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Abstract

Some systems in ultrasonic testing can be approximated as two non-parallel plates
coupled by a fluid, where leaky Lamb waves propagate in each plate. This thesis develops
a fast and accurate simulation method for such systems. The guiding example is through-
tubing well logging, where the aim is to determine the presence of cement through two
nested pipes of steel. However, to be able to feasibly determine this through inversion,
recent studies have called for a computationally efficient forward model.

The proposed method models each plate using reflection and transmission coeffi-
cients. An angular spectrum approach combined with a coordinate rotation method in
the wave vector domain handles the multiple reflections between tilted plates.

Two-dimensional propagation is verified against reference simulations in COMSOL
Multiphysics. The deviations have known origins and are of little practical significance,
and the moderately optimized code executes roughly 10 000 times faster than COMSOL.
Three-dimensional propagation is also shown. A mechanism based on Lamb mode con-
version between tilted plates is explained for detecting cement types other pitch-catch
setups struggle with. As proof of concept, simulation parameters from a COMSOL
simulation are successfully retrieved via inversion.





Sammendrag

Enkelte systemer i ultralydtesting kan tilnærmes som to ikke-parallelle plater koblet med
et fluid, der utstrålende Lamb-bølger brer seg ut i hver plate. Denne oppgaven utvikler
en rask og nøyaktig simuleringsmetode for slike systemer. Det veiledende eksemplet er
gjennomrørs brønnlogging, der målet er å fra innsiden fastslå tilstedeværelsen av sement
bak to stålrør. For å være i stand til å bestemme dette gjennom inversjon, har nyere
studier etterspurt mer effektive beregningsmodeller.

Den foreslåtte metoden modellerer hver plate ved hjelp av refleksjon- og transmisjon-
skoeffisienter. Angular spectrum-metoden kombinert med en koordinatrotasjonsmetode
i bølgevektordomenet håndterer multiple refleksjoner mellom skråstilte plater.

Todimensjonal utbredelse er verifisert mot referansesimuleringer i COMSOL Mul-
tiphysics. Avvikene har kjent opprinnelse og er av liten praktisk betydning, og den
moderat optimaliserte koden er omtrent 10 000 ganger raskere enn COMSOL. Tred-
imensjonal utbredelse er også vist. En mekanisme basert på konvertering av Lamb-
moder mellom skråstilte plater er forklart for oppdagelse av sementtyper som andre
pitch-catch-oppsett sliter med. For å demonstrere konseptet blir simuleringsparametere
fra en COMSOL-simulering vellykket hentet ut via inversjon.
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Chapter 1

Introduction

1.1 Background and motivation
Every oil well will one day, for whatever reason, need to be permanently plugged and
abandoned (P&A). Some petroleum will always remain in the ground when wells are
abandoned, and the plugs must be tight so that hydrocarbons cannot leak out from a
poorly sealed well and harm the environment. The tubes of concrete and steel, stretching
kilometers into the ground, cannot be removed entirely. Therefore, Norwegian legisla-
tion imposes strict demands on the oil companies to ensure that the wells are plugged
safely [1], but the associated costs are high. SINTEF estimates that with today’s tech-
nology, the cost of plugging every remaining well would reach several hundreds of billions
of NOK [2], 78 percent of which falls on the Norwegian taxpayers. Better P&A technol-
ogy that can reduce the overhanging cost of closing wells can potentially save both the
state and a global industry massive resources to be allocated elsewhere.

A significant step forward in P&A technology can be made by improving the flex-
ibility of cement evaluation techniques also to cover double casings, as exemplified in
Fig. 1.1. An oil well runs from the ground surface down to a petroleum reservoir. The
casings, which are large-diameter steel pipes, keep the hole from caving in, and cement
is placed between the casing and the surrounding rock walls. The cement acts as a seal
that ensures the only way for petroleum to flow is through the casing. A perfect cement
seal is required before abandonment to keep hydrocarbons from migrating outside the
plugged casings towards the surface. Poor cement quality is linked with several defects,
e.g., microannuli1, channeling2, and cracks3 that give fluids a path of migration.

In existing wells, cement bond logs may already be available. However, they can be
decades old and performed during construction with only a single casing. New logs will
therefore have to be made in many situations. Today the evaluation of cement quality
can only be performed through one casing, and if two casings are present, the procedure
gets very costly as casings must be pulled out of the borehole. A better option would be
to leave the casings in place and perform the logging through the inner casing. Promising
initial results have been published by Viggen et al. [3, 4], suggesting that the ultrasonic
pitch-catch logging method in a single casing (illustrated in Fig. 1.2a, but explained

1A small gap between the casing and the surrounding cement sheath.
2The condition where cement flows in a channel only on some sides of the casing.
3As in everyday speech, a crack in the material where fluid can enter.
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CHAPTER 1. INTRODUCTION

Fig. 1.1. Oil well with double casing. In through-tubing logging, measurements are per-
formed from the inner casing (without removal), here with aim to detect the channeling
outside the outer casing.

in greater detail in Sec. 1.2) can be extended to a double casing setup (illustrated in
Fig. 1.2c).

Unfortunately, the step from single to double casing adds a great deal of complexity
to the problem, and the quality of the cement cannot be inferred directly. An evalua-
tion of the cement quality behind two casings will therefore rest on an inversion method.
A key ingredient in inversion schemes is the forward model, essentially a computational
model that bridges the parameters of interest (e.g., cement quality) to real measurement
data from an actual well. The forward model is calculated many times with continu-
ously updated parameters as its output converges towards the measurement; when the
deviance between model and measurement is small, one assumes that the true state
of the system measured has been captured. In principle, the forward model could be
implemented in a finite element analysis software such as COMSOL Multiphysics, but
a computation time of several hours for each iteration would be prohibitive for practi-
cal well logging. Therefore, it is necessary to develop an efficient forward model that
captures all the relevant physics in the pitch-catch method, such as casing eccentricity.

A common simplifying assumption usually made about the casings is that they can
be locally approximated to be plates [5, 6], which in general is valid when the wave-
lengths considered and wall thickness are much smaller than the casing diameter [7].
Wave propagation in plates, a form of guided wave referred to as Lamb waves, and in
layered media in general, is well studied, with applications in, e.g., non-destructive
testing (NDT), marine acoustics, and seismology. With the plate approximation, casing
eccentricity translates into non-parallel plates. However, should the casings be concen-
tric, they can still be non-parallel along a different axis if one casing is tilted.

This thesis aims at developing an efficient forward model for through-tubing well
logging that captures all of the relevant physics when using the plate approximation
for the casings. Previous results related to this thesis project [8], for a single plate,
have already verified that a model based on Lamb wave theory in combination with an
angular spectrum approach can be feasible.

The developed model will be relevant for many problems, as plates and plate-like

2



CHAPTER 1. INTRODUCTION

(a) Pitch-catch through a single
casing. A leaky A0 wave packet
is shown at two different times,
with reduced amplitude due to
attenuation.

(b) If a defect
such as channeling
is present, the
wave packet is less
attenuated.

(c) The double casing situation,
here as a snapshot in time. The
leakage from the initial wave packet
causes a cascade of wave packets to
be set up due to the (nearly) par-
allel plates and equal casing thick-
ness. The cement quality must be
inferred from the later wave packets
on the inner casing (e.g., ).

Fig. 1.2. Different situations that illustrate the pitch-catch technique in the single and
double casing setup. Cement quality is measured from the attenuation a wave packet
undergoes as it propagates along with the casing. Attenuation is primarily due to the
leakage from each packet, as is indicated by wavefronts; solid lines indicate longitudinal
waves, and dashed lines indicate shear waves.

3



CHAPTER 1. INTRODUCTION

structures are found in many systems. Examples include the walls of a house, the hull of
a ship, and the ice on a frozen lake. Another relevant example, which includes two plates,
is for the potential ultrasonic inspection of components inside the main vessel in sodium-
cooled nuclear reactors [9, 10], as an alternative to immersed ultrasonic transducers in
liquid sodium.

1.2 Ultrasonic well logging and previous work
Different acoustic methods exist for evaluating oil wells [11]. The first is a sonic
method [12] that measures the attenuation of a compressional wave, more specifically
an S0 Lamb wave [13], of about 20 kHz propagating in the casing along its axis. No
azimuthal information is obtained, making it challenging to distinguish poor cement
from other types of defects. Energy loss is mainly due to shear coupling, which can be
an issue if there is no solid contact, e.g., due to “wet” microannuli [14].

Ultrasonic pulse-echo measurements were introduced in part to get azimuthal infor-
mation. In the pulse-echo method, the tool carrying the sensors is pulled up the well
along a helical path. The transducer repeatedly emits short pulses at normal incidence
to the casing and measures the returning echo. The echo contains information about
the decay of mode resonance which is related to the acoustic impedance of the mate-
rial behind the casing. A higher measured impedance translates to a better coupling
to cement or better cementing quality. The accuracy of the impedance measurements
requires a difference in 1.0 MRayls between fluids and solids to separate one from the
other [15].

The pulse-echo technique is limited in evaluating light-weight cement and foam ce-
ment with low acoustic impedance contrast to mud. That motivated the development of
the pitch-catch technique [16], which is often used in conjunction with pulse-echo. It is
based on exciting the flexural mode of the casing or, in other words, the A0 Lamb mode.
The method is shown in Fig. 1.2a. A pulse is emitted from a transducer at an angle
that couples well to the casing. As the wave packet propagates along with the casing, it
leaks energy both to the fluid towards receiving transducers and to the material on the
other side of the casing. If the material is cement, the pulse is more heavily attenuated
because of the lower contrast in impedance. Energy is radiated in outgoing P-waves
and S-waves; however, the finer details depend on the casing and surrounding media. If
the material behind the casing is poor cement, a fluid, or some other defect, the pulse
is less attenuated, as shown in Fig. 1.2b, due to the weaker acoustic coupling to the
plate. The pulse is measured at two or more receivers, and the attenuation is used to
infer the material impedance behind the casing. The method may also probe deeper
into the cement layer when the echo reflected at the interface between rock and cement,
the third interface echo (TIE), is reliable. Rough and non-parallel interfaces are factors
that contribute to reduced TIEs.

Recent studies have investigated the possibility of using pitch-catch for through-
tubing logging with numerical simulations and various numbers of receivers [3, 4]. As
depicted in Fig. 1.2c, the two plates may support a cascade of wave packets. If the
two plates’ dispersion characteristics are similar and relatively parallel, the packets will
be well separable. The second packet on the inner casing ( ) depends in part on a
wave packet propagating on the outer casing ( ), and carries information about the
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CHAPTER 1. INTRODUCTION

cement quality. It was shown in [4] that with five receivers and a simple forward model,
a limited inversion was possible. However, to perform a general inversion as will be
needed in a practical setting, a complete forward model is needed that, quote “can deal
with factors such as differing dispersion relations on the casings, casing eccentricity,
misaligned casings, and attenuating fluids”.

In the literature, the theory of elastic waves in layered media is thoroughly described
in, e.g., [17], or [18]. However, it is limited to parallel planes, meaning casing eccentric-
ity cannot be readily included in the model. A proceedings article by Zeroug [19] very
briefly describes a method to include eccentricity by combining reflection and trans-
mission coefficients with a high frequency, approximate, “wavenumber-shifting scheme”.
Unfortunately, the shifting scheme is unpublished and only explained with a ray-based
argument.

1.3 Thesis aims and structure
The primary aim of this project is to create a computationally efficient forward model
for through-tubing well logging, simulating a situation as depicted in Fig. 1.2c, where
the casings are approximated as plates. The relevant physics considered is

• how an incident wave couples to the plate,

• how waves or wave packets propagate in a plate,

• how the waves are attenuated when the plate is in contact with different materials,

• how the leaked wave propagates between the plates and to the receiver,

• how the plates can be simulated as non-parallel.

The developed method will, in general, apply to any system consisting of multiple plates
and motivates the title “A Fast Simulation Method for Ultrasonic Wave Propagation in
Coupled Non-parallel Plates”.

In order to test the model’s validity, the simulations are compared to reference
simulations in COMSOL Multiphysics. Also, because the model is developed to solve the
inverse problem, simplified inversion will be attempted. It is also a goal to understand
wave propagation and the possibilities of solving the inverse problem. Therefore, the
theory of Lamb waves will be treated in detail.

The structure of the thesis is as follows. Ch. 2 covers the theory required, including
waves in elastic media, wave propagation in plates, the angular spectrum approach,
and inversion. In Ch. 3, the practical implementation is discussed, including tuning of
algorithms and choices in deciding parameters and system setups in the simulations. The
results are shown and discussed in Ch. 4, with the two main topics being to validate
the methods and performing inversion on a chosen example. In Ch. 5 the thesis is
concluded, and topics for further work are suggested.

Readers who are only interested in the developed simulation method for two non-
parallel plates may focus on the following sections: 2.2.3, 2.5, 2.6, 3.1, 3.3, and 4.1.
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Chapter 2

Theory

The theory can thematically be divided into three parts, where the first serves to give
context for the rest of the chapter. Sec. 2.1 takes up a common theme throughout this
thesis, which is the synthesis of spatially localized waves from infinite plane wave solu-
tions, and different wave types. Sec. 2.2 develops the basic theory by briefly giving the
necessary background for waves in solid media and then describes how matrix techniques
can be employed for layered elastic media. The focus is particularly on three-layered
media such as plates in contact with cement or water.

A significant portion of the theory is intended to give a good understanding of
Lamb waves. In Sec. 2.3 the modal theory of Lamb waves will be derived from the
context of the matrix framework for a plate in vacuum. Sec. 2.4 extends the practical
applicability of Lamb waves, as perturbation methods can be used to include the plate
interaction with surrounding media. That includes the attenuation of leaky Lamb waves,
as well as a technique called normal mode expansion (NME) that is valuable for assessing
both stationary and transient mode excitability. Because perturbation methods are not
exact, proper generalized Lamb waves that deviate from the free plate solution are also
discussed in this section.

The remaining sections cover different topics related to the forward and inverse
problem of two coupled, non-parallel plates. In Sec. 2.5 the angular spectrum approach
is presented, which is a natural method to model the leaked wavefields. A method from
optics, which seems not to have been applied in acoustics, is also presented that makes it
computationally cheap to connect two non-parallel plates. In Sec. 2.6 a complementary
derivation from the matrix framework is shown, leading to response methods. Response
methods provide little in terms of understanding but make it much easier to exactly
model generalized Lamb waves. Finally Sec. 2.7 discusses how to construct and solve
the inverse problem.

2.1 Some fundamentals of waves and propagation

2.1.1 Gaussian wave packets and dispersion

A natural way of specifying a localized wave is by using a Gaussian wave packet. A
benefit of the shape that the frequency spectrum is also Gaussian, where a sharply
localized spatial wave packet must contain a broad band, i.e., a wide Gaussian, of
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spatial frequencies, and vice-versa.
The Gaussian wave packet is a product of two parts: the Gaussian envelope, and the

carrier wave. In one dimension, the envelope is given by a center location x0 and spatial
width given by the variance σ2. The full width at half maximum (FWHM) is useful for
describing the width, and the two are related as FWHM ≈ 2.355σ [20]. The complex
carrier wave gives the wave-like structure and propagation direction, specified from the
carrier wavenumber kc at the center frequency of the wave packet. Their product is the
Gaussian wave packet g(x) at t = 0. Via the Fourier transform, it can be expressed in
the wavenumber domain instead as G(k)

g(x) = e−
(x−x0)

2

2σ2 · e−ikcx

F−→ G(k) =
σ√
2π
e−

σ2(k+kc)
2

2 · eix0(k−kc),
(2.1)

The wave packet can be propagated with time t when the dispersion relation ω(k) is
given. The relation connects the temporal angular frequency ω and the wavenumber.
Each wavenumber component can be treated separately by adjusting the phase according
to the dispersion relation and then reconstructing the wave packet again using the inverse
Fourier transform

g(x, t) = F−1
{
eiω(k)tG(k)

}
. (2.2)

If the Gaussian wave packet is reasonably sharp in the frequency domain, an analytical
solution for time propagation can be found [21]. Here only a few key features will be
discussed relating to the Taylor expansion of the dispersion relation. Around the carrier
wavenumber up to the second derivative, it reads

ω(k) = ω(kc)︸ ︷︷ ︸
kccph

+(k − kc)
∂ω(kc)

∂k︸ ︷︷ ︸
cgr

+
1

2
(k − kc)

2 ∂
2ω(kc)

∂k2︸ ︷︷ ︸
Γ

+ . . . , (2.3)

where the phase velocity cph and the group velocity cgr are recognized. The phase veloc-
ity gives the propagation velocity of a monochromatic wave, whereas the group velocity
gives the propagation velocity of a wave packet and also the energy propagation veloc-
ity unless the wave is attenuated somehow [22]. By substituting the Taylor expansion
with three terms back into Eq. (2.2) and discarding the phase factor, one gets that the
Gaussian envelope develops according to

env{g(x, t)} = exp

[
− 1

2

(
x− x0 − cgrt)

σ
√

1 + Γ2

σ4 t2

)2]
. (2.4)

It is clear that the Gaussian wave packet propagates at the group velocity. However, if
the wave packet contains a range of group velocities, the packet will disperse with time,
as captured by Γ.

2.1.2 Different types of acoustic waves

Fluid waves

Liquids and gases can only support one type of compressional wave that is non-dispersive.
Covered in most textbooks on engineering or marine acoustics [18, 23].
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Elastic waves

Elastic media, such as steel, can support two types of waves that travel at different
speeds. One is a longitudinal P-wave, where “P” is for primary or pressure. The other
is a slower transversal S-wave, where “S” stands for secondary or shear. The wave type
is covered in some detail in Sec. 2.2.1.

Free waves

Free waves describe all waves that propagate without energy loss and include fluid and
elastic waves that are not subject to attenuation. Classical Lamb waves, a type of guided
wave covered in Sec. 2.3, are also free waves.

Attenuated waves

Waves that propagate with loss of energy and are dampened along their propagation
direction. Heat conduction, viscoelasticity, and scattering are examples of underlying
causes of attenuation. In this work, any attenuation is due to the wave being leaky, as
covered more in Sec. 2.4.2.

Inhomogeneous waves

A wave that is exponentially increasing or decreasing along its wavefront. The situation
can be realized when a wave propagates in viscous fluids or plates while radiating into a
half-space of an ideal fluid. In the plate example, the waves will exponentially increase
away from the plate because they were emitted from a position where the plate vibration
was less attenuated.

The mathematical formulation includes a distinction between the real and imaginary
wave vector. The two do not have to be parallel, and the imaginary component normal
to the real wave vector is sometimes called the inhomogeneity vector [24].

The wave type is not widely known, and the term is sometimes also used to describe
wave attenuation in general. The wave type is again referenced in Sec. 2.4.2, and one of
the key components in the extended abstract submitted to the Proceedings of the 44th
Scandinavian Symposium on Physical Acoustics [25], attached in Appendix C.

Evanescent waves

Waves that do not propagate but decays exponentially with distance. An example is a
surface vibration on a plate in water. If the surface vibration is subsonic to the water,
it does not radiate energy away. Instead, the water “sloshes” around (hydrodynamic
short-circuit), and the wave vanishes exponentially away from the plate. Most relevant
to angular spectrum wave propagation, in Sec. 2.5.

Guided waves

The term describes free waves that travel along with plates or multiple layers without
radiating away energy. For Lamb waves, the plate is assumed to be non-viscous and in
a vacuum, so all energy is guided between the two plate surfaces.
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Leaky waves / semi-guided waves

If a plate supporting Lamb waves is immersed in a fluid, the wave may become leaky in
the sense that energy is transported away by the fluid, and the Lamb wave attenuates
with distance. The term semi-guided is also descriptive; the P- and S-waves bouncing
between the plate boundaries are mostly reflected, but not entirely.

In practice, ultrasonic methods like pitch-catch rely on fluid or solid coupling and,
therefore, on leaky waves. Proper classical Lamb modes, which by definition require a
vacuum, can not be excited or detected acoustically. However, they are usually very
reasonable as a first approximation when the surrounding medium is not a vacuum, as
long as the density is relatively low compared to the plate.

Surface and interface waves

A solid half-space adjacent to a vacuum may support a surface wave, with the best-
known example being Rayleigh waves, owing to Lord Rayleigh’s prediction of the wave
type in 1885. Because the wave is confined to roughly two wavelengths into the solid
medium, it retains its amplitude over long propagation distances. That has a severe
effect when earthquakes occur, as the surface waves generated usually cause the most
material destruction. Surface waves are discussed in some more detail in Sec. 2.3.1.

If the vacuum is replaced with a material, the interface between can support a
wave which can be considered a generalization of surface waves. The two examples
usually given are Scholte waves for solid-fluid interfaces and Stoneley waves for solid-
solid interfaces. This type of wave mode can also be seen when a plate is adjacent to a
fluid or a solid half-space, then sometimes called, e.g., quasi-Scholte.

2.2 Towards semi-guided waves in elastic media
In many textbooks on acoustics, the attention is typically directed towards sound waves
that propagate through air or water. While strings, membranes, plates, and bars in some
cases are covered before the acoustic wave equation, the analysis is usually limited to
situations of low frequencies where some of the complexities of elastic wave propagation
are hidden [23, 26].

To more generally handle guided waves in elastic media, it is necessary to go back to
the fundamentals for multiple reasons. Firstly, waves in bulk solid materials are more
complicated; in the simplest case of an isotropic, homogeneous material, the material
can support polarized shear waves in addition to longitudinal waves. Secondly, when
these waves are guided, the boundary conditions are more complex and give rise to wave
modes that are not intuitive, at least initially, such as the aforementioned surface waves.

When the elastic medium is bounded from two sides, as is the case for a plate
in a vacuum, the elastic medium becomes a waveguide. The propagating modes that
are supported are called Lamb waves after Horace Lamb, who analyzed the waves and
published the equations in 1917 [27]. The modes come in two flavors, the symmetric
modes S0, S1, S2, etc., and the antisymmetric modes A0, A1, A2, etc., where symmetric
and antisymmetric refers to the symmetries of displacements around the midplane of
the plate. The A0 mode is often called the flexural mode, as it for low frequencies tends
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toward the flexural waves derived for thin plates and bars. The mode is also the primary
target for the pitch-catch method.

In most practical settings, the plate will not be situated in a vacuum but rather
be in contact with water or even cement. It is possible to treat such cases generally,
but the theory of ideal, classical Lamb waves provide the most intuitive framework for
thinking about plate waves, and may often be very reasonable, such as for a steel plate
in air or water. The most significant deviation from the vacuum case is that Lamb
waves become attenuated. The secondary effect is when the dispersion relation and
mode characteristics change, and in the situations where that becomes noticeable, the
classical Lamb waves are no longer a good approximation, and more general approaches
are required.

Numerous sources underpin this chapter in different ways. The book of Viktorov [28]
is one of the first books on the topic of Lamb waves and still a referenced source in liter-
ature. Rose [29] includes or points to relevant new techniques since Viktorov, some from
another important work by Auld [30, 31] that borrows a great deal from electromag-
netism and is a bit more focused on piezoelectric materials. Hovem’s book on marine
acoustics [18] is also used, in particular for its coverage of many fundamental concepts
in addition to elastic waves and multilayered media, the latter of which is an essential
technique for generally analyzing ultrasonic waves through matrix techniques [17].

2.2.1 Bulk waves in elastic media

The Cauchy momentum equation describes the non-relativistic momentum transport in
any continuum, much like Netwon’s 2nd law:

∂(ρv)

∂t
+∇ · (ρv ⊗ v) = ∇ · σ + F , (2.5)

where ⊗ denotes the outer product, ρ is the density, v is the velocity, t is time, σ the
second rank stress tensor, and F the force vector containing body forces such as gravi-
tation. The left-hand side could also have been expressed using the material derivative,
D/Dt. When considering a solid, the O(v2) term can be neglected since the material
moves around an equilibrium, and the velocity will generally be very small. To express
the displacement u, as common in solid mechanics, one can linearise the momentum
derivative as ∂(ρv/∂t) ' ρ∂2u/∂t2 to get

ρ
∂2u

∂t2
= ∇ · σ + F . (2.6)

We now want to insert the general stress-strain relationship through the constitutive
relation, i.e., Hooke’s law in three dimensions. The strain tensor is defined as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ui,j + uj,i), (2.7)

where indicial notation is used, along with the Einstein summation convention where
repeated indices imply summation. The most general linear relation among all the
components of the stress and strain tensor is σij = Cijklεkl, where Cijkl are the com-
ponents of the fourth-order stiffness tensor with 81 components. Several symmetries
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can be exploited, so for anisotropic materials, it reduces to 21 components, and by im-
posing rotational invariance as for isotropic media, it further reduces to the two Lamé
parameters λ and G:

σij = λδijεkk + 2Gεij . (2.8)

Here G, often named µ, is the shear modulus. The Lamé parameters can be expressed
through more experimentally available material parameters such as

λ =
νE

(1 + ν)(1− 2ν)
, (2.9a)

G =
E

2(1 + ν)
, (2.9b)

where E is Young’s modulus and ν Poisson’s ratio. Via tensor algebra, it is possible to
come to the following expression for the divergence of stress

∇ · σ = (λ+G)∇(∇ · u) +G∇2u, (2.10)

and inserted into Eq. (2.6) and one obtains the Navier-Cauchy equation for momentum
conservation in an isotropic solid. Since the body force F is no longer interesting, it is
not included, and the resulting equation is

ρ
∂2u

∂t2
= (λ+G)∇(∇ · u) +G∇2u. (2.11)

This already implies a wave equation in the displacement. The next step is to invoke
the Helmholtz decomposition theorem, where the displacement field u can be written
as

u = ∇φ+∇×Ψ = up + us, (2.12)

and this decomposition has an essential property in that

∇× up = ∇× (∇φ) = 0, (2.13a)
∇ · us = ∇ · (∇×Ψ) = 0. (2.13b)

Because up is curl-free, one has that ∇(∇ · up) = ∇2up, which can be used to split
displacement into the two components up and us and thus write Eq. (2.11) as[

1

c2p

∂2up

∂t2
−∇2up

]
+

[
1

c2s

∂2us

∂t2
−∇2us

]
= 0. (2.14)

The two bracketed terms should hold separately, and they do indeed turn out to be
the wave equations for elastic isotropic media. They also hold for the corresponding
potentials, so the substitutions up → φ and us → ψ are valid. If the area where the
solution is sought is infinite, these equations are sufficient for describing elastic wave
propagation. cp and cs are the two wave velocities of the longitudinal P-wave and
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transversal S-waves of two polarizations. Their velocities and ratios are given by

cp =

√
λ+ 2G

ρ
, (2.15a)

cs =

√
G

ρ
, (2.15b)

cs
cp

=

√
1− 2ν

2(1− ν)
. (2.15c)

From Eq. (2.15c), it is seen that shear waves cannot exist in materials with a Poisson’s
ratio of 0.5. An expression for the components of the intensity field I will be needed
and can be calculated from

Ii = −σijvi. (2.16)

In relation to intensity, the impedance is sometimes used, of which there are two in
solids

Zp = ρcp, (2.17)
Zs = ρcs. (2.18)

2.2.2 Guided plane wave formulation

Plane waves present a tractable method for handling guided waves that, with relatively
few assumptions, leads to a matrix formulation for the fields inside a plate or layer. It
is customary to consider the two-dimensional case, and here the plane waves in question
have a wave vector on the form k = kxx̂+kyŷ+0ẑ. The coordinate system is aligned as
in Fig. 2.1 so that the propagation is in the x-y plane, and the wave fields are invariant
in the z-direction. That lets us write u from Eq. (2.12) as

u =

(
∂φ

∂x
+
∂Ψz

∂y

)
︸ ︷︷ ︸

ux

x̂+

(
∂φ

∂y
− ∂Ψz

∂x

)
︸ ︷︷ ︸

uy

ŷ +

(
∂Ψy

∂x
− ∂Ψx

∂y

)
︸ ︷︷ ︸

uz(discarded)

ẑ. (2.19)

Although the movement is invariant in the z-direction, it is clear that the displacement
component uz is non-zero and depends only on the potentials Ψx and Ψy that are as-
sociated with the horizontally polarised shear wave (SH). The other two components
depend on potentials φ and Ψz = ψ, associated with longitudinal waves (P) and verti-
cally polarised shear waves (SV). It is, therefore, possible to seek solutions separately
for the P + SV wave combination [32]. In practice, the SH waves are often discarded;
the inner casing in the pitch-catch method is filled with fluid, and the SH waves can
neither be excited nor measured by fluid-immersed transducers.

In a solid layer, the fields of a right-going wave may thus be expressed as the super-
position of four plane waves. These are the P- and SV-waves (from here on S for short),
propagating in the upwards and downwards directions. For a given frequency, Snell’s
law requires that the wave vectors of all waves are oriented so that they all have the
same component β along the waveguide propagation direction, and the consequence is
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that any solution propagates with a given phase speed. Note that in this particular case
β = kx, but in three dimensions β2 = k2x + k2z . For plates with lossless boundaries, the
concept of transverse resonance is implied; the mode solutions are traveling along the
waveguide axis and are standing waves in the transverse direction. For a single layer,
these four plane waves then read

φ =
[
Dpe

iγpy + Upe
−iγpy

]
ei(ωt−βx), (2.20a)

ψ =
[
Dse

iγsy + Use
−iγsy

]
ei(ωt−βx), (2.20b)

where Dp and Ds are the amplitudes of downward-moving P- and S-waves respectively,
and Up and Us travel upwards, as in Fig. 2.1. The horizontal wavenumbers β are
the same for all the plane waves, as mentioned. Because of the different wave speeds,
the wavenumbers of P- and S-waves differ: kp = ω/cp and ks = ω/cs. The vertical
wavenumbers ky, are therefore also different for P- and S-waves, and are denoted by γp
and γs respectively:

γs =
√
k2s − β2, (2.21a)

γp =
√
k2p − β2. (2.21b)

The real power of the formulation emerges when introducing the field variables as ex-
pressed via the four wave components. Naturally, when two layers are in contact, forming
an interface, the boundary conditions need to be matched. For elastic waves, that means
the continuity of particle displacement and normal and shear stress (σyy and σxy). By in-
serting the expressions for the components of particle displacement via potentials (2.19)
into the equation for strain (2.7), and piping the result into the constitutive relation for
stress (2.8) one obtains

σxx = λ

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂x2
+

∂2ψ

∂x∂y

)
, (2.22a)

σxy = G

(
2
∂2φ

∂x∂y
− ∂2ψ

∂x2
+
∂2ψ

∂y2

)
, (2.22b)

σyy = λ

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂y2
− ∂2ψ

∂x∂y

)
. (2.22c)

Any stress component with a z-index is zero, and although σxx is not an imposed
boundary condition, it will be needed in a later section. The last step is to substitute
the plane wave formulation of the potentials into the stress and displacement equations.
A bit of rearrangement yields a matrix equation for the stress and displacement through
the plane wave amplitudes in y = 0, which is an arbitrary origin

σyy
σyx
uy
ux


︸ ︷︷ ︸

f(0)

=


G(β2 − γ2s ) G(β2 − γ2s ) −2Gβγs 2Gβγs
2Gβγp −2Gβγp G(β2 − γ2s ) G(β2 − γ2s )
iγp −iγp iβ iβ
−iβ −iβ iγs −iγs


︸ ︷︷ ︸

M


Dp

Up

Ds

Us


︸ ︷︷ ︸
a(0)

. (2.23)

14



CHAPTER 2. THEORY

Fig. 2.1. Matrix formulation for one layer between two semi-infinite half-spaces. Layer
l2 can be imagined to be a plate, and l1 and l3 two infinite half spaces. Each layer has
its own y-axis, with the origins in the half-spaces coinciding with the interfaces.

The fields f anywhere else can be found by considering the phase information, as included
in what Hovem [18] refers to as the transport matrix T. It relates the waves to a different
vertical position a distance y above the plane of origin

a(y) =


eiγpy 0 0 0
0 e−iγpy 0 0
0 0 eiγsy 0
0 0 0 e−iγpy


︸ ︷︷ ︸

T(y)

a(0), (2.24)

such that the fields in any position y can be written as f(y) = MT(y)a(0) = D(y)a(0),
where D is the field matrix defined in Lowe’s work [17].

2.2.3 Matrix formulation of guided waves

Using a matrix formulation gives a systematic way of working with guided waves in
multilayered media. In this project, we deal with triple layers as illustrated in Fig. 2.1;
a plate supporting Lamb waves, and two semi-infinite layers above and below the plate
that might be vacuum or any other material. The only condition is that the boundary
conditions at each interface must be satisfied. There are two main techniques available,
and here the transfer matrix method will be discussed. The alternative is a global matrix
method that is more numerically robust at higher frequency-thickness products but
involves larger matrices as all wave components are solved simultaneously. According
to Lowe, the transfer matrix method should be valid for A0 modes up to roughly 15
MHz-mm using 128-bit precision for complex numbers, which is six times the center
frequency-thickness used in pitch-catch logging, assuming a frequency of 0.25 MHz and
a thickness of 10 mm.

The transfer matrix method works by relating the boundary conditions on one in-
terface to the boundary conditions on another interface. The schematic is shown in
Fig. 2.1. Assuming that displacements and stresses are known at interface i1 as fl2(top)
the amplitudes of the waves can be found by inverting the field matrix

al2(0) = D−1
l2 (top) · fl2(top). (2.25)
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The field variables at the bottom of the same layer can be found by using the field
matrix again

fl2(bot) = Dl2(bot) ·D−1
l2 (top)︸ ︷︷ ︸

Layer matrix=Ll2

·fl2(top). (2.26)

The layer matrix is defined for convenience. The displacements and stresses must be
continuous across the interfaces, e.g., fl2(bot) = fl3(top). This process can be continued
layer for layer. If multiple layers are present one can define a system matrix S =
Ll2 · Ll3...Ll(n−1), but for this example of a homogeneous plate S = Ll2. The waves in
layer l1 and l3 can then be related. Remembering the different coordinate systems in
each layer, one gets top = 0 in l3 and bot = 0 in l1, and the relation

al3(0) = D−1
l3 (0) · S ·Dl1(0) · al1(0), (2.27)

As stated by Lowe, two types of solutions can be found, both related to a group
of ultrasonic inspection methods. The first goes under the name response methods,
discussed in detail in Sec. 2.6, where reflection and transmission characteristics are
examined. Typically one of the four incoming waves in l1 and l3 is given unit amplitude,
and the remaining are set to be zero. Then the reflection and transmission coefficients
are given by the amplitudes of the four outgoing waves.

The second category is modal methods, the main topic of Sec. 2.3 and 2.4, where
propagation properties such as Lamb wave velocities are examined. The condition is
that the wave should exist without forcing, and no energy comes into the system. This
can be mathematically expressed via Eq. (2.27), with two entries on the left-hand side
equal to zero, and two non-zero entries in al1(0). The determinant of the subsystem
must be 0 to have a non-zero mode as a solution. This ensures that the matrix cannot
be inverted due to a free row, and the additional degree of freedom gives an amplitude-
independent relationship between the wave components.

The two approaches should be considered complementary. Modal methods provide
the best intuition and clearest framework for thinking about plate waves and will be
treated first. In the absence of an excitation source, it is also the only method that
makes sense. On the other hand, response methods trade the intuition that makes the
modal approach a great tool, for a more straightforward calculation of all the mode
contributions, under the condition that the source is given.

2.3 Lamb waves I: Derivation and understanding
Lamb waves describe the most practically relevant modal solutions to guided wave prop-
agation in a free plate. The shear-horizontal modes will not be discussed, as they do not
couple into a fluid. Fig. 2.2 shows how Lamb waves come to be. An excitation creates P-
and S-wave that bounce between the two boundaries to vacuum. After some distance, a
steady pattern of up- and downwards-going waves emerge. As will be shown, this steady
pattern can be decomposed into symmetric and antisymmetric contributions, where each
constitutes a set of modes. The mode solutions are traveling along the waveguide axis
and are standing waves in the transverse direction. Examples of phase velocities for a
steel plate are shown in Fig. 2.3, and group velocities are shown in Fig. 2.4. The material
parameters are given in table 3.1 on page 41.
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Fig. 2.2. Schematic representation of how Lamb waves, which is a certain combination
of Ds, Dp, Us and Up, can exist as a coupling between P- and S-waves.

Fig. 2.3. Phase velocities for Lamb modes in a generic steel plate as a function of the
frequency-thickness product fd.

2.3.1 A quick primer: Surface waves

Before taking on Lamb waves, it is good to understand the simpler example of surface
waves that are self-sustaining and propagate along the surface of a solid medium. The
technique of derivation is the same, covering roughly half of the problem. Also, surface
waves are related to Lamb waves. At higher frequencies, the S0 and A0 Lamb waves
tend toward being composed of two surface waves on each side of the plate.

Here a short derivation of Rayleigh waves will be given, existing on the interface
between an elastic material and vacuum, and the propagation is non-dispersive with
propagation velocity always less than the shear wave velocity, cR < cs. The particles
follow an ellipse which amplitudes decrease with depth because Rayleigh waves do not
penetrate the bulk.

One can find the characteristic equation for Rayleigh waves by using Eq. (2.23),
where the coordinate system is placed on the surface. The two necessary conditions are
that the surface stress σyy = σxy = 0, since a vacuum cannot resist motion. Also, since
there are no incoming waves, it is sufficient to look at two downwards going waves Dp

and Ds. That gives the matrix system[
0
0

]
=

[
G(β2 − γ2s ) −2Gβγs
2Gβγp G(β2 − γ2s )

] [
Dp

Ds

]
. (2.28)
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Fig. 2.4. Group velocities for Lamb modes in a generic steel plate as a function of the
frequency-thickness product fd.

The determinant must be 0 to have a non-zero mode as a solution. That ensures the
matrix cannot be inverted due to a free row, and the additional degree of freedom gives
an amplitude-independent relationship between Dp and Ds. The characteristic equation
that gives a determinant of 0 reads

(β2 − γ2s )
2 + 4β2γsγp = 0, (2.29)

which is equivalent to the equation stated in [28]. It has three double roots but only
one real solution that turns out to be independent of frequency, corresponding to the
Rayleigh wave velocity. Eq. (2.30) is a universally accepted approximated solution for
cR obtained by best-fitting to a numerical solution of the characteristic equation [31]

cR(ν) = cs

(
0.87 + 1.12ν

1 + ν

)
. (2.30)

Rayleigh waves can, as stated in Sec. 2.1.2, be generalized into Scholte and Stoneley
waves by replacing the vacuum with a fluid or solid material. Concerning modeling the
pitch-catch setup, a useful fact is that interface waves on a steel plate in water cannot
be excited by plane waves but requires a near-field source [18].

2.3.2 From boundary conditions to a characteristic equation

The plate considered is a single layer with thickness d = 2h, and boundaries to vacuum
at y = ±h. As with Rayleigh waves, the boundary conditions require that the relevant
stresses are zero. Evaluated with respect to the mid-plane of the plate, the system
matrix reads

σyy(+h)
σxy(+h)
σyy(−h)
σxy(−h)

 =


0
0
0
0

 =


ae+iγph ae−iγph −be+iγsh be−iγsh

ce+iγph −ce−iγph ae+iγsh ae−iγsh

ae−iγph ae+iγph −be−iγsh be+iγsh

ce−iγph −ce+iγph ae−iγsh ae+iγsh



Dp

Up

Ds

Us

 , (2.31)
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where a = G(β2 − γ2s ), b = 2Gβγs, and c = 2Gβγp are introduced for compactness.
With a priori knowledge about the solution, or close consideration, one can see that the
first and second pair of columns make a good match. Instead of solving for the up- and
down-going wave components, a solution to their combinations is sought

0
0
0
0

 =


+a cos(γph) +ai sin(γph) −ib sin(γsh) −b cos(γsh)
+ci sin(γph) +c cos(γph) +a cos(γsh) +ai sin(γsh)
+a cos(γph) −ai sin(γph) +ib sin(γsh) −b cos(γsh)
−ci sin(γph) +c cos(γph) +a cos(γsh) −ai sin(γsh)



Dp + Up

Dp − Up

Ds + Us

Ds − Us

 . (2.32)

Then the following substitutions are performed Dp+Up → A2, Dp−Up → A1, Ds+Us →
B2, and Ds − Us → B1. The potentials in Eq. (2.20) can thus be rewritten as

φ = [A2 cos(γpy) + iA1 sin(γpy)]e
i(ωt−βx), (2.33a)

ψ = [B2 cos(γsy) + iB1 sin(γsy)]e
i(ωt−βx), (2.33b)

The new equations show transverse resonance, and the substitutions will take on a more
significant meaning soon, as they explain the symmetric and antisymmetric modes in
the final solution. The final step is to simplify a bit further by row operations on row 1
and 3, and row 2 and 4:

0
0
0
0

 =


a cos(γph) 0 0 −b cos(γsh)
ci sin(γph) 0 0 ai sin(γsh)

0 −ai sin(γph) +ib sin(γsh) 0
0 c cos(γph) a cos(γsh) 0



A2

A1

B2

B1

 . (2.34)

The matrix must have a determinant of 0 to have a wave that can exist without forcing.
Otherwise, it would be invertible, and a non-zero solution of the vector of unknowns
could not exist. Writing out the determinant gives

[a2 cos(γph) sin(γsh) + bc cos(γsh) sin(γph)]

·[a2 cos(γsh) sin(γph) + bc cos(γph) sin(γsh)] = 0.
(2.35)

The determinant is also the product of two individual 2-by-2 determinants in the two
upper and two bottom rows. Each can be equal to 0 on its own, as seen from the
two square brackets. It will be shown that the two brackets are associated with the
symmetric and antisymmetric modes.

After choosing the material parameters and thickness for the plate, the two remain-
ing unknowns are frequency and wavenumber. The two can be matched to give the
dispersion relation ω(β) by solving for the zeros of one of the two brackets, a method for
which is presented in Sec. 3.2.1. The wavefields in the plate can be described entirely
once the dispersion relation is known.

2.3.3 Symmetric solution

When the first part of the characteristic equation (2.35), which describes the symmetric
components A2 and B1, is set to zero, the dispersion relation for symmetric Lamb waves
is implicit in

tan(γsh)

tan(γph)
+

4β2γsγp
(β2 − γ2s )

2
= 0. (2.36)
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Fig. 2.5. Displacement field of the S0 mode at 250 kHz in a 1 cm thick steel plate.

To obtain the dispersion relation in practice, the roots of Eq. (2.36) have to be found
numerically.

When the dispersion relation holds, the corresponding 2-by-2 submatrix in Eq. (2.34)
has a determinant of 0, and therefore also a free row. That makes it possible to express
the ratio of A2 and B1 as

RS =
B1

A2
=

(β2 − γ2s ) cos(γph)

2βγs cos(γsh)
. (2.37)

The potentials φ and ψ are then known, except for an arbitrary scaling that K will
represent. Substitution back into the relationships (2.12) and (2.22) give the full field
equations for symmetric Lamb waves

φS = K cos(γpy) (2.38a)
ψS = iKRS sin(γsy) (2.38b)
vSx = iωK[β cos(γpy)− γsRS cos(γsy)] (2.38c)
vSy = ωK[γp sin(γpy) + βRS sin(γsy)] (2.38d)
σSxx = iKG[(2γ2p − β2 − γ2s ) cos(γpy) + 2γsβRS cos(γsy)] (2.38e)
σSxy = −KG[2βγp sin(γpy) + (β2 − γ2s )RS sin(γsy)] (2.38f)
σSyy = iKG[(β2 − γ2s ) cos(γpy)− 2γsβRS cos(γsy)] (2.38g)

Note that the displacements have been converted to velocities by multiplication with
iω. The common phasor ei(ωt−βx) is also omitted from all quantities.

The notion of symmetric waves comes from the field equations. The x-velocities
vx are symmetric around the mid-plane of the plate if described by cosines as seen
in Eq. (2.38c), whereas the y-velocity vy, is symmetric if described by sines as seen
in Eq. (2.38d). For antisymmetric modes, the sines and cosines are swapped. The
displacement field of an S0 symmetric Lamb wave at 250 kHz in a 1 cm thick steel plate
is shown in Fig. 2.5. Note that the S1 wave does not exist at this frequency, as it is below
its cut-off frequency. The cut-off frequencies for symmetric modes can be calculated by
setting β = 0 in the characteristic equation

fd =
Ncp
2

(N = 1, 3, 5, . . .), (2.39a)

or fd = Ncs (N = 0, 1, 2, . . .) . (2.39b)
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Fig. 2.6. Displacement field of the A0 mode at 250 kHz in a 1 cm thick steel plate.

2.3.4 Antisymmetric solution

The second part of the characteristic equation (2.35) describes the antisymmetric modes,
and the dispersion relation is implicit in

tan(γph)

tan(γsh)
+

4β2γsγp
(β2 − γ2s )

2
= 0. (2.40)

The same steps as for the symmetric solution are followed. When the dispersion rela-
tion holds, the corresponding 2-by-2 submatrix in Eq. (2.34) has a free row since the
determinant is 0. That makes it possible to express the ratio of A1 and B2 as

RA =
B2

A1
=

(β2 − γ2s ) sin(γph)

2βγs sin(γsh)
. (2.41a)

With the potentials known, again except for an arbitrary scaling K, substitution back
into the relationships (2.12) and (2.22) gives the field equations for antisymmetric Lamb
waves:

φA = iK sin(γpy) (2.42a)
ψA = KRA cos(γsy) (2.42b)
vAx = iωK[β sin(γpy)− γsRA sin(γsy)] (2.42c)
vAy = −ωK[γp cos(γpy) + βRA cos(γsy)] (2.42d)
σAxx = iKG[(2γ2p − β2 − γ2s ) sin(γpy) + 2RAβγs sin(γsy)] (2.42e)
σAxy = KG[2βγp cos(γpy) +RA(β

2 − γ2s ) cos(γsy)] (2.42f)
σAyy = iKG[(β2 − γ2s ) sin(γpy)− 2RAβγs sin(γsy)] (2.42g)

Examples of the displacement fields of the A0 and A1 modes at 250 kHz are given in
Fig. 2.6 and 2.7. The cut-off frequencies are given by

fd =
Ncs
2

(N = 1, 3, 5, . . .), (2.43a)

or fd = Ncp (N = 0, 1, 2, . . .) . (2.43b)
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Fig. 2.7. Displacement field of the A1 mode at 250 kHz in a 1 cm thick steel plate.

2.4 Lamb waves II: Methods for leaky waves

2.4.1 Generalized Lamb waves

The structure of free Lamb waves in the above derivation is the classical case and only
truly realized for a plate with vacuum on both sides. A discussion about generalized
Lamb waves can be found in the literature [31, 33], where the plate can be in contact
with, e.g., a lighter solid on one side and fluid on the other. The generalized case
differs from the free plate derivation by including outgoing waves in the adjacent media,
and the first-order effect is that Lamb waves become “leaky” because energy is radiated
away and the wave attenuated. Secondary effects include different phase speeds and the
breakdown of proper symmetric and antisymmetric solutions.

The dispersion relation for generalized Lamb waves can be calculated via the matrix
formulation. The condition is that there must be no incoming waves in the top layer
(Dp1 = Ds1 = 0), and that below the plate we must demand the same (Up3 = Us3 = 0).
This can be realised with Eq. (2.27). If we say that N = D−1

l3 (top) ·S ·Dl1(bot), then the
determinant of the relevant sub-matrix must equal zero in both its real and imaginary
part. It is worth thinking about it as a complex function f(X), where the argument X
is a vector of parameters, containing a complex wavenumber, frequency, plate thickness,
and material parameters:

f(X) =

∣∣∣∣N22 N24

N42 N44

∣∣∣∣ = 0. (2.44)

An attempt to write out a characteristic equation will not be made here because the
generality makes the matrix entries complicated and lengthy [33]. Also, the classification
of modes becomes difficult. An exception from literature is for a plate submerged in
a fluid that is equal on both sides of the plate, for which it can be shown, as first
demonstrated by Schoch in 1952 [34, 35], that the characteristic equation for symmetric
modes is

tan(γsh)

tan(γph)
+

4β2γsγp
(β2 − γ2s )

2
= i

ρfk
4
sγp

ρ
√
k2f − β2(β2 − γ2s )

2
· tan(γsh), (2.45)

where ρ is the density of the plate, ρf the fluid density, ks the shear wavenumber, and
kf the fluid wavenumber. For antisymmetric modes it is

tan(γph)

tan(γsh)
+

4β2γsγp
(β2 − γ2s )

2
= −i

ρfk
4
sγp

ρ
√
k2f − β2(β2 − γ2s )

2
· 1

tan(γsh)
. (2.46)
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As with Eq. (2.44), finding the solution requires searching for complex roots, which
is considerably more challenging to do than in the free plate case. In this particular case,
the fluid loading leads to additional modes that are not present in the free plate [36, 37],
such as the quasi-Scholte modes that are interface waves. The quasi-Scholte modes cause
a splitting of the A0 mode, and the physics shows interesting anomalies depending on
which materials are in contact [38, 39, 40].

The modified Newton’s secant method can be used to find the complex roots of a
function and was a part of the strategy of Dayal and Kinra to solve the dispersion relation
of anisotropic plates [41]. The method is available in Python as scipy.optimize.newton.
While the roots are complex, and additional modes are present, it seems possible to ob-
tain the curves with a simplified scheme: The root-finding can be performed multiple
times using the dispersion relation of a free plate mode as an initial guess. To ensure
convergence, the density of the fluids or solids adjacent to the plate is gradually in-
creased with each search. The search is applied to the A0 and S0 modes, solving Eq.
(2.45) and (2.46), and are shown in Fig. 2.9. However, Lowe [17] discusses a more tried
and tested searching method for the general case.

2.4.2 Attenuation of Lamb waves in light fluids

As discussed, the Lamb wave derivation presented assumes a free plate, and the in-
teraction with a surrounding fluid would need to be included already in the boundary
conditions in Eq. (2.31). However, in situations where the plate is much denser than
the surrounding fluid, as with a steel plate in water, the Lamb wave structure can be
assumed to be unperturbed except for adding an imaginary attenuation term to the
wavenumber. In this section, we will see how to calculate attenuation in such cases.

When waves are attenuated, here in the x-direction, it is common to include the
attenuation as an imaginary part of the wavenumber

kx = Re(kx) + i Im(kx) = β − iα, (2.47)

where α is another often-used symbol for attenuation. For a wave of amplitude A, this
translates to a wave that decays exponentially as

Aei(ωt−kx) = Ae−αx · ei(ωt−βx), (2.48)

with α often measured in neper per meter (Np/m), or in decibel 8.686 · α (dB/m). The
propagation direction may not be parallel to the attenuation direction, in which case
the wave is inhomogeneous [24].

Several perturbation techniques can be used to calculate approximate attenuation
curves. Merkulov [35] used Schoch’s characteristic equations to come to an approxima-
tion of the attenuation by doing a first-order perturbation and assuming the density of
the fluid to be small. Auld presents another perturbation method [31], starting from a
complex reciprocity relation. The same numerical attenuation values are obtained with
both methods through different equations. Here we will look at a more intuitive method
presented in 1982 by Watkins et al. [42] that leads to the same equations as Auld’s
method.

The main assumption is that the wave retains the same structure as in the free
plate, although power is lost. Consider a differential element of the plate of unit depth,
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Fig. 2.8. Balance of energy flow into a small element of a plate.

as illustrated in Fig. 2.8. In the steady-state, a time-averaged power Px(x) is incident
from the left, and a power Px(x+ dx) leaves from the right. On the top of the plate, a
total time-averaged power PL(x) = IL(x) · dx is lost to the medium through radiation.
Note that IL is the y-component of the intensity vector. Conservation of energy requires
that

Px(x+ dx)− Px(x) = −IL(x) · dx −→ dPx(x)

dx
= −IL(x). (2.49)

The time-averaged power flow along the plate can be calculated, with tilde denoting the
complex conjugate, as

Px = −1

2

∫ h

−h
(vxσ̃xx + vyσ̃xy)dy, (2.50)

The next step is to calculate the radiated intensity IL. Here the plate is in contact
with only a fluid, so it is enough to consider that the normal velocity is continuous on
the interface and related to the pressure through Euler’s equation (see Eq. (2.78) on
page 31). The radiated intensity on one side of the plate is [43]

IL =
Zf |vy(h)|2

2

√
1−

(
cf
cph

)2
, (2.51)

where |vy(h)| is the amplitude of the normal velocity at the surface of the plate in contact
with the fluid. cf is the speed of sound in the fluid, and Zf = ρfcf is the specific acoustic
impedance, for water Zf = 1.48MRayl.

The intensity and power flow both scales with the square of the amplitude. Hence,
IL ∝ Px, and the power flow and radiated intensity exponentially damped as

Px(x) = Px(0)e
−2αx. (2.52)

That can be inserted into Eq. (2.49), which can then be re-expressed as

α =
IL
2Px

=
Power lost per metre into medium
2× Power flow along the plate . (2.53)

By knowing the dispersion relation of free Lamb waves, Eq. (2.50) can be integrated
numerically with arbitrary scaling K, and Eq. (2.51) can be evaluated with the value of
K. The result for a steel plate in water is shown in Fig. 2.9. The curves are identical
to Merkulov’s first-order approximation, but the power flow method benefits by being
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Fig. 2.9. Perturbation approximation of attenuation for Lamb waves in a 1 cm thick
steel plate in contact with water on both sides. Only the first three S- and A-modes are
shown. The cutoff frequencies (β = 0) are indicated. The solutions to Eq. (2.45) and
(2.46) for the A0 and S0 are also given for comparison. The material parameters are
given in table 3.1 on page 41.

easier to understand and more flexible; it can approximate radiation into solids as will
be shown, and preliminary findings [25] suggest that using inhomogeneous waves can
partially correct for the singularity at coincidence (the spike in the A0 mode), and the
absence of subsonic radiation. The singularity happens where the real wavenumber
also changes appreciably [25]. Note that the attenuation curves also deviate from the
perturbation solution at higher frequencies if the plate is in contact with water on only
one side [37, 44], or if the fluids have different impedances.

2.4.3 Attenuation of Lamb waves in contact with light solids

The power flow method can also be used to get a first approximation to the attenuation
of Lamb modes when the plate is in contact with solid media, but the cross-coupling
of the imposed surface velocities vx(h) and vy(h) of the plate with the outgoing P- and
S-waves requires some analysis to get right.

The boundary conditions require the surface velocity of the plate to be matched
by the outgoing waves. From Eq. (2.23), one can get expressions for the amplitude
potentials from the surface[

Up

Us

]
=

1

ω(β2 + γsγp)

[
γs β
−β γp

] [
vy(h)
vx(h)

]
. (2.54)

From Eq. (2.12) and (2.20), it is quite straightforward to get expressions for the velocity
amplitude of the outgoing waves

|vp| = ωkp|Up| (2.55a)
|vs| = ωks|Us|, (2.55b)
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Fig. 2.10. Attenuation curves for Lamb waves in a 1 cm thick steel plate in contact
with water and light cement, calculated with the power-flow method. Only the first two
S- and A-modes are shown.

and by substituting in values for the potential amplitudes Up and Us, one gets

|vp| = kp
|γsvy(h) + βvx(h)|

|β2 + γpγs|
, (2.56a)

|vs| = ks
|γpvx(h)− βvy(h)|

|β2 + γpγs|
. (2.56b)

The power lost per metre into the medium, IL is IL,p+IL,s. Only the intensity vector
pointing away from the plate contributes. The radiation angle from the plate normal
of each wave is given by the wavenumbers, so that cosφp,s = γp,s/kp,s =

√
1− β2

k2p,s
.

Therefore

IL = Zp
|vp|2

2

√
1− β2

k2p
+ Zs

|vs|2

2

√
1− β2

k2s
, (2.57)

and Eq. (2.53) can be used again be used to calculate α. Examples of attenuation for
a plate in contact with water on one side, and one of two types of cement is shown in
Fig. 2.10 and 2.11. The material parameters are given in table 3.1 on page 41, but the
main difference is that the P-wave velocity in heavy cement is always supersonic for
the A0 wave mode. A comparison with COMSOL is also shown for a narrow frequency
range, where the A0 fields have been imposed on one end of the plate, and an exponential
best-fit adapted to the enveloped profile of vy(x, y = h), where possible, to extract α.
Neither the COMSOL measurements nor the perturbation method is exact, but their
agreement strongly indicates that the correct physics is captured. Separate simulations
not shown here have confirmed that the agreement improves further when the cement
and water density decrease.
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Fig. 2.11. Attenuation curves for Lamb waves in a 1 cm thick steel plate in contact
with water and heavy cement, calculated with the power-flow method. Only the first
two S- and A-modes are shown.

2.4.4 Normal mode expansion

Normal mode expansion (NME) is a method to evaluate waveguide excitation and works
by expressing the total field as a superposition of all propagating modes supported by the
structure. The contribution of each mode to the total is determined from the associated
power flow using an orthogonality condition of the modes. NME is also a very useful
tool because it leads to the interpretable concepts of mode excitabily, i.e., how easily a
mode is excited by shear or normal forces at a particular frequency, and source influence,
i.e., how the source geometry affect the excitation, as discussed in more detail in the
book by Rose [29]. For waveguide excitation, it is not the only method, as an integral
transform technique [28, 45, 46] can be used as well, which is more general but provides
less in terms of intuition. Comparing the two methods is out of scope for this work, so
only NME is discussed from here on.

For NME, it is assumed, and may recently have been proved [47], that the set of
modes is complete, meaning that any thinkable excitation can be written as a weighted
sum of normal modes. In addition, it has to be shown that the modes are, in fact,
orthogonal, in the same sense that sines of different frequencies are orthogonal in Fourier
analysis. Auld [31] proved the orthogonality of guided modes in lossless waveguides
through a complex reciprocity relation for piezoelectric media. A real reciprocity relation
also exists, more suitable for scattering problems. The two are derived from transmission
line equations, but we will simply use it as a starting point and follow the derivation
of [48] with some extensions from [29] and [49]. Because piezoelectric effects are ignored
here, the modified Auld’s complex reciprocity relation reads

∇(ṽ(2) · σ(1) + v(1) · σ̃(2)) = −(ṽ(2) · F(1) + v(1) · F̃(2)). (2.58)

As the name implies, the complex reciprocity relation establishes a relation between
two acoustic states, numbered by superscripts (1) and (2), that could occur in the same
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spatial domain. v is a velocity field, σ a stress field, and F represents force. The sources,
the medium parameters, and the wave fields may differ in each of the states. Because
Lamb waves are z-invariant when the propagation is along the x-axis, writing out the
tensor products give the reciprocity relation on the form

∂

∂x

(
ṽ(2)x σ(1)xx + ṽ(2)y σ(1)xy + v(1)x σ̃(2)xx + v(1)y σ̃(2)xy

)
+
∂

∂y

(
ṽ(2)x σ(1)xy + ṽ(1)y σ(1)yy + v(1)x σ̃(2)xy + v(1)y σ̃(2)yy

)
=− ṽ(2)x F (1)

x − ṽ(2)y F (1)
y − v(1)x F̃ (2)

x − v(1)y F̃ (2)
y .

(2.59)

We now consider that the two solutions can represent either two different modes, or the
same mode. Solution (1) gets its mode index denoted with m, and (2) by n on the form

v(1)(x, y, z, t) =
(
v(m)
x (y)x̂+ v(m)

y (y)ŷ
)
ei(ωt−βmx) (2.60a)

ṽ(2)(x, y, z, t) =
(
ṽ(n)x (y)x̂+ ṽ(n)y (y)ŷ

)
e−i(ωt−β̃nx) (2.60b)

and similarly for the stress tensors components that are not shown here. Substitution
into the reciprocity relation with Fx = Fy = 0 and integrating over plate thickness yields

−i(βm − β̃n)

∫ +h

−h

(
ṽ(n)x σ(m)

xx + ṽ(n)y σ(m)
xy + v(m)

x σ̃(n)xx + v(m)
y σ̃(n)xy

)
dy

= −
(
ṽ(n)x σm)

xy + ṽ(n)y σ(m)
yy + v(m)

x σ̃(n)xy + v(m)
y σ̃(n)yy

)
|+h
−h

(2.61)

Now we assume traction-free boundary conditions, σyy = σxy = 0, at the top and bottom
of the plate. That is indeed true for classical Lamb waves, but not when the plate is in
contact with a fluid, which is why NME is considered a perturbation method. Hence,
β̃m = βm because it is real, which is also a requirement [31]. One then gets

i(βn − βm)4Pmn = 0, (2.62)

where Pmn equals the power flow Px in Eq. (2.50) if m = n, and 0 otherwise

Pmn = −1

4

∫ +h

−h

(
ṽ(n)x σ(m)

xx + ṽ(n)y σ(m)
xy + v(m)

x σ̃(n)xx + v(m)
y σ̃(n)xy

)
dy =

{
0, if m 6= n

Px, if m = n
.

(2.63)
Equation (2.62) is a statement of orthogonality, limited to real wavenumbers (although
sometimes used as a first approximation to lossy waves). If the wavenumbers are equal
and the mode amplitude is non-zero, then there must be a power flow. If the wavenum-
bers do not match, the power flow is 0. In other words, the velocity field of, e.g., the
A0 mode, cannot transport power together with the stress field of the A1 mode, or vice
versa.

In the next step, we give new meanings to solutions (1) and (2). Solution (1) repre-
sents the source excitation, while solution (2) represents a single normal mode. Due to
the completeness and orthogonality of the normal modes, the excitation source can be
expressed as a normal mode summation

v(1) =
∑
m

am(x)v(m)(y), (2.64)
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where am(x) is a modal participation factor for mode number m, giving a position-
dependent mode amplitude. The normal mode n is written as

v(2) = v(n)(y)e−iβnx. (2.65)

Substitution into the complex reciprocity relation and integration over the plate thick-
ness, again in the absence of a volume force F, yields

∂

∂x
eiβnx

∑
m

4am(x)Pmn =
(
ṽ(n) · σ(m) + v(m) · σ̃(n)

)
· ŷ|+h

−he
iβnx. (2.66)

The modes are orthogonal, meaning the summation will be non-zero only when m = n.
Also, because of the free Lamb wave assumption, only the excitation stress σ(m) is non-
zero. For excitation from a fluid, the shear stress is zero, and the pressure acts against
the surface normal, so normal stress is given by σyy(h) = −p. Algebraic manipulation
gives

4Pnn

(
∂

∂x
+ iβn

)
an(x) = −ṽ(n)y (h)p, (2.67)

which is an ODE on the form y′ + k · y = p(x) that must be solved for an(x), and the
method of integrating factors can be used. To describing transient loading, the angular
frequency ω of the loading is also included

an(ω, x) =

[
−ṽ(n)y (h)

4Pnn

∫ x

0
eiβnx′

p(ω, x′)dx′
]
e−iβnx. (2.68)

Intuitively it can be understood as a cumulative excitation of mode n, for example,
the A0 mode, on the plate by a time-harmonic pressure distribution. The sign of β
determines which direction the wave travels. For transient loading, any quantity such
as vy can thus be expressed as a sum over all relevant modes n

vy(t, x, y) =
∑
n

∫
an(ω, x)v

(n)
y (y)eiωtdω. (2.69)

The above derivation misses one crucial point: the excitation force from the pressure
acting on the plate depends not only upon the incident wave but also on the reflected
one. Jia [49] gave an insightful derivation of how to include the reflected wave. As
can be expected for a perturbation method, the total effective pressure will be twice the
incoming, as if the plate is a fixed boundary, but the derivation also clearly demonstrates
how attenuation should be included as an imaginary part of the wavenumber. A quick
summary of the main points follows, using quantities more consistent with this thesis.
First, the particle velocity must be continuous across the interface between the fluid and
the plate

(−vin + vr) cos(φ) = anv
(n)
y (h), (2.70)

where vin is the particle velocity due to the incident wavefield, and vr the reflected, while
φ is the incidence angle. The same must be demanded for normal stress σyy = −p(x)

p = Zf (vin + vr), (2.71)
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recalling that impedance have different signs for different propagation directions, and
Zf being the specific acoustic impedance of the fluid. Now we can try to express the
total pressure p from the incoming pressure pin = Zfvin. From Eq. (2.70) one can see
that vr = anv

(n)
y (h)

cos(φ) + vin, so substitution into Eq. (2.71) gives

p = 2 · pin +
Zfanv

(n)
y (h)

cos(φ)
, (2.72)

which is equal to twice the incoming pressure (from fixed boundary condition) plus radi-
ation from propagating wavemodes (only one mode is excited under Jia’s assumptions).
To see the effect on the solution, it can be substituted in on the right-hand side of
Eq. (2.67). Simplifying the expression according to the power-flow methodology gives a
correction to Eq. (2.67):

4Pnn

(
∂

∂x
+ i(βn − iαn)

)
anx = −2pinṽ

(n)
y (h), (2.73)

where αn is the attenuation of mode n, given by the same expression as the pertubation
method derived by Auld [31], and essentially in Sec. 2.4.2. This goes to to show NME
can be used for calculating transient loading for leaky Lamb waves, but also that it not
exact, in part limited by the perturbation method assumptions.

2.5 The angular spectrum method

2.5.1 Parallel plane propagation

The angular spectrum is a superposition method for modeling the propagation of a wave
field when the solution is supplied on the plane y = y′ [43, 50]. It is based on the fact
that ei(ωt−k·r) is a solution of the Helmholtz equation

∇2p+ k2p = 0, (2.74)

when the wave vector components satisfy

k2 = k2x + k2y + k2z = β2 + k2y =
ω2

c2f
. (2.75)

Recall that the wavenumber associated with a wave vector along an arbitrary propaga-
tion direction in the waveguide is given by β2 = k2x + k2z . Since k is constant for each
frequency, the three wavenumbers are not independent. Choosing ky as dependent, one
has that ky = ±

√
k2 − k2x − k2z , where the appropriate root must be chosen. When a

vibrating steel plate is in contact with air, the wavefield in the x-z plane is given because
it is imposed by the velocity field of the steel plate. The traces of the wavefronts in the
air must match the wavefronts on the steel. The component ky can thus be real or
imaginary as a consequence. The latter implies a non-propagating evanescent wave into
the air, as the phase velocity in the plate is subsonic for the surrounding air, giving a
hydrodynamic short-circuit.
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Fig. 2.12. Propagation of a monochromatic wavefield from a plate ( ) into a parallel
plane ( ). The colored gradients represents wavefronts. The wave vector components
kx and kz are imposed by the plate at y = y′. The wavefield between the planes, here
shown as a cross section ( ), can be calculated as different solution planes.

The basic idea is to decompose a complex wavefield p on a plane y = y′ into a sum
of plane waves through the Fourier transform

P (ω, kx, kz) = FtFxFz

{
p(t, x, y = y′, z)

}
, (2.76)

where P (ω, kx, kz) is often called the angular spectrum of plane waves. Since ky is given
for free by knowing kx and kz, one can propagate the wavefield between parallel planes
as shown in Fig. 2.12, simply by adjusting the phase of each component. The general
expression is

p(x, y, z, t) = F−1
t F−1

x F−1
z

{
P (ω, kx, kz) · eiky(y

′−y)︸ ︷︷ ︸
Propagator to
parallel planes

}
. (2.77)

Depending on the method, such as NME, one might not have access to the fluid
pressure directly. Euler’s equation in the frequency domain can then be used to relate
the normal velocity V in one plane to the pressure

iωρV = −∇P. (2.78)

2.5.2 A fast method for diffraction on tilted planes

The angular spectrum method can be adapted to calculate diffraction onto tilted planes,
which was described by Matsushima et al. [51] for optical diffraction. The method has,
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Fig. 2.13. Depiction of how a wavefield ( ) is propagated a over a separation distance
s from a source plane ( ) to a reference plane ( ) with tilt θ. A conversion to the
wavenumber domain with a consecutive tilting of an intermediate plane is needed.

to our knowledge, never been applied in the field of acoustics, but it is suitable for
calculating multiple reflections between tilted plates.

The tilt can be arbitrarily defined along two axes. For practical inversion in well
logging, that may be necessary for most general situations because casing eccentricity
gives a tilt along a different axis than non-parallel casings will. However, the casings
are usually nearly parallel, and the eccentricity is more important to model. Therefore,
in this section, we will focus on single-axis rotation, which also avoids non-commuting
rotation matrices and keeps the equations shorter.

Two coordinate systems are used, shown in Fig. 2.13. The source plane ( ) car-
ries a complex wave g(x), and a distance s away the reference plane ( ) captures the
propagated wavefield as f(x′). The method works in two main steps; first, the pressure
from the source field G(kx) is propagated to an intermediate plane parallel to the source
plane, giving Gs(kx). That can be performed using conventional techniques such as the
standard angular spectrum method. Next, the plane waves are reassembled in the tilted
reference system with a shared origin, giving F (k′x), and combined using the inverse
Fourier transform. The essential part is to perform a coordinate rotation in the Fourier
domain, followed by an interpolation that conserves energy.

To understand the coordinate rotation, it helps to think of wave vectors in the two
coordinate systems are fundamentally the same object, but related by a coordinate
rotation, here around the z-axis (as opposed to the y-axis in Matsushima’s work):

k =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 · k′. (2.79)

By interpolating Gs(kx), one can find the equivalent wave vector components in the
tilted reference system, using uniformly spaced samples in k′x

F (k′x) = Gs(k
′
x cos θ − k′y sin θ). (2.80)

The rotational transformation introduces a non-linearity, so the total energy in the field
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is not conserved without including the Jacobian

J(k′x) = cos θ +
k′x
k′y

sin θ. (2.81)

The wavefield on the tilted reference plane can thus be written as

Fx′{f(x′)} = Gs(k
′
x cos θ − k′y sin θ) ·

∣∣∣∣ cos θ + k′x
k′y

sin θ

∣∣∣∣. (2.82)

2.6 Response methods: Reflection and transmission

2.6.1 A single plate

Lamb waves, or the modal solutions of wave propagation in plates, were derived under
the condition that the waves must exist without forcing. The other alternative approach
is called response methods, where reflected or transmitted wavefields are calculated as a
response to plane wave excitation. The reflection and transmission coefficients include
contributions from all modes. While the method is powerful, it is difficult to understand
the results without thinking about the modal solutions.

In this work, the reflection and transmission coefficients are needed for a plate in
contact with cement and water, but no attempts will be made to write out expressions
analytically because the equations get lengthy. In the introductory courses in acous-
tics, one learns to derive reflection coefficients for a liquid interface [23]. If the bottom
half-space is elastic, one gets from textbooks on elastic wave propagation [18] a more
complicated expression. From specialized literature [52] one can find elaborate expres-
sions for the reflection coefficients for a plate in fluid, where the insights have been used
to analyze the influence of fluid density on the leaky modes [53].

Response coefficients can also be derived from Eq. (2.27), and solved numerically with
more generality. Since the excitation is from a fluid, the incoming P-wave amplitude
on the top of the plate is set to unity, Dp1 = 1, while the remaining incoming waves
(evaluated at the top and bottom interfaces) are set to zero, Ds1 = Up3 = Us3 = 0. In
the implementation, a fluid like water is achieved by setting cs very close to zero. The
reflection coefficient for P-waves is defined as Rp = Up1/Dp1, for S-waves Rs = Us1/Dp1,
and similarly the transmission coefficient for P-waves is Tp = Dp3/Dp1, and for S-waves
Ts = Dp3/Dp1. Again, defining N = D−1

l3 (top) · S ·Dl1(bot), one can after some matrix
algebra get 

Tp
Ts
Rp

Rs

 =


1 0 −N12 −N14

0 0 −N22 −N24

0 1 −N32 −N34

0 0 −N42 −N44


−1 

N11

N21

N31

N41

 . (2.83)

The matrix entries have to be calculated as a function of β and ω, and the obtained
coefficients are complex-valued. Taking the example of a 1 cm thick steel plate, with
water above the plate, and different materials below (see Fig. 2.1), solving for the re-
flection coefficients Rp at 250 kHz give curves as shown in Fig. 2.14. The curve labeled
with “steel” is frequency independent and corresponds to a water-steel interface, and is
for clarity therefore not a plate. However, with other materials, the reflection coefficient
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Fig. 2.14. Reflection coefficient at 250 kHz for an incoming plane wave in water
above a 1 cm thick steel plate with different materials below. The steel-labeled curve
corresponds to a half-space of steel. The optimal angles for exciting different Lamb
modes are marked.

is frequency-dependent because the steel plate of finite thickness introduces a sense of
spatial scale to the problem.

The reflection coefficient for a plate in water, Rw, is plotted for all β and ω combi-
nations in Fig. 2.15. One can see that the reflection is greatly reduced where a Lamb
mode is expected (see Fig. 3.5). This observation is explained in [52] and [53], where the
characteristic equations for leaky Lamb waves, Eq. (2.45) and (2.46), turn up as zeroes
in the reflection coefficients for a plate in fluid.

The “dips” seen in Fig. 2.14 therefore correspond to Lamb modes, and for each
frequency, the theoretical optimum angle for exciting each mode can be calculated.
That is done by matching the horizontal wavenumber and frequency of the incident
pressure wave with the targeted mode. From Snell’s law, one finds that the optimal
incidence angle is given by

φc = sin−1

(
cf
cph

)
. (2.84)

The c-subscript indicates that this is only valid for plane wave excitation, meaning the
center frequency and wavenumber of any transient pulse. For the A0 mode at 250 kHz
in a 1 cm thick steel plate, φc = 32 degrees.

If the plate is on top of heavy cement, the reflection coefficients Rc will naturally
be different from Rw. The difference is shown in Fig. 2.16, and the two most notable
features are that the dispersion curves line up quite well and that the coefficients around
the modes are narrower and deeper for Rw.

The discrete Fourier transform is used to implement response methods in practice.
Considering a two-dimensional example, which is straightforward to expand upon, the
incoming pressure signal on top of the surface depends on t and x, such as p(t, x). A
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Fig. 2.15. Absolute value of reflection coefficients for a 1 cm thick steel plate in water.
The gray area represents evanescent waves in water.

two-dimensional FFT can be used to get to the frequency-wavenumber domain

Pin(ω, kx) = FtFx

{
p(t, x)

}
. (2.85)

The reflected wave is then given by

Pr(ω, kx) = Pin(ω, kx) ·Rp(ω, kx), (2.86)

and the transmitted pressure wave can be computed by using Tp. Taking the IFFT gets
the result back to the time-spatial domain.

The sampling theorem states that one must sample the highest temporal and spatial
frequencies so that [18]

1

∆t
> 2fmax, (2.87a)

and 1

∆f
> tmax, (2.87b)

to avoid aliasing. Additionally, using this method, the solution will be periodic in x as
well, and the waves will wrap around from xmax back to x = 0. Hence, both tmax and
xmax must be large enough to give negligible aliasing effects. The physics is useful to
have in mind: While the incident pressure pulse might be short in time and space, in the
limit an impulse, the reflected pressure will be a longer signal, at the very least because
the plate must “ring down”. That is especially the case for coupled plates, where two
effects contribute to the longer duration of the impulse response. The first is that modes
travel along with the plate, and the second that the reverberation of waves bouncing
between the plates may be slowly attenuated in time. Therefore, sufficient zero-padding
is critical.
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Fig. 2.16. Difference in absolute values of reflection coefficients for a 1 cm thick steel
plate, either in contact with water on both sides (Rw), or water and heavy cement (Rc).
The gray area represents evanescent waves in water.

Fig. 2.17. Multiple reflections from an incident plane wave Pin. Later reflections are
composed as a geometric series depending upon χ and Λ.

2.6.2 Two coupled plates

Response methods are well suited for modeling two coupled plates, and one of the
reasons is the natural fit with the angular spectrum method for tilted planes. The
tilting method is needed because while the global matrix method mentioned in Sec.
2.2.3 can already model two plates separated with a fluid, it only works if they are
parallel. Modal methods could, in principle, be used as well, but it is shown in 4.1 that
it is less accurate for a plate in contact with cement, not to mention the vastly increased
complexity in implementing it. Therefore, the case with two plates is only described for
response methods.

We start the analysis with two parallel plates labeled A and B, separated by a
distance s, as seen in Fig. 2.17. An incoming wavefield pin(t, x) is incident onto the
top plate A, which is immersed, with the same fluid on both sides. The response from
the two plates will be composed of multiple reflections. In the frequency domain, the
incoming wave is described by Pin(ω, kx). The first reflected sound pressure r0 is from
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the interface to plate A:
r0 = RA · Pin. (2.88)

The following reflection component, r1, is transmitted through the first plate A, propa-
gated the distance s, then reflected from the second plate B, propagated the distance s
again, before being transmitted through plate A:

r1 = TA · S ·RB · S · TA · Pin, (2.89)

where S is the phase factor that incorporates the angular spectrum propagation between
two planes. Note that TA is equal in the first and second transmission because the same
fluid is assumed on both sides of the plate. The next contribution, r2 reveals a pattern:

r2 = TA · S ·RB · S ·RA︸ ︷︷ ︸
χ

·S ·RB · S · TA · Pin, (2.90)

where χ represents a round-trip between the two plates. It is clear that r3 will be
reflected one more time between the two plates, and each contribution will have another
factor of χ. If one introduces the common factor

Λ = TA · S ·RB · S · TA, (2.91)

the total reflection rtot can be expressed as a geometric series

rtot = r0 + r1 + r2 + . . . = PinΛ(1 + χ+ χ2 + . . .) = Pin
Λ

1− χ
. (2.92)

The effective reflection coefficient is Rtot =
Λ

1−χ . While such a method is effective from
a computational standpoint, it is more likely to show wrap-around effects in the spatial
domain. It may therefore be better only to compute the first few reflections that are of
interest.

If one plate is tilted, an approach using Eq. (2.92) will not work. Instead one has
to repeatedly apply a tilting operation ]θ, Eq. (2.82), between each reflection. The
separation distance s is now taken to defined as in Fig. 2.13. There are at least two
ways to go about this, but the simplest is to tilt the coordinate system before and after
reflecting from the bottom plate

r0 = RA · Pin (2.93a)
r1 = TA · S · ]θ(RB · ]θ(S · TA · Pin)) (2.93b)
r2 = TA · S · ]θ(RB · ]θ(S ·RA · S · ]θ(RB · ]θ(S · TA · Pin)))) (2.93c)

In the case of r1, the incident sound field is transmitted through the first plate A,
then propagated to the next plate B. Because plate B is tilted, a tilting operation by θ
degrees is performed. In the new coordinate system, it is straightforward to calculate
the reflected wavefield from plate B. Reversing the tilting operation is then performed
with −θ, but the wave vector components ky are reversed as well, so the two cancels and
the same sign of the tilting angle is used. The wavefield can then be propagated back
to plate A and then be transmitted. For r2, r3, etc., more round-trips χ are included,
where a tilt is applied before and after reflection factor RB. It is clear that most of the
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Fig. 2.18. Construction an inverse problem. The cost function is a way to quantify the
misfit, and involves thinking about regularization.

intermittent results from Eq. (2.93b) can be reused in Eq. (2.93c), so computing, e.g.,
r5 will not be as computationally demanding as one might first think.

The second method is here described for completeness, although it is unnecessarily
complicated. It has been verified that it is possible to express, e.g., r1 differently as

r1 = Ss · TA · ]θ(Su ·RB · ]θ(Sd · TA · Pin)). (2.94)

Here the propagation term is put between two tilting operations. The propagation
down and up is along two non-parallel axes of different lengths, making it necessary to
differentiate S as Sd and Su. In addition, for each reflection, the coordinate systems of
the two plates are shifted with respect to each other. A specifically chosen shifting must
be introduced to re-align the origins, e.g., with a phase factor Ss.

The two plates are connected with fluid in our discussion, but the method could
be extended to cover two tilted plates coupled by a solid instead. However, one must
then consider that P-waves may be reflected and transmitted as S-waves and vice versa.
Therefore, the tilting operation must also be applied to P- and S-waves separately. For
visualization of wave propagation with parallel plates coupled by a solid, see [54].

2.7 The inverse problem

2.7.1 What is non-linear inversion?

Inversion is the process of finding underlying parameters X from a set of observation
or reference data dref and requires solving an inverse problem. That is opposed to the
forward problem F where one calculates data dmod from the model given the underlying
parameters

dmod = F (X). (2.95)
An example of a linear forward problem is to blur an image with a Gaussian function
(convolution). The inverse problem is to sharpen the blurred image, in other words
recovering X, using a mathematical model of the function that describes the blurring
process (deconvolution), such as X = F−1(dref ). Other examples of inverse problems
include tomography and calculating the mass distributions in the earth given gravity
measurements on the surface.

It turns out that inverse problems are more difficult than the forward problem, even
if the exact mathematical model describing the forward problem is known. The reasons
come down to [55]:

• Existence: The problem must have a solution, and in practice, there may be no
model that exactly fits the data. That can occur because the mathematical model
of the system is approximate or because the data are noisy.
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• Uniqueness: There must be only one solution to the problem. However, two very
different systems may be indistinguishable from their measurements.

• Stability: The solution must depend continuously on the data, but often tiny
changes in the measurement lead to enormous changes in the estimated model
parameters. Regularization is often employed (introducing a bias, e.g., penalizing
large and rapid variations).

Many inverse wave propagation problems are non-linear and cannot be expressed
with linear algebra and inverted directly. The problem is then one of global optimization:
what parameters can be fed into the mathematical forward model to minimize the
mismatch between the observed data and the model data? The mismatch is often
quantified with a cost function (also seen under the names misfit, merit, objective, loss,
or error function), and when the mismatch is at a minimum, the best estimate of the
parameters Xest are assumed to have been captured

Xest = min
X

Cost{ F (X), dref }. (2.96)

The cost function can take many forms, and popular alternatives in machine learning
include the MSE (mean square error). Other examples can be found in, e.g., geoacous-
tics; Lindsay and Chapman used a Bartlett beamformer [56], while Collins et al. [57]
have defined different cost functions in the frequency domain for measurements where
the phase is reliable and not. The latter point is essential, as a phase shift of especially
half a wavelength (cycle-skipping) will give significant errors when using an MSE cost
function naively.

Good reasons exist for expecting a slight phase shift in practice: In the through-
tubing well logging situation, some relevant parameters, like the inner casing thickness,
are given from, e.g., pulse-echo measurements or existing well logs. If the inner casing
diameter is off by a few percentages, the dispersion will not be precisely modeled, and
then the error may be compensated for in the inverse problem by wrongly estimating
other parameters. An “inverse crime” [58] is to use the same model to generate test
data and perform the inversion. Because real data is noisy and the model potentially
even slightly wrong, the inversion and cost function should not be overly sensitive and
break from minor expected errors.

2.7.2 Inversion strategies: Brute force and simulated annealing

Some of the main difficulties with non-linear inversion arise because the cost function
can have a chaotic behavior. The most straightforward method of gradient descent,
implemented by simply following the negative gradient of the cost function, starting
from an initial guess of the parameters X0, is very likely to end up in a local minimum
and get stuck there, completely missing the global minimum of interest. That brings up
the need for a global optimization method.

The safest approach for global optimization is to test every possible combination of
parameters and pick the one with the lowest cost. That is to brute force the problem, but
the downside is that it may be extremely time-consuming. If the parameters need to be
tested with fine increments, or there are many parameters, the number of permutations
will reach astronomical numbers.
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Simulated annealing (SA) is a strategy that intuitively is based on metallurgical
annealing. A control parameter T , analogous to temperature, is introduced, and by
reducing the T gradually, the system will settle into its lowest energy or cost state.
Starting at a high temperature allows the algorithm to search the cost landscape more
extensively, as it will often accept a worse solution and behave like a random walker. As
the temperature decreases, the algorithm gradually tends toward only accepting better
solutions with a lower cost, becoming more like a gradient-based method.

Starting from an initial guess X0, most variations of SA usually consist of the fol-
lowing steps:

• A perturbation to the parameters to get a new proposed solution Xi+1.

• Evaluating the cost associated with Xi+1.

• A decision to accept or reject the proposed solution, based on the cost of Xi and
Xi+1.

• A schedule to reduce the temperature T .

How each step should be implemented depends largely on the problem at hand, and
many options are available. In any case, there are no guarantees of finding the global
minimum within a reasonable time, so it is still essential to reduce the problem size if
possible and use as much a priori information as available.
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Setup, simulation methods, and
implementation

With the theory as a backdrop, this chapter will describe how the developed numerical
models can be implemented and verified. Two test systems are defined for validation and
inversion purposes, and the results are compared with reference simulations in COMSOL.
The test systems are described in detail in Sec. 3.1, along with the COMSOL models.
Both single and double plate setups are considered.

To model each plate, one can either take a modal or response approach. The modal
methods are covered in Sec. 3.2, beginning with a technique to solve and trace the
dispersion relation. A small section is then devoted to transient NME simulations for
the single plate case.

In Sec. 3.3 the response approach is described for two non-parallel and coupled
plates. The two-dimensional case is prioritized, with some of the most central code
given in Appendix A. The section also hosts a brief discussion about some aspects of
three-dimensional simulations. Finally, Sec. 3.4 covers the choice of cost function and
describes a simple brute force inversion method.

3.1 System setup in simulations

3.1.1 Materials and geometry

Table 3.1: Material parameters used throughout the thesis.

Material ρ (kg·m−3) cp (m·s−1) cs (m·s−1)
Steel 7850 5900 3200
Water 1000 1480 -
Light cement 1330 2250 770
Heavy cement 1800 3500 1850

The simulation methods presented in this thesis will be implemented using the
Python programming language. For verification and inversion, each Python simulation
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Fig. 3.1. COMSOL model with one plate. Snapshots of two time steps. The fluid
domain shows pressure, and the steel shows the y-component of velocity.

has a corresponding COMSOL simulation, and the setups are explained with figures
from the latter. Also, the same four materials are used throughout all chapters in this
thesis, with their parameters given in table 3.1. The two types of cement are adaptations
of class G cement and foam cement in [4].

The COMSOL model for single plate wave propagation is shown in Fig. 3.1, and the
critical element is the steel plate, whereas the PMLs and BCs are specific to COMSOL.
The plate has a thickness of 1 cm in all situations, but the length, here 20 cm, can vary.
Above the plate is water, and below the plate, one might have either water or a type
of cement. In the first frame, a Gaussian wavepacket is incident on the plate from the
water, which is described in more detail in Sec. 3.1.2. As the wavepacket excites the
steel plate, it reflects, and one can see in the second frame that an S0 and A0 wave
propagates along with the steel plate. The pressure is sampled on the “measurement
lines” indicated in the figure, with sampling above the Nyquist rate to capture the
waveform development.

The double plate setup is shown in Fig. 3.2. The upper plate, labeled A, is still 1
cm thick. The bottom plate B can vary between 0.7 and 1.3 cm in this work and is
backed by either water or cement. Plate B may be tilted relative to plate A, and the
spacing distance between the plates s is defined for the center of the plate. The pressure
is, for this situation, only measured above plate A. The tilt corresponds to non-parallel
casings, which normally is less interesting than casing eccentricity in through-tubing
well logging. However, simulating casing eccentricity requires tilting around an axis
that does not exist in two dimension.

3.1.2 Excitation source in simulations

A simplified excitation source is used to compare the different methods. The principle
in the pitch-catch technique is to target a particular mode, which can be done using
Eq. (2.84). Because the excitation is always from a fluid, and in practice from a trans-
ducer, the strategy has been to initialize a complex Gaussian wavepacket as seen in, e.g.,
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Fig. 3.2. COMSOL model with two plates. The bottom plate is tilted by 3°.

Fig. 3.1. The wavepacket is the product of a Gaussian window, and a complex plane
wave, scaled by some initial amplitude p0, which from here on is always set to 1 mPa:

p(t = 0, x, y) = p0 · Gaussian window · Plane wave, (3.1)

where the complex plane wave is given by

Plane wave = e−ikc[sin(φc)(x−x0)−cos(φc)(y−y0)], (3.2)

where x0 and y0 determines the center of the wavepacket. As a reminder, kc = ωc
cf

. The
Gaussian window is given by

Gaussian Window = e−
(x−x0)

2+(y−y0)
2

2σ2 , (3.3)

and the wavepacket will be circular with a fixed FWHM of twice the wavelength at
the center frequency, or σ = 4πcf/(2.355ωc). Alternatively, if necessary, oval-shaped
Gaussians could be defined if the wavepacket was desired wider (along wavefronts) or
longer (along propagation direction). The location of the wavepacket is x0 = y0 = 2 cm
in all simulations.

The pressure on the plate surface as a function of time, pin(t, x), is obtained by
propagating the wave packet using an angular spectrum approach based on Eq. (2.2).
Simply put, the method works by adjusting the phase of each complex plane wave
component according to the dispersion relation and then sampling the pressure along
the wanted plane. To speed up computations, which is needed in three-dimensions, the
simulated domain p(t, x, y, z) is small, and then zero-padded after sampling pin(t, x, z).

Mode excitation depends on both the geometry of the incoming wave packet and
its frequency content. Rose [29] uses NME as a tool to analyze this with two concepts
called wave mode excitability and source influence. Here we will instead look at the
surface vibrational energy E (in the signal processing sense) in each mode m excited by
the simplified excitation source, defined as

Em =

∫
[v(m)

y (x, y = h)]2dx. (3.4)

It is not a physical energy, but is tightly connected with the radiated intensity of the
modes, see Eq. (2.51), and therefore gives a practical measure for mode amplitudes. The

43



CHAPTER 3. SETUP, SIMULATION METHODS, AND IMPLEMENTATION

Fig. 3.3. Vibrational energy proportion in each mode as a function of incidence angle.
The optimal angle for excitation given by Snell’s law, Eq. (2.84), is marked for each
mode where it is defined. The plate is 1 cm thick and in contact with water on both
sides. The wave packet has a center frequency of 250 kHz, and a FWHM of twice the
wavelength at the center frequency.

mode excitation is computed with NME (see Sec. 3.2.2), and the energy is measured
50 µs into the simulation, which is a short time after the incident wavepacket has been
reflected, as seen in Fig. 3.1. The attenuation from the water on both sides of the plate
is included.

Fig. 3.3 shows the proportion of energy in each mode, as well as the total normalized
energy in the S0 and A0 modes. The optimal incidence angles from Eq. (2.84) is shown
as well for the modes where it can be defined at 250 kHz. As can be seen, an incidence
angle of 32 degrees obtained with Snell’s law gives the maximum amount of energy in
the A0 mode. At the same time, the S0 mode is also excited with roughly 35% of the
energy, so, depending on the application, it may be worth increasing the incidence angle
to target the A0 mode more specifically at the cost of its total energy. It is also worth
having in mind that the S0 mode is significantly more dispersive than the A0 around
the chosen frequency, so it smears out and gets a relatively low peak amplitude.

3.1.3 COMSOL simulation

The COMSOL models have already been shown in Figs. 3.1 and 3.2. The simulations
are set up as time-dependent studies, using the Acoustic-Solid Interaction, Transient
physics that include the Solid Mechanics and Pressure Acoustics modules.

Referring to Fig. 3.1, the plates are extended out of the fluid domain to avoid early
reflections from the ends of the plate. Therefore, free boundary conditions are imposed
on large parts of the plate outside the water domain to allow continued Lamb wave
propagation. Because perfectly matched layers (PMLs) are only supported for the pres-
sure acoustics module, the plates are terminated with small squares at each end with
low-reflecting boundaries. It is, however, not a perfect termination, as the low-reflecting
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condition assumes normal incidence.
The edges around the water domain are covered with PMLs, backed with an impedance

boundary condition, giving excellent absorption of outgoing waves. If the material be-
low the plate is cement instead, the PMLs do not work, and the impedance boundary
condition is swapped for a low-reflecting boundary.

The lowest speed of sound in the problem is used to define the maximum element
size. Typically, that is the speed of sound in water, of 1480m s−1. The center frequency
is 250 kHz, but the highest frequency of significance is well within 500 kHz for the chosen
wavepacket. The element size is set so that 6 elements fit into the smallest wavelength
at 500 kHz, calculated as 1480/(500000 · 6). Tests have verified that finer meshes, using
8 or 10 elements per wavelength, gave practically the same results. The time step is
chosen automatically by the solver based upon the smallest element size in the mesh.

The plate is excited with an incident wavepacket from the water, defined in the initial
values of the pressure acoustics domain. Following the previous section, it is described
as a plane wave enveloped with a Gaussian. The time derivative is also given, as required
by COMSOL, to make it propagate in the wanted direction. Unfortunately, properly
defining the wavepacket is not trivial, as explained in the following paragraph.

By spatially enveloping the plane wave with a Gaussian, the spectrum of wavenum-
bers is broadened. Using the phasor notation, it is natural to express the time derivative
of plane waves by multiplying with iωc. Unfortunately, the dispersion relation in water
ωc/k = 1480 m s−1 will then, by definition, only be valid for the central wavenumber.
As a result, a small spurious wavepacket can be seen to separate from the main one
and propagates in the opposite direction due to this improper initialization (see the
upper left corner, second frame in Fig. 4.6). A few methods, such as considering the
broadening of the wavenumber spectrum when defining the time derivative, have been
attempted to fix this. However, simply creating two wavepackets, where the second goes
in the opposite direction from the first, gave the best result. The effect is that a spurious
one accompanies the main wavepacket, and the PMLs absorb the unwanted wavepacket
going in the opposite direction. An analysis of the error reveals that, compared to the
Python implementation which should be exact, the COMSOL excitation signal, pin(t, x),
has some inherent phase problems and 2.5% less energy. The two signals look similar
to the eye, as seen in Fig. 3.4, but the slight offset contributes more to the deviation.
The difference has an RMSE (root mean square error) of 6.9%, using the COMSOL
signal as normalization. From a practical standpoint, the agreement seen is sufficient
for comparing COMSOL and the presented methods, but it is nevertheless unfortunate
that phase-aware metrics, such as the RMSE, are limited already by the calculation of
pin(t, x).

3.2 Modal method implementation

3.2.1 Numerical solution of the Lamb dispersion relation

Equations (2.36) and (2.40) implicitly relate the frequency ω to a wavenumber β along
the propagation direction. For any frequency, there are a finite number of purely prop-
agating modes (A0, S0, A1, S1, etc.), as shown in Fig. 2.3. Tracing out the dispersion
curves is necessary, and this section describes a procedure to do so.
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Fig. 3.4. Comparison of the excitation signal between COMSOL and Python at the
position where the maximum difference is greatest, x = 3 cm.

The first step is to recognize that γs and γp will change from being real to imaginary
depending on β and ω. This causes (2.36) and (2.40) to switch between having real and
imaginary roots. As an example of a special case, it is known that the phase velocity
for the A0 mode is bounded between 0 and the Rayleigh wave velocity cR < cs, making
the vertical wavenumbers γs and γp imaginary. For other modes, one or both of the
vertical wavenumbers may become real at some point. Therefore, it is useful to rewrite
the characteristic equations to simplify the analysis, so they take on only real values for
real values of β. The result is given by Rose [29],

tan(γsh)

γs
+

4β2γp tan(γph)

(γ2s − β2)2
= 0 for symmetric modes, (3.5a)

γs tan(γsh) +
(γ2s − β2)2 tan(γph)

4β2γp
= 0 for antisymmetric modes. (3.5b)

The curves change signs when crossing 0, so a root-finding algorithm can be used.
However, one should take caution as the equations also change signs when crossing a
pole. Depending on the algorithm used, one should test that the obtained root is, in fact,
fairly close to 0. The curves are traced out as ω(β), as seen in Fig. 3.5 for two reasons.
Firstly, these curves are two-to-one, meaning we can capture the back-propagating modes
(negative group velocity, e.g., S1 mode at low frequencies). Secondly, as Lowe points
out [17], they are more easily traced out than say cph(ω), which perhaps is the most
natural choice.

Tracing out the modes is a bit involved, in particular due to the possibility of having
holes in the curves. The holes are regions where no roots are found for a mode, and
the consequences are potentially that a mode is missed, or that one reaches a dead end
when following a curve. In brief, the algorithm used here works as follows:

1. Choose either Eq. (3.5a) or (3.5b).

2. Make a list of β values: (β0, ... , βi, βi+1...βn) for a fine search for roots/modes
along the ω axis.

3. For each βi, trace out the modes found as follows:
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Fig. 3.5. Dispersion curves as they are traced out. Notice that the curves are not
one-to-one, and more predictable than, e.g., the phase velocity Fig. 2.3.

i Store the values of each root as the intersection with a mode.
ii Do a similar search nearby (βi + δβ) to estimate the derivative ∂ω/∂β.
iii Trace the modes (as far as possible) down to βi−1 and up to βi+1, taking

small steps of, e.g., ∆β = 5, and store the result as a piece of a mode curve
for the index i.

4. Starting from i = 0, go through each curve piece, and splice with the best matching
curve piece in i = 1 (if any), then for i = 2, and so on:

i Splice two curve pieces if they overlap at some point with a similar angle (< 5
degrees).

ii If any curve pieces remain, they are attempted to be matched based on how
well linear extrapolation finds the midpoint between the unconnected ends.
An upper tolerable error threshold is defined from the derivatives ∂ω/∂β, and
length of the gap.

iii Unmatched curve pieces are at this point considered as new modes.

5. The fully traced modes are then labeled A0, A1, etc. based on their lowest fre-
quency, in line with how higher modes have higher cut-off frequencies [28].

6. The mode curves are finally fitted with a spline function to get ω(β). For the
inverse function β(ω) the fit ignores the back-propagating modes by only selecting
the part of the curve with positive gradient ∂ω/∂β, so it is a one-to-one function.

When a spline function is obtained, it is easy and fast to work with, and the mode
tracing is then isolated from where the dispersion relation is used. The method above
has worked very well for steel plates and similar materials up to at least 1 MHz·mm,
but no assessment has been conducted of general robustness for very different mate-
rial parameters. Therefore, using the above method will require inspection and maybe
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Fig. 3.6. Flowchart for calculating plate excitation via NME.

tweaking of hyperparameters, such as the step length ∆β. Another point is that at very
low frequencies, the A0 and S0 modes may be difficult to trace due to issues relating to
the numerical range and precision of floats or doubles in the characteristic equations. In
those situations, the low-frequency approximations given in [28] can be used. Finally, in
cases where one is interested in general leaky Lamb dispersion relations, the wavenum-
ber is complex, and the search for roots is significantly more difficult but still possible
as described by Lowe [17].

3.2.2 Single plate excitation using NME

The NME technique is more challenging to implement than response methods and relies
heavily on solving and tracing the Lamb dispersion curves. Because it essentially is
a perturbation method by assuming the free plate solution, it is also not so accurate
when the plate is in contact with cement, so the calculation is only exemplified for single
plates. The propagation direction is assumed to be towards positive values of x. The
flowchart for how NME is implemented is given in Fig. 3.6, using theory described in
Sec. 2.3 and Sec. 2.4.

The first step is to define the system, consisting of a plate and two adjacent materials.
The extent of the simulated domain (xmax) must be decided, as well as the simulation
time (tmax). Because NME gives control over each mode individually, one can, in many
cases, decide upon the right amount of zero-padding to avoid wrap-around effects in
the solution by “killing off” the modes that enter an extended part of the domain [8].
Secondly, according to the sampling theorem, the dimensions must be discretized to
resolve the shortest wavelength and highest frequency. For the excitation signal pin
chosen, 4-5 samples for each center wavelength in water and frequency have been enough,
giving sufficient resolution of frequencies and relevant wavenumbers up to 500 kHz.

The next step is to compute the dispersion curves, which is explained in the pre-
vious section. The corresponding attenuation curves are also calculated here using the
perturbation method. It has been helpful to employ object-oriented code, in order not
to lose track of how different structures and modes are connected.

The NME factors can then be integrated, which has to be done for each mode and
frequency. The system is defined so that only the S0, S1, A0, and A1 modes need to
be considered. The excitation signal is converted from the (t, x) to (ω, x) domain, and
the modal participation factors an can be integrated for each mode and frequency. The
integration is cumulative because each mode is cumulatively excited by the source, and
the Scipy method integrate.cumtrapz can be used. However, when the excitation
zone is known, there is no need to integrate beyond that.

The last step is to calculate the wanted fields. This involves using Eq. (2.69). If the
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Fig. 3.7. Flowchart for calculating plate response.

pressure above or below the plate is desired, that would require applying a conversion
factor from Euler’s equation to the field of vy(h).

3.3 Response method implementation
Implementing the response method is a bit more straightforward than with NME. It is
also the only method used in this thesis for coupled plates and full three-dimensional
simulations. The flowchart is shown in Fig. 3.7, using theory described in Sec. 2.5 and
Sec. 2.6. The code for calculating the two-dimensional case is given in Appendix A.

The first step is to define the system, which consists of one or two plates, their thick-
nesses, tilts, separation distance, and adjacent materials. The extent of the simulated
domain (xmax, and also zmax for the three-dimensional problem) must be decided, as
well as the simulation time (tmax). As opposed to NME, we have no control over each
mode, and everything that happens in the simulation is directly tied to the sampling
and length of the excitation pin. To avoid wrap-around effects, one must define large
domains to allow the waves to fade out. Luckily, one does not have to compute every
reflection component ri, and in the wast number of applications, some wrap-around
effects are acceptable. As before, 4-5 samples for each center wavelength and frequency
in water have been sufficient. If the array dimensions are re-adjusted to be in powers
of two (128, 256, etc.) to give faster FFTs, it has been found better to use the extra
samples to increase the domain size (i.e., increasing xmax), rather than sampling the
original domain more densely.

The next step is to compute the reflection and transmission coefficients, RA, TA, RB.
Because this step involves double for-loops and computing and inverting many ma-
trices, it is a good place to optimize the code, as has been done using the Numba
just-in-time compiler. Another great speed-up can be achieved by exploiting symmetry;
R(±ω,±β) = R(ω, β).

For three-dimensional simulations, the coefficients must be known for wavenumbers
in the z-direction as well, such as R(ω, kx, kz). Because β =

√
k2x + k2z , it is faster to

interpolate R(β) for each frequency as shown in Fig. 3.8. The sampling of the coefficients
of β must be fine enough to give accurate interpolation, and it seems necessary to use
a finer resolution of β than given by the Fourier frequencies of the domain sampling in
x, i.e., kx. Ten times finer resolution has been used in this work, but the number was
chosen arbitrarily to be well within safe limits. Thus, a coarser resolution may also be
able to give sufficiently accurate results.

The excitation signal must be transformed to the frequency domain to calculate the
reflection contributions, ri. With the problem formulated in the (ω, kx, kz) domain,
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Fig. 3.8. For each frequency, the reflection coefficient can be interpolated ( ) at any
combination of kx, kz from β ( ).

the corresponding phase factors for angular spectrum propagation are defined as S =
e−ikys, with ky being a multi-dimensional array calculated from ω, kx, and kz. The
reflections are then calculated by multiplying together the multi-dimensional arrays, and
the pressure can be obtained by taking the real part of the inverse Fourier-transformed
result.

The tilting operation is used before and after multiplication with RB. Naturally,
the interpolation must be called for every non-evanescent combination of frequency and
wavenumber in the rotated system to fill in the reconstructed signal. The interpolation
method can be chosen freely, and tests indicated linear interpolation to be sufficient
and cheaper to compute than quadratic or cubic. An efficient algorithm is used that
calculates the array indices to interpolate between directly, instead of, for instance,
constructing spline objects first. For this to work straightforwardly, the spectra should
be stored in multi-dimensional arrays where the wavenumbers are strictly increasing,
which is done by applying a fft.fftshift before interpolation. Negative frequencies
can be ignored because they do not contribute to the result, and to speed up the triple
for-loops, Numba was used.

There is a detail to mention about where on the plate the tilt axis is located. The
tilt is by default applied around the first sample, such as x[0] = 0. Therefore, it is
necessary to use a method like fft.fftshift to align the central position of the plate
with the tilt axis. A second consideration arises if the simulated domain is longer than
the plate (i.e., zero-padding), in which case one must re-adjust the alignment using for
instance np.roll.

3.4 Strategy for the inverse problem

3.4.1 Choice of cost function

To de-emphasize the importance of phase but keep the timing information, the Hilbert
envelope of the measured pressure time-domain signals is taken, denoted as env{p}.
In this context, the index i indicates a receiver transducer with n in total. The cost is
calculated as the mean of the root Noise-to-Signal Ratio, mrNSR for short. The “noise”
is understood as the mismatch between the model and the reference. The “signal” is the
reference, which itself is a signal from a simulation or measurement. The mathematical

50



CHAPTER 3. SETUP, SIMULATION METHODS, AND IMPLEMENTATION

expression is

Cost = mrNSR =
1

n

n∑
i

√∫
(env{pref,i} − env{pmod,i})2dt∫

env{pref,i}2dt
, (3.6)

and should return values between 0 and 1 in most situations of interest. The cost
function gives equal weighting to any receiver i, which is a crucial point. An alternative
to a general cost function as described here, in the sense that no assumptions are made
about the measured signal, is to create a cost function based on feature engineering
as in Viggen et al. [3]. In that work, the inversion relies on a mathematical model
where measuring the peak value of individual A0 wave packets, a feature of the signal,
is necessary.

3.4.2 Inversion method

The primary goal of inversion in this thesis is to demonstrate that it is possible in prin-
ciple. It will be shown in the next chapter that the cost function is most sensitive to
the geometry parameters, like the tilt angle, and that very little information is usually
available in the gradient unless the parameters are close to the true value. Performing
inversion with no prior knowledge then becomes a challenging task, but in a practical
setting, one should know much of the geometry already; either from drilling and install-
ment, inversion of a previous part of the casing, or other methods such as pulse-echo.

The inversion is usually less sensitive to material parameters ρ, cp, and cs, but
the main task in well logging is to separate between classes of materials. Because there
should be a limited number of possible materials outside the second casing, the inversion
will look for the best material from the selection of heavy cement, light cement, and
water.

When performing the inversion, the receivers are approximated as point hydrophones
on the surface of the plate. Two points are measured, and for the actual inversion of a
COMSOL simulation, like that illustrated in Fig. 2.17, the points are located 10 and 17
cm from the left end of the measurement line.

In the complementary parameter sensitivity analysis, which is not limited by running
COMSOL simulations, the simulated system is made longer with a plate length of 0.8 m.
The receiver configuration is also quite different and more similar to what is discussed
in the literature [3, 4]. The first receiver is then located 30 cm away from the left end of
the measurement line. The next are placed at 10 cm intervals, depending on the number
of receivers n, which will be clearly stated.

After attempting to use simulated annealing, it was found that brute-forcing the
problem would be more reasonable. The casing thicknesses dA and dB are assumed
known, whereas the spacing s and tilt angle θ are known to be within some narrow range.
The ranges are discretized, here in 11 steps, and for each permutation and material
candidate, the cost is calculated against the reference measurement from COMSOL. The
material associated with the lowest cost obtained is taken to be the material behind the
second plate.
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Chapter 4

Results and discussion

The results are presented in three parts. In Sec. 4.1 the computational methods devel-
oped are validated against COMSOL. Both modal and response methods are shown for
the single plate case, whereas only modal methods are used for two coupled plates.

Sec. 4.2 considers inversion. First, the possibilities to perform inversion are dis-
cussed, with a study on the sensitivity to different parameters. Focus is then directed to
detecting heavy cement, a “difficult” material, behind two tilted plates. A mechanism
is explained for how the detection is possible. Inversion is then carried out on the re-
sults from a smaller COMSOL simulation, verifying the forward model and the principal
possibilities of performing inversion.

The last important topics are included in Sec. 4.3. A qualitative demonstration
of three-dimensional propagation is given, which has been difficult to verify due to the
computational requirements of COMSOL. Finally, the execution time of the code used
is quantified.

Fig. 4.1. f -k plot of the excitation Pin to the left. The transmitted spectrum through
a 1 cm thick steel plate is shown to the right.
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Fig. 4.2. A comparison of different methods for the pressure transmitted through a
steel plate. The top row shows the pressure on a linear scale, while the bottom row
shows the difference between each method on a decibel scale. The black line refers to
Fig. 4.3.

4.1 Verification of the forward model

4.1.1 Transmission through a plate in water

Using the simplified excitation source described in Sec. 3.1.2, Fig. 4.1 shows the spectrum
of plane waves in the incident wave Pin in an f -k plot. The wave targets the A0 mode in
the 1 cm thick steel plate, as intended. The second plot shows the transmitted spectrum
using the response method, and it is clear that S0 waves are excited. The attenuation
of modes contributes to making the spectrum less sharp around the mode lines.

Fig. 4.2 shows the transmitted sound pressure in the t-x domain, using different
techniques of computations. The pressure is recorded just below the plate at 600 different
time intervals and sampled on a grid of 500 points.

Concentrating on the first row, it is not easy to see any apparent differences between
NME integration, the response method, and COMSOL. To get a better impression of
the agreement between the methods, the waveform on the black dotted line, at 14 cm, is
plotted in Fig. 4.3. NME is used to calculate the contribution from each mode, as seen
in the upper plot of Fig. 4.3. It is evident that only the A0 and S0 modes contribute
significantly and that the S0 mode is very dispersive as can be expected from its steep
gradient at 250 kHz in the group speed plot, Fig. 2.4. The total waveforms are plotted
in the second window, and the three curves are to the eye superimposed, with good
agreement in both phase and amplitude.

In the second row of Fig. 4.2, the differences between the methods are plotted on the
decibel scale. The reference level is set at 100 µPa, which is one-tenth of the amplitude
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Fig. 4.3. The waveforms sampled on the black lines in Fig. 4.2. The upper window
shows the mode contribution given by NME, and the bottom window compares the
waveform from the different methods.

in the incident wave. A difference of |∆p| = 1µPa translates to roughly −40 dB, or
2% of the peak pressure at the 14 cm line. The best overall agreement is between the
response method and COMSOL, where the visible error is in the two modes A0 and
S0. Given that the magnitude of the error is similar of about 2%, it is likely largely
due to the slight imperfections when re-creating the same excitation pin in COMSOL
and Python, as discussed towards the end of Sec. 3.1.2. A reflection from the imperfect
non-reflective boundaries can also be seen in the COMSOL implementation after around
100 µs.

NME may seem to have better agreement with COMSOL when it comes to the
propagating A0 and S0 and modes, but it does not capture the initial dynamics from
the excitation well. Considering that the wavefield locally around the excitation zone
may not be expressed from only propagating modes, that is an expected result and must
be taken as a feature of the method.

The remaining error in NME, particularly seen as a smudged-out color above the
excitation zone, seem to have a mode-like behavior. That hints toward a problem with
the dispersion relation used. The suspected main reasons can be seen in Fig. 3.5 in the
S1 mode. First, and most importantly, the cut-off frequency, defined as the intersection
with the ω-axis, is not the lowest frequency of the mode, and the code implementation
ignores frequencies below the cut-off. Second, the modes may be difficult to trace near
cut-off, and in those cases, the curves are extrapolated using splines, which may impact
the near-zero group velocities of some modes.

4.1.2 Reflection from a plate on a cement half-space

The reflection is measured as the pressure on the upper plate surface. Transmission can
be calculated for P- and S- waves, but is not interesting for the purposes of this thesis.
Fig. 4.4 shows the pressure on the upper plate surface with time. As opposed to the
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Fig. 4.4. A comparison of different methods for the pressure reflected from a steel plate
on a half-space of heavy cement. The top row shows the pressure from each method on
a linear scale, while the bottom row shows the differences on a decibel scale. The black
line refers to Fig. 4.5.

case with a plate in water, the S0 mode is barely visible. That is especially evident
in the waveforms of each mode, as seen in Fig. 4.5, and the reason is that the mode
couples very strongly to heavy cement and gives an attenuation α of more than 30 Neper
(Fig. 2.11), as opposed to roughly 13 Neper for the water (Fig. 2.9).

In this situation, NME is performing much worse, shown in Fig. 4.5. Firstly it
looks as if the wavepacket arrives earlier, which hints toward a slight inaccuracy in
the dispersion relation. Secondly, the attenuation is somewhat underestimated by the
perturbation method. Recalling that both Lamb waves and the perturbation methods
used for NME are only exact for a free plate, the assumptions are stretched when the
cement has 23% the density of the plate. Hence, and because of the increased complexity
in implementing the technique, NME is not suitable for building a general forward model.
It is, however, still a very valuable tool for understanding the problem and seems to give
at least a reasonable estimate.

The differences between the methods are plotted in the second row of Fig. 4.4.
Note again that the incident pressure has an amplitude of 1000 µPa, as opposed to the
reference pressure at 100 µPa. The maximal |∆p| in the Response-COMSOL plot, of
−15 dB or so, is therefore consistent with the 2% relative error in the excitation wave
packet pin.

4.1.3 Reflection from coupled tilted plates

The attention is now directed towards coupled plates, where the transmission and re-
flection of single plates are used together with the angular spectrum propagation and
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Fig. 4.5. The waveforms sampled on the black lines in Fig. 4.4. The upper window
shows the mode contribution given by NME, and the bottom window compares the
waveform from the different methods.

Fig. 4.6. Snapshots from COMSOL showing two coupled steel plates in water. The
color ranges of pressure p in the fluid and velocity component vy in the steel are read-
justed between each frame.
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Fig. 4.7. Reflected pressures from a stack of two tilted plates with a 3° tilt. Different
components of the reflected pressure is shown in the upper row, and the total is shown
in the bottom row. dA = 1.0 cm, dB = 0.7 cm, s = 2.0 cm, and the bottom plate is above
a half-space of heavy cement.

the tilting operation. A series of snapshots from a COMSOL simulation is shown in
Fig. 4.6, to illustrate the wave propagation. The pressure signal used for comparison is
measured on the upper side of the top plate. The top and bottom plates are referred to
as plates A and B, respectively.

The first verification is made using an upper plate of thickness dA = 1.0 cm, a bottom
plate of thickness dB = 0.7 cm, a tilt of θ = 3°, a separation s = 2.0 cm, and the backing
a half-space of heavy cement. The result is shown in Fig. 4.7, using the peak pressure as
the reference throughout. The upper row show the different contributions to the total
pressure, where the pin + r0 is identical to the pressure reflected from a single plate in
water. The sum of the reflections up to r4 is shown side-by-side with the equivalent
COMSOL model.

Similar simulations have been performed with different tilting angles as shown in
Fig. 4.8. A clear agreement exists between the developed computational method and
COMSOL, confirming that the tilting operation in the wavenumber domain is working as
intended. In the upper right plot, the errors are labeled, although they may be difficult
to see: a) is the error in the incident wave pin. b) is a wrap-around/aliasing effect
in the presented method. The plate considered is 0.2m in length, but the simulation
runs with a length of 0.5m. The wrap-around happens along spatial and temporal axes,
illustrating that a bigger domain could have been defined. This error is most visible
in the 0° tilt case because parallel plates are more “resonant”, meaning waves more
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Fig. 4.8. Reflected pressures from a stack of two plates and tilt angles of 0° and −3°.
Otherwise similar to Fig. 4.7. Errors labeled a) to c) are explained in the text.

easily couple to plate A after multiple reflections between the plates, and also to plate
B if the thicknesses of the two plates match. c) marks the reflection from an imperfect
non-reflective boundary condition in COMSOL.

Lastly, the waveforms are inspected at the 14 cm mark on the plate. Fig. 4.9 shows
the contribution from each reflection in the 3° degree tilt configuration to the total
pressure. As seen, the waveforms from the presented work and COMSOL are very
similar. The difference ∆p is plotted with an offset to get an idea of the deviation,
and a part of it seems to come from a slight phase shift, as the last reflection in the 3°
degrees case could indicate. Wrap-around effects and other discussed errors are likely
to be main contributors to the difference. The influence of introducing a tilt is clear,
and the agreement between COMSOL and the presented method is well within the
requirements of creating a working forward model.

4.2 Inversion of the two-dimensional problem

4.2.1 Parameter sensitivity and limits to inversion

Successfully solving the inverse problem requires that the cost function is sensitive to the
parameters of interest and displays a global minimum at the correct set of parameters.
Table 4.1 lists the parameters that are tweaked in the model and their ranges in the
sensitivity analysis from Xlow to Xhigh. Three cases have been defined that differ by the
thickness of the bottom plate dB and the tilt angle θ. The thickness of the inner plate
A, dA, is not included in the study.

A simplified setup of the pitch-catch logging system is simulated, using the point
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Fig. 4.9. Waveforms at the 14 cm position for three different tilting angles.
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hydrophone approximation for the receivers. 30 cm from the excitation, and then in
steps of 10 cm, the pressure is recorded as a function of time on the plate surface. Two
receiver configurations are considered, one with two such “receivers” at 30 and 40 cm,
and one with five receivers at 30, 40, 50, 60, and 70 cm. Each parameter X is varied
between Xlow to Xhigh, keeping the other constant, and the cost function is calculated
with the true parameters as reference. The effect on the cost is shown in Fig. 4.10.

Table 4.1: Parameters used in the sensitivity analysis.

Parameter Xlow Xmid Xhigh Case A Case B Case C
dA (cm) 0.7 1.0 1.3 1.0 1.0 1.0
dB (cm) 0.7 1.0 1.3 1.0 0.8 1.2
s (cm) 1.0 2.0 3.0 2.0 2.0 2.0
θ (deg) -3.0 0.0 3.0 0.0 2.0 2.0
ρ (kg·m−3) 500 1500 2500 1500 1500 1500
cp (m·s−1) 1300 2400 3500 2400 2400 2400
cs (m·s−1) 0 925 1850 925 925 925

From Fig. 4.10, it seems as if the cost function is sensitive to every parameter and
that using five receivers is at least marginally better than 2 in most situations. Typical
for all three cases is the sharp notch for the θ and s parameters. Further research is
needed to make a conclusive statement, but it seems likely that inversion of the geometry
parameters θ, s, and dB is usually possible, at least when some of the parameters are
known.

The sensitivity to the material parameters is strong in case A with parallel plates of
equal thickness. However, the sensitivity is reduced when a tilt is applied, as in cases B
and C. Case C has a thicker bottom plate, which seems to partially compensate for the
tilting, compared to a thinner plate as in case B.

The observed differences in the material parameter sensitivities are explained by the
waves’ need to couple into the second plate to interact with and probe the material. In
case A, that occurs, as waves emitted from the upper plate match the optimal angle for
modes in the bottom plate. On the other hand, if most of the energy is reflected from
the bottom plate, such as in case B, the sensitivity to the material parameters is so low
that it is not immediately clear if inversion is even possible in practice.

Luckily, the inversion should primarily distinguish between cement and water, and
therefore the material parameters are not independent of each other. The type of cement
used in a borehole will be known from the time of drilling, and the question is how
sensitive the system is when there is water or drilling fluid behind the casing instead.
Different thicknesses dB and tilt angles θ are swept, and using either heavy or light
cement as a material reference, Fig. 4.11 shows the effect on the cost function if the
material is replaced with water. It is immediately apparent that light cement is easier
to detect than heavy cement and that dB should be larger than or equal to dA, which
is true in practical situations.

It is worth restating that the tilt along the casing direction will typically be small.
However, as it, in fact, is a real effect and the only way to test the method for tilted
plates in two dimensions, it is useful to pursue the example of tilted plates further.
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Fig. 4.10. Sensitivity of cost function by sweeping through parameter values in different
cases listed in Table 4.1.
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Fig. 4.11. Sensitivity to water behind the second plate using 5 receivers, initially
assuming it be be one of two types of cement.

4.2.2 The mechanism for cement detection with tilted plates

Figure 4.11 showed the detailed relationship between cement detectability and the tilt
and thickness of the bottom plate B. Notice from the upper right quadrant for heavy
cement that it is easier to detect when the tilt is positive and the second casing somewhat
thicker. To explain this takes a somewhat convoluted argument, so we start by reviewing
the three requirements for cement detection:

1. The leaky wavefront from plate A must couple into plate B with the correct angle.

2. The Lamb wave modes in plate B must be attenuated differently by cement than
by water.

3. The waves must be re-emitted from plate B in a way that allows for transmission
through plate A and detection by one or multiple receivers.

This can also be understood as a filter chain. Taking inspiration from Fig. 4.1, the
interaction of the incident spectrum Pin with each plate can be understood as applying
an f -k filter that, for transmission, only lets through the modes supported by the plate.
Coupling between plates A and B is stronger when modes overlap in the f -k spectra
between the two plates. However, more than one factor can change the characteristics
of the f -k filters. 1) Varying the plate thickness is the direct method, as the dispersion
relations are modified. 2) The second method is to tilt the plate. The f -k filter is
unaffected, but the input spectrum is shifted. This could happen multiple times if the
wave is “trapped” between the two plates, changing its incidence angle every time it
bounces back and forth, until it eventually couples to a mode of one plate. 3) Increased
mode attenuation is a third option, as it broadens the “acceptance bands” of the plate
mode.

One shorter example is given before tackling the heavy cement case: Why is light
cement easy to detect when the plates are parallel and equally thick? When plate A
is excited by pin, wave packets of primarily A0 and S0 modes start propagating, both
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Fig. 4.12. The spectrum of transmitted pressure through plate B, TB ·]θ(S ·TA ·Pin),
for two different tilt angles of plate B, having a thickness of 1.2 cm. The pressure
incident on plate B comes from propagating modes in plate A, which has a thickness of
1 cm. The modal lines are given for plate B.

containing a spectrum of frequencies. If the plates are equally thick and parallel, the
wavefronts emitted from plate A have the same optimal angle as the modes in plate B,
giving an efficient coupling, and new wavepackets are set up in plate B. Looking at the
attenuation curves for a plate in water at around 250 kHz, Fig. 2.9, and compare with a
plate in contact with light cement on one side, Fig. 2.10, we see that the attenuation is
roughly twice as strong in the light cement case. Therefore, the re-emitted wavefronts
from plate B will be much more attenuated in the cement case, and the difference will
be quite easily detected.

However, if the second material is heavy cement, the A0 attenuation is from Fig. 2.11
roughly 5 Np/m, which is comparable to that of water. The S0 attenuation is, on the
other hand, significantly higher. So what happens when plate B is thicker and the tilt
angle is positive?

The optimal angle from Snell’s law of the S0 mode increases as the plate thickness
goes up (approximately as φc ≈ 2 + 30dB around dB = 1 cm), whereas the angle for A0

goes down (φc ≈ 37.5 − 5dB). On the other hand, the positive tilt makes the emitted
wavefront from plate A hit plate B at a reduced angle and vice versa. Taking a look at
Fig. 3.3 is advised in order to follow the reasoning in the next paragraph.

From plate A, the A0 wavefront is emitted at roughly 32 degrees, keeping in mind
there is, in fact, a spectrum of plane waves around that angle. When the second plate
B is tilted by 2 degrees, the wavefront hits plate B with an incidence angle of about
30 degrees. Now, because plate B is thicker than plate A, the optimal angle for S0

is increased from about 22 degrees to 26 degrees. Therefore, the tilt and increased
thickness cooperate to increase the coupling and mode conversion between A0 in plate
A to S0 in plate B. This is shown in Fig. 4.12. The excited modes in plate B, indicated
by the transmitted spectrum, are largely determined by the excitation spectrum. When
plate B is tilted, the excitation spectrum from an A0 mode in plate A is skewed toward
the S0 mode in plate B.
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Fig. 4.13. The effect of tilt angle on the difference in the spectrum of the first reflection
component, r1 = TA ·S ·]θ(RB ·]θ(S ·TA ·Pin)), from having different materials behind
plate B, and therefore different RB. ∆|P | = |rwater

1 | − |rh.cem.
1 |. The modal lines are

given for plate A.

The S0 mode experiences significantly increased attenuation if the plate is connected
to cement instead of water, which hints to Fig. 2.14. The dip at 22 degrees, corresponding
to the S0 mode, is wider for heavy cement than water, showing that heavy cement
broadens the capability of the plate to “accept” plane waves around the S0 mode. This
behavior is similar to how damping in mass-spring systems broadens the resonance peak
and is confirmed by the fact that the A0 mode dip, at 32 degrees, is equally wide for
the curves associated with water and heavy cement, which is expected, because the A0

mode attenuation is the same for the two materials.
Therefore, if plate B is above heavy cement, the S0 mode is effectively absorbed.

However, if the material behind plate B is water, the excited S0 mode can propagate
longer. The emitted wavefront of the propagated S0 mode in plate B hits plate A with
an incidence angle of about 24 degrees, close to the optimal angle for S0 transmission,
allowing for detection. Fig. 4.13 shows the difference in spectrum between heavy cement
and water for two different tilts of plate B. If there is a tilt, the detected difference is
clearly in the S0 mode, in line with the explained mechanism.

Therefore, in the pitch-catch technique for double casings, tuning for specific modes
other than A0 may open up new possibilities to detecting the material behind the second
casing.

4.2.3 Inversion results

Inversion is attempted on a COMSOL simulation of the same example discussed in the
previous section, with two slightly tilted plates and the aim of detecting the presence or
absence of heavy cement. The purpose is to show that inversion can work in principle for
non-parallel plates and verify the forward model developed. The setup is not identical
to the setup in the sensitivity analysis because the need to run a COMSOL simulation
made the domain smaller.

The plate thicknesses dA and dB are assumed to be known, and the ranges of spacing
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Fig. 4.14. Brute force inversion to find heavy cement behind plate B. The ranges of
possible tilt and spacing are discretized in 11 steps. dA = 1 cm, dB = 1.15 cm.

s and tilt θ are discretized in 11 steps. The three predefined materials heavy cement,
light cement, and water are calculated for each combination of s and θ, giving 363
permutations to compare. The mrNSR cost function is used together with the method
of simplified point receivers at 10 cm and 17 cm along with the plate.

The first result is shown in Fig. 4.14, where the true material behind the second
plate is heavy cement. The lowest cost is associated with heavy cement, meaning that
the inversion is successful. The true parameters XT consists of the tilt of 2° and the
separation distance of 2 cm, both alternatives in the discretized range of parameters.
The cost does not quite reach 0, but rather 0.038 at the XT because of slight differences
between COMSOL and the forward model. The differences are shown in Fig. 4.15 along
with the signals at the two simplified receivers in COMSOL. That shows that a cost of
0.038 already indicates a good match.

The cost is slightly higher when comparing COMSOL measurements with a forward
model calculated with water as the material behind the second plate. In that case the
cost is 0.067, also shown in Fig. 4.15. The second receiver at x = 17 cm seems to
contribute more to the cost than the receiver at x = 10 cm, which suggests that the
domain of 20 cm is smaller than ideal. The same is suggested in Fig. 4.11, which shows
the difference in cost to be higher when using more receivers at distances of 30 cm and
further away from the source.

The problem indicated by Fig. 4.14 is that the cost is very sensitive to, e.g., the
wrong spacing s. While the cost is low when s = 2 cm, it increases by almost 0.1 by
altering s from 2 cm to 2 ± 0.04 cm. One could always increase the resolution of the
inversion parameters adaptively, but if, for instance, dB is not exactly given, the effect
on the cost should be known.

Therefore, the inversion is rerun with water as the actual material. The relevant
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Fig. 4.15. The black curves, env(ph.cemCOMS) shows the receiver envelopes in COMSOL
with heavy cement as the material. The receiver positions at x = 10 cm and 17 cm
are plotted with solid and dashed lines respectively. The forward model is computed
with heavy cement or water as the material, and the difference from COMSOL in the
envelopes is shown in the red and blue curves. The differences are used to generate the
mrNSR cost.

parts of the cost curves are shown in Fig. 4.16. Again, if the dA and dB are given
precisely, there is unambiguously water that gives the best match. However, if a 1%
error is introduced into both parameters, the lowest cost is found at a somewhat smaller
spacing s, and the cost difference between water and heavy cement is reduced. Water is
still indicated as the correct material but by a very narrow margin. It has been verified
that the 1% error in dA contributes significantly more to the cost than the 1% error in
dB, which is natural since most of the energy is localized in the r0 reflection component
that only depends on plate A. On the other hand, plate A can be measured directly and
controlled with pulse-echo [15].

4.2.4 The case for and against practical inversion

The case against inversion

1. If the inversion includes parameters like the distance s between the plates or the
tilt angle θ, the search is like finding the needle in a haystack. Fig. 4.10 shows
quite clearly that, at least when using mrNSR, the cost has a notch-like minimum
that is hard to find, and unless one is close to the true value, there seem to be
very little information in the gradient to guide the search.

2. The material behind the outer plate B, which is the most interesting to know,
is also the hardest to find in the search. Fig. 4.11 even suggests that there are
configurations where it is impossible to find the material from inversion, at least
around frequencies that only excite the A0 and S0 modes.

3. In actual wells, there are physical features that have not been implemented in the
model. That includes potential roughness of some surfaces, the curvature of the
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Fig. 4.16. Brute force inversion to find water behind plate B. The ranges of possible
tilt and spacing are discretized in 11 steps. dA = 1 cm, dB = 1.15 cm, but an error of
1% is introduced to both parameters in the forward model.

casings, and local cement defects [59].

The case for inversion

1. The geometrical parameters such as casing thicknesses dA and dB, spacing s, and
eccentricity may be found more easily from other methods such as pulse-echo, or
are already known from the time of drilling and installment. Inversion also runs
in series, and when the inversion has already been run on one segment of the well,
it will most likely give much information about the next segment. Therefore, it
may be possible to converge more rapidly to the near-exact geometry and reach
cost levels where one expects to get at least somewhat reliable information about
the material.

2. There are great opportunities to make the computations run faster and do the
computations in parallel. However, a technique to consider in combination is
pre-computing many possible combinations of parameters and storing them as a
lookup table (LUT). The amount of data to store for each receiver and simulation
is relatively tiny.

3. Normally, only a few classes of material are of interest. Because the inversion is
not very sensitive to variations in the material parameters, separating between
water and a known type of cement may be enough in many situations.

4. There are reasonable indications that the system’s geometry can be found from
existing logs or inversion. Then, even if the materials cannot be decided from in-
version in all geometrical configurations of the system, those cases can be identified
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with the technique used to generate Fig. 4.11.

5. The inversion was tested with two receivers within a 17 cm distance from the exci-
tation. More receivers and longer distances may improve the inversion capabilities
and robustness. Also, optimizing the excitation to exploit more modes than A0

may open up new possibilities, as discussed.

6. Other cost functions than the proposed mrNSR may be attempted. mrNSR ig-
nores some of the phase information and also displays a notch-like behavior in
the parameters associated with geometry. Experimenting with, for instance, cost
functions feature-engineered for the problem may give better inversion capabilities,
but it is not immediately clear how such a cost function should be defined.

4.3 Additional topics

4.3.1 Three-dimensional simulations

The code for two-dimensional propagation has been modified to cover the three spatial
dimensions plus time. The intention is to show the qualitative behavior of wave propa-
gation. Verification against COMSOL has not been possible because the computational
requirements for a basic FEM simulation of the problem exceeded the capacity of the
hardware available.

The result of the three-dimensional simulation is shown in Fig. 4.17, with a tilt of
plate B of 5° as if the two casings are eccentric but parallel along the main propagation
axis. Notice that the y-axis is stretched, and the similarity with the two-dimensional
COMSOL simulation in Fig. 4.6.

The tilt of 5° can be seen to send the later wavepackets drifting towards one side,
which is more easily seen in Fig. 4.18. Therefore, it might make sense to place additional
transducers off-axis if casing eccentricity is a parameter in the inversion.

4.3.2 Comments on execution time

The code is written entirely in Python 3.6.5, leveraging Numpy 1.19.2 and Scipy 1.3.1.
The hardware available for all computations, including COMSOL, was 8 GB of RAM,
and an Intel i5-7200U processor, clocking at 2.50 GHz. While vectorization and broad-
casting have been used where possible, the code has not been profiled or optimized at
large. The exception is for the tilting function and calculation of T and R coefficients,
where Numba 0.46.0 has been used for compiling code with the @numba.njit decorator
in some functions, marked in Appendix A.

COMSOL execution time

The COMSOL simulation of the two-plate setup displayed in Fig. 3.2 was timed, taking
1 hour and 53 minutes. The plates simulated have a length of 20 cm, and the maximum
time in the simulation is 134 µs.

The execution time of a full three-dimensional simulation could not be assessed.
However, a simulation of a single plate in three dimensions in a vacuum was performed in
relation to [8], which can be seen in Fig. 15 in Appendix B. Because only antisymmetric

69



CHAPTER 4. RESULTS AND DISCUSSION

Fig. 4.17. Snapshots of three-dimensional propagation of Lamb waves between coupled
and tilted plates. The upper surface represents the pressure on the underside of plate
A. Note that especially the y-axis is significantly scaled up and that the tilt angle is, in
reality, 5 degrees. The full simulation domains are shown, so the periodic boundaries in
the z-direction become evident.
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Fig. 4.18. A closer view of the last snapshot in Fig. 4.17.

Lamb waves were of interest, two planes of symmetry were used, together with an
increased mesh size, and the simulation took roughly 12 hours to finish on a more
powerful computer. For general three-dimensional simulations, including two plates,
thick fluid layers, and no planes of symmetry, the simulation would probably require
weeks to run.

Two-dimensional execution time

Because the simulation method developed in this work is implemented in the frequency
domain, aliasing effects must be addressed. Therefore, the simulation domains must,
at least for smaller domains where the aliasing is noticeable, be somewhat larger than
the domain of interest to make a fair comparison with COMSOL. Also, the algorithm’s
execution time depends on the number of reflection components computed (excluding
r0). For the applications in mind, 2-5 components are reasonable.

Using what has been the standard domain size with xmax of roughly 60 cm, and
tmax 400 µs, the shape of the multi-dimensional array is (512×512). As a reminder, the
method inherently computes the solution at all time-steps and positions. Four reflection
components are chosen (r0 to r4), and the execution time was averaged over seven
attempts and found to be 602 ms, which is about 11,300 times faster than COMSOL.
With two reflections, also sufficient in some applications, it took 547 ms.

For twice the domain size, xmax of about 120 cm, and tmax 800 µs, the shape is
(1024×1024), and computing four reflections took 2.48 s. For comparison, using the
same domain as in COMSOL, xmax of roughly 20 cm and tmax of 134 µs, the shape of
the multi-dimensional array is (168×168), and 4 reflections took 59.2 ms to compute,
but suffers from aliasing.
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Three-dimensional execution time

Various parts of the three-dimensional simulation has been timed as well. Here, tmax is
256 µs, xmax is 37 cm, and z runs from −9 to 9 cm, giving an effective zmax of 18 cm.
The multi-dimensional array has the shape (256×256×128).

Computing the multidimensional FFT took roughly 450ms. In total, computing all
R and T coefficients took 5.5 seconds: Supersampling β by 10 times (which is likely
more than needed) was timed to 2.3 s, plus interpolation into the (256×256×128) block
taking about 3.2 s. Each multiplication of multi-dimensional arrays was timed to 70ms.

The biggest bottleneck was initially the tilting operation, and two tilts are needed
for each reflection component. After rewriting the interpolation method, the code was
sped up from 4.2 s per tilt, to 125ms per tilt. Computing 4 reflection components was
finally timed to 4.3 s, with the final IFFT and array-shifting taking about 700ms. In
total, the example takes about 12 s to compute from start to finish.

Suggestions for further speedups

As usual for optimizing code, the best strategy is to profile and optimize the slowest
parts. That was only done to speed up the computation of R and T coefficients using
Numba and the tilting operation by tweaking the algorithm and using Numba. With
only small efforts put into optimization so far, there are likely to be more low-hanging
fruits to speed up the code further.

For the specific case of simulating a pitch-catch setup, only positive frequencies and
wavenumbers in the x-direction contribute to the result, and one could tailor the algo-
rithm, for instance, by ignoring the negative frequencies. Also, because the excitation
is band-limited, one could skip any calculation related to frequencies that carry little
energy.

Using faster Fourier transforms is also possible, e.g., by employing the pyFFTW
library that plans the best way to perform FFTs in advance. Parallelization is also
a viable option, either on CPUs or GPUs. The ease of implementation may vary, but
most of the code, and the inversion, seem to be so-called “embarrassingly parallelizable”.
The option of using better hardware should not be necessary to address, but since all
simulations have been run on a laptop with a low-power CPU from 2016, the performance
should improve substantially by switching to dedicated hardware.
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Conclusion

5.1 Extended summary
A fast and accurate method has been developed for simulating ultrasonic wave propaga-
tion in coupled, non-parallel plates. The method is based on response methods, where
reflection and transmission coefficients for each plane wave component of an ultrasonic
pulse are calculated for the individual plates, which allows the plates to be in contact
with any layered structure of materials. The propagation between the plates, and their
relative tilt, is made possible using an angular spectrum approach combined with a co-
ordinate rotation method in the wave vector domain. The coordinate rotation method,
initially developed for optical diffraction, has to our knowledge not been applied in the
field of acoustics before.

The method’s deviation from equivalent COMSOL simulations is dominated by the
deviation in the excitation pressure on the plates, created by the simplified transducer
model, with a relative amplitude difference of about 2%. The other most significant
source of error comes from aliasing, or wrap-around effects, which can be made negligible
by increasing the simulation domain size. Numerical dispersion in COMSOL may also
contribute to the measured deviation.

The execution time of the method is significantly faster than equivalent COMSOL
simulations. Depending on choices related to the domain size and the number of reflec-
tion components, the two-dimensional simulations run roughly 11,000 times faster than
in COMSOL, taking a few seconds in most cases. The three-dimensional simulations
could not be compared with COMSOL, but an example featuring two 37×18 cm2 plates
took about 12 seconds to compute, and computational times within a couple of minutes
seem reasonable in most scenarios.

The method was employed as a forward model in through-tubing well logging, where
the material behind the outer plate was to be found from inversion. First, a parametric
sweep study was performed to identify the sensitivity to different materials in the inver-
sion under different setup geometries. From the results, an argument based on modal
theory has been given, arguing that some materials are easier to detect by tuning for
other modes than the A0 Lamb mode, which is standard in pitch-catch setups for single
plates. The mechanism discussed is in part based on mode conversion between tilted
plates, from A0 to S0 Lamb waves, and the fact that specific modes, such as the S0

Lamb wave, is more attenuated by “faster” materials, such as heavy cement, behind the
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second plate, in turn giving better contrast from a fluid.
A simplified inversion procedure was then used to retrieve the material and geometry

from a COMSOL reference simulation. The aim was to demonstrate the principle and
possibility to perform inversion with tilted plates and heavy cement, and the inversion
successfully identified the material behind the outer plate. As expected, the cost func-
tion was susceptible to errors in the parameters related to the geometry, such as plate
thickness, and less sensitive to the material. The observation may have been made worse
by performing the inversion on a miniaturized plate setup of 20 cm, but it nonetheless
hints towards some challenges that must be investigated for practical inversion.

5.2 Suggestions for further work
The results presented give hope that the simulation method can serve as a forward
model for inversion in practical well logging. Further investigation into the challenges
and possibilities that arise in practical well logging has been outside the scope of this
thesis but is needed to address the next steps. A question to look into is what kind of
data is available from other techniques and existing logs, and at what level of accuracy,
as that will influence what inversion strategy is reasonable to pursue.

The mrNSR cost function may also be addressed. While it has worked, it displays
a notch-like behavior in some variables, making gradient-based searches in the cost
space difficult. The mrNSR is, however, entirely general and assumes nothing about
the underlying physics. Thus, a possibility for further work is to look for more feature-
engineered and physics-motivated cost functions or techniques. That may open up for
extracting some parameters, like the tilt angle, more directly than by blindly performing
inversion on it.

A realistic pitch-catch setup is somewhat different from the idealized model pre-
sented. The receivers were modeled as point-like hydrophones on the top of the plate.
Because real transducers have a size and orientation, they may act as a filter on some
plane wave components due to the transducer directivity function. That is something
to have in mind when investigating how, and if, mode conversion between tilted plates,
from, e.g., A0 to S0 modes, may be exploited to increase detection capability and con-
trast between certain materials.

Other differences that have not been included in the computational model include the
curvature of real casings and how small local defects can be modeled. However, the effect
of casing eccentricity in three dimensions is the most important to investigate, as it is
thought to be more commonly occurring than non-parallel casings. It is not known how
it behaves as an inversion parameter and should therefore be studied further. As shown
in Fig. 4.17, the later wavepackets tend to drift towards the tilt direction, suggesting
that placing receiver transducers off the propagation axis may open up new possibilities
in performing inversion, which would suggest developing a new tool geometry.

Depending on the needs in practical inversion, the need to effectively test many sets
of candidate model parameters may be huge. Ways of speeding up the code further have
been suggested, and using lookup tables is also promising. Perhaps of more academic
interest, a third candidate option is to develop a filter against the wrap-around effect.
Because the excitation zone is known, the modes that propagate may be estimated and
eventually removed when they wrap around and re-emerge at a space or time incom-
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patible with the known excitation. The modal characteristics may be pre-computed or
estimated, but the filter may not be computationally feasible, as it needs to estimate
the contribution of the modes quite accurately.

5.3 List of achieved results
In this thesis, and work leading up to it, the following has been achieved:

• An efficient method for simulating wave propagation between coupled, non-parallel
plates in two and three dimensions. The method features a novel application for
the coordinate rotation method by Matsushima et al. [51].

• A proof of concept that the computational model may, at least some in scenarios,
serve as a forward model in through-tubing well logging. The forward model may
otherwise be used to identify the situations where inversion is not possible and
alternative techniques for making inversion more robust.

• An understanding that tilted plates give rise to a mechanism for Lamb mode
conversion and that this conversion may help detect certain kinds of materials
behind the second plate.

• A direct comparison between modal methods (NME) and response methods for
simulating transient wave propagation in single plates.

• The first implementation and detailed description, to our knowledge, of the power
flow method used to calculate the attenuation of leaky Lamb waves due to contact
with solid media.

• A fast method for propagating the leaky wavefields of initialized Lamb waves
(Appendix B).

• An extended abstract (Appendix C), providing a better understanding of how
subsonic radiation is possible, with particular relevance for the A0 Lamb mode.

• Code that will be made available for those with interest in simulating Lamb waves.
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Appendix A

Code for simulating tilted plates
in two dimensions

The following code can be used to simulate two tilted plates in the two-dimensional case
using response methods. Numba has been used to speed up certain parts of the code.
Questions can be directed to: havard.arnestad@gmail.com

import matplotlib.pyplot as plt
import numpy as np
import numba
from numpy.linalg import inv, det
from numpy import fft
from functools import partial
pi, nax = np.pi, np.newaxis

"""
EXAMPLE:
"""

### System parameters
Lx = 0.6 # m - plate length of interest
th0 = 2.0 # degrees - tilt of plate B
s = 2/100 # m - space between plates
da = 1/100 # m - thickness, plate A
db = 1.2/100 # m - thickness, plate B

### Simulation related
fc = 250000 # Hz - center frequency of excitation
pAmp = 1e-3 # Pa - amplitude of initial wave packet

x_max = 0.6 # m - max length in simulation
t_max = 0.4/water.cP # s - maximum simulation time
n_per_wavelength = 5 # n is number samples
n_per_f = 5 # n is number samples

### Create excitation
# Sample domain
x,t = sample_dimensions_const_delta(fc, water.cP, x_max, t_max, samples_per_wavelength =\

n_per_wavelength, samples_per_f = n_per_f, pow2 = True)
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# Likely new x_max and t_max if pow2 = True in previous line.
x_max = x[-1]
t_max = t[-1]

# Create excitation. FWHM = 2, target A0 mode in 1 cm thick steel plate at 250 kHz.
p_in, p_start = make_excitation(pAmp, water, x, t, fc = fc, deg = 32,\

width = 2, x0 = 0.02, y0 = 0.02)

# Prepare data and arrays
p_in = fft.fftshift(p_in, axes = 1)
n = int((x_max-Lx)/(2*(x[1]-x[0]))) # samples to roll (align tilt axis)
p_in = np.roll(p_in, n, axis = 1)

### Useful for verification (uncomment):
#plt.pcolormesh(20*np.log10(np.abs(p_in/pAmp)), vmin=-60, vmax=0)

### Final domain and excitation arrays
w = 2*pi * fft.fftfreq(len(t), t[1]-t[0])
kx = 2*pi * fft.fftfreq(len(x), x[1]-x[0])
P_in_wk = fft.fft2(p_in)

params = {
"x" : x,
"t" : t,
"P_in": P_in_wk,
"n" : n,
"w" : w,
"kx" : kx}

### Reflection and transmission from plate A, usually calculated one time
Ra, Ta = R_T_plate(w, kx, water, steel, water, d = da)

### Calculate reflected pressure, array of dimensions (t,x)
p_r = sim(params, db, s, th0, water, heavy_cement, Ra, Ta)

### Useful for verification
#p_dB = 20*np.log10(np.abs(p_r)/np.max(np.abs(p_r)))
#plt.pcolormesh(x, t, p_dB, cmap = 'jet', vmin = -60, vmax = 0, shading = 'gouraud')

"""
Functions for calculating reflection and transmission coefficients
"""

@numba.njit
def T(gp, gs, y): # Defined in Eq. (2.24)

T = np.zeros((4,4), dtype = np.complex128)
T[0,0] = np.exp(1j*gp*y)
T[1,1] = np.exp(-1j*gp*y)
T[2,2] = np.exp(1j*gs*y)
T[3,3] = np.exp(-1j*gs*y)
return T

@numba.njit
def M(kx, gs, gp, G): # Defined in Eq. (2.23)

a = G*(kx**2 - gs**2)

84



APPENDIX A. CODE FOR SIMULATING TILTED PLATES IN TWO
DIMENSIONS

b = 2*G*kx*gs
c = 2*G*kx*gp
d = 1j*gp
e = 1j*kx
f = 1j*gs
M= np.array([[ a, a, -b, b],

[ c, -c, a, a],
[ d, -d, e, e],
[-e, -e, f, -f]], dtype = np.complex128)

return M

@numba.njit
def D(y, kx, w, mat_G, mat_cP, mat_cS): # D = M@T

gp = np.conj(np.sqrt((w / mat_cP)**2 - (kx)**2 + 1e-16 + 0j))
gs = np.conj(np.sqrt((w / mat_cS)**2 - (kx)**2 + 1e-16 + 0j))
return M(kx, gs, gp, mat_G)@T(gp, gs, y)

@numba.njit
def L(y, kx, w, mat_G, mat_cP, mat_cS): # Defined in Eq. (2.26)

return D(-y, kx, w, mat_G, mat_cP, mat_cS) @ inv(D(y, kx, w, mat_G, mat_cP, mat_cS))

@numba.njit
def Tp_Ts_Rp_Rs(w, kx, mid_thickness, top_G, top_cP, top_cS,\

mid_G, mid_cP, mid_cS, bot_G, bot_cP, bot_cS): # Eq. (2.83)

N = inv( D(0, kx, w, bot_G, bot_cP, bot_cS)) \
@ L(mid_thickness/2, kx, w, mid_G, mid_cP, mid_cS) \
@ D(0, kx, w, top_G, top_cP, top_cS)

M = np.array([[1, 0, -N[0,1], -N[0,3]],
[0, 0, -N[1,1], -N[1,3]],
[0, 1, -N[2,1], -N[2,3]],
[0, 0, -N[3,1], -N[3,3]]])

c = np.array([N[0,0], N[1,0], N[2,0],N[3,0]])
return inv(M)@c

@numba.njit
def njit_R_T(w, kx, top_G, top_cP, top_cS, plate_G, \

plate_cP, plate_cS, bot_G, bot_cP, bot_cS, d):

Rp = np.zeros((w.shape[0], kx.shape[0]), dtype = np.complex128)
Tp = np.zeros((w.shape[0], kx.shape[0]), dtype = np.complex128)

wend = len(w)//2+1
kend = len(kx)//2+1

for i in numba.prange(wend):
for j in numba.prange(kend):

if abs(w[i])/top_cP <= abs(kx[j]): continue
if abs(w[i]) < 1000: continue
Tp[i,j], _, Rp[i,j], _ = Tp_Ts_Rp_Rs(w[i], kx[j], d, top_G, top_cP,\

top_cS, plate_G, plate_cP, \
plate_cS, bot_G, bot_cP, bot_cS)

if len(w)%2==0:
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Tp[wend:, :] = Tp[wend-2:0:-1, :]
Rp[wend:, :] = Rp[wend-2:0:-1, :]

else:
Tp[wend:, :] = Tp[wend-1:0:-1, :]
Rp[wend:, :] = Rp[wend-1:0:-1, :]

if len(kx)%2==0:
Tp[:, kend:] = Tp[:, kend-2:0:-1]
Rp[:, kend:] = Rp[:, kend-2:0:-1]

else:
Tp[:, kend:] = Tp[:, kend-1:0:-1]
Rp[:, kend:] = Rp[:, kend-1:0:-1]

return Rp, Tp

def R_T_plate(w, kx, top, plate, bot, d = 0.01):
"""
Function to call for calculating T and R, like in Fig. 2.15.
"""
Rp,Tp = njit_R_T(w, kx, top.G, top.cP, top.cS, plate.G,\

plate.cP, plate.cS, bot.G, bot.cP, bot.cS, d)
Tp[np.isnan(Tp)] = 0
Rp[np.isnan(Rp)] = 0
Tp[abs(Tp)>1] = 1
Rp[abs(Rp)>1] = 1
return Rp, Tp

"""
Elastic isotropic materials
"""

class ElasticMaterial:
def __init__(self, **kwargs):

self.rho = kwargs['rho']
if ('cP' in kwargs) and ('cS' in kwargs):

self.cP = kwargs['cP']
self.cS = kwargs['cS']
self.G = (self.cS)**2 * self.rho
self.L = (self.cP)**2 * self.rho - 2*self.G
self.v = (2*(self.cS/self.cP)**2 - 1) / (2*(self.cS/self.cP)**2 - 2)
self.E = 2*(1+self.v)*self.G

elif ('E' in kwargs) and ('v' in kwargs):
self.E = kwargs['E']
self.v = kwargs['v']
self.L = (self.v*self.E)/((1+self.v)*(1-2*self.v))
self.G = self.E / (2*(1+self.v))
self.cP = np.sqrt((self.L + 2*self.G)/self.rho)
self.cS = np.sqrt(self.G/self.rho)

elif ('G' in kwargs) and ('L' in kwargs):
self.L = kwargs['L']
self.G = kwargs['G']
self.cP = np.sqrt((self.L + 2*self.G)/self.rho)
self.cS = np.sqrt(self.G/self.rho)
self.v = (2*(self.cS/self.cP)**2 - 1) / (2*(self.cS/self.cP)**2 - 2)
self.E = 2*(1+self.v)*self.G

else:
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print('Need one of the following pairs: cS,cP / L,G (Lame) / E, v.')

water = ElasticMaterial(rho = 1000, cS = 0.001, cP = 1480)
steel = ElasticMaterial(rho = 7850, cS = 3200, cP = 5900)
light_cement = ElasticMaterial(rho = 1330, cS = 770, cP = 2250)
heavy_cement = ElasticMaterial(rho = 1800, cS = 1850, cP = 3500)

"""
Tilting function
"""
@numba.njit
def Tilt2Dfast(X, deg_tilt, kx, ky, w, cf): # Tilt operation, Eq. (2.82)

sin = np.sin(deg_tilt * pi/180)
cos = np.cos(deg_tilt * pi/180)

max_kx = np.max(kx)
min_kx = np.min(kx)
dkx = kx[1]-kx[0]
kx_bound = min(abs(min_kx), abs(max_kx - dkx))

F = np.zeros_like(X)
for i, wi in enumerate(w):

if wi < 0: continue # not contributing
for j, kxj in enumerate(kx):

if abs(np.real(ky[i,j])) <= 0.1: continue # near evanescent

kx_to_interpolate = kxj*cos - np.real(ky[i,j])*sin
index_to_interpolate = (kx_to_interpolate-min_kx)/dkx

if abs(kx_to_interpolate) > kx_bound: continue # outside array

index_min = int(index_to_interpolate)
weight_max = index_to_interpolate - index_min
weight_min = 1 - weight_max
A_new = X[i,index_min]*weight_min + X[i,index_min + 1]*weight_max

F[i,j] = A_new * np.abs( cos + kxj/(ky[i,j] + 1e-15)*sin)
return F

"""
Functions to sample domain and making excitation signal
"""

def sample_dimensions_const_delta(fc, c_min, x_max, t_max, samples_per_wavelength = 5,\
samples_per_f = 5, pow2 = True):

"""
Finds dt and dx, then discretizes t and x.
Increases t_max and x_max if number of samples (in powers of 2) allow it.
"""
wavelength = c_min / fc
dx = wavelength / samples_per_wavelength
n_x = int(x_max / dx)

if pow2 == True:
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n_x = int(2**(np.ceil(np.log2(n_x))))
x_max = dx*n_x

x = np.linspace(0, x_max, n_x, endpoint = False)

dt = 1/(fc*samples_per_f)
n_t = int(t_max/dt)

if pow2 == True:
n_t = int(2**(np.ceil(np.log2(n_t))))
t_max = dt*n_t

t = np.linspace(0, t_max, n_t, endpoint = False)

return x, t

def make_excitation(pAmplitude, fluid, x, t, fc = 250000, deg = 32, width = 2,\
x0 = 0.02, y0 = 0.02, n_len = 10, n_time =2):

# Plane wave parameters
wc = 2*pi*fc
kc = wc/fluid.cP
lambda_c = 2*pi/kc

pulse_width = width*lambda_c / 2.355

th = deg*pi/180 # direction
kc_x = +kc * np.sin(th)
kc_y = -kc * np.cos(th)

# Simulation domain & discretization
dx = x[1] - x[0]
y = np.copy(x)

# Crop domain to **significantly** reduce computation time
# n_len and n_time adjusts size of cropped domain
crop_len = n_len * 2*width*lambda_c/2.355

ix = np.where((x > (x0 - crop_len)) & (x < (x0 + crop_len)))
xcrop = x[ix]
ycrop = y[ (y >= 0) & (y < (y0 + crop_len)) ]

crop_t = n_time * (abs(y0/np.cos(th)) + pulse_width )/fluid.cP
it = np.where(t <= crop_t)
tcrop = t[it]

# Calculate initial vertical velocity distribution, spatial and complex Gaussian pulse
xx,yy = np.meshgrid(xcrop, ycrop, indexing='ij')
gauss_window = np.exp(-((xx-x0)**2 + (yy-y0)**2) /(2*pulse_width**2) )
p0 = pAmplitude * gauss_window * np.exp(-1j*(kc_x*(xx-x0) + kc_y*(yy-y0)))

# Calculate propagation at y=0 from frequency domain representation
P = fft.fft2(p0)
k_x = 2*pi*fft.fftfreq(len(xcrop), dx)
k_y = 2*pi*fft.fftfreq(len(ycrop), dx)
kxx, kyy = np.meshgrid(k_x, k_y, indexing='ij')
k_mask = np.sqrt(kxx**2 + kyy**2)
w_mask = k_mask * fluid.cP
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APPENDIX A. CODE FOR SIMULATING TILTED PLATES IN TWO
DIMENSIONS

p = fft.ifftn(P[nax,:,:] * np.exp(1j*w_mask[nax,:,:]*tcrop[:,nax,nax]), axes =(1,2))
p_line = (p[:,:, 0 ])

# zero-pad to wanted lengths in x and t
pad_t_top = len(t)-it[0][-1] - 1
pad_x_left = ix[0][0]
pad_x_right = len(x) - ix[0][-1] - 1
p_line_pad = np.pad(p_line, ((0,pad_t_top),(pad_x_left, pad_x_right)), 'constant')

# p_line_pad is excitation on the plate surface
# p0 is the wavepacket in the cropped domain at t=0
return p_line_pad, p0

"""
Functions to run the simulation
"""

def sim(params, db, s, theta, fluid, backing, Ra, Ta):
kx = params['kx']
w = params['w']

Rb, Tb = R_T_plate(w, kx, fluid, steel, backing, d = db)
ky = np.conj(np.sqrt((w[:, nax]/fluid.cP)**2 - (kx[nax, :])**2 + 0j))
S = np.exp(-1j*ky*s)

Vpt = partial(Tilt2Dfast, deg_tilt = theta , kx = fft.fftshift(kx),\
ky = fft.fftshift(ky), w = fft.fftshift(w), cf = fluid.cP)

def V(X): # Wrapper for tilt function
X = fft.fftshift(X)
X = Vpt(X)
return fft.fftshift(X)

return compute_responses(params, Ra, Ta, Rb, S, V, n_responses = 4)

def compute_responses(params, Ra, Ta, Rb, S, V, n_responses = 4):
x = params['x']
t = params['t']
P_in = params['P_in']
n = params['n']

P_0 = Ra * P_in

Y = S * V( Rb * V( S * Ta * P_in ) )
for _ in range(n_responses):

P_i = Ta * Y
P_0 += P_i
Y = S * V( Rb * V( S * Ra * Y ) )

p_tx = prepare_result(P_0, n)
return p_tx

def prepare_result(P, n):
p = np.real(fft.ifft2(P))
p = fft.fftshift( p, axes = 1 )
p = np.roll(p, -n, axis = 1)
return p
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Appendix B

SSPA article: Propagating leaky
Lamb waves

The following article was submitted to the Proceedings of the 44th Scandinavian Sym-
posium on Physical Acoustics. The work is a condensed version of the specialization
project written in the autumn of 2020, with some relevant insights developed during the
first months of working on the thesis.

The work looks at modeling already initialized Lamb waves, using a different ap-
proach to the thesis. In summary, the surface velocity profile can be specified for a
Lamb wave packet and mode type, and propagated cheaply in the frequency domain.
The leakage to adjacent fluids is included by using an angular spectrum approach.
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Abstract
A fast method is presented for calculating the wavefields from initialized leaky Lamb
waves on plates immersed in sufficiently light fluids. The method works by precom-
puting the dispersion relation and attenuation, and propagating the wavefields in
the frequency domain. An angular spectrum approach is used to include leakage
into surrounding fluid. Compared to matching FEM simulations, the computations
are performed in the order of seconds, rather than hours. The method also benefits
from being much easier to set up correctly, but is on the other hand less general in
that it cannot handle e.g. scattering from defects. The correspondence is shown to be
good for the case of interest.

1 Introduction

Due its simple geometry, plates and plate-like structures are often encountered in nature
as well as in the man-made world. The examples range from the ice on a frozen lake to
the hull of a ship, or the casings in an oil well. In situations where such systems are to
be probed, acoustic methods are often chosen due to being relatively non-invasive. The
methods rely on different principles, but can be broadly categorized into response and
modal methods [1]. In response methods, one studies the response from a known excita-
tion, using e.g. reflection coefficients, and in modal methods, one studies the propagation
characteristics, such as attenuation or propagation speed. For a plate with a specified ini-
tial wavefield, the modal approach is the only feasible option.

The propagation properties of acoustic waves in plates are described by Lamb wave
theory, which is a special case of elastic waves in layered media, with only a single layer in
a vacuum. In most practical situations, however, the plate is in contact with a fluid on one
or both sides, making it “leaky” in the sense that the plate wave is attenuated as waves are
radiated into the surrounding medium. The radiation makes fluid-immersed transducers
suitable for measuring the radiated wavefront from e.g. a wavepacket propagating on the
plate, as is done in pitch-catch well logging [2–5].

Full simulation of ultrasonic plate waves in e.g. COMSOL Multiphysics can be very
slow as the domain must be finely meshed. Proper initialization of wave packets is also
more complicated than one first may think, because multiple fields must be correctly set
up at all relevant frequencies.
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Figure 1: Schematic development of a Lamb wave. Dp, Ds, Up and Us represent a steady pattern
of P- and S-waves traveling upwards and downwards in the plate. There is vacuum outside the
plate boundaries at y = ±h.

Figure 2: Phase velocities for Lamb modes in a generic steel plate as a function of the frequency-
thickness product f d, where d = 2h is the thickness of the plate.

Faster simulation can be achieved by exploiting that the propagation characteris-
tics are already known from modal Lamb wave analysis, as will be presented in this
article. The semi-analytical method presented here uses a Fourier decomposition of
the wavefield for each mode, where propagation is achieved by adjusting the phase
of the mode according to its dispersion relation. Radiation into the surrounding fluid
medium is implemented using an angular spectrum approach, relying directly on the
aforementioned Fourier decomposition. Attenuation is included using a perturbation-
based method valid for light fluids (i.e., with a much lower density than that of the plate).

2 Theory

2.1 Lamb wave theory

Lamb waves are the modal solution of guided waves in a free plate. Consider Fig. 1,
which represents a slab of elastic media such as steel. As the plate is excited, waves are
reflected from the two free boundaries. Any propagating wavemodes must eventually
create a steady pattern of plane waves which leads to different propagating modes that
are symmetric (S0, S1, etc.) or antisymmetric (A0, A1, etc.) with respect to the midplane of
the plate. Examples of possible phase and group velocities for these modes are shown in
Fig. 2 and 3. To understand how these modes come to be, first consider that two types of
waves can be supported in an elastic plate: longitudinal P-waves (for primary/pressure),
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Figure 3: Group velocities for a steel plate as a function of the frequency-thickness product f d.

and transversal S-waves (for secondary/shear), with sound speeds given by

cp =

√
λ + 2G

ρ
, (1a)

cs =

√
G
ρ

. (1b)

Here, λ and G are the first and second Lamé constants that define the stress-strain rela-
tionship in isotropic media, and ρ is the density. The Lamé constants can be expressed
from the more experimentally available Young’s modulus E and Poisson’s ratio ν as

λ =
νE

(1 + ν)(1− 2ν)
, (2a)

G =
E

2(1 + ν)
. (2b)

The general displacement field u can be written using Helmholtz decomposition theorem
from the scalar (φ) and vector (Ψ) wave potentials as

u = ∇φ +∇×Ψ = up + us. (3)

A solution is sought in the x-y plane, where the fields are invariant in the z-direction. It
can be shown that the uz-components depends only on the potentials Ψx and Ψy that are
associated with the horizontally polarised shear wave (SH). The other two components
depend on potentials φ and Ψz = ψ, associated with longitudinal waves (P) and verti-
cally polarised shear waves (SV), respectively. It is therefore possible to seek solutions
separately for the P + SV wave combination. In the remaining analysis the SH waves are
discarded because they do not couple to a fluid.

In a solid layer, the fields of a right-going wave may thus be expressed as the super-
position of four plane waves. These are the P- and SV-waves (from here on abbreviated
as S) propagating in the upwards and downwards directions. Snell’s law requires that
the wave vectors are oriented so that they all have the same component β, equal to kx

in this situation, along the waveguide propagation direction. That implies the concept
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of transverse resonance for plates; with lossless boundaries, the mode solutions are trav-
eling along the waveguide axis and are standing waves in the transverse direction. The
potentials from these four plane waves can be written as

φ =
[
Dpeiγpy + Upe−iγpy]ei(ωt−βx), (4a)

ψ =
[
Dseiγsy + Use−iγsy]ei(ωt−βx), (4b)

where Dp and Ds are the wave potential amplitudes of downward-moving P- and S-
waves respectively, and Up and Us are the amplitudes of upwards-moving waves. The
horizontal wavenumbers β are the same for all the plane waves, as mentioned. Because
of the different wave speeds, the wavenumbers of P- and S-waves differ: kp = ω/cp and
ks = ω/cs. The vertical wavenumbers ky, are therefore also different for P- and S-waves,
and are denoted by γp and γs respectively:

γs =
√

k2
s − β2, (5a)

γp =
√

k2
p − β2. (5b)

The real power of the formulation emerges when introducing the field variables as
expressed via the four wave components. Naturally, when two layers are in contact, the
boundary conditions need to be matched. For elastic waves that means the continuity of
particle displacement, and normal and shear stress (σyy and σxy). One can obtain expres-
sions for the stresses by calculating the strain from particle displacement, and then pipe
the result into the constitutive relation for stress, which is where the Lamé constants are
introduced. As can be verified with a textbook on the matter [6, 7], one obtains

σxx = λ

(
∂2φ

∂x2 +
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂x2 +
∂2ψ

∂x∂y

)
, (6a)

σxy = G
(

2
∂2φ

∂x∂y
− ∂2ψ

∂x2 +
∂2ψ

∂y2

)
, (6b)

σyy = λ

(
∂2φ

∂x2 +
∂2φ

∂y2

)
+ 2G

(
∂2φ

∂y2 −
∂2ψ

∂x∂y

)
. (6c)

Any stress component with a z-index is zero, and although σxx is not an imposed bound-
ary condition, it will be needed in a later section. The last step is to substitute the plane
wave formulation of the potentials into the stress and displacement equations. A bit of
rearrangement yields a matrix equation for the stress and displacement through the plane
wave amplitudes in y = 0, which is an arbitrary origin.

σyy(y)
σxy(y)
uy(y)
ux(y)

 =


G(β2 − γ2

s ) G(β2 − γ2
s ) −2Gβγs 2Gβγs

2Gβγp −2Gβγp G(β2 − γ2
s ) G(β2 − γ2

s )

iγp −iγp iβ iβ
−iβ −iβ iγs −iγs




Dpe+iγpy

Upe−iγpy

Dse+iγsy

Use−iγpy

 . (7)

Similar matrices using a different coordinate convention can be found from e.g. Hovem [7]
or Lohne et al. [8]. Using a matrix formulation gives a systematic way of working with
guided waves in multi-layered media, such as plates in contact with different fluids or
solids. Here we limit ourselves to free plates and will not go into more details or gener-
alizations than needed.
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The plate considered is a single layer with with thickness d = 2h, and boundaries to
vacuum at y = ±h. The vacuum boundary conditions require that the relevant stresses
are zero. Evaluated with respect to the mid-plane of the plate,

σyy(+h)
σxy(+h)
σyy(−h)
σxy(−h)

 =


0
0
0
0

 =


ae+iγph ae−iγph −be+iγsh be−iγsh

ce+iγph −ce−iγph ae+iγsh ae−iγsh

ae−iγph ae+iγph −be−iγsh be+iγsh

ce−iγph −ce+iγph ae−iγsh ae+iγsh




Dp

Up

Ds

Us

 , (8)

where a = G(β2 − γ2
s ), b = 2Gβγs, and c = 2Gβγp are introduced for compactness. With

a priori knowledge about the solution or by close consideration, one can see that there is
a good match between the first two columns, as well as the last two. Therefore, instead of
solving for the up- and down-going wave components, a solution to their combinations
is sought:

0
0
0
0

 =


+a cos(γph) +ai sin(γph) −ib sin(γsh) −b cos(γsh)
+ci sin(γph) +c cos(γph) +a cos(γsh) +ai sin(γsh)
+a cos(γph) −ai sin(γph) +ib sin(γsh) −b cos(γsh)
−ci sin(γph) +c cos(γph) +a cos(γsh) −ai sin(γsh)




Dp + Up

Dp −Up

Ds + Us

Ds −Us

 . (9)

Then the following substitutions are performed Dp + Up → A2, Dp −Up → A1, Ds +

Us → B2, and Ds −Us → B1. The potentials in Eq. (4) can thus be rewritten as

φ =
[
A2 cos(γpy) + iA1 sin(γpy)

]
ei(ωt−βx), (10a)

ψ =
[
B2 cos(γsy) + iB1 sin(γsy)

]
ei(ωt−βx). (10b)

The substitutions will take on a more significant meaning soon, as they explain the sym-
metric and antisymmetric modes in the final solution.

The final step is to further simplify the matrix by row operations on row 1 and 3 and
row 2 and 4:

0
0
0
0

 =


a cos(γph) 0 0 −b cos(γsh)
ci sin(γph) 0 0 ai sin(γsh)

0 −ai sin(γph) +ib sin(γsh) 0
0 c cos(γph) a cos(γsh) 0




A2

A1

B2

B1

 . (11)

To have a wave that can exist without forcing, the matrix must have a determinant of
0. Otherwise, it would be invertible and a non-zero solution of the vector of unknowns
could not exist. Writing out the determinant gives

[a2 cos(γph) sin(γsh) + bc cos(γsh) sin(γph)]

·[a2 cos(γsh) sin(γph) + bc cos(γph) sin(γsh)] = 0.
(12)

The determinant is also the product of two individual 2-by-2 determinants in the two
upper and two bottom rows. Each can be equal to 0 on its own, as seen from the two
square brackets. It will be shown that the two brackets are associated with the symmetric
and antisymmetric modes.

After choosing the material parameters and thickness for the plate, the two remaining
unknowns are frequency and wavenumber. The two can be matched to give the disper-
sion relation ω(β) by solving for the zeros of a transcendental characteristic equation
(one of the two brackets), a method for which is presented later. The wavefields in the
plate can be described entirely once the dispersion relation is known.
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Figure 4: Displacement field of the S0 mode at 250 kHz in a 1 cm thick steel plate.

2.1.1 Symmetric solution

When the first part of the characteristic equation (12), which describes the components
A2 and B1, is set to zero, the dispersion relation is implicit in

tan(γsh)
tan(γph)

+
4β2γsγp

(β2 − γ2
s )

2 = 0. (13)

To obtain the dispersion relation in practice, the roots of Eq. (13) have to be found nu-
merically.

When the dispersion relation holds, the corresponding 2-by-2 submatrix in Eq. (11)
has a determinant of 0, and therefore also a free row. That makes it possible to express
the ratio of A2 and B1 as

RS =
B1

A2
=

(β2 − γ2
s ) cos(γph)

2βγs cos(γsh)
. (14)

The potentials φ and ψ are then known, with the exception of an arbitrary scaling that
will be represented by K. Substitution back into the relationships (3) and (6) give the full
field equations for symmetric Lamb waves

φS = K cos(γpy) (15a)

ψS = iKRS sin(γsy) (15b)

vS
x = iωK[β cos(γpy)− γsRS cos(γsy)] (15c)

vS
y = ωK[γp sin(γpy) + βRS sin(γsy)] (15d)

σS
xx = iGK[(2γ2

p − β2 − γ2
s ) cos(γpy) + 2γsβRS cos(γsy)] (15e)

σS
xy = −GK[2βγp sin(γpy) + (β2 − γ2

s )RS sin(γsy)] (15f)

σS
yy = iGK[(β2 − γ2

s ) cos(γpy)− 2γsβRS cos(γsy)] (15g)

Note that the displacements have been converted to velocities by multiplication with iω.
The common phasor ei(ωt−βx) is also omitted from all quantities.

The notion of symmetric waves come from the field equations. The x-velocities vx are
symmetric around the mid-plane of the plate if described by cosines as seen in Eq. (15c),
whereas the y-velocity vy is symmetric if described by sines as seen in Eq. (15d). For
antisymmetric modes, the sines and cosines are swapped. The displacement field of an
S0 symmetric Lamb wave is shown in Fig. 4.
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Figure 5: Displacement field of the A0 mode at 250 kHz in a 1 cm thick steel plate.

2.1.2 Antisymmetric solution

The second part of the characteristic equation (12) describes the antisymmetric modes,
and the dispersion relation is implicit in

tan(γph)
tan(γsh)

+
4β2γsγp

(β2 − γ2
s )

2 = 0. (16)

The same steps as for the symmetric solution are followed. When the dispersion relation
holds, the corresponding 2-by-2 submatrix in Eq. (11) has a free row since the determi-
nant is 0. That makes it possible to express the ratio of A1 and B2 as

RA =
B2

A1
=

(β2 − γ2
s ) sin(γph)

2βγs sin(γsh)
. (17a)

With the potentials known, again with the exception of an arbitrary scaling K, substitu-
tion back into the relationships (3) and (6) gives the full field equations for antisymmetric
Lamb waves. Examples of the displacement fields of the A0 and A1 modes at 250 kHz are
given in Fig. 5 and 6.

φA = iK sin(γpy) (18a)

ψA = KRA cos(γsy) (18b)

vA
x = iωK[β sin(γpy)− γsRA sin(γsy)] (18c)

vA
y = −ωK[γp cos(γpy) + βRA cos(γsy)] (18d)

σA
xx = KGi[(2γ2

p − β2 − γ2
s ) sin(γpy) + 2RAβγs sin(γsy)] (18e)

σA
xy = KG[2βγp cos(γpy) + RA(β2 − γ2

s ) cos(γsy)] (18f)

σA
yy = iKG[(β2 − γ2

s ) sin(γpy)− 2RAβγs sin(γsy)] (18g)

2.2 Lamb wave attenuation in light fluids

The Lamb wave derivation assume a free plate in vacuum. The interaction with a sur-
rounding fluid or solid would need to be included already in the boundary conditions
in Eq. (8). However, in situations where the plate is much denser than the surrounding
material, as with a steel plate in water, the Lamb wave structure can be assumed to be
unperturbed except for the addition of an imaginary attenuation term α to the wavenum-
ber:

kx = kxr + ikxi = β− iα. (19)
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Figure 6: Displacement field of the A1 mode at 250 kHz in a 1 cm thick steel plate.

Figure 7: Balance of energy flow into a small element of a plate.

For a wave of initial amplitude A, this implies exponential decay with distance as

Aei(ωt−kxx) = Ae−αx · ei(ωt−βx), (20)

with an the attenuation α often measured in neper per meter (Np/m), or in decibel 8.686 ·
α (dB/m).

Several perturbation techniques can be used to calculate approximate attenuation
curves. Merkulov [9] used Schoch’s characteristic equation (a generalization of Eq. (13)
and (16) to include the effect of two-sided fluid loading) to come to an approximation of
the attenuation by doing a first order perturbation and assuming the density of the fluid
to be small. Another perturbation method is presented by Auld [10], starting from a com-
plex reciprocity relation. The same numerical attenuation values are obtained with both
methods through different equations. Here we will look a at a more intuitive method pre-
sented in 1982 by Watkins et al. [11] that leads to the same equations as Auld’s method.

The main assumption is that the wave retains its structure although power is lost.
Consider a differential element of the plate of unit depth, as illustrated in Fig. 7. In steady
state a time averaged power Px(x) is incident from the left, and a power Px(x+ dx) leaves
from the right. On the top of the plate a total time-averaged power PL(x) = IL(x) · dx is
lost to the medium through radiation. Conservation of energy requires that

Px(x + dx)− Px(x) = −IL(x) · dx −→ dPx(x)
dx

= −IL(x). (21)

The time-averaged power flow along the plate can be calculated as

Px = −1
2

∫ h

−h
(vxσ∗xx + vyσ∗xy)dy. (22)

The next step is to calculate the radiated intensity IL. Here we only look at the case
where the plate is in contact with a fluid, but it is similarly possible to calculate radiated
intensity into a solid by taking into account how the vertical and horizontal velocity com-
ponents contribute to radiated P- and S-waves. For fluids it is enough to consider that

ISBN 978-82-8123-021-7 8



Proceedings of the 44th Scandinavian Symposium on Physical Acoustics, Online, Feb. 1–2, 2021

Figure 8: Perturbation values of attenuation for Lamb waves in a 1 cm thick steel plate in contact
with water on both sides. Only the first three S- and A-modes are shown. The black dotted lines
indicate cutoff frequencies.

the normal velocity is continuous on the interface, and related to the pressure through
Euler’s equation. The radiated intensity on one side of the plate is [12]

IL =
Z f |v̄ys|2√
1−

(
c f
cph

)2
, (23)

where v̄ys is the RMS-value of the vertical velocity at the surface of the plate in con-
tact with the fluid. c f is the speed of sound in the fluid, and Z f is the specific acoustic
impedance, for water Z f = 1.48 MRayl.

The intensity and power flow both scale with the square of the amplitude. Hence,
IL ∝ Px, and the power flow and radiated intensity exponentially damped as e.g.

Px(x) = Px(0)e−2αx. (24)

This can be inserted into Eq. (21), which can then be re-expressed as

α =
IL

2Px
=

Power lost per metre into medium
2× Power flow along the plate

. (25)

By knowing the dispersion relation, Eq. (22) can be integrated numerically, and Eq. (23)
can be evaluated with the same arbitrary scaling K. The result for a steel plate in water
is shown in Fig. 8. The curves are identical to Merkulov’s first order approximation, but
the power flow method benefits by being easier to understand and more flexible; it can
treat radiation into solids, and preliminary findings [13] suggest that one can use inho-
mogeneous (“damped”) waves [14] to partially correct for the singularity at coincidence
(spike in A0 mode) and the absence of subsonic radiation. Around coincidence, the real
wavenumber also changes appreciably, but the physics get more complicated at lower
frequencies, and the current scope is on the higher frequencies. Note that the attenuation
curves can deviate significantly from the perturbation solution at higher frequencies if the
plate is in contact with water on only one side, or if the fluids have different impedance.

For the purposes of this work, it is more suitable to define the attenuation as hap-
pening in time. If ω is taken to be real, the imaginary wavenumber gives a complex
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propagation speed c = cr + ici, where cr 6= cph. To achieve the same attenuation within
time interval ∆t as with α over the distance ∆x = cph∆t, one can add an imaginary part
iωi to ω,

Ae−α·∆x = Aei·iωi ·∆t −→ ωi = α
∆x
∆t

= αcph =
α

β
ω, (26)

and discard the imaginary part of the wavenumber.

2.3 The angular spectrum approach

The angular spectrum method is a superposition method for modeling the propagation
of a wave field when the solution is supplied on the plane y = y′ [12]. It is based on the
fact that ei(ωt−k·r) is a solution of the Helmholtz equation

∇2 p + k2 p = 0, (27)

when the wave vector components satisfy

k2 = k2
x + k2

y + k2
z = β2 + k2

y =
ω2

c2 . (28)

Note that the wavenumber along an arbitrary propagation direction in the waveguide is
given by β2 = k2

x + k2
z. Since k is constant for each frequency, the three wavenumbers are

not independent. Choosing ky as dependent, one has that ky = ±
√

k2 − k2
x − k2

z, where
the appropriate root must be chosen.

When a vibrating steel plate is in contact with e.g. air, the wavefield in the x-z plane
is given because it is imposed by the velocity field of the steel plate. The traces of the
wavefronts in the air must match the wavefronts on the steel. The component ky can thus
be real or imaginary as a consequence. The latter implies a non-propagating evanescent
wave into the air, when the phase velocity of the plate wave is subsonic with respect to
the surrounding air.

First consider an initial complex wavefield at t = 0 on the plate surface at y = y′,
expressed through its vertical surface velocity vys. It can be decomposed into a sum of
plane waves through the Fourier transform

Vys(kx, kz) = FxFz
{

vys(t = 0, x, y = y′, z)
}

, (29)

which is also known as the angular spectrum. For waves propagating on a plate, the
dispersion relation ω(β) is already known, and using Eq. (26), the attenuation with time
can be included.

The time-evolution of each plane wave component has a simple description, only
changing by a phase factor and attenuated. Therefore, the propagated wavefield on
the plate can be obtained by injecting a “time propagator”, and performing the inverse
Fourier transform:

vys(t, x, y = y′, z) =
∫∫

Vys(kx, kz)︸ ︷︷ ︸
Angular spectrum

·

Fourier Basis︷ ︸︸ ︷
ei(kxx+kzz) · ei(ω(β)+iωi)t︸ ︷︷ ︸

Time
propagator

dkxdkz. (30)

The normal velocity field is interesting on a plate, but the pressure p is more meaning-
ful in a fluid. Euler’s equation in the frequency domain can be used to relate the normal
velocity to the fluid pressure just above the plate

iωρV = −∇P. (31)

ISBN 978-82-8123-021-7 10



Proceedings of the 44th Scandinavian Symposium on Physical Acoustics, Online, Feb. 1–2, 2021

Figure 9: Propagation of a monochromatic wavefield from a plate (blue) into a parallel plane
(green). The colored gradients represent wavefronts. The wave vector components kx and kz are
imposed by the plate at y = y′. The wavefield between the planes, here shown as a cross section
(red), can be calculated as different solution planes.

Doing the conversion using the dispersion relation frequency ω(β) brings some benefits
that will be discussed in section 3.3. In that case one can calculate the angular spectrum
of the pressure field above the plate at t = 0, P(kx, kz). Then, it is possible using the
method represented in Eq. (30) to propagate the wavefield to different times of interest,
giving P(t, kx, kz). Performing a Fourier transform over the t-dimension, one obtains
P(ω′, kx, kz), with ω′ given by the sampling of t, and not the dispersion relation. Since ky

in the fluid is given by kx and kz via Eq. (28), one can propagate the wavefield between
parallel planes, as shown in Fig. 9, as

p(t, x, y, z) =
∫∫∫

P(ω′, kx, kz)︸ ︷︷ ︸
Angular spectrum

·

Fourier Basis︷ ︸︸ ︷
ei(ω′t+kxx+kzz) · eiky(y′−y)︸ ︷︷ ︸

Propagator to
parallel planes

dkxdkzdω′. (32)

In practice, the implementation uses the Fast Fourier Transform (FFT) or its inverse
(IFFT). Hence, the solution domain will have to be sampled to resolve the shortest wave-
length and highest frequency, and it will be periodic. The method naturally handles
effects such as diffraction, dispersion, and attenuation.

Another method known as normal mode expansion (NME) [6, 15] is similar in some
aspects to the presented method. It is a method for calculating the excitation of waveg-
uides, and works by computing “modal participation factors” that carry a similar mean-
ing to the angular spectrum coefficients here.

3 Method

3.1 Numerical solution of the Lamb dispersion relation

Equations (13) and (16) implicitly relate the frequency ω to a wavenumber β along the
propagation direction. For any frequency, there are a finite number of purely propagating
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Figure 10: Dispersion curves as they are traced out. Notice that the curves are not one-to-one,
and more predictable than e.g. the phase velocity Fig. 2.

modes (A0, S0, A1, S1, etc.), as shown e.g. in Fig. 2. Tracing out the dispersion curves is
necessary, and this section describes a procedure to do so.

The first step is to recognize that γs and γp will change from being real to imaginary
depending on the wavenumber β and frequency. This causes (13) and (16) to switch be-
tween having real and imaginary roots. As an example of a special case, it is known that
the phase velocity for the A0 mode is bounded between 0 and the Rayleigh wave velocity
cR < cs, making the vertical wavenumbers γs and γp imaginary. For other modes, one or
both of the vertical wavenumbers may become real at some point. To simplify analysis, it
is therefore useful to rewrite the characteristic equations so they take on only real values
for real horizontal wavenumbers β. From Rose [6], this can be done as

tan(γsh)
γs

+
4β2γp tan(γph)

(γ2
s − β2)2 = 0 for symmetric modes, (33a)

γs tan(γsh) +
(γ2

s − β2)2 tan(γph)
4β2γp

= 0 for antisymmetric modes. (33b)

The curves change sign when crossing 0, so a root-finding algorithm can be used.
However, caution should be taken as the equations also change sign when crossing a
pole. Depending on the algorithm used, one should test that the obtained root is in fact
fairly close to 0. The curves are traced out as ω(β), as seen in Fig. 10 for two reasons.
Firstly, these curves are two-to-one, meaning we can capture the back-propagating modes
(negative group velocity, e.g. S1 mode at low frequencies). Secondly, as Lowe points out
[1], they are more easily traced out than say cph(ω) which perhaps is the most intuitive
choice to go for.

Tracing out the modes is a bit involved, in particular due to the possibility of having
holes in the curves. The holes are regions where no roots are found for a mode, and the
consequences are potentially that a mode is missed, or that one reaches a dead end when
following a curve. In brief, the algorithm used here works as follows:

1. Choose either Eq. (33a) or (33b).
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2. Make a list of β values: (β0, ... , βi, βi+1...βn) for a fine search for roots/modes along
the ω axis.

3. For each βi, trace out the modes found as follows:

i Store the values of each root as the intersection with a mode.

ii Do a similar search nearby (βi + δβ) to estimate the derivative ∂ω/∂β.

iii Trace the modes (as far as possible) down to βi−1 and up to βi+1, taking small
steps of e.g. ∆β = 5, and store the result as a piece of a mode curve for the
index i.

4. Starting from i = 0, go through each curve piece, and splice with the best matching
curve piece in i = 1 (if any), then for i = 2, and so on:

i Splice two curve pieces if they overlap at some point with a similar angle (< 5
degrees).

ii If any curve pieces remain, they are attempted to be matched based on how
well linear extrapolation finds the midpoint between the unconnected ends.
An upper tolerable error is defined from the derivatives ∂ω/∂β, and length of
the gap.

iii Unmatched curve pieces are at this point considered as new modes.

5. The fully traced modes are then labeled e.g. A0, A1, etc. based on their lowest fre-
quency, in line with how higher modes have higher cut-off frequencies [16].

6. The mode curves are finally fitted with a spline function to get ω(β). For the inverse
function β(ω) the fit ignores the back-propagating modes, so it is a one-to-one func-
tion.

When a spline function is obtained, it is quite easy and fast to work with, as the mode
tracing is separate from everything else. The method above has worked very well for
steel plates and similar materials up to at least 1 MHz·mm, but for very different mate-
rial parameters it is difficult to assess general robustness. Using the above method will
therefore require inspection, and potential tweaking of hyperparameters such as the step
length ∆β. It should also be mentioned that at very low frequencies, the A0 and S0 modes
may be difficult to trace due to issues relating to the numerical range and precision of e.g.
floats or doubles in the characteristic equations. In those situations, the low frequency ap-
proximations given in [16] can be used. Finally, in cases where one is interested in general
leaky Lamb dispersion relations, the wavenumber is complex, and the search for roots is
significantly more difficult, but still possible as described by Lowe [1].

3.2 Plate wave propagation

To propagate a wavefield on a plate, the first step is to choose the dimensions and dis-
cretization of the plate. The Nyquist sampling theorem requires more than two samples
per smallest wavelength to be simulated. Then, the vertical surface velocity vys profile is
specified, and here we will consider the simple case of a Gaussian wavepacket propagat-
ing along the x-direction, θ = 0, on the plate. It can be expressed as

vys(t = 0, x, z) = e−
(x−x0)

2+(z−z0)
2

2σ2 · e−iβc[cos θ(x−x0)+sin θ(z−z0)], (34)
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where βc is the wavenumber at the center frequency of the wavepacket, and x0 and z0

the initial location. The wavefield is complex valued, which is necessary for defining the
propagation direction. The spatial extent of the wavepacket is given by σ2, using the full
width at half maximum (FWHM), σ ≈ FWHM/2.355. In this work FWHM = 2λc =

4π/βc.
An attractive feature of the method is that specifying only vys is enough, even though

one has velocity components in the x-direction, and stress/strain fields inside the plate.
The reason is that all field relations are implicit in the Lamb wave assumption and dis-
persion relation. The only situation where vys cannot capture a Lamb wave mode, is for
certain frequencies in the higher modes. Looking at Fig. 8, the S1 mode has 0 attenuation
at a particular frequency, and the reason is that vys = 0 even though there is a wave with
non-zero power flow Px. For each Lamb mode the procedure of calculating propagation
is:

1. Starting point: Complex wavefield or wavepacket at t = 0, (x, z).

2. Fourier transform: Wavenumber domain, (kx, kz).

3. Propagate to different times: Using the “time propagator” in Eq. (30), (t, kx, kz).

4. Inverse Fourier transform: Propagated wavefields, (t, x, z).

The parenthesis at each step shows the the dimensions of the data worked with. A reason
why the method is fast is that optimized FFT routines can be used, along with broadcast-
ing/vectorization. Using Python, the step from (kx, kz) to (t, kx, kz) is written on one line
using Numpy arrays, completely avoiding inefficient Python loops.

Table 1: Material parameters used.

Material ρ (kg·m−3) cp (m·s−1) cs (m·s−1)

Steel 7850 5900 3200
Water 1000 1480 -

3.3 Including leakage to fluid

Sometimes a plate wave can be interesting to model on its own, but in most practical
settings the interaction with a surrounding fluid is key. A few modifications to the list in
the previous section is needed; new steps are marked with (*):

1. Starting point: Complex wavefield or wavepacket at t = 0, (x, z).

2. Fourier transform: Wavenumber domain, (kx, kz).

3. * Convert to pressure: Using Euler’s equation (alternatively after step 6).

4. * Add attenuation: ω → ω(1 + i α
β ).

5. Propagate to different times: Using the “time propagator”, (t, kx, kz).

6. * Transform to frequency domain: ω′ given by sampling of t, (ω′, kx, kz).
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Figure 11: The equivalent convolution kernels that propagates a wavefield as a leaky A0 Lamb
wave by a time t.

i If step 3 is moved, reduce spectral leakage from the “sudden” initialization of
the plate wave with a window function in time, e.g. Tukey (see next section).

ii Zero padding to avoid temporal wrap-around with y (see next section).

7. * Propagate to parallel planes of interest: Using Eq. (32), (ω′, kx, y, kz).

8. Inverse Fourier transform: Wavefield in fluid, (t, x, y, z).

Step 3, converting to pressure, can alternatively be moved to after step 6. The dif-
ference is between using the frequency from the dispersion relation ω, or the frequency
from the time sampling t, ω′. Doing the conversion in step 3 with ω avoids an unwanted
“startup wave” as in Fig. 16.

3.4 Frequency domain periodicity

The method works in the frequency domain where the solution is periodic. To under-
stand the implications of that, we start by looking at the “time propagator” in more de-
tail. It works like a filter that is applied in the frequency domain by multiplication. In the
spatial domain, it would be a convolution by a kernel that is a function of propagation
time, as shown in Fig. 11.

The intial impulse splits into a left- and right-going pulse. Which direction is deter-
mined by the wavenumber, so if the initialized wavefield is defined to move to the right,
the left-going pulse will be zero. The peak in this particular case moves at roughly the
typical group velocity (A0 mode), and attenuation is included. Once the pulse moves to
the right end (x = 0.4 m) it will wrap back to the beginning (x = 0.0 m).

To avoid wraparound effects, one must essentially the avoid the effects of circular con-
volution that may turn up when doing the convolution in the frequency domain without
zero-padding. To have linear convolution, the length L after convolution must be given
by

L = N + M(t)− 1, (35)

where N is the number of samples in the domain, and M(t) is the appropriate number
of samples in the convolution kernel. In the circular convolution case L = N, and M(t)

ISBN 978-82-8123-021-7 15



Proceedings of the 44th Scandinavian Symposium on Physical Acoustics, Online, Feb. 1–2, 2021

Figure 12: Illustrations of necessary domain extension and zero padding in time to avoid wrap-
around artifacts. The Tukey window is optional, but reduces spectral leakage if one does the
conversion to pressure after step 6 in the recipe.

is then the zero-padding needed to extend the domain, see Fig. 12. It can be decided by
taking into account the largest group velocity of interest, the propagation time, and the
spatial sampling rate. It may not be necessary to use full domain extension if, for instance,
the wavefield consists of a well localized wavepacket on one side of the domain.

When the wavefield of the plate is propagated into the fluid, the propagation delay
plays a role. The wavefield a distance yd away from the plate surface is unaffected by
the current plate vibration until a time td = yd/c f has passed, depending on the sound
speed in the fluid c f . From step 6 in the recipe in sec. 3.3, the solution is periodic in time,
and when moving away from the radiating plate surface, the wavefield is determined by
a increasingly distant past. Therefore, as the distance y increases, the delayed time will
eventually cause a wrap-around in the solution. To avoid this, sufficient zero padding in
time must be used. The amount depends on how far away from the plate one wants to
propagate the wavefield. A schematic representation of necessary zero padding is shown
in Fig. 12.

4 Results and discussion

4.1 Free plate propagation

The method is implemented in Python, and compared with equivalent simulations in
COMSOL Multiphysics. To verify 1D propagation for a free plate, an A0 wavepacket
propagating to the right is initialized at x0 = −25 cm with a center frequency of 250 kHz.
The vertical midplane velocity is measured.

The COMSOL simulation is realized by calculating the necessary fields u(x, y) and
v(x, y), using e.g. Eq. (18c), at the center frequency of 250 kHz, and windowing using a
Gaussian function. This is an approximation, as the windowing introduces a bandwidth
of frequencies that are not properly modeled. It is deemed unfeasible to synthesize the
different fields one frequency at a time, but for this example, the maximum deviance in
intensity Ix that contributes to the power flow Px is 2%. For all simulations 6 quadratic
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Figure 13: Comparison of 1D propagation for a free plate. The presented method is shown in the
Python implementation. The COMSOL simulation shows additional modes due to the approxima-
tion used when initializing the fields.

Figure 14: f -k plot from the COMSOL simulation between −0.2 m to 0.3 m and from 20 µs to
140 µs. The modes A1, A2 etc. come from the inexact initialization in COMSOL.

elements per wavelength at 500 kHz is used, unless stated otherwise.
The propagation in the two cases can be seen in Fig. 13. The method presented in this

work shows a single very weakly dispersive wavepacket. In COMSOL, the targeted A0

wavepacket is simulated in the same way, but additional modes are also present. The
explanation is the approximation used when initializing the fields. The f -k plot in Fig. 14
shows clearly that the deviation comes from higher-order antisymmetric Lamb modes,
confirming that the error is related to the initialization and not numerical.

A verification of 2D propagation is also shown in Fig. 15, where one sees the wavepacket
from above the plate as it propagates and diffracts. The two different solutions are shown
on each side of the symmetry axis. For the same reasons as in 1D, there are additional
modes in this simulation, but it is quite clear that the main A0 wavepacket behaves sim-
ilarly. The boundary conditions at z = ±0.1 m are different; they are periodic in the
Python implementation, and fixed in COMSOL. The reason touches on the motivations
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Figure 15: 2D propagation, with different solutions above and below the propagation axis. The
x-z-plane represents the plate surface.

for the work, as a very fine mesh is needed for simulating ultrasonic waves. Also, the 2D
propagation requires a 3D model to capture the plate thickness, and the memory usage
and simulation time had to be reduced. Even when using two planes of symmetry, re-
ducing the maximum frequency to 400 kHz, and shrinking down the domain into what
is seen, it still took roughly 8 hours to compute. Although no formal benchmarking has
been performed, the computation time on the same computer was on the order of a cou-
ple of seconds using the presented method.

4.2 Leaky wave propagation

Simulations of fluid interaction are performed in 1D. The setup consists of a steel plate of
1 cm thickness with water on both sides, as seen in Fig. 16. Here it is assumed that the
Lamb waves do not change their propagation characteristics except for being attenuated.

The COMSOL simulation shows a “startup” wave that seem to spread almost circu-
larly from the initial position. It is not seen in the vertical surface velocity, and is therefore
not a form of interface wave, but an artifact that occurs when a wave suddenly “pops”
into existence. The comparison is done by monitoring the pressure 1 cm above the plate,
as illustrated with the red dotted line.

In this work, the artificial “startup” wave is not present, as seen in Fig. 17. The reason
has already been discussed, and is attributed to the velocity to pressure conversion before
propagating the wavefield in time. Doing the conversion to pressure at a later stage
introduces the “startup” wave. A finer comparison of the waveforms 1 cm above the plate
is shown in Fig. 18. As soon as the “startup” wave and the leaked wavefield separate after
some time, it shows that both attenuation and wave shape is modeled quite well. A slight
shift of the waveform is likely owing to the minor influence of the water loading on the
exact real horizontal wavenumber β, and/or numerical dispersion in COMSOL.
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Figure 16: COMSOL model used to verify leaky wave propagation. The measurement line indi-
cates the x-axis shown in Fig. 18.

5 Conclusion

A fast semi-analytical method that can propagate initialized leaky Lamb wavefields has
been presented. Although no formal benchmarks have been performed, it is clear that
computations are done within seconds, while matching computations in COMSOL have
usually taken several hours. The speed-up is mainly attributed to

1. having precomputed the propagation characteristics in e.g. the dispersion relation,

2. not having to discretize the direction normal to the plate and having all field rela-
tions implicit, and

3. benefiting from optimized FFT routines and vectorization.

The method has been tested for A0 wave propagation under the assumption that
the fluid is sufficiently light compared to the plate so that classical Lamb wave the-
ory together with a perturbative method for calculating attenuation is sufficient. The
agreement is good, and assumed sufficient for most applications. Because the unwanted
“startup” wave is not turning up in the presented method, it is well suited for calculating
leaked wavefields in a fluid from known wavefields on a plate.
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Figure 17: Sequence of snapshots from a simulation of an A0 wavepacket on a steel plate in
water, using the method presented in this work.
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Appendix C

SSPA extended abstract:
Subsonic radiation

The following extended abstract was submitted to the Proceedings of the 44th Scandina-
vian Symposium on Physical Acoustics. The work explores how inhomogeneous waves
can explain subsonic radiation, which happens below the coincidence frequency. The ef-
fect was initially puzzling, as waves are expected to be evanescent, with zero net radiated
intensity. The power flow method for calculating attenuation is developed to include the
inhomogeneous waves, and used to demonstrate the validity for flexural Lamb waves.
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Understanding sound radiation from surface
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Extended abstract

The interaction between a vibrating surface and an adjacent fluid is a common topic in
many subfields of acoustics, for example building acoustics, noise control, and acous-
tic non-destructive testing. In the most fundamental formulation, the specified normal
velocity vy of the vibrating surface at y = 0 and the resulting fluid pressure p can be
expressed as

vy(x, 0, t) = vy0 ei(kxx−ωt), (1a)

p(x, y, t) = p0 ei(kxx+kyy−ωt) . (1b)

Here, the fluid wavenumber y-component ky can be calculated from the surface wave-
number kx and the fluid wavenumber k f = ω/c f as

ky =
√

k2
f − k2

x = k f

√
1− (kx/k f )2. (2)

With c f being the fluid sound speed and cv = ω/kx being the surface vibration speed,

this can also be expressed as ky = k f

√
1− (c f /cv)2.

Classic treatments of this problem (see e.g. [1]) find two solution domains depending
on the surface vibration speed cv. In the supersonic domain (cv > c f ), the wavenumber ky

is real-valued, and (1b) expresses a plane fluid wave radiating away from the surface. In
the subsonic domain (cv > c f ), however, ky is imaginary-valued, so that (1b) expresses an
evanescent, non-radiating fluid wave that decays exponentially away from the surface.

However, multiple articles have shown radiating fluid waves to exist even in the sub-
sonic domain, specifically for Rayleigh waves [2] and Lamb waves [3–5]. These results
follow by numerically solving the complex dispersion equations for the investigated type
of wave. While this mathematical approach is standard and correct, it does not explain
why this subsonic radiation can occur. One brief qualitative explanation is provided in [2],
where the subsonic radiation is related to the attenuation of the surface vibration. This
attenuation is caused by the loss of the power radiated into the fluid by the pressure
wave.

In our work, we investigate subsonic radiation more closely through a simple phys-
ical model. We take the formulation in (1) and (2) and generalise it to an attenuated
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Figure 1: Properties of the wave radiated from an attenuated surface vibration. Left: Nor-
malised radiated intensity Iy0/(v2

y0Z f /2) = (kyr/k f )/|ky/k f |2. Middle: Radiation angle θ =

arctan(kxr/kyr). Right: Normalised fluid wave speed c/c f = k f /
√

k2
xr + k2

yr.

surface vibration using a complex surface wavenumber kx = kxr + ikxi, where the real
part relates to the surface vibration speed as kxr = ω/cv and the imaginary part provides
an exponential attenuation e−kxix.

The complex surface wavenumber kx makes ky = kyr + ikyi complex as well. In fact,
closer investigation of (2) reveals that any propagating (kxr > 0) and attenuated (kxi > 0)
surface vibration leads to a radiating (kyr > 0) fluid wave whose pressure increases expo-
nentially with distance from the surface (kyi < 0). (While the latter fact might at first seem
troubling, [5] explains why this is the correct physical behaviour for the inhomogeneous
fluid wave [2, 6] that an attenuated surface vibration radiates.)

We then investigate the properties of the radiated wave further. The left plot in Fig. 1
shows that if the surface vibration is not attenuated (kxi = 0), the radiated time-averaged
intensity Iy has a discontinuous singularity at the supersonic-subsonic transition and is
zero in the subsonic domain. If the surface vibration is attenuated, however, Iy is smooth
and continuous at the transition, showing power radiation in the entire subsonic domain.
The middle plot in Fig. 1 shows that the fluid wave will only ever graze the surface
(θ = 90°) in the subsonic domain if the surface vibration is not attenuated. Finally, if the
surface vibration is not attenuated, the right plot in Fig. 1 shows a sharp transition in the
actual fluid wave speed c from the fluid sound speed c f in the supersonic domain to the
surface vibration speed cv in the subsonic domain. For attenuated surface vibrations, this
transition is smoothed due to the lower speed of the inhomogeneous radiated waves.

For a more physically realistic treatment, instead of simply imposing a particular at-
tenuation of the surface vibration, we connect the radiated power to the power lost in the
surface vibration. With a surface vibration power flow Px(x) = Px0 e−2kxix, this implies
−∂Px/∂x = 2kxiPx = Iy [5]. With Iy and potentially Px depending on the variable kxr

and the unknown kxi, valid propagation modes are represented by the roots of the func-
tion f (kxr, kxi) = 2kxi − Iy0(kxr, kxi)/Px0(kxr, kxi) plotted in Fig. 2. The figure shows two
such modes: One ‘classic’ non-radiating subsonic mode, and one radiating supersonic
mode that extends into the subsonic domain, demonstrating very similar behaviour to
the subsonic radiation shown for A0 Lamb waves in [3–5].

To validate our results, we apply them to leaky A0 Lamb waves on a 1 cm thick steel
plate radiating into air on both sides. A number of perturbation methods already exist
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Figure 2: Diverging colour plot of the function f (kxr, kxi) = 2kxi − Iy0(kxr, kxi)/Px0(kxr, kxi), with
arbitrary values chosen for material constants and power flow. White colour and dashed lines
indicate the function’s roots ( f = 0), which represent valid propagating modes.

1160 1180 1200 1220 1240 1260 1280 1300

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency (Hz)

A
tte

nu
at

io
n

k x
i

(N
p/

m
) Exact leaky solution

First pert. method

Second pert. method

Third pert. method

Free coincidence freq.

Leaky coincidence freq.

1160 1180 1200 1220 1240 1260 1280 1300

330

335

340

345

350

Frequency (Hz)

P
ha

se
sp

ee
d

(m
/s

)

Exact leaky solution

Free-plate solution

Fluid sound speed c f

Free coincidence freq.

Leaky coincidence freq.

Figure 3: Comparison of exact leaky A0 Lamb wave solutions for a 1 cm steel plate in air against
approximate solutions. Left: Attenuation due to radiation. Right: Phase speed of leaky and free
Lamb waves.

to predict the attenuation of leaky Lamb waves from free-plate solutions, as summarised
in [7], but none of them can predict subsonic radiation. Our results can be used as an
improved perturbation method to overcome this weakness. We base this perturbation
on the dispersion relations kfree

xr (ω) and kleaky
xr (ω) of free and leaky A0 Lamb waves, re-

spectively, in addition to the field equations for free Lamb waves. We then compare the
results against the exact attenuation kleaky

xi (ω).
The left plot in Fig. 3 shows our attenuation results. First, we calculate the atten-

uation based on the roots of 2kxi − 2Iy0(kfree
xr , 0)/Px0(kfree

xr , 0), i.e., as a simple perturba-
tion to a non-attenuated surface vibration. This results in the same attenuation as ex-
isting perturbation methods, with no radiation in the subsonic domain. Second, we
take the attenuation of the surface vibration into account, finding the roots of 2kxi −
2Iy0(kfree

xr , kxi)/Px0(kfree
xr , kxi). This results in the same qualitative behaviour as the exact

solution, although the attenuation peak and cutoff frequencies are different. The reason
for this difference is apparent from the phase speed of the free and leaky Lamb waves
in the right plot in Fig. 3: Close to the supersonic-subsonic transition, the two diverge,
leading to different coincidence frequencies. Third, we take this phase speed divergence
into account by finding the roots of 2kxi − 2Iy0(k

leaky
xr , kxi)/Px0(k

leaky
xr , kxi). This shows a

very good match with the exact solution, thus validating our results.
In summary, we have found that subsonic radiation occurs because any attenuated
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surface vibration will radiate power into the fluid. Our simple power flow model, which
connects the power radiated into the fluid to the power lost in the surface vibration,
shows that such subsonic radiation can occur in a small area of the subsonic domain.
Furthermore, we have shown that this model can be used as a perturbation method for
leaky Lamb waves that improves on existing ones. A full match with the exact attenua-
tion, however, requires using the exact phase speed, which itself is part of the exact leaky
solution.
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