
reservoir characteristics. However, decisions about the required number 
of wells, production schedule and topside facility size and capacity are 
taken at early stages. While it is possible to conduct exploration and 
appraisal campaigns to gather more information about the subsurface in 
some cases, it is often expensive, and the remaining uncertainty may not 
change significantly or be still considerable. The uncertainty can usually 
only be reduced to a minimum after starting production. In posterior 
field planning phases field planners iterate on, refine and optimize other, 
more specific field design features such as well placement, production 
allocation per well, injection volumes, injector placement, and operating 
conditions of topside facilities. However, the optimization of specific 
field design features is constrained to the choices taken earlier on the 
more general field design features. 

Optimization methods have been frequently used in the petroleum 
industry since the late 50s. We highlight some initial publications [3–6] 
and more recent publications [7–13]. Chen et al. [14] proposed a model 
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for maximizing the benefits while guaranteeing oil and gas field pro
duction, Almedallah and Walsh [15] proposed a hybrid k-means clus
tering and mixed-integer linear programming approach for optimizing 
the drilling path constraints; González et al. [16] proposed a decision 
support method to advice field planners during early-phase develop
ment, and formulated an optimized NPV as a mixed-integer linear 
problem using SOS2 models; and Hoffmann et al. [17] proposed a 
coupling strategy for maximum oil production at each time step of a 
small North Sea offshore field using a linear problem with SOS2 models. 

Also, there are several studies to help understand the field develop
ment decision environment [18–20], along with more recent ones 
[21–24]. To aid in this decision-making process, typically a model of the 
value chain is employed to determine best design parameters that yield 
highest economic profit [25–27]. Recently, Nunes et al. [28] proposed a 
deterministic model to obtain the optimal number of wells and well 
plateau rate for a pre-salt field in Brazil, however, uncertainties were not 
considered. 

Metaheuristics as an optimization tool in oil and gas fields 

Metaheuristics are direct search methods, i.e. methods that do not 
require estimation on mathematical gradients of parameters. Meta
heuristic numerical optimization techniques are usually inspired by 
some natural phenomena. Some popular metaheuristics include Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO) and Differential 
Evolution (DE). These methods have been successfully applied to 
different domains, though not many instances are available to oil and 
gas fields. Literature reveals GA to be the most frequently used method 
applied to problems arising in different domains of oil and gas engi
neering. One of the initial applications of GA for oil and gas can be found 
in Mohaghegh et al. [29], where it was applied GA and neural networks 
(NN) for stimulation of gas storage wells. Later, Fang et al. [30] showed 
an application of GA for petrophysics; Sen et al. [31] showed the 
application of GA and simulated annealing (SA) for reservoir modeling, 
Bittencourt and Horne [32] implemented GA for scheduling in an oil 
field; Mohaghegh et al. [33] showed an application of hybrid neuro GA 
for hydraulic fracture treatment design and optimization; Fichter [34] 
implemented GA for portfolio optimization for the oil and gas industry; 
and Romero et al. [35] used evolutionary computation for improved 
reservoir characterization. 

Nomenclature 

NPV Net Present value [USD] 
NPVp,with OPEX 1 Net present value of the revenue from oil sales 

minus rate-dependent OPEX [USD] 
CAPEXFPSO cost of FPSO [USD] 
CAPEXWELLS cost of well (construction and completion) [USD] 
CAPEXSUB cost of subsea system (risers, flowlines, umbilicals, 

Xtrees, manifolds, installation, mooring of FPSO) [USD] 
RF,u Ultimate recovery factor 
Nw Number of wells 
J Well productivity index [stb/year bar] 
N Initial oil in place [stb] 
qppo,w Well oil rate at initial time [stb/d] 
qp,f Field plateau rate [stb/d] 
qppo Field oil rate at initial time [stb/d] 
m Rate decline constant [1/year] 
i Discounting annual rate [1/year] 
T Taxes 
R Royalties 
Uptime Number of operational days per year 
t Project time [years]  

Fig. 1. Offshore oil field case study.  

Table 1 
Field characteristics.  

Water depth 2000 m Platform system FPSO (spread 
mooring) 

CO2 concentration 30% Oil capacity 150, 000 bpd 
H2S concentration 5–10 ppm Gas capacity 7 million std m3/d 
Gas-oil ratio 

(GOR) 
200 Sm3/Sm3 Water injection 200, 000 bpd 

Recoverable 
reserves 

560 million 
barrels 

Well system Vertical 

◦API 28 Completion 
system 

Intelligent 
completion  

Fig. 2. General steps of the proposed method.  

Table 2 
Case studies considered.   

Objective function Method qp,f  Nw  

Case 1 NPV Monte Carlo Continuous Discrete (1–20) 
Case 2 RF,u  Average inputs Continuous Continuous 
Case 3 NPV+RF,u  Average inputs Continuous Continuous  

Fig. 3. Histogram of initial oil-in-place, N.  
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Yeten et al. [36] combined GA with hill climber and neural network 
approach for multilateral well placement problems. Cullick et al. [37] 
combined Tabu search and scatter search with LP and NN. They used 
finite difference-based reservoir simulation for nonlinear production 
profile with a surface pipeline network economics-based model. Monte 
Carlo simulations were introduced in the model for dealing with un
certainty induced in reservoir volume, fluid quality, deliverability, and 
costs. Artus et al. [38] used GA for nonconventional well deployment, 
Bouzarkouna et al. [39] applied covariance matrix adaption evolution 
strategy for optimal placements of wells. Likewise, Carosio et al. [40] 
implemented DE, Dossari and Nasrabadi [41] implemented imperialist 
competitive algorithm and Chen et al. [42] implemented cat swarm 
optimization for optimal well placement. Al-Mudhafer and Shahed [43] 
suggested the application of GA for increasing oil recovery and NPV. 

Yang et al. [44] determined optimal NPV for mature reservoirs through 
DE and mesh adaptive direct search (MADS) algorithm. 

Problem definition 

During the early phases of field planning, the main features of the 
field must be decided upon, and the selection criteria is often to pick 
designs that provide maximum profit. Medium-to-large oil fields are 
typically produced with a constant rate initially, until they can not 
sustain that rate after which they enter into a phase of decline. The 
processing capacity (field plateau rate) and number of wells are usually 
decided on the basis of maximizing economic indicators such as the 
NPV, which is the sum of the project cash flow (revenues minus ex
penses) through the life of the field discounted in time. 

Fig. 4. Optimal NPV vs number of wells (Nw) calculated using (1) the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and 
initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article). 

Fig. 5. Values of ultimate recovery factor (RF,u) vs number of wells (Nw) calculated when optimizing NPV using: (1) the mean of the input distributions of pro
ductivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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During the field development years, there are some capital expen
ditures, such as designing, manufacturing and installing the offshore 
structure, the topside facilities, well drilling costs, and manufacturing 
and installation of subsea equipment. The revenue influx starts after 
most of the wells are drilled, completed and tied-in to the processing 
facilities. 

Increasing the number of wells will often allow to produce a higher 
field plateau rate or a longer plateau duration, thus increasing the rev
enue during the early years when the discounting effect is less pro
nounced. Increasing the plateau rate also increases revenue during the 
early years. However, a high number of wells and plateau rate also en
tails higher drilling costs and capital expenditures due to larger pro
cessing facilities. Thus, an optimum tradeoff is to be determined 
between the number of wells, plateau rate and the NPV. 

Reservoir size and well productivity are parameters of high uncer
tainty during the early phase of field development. The forecast of the 
field production profile depends strongly on the assumed values of 
reservoir size and well productivity, thus affecting the field revenue 
stream, the NPV and ultimately, the number of wells and plateau rate. 

National authorities typically encourage companies to recover a 
minimum amount of oil and gas from the field before abandonment. This 
amount varies depending on the characteristics of the field, and it is set 
in agreement between the operator and the entity that regulates hy
drocarbon exploitation in the country. This is to avoid companies pro
ducing the “easy” oil and abandoning the field, leaving considerable 
reserves behind that are more costly to produce. Therefore, the ultimate 
recovery factor is typically a constraint that must be fulfilled by the field 
development plan. However, it often leads to more costly field designs 

Fig. 6. Values of NPV and field plateau rate (qp,f ) calculated when optimizing NPV and ultimate recovery factor (RF,u) versus ultimate recovery factor. Values are 
computed using the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N). 

Fig. 7. Values of net present value (NPV) and number of wells (Nw) calculated when optimizing net present value (NPV) and ultimate recovery factor (RF,u) versus 
ultimate recovery factor. Values are computed using the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in- 
place (N). 
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that do not fulfill maximum NPV. 
In the present study, the focus is to determine the oil production 

capacity (plateau rate) and number of wells to maximize net present 
value and ultimate recovery factor using numerical optimization. The 
effect of uncertainties in the size of the reservoir and well productivity is 
handled by (1) using the mean of the distributions and (2) Monte Carlo 
simulation. 

The focus of our work is on proposing a method to determine the best 
possible general field design features, considering the existing un
certainties at early phase. For this, we use numerical optimization and 
probabilistic analyses. This does not mean that we aim to obtain an 
optimized field design, as this should also consider all subsequent field 
design phases, but rather that we use numerical optimization to deter
mine a good general design, that hopefully enables achieving good (or 
optimal) specific designs at a later stage. 

Case study 

The case study used in this article is a Brazilian deep offshore oil 
field, illustrated in Fig. 1. The main field characteristics are shown in 
Table 1, while more information can be found in Nunes et. al [28]. In 
their work, they derived an analytical expression of NPV by:  

• Assuming that the production rate in time of the field is constant and 
then follows an exponential decline. That is, during the plateau 
period, wells are choked to keep production constant. Afterwards, 
during the decline period, the bottom-hole pressure is kept constant. 
The build-up period is short or non-existent and can therefore be 
safely neglected;  

• Performing a continuous discounting of the revenue;  
• Using a constant oil price; 
• Considering all drilling costs are executed at year zero. This repre

sents a worst-case scenario, as, in reality, drilling costs will be spread 
throrought several years, and discounted in time, depending on the 
drilling schedule. 

We employ the same analytical expressions of NPV, capital expen
ditures (CAPEX), plateau duration (tP) and input data presented by 
Nunes et al. [28]. The following modifications and additions to their 

model were made:  

• Derived an analytical expression of ultimate recovery factor by 
integrating the oil rate over the field lifetime and dividing by initial 
oil-in-place (N);  

• Renamed the well rate decline factor (b) with the letter “m” and made 
it dependent on initial oil-in-place (N), well productivity (J) and 
number of wells (Nw). This was achieved by assuming the reservoir as 
under-saturated and produced by natural depletion, and that reser
voir pressure never drops below the bubble point pressure during the 
production lifetime. Moreover, wells are identical and standalone;  

• Nunes et al. [28] do not provide values of initial oil-in-place and well 
productivity. Therefore, we had to make some assumptions to 
back-calculate these parameters. Some details are provided in 
Appendix A;  

• An OPEX analytical expression was derived and included in the 
model. Operational expenditures consist of a constant yearly value, 
and a yearly value depending on a linear relationship with field rate 
and number of wells. 

It is assumed that all investments are made at the beginning and that 
the production starts immediately (thus discounting CAPEX is not 
necessary). The analytical equation for NPV is presented in Eq. (1): 

NPV = (1 − R)⋅(1 − Tax)⋅
(
NPVp,with OPEX 1 − OPEX2

)
− CAPEXFPSO

− CAPEXWELLS − CAPEXSUB (1) 

Where NPVp,with OPEX 1, is the net present value of the revenue, 
deducting the rate-dependent part of OPEX: 

NPVp,with OPEX 1 = (uptime⋅Po − 400)⋅qp,f ⋅ 
⎡

⎢
⎢
⎢
⎢
⎣

m + i − m⋅e
−

(

qppo
qp,f

− 1

)

⋅ i
m

− i⋅e
− (m+i)⋅t+

(

qppo
qp,f

− 1

)

i⋅(m + i)

⎤

⎥
⎥
⎥
⎥
⎦

(2) 

The non rate-dependent part of OPEX: 

Fig. 8. Pareto front of optimal NPV and ultimate recovery factor (RF,u) obtained with the multi-objective optimization. Values are computed using the mean of the 
input distributions of productivity index (J), well oil rate at the initial time (qppo,w) and initial oil-in-place (N). 
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OPEX2 = (Nw⋅700000+ 80E6)⋅
(1 − e− it)

i
(3) 

Where: 
qp,f is the plateau rate of the field 
Uptime is the number of operational days per year (here assumed 

equal to 352) 
The rate decline constant is m = 976

N ⋅Nw⋅J [1/year] 
The well productivity index is J = F ⋅ 29 200 stb/year bar 
Initial oil-in-place is N = 2.19 E09 stb 
The oil price is Po = 52 USD/stb 
Discounting annual rate is i = 0.09 [1/year] t = 25 years 
The field oil rate at initial time is qppo = qppo,w⋅Nw 
The well oil rate at initial time is qppo,w = F⋅20 000 stb/d 
The royalties are R = 0.1 
The tax is T = 0.35 
The F is uniformly distributed between 0.4 and 1.6, representing the 

uncertainty in well productivity. CAPEXFPSO, CAPEXWELLS, CAPEXSUB 
are the capital expenditures of the offshore structure and topside facil
ities, the drilling expenditures, and the cost of the subsea system, 
respectively. These are empirical equations presented by Nunes et al. 
[28] that depend on the field plateau rate and the number of wells, and 
are given in Appendix B. 

The ultimate recovery factor is given by 

Rf ,u =
uptime
m⋅N

⎡

⎢
⎣qppo − qp,f ⋅e

(

− m⋅t+

(

qppo
qp,f

− 1

))
⎤

⎥
⎦ (4)  

Eqs. (1) and (3) are the objectives to be maximized. 
A constraint was imposed to ensure that the plateau rate of the field 

is never higher than the maximum field rate at initial time: 

qp,f ≤ qppo,w⋅Nw (5) 

The expression presented for NPV of the revenue in Eq. (2) is still 
valid even if some wells are drilled after production start and as long as 
all wells are drilled before the end of plateau. This is because, in the 
plateau period, one can always adjust the production of each well with 
wellhead chokes to produce the desired rates. 

Methodology 

The proposed methodology can be described in three phases, as 
shown in Fig. 2: 

Modeling phase 

Three cases are considered in this study to quality control the values 
obtained and to separate the effects of multiple variables, as seen in 
Table 2: 

(1) In the first case, maximizing NPV is taken as the objective func
tion and the ultimate recovery factor, along with the corre
sponding values for optimal number of wells and plateau rate, are 
recorded. This is the only case where Monte Carlo simulation is 
used, as it is shown further that using the average of the inputs is 
sufficient.  

(2) In the second case, maximizing ultimate recovery factor is taken 
as objective and the corresponding values for NPV achieved, 

along with optimal plateau rate and number of wells, are 
recorded. 

(3) In the third case, both NPV and RF,u are taken as objective func
tions to be maximized simultaneously and the corresponding 
values for the number of wells and plateau rate are recorded. 

For the first case, plateau rate (qp,f ) is treated as a continuous vari
able and number of wells (Nw) is treated as a discrete variable for which 
the values were varied from 1 to 20 and the optimum plateau rate is 
recorded, along with the corresponding value for RF,u, for the maximum 
value of NPV. 

In Cases 2 and 3, we treated both decision variables (qp,f and Nw) as 
continuous variables within the given range and recorded the results for 
maximum value of NPV. Also, the calculations were repeated for all the 
sample values. 

In the optimization, the number of wells was handled as a continuous 
variable instead of an integer. The authors consider that, because it is 
only one variable, optimization results can be rounded and still provide 
valuable information while simplifying considerably its numerical 
implementation in the numerical algorithm. 

Simulation phase 

Three model parameters J, qppo,w and N have inherent uncertainty 
which had to be dealt with before optimizing the models. We assume 
that the data about well performance is highly uncertain. So, we 
multiply the well productivity index J and the maximum well produc
tion qppo,w by a common factor F, uniformly distributed between 0.4 and 
1.6. The initial oil-in-place, N is distributed according to the log-normal 
truncated cumulative distribution function given in Fig. 3, with a mean 
of 2.16⋅109 stb (determined through inverse sampling using Monte Carlo 
simulations). This distribution represents the in-place volume un
certainties existing at the beginning of the field planning phase. It is 
assumed to be log-normal because this is the typical probability distri
bution of N when estimating reserves [45]. The authors would like to 
highlight that this approach to handle subsurface uncertainties is rather 
simplistic and does not allow to study more complex situations with e.g. 
permeability and porosity areal variability. Unfortunately these limita
tions are due to the analytical model we employed. However, we believe 
this model could still be useful for early phases of field development, 
where data and models are scarce and inaccurate. For later stages of field 
development, when more detailed models and information is available, 
it is important to perform a more complex uncertainty analysis on 
subsurface parameters. 

We sampled 30 random realizations for each variable and arranged 
them in triplets. This was used as an input for the numerical optimiza
tion. Also, we repeated the numerical experiments by taking the mean 
values of the given distributions. Here, F is given to be uniformly 
distributed between 0.4 and 1.6. 

Optimization phase 

This is the final phase for solving the problem. Differential Evolution 
(DE) [46] is used as the optimization tool for the present study. Here, for 
each triplet obtained during the MC simulation phase, DE is executed 30 
times and the best value is recorded. Similarly, DE is used for evaluating 
the objective function values when the mean values for J, qppo,w and N 
are used. The population size of DE is kept as 50 and stopping criterion is 
taken as number of function evaluations (equal to 25,000 in this study). 
Mutation rate and crossover rate are kept as 0.5 each. 

Bilal et al.                                                                                                                                                                                                                                       
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Working of DE: The field oil rate at initial time is taken as qppo =

qppo,w⋅Nw. Where Nw is varied from 1 to 20. In Case 1, plateau rate, qp,f is 
treated as continuous variable, which is to be determined. Now qp,f is 
initialized or generated between upper and lower bound. The upper 
bound is qppo, as given in the function, and the lower bound is set to 1. 
Then, qp,f is generated as 

qp,f = 1 +
(
qppo − 1

)
⋅rand(0, 1) (6) 

For each qp,f the objective function is calculated after which qp,f 

undergoes the mutation and crossover phase for which the parameters F 
and Cr are kept as 0.5 each. After performing mutation and crossover, a 
new qp,f is obtained, say qp,f

′ . Now, for each qp,f
′ the objective function is 

calculated and the maximum value is recorded. Finally, in the selection 
phase the tournament selection is performed between the objective 
function values obtained through qp,f and qp,f

′ and the one having the 
highest objective function value is selected for the next generation. The 
process go on until the stopping criteria, fixed as the maximum numbers 
of function evaluations in the present study, are satisfied. 

For Case 2, Nw and qp,f both are treated as continous variables. Here 
Nw is generated between the upper and lower bound i.e. between 1 and 
20. The qp,f is generated as in Case 1 and all the process is kept the same 
as in Case 1. The same is done for Case 3 as well. 

Parameter tuning: DE has two parameters: scaling factor F and 
crossover rate Cr which are generally varied between 0.9 to 0.1 and 0.1 
to 0.8, respectively. In the present study a fine tuning of both F and Cr 
was done and the best performance was recorded for 0.5 for both the 
parameters. 

Results 

Case 1 - Maximizing net present value 

Tables C.1 and C.2 in Appendix C give the results obtained when the 
objective function is maximizing NPV. Nw is treated as a discrete input 
parameter, and the values for qp,f and RF,u are recorded along with other 
associated parameters. Results are shown when using the mean of the 
distributions of J, qppo,w and N and the 30 random samples (hereby 
referred to as “simulated”) . 

From these tables the maximum value for NPV is obtained to be 3.13⋅ 
109 and 3.37⋅109 USD and the corresponding qp,f and RF,u are calculated 
to be 233,194 and 239,128 stb/d, 0.243 and 0.234, respectively for 
mean and simulated values of J, qppo,w and Nw. The optimal number of 
wells is 13. 

Graphical results for calculations when using the mean values and 
simulated values of J, qppo,w and N are shown in Figs. 4, 5 and Figs. C.1, 
C.2, C.3, and C.4, in Appendix C. The graphical results indicate the 
similarity between the results obtained through the simulated values of 
J, qppo,w and N as well as the results obtained while using the mean 
values. 

Due to the similarity between the results using the mean values and 
the average of the simulated values, the runs performed in subsequent 
sections of the study are using the means only. In early field develop
ment, decisions about the design features of the field are often made 
based on the mode of the distributions. 

Table C.3 in Appendix C provides the results when both 1 < Nw < 20 
and 0 < qp,f < qppo,w are taken as continuous variables varying between 
the specified ranges. The results are calculated using the mean values of 
J, qppo and N. The table presents the results of 10 independent runs of DE, 
while each run is executed 30 times. Finally, the mean of all 10 

simulations is recorded. The value of NPV is calculated as 3.13⋅109 USD 
with Nw as 13. The corresponding values of qp,f and RF,u are evaluated as 
232,812 stb/d and 0.243, respectively. 

Case 2 - Maximizing ultimate recovery factor (RF,u) 

As a second case, the ultimate recovery factor, RF,u, is taken as the 
function to be maximized and the corresponding values of NPV and qp,f 

are recorded while (1) varying the values of Nw from 1 to 20 by 
considering it as a discrete variable and (2) by considering Nw as a 
continuous variable along with qp,f . Results are presented in Tables C.4 
and C.5 in Appendix C. 

It was observed that the best value for RF,u was obtained as 0.246 
with qp,f calculated as 399 750 stb/d for Nw = 20. However, there was a 
modest decrease in NPV when compared against the case optimizing 
NPV only (2.41⋅109 USD vs 3.13⋅109 USD, a 23% decrease). A similar 
result was observed when both qp,f and Nw were treated as continuous 
variables. Here also, the best value of RF,u (0.247) was obtained with qp,f 

= 398 591 stb/d and was obtained for Nw = 19.9 while NPV was 
calculated as 2.42⋅109 USD. Therefore, we see a tradeoff between RF,u 

and NPV. These are expected results as RF,u and qp,f are directly pro
portional to the number of wells (Nw), while NPV is concave with respect 
of Nw. 

Case 3 – Multi-objective optimization 

Results in the previous model indicated a tradeoff between RF,u and 
NPV. This shows that a compromise solution is needed that will maxi
mize both simultaneously. This led us to the third model which is multi- 
objective and maximizes both NPV and RF,u simultaneously. The prob
lem thus becomes:  

Maximize 

NPV = (1 − R)⋅(1 − Tax)⋅
(
NPVp.with OPEX 1 − OPEX2

)
− CAPEXFPSO

− CAPEXWELLS − CAPEXSUB (5a) 

and 

Rf ,u =
uptime
m⋅N

⎡

⎢
⎣qppo − qp,f ⋅e

(

− m⋅t+

(

qppo
qp,f

− 1

))
⎤

⎥
⎦ (6a) 

Subject to the constraints: 

qp,f ≤ qppo,w⋅Nw (7) 

Where both qp,f and Nw were treated as continuous variables. The 
results of the optimization are given in Table C.6 in Appendix C. Figs. 6 
and 7, and Figs. C.5, C.6 present plots depicting optimal NPV, optimal 
field plateau rate, optimal number of wells and optimal ultimate re
covery factor. The relationship is proportional between number of wells 
and ultimate recovery factor, and between field plateau rate and ulti
mate recovery factor. The relationship is inversely proportional between 
NPV and ultimate recovery factor, between NPV and number of wells, 
and between NPV and field plateau rate. 

Fig. 8 presents a Pareto front of optimal NPV and ultimate recovery 
factor (RF,u) obtained with the multi-objective optimization. The plot 
shows that it is possible to obtain field designs with high NPV and with 
high ultimate recovery factor. 
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Comparison of results with Nunes et al. [28] 

In the present study, the analytical model suggested by Nunes et al. 
[28] is treated as an optimization problem, incorporating inherent un
certainties in the model parameters to depict a more realistic scenario. 

Nunes et al. [28] considered the base case with Nw = 10 and the 
corresponding NPV and NPVp are calculated as 3.66 and 16.12, in billion 
dollars, respectively. In the present study, NPV and NPVp are calculated 
approximately as 3.72, 16.4 for mean and 3.48, 15.9 for simulated 
values in billion dollars, which is in good agreement with the values of 
Nunes et al. [28]. Furthermore, the authors calculated the optimal 
number of wells to be 13, with NPV equal to 4.86 billion dollars. In the 
present study, the optimal number of wells is also 13. However, the 
corresponding NPV is obtained approximately as 3.89 and 3.70 (billion 
US dollars) for mean and for simulated values, respectively. An increase 
in the number of wells to 20 does not provide an improvement in the 
value of NPV, but it does in the value of ultimate recovery factor. 

Conclusions 

A numerical optimization model was employed to compute the 
number of wells, plateau rate and NPV on a Brazilian offshore oil field. 
Well productivity and initial oil-in-place uncertainties were considered, 
and handled by (1) using the mean of the distributions and (2) Monte 
Carlo simulation. The proposed method successfully computes proba
bility distributions of optimal number of wells, field plateau rate and 
NPV. These distributions can provide decision support to field planners 
in early stages of field development. Using uniform distributions to es
timate J and qppow,w is a limited approach to capture the diversity of 

subsurface effects that could result from a real complex field. However, 
the authors believe that it is appropriate considering the model 
employed and the application (early field planning). 

As seen in Case 1, it is adequate to run an optimization using the 
average of the input values instead of performing Monte Carlo sampling. 
In Case 2, it is observed a tradeoff between NPV and ultimate recovery 
factor. As seen in Case 3, the multi-objective optimization allows to find 
field designs with high ultimate recovery factor and an NPV very close to 
the optimum found when considering NPV optimization only. 

In case 3, it is also possible to observe the proportional relationship 
between the number of wells and ultimate recovery factor, and between 
field plateau rate and ultimate recovery factor. The relationship is 
inversely proportional between NPV and ultimate recovery factor, be
tween NPV and number of wells, and between NPV and field plateau 
rate. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This article has been written under the Norwegian Center for 
Research-based Innovation on Subsea Production and Processing 
(SUBPRO). The authors greatly acknowledge the financial support by 
the Research Council of Norway, as well to the industrial partners 
involved in this project.  

Appendix A. Assumptions and estimation of the original oil-in-place and productivity index from the work of Nunes et al. [28] 

If the reservoir is under-saturated and produced with Nw identical standalone wells, the production decline constant m is a function of the number 
of wells, well productivity index (J), and initial oil-in-place (N) as indicated in Eq. (A.1): 

m =
Nw⋅J⋅c

N
(A.1) 

Where c is a constant that depends on oil compressibility (co), oil formation volume factor (current Bo and initial Bo,i), connate water (cw) and 
formation compressibility (cf ), oil saturation (So) and connate water saturation (Sw): 

c =
Bo[

Bo,i⋅
(

co +
cw ⋅Sw+cf

So

)] (A.2) 

Assuming that Bo is constant and equal to Bo,i, and using the values presented in Table A.1. Substituting in Eq. (A.2), this gives c = 976 bar. 
To estimate well productivity (J) from the data provided by Nunes et al. [28], initial reservoir pressure (pRi) is assumed to be 350 bara and it is 

assumed that the minimum flowing bottom-hole pressure achievable (pwf ,min) is 100 bara. This gives that the maximum rate of each well at initial 
conditions is: 

qppo,w = J⋅
(
pRi − pwf ,min

)
(A.3) 

Substituting these values and qppo,w = 20 000 stb/d gives J= 80 stb/d/bar. Finally, using the values of Nunes, b = 0.13 [1/year] (b = m), Nw = 10, 
and clearing N from Eq. (A.1). then 

N =
976
0.13

⋅10⋅80⋅365 = 2.19E09 stb (A.4)  

Table A.1 
Values of oil compressibility (co), connate water (cw), connate water saturation (Sw), formation compressibility (cf) and oil saturation (So) used in 
the model.  

Values of oil compressibility (co) 9.50E-04 [1/bar] 
Connate water (cw) 4.00E-05 [1/bar] 
Connate water saturation (Sw) 0.3  
Formation compressibility (cf) 4.00E-05 [1/bar] 
Oil saturation (So) 0.7   
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Appendix B. Auxiliary equations 

Equations to estimate capital expenditures (CAPEX) where taken from the work of Nunes et al. [28] and customized as follows: 

• As the number of water injector wells is more dependent of the reservoir drainage pattern and reservoir geometry than other reservoir charac
teristics or the number of producer wells, we assume there are only 9 water injectors in the field, independent of the number of producers 
employed.  

• The CO2, H2S, and sulfate removal unit factors are set to 1.  
• The water depth is 2000 m.  
• Each well has a pipeline associated with it, with an average length of 6 000 m.  
• Each subsea manifold can accommodate up to 4 producing wells.  
• The cost of installation of flowlines is 2 000 USD/m. 

The final equations obtained are given in Eq. (B.1) (drilling and well costs), Eq. (B.2) (topside and offshore structure) and Eq. (B.3) (subsea system). 

CAPEXwells = Nw⋅150⋅106 + 1.35⋅109 (B.1)  

CAPEXfpso = qp,f ⋅2.51⋅103 + 1.07⋅109 (B.2)  

CAPEXSUB = Nw⋅9.20⋅107 + 4.93⋅108 + 32⋅106⋅round
(

Nw

4

)

(B.3) 

In these equations, qp,f must be in stb/d and the output is in USD. 

Appendix C. Results in table format and additional plots   

Table C.1 
Values of optimal NPV, discounted value of revenue (NPVp), field plateau rate (qp,f ) and ultimate recovery factor (RF,u) obtained when maximizing net present value 
NPV while varying the number of wells from 1 to 20. Values are computed using the mean of the input distributions of productivity index (J), well oil rate at initial time 
(qppo,w) and initial oil-in-place (N) and using 30 random samples (simulated).   

NPV [1e09 USD] NPVp [1e09 USD] qp,f [stb/d]  RF,u [-]  
Nw  NPVsimul NPVmean NPVp, simul NPVp, mean qp,f , simul  qp,f , mean  RF,usimul  RF,umean  

1 -1.72 -1.9 2.4 2.18 20990.48 19885.43 0.069171 0.066564 
2 -0.48 -0.59 5.1 5.01 41750.07 39683.53 0.117138 0.118977 
3 0.48 0.37 6.7 7.16 62201.41 59146.21 0.143691 0.154829 
4 1.24 1.1 9.1 8.93 82277.74 78324.14 0.174361 0.180638 
5 1.83 1.7 10 10.4 101913.4 97555.52 0.18945 0.199226 
6 2.25 2.1 12.3 11.7 121051.8 115730.1 0.203641 0.212599 
7 2.60 2.5 13.1 12.8 139675 134309.2 0.211025 0.222234 
8 2.87 2.7 14.0 13.7 157724.1 151867.8 0.221026 0.229167 
9 3.07 2.90 15.4 14.5 175203.3 169076.8 0.225319 0.23416 
10 3.19 3.0 15.7 15.1 192084 185826.7 0.229676 0.237608 
11 3.28 3.08 16.5 15.8 208359.2 202420.2 0.233832 0.240346 
12 3.34 3.11 17.1 16.3 224005.1 217733.9 0.235908 0.242157 
13 3.37 3.13 17.5 16.9 239128.5 233194.4 0.234852 0.243553 
14 3.33 3.09 18.3 17.3 253605.3 247647.6 0.239976 0.244521 
15 3.31 3.0 18.5 17.7 267561.9 261746 0.241206 0.245219 
16 3.26 2.9 18.9 17.9 280946.7 275677.1 0.242222 0.245691 
17 3.19 2.9 19.2 18.4 293773.8 288780.7 0.243033 0.246085 
18 3.07 2.8 19.5 18.7 306048.5 301237 0.243591 0.246346 
19 2.98 2.60 19.6 19.0 317886.8 313343.6 0.244056 0.246534 
20 2.87 2.40 20.0 19.1 329149.7 324917.4 0.244673 0.246527  
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Table C.2 
Values of topside, drilling and subsea capital expenditures (CAPEX) and decline constant m obtained when maximizing NPV while varying the number of wells from 1 
to 20. Values are computed using the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) and using 
30 random samples (simulated).   

CAPEXFPSO [1e09 USD] CAPEXWELLS [1e09 USD] CAPEXSUB [1e09 USD] m [1/year] 

Nw  CAPEXFPSO,sim CAPEXFPSO,mean CAPEXWELLS,sim CAPEXWELLS,mean CAPEXSUB,sim CAPEXSUB,mean msim mmean 

1 1.1 1.11 1.50 1.50 0.585 0.585 0.013658 0.013142 
2 1.21 1.17 1.65 1.65 0.709 0.709 0.027316 0.026285 
3 1.26 1.21 1.80 1.80 0.801 0.801 0.040973 0.039427 
4 1.3 1.26 1.95 1.95 0.893 0.893 0.054631 0.052569 
5 1.33 1.31 2.10 2.10 0.985 0.985 0.068289 0.065712 
6 1.37 1.36 2.25 2.25 1.110 1.110 0.081947 0.078854 
7 1.41 1.4 2.40 2.40 1.200 1.200 0.095604 0.091996 
8 1.46 1.45 2.55 2.55 1.290 1.290 0.109262 0.105139 
9 1.51 1.49 2.70 2.70 1.380 1.390 0.12292 0.118281 
10 1.56 1.54 2.85 2.85 1.510 1.510 0.136578 0.131424 
11 1.60 1.57 3.00 3.00 1.600 1.600 0.150235 0.144566 
12 1.64 1.6 3.15 3.15 1.690 1.690 0.163893 0.157708 
13 1.68 1.65 3.30 3.30 1.780 1.790 0.177551 0.170851 
14 1.71 1.69 3.45 3.45 1.910 1.910 0.191209 0.183993 
15 1.75 1.72 3.60 3.60 2.000 2.000 0.204866 0.197135 
16 1.79 1.78 3.75 3.75 2.090 2.090 0.218524 0.210278 
17 1.80 1.79 3.90 3.90 2.180 2.190 0.232182 0.22342 
18 1.84 1.82 4.05 4.05 2.310 2.310 0.24584 0.236562 
19 1.87 1.85 4.20 4.20 2.400 2.400 0.259497 0.249705 
20 1.89 1.87 4.35 4.35 2.490 2.490 0.273155 0.262847  

Table C.3 
Values of optimal NPV, discounted revenue (NPVp), optimal number of wells (Nw), optimal field plateau rate (qp,f ), ultimate recovery factor (RF,u), capital expenditures 
(CAPEXFPSO, CAPEXWELLS, CAPEXSUB) and decline constant m when maximizing NPV and assuming qpf and Nw are continuous variables. Values are computed using the 
mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N).  

NPV [1e09 USD] NPVP [1e09 USD] qp,f [stb/d]  Nw [-]  RF,u [-]  CAPEXFPSO [1e09 USD] CAPEXWELLS [1e09 USD] CAPEXSUB [1e09 USD] m [1/year] 

3.13 16.8 232629.4 12.92018 0.243463 1.65 3.29 1.78 0.169802 
3.13 16.7 228057.7 12.65107 0.243134 1.64 3.25 1.75 0.166265 
3.13 16.7 226544.2 12.56728 0.243026 1.63 3.24 1.75 0.165164 
3.13 16.7 229436.6 12.69772 0.243194 1.6 3.25 1.76 0.166878 
3.13 16.8 229827.8 12.77853 0.243293 1.64 3.27 1.76 0.16794 
3.13 16.5 220453.2 12.14348 0.242432 1.62 3.17 1.71 0.159594 
3.13 16.7 226262.7 12.5687 0.243027 1.63 3.24 1.75 0.165182 
3.13 16.5 221068 12.21581 0.242549 1.64 3.18 1.71 0.160544 
3.13 16.9 232812.8 13.03234 0.243485 1.65 3.29 1.78 0.170053 
3.13 16.8 230729.2 12.80974 0.243341 1.66 3.27 1.77 0.16835  

Table C.4 
Optimal values of ultimate recovery factor (RF,u), and associated values of NPV, optimal field plateau rate, discounted value of revenue, capital expenditures 
(CAPEXFPSO, CAPEXWELLS, CAPEXSUB), decline constant m obtained when maximizing RF,u while varying the number of wells from 1 to 20. Values are computed using 
the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N).  

Nw  RF,u [-]  NPV [1e09 USD] qp,f [stb/d]  NPVP [1e09 USD] CAPEXFPSO [1e09 USD] CAPEXWELLS [1e09 USD] m [1/year] CAPEXSUB [1e09 USD] 

1 0.069112 -1.8 19988.76 2.4E 1.11 1.5 0.013142 0.59 
2 0.118981 -0.59 39986.1 5.01 1.17 1.65 0.026285 0.71 
3 0.154838 0.37 59848.84 7.16 1.22 1.8 0.039427 0.8 
4 0.180654 1.12 79695.06 8.94 1.27 1.95 0.052569 0.89 
5 0.197094 1.7 99726.47 9.88 1.25 2.1 0.065712 0.99 
6 0.212621 2.12 119408.3 11.7 1.37 2.25 0.078854 1.11 
7 0.222216 2.46 139749.5 12.8 1.4 2.4 0.091996 1.2 
8 0.228689 2.71 159891.7 13.4 1.39 2.55 0.105139 1.29 
9 0.234186 2.9 179797.2 14.5 1.52 2.7 0.118281 1.38 
10 0.237781 2.99 199901.5 15.2 1.57 2.85 0.131424 1.51 
11 0.24037 3.07 219388.6 15.9 1.62 3 0.144566 1.6 
12 0.242119 3.1 229974.9 16.2 1.55 3.15 0.157708 1.69 
13 0.243575 3.11 239666.1 16.9 1.72 3.3 0.170851 1.78 
14 0.244541 3.04 279541.2 17.4 1.77 3.45 0.183993 1.91 
15 0.245236 2.99 299596.6 17.8 1.82 3.6 0.197135 2 
16 0.245712 2.91 319491 18.0 1.73 3.75 0.210278 2.09 
17 0.246098 2.82 339988.9 18.5 1.92 3.9 0.22342 2.18 
18 0.246352 2.68 358762.7 18.8 1.87 4.05 0.236562 2.31 
19 0.246544 2.55 379164 19.1 2.02 4.2 0.249705 2.4 
20 0.246679 2.41 399750.8 19.4 2.07 4.35 0.262847 2.49  
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Table C.6 
Results of multi-objective optimization of ultimate recovery factor (RF,u) and NPV. The number of well (Nw) and field plateau rate (qp,f ) are treated as continuous 
variables. Values are computed using the mean of the input distributions of productivity index (J), well oil rate at the initial time (qppo,w), and initial oil-in-place (N).  

RF,u [-] NPV [USD] qp,f [stb/d]  Nw  

0.244072 3126299365 231999.3 13.51 
0.2442 3125267324 232167 13.70 
0.244356 3120631902 236450.2 13.77 
0.24451 3115215635 240234.3 13.87 
0.244528 3112926050 256691 13.99 
0.24462 3079596181 247378.7 14.12 
0.244973 3040210280 278937.2 14.58 
0.245258 2998954300 236403.2 15.13 
0.245517 2933576185 231949.4 15.67 
0.245921 2929968976 290348.1 16.49 
0.24589 2887604829 248044.3 16.52 
0.245884 2805128868 228099.2 16.61 
0.245707 2804210902 217367.7 16.20 
0.2459 2800346768 250978.5 16.73 
0.246101 2785681642 285628.8 17.56 
0.246311 2765495241 277554.3 17.83 
0.246354 2743832214 290269 18.06 
0.246341 2741927825 282624.3 18.02 
0.24665 2522596729 304992.9 19.87 
0.246668 2517779650 327653.6 19.97 
0.246649 2505462893 328565.4 19.97  

Fig. C.1. Values of capital expenditures of topside (CAPEXFPSO) vs number of wells (Nw) calculated when optimizing NPV using (1) the mean of the input distri
butions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table C.5 
Optimal values of ultimate recovery factor (RF,u), and associated values of NPV, optimal field plateau rate (qp,f ), the optimal number of wells (Nw), discounted value of 
revenue (NPVP), capital expenditures (CAPEXFPSO, CAPEXWELLS, CAPEXSUB), decline constant m obtained when maximizing RF,u. Values are computed using the mean 
of the input distributions of productivity index (J), well oil rate at the initial time (qppo,w), and initial oil-in-place (N).  

RF,u[-] NPV [1e09 USD] qp,f [stb/d]  Nw  NPVP [1e09 USD] CAPEXFPSO [1e09 USD] CAPEXSUB [1e09 USD] CAPEXWELLS [1e09 USD] m [1/year] 

0.246604 2.58 387794.8 19.32 19.2 1.95 2.43 4.25 0.254006 
0.24666 2.3 393627.9 19.84 18.4 1.65 2.48 4.33 0.260791 
0.246658 2.44 395294.3 19.82 19.3 2.06 2.48 4.32 0.260549 
0.246621 2.48 388539.7 19.52 19.2 2.04 2.45 4.28 0.256638 
0.246512 2.55 372498.2 18.80 18.5 1.69 2.38 4.17 0.247102 
0.246653 2.54 390093.8 19.78 19.1 1.86 2.47 4.32 0.259956 
0.246616 2.48 389706.4 19.49 19.2 2.05 2.45 4.27 0.256212 
0.246674 2.42 398591.2 19.96 19.4 2.07 2.49 4.34 0.262372 
0.246662 2.46 392630.7 19.86 19.3 2.03 2.48 4.33 0.26101  
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Fig. C.2. Values of decline constant m vs number of wells (Nw) calculated when optimizing NPV using (1) the mean of the input distributions of productivity index 
(J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. C.3. Values of discounted value of revenue (NPVP) vs number of wells (Nw) calculated when optimizing NPV using (1) the mean of the input distributions of 
productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. C.4. Values of optimal field plateau rate (qp,f ) vs number of wells (Nw) calculated when optimizing NPV using (1) the mean of the input distributions of 
productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 random samples (blue line, average). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. C.5. Values of optimal field plateau rate (qp,f ) and ultimate recovery factor (RF,u) calculated when optimizing NPV versus number of wells (Nw). Values are 
computing using the mean of the input distributions of productivity index (J), well oil rate at the initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 
random samples (blue line, average). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Appendix D. Algorithmic steps: differential evolution and multi-objective differential evolution (MODE) 

Differential evolution (DE) 

DE [46] works in two phases: Initialization and Evolution, defined below. 
A. Initialization: this is the first step of DE, during which a uniformly distributed population set SG = {XG

j : j= 1, 2,…,NP} is generated. Here, NP 
denotes the population size for generation G. XG

j = {xG
1,j, xG

2,j,…., xG
D,j} generated as follows: 

XG
j = Xlow +

(
Xupp − Xlow

)
⋅rand(0, 1)

Where D is the dimension of the problem and Xlow,Xupp indicates the lower and upper bounds respectively for the search space SG and rand (0,1) 
denotes a uniformly generated random number between 0 and 1. 

B. Evolution: in this phase, three operations: mutation, crossover, and selection are activated as follows: 
i. Mutation: in this step a mutant vector VG

j is obtained for each target vector XG
j as 

VG
j = XG

r1
+ F⋅

(
XG

r2
− XG

r3

)

Where F is the scaling factor varying between 0 and 1; r1, r2, r3 ∈ {1,2,⋯,NP} are vectors, randomly selected such that they are mutually different 
from each other and also from the index j. 

ii. Crossover: during crossover, a new vector known as the trial vector denoted as UG
j = {uG

1,j, uG
2,j,…., uG

D,j} is generated with the help of target vector 
XG

j = {xG
1,j, xG

2,j,…., xG
D,j} and mutant vector VG

j = {vG
1,j,vG

2,j,….,vG
D,j}. This is shown below 

uG
i,j =

⎧
⎨

⎩

vG
i,j if randj ≤ Cr

xG
i,j otherwise 

Where i ∈ {1,2,…,D} and Cr, the crossover probability, ∈ [0,1].
iii. Selection: during this process, candidate for the next generation is selected out of target vector and trial vector. The one with better fitness moves 

to the next generation. This is done as follows: 

XG+1
j =

⎧
⎨

⎩

UG
j if f

(
UG

j

)
≥ f
(

XG
j

)

XG
j otherwise 

The above three operations are repeated iteratively, until a predefined termination criterion is obtained. Fig. D.1 shows a diagram with the 
graphical representation of the steps described above. 

Fig. C.6. Values of optimal field plateau rate (qp,f ) and NPV calculated when optimizing NPV and ultimate recovery factor (RF,u) versus number of wells (Nw). Values 
are computing using the mean of the input distributions of productivity index (J), well oil rate at initial time (qppo,w) and initial oil-in-place (N) (red line) and (2) 30 
random samples (blue line, average). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Multi-objective differential evolution (MODE) 

The main difference between DE and MODE is in the selection phase. In DE a one-to-one selection is performed between the trial and the target 
vector i.e. only the target and trial vectors having the same index are compared with each other and the one with better fitness is carried forward to the 
next generation. MODE follows a non-dominated selection process, where the comparison between trial and target vector is according to the rules of 
dominance, according to which, a vector x dominates a vector y [47] if at least one of the following conditions are being satisfied 

1. x is at least as good as y for all the objectives. 
2. x is strictly better than y for at least one objective. 

Thus, the trial vector U replaces the target vector X only if it dominates X. 

Fig. D.1. Diagram describing the details of the DE method used in this work.  
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XG+1
j =

⎧
⎨

⎩

Uj
G if f1,2,..n

(
UG

j

)
dominates f1,2,…n

(
XG

j

)

XG
j otherwise 

Here, XG
j represents a set of non-dominated solutions. Finally, the non-dominated solutions are sorted using the naïve and slow approach suggested 

by Deb [47] to obtain the Pareto front. 
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