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Abstract
Motivated by a recently proposed method of probing topology in a spin wave
model coupled to phonons, I study the single particle Green’s function of
topologically protected fermion states coupled to quantized lattice vibrations.
The system under investigation is a Haldane Chern insulator on a graphene
nanoribbon with armchair edge geometry. I explicitly demonstrate that this
model host highly localized edge states which can be described by a one-
dimensional fermionic theory of a many-body system. The electron-phonon
coupling is found by projecting phonon eigenstates onto the edges using a
nearest neighbor approximation. By bosonization of the fermionic fields close
to the Fermi level, the Hamiltonian can be diagonalized in an exact manner.
The representation of fermionic density-waves is found to be a combination
of an orthogonal projection and a symplectic Bogoliubov-transform of uncou-
pled quantum harmonic oscillators. I first rederive earlier results, then pro-
ceed to generalize the method to allow for a density-density interaction, which
suppresses the electron phonon coupling strength if repulsive. The inclusion
of spin degrees of freedom renormalizes the electron phonon coupling by a
constant factor. I derive several closed form approximations of the Green’s
function in the presence of a single acoustic phonon branch. On the graphene
nanoribbon, I numerically calculate the relative corrections to the real space
correlation function. In the absence of density-density interactions, the char-
acteristic singularity representing linear motion is reduced by the onset of a
particle-hole cloud lagging behind the itinerant electron density waves. In the
presence of a Coulomb-like interaction, the long distance density waves oscil-
late with a finite plasma frequency, and further excitations acquire a mass.
The consequence of a nonzero plasma frequency is that the single electron
Green’s function is modulated with a precocious particle-hole cloud.
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Sammendrag
Det har nylig blitt foreslått en metode for å indirekte detektere topologi i
en spinnbølgemodell koblet til fononer. Motivert av dette undersøker jeg én-
partikkel Green-funksjonen til topologisk beskyttet fermionske kanttilstan-
der koblet til kvantiserte gittervibrasjoner. Systemet er en Haldane-Chern-
isolator på et grafén nanobånd med “lenestol”-kantgeometri. Jeg viser eks-
plisitt at denne modellen gir lokaliserte kanttilstander som kan bli beskrevet
av en éndimensjonal fermionteori i et mangepartikkelsystem. Elektron-fonon-
koblingen blir funnet ved å projisere fonon-egentilstander på kantene gjennom
en nærmeste-nabo-tilnærming. Ved å bosonisere fermionfeltene nære Fermi-
nivået kan Hamilton-operatoren diagonaliseres nøyaktig. Elektrontetthetsbøl-
gene kan da representeres som en kombinasjon av en ortogonal projeksjon
og en symplektisk Bogoliubovtransformasjon av kvanteharmoniske oscillato-
rer. Jeg gjenutleder kjente resultater, og fortsetter ved å generalisere metoden
til å kunne inkorporere tetthet-tetthet-interaksjoner, som reduserer elektron-
fonon-koblingen i det repulsive tilfellet. Inkluderingen av spinn-frihetsgrad
renormerer elektron-fonon-koblingen med en konstant faktor. Gjennom for-
enklinger finner jeg flere lukkede uttrykk for Green-funksjonen i nærvær av
én akustisk fonongren. På nanobåndet finner jeg den relative korreksjonen til
Green-funksjonen ved numeriske beregninger. I fravær av interaksjoner mellom
tetthetsbølger finner jeg at den karakteristiske singulariteten i korrelasjons-
funksjonen som representerer rettlinjet bevegelse blir redusert når en skyfak-
tor av partikkel-hull-eksitasjoner som henger etter tetthetsbølgene blir synlig.
Med en Coulomb-type interaksjon tilstede vil tetthetsbølgene oscillere med
en karakteristisk plasmafrekvens, og videre eksitasjoner i denne plasmaen blir
massive. Konsekvensen av en plasmafrekvens ulik null er at én-elektron Green-
funksjonen blir modulert med en fremskreden skyfaktor.
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1.1 Motivation and Background
Quantum states of matter known as topological insulators has been a subject
of great attention in recent years. Apart from being of fundamental research
interest, these materials has promising properties relevant for future devices
in information technology [1–3]. They are insulators that host gapless surface
states residing in the insulating bulk gap which are protected by time reversal
symmetry [4]. The existence of these states is directly related to topological
invariants of the bulk [5].

Using topology as a way of classifying quantum states of matter was first
proven useful by Thouless et al. [6], after the discovery of a quantized Hall
(QH) effect [7]. A few years later, Haldane [8] proposed a new model of the
QH state, whose phases is characterized by a topological invariant called the
Chern number. Thouless, Haldane and Berezinskii was awarded the 2016 No-
bel Prize in Physics “for theoretical discoveries of topological phase transitions
and topological phases of matter” [9].

The inclusion of spin-orbit interactions was shown to give rise to the Spin
Quantum Hall (QSH) state [10], which is an insulating phase protected by time
reversal symmetry exhibiting a spin polarized Hall conductance. This state
was predicted [11] and shown [1] to exist in HgTe quantum wells, and has later
been vastly studied both theoretically and experimentally. The QSH state is
the two-dimensional rendition of a topological insulator hosting spin-polarized
states localized at the edges.

Recently a method of experimentally probing topology in a spin-wave
model has been proposed by measuring a chirality in observed signal out-
put from phonon modes propagating in opposite directions at the edge of a
honeycomb nanoribbon [12]. This was proposed for an “armchair” edge geom-
etry, since these host phonon modes highly localized at the edges, contrary to
the alternative “zigzag” geometry. This begs the question of what will hap-
pen when these topological magnons are replaced by itinerant fermions at the
edges, and how much of the topologically protected states remain stable even
in the presence of phonon-interactions.

The coupling between electrons and phonons is an important interaction,
most notably because it can give rise to the condensation of Cooper pairs [13],
which are bound electron states which can lower the free energy of the sys-
tem. These pairs the constituent excitations in the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity [14]. In topological insulators, It has been
shown that the electron-phonon coupling can drive a topological phase tran-
sition, and hence be used as a direct probing of topological invariants [15].

Motivated by this, I will in this thesis study the problem of topological
edge states in a graphene nanoribbon with armchair edges, coupled to quan-
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tized lattice vibrations. More specifically, I will compute corrections to the
single particle Green’s function caused by interactions with phonons – both in
absence and presence of fermionic two-body scattering such as the Coulomb
interaction. The localized edge states of a QSH insulator are effectively one
dimensional, and corresponds to helical Tomonaga-Luttinger liquids [16, 17]
which also has been proposed to exist at the edges of a QH graphene nanorib-
bon [18].

Analogous to Landau’s theory of interacting fermions [19], Haldane [20]
coined the term “Luttinger liquid” to the description of interacting fermions in
one dimension, where the vastly successful Fermi liquid paradigm breaks down
[21, 22]. This happens because single electron excitations in one dimension
are not possible due to the Pauli exclusion principle and reduced kinematics.
Similar to how vehicles in a traffic jam only moves as a collective unit, so does
fermions in one dimension [23]. Phenomena such as separation of spin and
charge degrees of freedom, and anomalous dimensions of operators leading to
power-law decay of correlation functions occur [24]. Neither of which can be
explained in the Landau quasiparticle picture. By linearizing the spectrum of
a one dimensional many-fermion system close to the Fermi points, Tomonaga
[25] showed that the fundamental excitations of the system may be described in
terms of quantized fields obeying Bose statistics. Some years later, Luttinger
[26] presented the exact solution of a system described by massless fermions
with an infinitely filled Dirac sea. It was later shown that these models are
essentially equivalent in the long distance limit [27], and is hence often called
the Tomonaga-Luttinger model.

The effect of lattice vibrations in one dimension has been investigated in
general terms utilizing the technique described by Tomonaga [28–30]. Using
some of these results, the calculation of single particle correlation functions
in the presence of a single phonon branch has been carried out by Meden
et al. [31], who has authored and co-authored several papers on the spectral
properties of Luttinger liquids [32–36]. A recent study by Hsieh et al. [37]
presents a general theory for experimentally probing helical Luttinger liquids
on QSH insulators at finite temperature, and may be employed to study the
effects of phonons.

1.2 Structure of Thesis
The main body of this thesis is in chapter 6, whereas chapters 2, 3 and 5 provide
theoretical preliminaries and derivations of useful identities. In chapter 4, I
calculate properties of the system to set the context for subsequent chapters.
Lastly I summarize in chapter 7.

In chapter 2 I recapitulate the basics of many-body quantum mechanics.
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This includes a section on the second quantization formalism, boson coherent
states, expectation values and Green’s functions, and a section on Fermi liquids
with connection to experiments.

In chapter 3, an introduction to the states of matter known as topological
insulators is presented. This chapter has a particular focus on the existence
of gapless one-dimensional electron states on the edges of Quantum Spin Hall
insulators, the two-dimensional rendition of a topological insulator.

Chapter 4 provides explicit calculations of the Haldane model, which is
a topological model for a Quantum Hall insulator. I show the existence of
localized edge states on a nanoribbon with armchair edge geometry, and further
compute the phonon spectrum and electron-phonon coupling matrix for the
bulk and armchair geometry.

I continue in chapter 5 by introducing the Luttinger liquid phenomenology
and further deriving the bosonization identity of fermionic fields in one dimen-
sion. As an introductory calculation, I calculate the single particle Green’s
function in absence of lattice vibrations.

Phonon corrections to the single particle Green’s function are computed in
chapter 6, where I derive a method of exact diagonalization for the electron-
phonon Hamiltonian. This is done by utilizing the theoretical framework intro-
duced in the preceding chapters. Multiple systems are considered, and several
closed form representations of the Green’s functions are explicitly calculated
when only a single phonon branch is present. For the full phonon spectrum of
the graphene nanoribbon, I numerically compute the absolute relative differ-
ence in the interacting and non-interacting cases.

Finally, the thesis is summarized in chapter 7, where I also mention possible
extensions of the work in this thesis.
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Many-Body Quantum Mechanics
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Many-Body Quantum Mechanics
Finding the exact solution of the quantum mechanical problem for a single
particle in an arbitrary potential is in general considered to be a hard problem,
and only exactly solvable in a few cases. Solving the quantum mechanical
problem for many interacting particles is thus not surprisingly an even harder
problem, and it is computationally expensive to solve even a few interacting
states without a further developed theory. Nevertheless, significant progress
can be made in the quantum theory of solids.

2.1 Second Quantization
The theoretical framework of this thesis is the “second quantization” represen-
tation of many body quantum mechanics. In this section, I will give a short
introduction to this formalism, also commonly called the “occupation number
representation”. There are many excellent books [38–41] describing this theo-
retical framework, and for brevity I will skip many details in the construction
and indulge the reader to study these for their own pleasure.

2.1.1 Occupation Number Representation
As with many things quantum in nature, the Schrödinger equation is the
microscopic description of the dynamics in a non-relativistic system. A one-
particle quantum state is denoted by the vector |ψλ(r)〉 residing in a Hilbert
space H. This state is described unambiguously by a set of quantum numbers
λ dependent on the Hamiltonian for which the system is modeled. These might
for example be λ = (n, l,ml,ms) for Hydrogen-like atoms, or λ = (k, σ) for
translation invariant systems, as is very common in solids.

The same notation and identification of quantum states holds in a many-
particle system, where the wave function of the entire ensemble

|ψ〉 = |ψ(r1, r2, . . . , rN )〉 (2.1)

describe the dynamics of all N particles. This state lives in a Fock-space which
is a direct sum over N -particle Hilbert spaces. Since quantum mechanics deals
with identical, i.e. indistinguishable particles, the total wave function has to
obey certain symmetry constraints. For fermions, an exchange of coordinates
between two one-particle states results in a relative minus sign in the total wave
function. This has no physical significance if the coordinates are different, since

|Ψ(. . . , xi, xj , . . . , xN )|2 = |Ψ(. . . , xj , xi, . . . , xN )|2, (2.2)
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however if two coordinates xi, xj are equal, the relative minus sign appearing
from the exchange xi ↔ xj can only mean that the wave function is identical
to zero, a manifestation of the Pauli exclusion principle. Here, xi = (r, σ)
is the coordinates for a one particle state with quantum numbers λi. This
many-particle state may be constructed through a Slater determinant by N
single-particle wave functions.

Second quantization is a way of representing the wave function without
considering the notion of “which particle is in which state”, since this is not a
question of physical significance due to the indistinguishability of the particles.

This way of treating the system, also called the occupation number rep-
resentation, considers only the occupancy of each quantum state in the N -
particle system (as the name suggests). A normalized state in this represen-
tation is written as

|N〉 = |nλ1 , nλ2 , . . . , nλN 〉 , (2.3)

where nλi is the occupancy number of a single particle state characterized by
the quantum number(s) λi. For fermions, n can only take the numbers 0, 1, but
for bosons, all non-negative integers are allowed. This formalism is based on
creation and annihilation operators which respectively increases or decreases
the occupancy of a given single particle state. For fermions, these operators
are most commonly denoted c†λ and cλ. c†λ is an operator that creates a particle
in the state described by λ, which is to say that nλ → nλ+1. Correspondingly,
cλ has the effect of reducing nλ by one. Since nλ is either 0 or 1, acting with
either c†λ or cλ destroys the state

cλcλ |N〉 = c†λc
†
λ |N〉 = 0. (2.4)

The symmetries of the total wave function is taken care of by the action of these
operators on the many-particle state, and one can show that the fermionic
creation and annihilation operators must satisfy the anticommutation relations

{cλ, cλ′} = {c†λ, c
†
λ′} = 0 {cλ, c†λ′} = δλ,λ′ , (2.5)

while bosonic operators obey the commutation relations

[bλ, bλ′ ] = [b†λ, b
†
λ′ ] = 0 [bλ, b†λ′ ] = δλ,λ′ . (2.6)

So far, these operators provide a rich mathematical framework for repre-
senting many-body quantum states, and the field operators ψ†(x, t) and ψ(x, t)
can now be introduced. These operators create or annihilate quantized exci-
tations in a fermionic matter field at specified coordinates, and are defined by
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ψ†(x, t) =
∑
λ

φ∗λ(x)c†λ(t) (2.7a)

ψ(x, t) =
∑
λ

φλ(x)cλ(t), (2.7b)

where φλ is a single particle wave function. I will come back to how time
appears in the operators c†λ(t), cλ(t). The field operators are the ones that
create and destroy fermions in the many-body system at specified time and
coordinate.

2.1.2 Operators in Second Quantization
Single particle operators are operators that act only on individual particles. In
second quantization, such operators are represented by a sum of the creation
and annihilation operators for different quantum states λ. The amplitude for
each combination of operators is given by the overlap between the single parti-
cle states φλ that are solutions of the time independent Schrödinger equation

ĥ1(xi)φλ(xi) = Eλφλ(xi), (2.8)

where ĥ1 is a term in the many-body Hamiltonian that only considers indi-
vidual particles. A general form for single particle operators in second quan-
tization is the sum of over the amplitudes for single particle transitions, and
takes the form

T =
∑
λ,λ′

tλ,λ′c
†
λcλ′ , (2.9)

with
tλ,λ′ = 〈λ|T |λ′〉 =

∫
dxφ∗λ(x)T̂ (x̂, p̂)φλ′(x). (2.10)

Here, the hat is present to discern the operator acting on a many-body state
with the operator acting on distinct wave functions. Using the field operators
defined in eq. (2.7), a general single particle operator takes the form [38]

T =
∫

dxψ†(x)T̂ (x̂, p̂)ψ(x). (2.11)

One can in a similar fashion find the second quantization representation of
two-particle operators. The result is

V =
∑

λ1,...,λ4

vλ1,...,λ4c
†
λ1
c†λ2

cλ3cλ4 (2.12)
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with

vλ1,...,λ4 = 〈λ1, λ2|V (x̂1, x̂2)|λ3, λ4〉

=
∫

dx1

∫
dx2 φ

∗
λ1

(x1)φ∗λ2
(x2)V̂ (x̂1, x̂2)φλ3(x2)φλ4(x1). (2.13)

Thus, the matrix element vλ1,...,λ4 is the overlap integral of wave functions that
have been acted upon. Note for instance that if V̂ = 1, the matrix element
become

vλ1,...,λ4 = δλ1λ4δλ2λ3 . (2.14)

2.1.3 Boson Coherent States

I have introduced the concept of creation and annihilation operators as a useful
way of representing one- or two-particle operators acting on anN -particle state
|N〉. A natural question arising is what the eigenstates of such operators are.
These states are called coherent states. For the creation operator b†λ, the action
of operating on a state |β〉 consisting of nλ = n particles of type λ is increasing
the number to nλ = n + 1. Therefore, there cannot exist a superposition of
states whose linear combination is an eigenstate of the creation operator. For
the annihilation operator bλ, the state of affairs is disparate. The defining
equation for a boson coherent state is

bλ |β〉 = βλ |β〉 , (2.15)

i.e. |β〉 is an eigenstate of each bλ, with eigenvalues βλ ∈ C. The construction
of |β〉 is then [40, 41]

|β〉 = exp
(∑

λ

βλb
†
λ

)
|0〉 , (2.16)

where |0〉 is the vacuum and the exponential function is defined in terms of
its Taylor series. The coherent boson state is therefore an infinite linear com-
bination of states with arbitrary number of particles of each kind. Since |β〉
is an eigenstate of destruction operators, such a state will be difficult to de-
stroy if properly manufactured in an experiment, and thus have a minimal
decoherence.
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2.2 Expectation Values and Green’s Functions
2.2.1 Observables and Time Evolution
The expectation value of an operator Ô corresponding to an observable quan-
tity O in a given state is

Oi = 〈Ô〉i = 〈Ψi|Ô|Ψi〉 , (2.17)

where |Ψ〉 is an eigenstate of the system. The energy of the many particle
ground state is for instance

E0 = 〈H〉GS ≡ 〈ΨGS|H|ΨGS〉 . (2.18)

Temperature can be included in the expectation values by computing them in
the canonical ensemble. The thermal density matrix is equal to the quantum
mechanical density matrix

∑
i |Ψi〉〈Ψi| weighted with a Boltzmann factor for

each projection, resulting in

ρ̂ =
∑
i

e−βEi |Ψi〉〈Ψi| = e−βH . (2.19)

The thermal partition function is then written as

Z = Tr ρ̂, (2.20)

and expectation values for an observable at finite temperature is then

〈Ô〉T = 1
Z

Tr
(
Ôρ̂
)
. (2.21)

A non-relativistic quantum mechanical state is as mentioned governed by
the Schrödinger Equation

i
∂ |Ψ(t)〉
∂t

= H |Ψ(t)〉 , (2.22)

which has a symbolic solution

|Ψ(t)〉 = e−iHt |Ψ0〉 , (2.23)

where again functions acting on a Hilbert space H is defined through its Taylor
series [38], and |Ψ0〉 is the initially prepared state. I have set ~ ≡ 1. To see
how observable quantities change over time, I insert eq. (2.17) and compute

O(t) = 〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ0|eiHtÔe−iHt|Ψ0〉 = 〈Ψ0|Ô(t)|Ψ0〉 , (2.24)
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where I defined the time-evolved operator

Ô(t) = eiHtÔe−iHt. (2.25)

This marks the transition from the Schrödinger picture (where all states are
time-dependent and operators not) to the Heisenberg picture (where the state
of affairs is the opposite). The explicit time dependence depends on the various
systems, but can often be computed using the Baker-Hausdorff formula in
eq. (A.2.3). The (thermal) expectation values of the number operator 〈c†µcµ〉
for a fermionic field follow the Fermi-Dirac distribution nF (εk) if the system is
diagonal in the cµ-basis with dispersion εk. For the bosonic number operator,
the expectation value 〈b†µbµ〉 follow the Bose-Einstein distribution nB(ωq) on
the same terms. These distributions are given by

nF (εk) = 1
eβεk + 1 (2.26a)

nB(ωq) = 1
eβωq − 1 , (2.26b)

where β = 1
kBT

is the inverse temperature.

2.2.2 Green’s Functions
Green’s functions are in general the response of a system due to a unit impulse
at a given space-time coordinate. Mathematically, a general Green’s function
of two variables is defined as the solution to

LG(x, t;x′, t′) = δ(x− x′)δ(t− t′), (2.27)

where L is a linear operator. If the Green’s function for a system described
by a differential equation is known, one can obtain the system’s response from
arbitrary sources by integration over all space-time coordinates.

In solid state physics, the goal is often to compute physical quantities such
as electric currents, magnetic response, spin-currents and more. To do this,
the quantum mechanical version of the Green’s function is needed. The linear
operator in eq. (2.27) can then be replaced by the Schrödinger equation in
eq. (2.22). In field theories, however, the term Green’s function refers to a
different definition, which is not the solution to a linear differential equation
except for the case of free Fermi / Bose gas for which the term originated [38].

Consider a fermion with quantum number µ that is injected into the system
at coordinate x′ and at time t′, and ask how likely it is that a fermion with the
same label µ is ejected at position x at time t. This probability is described
through the Green’s function

G(x, t;x′, t′) = −i 〈T
(
ψ(x, t)ψ†(x′, t′)

)
〉 , (2.28)
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where T is a time-ordering operator. The “retarded” and “advanced” Green’s
functions are also convenient quantities, and are defined as

GR(x, t;x′, t′) ≡ −iΘ(t− t′) 〈{ψ(x, t), ψ†(x′, t′)} 〉 (2.29a)
GA(x, t;x′, t′) ≡ iΘ(t′ − t) 〈{ψ(x, t), ψ†(x′, t′)} 〉 . (2.29b)

The poles of the Green’s function give information about the energy spectrum
of the system, making it an important quantity for comparison between theory
and experiment.

The advanced and retarded Green’s function may be written in terms of
“lesser” and “greater” Green’s functions

iG>(x, t;x′, t′) ≡ 〈ψ(x, t)ψ†(x′, t′)〉 (2.30a)
iG<(x, t;x′, t′) ≡ 〈ψ†(x′, t′)ψ(x, t)〉 (2.30b)

by

GR = θ(t− t′)(G> +G<) (2.31a)
GA = −θ(t′ − t)(G> +G<) (2.31b)

The Greens’s function also allows for the computation of average values of
observable quantities in the ground state. By taking a one-particle operator
T as in eq. (2.11), the average value in the ground state is is [38]

〈T̂ 〉 = −i
∫

dx lim
x′→x

t′→t+0+

T (x̂, p̂)G(x, t;x′, t′). (2.32)

2.3 Fermi Liquid Theory
The free electron gas is an exactly solvable model of a quantum many-body
problem. Landau wondered how much of the pure electron excitations that
continue to exist whilst slowly adding interactions between the particles. This
is the basis for Fermi liquid theory [19], which considers systems of interacting
particles obeying Fermi statistics [38]. In two or three dimensions, one can find
an escape route to solve the many-body problem by incorporating interactions
in the system parameters of new types of excitations that only resemble the
free electrons [23]. Landau [19] originally developed the theory of Fermi liquids
in an effort to solve the problem of interacting fermions. He argued that the
classification of states in the non-interacting problem would be invariant when
turning on interactions adiabatically. In this way one could associate the
fundamental excitations of the interacting fermions, the Fermi liquid quasi-
particles, with the excitations of the free fermionic problem in a one-to-one
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correspondence. The fundamental excitations of a Fermi liquid is not indi-
vidual fermions, but rather fermions dressed by particle-hole-excitations [22],
with a reduced discontinuity of the occupation number at the Fermi surface
for T = 0. This discontinuity is sometimes referred to as the “quasiparticle
residue”.

To see the effects of this, consider first the non-interacting Green’s function.
By taking the Schrödinger equation as the linear operator in eq. (2.27), the
non-interacting Greens function of a system described by a Hamiltonian H0
then satisfies

(i∂t −H0)G0 = δ, (2.33)

where the δ-function depends on the coordinates of the system. In Fermi liquid
theory, the interacting Green’s function can be related to the non-interacting
by an injective function, meaning that for each fermionic excitation labeled by
µ, there exist exactly one state in the interacting system that can be tagged
with µ. Expressed in momentum space, the relation is often on the form

G−1(k, ω) = G−1
0 (k, ω)− Σ(k, ω), (2.34)

where Σ is the fermion self-energy. This quantity describes the energy of a
particle caused by changes to the system that originates from the very pres-
ence of the particle itself. The transformation from one to the other can be
understood through1

δ = (i∂t −H0 − Σ)G ≈ (G−1
0 − Σ)G

=⇒ G−1 ≈ G−1
0 − Σ. (2.35)

Generally, a non-interacting momentum resolved Green’s function G0(k, ω)
takes the form

G0(k, ω) = 1
ω − εk + i0+ sgn(|εk| − εF ) , (2.36)

where 0+ is an infinitesimal and the Fermi level εF is the lowest lying unoccu-
pied state. If this is the case, the interacting Green’s function is consequently

G0 → G = 1
ω − εk − Σ(k, ω) = zk

ω − ε̃k + i
τk

, (2.37)

where the quasiparticle residue zk, lifetime τk, and excitation spectrum ε̃k can
all be related to Σ(k, ω) by analytic functions.

1Although this is a non-rigorous derivation, and technically incorrect, the point in this
section is not to compute the exact Green’s function. The derivation serves the purpose of
demonstrating how interactions appear in the propagator.
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The Green’s function is a very important quantity many body quantum
mechanics since it gives a direct connection between theory and experiment
through the spectral function

A(k, ω) = − 1
π

ImGR(k, ω). (2.38)

This is the quantity one typically measures in Angle-resolved photoemission
spectroscopy (ARPES). The imaginary part of the self energy Σ(k, ω) appears
as a broadening of the peak, and the real part as a quasiparticle energy shift.
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Topological Insulators
Topological insulators is a class of quantum matter with predicted properties
relevant for the development of highly energy efficient information technolo-
gies such as spintronics [42, 43]. Apart from fundamental research interest in
new states of matter, the possible uses also include the realms of topological
quantum computing [5], and it is clear that the potential applications of these
materials may be of high importance in future technological devices. These
are materials that cannot be adiabatically connected to normal insulators, and
are characterized by an insulating gap in the excitation spectrum coexistent
with surface states that are protected by time-reversal symmetry [4]. This
connection is not possible due to the Kramers’ theorem which guarantees the
existence of pairs of fermionic states, each of which is the time reversal of the
other.

These materials are “topological” in the sense that certain quantities of the
system is left invariant when it undergoes smooth transformations in the pa-
rameter space. The utilization of topological invariants as characterizations of
physical states was shown to be useful by the theoretical discovery of the quan-
tum Hall (QH) effect in 1982 [6]. The QH states explicitly break time-reversal
symmetry, usually by the presence of a strong external magnetic field [44],
giving rise to Landau levels with drifting motion at the edges. These states
are therefore not, per definition, included in the class of topological insulators.
A topologically distinct phase of matter with time-reversal symmetry was the-
oretically proposed by the inclusion of spin-orbit interactions [45, 46]. These
two-dimensional topological insulators are synonymously called Quantum Spin
Hall (QSH) insulators, due to their spin polarized edge currents analogous to
those in the QH state.

3.1 Topological Invariant
Topological insulators differs from conventional insulators through Z2 topo-
logical invariants [4, 5, 45]. The computation of these is generally not an easy
task mathematically, but the presence of inversion symmetry allows for the
determination by analyzing Bloch eigenstates at time-reversal invariant points
in the Brillouin zone [47].

As an example of a topological invariant, consider the set of Bloch Hamil-
tonians H(k) that can be smoothly deformed into one another without closing
the insulating gap. These Hamiltonians can be classified by an integer n called
the Chern invariant [5]. This number is the sum of total Berry flux through
the Brillouin zone from each band α, which is given in terms of Bloch wave
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functions |uα(k)〉 and the Berry connection

Aα(k) = i 〈uα(k)|∇k|uα(k)〉 (3.1)

through
nα = 1

2π

∫
1BZ

d2k∇k ×Aα. (3.2)

For certain systems, the Hamiltonian may be expressed through the Pauli
matrices σ = (σx, σy, σz) and identity matrix I as

H(k) = EkI + dk · σ, (3.3)

where dk acts as a pseudospin field [48]. The energy eigenvalues of such
systems are

ε±(k) = Ek ± |dk|. (3.4)

In this case, the Chern number can be expressed in terms of the normalized
vector d̂k = dk/|dk| alone, and eq. (3.2) takes the form

n = 1
4π

∫
1BZ

d2k d̂k · (∂kx d̂k × ∂ky d̂k). (3.5)

The interpretation is that n counts how many times d̂k winds around the unit
sphere as k traverses the first Brillouin zone (1BZ), hence n is often called the
“winding number” [49]. Haldane [8] showed that a particular model for the
hexagonal lattice with next to nearest interaction exhibit a hall conductance

σxy = n
2πe2

~
, (3.6)

where the Chern number n = 0,±1 is related to the number of edge states
through the bulk-boundary correspondence [45]. This model, famously called
the Haldane model, will be studied in more detail in chapter 4. Although
it is not a model for a topological insulator since it explicitly breaks time
reversal symmetry, many of the properties are shared, and the Haldane model’s
simplicity justifies its frequent use as topological “toy” model. Experimental
realization of the Haldane model has been achieved using cold atoms [50].

3.2 Topologically Protected States
That the quantum states are topologically protected is particularly exciting,
since it means that transport properties (electric current, spin current, etc.)
can be robust against impurities that can be treated as smooth perturbations
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in the parameter space. Other effects may also produce gapped states in the
bulk, but the classification through a topological invariant is different; The
point is that in presence of impurities, the eigenstates vary continuously when
the parameterization of impurities traverse the phase space if they are not
susceptible to Anderson localization [51], whereas the existence of topologically
protected states does not vary.

Although the eigenstates are topologically protected, the effects of inter-
actions are of great importance. It can for instance be shown that adding
a Hubbard-like interaction term to the Haldane model can drive a system
through a topological phase transition for which the bulk gap closes with
nonzero magnetic order [52]. Moreover, the presence of Rashba spin-orbit
coupling can have the same effect, and in addition produce special edge states
with large Chern numbers [53].

The QH effect has not only been shown to exist for fermions, but a similar
effect exist for spin wave excitations [54], and a topological spin-model has been
shown to produce magnonic edge states as in the fermionic Haldane model.
In the noninteracting case, these magnons can propagate for a long time even
at finite temperatures in contrast to the Ohmic resistance of electrons[55].
Moreover, they can induce coherent phonon transport along armchair edges
of a graphene nanoribbon with armchair edges [12], which has been the initial
motivation for the endeavor of this thesis.

3.3 The Quantum Spin Hall Insulator
The QSH state is the two-dimensional version of a topological insulator; It
has an insulating electronic structure in the bulk, and gapless edge states in
the bulk gap [4]. These edge states are associated with Z2 topological invari-
ants [45], and have the important property that the “up” and “down” spins
propagate in opposite directions [44]. In contrast to normal one-dimensional
conductors, for which weak disorder in the lattice can give rise to localized
states [51], the QSH edge are robust even for strong disorder [5]. The QSH
state was predicted to exist in HgTe quantum wells [11], which has been ex-
perimentally verified [1].

The Kane-Mele model for a QSH insulator is arguably the simplest model
of a topological insulator [10]. It is a model for a honeycomb lattice described
by the Hamiltonian

Hf =
∑
〈i,j〉

∑
σ

t1c
†
i,σcj,σ +

∑
〈〈i,j〉〉

∑
α,β

t2eiφijc†i,ασ
αβ
z cj,β , (3.7)

where α, β is indices and σz is the Pauli z matrix. The first term is a tight
binding Hamiltonian, and the second term arises from spin-orbit interactions.
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Bulk

Upper edge

Lower edge

σ = ↑ ↓

Figure 3.1: Illustration of localized edge states with spin-momentum lock-
ing. The helical edge states are highly localized close to the edges with an
exponential decaying probability density into the bulk.

In contrast to the spinless Haldane model, the Kane-Mele model is protected
by time reversal symmetry. The meaning of the phase factor exp(iφij) will
be clear in the discussion of the Haldane model in chapter 4, although the
physical origin of its existence is different in the two models.

3.3.1 Helical Edge States and Localization
Topological insulators are unified through the bulk-boundary correspondence
[5]. This is a mapping of the topological features of the bulk model to the
existence of gapless boundary states residing in the insulating gap.

The edges of QSH states are Helical, which means that the projection of
spin onto the direction of electron propagation is a conserved quantity, and
thus serves as a good quantum number. These properties arise due to the
existence of Kramers pairs, which are eigenstates of a time-reversal invariant
system with opposite momentum and spin projections, thereby requiring a
spin flipping interaction to allow for elastic back-scattering. The consequence
of the existence of these is that spin-independent scattering at the edges are
prohibited if the interaction respects time-reversal symmetry. The helical edge
states of a two-dimensional topological insulator is illustrated in fig. 3.1, where
the sample extends to the sides.

What is meant by the localization at the edges for these states is that the
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probability density gets exponentially damped further into the sample (bulk),
i.e. ρ = |ψ|2 ∼ exp(−λx), where λ is some characteristic inverse length scale
and x is the distance from the edge into the sample. At these edges, the most
important perturbation is Rashba spin-orbit coupling, which do not break time
reversal symmetry [56]. These one dimensional states are best described by
bosonization of fermionic degrees of freedom through Luttinger Liquids when
the Landau paradigm of Fermi liquids break down, as will be elaborated in
chapter 5. In the presence of electron interactions, these Helical edge states
are dubbed “Helical liquids” [57]. In the interacting system without spin-
dependency, the Hamiltonian describing these helical Luttinger liquids are
equal to regular Luttinger liquids with renormalized coupling constants. The
same holds for the Green’s functions, which is more convenient to compute in
the spinless system [58].

3.3.2 Phonons in Quantum Spin Hall Insulators

The interplay between phonons and one-dimensional fermions at the edges
of a QSH state is the main focus of this thesis. The initial motivation of
this examination was the theoretical prediction of chiral phonon transport
along the edges of a graphene nanoribbon which was induced by a magneto-
elastic coupling between phonons and topological magnons [12]. It has been
shown that Dirac electrons in topological insulators renormalized the velocity
of surface acoustical phonons, and that the coupling leads to damping [59], but
it is not well understood how much of the coherent fermion edge states remain
in the presence of interactions. There are nevertheless many important results
to be found in the literature, and the coupling between lattice deviations and
topological fermions in topological insulators can be shown to be of great
importance. Cangemi et al. [15] showed that increasing the electron phonon
coupling in a Haldane Chern insulator pushes the system towards the transition
to a trivial insulator. This is proposed as a method of direct measurement of
topological quantum transitions. It has been proposed that the presence of
phonons might induce a topological transition above a critical temperature in
a system whose ground state is topologically trivial [60].

Typically one would need an inherently spin-flipping mechanism for allow-
ing inelastic backscattering to occur at helical edge states. It has, however,
been shown that long wavelength transverse phonons can give rise to an ef-
fective spin-phonon interaction [61] due to spin locking, simultaneously pro-
viding a fundamental limit to the edge conductivity in the presence of such
interactions. This also shows the importance of phonons regarding the finite
temperature stability of these protected states. Although the QSH state is
robust against elastic backscattering due to time reversal symmetry, inelastic
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and forward scattering is allowed. It has been shown that the phonons in the
presence of Rashba spin orbit coupling can give rise to exactly this type of
scattering, without breaking time reversal symmetry [62].
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Physical System
The physical system in consideration is presented in this chapter. A two-
dimensional honeycomb lattice of tightly bound electrons in Carbon is the basis
for the computation of electron phonon coupling on the edges of a finite size
nanoribbon with topologically protected surface states. The Haldane model
[8] will be utilized as a qualitative model for localized edge states. Mirror
symmetry of the outermost electron orbitals in the system implies that, to
first order in lattice deviations, out-of-plane phonon modes do not couple,
and only in-plane phonon modes are considered in this work. The finite size
nanoribbon is parameterized through a partial Fourier transform along one
direction with periodic boundary conditions, and armchair edge geometry is
considered.

4.1 Bulk Fermions and Phonons
Graphene is a single sheet of graphite. Since 2004, when Novoselov [63] de-
scribed a cleavage technique for separating the atomically thin layers from
the Carbon based crystal and some of its electronic properties, the material
has been thoroughly studied. Graphene has been reported as the strongest
material ever discovered [64], and its scope of potential applications stretches
far beyond that of fundamental physics. The atoms in graphene reside on a
honeycomb lattice, a lattice with a two-atom basis whose Wigner-Seitz cells
are hexagons. The primitive lattice vectors are [65]

a1 = a

2 (3,
√

3) a2 = a

2 (3,−
√

3), (4.1)

and the nearest neighbor vectors are given by

δ1 = a

2 (1,
√

3) δ2 = a

2 (1,−
√

3) δ3 = a(−1, 0). (4.2)

The interatomic distance is a ' 1.42Å [66]. The critical points K,K′ are the
vertices on the edge of the first Brillouin zone (1BZ) and are located at

K = 2π
3a

(
1, 1√

3

)
K′ = 2π

3a

(
1,− 1√

3

)
. (4.3)

These points are the locations for which the two π-bands touches, and the elec-
tronic band structure resembles that of massless fermions with a cone shaped
dispersion called a Dirac cone. The symmetry point between K and K′ is
given by

M = 2π
3a (1, 0) . (4.4)
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The band structure of Graphene can be estimated by a tight-binding approx-
imation, neglecting Hubbard-type interactions. It can be shown that the in-
clusion of Hubbard interaction in the spinful Haldane model effectively renor-
malizes the parameters, and drives a topological transition [52].

4.1.1 Topological Graphene
Tight Binding

A tight binding model of a system is often the first step towards a qualitative
understanding of a materials electronic properties. When considering materials
where ions are separated by a distance much greater than the Bohr radius
of the valence electrons, the wave function of the system is “tightly bound”
to the ion cores, hence the name “tight binding”. This is accomplished by
representing the wave function in terms of Wannier states. A general tight
binding Hamiltonian can be written in second quantized form as

H =
∑
α,β

∑
σ,σ′

∑
i,j

tαβij,σσ′c
†
iασcjβσ′ , (4.5)

where i, j represent lattice sites, σ, σ′ is the spin projection, and α, β are or-
bital indices. The hopping amplitude is the expectation value of the single
particle Hamiltonian for each orbital which can be calculated using eq. (2.10).
The graphene sheet consists of sp2-hybridized carbon atoms, by strong cova-
lent σ-bands in the plane [41]. At zero doping of the system, it is to a good
approximation only relevant to consider the π-bands formed by the pz-orbitals
in the electron structure. Thus, the orbital summation in eq. (4.5) is omitted.
Since the wave functions are tightly bound to the ions, the form of the hopping
parameter in the first approximation is taken to be tij = t1 if i, j are neighbor-
ing atoms, and 0 else . Unless otherwise stated, I will use a nearest neighbor
hopping amplitude of t1 ' −2.8 eV [66]. Since the lattice has two atoms in the
basis, I discern the two sub-lattices as A and B, with corresponding fermionic
destruction and annihilation operators. The tight binding Hamiltonian for
interacting fermions is

Hf = t1
∑
σ

∑
i,δ

c†i,σ,Aci+δ,σ,B + h.c. (4.6)

Denoting D ∈ {A, B}, and introducing Fourier-transformed operators

ci,σ,D = 1√
ND

∑
k

eik·rick,σ,D, (4.7)
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Figure 4.1: Nearest neighbor tight binding dispersion of a honeycomb lattice
along straight lines in the first Brillouin zone. The Dirac cone can be seen at
the high symmetry point K.

where ND is the number of lattice sites on sub-lattice D, the resulting Hamil-
tonian is

Hf = t1
∑
k,σ

γ1(k)c†k,σ,Ack,σ,B + h.c. (4.8)

with
γ1(k) ≡

∑
δ

eik·δ = 2e
ikx
2 cos

(
ky

√
3

2

)
+ e−ikx (4.9)

with kx, ky in units of 1/a. This Hamiltonian may now be diagonalized by
introducing

ψk,σ =
(
ck,σ,A ck,σ,B

)T
(4.10a)

ψ†k,σ =
(
c†k,σ,A c†k,σ,B

)
, (4.10b)

and the resulting doubly degenerate energy dispersion is given by

εk = ±t1|γ1(k)|. (4.11)

This dispersion εk is plotted in fig. 4.1 along critical lines in the Brillouin
zone. In addition to the Dirac cone at the K-point, the bands are essentially
flat at the M -point, giving rise to Van Hove singularities in the density of
states. In fig. 4.2, the two bands is shown covering the first Brillouin zone.
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Figure 4.2: The two different energy bands of tight binding Graphene for
nearest neighbor interaction. The wavenumbers are in units of 1/a. The cor-
ners of the hexagon is the high symmetry points K,K′ and threefold rotations
thereof.

Topological Fermions on Honeycomb lattices

The simplest model of an insulator with topologically nontrivial properties
is arguably the spinless Haldane model, which is a well-known prototypical
model of Chern insulator [15]. It is a tight binding model for the honeycomb
lattice with additional next to nearest neighbor hopping for which an external
staggered vector potential is added [8]. The vector potential is constructed in
such a way that the total magnetic flux through the unit cell of the lattice is
zero, however it gives rise to an accumulated phase in the hopping amplitude
for next to nearest neighboring lattice sites. The experimental realization of
the Haldane model has been achieved using both cold atoms [50] and super-
conducting circuits [67], but the largest advantage of the model is that it is a
relatively simple model for a system with intrinsic topological properties. The
model is given as

Hf =
∑
〈i,j〉

t1c
†
i cj +

∑
〈〈i,j〉〉

∑
t2eiφijc†i cj + λS

∑
A,B

(nA − nB), (4.12)

where a lattice asymmetry called the “Semenoff mass” λS is added [68]. By
comparison, the Kane-Mele model in eq. (3.7) is two copies of the spinless
Haldane model with λS = 0.

A finite λS reduces the symmetry of the system, and is useful for describing
other two-dimensional lattices for which the two sublattices are inequivalent
[69], as for instance Boron Nitride (BN) [68, 70]. For Graphene, λS = 0. The
accumulated phase for the next to nearest neighbor hopping is given by the
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νij = 1

Figure 4.3: Paths in the unit cell for which νij = 1. The black and green
atoms reside on the A and B sublattice, respectively. Along the solid lines, no
phase in the hopping amplitude is accumulated.

line integral of the vector potential [8]

φij = e

~

∫ rj

ri
dr A(r), (4.13)

dependent on the path between atoms. I choose a vector potential resulting
in φij = νijφ, where νij = 1 = −νji along the paths shown in fig. 4.3. This is
consistent with the definition [65]

νij(δ̄ = δi + δj) = sign ((δi × δj)z) , (4.14)

where δi and δj are the two constituent vectors of the next to nearest neighbor
vector δ̄. For nearest neighbor hopping, no phase is accumulated, and the
tight binding model in the previous section can be reused. Using the creation
operators c†A, c

†
B on the A and B sub-lattices and temporarily suppressing the

spin index, the Hamiltonian may be written

Hf = t1
∑
i,δ

(
c†i,Aci+δ,B + h.c.

)
+ t2

∑
i∈A
j∈B

∑
δ̄

(
eiφν(δ̄)c†i,Aci+δ̄,A + eiφν(δ̄)c†j,Bcj+δ,B

)

+M
∑
i∈A
j∈B

(
c†i,Aci,A − c

†
j,Bcj,B

)
,

(4.15)
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where δ and δ̄ are vectors connecting the three nearest and six next-to-nearest
neighbors from the chosen origin, accordingly. I now reintroduce the Fourier
transformed operators in eq. (4.7). The first term is simply the tight binding
model, resulting in eq. (4.8). The second term in eq. (4.15) is written as

t2
∑
k

(
γ2(k, φ)c†k,Ack,A + γ2(k,−φ)c†k,Bck,B

)
, (4.16)

where

γ2(k, φ) = 2
(

cos
(√

3ky − φ
)

+ 2 cos
(

3
2kx

)
cos
(√

3
2 ky + φ

))
. (4.17)

The last term of eq. (4.15) is simple, and can immediately be written as

M
∑
k

(
c†k,Ack,A − c

†
k,Bck,B

)
. (4.18)

The Haldane model in quasi-momentum space thus states

Hf = t1
∑
k,σ

γ1(k)c†k,σ,Ack,σ,B + h.c.

+ t2
∑
k,σ

(
γ2(k, φ)c†k,σ,Ack,σ,A + γ2(k,−φ)c†k,σ,Bck,σ,B

)
+M

∑
k,σ,σ

(
c†k,σ,Ack,σ,A − c

†
k,σ,Bck,σ,B

)
,

(4.19)

which in the basis ψk,σ given in eq. (4.10) can be written on matrix form as

Hf =
∑
k,σ

ψ†k,σh(k)ψkσ. (4.20)

The matrix h(k) is given by

h(k) =
(
t2γ

+
2 (k) + λS t1γ1(k)
t1γ
∗
1(k) t2γ

−
2 (k)− λS

)
, (4.21)

writing γ±2 (k) = γ2(k,±φ). This matrix can be written in terms of a pseu-
dospin field as in eq. (3.3) by

h(k) = EkI + dk · σ (4.22)

with σ = (σx, σy, σz) as the Pauli matrices,

Ek = t2
2 (γ+

2 (k) + γ−2 (k)) (4.23)
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and

dxk = t1 Re{γ1(k)} (4.24a)

dyk = −t1 Im{γ1(k)} (4.24b)

dzk = t2
2 (γ2(k, φ)− γ2(k,−φ)) + λS . (4.24c)

The energy eigenvalues of h(k) is

ε±(k) = Ek ± |dk| (4.25a)

= 1
2

(
t2γ

+
2 (k) + t2γ

−
2 (k)±

√(
t2γ

+
2 (k)− t2γ−2 (k) + 2λS

)2 + 4t21|γ1(k)|2
)
.

(4.25b)

At the high symmetry points, both the hopping phase φij and the Semenoff
mass λS has the effect of opening a gap at the high symmetry points K and
K′, where γ1(K) = 0. This can be seen from eq. (4.25), and the energies at
these points are

ε±(K) =

−6t2 sin
(
π
6 − φ

)
+ λS

−6t2 sin
(
π
6 + φ

)
− λS .

(4.26)

In fig. 4.4, the dispersion is plotted over critical lines in the Brillouin zone,
and the onset of t2 6= 0 gives rise to a gap in the spectrum at K. The equation
for this gap is the difference

∆ ≡ ε+(K)− ε−(K) = 6
√

3t2 sinφ+ 2λS , (4.27)

which is zero for
− λS = 3

√
3t2 sinφ. (4.28)

This equation implies that there exist a continuous path in parameter space for
which the gap is zero, and hence also continuous regions for which the gap is
finite. This path in parameter space does in fact separate topologically distinct
phases with different Chern numbers in the QH Effect [8]. The minus sign in
front of the Semenoff mass λS in eq. (4.28) is due to the chosen orientation of
νij in fig. 4.3.

Since the Kane-Mele is effectively two copies of the Haldane model with
an added lattice asymmetry term,

λS
∑
A,B

∑
σ

(nA,σ − nB,σ), (4.29)
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r

Figure 4.4: A gap is opened at the high symmetry point K by the next to
nearest hopping amplitude t2 = νt1 for λS = 0 and φ = π

2 .

it is interesting to note that the gap of a single spin-channel can be closed
without necessarily closing the other, thus causing the model to be a spin-
polarized insulator at the high symmetry point K.

The fermion theory of the bulk is now presented. The Haldane Hamilto-
nian will serve as a model for the system, with intrinsic topological properties
resulting in localized edge states, as will be explicitly shown when an armchair
ribbon is considered.

4.1.2 Phonon Dynamics
Phonons are quantized lattice vibrations in a solid [71]. These quasiparticles
are collective excitations of ionic displacements in a solid and are essential for
our understanding of material properties at the quantum level. The coupling
between phonons and the fermionic fields in a solid is not unexpected; the
electrons reside in orbitals mostly localized at the lattice sites. This means
that an ionic lattice displacement would change the overlap integral between
two electron states at different lattice sites, thereby altering the hopping am-
plitude. As an example of its importance, electron phonon interaction can
give rise to special states of matter, such as the superconducting state, which
is most easily explained through the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity [14]. Here, electron-phonon interaction mediates an ef-
fective attractive force between different electrons, leading to the condensation
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of Cooper pairs that reduces the free energy.
The phonon dynamics of a hexagonal lattice may be obtained in several

ways. Allowing for next-to-nearest couplings in the dynamical matrix Φ, I
write the Hamiltonian in the harmonic approximation as

Hph =
∑
i

P2
i

2Mi
+ 1

2
∑
〈〈i,j〉〉

u†iΦ
DiDj (δij)uj , (4.30)

following Thingstad et al. [69], Falkovsky [72]. The first term is the kinetic
energy of the ensemble, and the second term represents the potential energy
resulting in small deviations from the equilibrium sites. Di ∈ {A,B} is the
labeling of sublattice for lattice site i. The derivation of the phonon normal
modes holds for lattices with inequivalent sublattices, but I will only consider
parameters for graphene when explicitly used. The first step of diagonalizing
the Hamiltonian is by introducing the effective mass M̃ =

√
MAMB and the

relative mass µD = MD

M̃
. Introducing

uDi = 1√
ND

∑
q

eiq·riuDq (4.31a)

PD
i = 1√

ND

∑
q

eiq·riPD
q , (4.31b)

the Hamiltonian in eq. (4.30) can be rewritten as

Hph =
∑
i

P2
i

2Mi

+ 1
2
∑
D

∑
i∈D

∑
δD

(uDi )†ΦDD
′
(δD)uD

′

i+δD +
∑
δ̄

(uDi )†ΦDD(δ̄)uD
i+δ̄


=
∑
q

P̃†q · P̃q

2M̃
+ 1

2
∑
q

ũ†qD(q)ũq, (4.32)

where δD are any of the three nearest neighboring vectors connecting lattice
D to D′, and δ̄ the next to nearest vectors. The rescaled momenta and lattice
deviations are given by

P̃q =
(

1
√
µA

PA
q ,

1
√
µB

PB
q

)T
(4.33a)

ũq =
(√
µAuAq ,

√
µBuBq

)T (4.33b)
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and the dynamic coupling matrix is

D(q) =
(

1
µA

∑
δ̄ e−q·δ̄ΦAA

∑
δ e−iq·δΦAB∑

δ eiq·δΦBA 1
µB

∑
δ̄ e−q·δ̄ΦBB

)
. (4.34)

Due to the symmetry z → −z, and as will be clear when the fermion-
interactions are considered, the out-of plane modes do not couple to the in-
plane modes, and the Hamiltonian may be split into separate degrees of free-
dom. This has the implication that the z-component of the lattice deviations
may be altogether disregarded [72] in this approximation. Therefore, the ma-
trices ΦDD′ in eq. (4.34) may be considered as 2 × 2-matrices describing the
coupling strengths of the in-plane modes. By considering the symmetries in the
system, several constraints are imposed on the coupling constants, reducing
the number of independent parameters. For a thorough discussion of the sym-
metry constraints of the system, I refer to Thingstad et al. [69] which gives the
force constants in a chiral basis. The eigenvalues λν(q) of D(q) are related
to the phonon spectrum from the relation λν(q) = ω2

q,νM̃ , and the normal
modes are found from the corresponding eigenvectors. All necessary ingredi-
ents for the introduction of canonical creation and annihilation operators for
the phonon modes are present. By diagonalizing the phonon Hamiltonian, the
basis vνq is defined through

ũD =
∑
ν

eDν (q)vνq, (4.35)

where eDν (q) are the columns in the matrix that diagonalizes the potential
energy D(q) and ν is an index representing the different phonon branches
of the system. Since the phonon Hamiltonian is, by definition, diagonal in
the vνq-basis, canonical creation and annihilation operators b†q,ν , bq,ν may be
introduced, and Hph may be written on the familiar form

Hph =
∑
q,ν

~ωq,ν

(
b†q,νbq,ν + 1

2

)
. (4.36)

In terms of these new bosonic operators, the phonon modes are given by

vνq =
√

~
2M̃ωq,ν

(
b†−q,ν + bq,ν

)
. (4.37)

These are the normal modes of the bulk phonons. The dispersions ωq,ν , whose
analytic form can be found in [72], is plotted in fig. 4.5. The acoustic and
optical out of-plane modes are included, but will not be relevant for further
calculations.
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Figure 4.5: Phonon spectrum of Graphene with next to nearest interaction
in the ionic displacements for critical lines in the Brillouin zone. The solid
lines are the four in-plane modes, and the dashed lines are th out of-plane
modes which do not couple to the fermions in this system. The parameters in
the dynamic matrix Φ is taken from ref. [69].

4.1.3 Electron-Phonon Coupling
In this section the coupling between lattice fermions and phonons will be
presented. Using a similar approach as Thingstad et al. [69], where the overlap
integral determining the hopping amplitude between neighboring orbitals is
affected due to ionic lattice deviations in the direction of the lattice vectors.
The mirror symmetry z → −z implies that out-of plane phonon modes do
not couple to the relevant pz orbitals of graphene. For systems breaking this
symmetry, for instance Rashba spin-orbit coupled systems or in the presence
of a magnetic field perpendicular to the lattice, out of plane modes also have
to be considered.

I will expand the overlap integral for nearest neighbors only, and the next-
to-nearest hopping term of the Haldane model in eq. (4.19) will remain un-
changed. For the first term, I expand the hopping parameter as

tij → t(δ) + (uj − ui) ·∇δ(t(δ))

' t(δ) + lt(δ)
a2 (uj − ui) · δ (4.38)

where l ≡ d ln(t)
d ln a and a = |δ| is the equilibrium distance between the ions. u
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is the local lattice deviation, and ∇δ is the gradient in the direction of the
neighboring lattice site. The first term of eq. (4.38) results in the normal
tight-binding term of eq. (4.19), but the second term introduces the coupling
between the lattice and fermions through the Hamiltonian

Hf-ph =
∑
i∈A

∑
δ

l1t1
a2 δ ·

(
uBi+δ − uAi

)
c†i,Aci+δ,B + h.c. (4.39)

I now Fourier transform eq. (4.39) by inserting the momentum representation
in eq. (4.31a), obtaining∑
i∈A

∑
δ

δ ·
(
uBi+δ − uAi

)
c†i,Aci+δ,B =

∑
i∈A

∑
δ

δ·√
NBNA

∑
k1k2,q

×
(

ei(q+k2)·δ
√
NB

ei(q−k1+k2)·riuBq −
eik2·δ
√
NA

ei(q−k1+k2)·riuAq
)
c†k1,A

ck2,B

=
∑
δ

NAδ·√
NBNA

∑
k1k2,q

(
ei(q+k2)·δ
√
NB

δk1,q+k2uBq −
eik2·δ
√
NA

δk1,q+k2uAq
)
c†k1,A

ck2,B

=
∑
δ

NAδ·√
NBNA

∑
k,q

(
ei(k+q)·δ
√
NB

uBq −
eik·δ√
NA

uAq
)
c†k+q,Ack,B

NA=NB= 1√
NA

∑
k,q

∑
δ

eik·δδ ·
(
eiq·δuBq − uAq

)
c†k+q,Ack,B . (4.40)

Inserting this and eq. (4.37), the electron-phonon Hamiltonian in eq. (4.39) is
written

Hf-ph =
∑
k,q

∑
ν

gνk,q(b†−q,ν + bq,ν)c†k+q,Acq,B (4.41)

with coupling matrix

gνk,q = l1t1

a2
√
NA

√
~

2M̃ωq,ν

∑
δ

eik·δδ · (eiq·δeBν − eAν ). (4.42)

In ref. [69], the bulk fermions is diagonalized, and eq. (4.42) involves additional
band indices. In this work, the form of this coupling matrix will be used as a
basis for the electron-phonon coupling at the edges of an armchair nanoribbon.

4.2 Armchair Nanoribbon
In this section I will calculate the free fermion and phonon Hamiltonian on an
armchair nanoribbon of infinite length and finite width which is determined
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Figure 4.6: Geometry of an armchair ribbon. The unit vectors start and end
at unit cells, where each cell contains two atoms on different sublattices, both
described by the same coordinates (x, y). The armchair edges are marked in
black lines. The lattice extends in the x-direction indefinitely.

by the number Ny of Carbon atoms. I will compute the matrix representation
of the free fermion and phonon Hamiltonian, and I will show that the Haldane
model in eq. (4.12) gives rise to localized edge states on an armchair ribbon.
The phonon eigenstates on the armchair ribbon will be projected onto the
upper edge, and are to be used in the coupling matrix in eq. (4.42) for the
numerical study of Green’s function corrections to localized fermions.

For the characterization of edge modes on a ribbon, a finite system ap-
proach is necessary. The honeycomb ribbon will be taken with periodic bound-
ary condition in the x-direction, and open in the y-direction. I will adopt the
unit cell labeling from Thingstad et al. [12] for the armchair ribbons. This
geometry is one of two ways of constructing a nanoribbon from a hexagonal
lattice, the other being one with “zigzag” edges [66] whose phonon eigenstates
are much less localized at the edges than in the armchair geometry [12]. The
armchair edge geometry is therefore expected to be of greater importance when
phonons are considered. The system is shown in fig. 4.6 for a width Ny = 8,
where the labeling of unit cells is shown. By imposing periodic boundary
conditions in the x-direction, the values of kx only assume discrete values

kx = 2πn
Nxdx

, n ∈ Z, (4.43)

where dx = 3a is the distance between unit cells of the lattice in x-direction.
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The first Brillouin zone is thus the interval kxa ∈ [−π3 ,
π
3 ].

In the following calculations, a partial Fourier transform is introduced. For
a general position dependent operator Ox,y,µ with additional quantum number
µ, the partial Fourier transform in the x-direction is defined by

Ox,y,µ = 1√
Nx

∑
k

eikxOk,y,µ, (4.44)

where Nx is the number of lattice sites in the x-direction.
For later convenience, I define the quantities

θk ≡ e−ikdx (4.45)

and
tk ≡ 1 + e−ikdx . (4.46)

These will show up in the matrix representations of both fermion and phonon
Hamiltonians.

4.2.1 Topological Armchair Fermions
The Hamiltonian describing topological fermions is the Haldane model, given
in eq. (4.12). I introduce the partial Fourier transformed operators c†k,y,A, c

†
k,y,B

for creation operators on A- and B-sites, and use the labeling of unit cells
as illustrated in fig. 4.6. The goal is to represent the Hamiltonian as H =∑
k ψ
†
kHkψk, where Hk is the sum of matrix representations of each term in

eq. (4.12).
Since the honeycomb lattice consists of two atoms in each unit cell, I define

the 2Ny-dimensional basis

ψk = (ck,1,A, ck,1,B , ck,2,A, . . . , ck,Ny,B)T . (4.47)

I do not consider spin in this calculation, since the Haldane model is spinless,
hence the inclusion only appears as a doubling of the basis and all energy levels
become doubly degenerate. If spin dependent terms such as a magnetization
or spin-orbit coupling is present, the basis have to be expanded to be 4Ny-
dimensional.

Tight Binding Hamiltonian

I first consider the tight-binding term of the Hamiltonian. By inserting the
partial Fourier transform of eq. (4.44) and the unit cell labeling in fig. 4.6, the
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term is

t1
∑
〈i,j〉

c†i cj = t1
∑
〈i,j〉

c†i,Acj,B + h.c.

= t1
∑
x,y

1
Nx

∑
k1,k2

e−ik1xc†k1,y,A
eik2xeik2a

×
(
e−ik2dxbk2,y+1 + ck2,y−1,B + ck2,y,B

)
+ h.c.

= t1

Ny∑
y=1

∑
kx

c†k,y,A
(
ck,y−1,B + ck,y,B + e−ikdxck,y+1,B

)
+ h.c.

(4.48)

Here, I have made a gauge transformation [65] on the B-sublattice given by

ck,y,B → ck,y,Be−ika. (4.49)

In the basis given in eq. (4.47), the first term of the Hamiltonian is thus written
as ψ†kM1ψk, with

M1 = t1



1 θk
1 1

1 1 θk
θ∗k 1 1

1 1
θ∗k 1

. . .


, (4.50)

where θk is given in eq. (4.45).

Haldane term

For the second term of eq. (4.12), which includes the phase factor ei±φ, I
temporarily ignore the B-sublattice and drop the lattice index A when writing
out the operators. Proceeding similarly as for the tight binding term, the
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Haldane hopping term is∑
〈〈i,j〉〉

eiνijφc†i cj =
∑
x,y,δ̄

eiν(δ̄)φ 1
Nx

∑
k1,k2

e−i(k1−k2)xeik2δ̄xc†k1,y
ck2,y+δ̄y

=
Ny∑
j=1

∑
k

[
eiφ
(
c†k,jck,j+1 + eikdxc†k,jck,j−2 + e−ikdxc†k,jck,j+1

)
+ e−iφ

(
c†k,jck,j−1 + e−ikdxc†k,jck,j+2 + eikdxc†k,jck,j−1

)]
=

Ny∑
j=1

∑
k

[
eiφ
(
tkc
†
k,jck,j+1 + eikdxc†k,jck,j−2

)
+ e−iφ

(
t∗kc
†
k,jck,j−1 + e−ikdxc†k,jck,j+2

)]
=

Ny∑
j=1

∑
k

eiφ
(
tkc
†
k,jck,j+1 + eikdxc†k,jck,j−2

)
+ h.c. (4.51)

For the B-sublattice, the only difference from eq. (4.51) is a relative minus
sign in front of the hopping phase φ. This is due to the definition in eq. (4.14),
where the sign is opposite for the A and B-sublattices. Represented in the
basis ineq. (4.47), the matrix representation of the second term of the Haldane
model thus takes the form ψ†kM2ψk, with

M2 = t2



0 0 eiφtk 0 e−iφθk 0

0 0 0 e−iφtk 0 eiφθk · · ·

e−iφt∗k 0 0 0 eiφtk 0

0 eiφt∗k 0 0 0 e−iφtk
eiφθ∗k 0 e−iφt∗k 0 0 0

0 e−iφθ∗k 0 eiφt∗k 0 0
...

. . .


. (4.52)

Sublattice mass term

The last term of the model in eq. (4.12) consider the lattice asymmetry, in-
cluding a mass term associated with the A-and B-sublattice fermions. Finding
the matrix representations is straightforward, and only contributes with an al-
ternating diagonal with strength λS . The term can thus be written ψ†kM3ψk
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Figure 4.7: The electronic band structure of the Haldane model on an arm-
chair ribbon with t2 = −0.125t1. The width of the sample is here Ny = 100,
and the next-to-nearest neighbor hopping phase is set to φ = π/2. The Se-
menoff mass is set to 0.

with

M3 = λS


1
−1

1
. . .

 (4.53)

For the armchair nanoribbon, the Haldane model including a lattice asym-
metry parameter λS is thus

H =
∑
k

ψ†kHkψk, (4.54)

with
Hk = M1 +M2 +M3. (4.55)

The matrix representation of the Hamiltonian may now be diagonalized to
extract eigenvalues and eigenstates of the system. The dispersion over the one-
dimensional Brillouin zone is shown in fig. 4.7 for a system of width Ny = 100.
Apart from two crossing bands, the system is insulating with a band gap ∼ 2t1.
By setting the chemical potential in the bulk gap, the Fermi velocity vF can
be estimated from the approximately linear gapless states in fig. 4.7 as

vF ' 4eVa
~
' 863km/s. (4.56)
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In appendix A.1 I compute the corresponding matrix representation for a
Rashba spin-orbit coupling term which is not considered further in this thesis.

4.2.2 Localized Edge States
I now show that the two gapless states in the bulk gap of fig. 4.7 are localized
at the edges. In fig. 4.8 I have plotted the localization of these states as a
function of kx and the position along the width of the lattice y, where the
states are normalized by ∑

y

|ψi(kx, y)| ≡ 1. (4.57)

The first thing to notice is that the states is exponentially damped towards the
interior for kx not to close to the Brillouin zone edge. Moreover, the states are
localized at opposite edges, such that a localized state on one edge propagate
the opposite direction of the other.

The gapless states in the bulk gap in fig. 4.7 is thus localized at the edges
and propagates in opposite directions for the upper and lower edge. For the
spinful Kane-Mele model of a topological insulator given in eq. (3.7), there
exist two degenerate states (Kramers pairs) on the same edge propagating
in the opposite direction with opposite spin[10]. Due to the localization of
these states, the fermionic theory most suitable for their description is one-
dimensional. In the spinless Haldane model, these reside on opposite edges.

4.2.3 Phonons
In this section I compute the phonon spectrum of the armchair nanoribbon.
The force constants are taken from [72], summarized in [69]. These are con-
stants approximated by matching the resulting analytic phonon spectrum with
the experimentally observed data. The full phonon Hamiltonian is given in
eq. (4.30). This is expanded as

Hph =
∑
D

∑
i∈D

P2
i

2M + 1
2
∑
D

∑
〈〈i,j〉〉

∑
µ,ν

uµ,Dii Φiµν(δij)u
ν,Dj
j , (4.58)

where all information about the force constants are given in the dynamical
matrix Φ(δij). The vector δ here refer to all neighboring vectors labeled in
fig. 4.9, and the indices µ, ν are Cartesian coordinates representing the direc-
tion of lattice displacement. Given the translational invariance of Φ, it is only
dependent on the neighboring vectors between lattice sites, not the position
in the lattice itself. A partial Fourier transform of eq. (4.58) along the x-axis
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(a) Localized state at the lower edge.

(b) Localized state at the upper edge

Figure 4.8: Localization of electronic states in the bulk gap of the same
system as in fig. 4.7. The states show an exponential decay of fermion density
for a large slice of the Brillouin zone.
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Figure 4.9: Neighboring vectors on the honeycomb lattice including up to
third-nearest neighbors.

can now be carried out. With

uµ,Dx,y = 1√
Nx

∑
q

eiqxuµ,Dq,y , (4.59)

and a similar transformation for the momenta, I have∑
D

∑
〈〈i,j〉〉

uµ,Dii Φiµν(δij)u
ν,Dj
j =

∑
D

∑
〈〈i,j〉〉

1
Nx

∑
q1,q2

eiq1xiuµ,Diq1,yiΦ
i
µν(δij)eiq2xjuν,Djq2,yj

=
∑
D

∑
i

∑
δ

1
Nx

∑
q1,q2

ei(q1+q2)xieiq2δxuµ,Diq1,yiΦ
i
µν(δ)uν,Dδ

q2,yi+δy

=
∑
D

∑
y

∑
δ

∑
q

eiqδxuµ,Diq,y ΦDµν(δ)uν,Dδ

q,y+δy ,

where Dδ denote the sublattice A or B, depending on at which of these δ ends.
The total phonon Hamiltonian in eq. (4.58) is now

Hph =
∑
q

∑
D

∑
y

PD
−q,yPD

q,y

2M + 1
2
∑
q

∑
D

∑
y

∑
µ,ν

∑
δ

eiqδxuµ,D−q,yΦµν(δ)uν,Dδ

q,y+δy .

(4.60)

I now consider the armchair nanoribbon geometry, for which the first Bril-
louin zone is reduced because of a dx = 3a periodicity in the x-direction.
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Within the labeling convention of fig. 4.6, the vectors in fig. 4.9 satisfy

α1 = (0, 0) β1 = (0, 1) = −β4 (4.61a)
α2 = (−1, 1) β2 = (−1, 2) = −β5 (4.61b)
α3 = (0,−1) β3 = (−1, 1) = −β6, (4.61c)

where the first components is in units of dx, and the second component is a
number to represent its index position in the y-direction. For the neighboring
vectors starting at an atom at another sublattice, a relative minus sign is
added. The vectors αi and γi connect ions on different sublattices, while βi
connects ions on equivalent sites. Focusing on the second term in eq. (4.60), I
split the sum over neighbors in these three terms, one for each of αi, βi. The
potential energy with nearest and next to nearest neighbors couplings is
1
2
∑
q

∑
D

∑
y

∑
µ,ν

∑
δ

eiqδxuµ,D−q,yΦµν(δ)uν,Dδ

q,y+δy

= 1
2
∑
q

∑
D

∑
y

∑
µ,ν

uµ,D−q,y

∑
α

ΦDµν(α)eiqαxuν,D
′

q,y+αy +
∑
β

ΦDµν(β)eiqβxuν,Dq,y+βy


= 1

2
∑
q

∑
y

∑
µ,ν

Mµν
q,y,

(4.62)

where

Mµν
q,y =

{
uµ,A−q,y

(
Φ0
µνu

ν,A
q,y +

[
Φα1
µνu

ν,B
q,y + Φα2

µνe−iqduν,Bq,y+1 + Φα3
µνu

ν,B
q,y−1

]
+
[(

Φβ1
µν + Φβ3

µνe−iqd
)
uν,Aq,y+1 + Φβ2

µνe−iqduν,Aq,y+2

+
(
Φβ4
µν + Φβ6

µνeiqd
)
uν,Aq,y−1 + Φβ5

µνeiqduν,Aq,y−2

])
+ uµ,B−q,y

(
Φ0
µνu

ν,B
q,y +

[
Φ−α1
µν uν,Aq,y + Φ−α2

µν eiqduν,Aq,y−1 + Φ−α3
µν uν,Aq,y+1

]
+
[(

Φβ1
µν + Φβ3

µνe−iqd
)
uν,Bq,y+1 + Φβ2

µνe−iqduν,Bq,y+2

+
(
Φβ4
µν + Φβ6

µνeiqd
)
uν,Bq,y−1 + Φβ5

µνeiqduν,Bq,y−2

])}
.

(4.63)
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Here, I have used the notation ΦDµν(δ) → Φδµν , as the coupling matrix do not
depend on the sublattice except for the edges.

The on site coupling constants Φ0
µν are found through the stability condi-

tion ∑
δ

Φδµν = 0, (4.64)

where the sum goes over nearest neighbors, including the zero-vector.
For Graphene, the parameters should not differ for the two different sub-

lattices, which reduces the number of free parameters in the dynamical matrix.
Adopting the notation from Thingstad et al. [69], Falkovsky [72], I introduce
the chiral basis ξ, η = x ± iy, which one can utilize to further reduce the
number of free parameters. The coupling constants of the system are

α ≡ ΦDξη(α1) β ≡ ΦDξξ(α1) = (ΦDηη(α1))∗

γ ≡ ΦDξη(β1) δ ≡ ΦDξξ(β1) = (ΦDηη(β1))∗,
(4.65)

where the vectors αi,βi is shown in fig. 4.9. The constants for other neigh-
boring vectors can be determined by using the symmetric properties of the
system. The neighboring vectors are related by consecutive rotations of 2π/3
radians in the complex plane. In the chiral basis, the couplings transform
according to

ΦDξξ(R3αi) = ΦDξξ(αi)e
i2π
3 ΦDηη(R3αi) = ΦDηη(αi)e−

i2π
3

ΦDξη(R3αi) = ΦDξη(αi) ΦDηξ(R3αi) = ΦDηξ(αi),
(4.66)

where R3 are three-fold rotations. These operators constitute the elements
of the C3 symmetry group. Using the relations in eq. (4.66) with the sta-
bility condition in eq. (4.64), I can compute Φ0

µν for the bulk and edges for
both sublattices. To make it clear, I will denote the different constants as
ΦD,bulk/upper edge (UE)/lower edge (LE)
µν , where again D ∈ (A,B) denotes the spe-

cific sublattice and (µ, ν) are chiral components. The lower edge corresponds
to the y = 0-term in the Hamiltonian, while the upper edge corresponds to
y = Ny − 1.

For an atom on sublattice A that do not reside on the edge, the equations
are

ΦA,bulk
ξξ + (β + 2δ)(1 + e i2π3 + e− i2π3 ) = 0 =⇒ ΦA,bulk

ξξ = 0

ΦA,bulk
ηη + (β + 2δ)(1 + e− i2π3 + e i2π3 ) = 0 =⇒ ΦA,bulk

ηη = 0

ΦA,bulk
ξη + 3α+ 6γ = 0 =⇒ ΦA,bulk

ξη = −3(α+ 2γ)

ΦA,bulk
ηξ + 3α+ 6γ = 0 =⇒ ΦA,bulk

ηξ = −3(α+ 2γ). (4.67)
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These couplings for atoms on sublattice B are equal in the bulk, ΦB,bulk
µν =

ΦA,bulk
µν . For the edges, the stability condition in eq. (4.64) results in

ΦA,LE
ξξ = −β(1 + e i2π3 ) ΦB,LE

ξξ = −β(1 + e− i2π3 )

ΦA,LE
ηη = −β(1 + e− i2π3 ) ΦB,LE

ηη = −β(1 + e i2π3 )

ΦA,UE
ξξ = −β(1 + e− i2π3 ) ΦB,UE

ξξ = −β(1 + e i2π3 )

ΦA,UE
ηη = −β(1 + e i2π3 ) ΦB,UE

ηη = −β(1 + e− i2π3 )

ΦA,LE
ξη = ΦA,LE

ηξ = −2α− 3γ ΦB,LE
ξη = ΦB,LE

ηξ = −2α− 3γ

ΦA,UE
ξη = ΦA,UE

ηξ = −2α− 3γ ΦB,UE
ξη = ΦB,UE

ηξ = −2α− 3γ. (4.68)

Cartesian basis

The coupling constants ΦDµν(δ) in the Cartesian basis are related through those
given in the chiral basis by the transformation

ΦDxx(δ) = ΦDξξ(δ) + ΦDξη(δ) + ΦDηξ(δ) + ΦDηη(δ)
ΦDxy(δ) = i

(
ΦDξξ(δ)− ΦDξη(δ) + ΦDηξ(δ)− ΦDηη(δ)

)
ΦDyx(δ) = i

(
ΦDξξ(δ) + ΦDξη(δ)− ΦDηξ(δ)− ΦDηη(δ)

)
ΦDyy(δ) = −ΦDξξ(δ) + ΦDξη(δ) + ΦDηξ(δ)− ΦDηη(δ). (4.69)

Using eqs. (4.65), (4.66) and (4.69), the coupling constants are

Φxx(α1) = 2(α+ β) Φxy(α1) = Φyx(α1) = 0 Φyy(α1) = 2(α− β)
Φxx(α2) = 2α− β Φxy(α2) = Φyx(α2) = −

√
3β Φyy(α2) = 2α+ β

Φxx(α3) = 2α− β Φxy(α3) = Φyx(α3) = +
√

3β Φyy(α3) = 2α+ β
(4.70)

for the nearest neighboring vectors. The stability condition in eq. (4.64) gives
the remaining ones, resulting in

ΦD,Bulk
µν = −6αδµν ΦD,LE/UE

xx = −4α− β ΦD,LE/UE
yy = −4α+ β

ΦA,LE
xy = ΦA,LE

yx = ΦB,UE
xy = ΦB,UE

yx =
√

3β

ΦB,LE
xy = ΦB,LE

yx = ΦA,UE
xy = ΦA,UE

yx = −
√

3β. (4.71)

By introducing the 4Ny-dimensional basis

uq = (uAx,0, uBx,0, uAy,0, uBy,0, . . . , uAx,Ny−1, u
B
x,Ny−1, u

A
y,Ny−1, u

B
y,Ny−1)T (4.72)
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Figure 4.10: Phonon spectrum of graphene armchair ribbon with Ny = 100.
The phonon eigenstate is denoted by u, and uedge the projection onto the
outermost lattice sites on the nanoribbon.

and the corresponding canonical momentum, the phonon Hamiltonian in eq. (4.58)
can be written on matrix form

H = 1
2M

∑
q

P†qPq + 1
2
∑
q

u†qMquq. (4.73)

The factor θq is given in eq. (4.45). The stability condition ensures that the
sum of each row and column in Mq is 0 at q = 0. In numerical calculations, I
have restricted the analysis to only include nearest neighbor interaction. This
is because the analysis gives rise to imaginary eigenvalues with the inclusion of
next-to-nearest neighbors, suggesting that a more thorough symmetry analysis
in the finite system should be studied for correct implementation. I henceforth
disregard the next to nearest interaction by setting δ = γ = 0 in eq. (4.65), and
match the resulting energy spectrum with the optical frequency ωΓ ' 0.2eV at
the Γ-point [69]. The nearest neighbor Hamiltonian should nevertheless give
a qualitatively correct description of the phonon dynamics on the nanoribbon.
In the computed spectrum in fig. 4.10, I have taken a system of widthNy = 100
and marked the projection of eigenstates onto the edges of the system. It is
apparent that there are, in addition to bulk modes, localized states on the
edges of the graphene nanoribbon. These are, as opposed to the fermions in
fig. 4.8, more localized at the edges closer to the Brillouin zone boundary.
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4.2.4 Electron-Phonon Coupling on Armchair Edges
As has now been shown, the edges of the graphene nanoribbon host highly lo-
calized, effectively one-dimensional states. I will replace the fermionic theory
of the edges by a one-dimensional description, whose dispersion is assumed
to be linear. The coupling between phonons and fermions on the edges are
therefore also replaced by coupling independent of the fermion momentum k,
but where the bulk parameters in [69] is inserted in eq. (4.42). The summa-
tion over neighboring lattice vectors is replaced by the convention depicted in
fig. 4.9, and the lattice deviations are found by projecting the eigenstates onto
one of the edges. The resulting coupling is therefore expected to be strongest
for the most localized phonon states shown in fig. 4.10. In chapter 6, I use
the phonon spectrum and obtained coupling constants to numerically compute
the corrections to the fermionic Green’s functions caused by these interactions.
First, the theory of one-dimensional fermions must be developed.





Chapter 5
Bosonization and Luttinger
Liquids

“So in this paper we must be content only to present
considerations of a rather mathematical nature
without entering into real physical problems.”

— Sin-Itiro Tomonaga, 1950
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Bosonization and Luttinger Liquids
In this chapter, I will first present a qualitative discussion of interacting
fermions in one dimension and some of its key properties. By deriving a
bosonization identity, I will then present the mathematical framework that
will be utilized in the computation of correlation functions. This derivation
will be done through “constructive bosonization” of the fermionic fields and
involves a reorganization of the total Fock space in terms of individual Hilbert
spaces consisting of a fixed number of particles. This reorganization relies
upon the non-existence of single particle excitations that would change the
total number of particles in a general quantum state, as is the case in one
dimension.

5.1 Fermions in One Dimension
In one dimension the Fermi surface reduces to distinct points. This drasti-
cally reduces the scattering possibilities compared to that of higher dimen-
sions, whose Fermi surface typically is continuous and simply connected. By
this argument alone, it should be no surprise that an interacting fermion the-
ory reduced to one dimension should exhibit features not present in higher-
dimensional systems [22, 41].

5.1.1 Breakdown of Fermi Liquid Theory
The kinematics in one dimension is highly restricted due to the reduced avail-
able phase space. By considering a array of spinless fermions, the Pauli ex-
clusion principle forbids a single fermion to “move” past another, lest it too
“moves”. This causes forward scattering of a single electron to be singular.
Thus, one-particle scattering is not allowed, whilst collective ones are of signif-
icant importance. This is weakly analogous to a traffic jam, where individual
vehicles cannot pass each other and only moves at as a collective unit [23].
The consequences of these physical insights also occur when applying Fermi
liquid theory. In one dimension, the particle-hole bubble diagram is known to
have an infrared divergence called the Peierls divergence [21]. This means that
the regular many-body approach to perturbation theory based on the Landau
quasiparticle picture breaks down, and a replacement for Fermi liquid theory
is necessary if one wants to solve an interacting system. Luttinger showed
[26] that any interaction destroys the discontinuity in the occupation number
at the Fermi level for T = 0, in contrast to the nonzero quasiparticle residue
in Fermi liquid theory. As briefly discussed in chapter 2, Landau’s theory of
interacting electrons is based on the idea that one can adiabatically transform
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the non-interacting system into that of the interacting with a one-to-one cor-
respondence between the two ensembles of states. However, a key property
of interacting one-dimensional systems is the separation of spin- and charge-
degrees of freedom in collective particle-hole excitations, of which there is no
way to smoothly transform a non-interacting system of single particle excita-
tions into [41].

These exotic states of matter in which collective particle excitations called
“holons” and “spinons” are long-lived excitations, and phenomena like spin-
charge separation occur if these excitations propagate with different velocities.
Analogous to Landaus Fermi liquid, a theory of interacting fermions based
the free Fermi gas, Haldane [20] coined the term “Luttinger liquid” for the
description of interacting fermions in one dimension, based on the exactly
soluble Tomonaga-Luttinger model [25, 26], and presented a recipe for adding
interactions to the problem.

One of the key properties of Luttinger liquids is the power-law dependence
of correlation functions. In stark contrast to Fermi liquids, these exponents are
interaction-dependent and thus non-universal [20, 22]. Although the system of
interacting fermions on the graphene nanoribbon is a two-dimensional system,
the long-distance physics of the edge states can be treated as a one-dimensional
system, and the theory serves as a good model. As shown in fig. 4.8, these
states are localized at the edges with an exponentially decaying probability
density, allowing for a one-dimensional picture.

5.1.2 The Tomonaga-Luttinger model
Tomonaga presented a mathematical framework for solving many-fermionic
systems in terms of the Fourier components of the density waves in his seminal
1950 paper [25]. By first considering an ideal Fermi gas whose particle-hole
excitations only occur near the Fermi level, and then adding inter-particle
forces whose interaction length is not too short, and whose strength not to
large, Tomonaga was able to show that the density fields could be represented
in terms of Bose-field under these restricting conditions. These limitations
on the scattering possibilities proved fruitful, and set the stone for further
investigations. The methods Tomonaga presented in this paper was at an early
stage adopted to the theories of electron-phonon coupling in one dimension and
its role in superconductivity [28, 29].

In 1963, Luttinger proposed an exactly soluble model of a many-fermion
system with linear dispersion, and showed that any interactions in one di-
mension completely destroys the quasiparticle discontinuity in the momentum
distribution. This is a first indication that Fermi liquid theory is insufficient in
one dimension. The Tomonaga and Luttinger models was compared and found
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to be equivalent as long as the particle-hole excitations are sufficiently close to
the Fermi level [27]. The Luttinger model is described by the non-interacting
Hamiltonian

HL = −ivF
∫ L

2

−L2
dxψ†σz∂xψ, (5.1)

where ψ =
(
ψR ψL

)T is a two-component spinor representing the right/left-
moving fermions. Inserting the Fourier transform representation

ψ(x) = 1√
L

∑
n

ei 2πn
L xcn (5.2)

yields the momentum resolved kinetic energy

HL = 2πvF
L

∑
n

nc†nσzcn, (5.3)

where the sum runs over all integers. This Hamiltonian represent massless
Dirac-fermions, as the dispersion is linear in momentum. Since the sum runs
over all n, the energy is not bounded from below, and all physical quantities
has to be compared to a properly defined vacuum state, which will be described
in the subsequent bosonic reconstruction of the theory.

5.1.3 Realization in Topological Insulators
Tomonaga originally presented his work with the note that he had not been
successful in the generalization to three dimensions, and that the theory should
only be understood as a purely mathematical work [25]. Luttinger also pointed
out that his model was quite unrealistic of two reasons; one being a one-
dimensional system, and the other that the fermions are massless [26]. In
modern physics, these views have been altered, and multiple systems have
been shown to exhibit Luttinger liquid behavior [23], as for instance in Carbon
nanotubes [73] and organic conductors [74].

In chapter 3, I described helical edge states that arises in time reversal
invariant systems. These are best described as helical Luttinger liquids, and
have been observed at the edges of InAs/GaSb [75] and Bi/SiC [16] QSH
insulators.

5.2 Constructive Bosonization of a 1D Fermionic
Theory

In this section I will derive the bosonization identities used to compute the
fermionic Green’s functions. A fermionic theory is a model describing the
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physical properties of fermions, i.e. electrons. In the second quantized formal-
ism discussed in section 2.1, this is described by a set of single-particle creation
and annihilation operators satisfying the canonical anticommutation relations
for fermions given in eq. (2.5).

The term “bosonization” refers to the transformation of a system of in-
teracting fermions into a system of possibly non-interacting bosons. The idea
of bosonization is that one can represent the fermionic creation and annihi-
lation operators (c†µ, cµ) in terms of new bosonic operators aµ. This works if
one can reorganize the total Fock space F spanned by {ckµ} as a direct sum
over Hilbert spaces with fixed particle numbers [76]. The fundamental exci-
tations within these individual subspaces are particle-hole-excitations obeying
the bosonic commutation relations in eq. (2.6).

Single bosonic operators cannot possibly change the total number of fermions
of a given species in the system as fermionic operators do. Thus, a purely
bosonic representation is not possible. This obstacle can nevertheless be
avoided by the inclusion of so called Klein factors F †µ, Fµ whose only effect
is to raise or lower the occupancy of the single particle state µ. By definition,
the Klein factors commute with boson operators aµ that is yet to be intro-
duced. Although the creation and/or destruction of single particle states is
possible to incorporate through the Klein factors, their presence will not be of
great importance, as all physical quantities that I will compute include exactly
one F †µ and one Fµ for each fermion species, and the exclusion of these does
not affect the resulting Green’s functions. These factors ensure the correct
(anti)-commutations between fermions of different species, and also connects
the different sectors of F with different fermion particle numbers.

There are multiple ways of bosonizing a fermionic theory, either by integrat-
ing out fermionic degrees of freedom in the partition function by introducing
auxiliary bosonic field(s) formulated in the framework of path integrals, or
by mapping the theory as an exact operator identity through “constructive”
bosonization in second quantization. I will use the latter and follow the lines
of von Delft and Schoeller [76].

For the proofs of completeness and explicit representation of Klein Factors
I refer to the derivation of Haldane [20], which is recapitulated in Appendix B
of Giamarchi [22]. Completeness is shown by comparing the partition function
in both fermion and boson language, and finding that they are indeed equal.

5.2.1 Fermionic theory
The starting point of the bosonization procedure is a theory of fermionic fields
ψµ(x) describing the many-particle state. Here, µ is taken to be any set of
quantum numbers relevant for the problem. A real space description of the
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fermionic fields may be defined through

ψµ(x) = 1√
L

∑
k

e−ikxckµ, (5.4)

where ck,µ satisfy the anticommutation relations in eq. (2.5), and the normal-
ization is chosen such that the density has unit norm 1. The inverse of eq. (5.4)
is

ckµ = 1√
L

∫ L
2

−L2
dx eikxψµ(x), (5.5)

where L is the length of the lattice. Keeping L finite, the wavenumber assumes
only discrete values

k = 2π
L

(nk −
1
2δb), (5.6)

where the role of δb become apparent when performing the k-summation in
eq. (5.4), obtaining

ψµ(x+ L/2) = eiπδbψµ(x− L/2). (5.7)

This means that δb sets the periodicity of the fields. In real space, ψµ(x) obey

{ψµ(x), ψ†µ′(x
′)} = 1

L

∑
k,k′

e−ikxeik
′x′{ckµ, c†k′µ′}

= δµµ′
1
L

∑
n

e−i( 2π
L (n− 1

2 δb))(x−x
′)

= δµµ′
1
L

∑
n

2πδ
(

2π
L

(x− x′)− 2πn
)

ei πL (x−x′)δb

= δµµ′
∑
n

δ(x− x′ − nL)eiπnδb ,

which for restricted x, x′ ∈ [−L/2, L/2] gives the standard anticommutation
for a normalized fermion field

{ψµ(x), ψ†µ(x′)} = δµµ′δ(x− x′). (5.8)

Similarly, the fields obey

{ψµ(x), ψµ′(x′)} = 0. (5.9)

From here δb will be taken to be 0, thereby fixing the periodicity of the electron
field.

1Compared to von Delft and Schoeller [76], who chooses to normalize the fields such that
the correlation functions are normalized to 1, the difference is a factor

√
2π in the fermionic

fields.
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5.2.2 Fock Space and Definition of Vacuum
I will in this subsection go through the organization of the Fock space needed
to construct a bosonic theory. The definitions follow that of von Delft and
Schoeller [76], except for a minor difference in the definition of boson operators.
As already pointed out presenting the Tomonaga-Luttinger model, one has
to compute physical quantities with respect to the vacuum (Fermi sea). In
these one dimensional systems whose fundamental excitations are particle-hole
excitations, the natural definition of the vacuum would be a state for which
there are zero particle-hole excitations. However, an infinite amount of such
states exists, and this definition does not suffice. The vacuum state is defined
by the properties

ckµ |00〉 ≡ 0 k(nk) > 0 (5.10a)

c†kµ |00〉 ≡ 0 k(nk) ≤ 0, (5.10b)

which ensures that for all species µ, the state with nk = 0 is always the highest
filled energy level. Moreover, the lowest unoccupied level is by definition the
state with nk = 1.

Observable quantities are measured relative to their vacuum expectation
values. Since an infinite number of occupied states is assumed, introducing
fermion normal ordering of operators is needed, which for linear combinations
of destruction or creation operators is equivalent to a subtraction of the vacuum
expectation value [22]. In a normal ordered operator product, the creation
operators for k > 0 are put to the left of destruction operators with k > 0,
and opposite for k ≤ 0. The normal ordering is thus defined through

∗
∗ O1O2O3 . . .

∗
∗ = O1O2O3 · · · − 〈00|O1O2O3 . . .|00〉, (5.11)

with Oi ∈ {c†µ, cµ} being a fermionic creation or annihilation operator. Both
the vacuum and normal ordering is now defined, but a generalN -particle state
is yet to be described in terms of the fermion operators.

The number of fermions of a given species µ relative to the vacuum is
eigenvalues of the number operator

N̂µ ≡
∑
nk

∗
∗ c
†
nkµ

cnkµ
∗
∗, (5.12)

where the integer nk is used to denote the wavenumber in eq. (5.6).
Consider m different fermion species, such that N = (N1, . . . , Nm) ∈ Zm

describes a system where there is Nµ fermions of type µ. Nµ can take negative
values since the occupancy is measured relative to zero. A general N -particle
state is denoted |N〉 and is a state-vector whose eigenvalues of N̂µ is Nµ for all
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species. Such a state can have an arbitrary number of particle-hole excitations.
The set of states {|N〉} span theN -particle Hilbert space HN . If there are no
single-particle excitations in the problem, the total Fock space may be written
as a direct sum

F =
⊕
N

HN , (5.13)

where all relevant interactions in the problem are boson-like (particle-hole),
and happen within each subspace HN . The N -particle ground state contain
no particle-hole excitations, and is constructed from the vacuum as

|N0〉 =
m∏
µ=1

(Cµ)Nµ |00〉 , (5.14)

where the ordering of creation and annihilation operators is specified trough

(Cµ)Nµ =


c†Nµ,µc

†
Nµ−1,µ . . . c

†
1,µ, Nµ > 0

1 Nµ = 0
cNµ+1,µcNµ+2,µ . . . c0,µ Nµ < 0.

(5.15)

The interpretation of the N -particle ground state in eq. (5.14) is evident; for
each species µ of fermions in the already infinitely filled Fermi sea, each CNµµ
creates or destroys µ-flavored single particle excitations until the number of
occupied states relative to the vacuum is Nµ. Naturally, this general state can
be constructed through linear combination of fermionic operators

|N〉 = f̃({c†k,µ}, {ck,µ}) |N0〉 . (5.16)

One can show that these states can also be written in terms of only bosonic
creation operators

|N〉 = f({a†q,µ}) |N0〉 . (5.17)
The goal of the bosonization procedure is to find the representation of the
fermionic field in terms of these bosons. That a mapping from eq. (5.16) to
eq. (5.17) exists is a non-trivial statement, but the proof of completeness in
the boson representation can be carried out by computing the grand canon-
ical partition function using both the fermion and boson representation, and
finding that they are equal [20].

In the fermion representation, the state |N〉 is created by a linear combi-
nation of single particle and single hole excitations of the N -particle ground
state |N0〉. In the bosonic representation, the exact same state is created by
a sum of combined particle-hole excitations. Clearly, creating an N -particle
state from the vacuum cannot be achieved purely through bosonic operators,
since these preserve the total particle number. This is where Klein factors Fµ
contribute, which are unitary operators satisfying F †µFµ = 1.
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5.2.3 Boson Operators
In this section I will define the boson operators that constitute the fundamental
excitations in one-dimensional fermion theories. These operators span the
entire Fock space, in the sense that any N -particle state can be constructed
as linear combination of particle-hole excitations of the N -particle ground
state |N0〉 as in eq. (5.17). Starting with the normal ordered density operator

∗
∗ ρµ(x) ∗∗ = ∗∗ ψ†µ(x)ψµ(x) ∗∗, (5.18)

the goal is to show that these fundamental excitations can be written in terms
of operators with bosonic commutation relations. By inserting eq. (5.4), the
density can be written

∗
∗ ρµ(x) ∗∗ = 1

L

∑
k,k′

eikxe−ik
′x∗
∗ c
†
k,µck′,µ

∗
∗

= 1
L

∑
k,q

e−iqx∗∗ c
†
k+q,µck,µ

∗
∗

= 1
L

∑
q

e−iqx∗∗ ρµ(q) ∗∗, (5.19)

where the normal ordered Fourier components of the density is defined by

∗
∗ ρµ(q) ∗∗ =

{∑
k c
†
k+q,µck,µ q 6= 0

N̂µ q = 0.
(5.20)

The commutation relations for this density wave is reminiscent of bosons, up
to a normalization constant. Therefore, I define the operators

a†q,µ ≡
(

2π
L|q|

) 1
2 ∑

k

c†k+q,µck,µ for q > 0 (5.21a)

aq,µ ≡
(

2π
L|q|

) 1
2 ∑

k

c†k−q,µck,µ for q > 0, (5.21b)

which will be very important in the following calculations. In eq. (5.21), the
factor

∑
k c
†
k+q,µck,µ is essentially the Fourier components of the fermion den-

sity, as seen from eqs. (5.19) and (5.20), and the factor in front is a normal-
ization constant ensuring correct commutation relations, which will be shown.
The dispersion of the system is not yet taken into account, and when consider-
ing the Tomonaga-Luttinger model with two separate branches of fermions of
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each type (left and right moving) the definition of the aq,µ-operators is slightly
modified to simultaneously incorporate both branches. An important thing to
notice is that in an N -particle ground state |N0〉, which is a state with no
particle-hole excitations, the action of aq,µ is

aq,µ |N0〉 = 0. (5.22)

This is because there are no available states to create when acting with c†k−q
on ck |N0〉 since q > 0. This also makes it clear why the bosonic destruction
operator is not included in eq. (5.17). Similarly, by taking the adjoint of
eq. (5.22),

〈N0| a†q,µ = 0. (5.23)

It will now be shown that these operators indeed satisfy bosonic properties.
The commutation for annihilation operators of different species is

[aq,µ, aq′,µ′ ] = 2π
L
√
|q||q′|

∑
k,k′

[c†k−q,µck,µ, c
†
k′−q′,µck′,µ]

= 2π
L
√
|q||q′|

∑
k,k′

δµµ′
(
c†k−q,µck′,µ′δk,k′−q′ − c

†
k′−q′,µ′ck,µδk−q,k′

)
= 0, (5.24)

where the two last terms cancel after performing one of the k-summations. A
similar calculation yield [a†q,µ, a

†
q′,µ′ ] = 0. For [aqµ, a†q′,µ′ ] , the calculation is a

bit more involved as

[aq,µ, a†q′,µ′ ] = 2π
L
√
|q||q′|

∑
k,k′

[c†k−q,µck,µ, c
†
k′+q′,µck′,µ]

= 2π
L
√
|q||q′|

∑
k,k′

δµµ′
(
c†k−q,µck′,µδk,k′+q′ − c

†
k′+q′,µ′ck,µδk−q,k′

)
= 2π
L
√
|q||q′|

∑
k

δµµ′
(
c†k−q,µck−q′,µ − c

†
k−q+q′,µ′ck,µ

)
.

For q 6= q′, these last terms are normal ordered and can be calculated directly,
giving 0. For q = q′, they are not, and a variable change in the momentum
index is not well behaved as it involves a subtraction of infinite quantities. That
they are not normal ordered for all k can be seen for example by considering the
case when q > k > 0 such that normal ordering of c†k−qck−q would be different
from c†kck. By considering the ground state expectation values through the
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fermionic normal ordering [77], the commutator is 1

[aqµ, a†q′,µ′ ] = 2π
L|q|

δµµ′δqq′
∑
k

(
c†k−qck−q − c

†
kck

)
= δµµ′δqq′

nq

∞∑
k=−∞

(
∗
∗ c
†
k−qck−q

∗
∗ − ∗∗ c

†
kck

∗
∗

−〈00|c†kck|00〉+ 〈00|c†k−qck−q|00〉
)

= δµµ′δqq′

nq

(
q∑

k=−∞
1−

0∑
k=−∞

1
)

= δµµ′δqq′ , (5.25)

where the properties in eq. (5.10) have been used in addition to a safe relabeling
of momentum indices in the normal ordered operators.

5.2.4 Bosonization Identity
The task of representing an arbitrary state |N〉 as in eqs. (5.16) and (5.17)
still remain. The goal now is to represent ψ(x) through the bosons defined in
eq. (5.21).

To see how aq,µ relates to the electron field ψµ(x), the commutator is
computed as

[aq,µ, ψµ′(x)] = 1
√
nq

1√
L

∑
k,k′

e−ik
′x [c†k+q,µck,µ, ck′,µ′ ]︸ ︷︷ ︸

=−δk′,k+qδµµ′ck

= − 1
√
nq

1√
L

∑
k

e−i(k+q)xck

= − δµµ
′

√
nq

e−iqxψµ(x) ≡ δµµ′αq(x)ψµ(x), (5.26)

where eqs. (5.4) and (5.21) have been inserted and

αq(x) ≡ − 1
√
nq

e−iqx (5.27)

is defined. Likewise,

[a†q,µ, ψµ′(x)] = δµµ′α
∗
q(x)ψµ(x). (5.28)

1The muted quantum number is µ for all appearing operators.
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I now act with this commutator on the state |N0〉, and use eqs. (5.22) and (5.26)
to obtain

[aq,µ, ψµ(x)] |N0〉 = (aq,µψµ(x)− ψµ(x)aq,µ) |N0〉
= aq,µψµ(x) |N0〉 = αq(x)ψµ(x) |N0〉 , (5.29)

which shows that the state ψµ(x) |N0〉 is an eigenstate of the annihilation
operator aq,µ with eigenvalue αq(x). Consequently, ψµ(x) |N0〉 is a coherent
boson state as this is the defining property, as described in chapter 2. By
including the Klein factor Fµ and a yet to be determined phase operator λ̂µ,
the coherent state representation is found by inserting eq. (2.16), obtaining

ψµ(x) |N0〉 = exp
(∑
q>0

αq(x)a†qµ

)
Fµλ̂µ |N0〉 (5.30a)

≡ e−iφ
†
µ(x)Fµλ̂µ |N0〉 , (5.30b)

where the fields

φ†µ(x) ≡ −i
∑
q>0

(
2π
L|q|

) 1
2

e−ξ
|q|
2 e−iqxa†q,µ (5.31a)

φµ(x) ≡ i
∑
q>0

(
2π
L|q|

) 1
2

e−ξ
|q|
2 eiqxaq,µ (5.31b)

are introduced. The “effective bandwidth” ξ is a parameter that regularizes
the ultraviolet divergence in the q-integral, and is usually taken to be 0 at the
end of calculations [22]. The fields satisfy

[aq,µ, φµ′ ] = [a†q,µ, φ
†
µ′ ] = 0 (5.32)

and

[a†q,µ, iφµ′(x)] = −
∑
q′>0

1
√
nq′

e−ξ
|q′|
2 eiq

′x [a†q,µ, aq′,µ′ ]︸ ︷︷ ︸
−δµµ′δqq′

= −δµµ′α∗q(x)e−ξ
|q|
2 ,

(5.33)

where the definition of αq(x) in eq. (5.27) has been inserted. Some physical
insight in these fields can be obtained by noticing that the normal ordered
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fermion density may be written in terms of φµ and φ†µ (with ξ → 0) as

∗
∗ ρµ(x) ∗∗ = ∗∗ ψ†µ(x)ψµ(x) ∗∗ = 1

L

∑
q

e−iqx
∑
k

∗
∗ c
†
k+q,µck,µ

∗
∗

= 1
L

(∑
q>0

e−iqx
(
L|q|
2π

) 1
2

a†q,µ +
∑
q<0

e−iqx
(
L|q|
2π

) 1
2

aq,µ + N̂µ

)

= 1
L

∑
q>0

√
nq
(
e−iqxa†q,µ + eiqxaq,µ

)
+ N̂µ

L

= 1
2π∇

(
φµ(x) + φ†µ(x)

)
+ N̂µ

L
≡ 1

2π∇Φµ + N̂µ
L
. (5.34)

From this, it is clear that the electron density is the average density ρ0,µ =
Nµ/L plus a displacement field Φµ(x) dependent on particle-hole excitations.
If this displacement field is very slowly varying, the fermion density is simply
the number of particles divided by the volume of the system.

The action of the phase operator λ̂µ in eq. (5.30) can be derived by consid-
ering what the expectation value of the particle number conserving operator
F †µψµ(x) is in the ground state. By inserting eqs. (5.23) and (5.30) and using
that [F †µ, a

†
q,µ′ ] = 0, the average is

〈N0|F †µψµ(x)|N0〉 = 〈N0|F †µ exp
(∑
q>0

αq(x)a†qµ

)
Fµλ̂µ|N0〉

= 〈N0|
(
1 +

∑
q>0

αq(x)a†q,µ + . . .
)
λ̂µ|N0〉

= 〈N0|λ̂µ|N0〉 . (5.35)

Using the representation in eq. (5.4) instead gives

〈N0|F †µψµ(x)|N0〉 = 1√
L

∑
nk

e−i 2π
L nkx 〈N0|F †µck,µ|N0〉︸ ︷︷ ︸

δnk,Nµ

= 1√
L

e−i 2π
L Nµx, (5.36)

which implies
λ̂µ = 1√

L
e−i 2π

L N̂µx. (5.37)

Now, the only thing remaining is to consider what the action of ψµ(x) on a
general state |N〉 is. As in eq. (5.17), |N〉 is written as a linear combination
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of particle-hole excitations on top of the N -particle ground state |N0〉. The
action of the bosonic annihilation operator on the ground state need not be
considered in this linear combination, since it destroys the ground state as in
eq. (5.22). The action of ψµ is thus

ψµ′(x) |N〉 = ψµ′(x)f({a†q,µ}) |N0〉 . (5.38)

Now commute ψµ′(x) past all a†q,µ operators using eq. (5.26), giving

ψµ′(x) |N〉 = f({a†q,µ − δµµ′α∗q(x)})ψµ′(x) |N0〉

= f({a†q,µ − δµµ′α∗q(x)})e−iφ
†
µ′

(x)
Fµ′ λ̂µ′ |N0〉 . (5.39)

The operator f({a†q,µ − δµµ′α
∗
q(x)}) is expressed through the Hilbert space

operator identity in eq. (A.2.5), with the commutation relation in eq. (5.33).
I obtain

f({a†q,µ − δµµ′α∗q(x)}) = f({a†q,µ + [a†q,µ, iφµ′(x)] })

= e−iφµ′ (x)f({a†q,µ})eiφµ′ (x). (5.40)

By using eq. (5.32), all operators φ†µ′ , Fµ′ and λ̂µ′ can be commuted to the
left, giving

ψµ′(x) |N〉 = Fµ′ λ̂µ′e
−iφ†

µ′
(x)e−iφµ′ (x)f({a†q,µ})eiφµ′ (x) |N0〉 . (5.41)

As already mentioned, the N -particle ground state contains no particle-hole
excitations, such that

f({a†q,µ}) exp(iφµ′(x)) |N0〉 = f({a†q,µ})(1 +O(aq,µ′)) |N0〉

= f({a†q,µ}) |N0〉

= |N〉 , (5.42)

where eq. (5.22) has been used. Hence, the action of ψµ′(x) on a general state
is clear, and the bosonized form of the fermionic field is

ψµ(x) = Fµ
1√
L

e−i 2π
L N̂µxe−iφ

†
µ(x)e−iφµ(x), (5.43)

where eq. (5.37) has been inserted. The φµ-fields are defined in eq. (5.31).
Equation (5.43) is the bosonization identity of fermionic fields in one di-

mension. The electron field operator can thus be represented as a Klein factor
modulated by a phase factor which is similar to the normal ordered fermion
density in eq. (5.34), i.e.

ψµ(x) ∼ Fµe−2πi∗∗ρµ(x)∗∗ . (5.44)
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5.3 Bosonization of the Luttinger Model
Thus far, no particular fermion dispersion has been considered. By considering
the low-energy limit of a quantum spin hall insulator which hosts effective one-
dimensional states at the edges, the dispersion may be linearized in the vicinity
of the Fermi momentum to reduce the free fermion theory to the Tomonaga-
Luttinger model for finite kF . This model discerns between left and right
moving fermions. I will denote these two branches with the quantum number
r ∈ {L, R}, and define the quantity

ηr =
{

1 r = R
−1 r = L

. (5.45)

The Hamiltonian in eq. (5.1) may be written

H = −ivF
∑
σ,r

ηr

∫ L
2

−L2
dxψ†σ,r(x)∂xψσ,r(x), (5.46)

which is transformed to

H =
∑
k,σ

∑
r=(R,L)

vF (ηrk − kF )c†k,σ,rck,σ,r (5.47)

after inserting eq. (5.4) where the momentum summation is performed relative
to the Fermi momentum for both branches, i.e. k → ηrk − kF .

The sum over k in (5.47) ranges over all momenta, with an infinitely filled
Dirac sea below the Fermi momentum. This is the Tomonaga-Luttinger model,
and will serve as the basis for the calculations of spectral properties in the one
dimensional system on the edges of a quantum spin hall insulator.

In the solutions of the Tomonaga-Luttinger model [25, 26], the cutoff fac-
tor ξ is introduced to ensure convergence in the momentum integrals as in
eq. (5.31), and taken to be zero at the end of the calculations. However, this
cutoff is a good parameter to define the bandwidth, or range of validity of
the model including interactions [22]. Since the linear dispersion is a good
approximation of the localized edge states of a QSH nanoribbon only for a
narrow slice in the Brillouin zone, I keep ξ finite throughout. The density
fluctuations are linear combinations of all particle-hole excitations, which in
the plane-wave basis is given in eq. (5.20), and for the current model states

ρ†r(q) =
∑
k

c†k+q,rck,r, q 6= 0, (5.48)
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satisfying ρ†(q) = ρ(−q) 1. For q = 0, ρr is simply the number operator of a
given species. The commutation relation for the densities is [22]

[ρ†r(q), ρ
†
r′(−q

′)] = −δr,r′δq,q′
ηrqL

2π , (5.49)

where a subtraction of two infinities in the normal ordered densities has been
made as in eq. (5.25). The commutation in eq. (5.49) is reminiscent of the nor-
mal bosonic commutation relations. As in eq. (5.21), one may now introduce

a†q,µ =
(

2π
L|q|

) 1
2 ∑

r

Θ(ηrq)ρ†r,µ(q)

aq,µ =
(

2π
L|q|

) 1
2 ∑

r

Θ(ηrq)ρr,µ(q),

(5.50)

that satisfies such commutation relations. Θ is the Heaviside step function,
and the additional quantum number µ has been added for the possibility of
adding spin to the problem, and the total density wave is for a branch r is
ρ†(q) =

∑
r,µ ρ

†
r,µ(q). Consider now the commutator between the Hamiltonian

(eq. (5.47)) and aq;

[H, aq] =
(

2π
L|q|

) 1
2 ∑
k1,r1

∑
k2,r2

vF (ηr1k1 − kF )Θ(ηr2q) [c†k1,r1
ck1,r1 , c

†
k2−q,r2ck2,r2 ]︸ ︷︷ ︸

=δr1,r2 [δk1,k2c
†
k2−q,r

ck1,r

−δk2−q,k1c
†
k1,r

ck2,r]

=
(

2π
L|q|

) 1
2 ∑
k,r

(
vF (ηr(k − q)− kF )Θ(ηrq)c†k−q,rck,r

− vF (ηrk − kF )Θ(ηrq)c†k−q,rck,r
)

= −qvF
(

2π
L|q|

) 1
2 ∑
k,r

ηrΘ(ηrq)c†k−q,rck

= −vF |q|aq.

This result suggests that the dynamics of the system may be represented in
terms of these bosonic operators with a Hamiltonian of the form

H̃ =
∑
q

ε̃qa
†
qaq, (5.51)

1The notation of daggers on the fermion density is opposite to that in the previous section
to express a† ∼ ρ†, a ∼ ρ.
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since this is compatible with the commutation relation [H̃, aq′ ] = −ε̃q′aq′ ,
so the free fermion spectrum is preserved with the kinetic energy term ε̃q =
vF |q| = εq. When writing the Hamiltonian of the form of eq. (5.51), the
modes for q = 0 is neglected, since the operator aq=0 is undefined. For this
static limit, terms proportional to the number of bosons Nr of different species
appear as a shift in the energy. These terms do not modify the dynamics of
the system, but rather serves as an altering of the zero point energy which I
will neglect.

Since the Hamiltonian is diagonal in the boson operators aq, the time
evolution of these operators can be computed through eq. (2.25). The fermionic
fields in the system is now expressed by the bosonization identity in eq. (5.43).
Measured from the Fermi level µ = vF kF , the fermionic fields is thus given as

ψr(x) = eikF (ηrx−vF t)ψ̃r(x, t), (5.52)

with
ψ̃†r(x, t) = F †r

1√
L

e−iφ
†
r(x,t)e−iφr(x,t). (5.53)

Absorbing the phase factor λ̂r in eq. (5.43), the field φr(x, t) defined in eq. (5.31)
takes the form

φr(x, t) = ηr
π

L
Nrx− i

∑
q 6=0

Θ(ηrq)
(

2π
L|q|

) 1
2

e−ξ
|q|
2 eiqxaq(t). (5.54)

5.3.1 Adding Spin and Interactions
I will now show how spin degrees of freedom separates from the charge, and
how spin-dependent interactions may be added to the system. The density
bosons in eq. (5.50) is

aq,σ =
(

2π
L|q|

) 1
2 ∑

r

Θ(ηrq)ρr,σ(q), (5.55)

where the density wave ρr,σ is defined through eq. (5.48) as

ρ†r,σ(q) =
∑
k

c†k+q,r,σck,r,σ, q 6= 0. (5.56)

In the spinful Luttinger model without interactions, the kinetic excitation
energy of density waves is ∑

q 6=0

∑
σ

vF |q|a†q,σaq,σ. (5.57)
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The charge and spin components of the electron density may be separated
into disjoint degrees of freedom by defining the operators

ρr(q) ≡
∑
σ

ρr,σ(q) (5.58a)

σr(q) ≡
∑
σ

σρr,σ(q). (5.58b)

I further define the operators

aq,c ≡
(

π

L|q|

) 1
2 ∑

r

Θ(ηrq)ρr(q) (5.59a)

aq,s ≡
(

π

L|q|

) 1
2 ∑

r

Θ(ηrq)σr(q) (5.59b)

describing charge (c) and spin (s) density wave fluctuations. The operator
appearing in the bosonized form of ψr,σ is the boson aq,σ, which is related to
aq,c and aq,s by

aq,σ = (aq,c + σaq,s)/
√

2. (5.60)

In terms of the operators in eq. (5.59), the kinetic energy in eq. (5.57) decouple
as∑

q,σ

vF |q|a†q,σaq,σ =
∑
q,σ

vF |q|
2

(
a†q,c + σa†q,s

)
(aq,c + σaq,s)

=
∑
q

(
vF |q|a†q,caq,c + vF |q|a†q,saq,s +

∑
σ

σ
vF |q|

2 (a†q,caq,s + a†q,saq,c)
)

=
∑
q

(
vF |q|a†q,caq,c + vF |q|a†q,saq,s

)
. (5.61)

These definitions allow for the exact diagonalization for possibly spin-dependent
density-density interactions by taking an interaction on the form [32]

V̂ = 1
2L
∑
q

∑
σσ′

vσσ′(q)ρ†qρq

= 1
2
∑
q

∑
σσ′

|q|vσσ
′(q)

2π
(
a†q,σ + a−q,σ

) (
a†−q,σ′ + aq,σ′

)
(5.62)

where
vσσ′(q) = V (q) + σσ′U(q) (5.63)
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are Fourier transformed two-particle interactions. Scattering across branches
with q = 2kF (g1-terms in “g-ology” models) is not considered in this thesis.
In the context of the QSH state, a 2kF -scattering requires an intrinsic spin-
flipping mechanism which is absent in the electron-phonon coupling. Lattice
vibrations might have a renormalizing effect on such scattering terms (g1⊥),
but this is not further discussed in this thesis.

By inserting eq. (5.60) into the interaction term, the Hamiltonian is decou-
pled in the charge and spin bosons, resulting in

H =
∑
q

|q|
[(
vF + V (q)

π

)
a†q,caq,c + V (q)

2π

(
a†q,ca

†
−q,c + aq,ca−q,c + 1

)
+
(
vF + U(q)

π

)
a†q,saq,s + U(q)

2π

(
a†q,sa

†
−q,s + aq,sa−q,s + 1

)]
.

This Hamiltonian can be brought to diagonal form by a Bogoliubov transfor-
mation. I therefore introduce the charge- and spin- Bogoliubov bosons

%q = uq,caq,c − vq,ca†−q,c (5.64a)

ςq = uq,saq,s − vq,sa†−q,s. (5.64b)

Here, uq,α = cosh(θq,α) and vq,α = sinh(θq,α) are dependent on the specific
interaction through θq,α. The inverse coordinate transformation is given by

aq,c = uq,c%q + vq,c%
†
−q (5.65a)

aq,s = uq,sςq + vq,sς
†
−q. (5.65b)

By tuning the parameter θq,α, cross terms involving two creation or annihila-
tion operators can be eliminated, and the Hamiltonian of the problem is

H =
∑
q

|q|
(
vc(q)%†q%q + vs(q)ς†q ςq

)
. (5.66)

This is achieved if the parameters satisfy

tanh(2θq,c) = −V (q)
V (q) + πvF

(5.67a)

tanh(2θq,s) = −U(q)
U(q) + πvF

. (5.67b)

The spin and charge sector have thus been separated. The renormalized, q-
dependent Fermi velocities vc(q) and vc(q) for the charge- and spin- channel
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is also dependent on the Bogoliubov parameters, and is found to be

vc(q) =
(
vF + Vq

π
− 1
π

V 2
q

πvF + Vq

)
cosh(2θq,c)

= vF

√
1 + 2Vq

πvF
(5.68a)

vs(q) = vF

√
1 + 2Uq

πvF
. (5.68b)

Note that vc(q → 0) is in general different from vs(q → 0), and the char-
acteristic Fermi velocities of the spin and charge bogolons are distinct. This
hints at the separation of spin and charge, a known property special for one
dimensional Fermi systems.

5.3.2 The Interacting Green’s Function
In this section, I will employ the bosonization techniques to compute the corre-
lation function of a spinless system with density-density interactions at T = 0.
To compute the spectral properties of the Tomonaga-Luttinger system, the re-
tarded Green’s function, GR, must be evaluated. As described in section 2.2,
this function is the probability amplitude that an injected state at a specified
time and place is ejected from the system at some later time and place. It is
related to the lesser and greater Green’s functions given in eq. (2.31), where
the greater Green’s function G>r (x, t) is the expected value of the operators
representing a particle that is created at (0, 0) and annihilated at (x, t). A
similar interpretation can be imputed to the lesser Green’s function with holes
instead of particles. These are defined in eq. (2.30). Spectral properties of the
system is related to the Fourier transformed Green’s function GR(k, ω) and
the relation [32]

G>r (kF + q, ω) = G<r (kF − q,−ω) (5.69)
indicate that it is sufficient to only consider the Fourier transform of G>(x, t)
to obtain the total momentum resolved Green’s function.

I now calculate the greater Greens function G>r (x, t) for interacting electron
densities using the representation of the fermionic fields in eq. (5.43). As shown
above, and by Mattis and Lieb [77], the dynamics of the system is governed
by the Bogoliubov transformed bosonic operators

βq = uqaq − vqa†−q (5.70)

and its hermitian conjugate through the Hamiltonian

H =
∑
q 6=0

ωqβ
†
qβq. (5.71)
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The parameters uq = cosh θq and vq = sinh θq is related to the interaction
potential between the electron densities by

tanh(2θq) = − Vq
Vq + 2πvF

, (5.72)

where Vq is the Fourier transformed two-particle interaction [32]. Comparing
this to eq. (5.67), it is clear that the spinless case corresponds to rescaling the
potential by a factor 2. For clarity i explicitly refer the a-bosons in terms of
the β-bosons

aq = uqβq + vqβ
†
−q (5.73a)

a†−q = vqβq + uqβ
†
−q. (5.73b)

The fermionic field is given by the bosonization identity in eq. (5.43), where
φr is expressed in terms of the number operator Nr and the β-bosons as

φr(x) = ηr
π

L
Nrx− i

∑
q 6=0

Θ(ηrq)
(

2π
L|q|

) 1
2

e−ξ
|q|
2 eiqx(uqβq + vqβ

†
−q). (5.74)

For the current state of affairs, the time evolution of operators can be
imputed to the β-bosons, since the Hamiltonian is diagonal in this basis. As
presented in eq. (2.25), this is expressed as

βq(t) = eiHtβqe−iHt, (5.75)

which can be promptly evaluated using the Baker-Hausdorff formula (eq. (A.2.3))
as

βq(t) = βqe−iωqt (5.76a)
β†q(t) = β†qeiωqt. (5.76b)

To compute the correlation function, the commutation relations of the φr(x, t)-
field must be worked out. Since βq(t) is a boson operator, fields commute as
[φr(x), φr′(x′)] = [φ†r(x), φ†r′(x′)] = 0, but calculating [φr(x), φ†r′(x′)] requires
some work. Including the time-evolved bosons, aq(t), I first compute

[aq1(t1), a†q2(t2)]

=
(
uq1βq1e−iωq1 t1 + vq1β

†
−q1eiωq1 t1

)(
uq2β

†
q2eiωq2 t2 + vq2β−q2e−iωq2 t2

)
−
(
uq2β

†
q2eiωq2 t2 + vq2β−q2e−iωq2 t2

)(
uq1βq1e−iωq1 t1 + vq1β

†
−q1eiωq1 t1

)
= δq1q2

(
u2
q1eiωq1 (t2−t1) − v2

q1e−iωq1 (t2−t1)
)
. (5.77)
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Using this result, [φr(x), φ†r′(x′)] can be evaluated as

[φr(x1, t1), φ†r′(x2, t2)]

= δr,r′
∑
q1 6=0

∑
q2 6=0

Θ(ηrq1)Θ(ηr′q2) 2π
L
√
|q1||q2|

× eiq1x1e−iq2x2e−ξ
|q1|+|q2|

2 [aq1(t1), a†q2(t2)]
(5.77)= δr,r′

∑
q 6=0

Θ(ηrq)
2π
L|q|

eiq(x1−x2)e−ξ|q|
(
u2
qeiωq(t2−t1) − v2

qe−iωq(t2−t1)
)
.

(5.78)

Notice the special case when x1 = x2 and t1 = t2,

[φr(x, t), φ†r(x, t)] =
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|(cosh2 θq − sinh2 θq)

=
∞∑
n=1

1
n

e−ξ 2π
L n =

∞∑
n=1

1
n

(
e−ξ 2π

L

)n
= − ln

(
1− e−ξ 2π

L

)
(5.79a)

L→∞= − ln
(

2πξ
L

)
. (5.79b)

In terms of the time-evolved operators, the correlation function is on the
form

〈ψ(x, t)ψ†(0, 0)〉 = eikF (ηrx−vF t)

L
〈eiφ

†
r(x,t)Freiφr(x,t)e−iφ

†
r(0,0)F †r e−iφr(0,0)〉 ,

(5.80)
and to get further I use the Baker-Hausdorff formula in eq. (A.2.2) for the
operators in the expectation value. The resulting series is truncated at the
first order in the commutator since it is a c-number, as seen in eq. (5.78). The
Klein-factor may be commuted past the boson operators, and the product of
all Klein-Factors is equal to one if there is as many creation operators and
annihilation operators of the same kind in the expectation value [76]. The
result is

eiφ
†
r(x,t)eiφr(x,t) = ei(φ

†
r(x,t)+φr(x,t))+ 1

2 [iφ†r(x,t),iφr(x,t)]

= ei(φ
†
r(x,t)+φr(x,t))e

− 1
2 ln
(

1−e−ξ
2π
L

)
= ei(φ

†
r(x,t)+φr(x,t))

(
1− e−ξ 2π

L

)− 1
2
,
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where eq. (5.79a) has been used. The same holds for the second pair of expo-
nentials in the expectation value,

e−iφ
†
r(0,0)e−iφr(0,0) = e−i(φ

†
r(0,0)+φr(0,0))e

− 1
2 ln
(

1−e−ξ
2π
L

)
= e−i(φ

†
r(0,0)+φr(0,0))

(
1− e−ξ 2π

L

)− 1
2
.

Using eq. (A.2.2) again, skipping the index r, and using the notation φ0 =
φr(0, 0), φ = φr(x, t), I need to compute

ei(φ
†+φ)e−i(φ

†
0+φ0) = ei[(φ

†−φ†0)+(φ−φ0)]+ 1
2 [φ†+φ,φ†0+φ0]

= ei[(φ
†−φ†0)+(φ−φ0)]e

1
2 ([φ†,φ0]+[φ,φ†0]). (5.81)

Using the definition in eq. (5.74) and taking exp
(
2iηr πLNrx

)
' 1 as L → ∞

leads to

i[(φ† − φ†0) + (φ− φ0)] ≡ X (5.82)

'
∑
q 6=0

Θ(ηrq)
(

2π
L|q|

) 1
2

×
{
uqβ

†
q

(
1− e−i(qx−ωqt)

)
+ vqβ−q

(
1− e−i(qx+ωqt)

)
+ uqβq

(
ei(qx−ωqt) − 1

)
+ vqβ

†
−q

(
ei(qx+ωqt) − 1

)}
.

The other relevant quantity in the exponential is

[φ†, φ0] + [φ, φ†0] = [φ, φ†0] − [φ0, φ
†] ≡ Y. (5.83)

=
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
(
u2
q

(
ei(qx−ωqt) − e−i(qx−ωqt)

)
− v2

q

(
ei(qx+ωqt) − e−i(qx+ωqt)

))
= 2i

∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
(
u2
q sin(qx− ωqt)− v2

q sin(qx+ ωqt)
)

So far, only scalars have been factorized out of the expectation value. To
proceed, I need to evaluate 〈eX〉, where X is given in eq. (5.82). Since this is
an operator linear in the β-operators, for which the Hamiltonian is diagonal,
the expectation value can be computed using the identity in eq. (A.2.6). At
thermal equilibrium, the expectation value is 〈β†q1βq2〉 = δq1,q2nB(ωq1), where
nB is the Bose distribution given in eq. (2.26). Using these relations, one
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sees that not all terms survive in 〈X2〉; only those with one creation and one
annihilation operator contributes. Moreover, terms where the q’s have opposite
sign will be zero due to the Heaviside step functions Θ(ηrq)Θ(ηr(−q)) = 0.

〈X2〉 = 2π
L

∑
q1 6=0

∑
q2 6=0

Θ(ηrq1)Θ(ηrq2) 1√
|q1||q2|

e−ξ
|q1|

2 e−ξ
|q2|

2

×
{
uq1uq2

(
1− e−i(q1x−ωq1 t)

)(
ei(q2x−ωq2 t) − 1

)
〈β†q1βq2〉

+ vq1vq2

(
1− e−i(q1x+ωq1 t)

)(
ei(q2x+ωq2 t) − 1

)
〈β−q1β

†
−q2〉

+ uq1uq2

(
ei(q1x−ωq1 t) − 1

)(
1− e−i(q2x−ωq2 t)

)
〈βq1β†q2〉

+vq1vq2
(

ei(q1x+ωq1 t) − 1
)(

1− e−i(q2x+ωq2 t)
)
〈β†−q1β−q2〉

}
= 2π

L

∑
q 6=0

Θ(ηrq)
2(1 + 2nB(ωq))

|q|
e−ξ|q|

×
(
u2
q(cos(qx− ωqt)− 1) + v2

q (cos(qx+ ωqt)− 1)
)
.

The greater Green’s function in eq. (5.80) may now be written as

iG>r = 〈ψ(x, t)ψ†(0, 0)〉 = eikF (ηrx−vF t)

L

(
1− e−ξ 2π

L

)−1
e 1

2Y e 1
2 〈X

2〉. (5.84)

Having ωq > 0 for all q 6= 0, the number of occupied states at each q tends to
zero as T → 0. In this limit, nB(ωq) = 0, and the quantity in the exponential
is

1
2
(
Y + 〈X2〉

)
= 1

2
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|

×
(
u2
q

(
2ei(qx−ωqt) − 2

)
+ v2

q

(
2e−i(qx+ωqt) − 2

))
= 1

2
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|2
(
2v2
q

(
cos(qx)e−iωqt − 1

)
+ e−iωqteiqx − 1

)
=
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
(
eiqxe−iωqt + 2v2

q

(
cos(qx)e−iωqt − 1

))
+ ln

(
1− e−ξ 2π

L

)
, (5.85)

where both the relation in eq. (5.79a) and u2
q − v2

q = 1 has been used. By
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inserting this into eq. (5.84), the greater Green’s function is at T = 0

iG>r (x, t)eiµt = eikF ηrx

L

× exp

∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
(
eiqxe−iωqt + 2v2

q

(
cos(qx)e−iωqt − 1

)),
(5.86)

which is the exact same result for the greater Green’s function as found by
Meden and Schönhammer [32]. Further analytic work can be made by replac-
ing v2

q by a exponential cutoff v2
q ' νe−Λ|q|, and the summation in the exponent

of eq. (5.86) can be solved exactly. This approximation does however not cor-
respond to any physically realizable interaction [35]. In the “g-ology” models
of density-density interactions, this replacement suppress certain peaks in the
spectral function [36].
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Phonon Corrections
In this chapter, phonon corrections to the two-point correlation function will
be computed using a non-perturbative approach at zero temperature. The
phonons interact with the one-dimensional fermionic states through a coupling
strength gq independent of the fermionic quasimomentum k. This assumed k-
independence of the electron-phonon interaction in a narrow window close to
the Fermi momentum allows for an exact diagonalization of the theory, which is
generally not possible in higher-dimensional coupled electron-phonon systems.

The corrections to the fermionic Green’s function is found through the
bosonization scheme presented in chapter 5. For armchair edges off graphene,
these calculations are therefore relevant only if the bosonization procedure
gives a qualitatively good description of localized edge states with helicity as
a good quantum number.

The interaction with phonons then appears as the Fourier components of
the density coupled to bosonic excitations with momentum exchange q. The
recipe for the calculations follow the same lines as that for the bare electron-
electron density interaction in section 5.3.2, and I will first go through prelim-
inary definitions and general calculations common to all types of interactions.

For each system, I write down the Hamiltonian of the system in terms of
phonons bq and density bosons aq (or its Bogoliubov transformed equivalent βq
if two-particle interactions are present) for the kinetic energy of particle-hole
excitations. I then diagonalize the Hamiltonian H = Hel + Hph + Hel-ph and
find the representation of aq(t) in terms of the diagonal basis. I then insert
this representation into φ(x) given by eq. (5.54) and proceed to compute the
greater Green’s function G>r (x, t) in real space, which is given in eq. (2.30)
and takes the form

iG>r (x, t) = eikF (ηrx−vF t)

L
〈eiφ

†
r(x,t)eiφr(x,t)e−iφ

†
r(0,0)e−iφr(0,0)〉 . (6.1)

This is evaluated in the large L limit and at zero temperature. In this equation,
all energies are measured relative to the chemical potential µ = vF kF . Before
proceeding, I introduce the shorthand notation φ0 ≡ φr(0, 0) and φ ≡ φr(x, t)
with the index r left tacit for the context. Now eq. (A.2.2) is used to join
quantities in the exponential of eq. (6.1), which results in

iG>r (x, t) = eikF (ηrx−vF t)

L
〈ei(φ

†+φ)− 1
2 [φ†,φ]e−i(φ

†
0+φ0)− 1

2 [φ†0,φ0]〉 . (6.2)

This form is possible due to the fact that [φ†, φ′] will turn out to be a scalar
quantity, and higher order commutators are zero, hence terminating the series
representation in eq. (A.2.2). Moreover, in addition to being scalar, [φ†, φ] =
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[φ†0, φ0] is constant for equal coordinates, and can be added and factored out
of the expectation value. At this point, the Green’s function has the form

iG>r (x, t) = eikF (ηrx−vF t)

L
〈ei(φ

†+φ)e−i(φ
†
0+φ0)〉 e[φ0,φ

†
0]

= eikF (ηrx−vF t)

L
〈ei(φ

†+φ)−i(φ†0+φ0)〉 e
1
2 ([φ,φ†0]−[φ0,φ

†])e[φ0,φ
†
0]

≡ eikF (ηrx−vF t)

L
〈eX〉 e 1

2Y e[φ0,φ
†
0], (6.3)

where I defined the quantities X and Y as

X ≡ i(φ† + φ)− i(φ†0 + φ0) (6.4a)

Y ≡ [φ, φ†0] − [φ0, φ
†] . (6.4b)

As is clear from these expressions, the commutation relations of φ must be
calculated for each system. In these computations, I utilize the shorthand
notation ∑

q

( · ) ≡
∑
q 6=0

Θ(ηrq)
(

2π
L|q|

) 1
2

e−ξ
|q|
2 ( · ) (6.5)

appearing in φr(x). It is understood that quantities appearing in ( · ) is to
be summed over, rather than being a multiplicative factor of the entire sum.
Including the time evolution of aq and taking the large L-limit, the fields
appearing in the exponent of ψ in eq. (5.43) is given by

φr(x, t)
L→∞' −i

∑
q

eiqxaq(t) (6.6a)

φ†r(x, t)
L→∞' i

∑
q

e−iqxa†q(t). (6.6b)

The remaining expectation value in eq. (6.3) can be assessed using eq. (A.2.6),
as the operator X will be linear in boson operators for which the Hamiltonian
is diagonal. This expectation value can be computed either at zero or non-zero
temperature. The general form of the resulting Green’s function will thus be

iG>r (x, t) = eikF (ηrx−vF t)

L
eZ , (6.7)

where
Z ≡ 1

2 〈X
2〉+ 1

2Y + [φ0, φ
†
0] . (6.8)
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The definitions of X,Y is given in eq. (6.4). Hence, all physics in the system
is captured in the function Z(x, t) which in turn is constructed by boson op-
erators representing an infinite linear combination of particle-hole excitations.

For the spinful case, the interactions with phonons does not couple to spin
degrees of freedom. The result of this is that the spin and charge sector of the
electron density decouples even without spin dependent interactions. Denoting
G(g) as the Green’s function whose electron-phonon coupling is g, the Green’s
function for the spinful case (without density-density interactions) appears as

G(x, t) ∼
(
G(g = 0)G(

√
2g)
) 1

2
, (6.9)

where the factor
√

2 is due to the normalization of the density-operator. If spin-
dependent density-density interactions are present, the characteristic velocities
in the two G’s in eq. (6.9) are in general different, and the system displays a
separation of spin and charge currents. I now use the definitions and general
recipe above to compute the explicit form of the greater Green’s function.

6.1 Diagonalization of the Electron - Phonon
Hamiltonian

The coupled fermion phonon system in one dimension is a problem that has
been studied earlier, both in general terms [28, 29] and by utilizing variants of
the previously discussed bosonization techniques [30, 31]. I will show that the
bosonization of the fermionic fields allow for hybridization between the quan-
tized lattice vibrations and electron densities using canonical ladder operators,
transforming the Hamiltonian into a system of uncoupled harmonic oscillators
below a momentum cutoff for the electron-phonon coupling. The Hamiltonian
describing electron-phonon interactions is written on the general form

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
q,ν

ωq,νb
†
q,νbq,ν

+
∑
k,σ

∑
q,ν

gνq c
†
k+q,σck,σ

1√
2ωq,ν

(
bq,ν + b†−q,ν

)
.

(6.10)

As Tomonaga studied in his seminal paper [25] by linearizing the electronic
excitation spectrum close to the Fermi momentum kF as

εk = vF (ηrk − kF ). (6.11)
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The kinetic energy of the fermions relevant for the dynamics of the interacting
system may be written in terms of the a-operators in eq. (5.50) as [30]∑

|q|<qc,σ

εqa
†
q,σaq,σ + constant, (6.12)

where the constant term of the full electron Hamiltonian will be neglected
. This Hamiltonian describes a set of particle-hole excitations with bosonic
nature. The spin quantum number can be replaced by the introduction of
spin and charge -densities as shown in section 5.3.1, but the theory described
in the following section allows for the inclusion of any quantum number, and I
will keep the spin as an auxiliary parameter demonstrating the diagonalization
procedure.

The system of interest is one in which density waves with momentum q
excites quantized lattice vibrations at the edges of an armchair ribbon. The
transformation from a fermionic to a bosonic frame of reference is only ex-
act when the system consists of an infinite Dirac sea, but serves as a good
approximation in the long distance limit.

The electron-phonon coupling gq = g−q = g∗q is restricted to be non-zero
for |q| < qc, where qc is negligible compared to the Fermi momentum kF . The
dynamics of the Tomonaga-model is restricted to low energy excitations for
small |q| = |ηrk−kF | � qc and the cutoff in the electron-phonon coupling will
not be of great importance to these low energetically excited states. In the
following, the cutoff on q is not explicitly written.

The diagonalization of eq. (6.10) is done in the following steps. First, I
reorganize the total Fock space as in chapter 5 and represent the fermion dy-
namics through eq. (6.12). By canonical quantization, the bosonic operators
for both the fermionic density-bosons and different phonon branches can be
represented in terms of generalized coordinates. By applying an orthogonal
transformation to the resulting dynamical matrix, the Hamiltonian is trans-
formed to uncoupled harmonic oscillators in new canonical coordinates whose
normal modes and corresponding energy spectrum can be found. The method
described here is applicable to any number of phonon branches, and specific
expressions for energy eigenvalues depend on the system under investigation.

Note that the diagonalization procedure could be executed by inserting
the boson operator representation of ρq and keeping the bq,ν-operators in the
interaction term of eq. (6.10). In this case, the interaction term will be on the
form (

aq,σ + a†−q,σ

) (
b†q,ν + b−q,ν

)
, (6.13)

which can not be diagonalized naively, but can be solved with a Bogoliubov-
Valatin transformation [78]. Even for the spinless case with only one single
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phonon branch present, an at least 4-dimensional basis is needed to compute
eigenmodes and energies. Although equivalent, the approach described in
this section is less cumbersome than the Bogoliubov-Valatin transform for the
specific interaction.

6.1.1 Diagonalization and Canonical Quantization
In the quantum harmonic oscillator, ladder operators a† and a is introduced
as linear combinations of the position x and momentum p satisfying canoni-
cal commutation relations [79]. The bosonic excitations aq,α are in terms of
generalized coordinate and conjugate momenta introduced as

a†q,α =
√
εq
2 Q−q,α −

i√
2εq

P−q,α

aq,α =
√
εq
2 Qq,α + i√

2εq
Pq,α,

(6.14)

where α is some quantum number (or collection thereof) and εq is the energy
necessary to excite one boson aq,α. Thus, starting from bosonic ladder opera-
tors, the coordinate Q and its conjugate momenta P can be written in terms
of creation and destruction operators as

Qq,α = 1√
2εq

(
aq,α + a†−q,α

)
(6.15a)

Pq,α = −i
√
εq
2 (aq,α − a†−q,α). (6.15b)

To prove that (Q,P ) constitute quantum mechanical coordinate and conjugate
momenta, the Dirac bracket must satisfy [80]

[Qq,α, P †q′,α′ ] = iδqq′δαα′ , (6.16)

Using the shorthand notation ã = aq′,α′ and that P †q = P−q from the constraint
that Pq is real, this is calculated as

[Q, P̃ †] = i

2

√
εq′

εq

(
(a+ a†)(ã† − ã)− (ã† − ã)(a+ a†)

)
= i

2

√
εq′

εq

(
−aã− a†ã+ aã† + a†ã† + ãa+ ãa† − ã†a− ã†a†

)
= i

2

√
εq′

εq
(−a†ã+ aã† + (δqq′δαα′ + a†ã) + (δqq′δαα′ − aã†))

= i

2

√
εq′

εq
2δqq′δαα′ = iδqq′δαα′
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assuming that the operators satisfies [aq,α, a†q′,α′ ] = δqq′δαα′ .
In the present problem, both the phonon Hamiltonian and the kinetic term

in eq. (6.12) include terms on the form a†q,αaq,α, which is

a†q,αaq,α =
(√

εq
2 Q−q,α −

i√
2εq

P−q,α

)(√
εq
2 Qq,α + i√

2εq
Pq,α

)

= εq
2 Q−q,αQq,α + 1

2εq
P−q,αPq,α + i

2 (Q−q,αPq,α − P−q,αQq,α) .

Using eq. (6.16), and shifting the q-summation for the last term leads to

εqa
†
q,αaq,α = 1

2
(
P−q,αPq,α + ε2

qQ−q,αQq,α − εq
)
, (6.17)

which is a harmonic oscillator Hamiltonian. The last term can be disregarded
when studying the dynamics of the system, and serves only as a shift in the
zero-point energy.

I can now write the free parts of eq. (6.10) solely in terms of canonical
coordinates. For bosons representing fermion densities, I use the notation
(Pq,σ, Qq,σ). The kinetic energy in eq. (6.12) is written

Hf = 1
2
∑
q,σ

(
P−q,σPq,σ + ε2

qQ−q,σQq,σ
)
. (6.18)

Correspondingly, the quantized phonon spectrum is described in terms of the
coordinates (uq,ν , pq,ν) for the phonon mode ν as

Hph = 1
2
∑
q,ν

(
p−q,νpq,ν + ω2

q,νu−q,νuq,ν
)
. (6.19)

The coordinate uq,ν describes collective lattice deviations from equilibrium
position in the crystal with wavelength 2π/q, and pq,ν is the momentum of
these oscillations.

The k-summation is factored out in eq. (6.10) and replaced by ρ−q using
eq. (5.48). The factor in the coupling term linear in phonon operators can be
evaluated by inserting eq. (6.14), and states

bq,ν + b†−q,ν = 2
√
ωq,ν

2 uq,ν . (6.20)

Inserting these in the coupling term of eq. (6.10), I find∑
k,σ

∑
q,ν

gνq c
†
k+q,σck,σ

1√
2ωq,ν

(
bq,ν + b†−q,ν

)
=
∑
q,ν,σ

gνq ρ−q,σuq,ν . (6.21)
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I now insert eq. (5.50) to get ρ−q in terms of aq,σ, and eq. (6.14) to express
these in terms of canonical coordinates. I obtain

∑
q,ν,σ

gνq ρ−q,σuq,ν =
∑
q,ν,σ

gνq

(
L|q|
2π

) 1
2 (
a†q,σuq,ν + a−q,σuq,ν

)
≡
∑
q,ν,σ

Gνq

√
εq
2

[(
Q−q,σ −

i

εq
P−q,σ

)
uq,ν +

(
Qq,σ + i

εq
Pq,σ

)
u−q,ν

]

=
∑
q,ν,σ

Gνq

√
εq
2
(
Q†q,σuq,ν + u†q,νQq,σ

)
,

where the terms containing Pq,σ has been canceled in the q-summation and
the quantity

Gνq ≡ gνq
(
L|q|
2π

) 1
2

(6.22)

is defined. The full Hamiltonian is now

H = 1
2
∑
q

(∑
σ

(
P †q,σPq,σ + ε2

qQ
†
q,σQq,σ

)
+
∑
ν

(
p†q,νpq,ν + ω2

q,νu
†
q,νuq,ν

)
+
∑
ν,σ

2Gνq
√
εq
2
(
Q†q,σuq,ν + u†q,νQq,σ

))
,

(6.23)

which is to be diagonalized. Letting the system consist of n independent boson
modes, I define the basis

Πq ≡ (Pq,↑, Pq,↓, pq,ν1 , . . . , pq,νn)T (6.24a)
Φq ≡ (Qq,↑, Qq,↓, uq,ν1 , . . . , uq,νn)T (6.24b)

for which the Hamiltonian in eq. (6.23) is expressed as

H = 1
2
∑
q

(
Π†qΠq + Φ†qMqΦq

)
. (6.25)

The coupling matrix Mq determines the degree of hybridization between elec-
tron density waves and phonons, and the normal modes of the system is found
by an orthogonal transformation that diagonalize Mq through

Mq = SqS
−1
q MqSqS

−1
q ≡ SqDqS

−1
q . (6.26)
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The matrix Dq is a diagonal matrix whose entries are the squared energy
eigenvalues.

Dq =

λ
2
q,1

λ2
q,2

. . .

 (6.27)

The Hamiltonian is now written as uncoupled harmonic oscillators

H = 1
2
∑
q

(
Π̃†qΠ̃q + Φ̃†qDqΦ̃q

)
, (6.28)

where the new coordinates and conjugate momenta are defined through

Π̃q = S−1
q Πq Π̃†q = Π†qSq (6.29a)

Φ̃q = S−1
q Φq Φ̃†q = Φ†qSq. (6.29b)

The combined electron phonon Hamiltonian is thus transformed into non-
interacting Bose gases with dispersion given by the energies λq,j in Dq.

6.1.2 Recovering Density-Bosons
For the calculations of fermionic Green’s functions through the bosonization
scheme in chapter 5, the explicit representation of density-bosons aq,σ and their
evolution in time is required. These can be found by canonical quantization of
the harmonic oscillator in eq. (6.28), resulting in a diagonal theory quadratic in
new boson operators whose time evolution in the Heisenberg picture is simple.
Firstly, the Dirac bracket of the new operators is

[Φ̃q,k, Π̃†q′,n] = [S−1
kl Φq,l,Π†q′,mSmn]

= S−1
kl Smn [Φq,l,Π†q′,m]︸ ︷︷ ︸

=iδqq′δlm

= S−1
kl Slniδqq′

= iδknδqq′ ,

where I use the notation Aq,k for the k’th component of a general vector Aq.
Since the commutation is on normal form, I can define new boson operators
Bq,i through eq. (6.14), which is written out as

Bq,i =
√
λq,i
2 Φ̃q,i + i√

2λq,i
Π̃q,i (6.30a)

B†q,i =
√
λq,i
2 Φ̃−q,i −

i√
2λq,i

Π̃−q,i. (6.30b)
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These operators satisfy the normal bosonic commutation relation

[Bq,i, B†q′,j ] = δqq′δij . (6.31)

The Hamiltonian is now written on diagonal form as

H =
∑
q,i

λq,iB
†
q,iBq,i + constant, (6.32)

and the time-evolution of the Bq,i-operators in the Heisenberg picture is simply

Bq,i(t) = Bq,ie−iλq,it (6.33a)

B†q,i(t) = B†q,ie
iλq,it. (6.33b)

The task now is to find the representation of the original density-bosons aq,σ(t)
in terms of Bq,i(t). Inverting eq. (6.30), I find

Φ̃q,i = 1√
2λq,i

(
Bq,i +B†−q,i

)
Φ̃†q,i = 1√

2λq,i

(
B†q,i +B−q,i

)
(6.34a)

Π̃q,i = −i
√
λq,i
2

(
Bq,i −B†−q,i

)
Π̃†q,i = i

√
λq,i
2

(
B†q,i −B−q,i

)
, (6.34b)

and inserting this into the definitions in eq. (6.29), I find the representations

Φq,i = SijΦ̃q,j = Sij
1√

2λq,j

(
Bq,j +B†−q,j

)
(6.35a)

Φ†q,i = Φ̃†q,jS
−1
ji = S−1

ji

1√
2λq,j

(
B†q,j +B−q,j

)
(6.35b)

Πq,i = SijΠ̃q,j = −iSij

√
λq,j

2

(
Bq,j −B†−q,j

)
(6.35c)

Π†q,i = Π̃†q,jS
−1
ji = iS−1

ji

√
λq,j

2

(
B†q,j −B−q,j

)
(6.35d)

with implicit summation over j. To obtain the boson operators corresponding
to the coordinate and conjugate momenta Φq,i,Πq,i, I insert eq. (6.15) and
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find

aq,i =
√
εq,i
2 Φq,i + i√

2εq,i
Πq,i

=
√
εq,i
2

(
Sij

1√
2λq,j

(
Bq,j +B†−q,j

))

+ i√
2εq,i

(
−iSij

√
λq,j

2

(
Bq,j −B†−q,j

))

= Sij

(
Bq,j

1
2

(√
εq,i
λq,j

+

√
λq,j
εq,i

)
+B†−q,j

1
2

(√
εq,i
λq,j
−

√
λq,j
εq,i

))
≡ Sij

(
ΣijBq,j + ∆ijB

†
−q,j

)
, (6.36)

where I defined

Σij ≡
1
2

(√
εq,i
λq,j

+

√
λq,j
εq,i

)
(6.37a)

∆ij ≡
1
2

(√
εq,i
λq,j
−

√
λq,j
εq,i

)
. (6.37b)

The dispersion εq,i appearing in eq. (6.37) is the unperturbed excitation spec-
trum of boson mode i. The hermitian conjugate of eq. (6.36) is

a†q,i =
√
εq,i
2 Φ†q,i −

i√
2εq,i

Π†q,i

=
√
εq,i
2 S−1

ji

1√
2λq,j

(
B†q,j +B−q,j

)
− i√

2εq,i
iS−1
ji

√
λq,j

2

(
B†q,j −B−q,j

)
= S−1

ji

(
B†q,j

1
2

(√
εq,i
λq,j

+

√
λq,j
εq,i

)
+B−q,j

1
2

(√
εq,i
λq,j
−

√
λq,j
εq,i

))
= S−1

ji

(
ΣijB†q,j + ∆ijB−q,j

)
. (6.38)

The quantities Σij and ∆ij satisfy the identity

Σ2
ij −∆2

ij = 1, (6.39)
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which is reminiscent of symplectic Bogoliubov transformations applied to inter-
acting boson Hamiltonians, where this is set as a requirement to ensure proper
commutation relations. In this approach, these relations come naturally from
the definitions and the form of the interaction. The relation in eq. (6.39) is
satisfied by hyperbolic functions Σij = cosh(θij) and ∆ij = sinh(θij) with the
Bogoliubov mixing parameter

θij = 1
2 ln

(
εq,i
λq,j

)
. (6.40)

The a-operators are expressed through the sum, rather than the difference
of these hyperbolic functions. This sum can in general be very large, even
if the difference of its constituents remain equal to 1. For realistic coupling
strengths, the mixing angle will be small and ∆ij/Σij ∼ O

(
g2). I can now

compute the commutation relation for the time evolved a-bosons of different
species

[aq,i(t), a†q′,k(t′)] =

SijS
−1
lk [ΣijBq,je−iλq,jt + ∆ijB

†
−q,je

iλq,jt,ΣklB†q′,le
iλq′,lt

′
+ ∆klB−q′,le−iλq′,lt

′
]

= SijS
−1
lk

(
ΣijΣkle−iλq,jteiλq′,lt

′
[Bq,j , B†q′,l]

+ Σij∆kle−iλq,jte−iλq′,lt
′
[Bq,j , B−q′,l] + ∆ijΣkleiλq,jteiλq′,lt

′
[B†−q,j , B

†
q′,l]

+ ∆ij∆kleiλq,jte−iλq′,lt
′
[B†−q,j , B−q′,l]

)
= SijS

−1
lk

(
ΣijΣkle−iλq,jteiλq′,lt

′
δqq′δjl −∆ij∆kleiλq,jte−iλq′,lt

′
δqq′δjl

)
= SijS

−1
jk

(
ΣijΣkje−iλq,j(t−t

′) −∆ij∆kjeiλq,j(t−t
′)
)
δqq′ . (6.41)

Note that at equal times, the commutator satisfy [aq,i(t), a†q′,k(t)] = δikδqq′ .
This quantity will be used in the calculations of Green’s functions.

6.2 Single Phonon Branch
In this section I will compute phonon corrections to G>r caused by a single
acoustic phonon branch. In all cases under consideration, the coupling term
will remain unchanged, however the constituents of the interaction will have
different physical interpretations and alter the form of the resulting Green’s
functions in different ways.

The phonon Hamiltonian for all cases is written as

Hph = 1
2
∑
q

(
p†qpq + ω2

qu
†
quq
)
, (6.42)
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where ωq = vs|q|. To linear order in lattice displacement, the normal coordi-
nate uq couples to a density wave ρ−q as [30]

Hint =
∑
q

gqρ−quq. (6.43)

6.2.1 Spinless Fermions Without Density-Interactions
I will first compute the phonon corrections to non-interacting spinless fermions.
The dynamics of fermion densities is captured by the Hamiltonian

Hel =
∑
q

εqa
†
qaq. (6.44)

Following section 6.1.1 with only one phonon mode and spinless aq-bosons, the
theory may be written on the same form as eq. (6.23), with

Φq = Φ†−q = (Qq, uq)T (6.45a)

Πq = Π†−q = (Pq, pq)T (6.45b)

as the basis. The coupling matrix Mq is given by

Mq =
(
ε2
q G̃q
G̃q ω2

q

)
, (6.46)

where

G̃q = Gq
√

2εq = gq

(
L|q|
2π

) 1
2 √

2εq. (6.47)

Mq may be diagonalized as

Dq = S−1
q MqSq =

(
λ2
q,1

λ2
q,2.

)
(6.48)

The density-bosons may now be recovered using eqs. (6.36) and (6.38). I will
use the notation aq = aq,1,Σ1j = Σj ,∆1j = ∆j , where the index 1 is due to
the placement of Qq and Pq in the basis Φq and Πq respectively. I will in the
following also drop the index on the matrices, using the shorthand notation
S1j = Sj , S

−1
j1 = S−1

j . The fields φr(x, t) in eq. (6.6) is in this system given by

φr(x, t) = −i
∑
q

eiqxSj
(

ΣjBq,je−iλq,jt + ∆jB
†
−q,je

iλq,jt
)

(6.49a)

φ†r(x, t) = i
∑
q

e−iqxS−1
j

(
ΣjB†q,je

iλq,jt + ∆jB−q,je−iλq,jt
)
. (6.49b)
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For the computation of Z in eq. (6.8), the exact form of the commutator for
these fields is important. This is evaluated as

[φr(x, t), φ†r′(x
′, t′)] =

∑
q

∑
q′

ei(qx−q
′x′)[aq(t), aq′(t′)]

= δrr′
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|eiq(x−x
′)SjS

−1
j

(
Σ2
je−iλq,j(t−t

′) −∆2
jeiλq,j(t−t

′)
)
.

(6.50)

Note the appearance of opposite phases. In the simplest approximation, the
effect of this term is to reduce the singularity in the Green’s function G>r (x, t)
at x = ut for a characteristic velocity u, and appear as an algebraic pole at
x = −ut with exponent dependent on ∆j .

Computing Z

I will now compute Z(x, t), the quantity defined in eq. (6.8) which appears in
the Green’s function in eq. (6.7). The calculation of Z given in eq. (6.8) requires
the computation of several quantities. The first of which I will compute is the
commutator of φ-fields at x = 0 and t = 0, found by inserting eq. (6.50) as

[φ0, φ
†
0] =

∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q| ' − ln
(

2π
L
ξ

)
, (6.51)

where a large L-approximation is responsible for the rightmost expression. The
quantity Y in eq. (6.4b) is computed as

Y =
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|SjS−1
j

[
eiqx

(
Σ2
je−iλq,jt −∆2

jeiλq,jt
)

− e−iqx
(
Σ2
jeiλq,jt −∆2

je−iλq,jt
)]
.
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The last term appearing in Z involves the expectation value of X2, where X
is given in eq. (6.4a) and takes the form

X =
∑
q

(
e−iqxS−1

j

(
ΣjB†q,je

iλq,jt + ∆jB−q,je−iλq,jt
)

−S−1
j

(
ΣjB†q,j + ∆jB−q,j

)
+ Sj

(
ΣjBq,j + ∆jB

†
−q,j

)
−eiqxSj

(
ΣjBq,je−iλq,jt + ∆jB

†
−q,je

iλq,jt
))

=
∑
q

(
S−1
j ΣjB†q,j

(
e−iqxeiλq,jt − 1

)
+ S−1

j ∆jB−q,j
(
e−iqxe−iλq,jt − 1

)
+ SjΣjBq,j

(
1− eiqxe−iλq,jt

)
+ Sj∆jB

†
−q,j

(
1− eiqxeiλq,jt

))
≡
∑
q

(
C

(1)
j B†q,j + C

(2)
j B−q,j + C

(3)
j Bq,j + C

(4)
j B†−q,j

)
, (6.52)

where I defined the temporary factors C(i)
j . The expectation value 〈X2〉 can

now be computed. In this calculation, terms whose expectation value is pro-
portional to δq,−q′ will be present. These will disappear in the double q-
summation, as each of these summations come with a Heaviside step function
Θ(ηrq). I will therefore ignore these terms, and compute

〈X2〉 =
∑
q

∑
q′

(
C

(1)
j C

(3)
k 〈B

†
q,jBq′,k〉+ C

(2)
j C

(4)
k 〈B−q,jB

†
−q′,k〉

+ C
(3)
j C

(1)
k 〈Bq,jB

†
q′,k〉+ C

(4)
j C

(2)
k 〈B

†
−q,jB−q′,k〉

)
+ ∝ δq,−q′

=
∑
q

∑
q′

(
(C(1)

j C
(3)
j + C

(2)
j C

(4)
j )(1 + 2nB(λq,j))

)
δqq′δjk (6.53)

T=0=
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|SjS−1
j

(
Σ2
j

(
e−iqxeiλq,jt + eiqxe−iλq,jt − 2

)
+ ∆2

j

(
eiqxeiλq,jt + e−iqxe−iλq,jt − 2

))
. (6.54)



6.2. SINGLE PHONON BRANCH 97

I now evaluate Z as

Z = 1
2 〈X

2〉+ 1
2Y + [φ0, φ

†
0]

= 1
2
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|SjS−1
j

×
{

Σ2
j

(
e−iqxeiλq,jt + eiqxe−iλq,jt − 2 + eiqxe−iλq,jt − e−iqxeiλq,jt

)
+∆2

j

(
eiqxeiλq,jt + e−iqxe−iλq,jt − 2− eiqxeiλq,jt + e−iqxe−iλqt

)
+ 2
}

=
∑
q 6=0

∑
j=1,2

Θ(ηrq)
2π
L|q|

e−ξ|q|SjS−1
j

{
Σ2
jeiqxe−iλq,jt + ∆2

je−iqxe−iλq,jt − 2∆2
j

}
,

(6.55)

where I reinstated the j-summation over hybridized density-phonon bands for
clarity. I can now insert Z in eq. (6.7) to obtain the real space Green’s function.
The quantity Z in eq. (6.55) is on the same form as found by Meden et al. [31],
and I now express the exact form of the coefficients to show that the result is
indeed identical.

Explicit Form of Coefficients

With the matrix Mq on the form of eq. (6.46), the eigenvalues are

λ2
q,1 = 1

2

(
ε2
q + ω2

q +
√

(ε2
q − ω2

q )2 + 4G̃2
q

)
(6.56a)

λ2
q,2 = 1

2

(
ε2
q + ω2

q −
√

(ε2
q − ω2

q )2 + 4G̃2
q

)
(6.56b)

and the transformation matrices S and S−1 is given by

S = 1
G̃q

(
λ2
q,1 − ω2

q λ2
q,2 − ω2

q

G̃q G̃q

)
(6.57a)

S−1 = 1√
Qq

(
G̃q −λ2

q,2 + ω2
q

−G̃q λ2
q,1 − ω2

q

)
(6.57b)

where Qq ≡ (ε2
q −ω2

q )2 + 4G̃2
q. The weight of each normal bosonic mode in the

fermionic density-bosons are given by the matrix elements

S1S
−1
1 = 1√

Qq
(λ2
q,1 − ω2

q ) (6.58)

S2S
−1
2 = −1√

Qq
(λ2
q,2 − ω2

q ). (6.59)
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The coefficients appearing in Z is therefore

S1S
−1
1 Σ2

1 =
(εq + λq,1)2 (λ2

q,1 − ω2
q

)
4
√
Qqλq,1εq

S1S
−1
1 ∆2

1 =
(εq − λq,1)2 (λ2

q,1 − ω2
q

)
4
√
Qqλq,1εq

S2S
−1
2 Σ2

2 =
(εq + λq,2)2 (ω2

q − λ2
q,2
)

4
√
Qqλq,2εq

S2S
−1
2 ∆2

2 =
(εq − λq,2)2 (ω2

q − λ2
q,2
)

4
√
Qqλq,2εq

,

(6.60)

which can be put in shorthand notation as

cj,± =
(εq ± λq,j)2|λ2

q,j − ω2
q |

4λq,jεq
√
Qq

, j = 1, 2. (6.61)

These coefficients is the same as those found by Meden et al. [31], who consid-
ered an Einstein model for a single phonon branch. The expression holds for
arbitrary phonon dispersion, and the coefficients satisfy the sum rule∑

j=1,2
(cj,+ − cj,−) = 1 ∀ q 6= 0. (6.62)

Closed Form Approximation

I will now bring the Green’s function to a closed form by solving the q-integral
in eq. (6.55). This is done by approximating the electron-phonon coupling as

gq = αq (6.63)

for sufficiently small scattering momenta q. The coupling that appears in the
energy eigenvalues of eq. (6.56) is

4G̃2
q = 4

(
gq

(
L|q|
2π

) 1
2 √

2εq

)2

= 4α2|q|2 vFL|q|
2

π
≡ β|q|4, (6.64)

where I defined the effective coupling constant β. In this approximation, the
eigenenergies are

λ2
q,1 = |q|

2

2

(
v2
F + v2

s +
√

(v2
F − v2

s)2 + β

)
≡ u2

1|q|2 (6.65a)

λ2
q,2 = |q|

2

2

(
v2
F + v2

s −
√

(v2
F − v2

s)2 + β

)
≡ u2

2|q|2 (6.65b)
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If the coupling is sufficiently large, the energies become imaginary. The proper
lattice vibrations are then unstable, and the system breaks down, as first
pointed out by Wentzel [28]. In the general discussion of electrons coupled to
lattice vibrations in one, Bardeen [29] gave a remark that the application of
the Tomonaga model sets a constraint on coupling strength which is identical
(up to a factor of 2) to the criterion of superconductivity in Fröhlich’s theory
[81]. The requirement of real energy eigenvalues is fulfilled if

β < 4v2
F v

2
s , (6.66)

or equivalently

α <

√
πvF v2

s

L
. (6.67)

In this approximation of the coupling strength, the coefficients cj,± given in
eq. (6.61) are constants

cj,± =
(vF ± uj)2|u2

j − v2
s |

4ujvF
√

(v2
F − v2

s)2 + β
. (6.68)

These are plotted in fig. 6.1 for different coupling strengths β up to the critical
value in eq. (6.66) where the system breaks down. The phonon velocity is
assumed to be smaller than the Fermi velocity.

With the energy eigenvalues λq,j = uj |q| linear in q, I can represent the
total greater Green’s function in eq. (6.7) by solving the integrals in eq. (6.55)
analytically. Denoting eZ = eZ1eZ2 , I compute

Zj =
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
{
cj,+eiqxe−iuj |q|t + cj,−e−iqxe−iuj |q|t − 2cj,−

}
= cj,+

∑
q>0

2π
Lq

e−ξqeiηrqxe−iujqt + cj,−
∑
q>0

2π
Lq

e−ξqe−iηrqxe−iujqt

− 2cj,−
∑
q>0

2π
L|q|

e−ξq

= −cj,+ ln
(

1− exp
(

2π
L

(−ξ + iηrx− iujt)
))

− cj,− ln
(

1− exp
(

2π
L

(−ξ − iηrx− iujt)
))

,

+ 2cj,− ln
(

1− exp
(
−2πξ

L

))
, (6.69)
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Figure 6.1: Dimensionless coefficients cj,± in eq. (6.68) for different values of
the acoustic phonon velocity vs and electron-phonon coupling strength β (see
eq. (6.64)). Top row: c1,+ (left) and c1,− (right). Bottom row: c2,+ (left) and
c2,− (right). The coefficients satisfy the sum rule in eq. (6.62).
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which is now evaluated in the large L-limit, where

1− exp
(

2π
L
A

)
' −2π

L
A (6.70)

for |A| � L. The greater Green’s function G>r (x, t) may then be written in
closed form as

iG>r (x, t)eiµt = iηr
2π

eikF ηrx

(ηrx− u1t+ iξ)c1,+

(
ξ2

ηrx+ u1t− iξ

)c1,−
× 1

(ηrx− u2t+ iξ)c2,+

(
ξ2

ηrx+ u2t− iξ

)c2,−
. (6.71)

This representation is on a more familiar form and is less impenetrable than
G> ∼ exp(Z(x, t)) for acquiring physical insight. In this approximation, the
effect of phonons is more visible; The characteristic velocities of the system are
renormalized, and the peaks appearing in the Green’s function are no longer
simple poles, but rather algebraic singularities. This closed form approxima-
tion is neglecting the q-dependence of the interactions, whose details are known
to be of great importance for the resulting power-law Luttinger behavior of
spectral peaks [33, 34, 36]. Note that the limit ξ → 0 is now difficult without
resulting in a vanishing correlation function. This is avoided by keeping the
“effective” bandwidth ξ finite, and noticing that the coefficients cj,− are very
small compared to cj,+, as can be seen in fig. 6.1. The weight of the factors
∼ ξ2cj,− is nonvanishing.

6.2.2 Spinless Fermions With Density-Interactions

In section 5.3.2, I diagonalized interacting fermion-densities as a Bogoliubov
transformation. By repeating eqs. (5.70), (5.71) and (5.73), the starting point
of the calculations of G>r (x, t) is the Hamiltonian

H =
∑
q

ε̃qβ
†
qβq +Hph +Hint, (6.72)

where Hph and Hint is given in eqs. (6.42) and (6.43). The density wave ρq
appearing in the interaction term is given in terms of eq. (5.50). To find a
representation in terms of the Bogoliubov transformed operators βq, I insert
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eq. (5.73) and find

ρ−q =
(
L|q|
2π

) 1
2

(a†q + a−q)

=
(
L|q|
2π

) 1
2 (
vqβ−q + uqβ

†
q + uqβ−q + vqβ

†
q

)
=
(
L|q|
2π

) 1
2

eθq (β†q + β−q), (6.73)

where uq and vq are parameters that diagonalize the electron Hamiltonian
through eq. (5.70). By inserting this relation into the interaction term of the
Hamiltonian, the Bogoliubov mixing parameter θq effectively renormalizes the
electron phonon coupling strength through

gq → gqeθq , (6.74)

where θq is given in eq. (5.72). Thus the coupling to lattice vibrations is either
enhanced or suppressed, depending if the interaction is attractive or repulsive
for a given q.

Other terms representing a constant shift of the energy is disregarded.
Following the same lines as in section 6.2.1, the creation and annihilation
operators in eqs. (6.36) and (6.38) now read

βq = S1j

(
Σ1jBq,j + ∆1jB

†
−q,j

)
(6.75a)

β†q = S−1
j1

(
Σ1jB

†
q,j + ∆1jB−q,j

)
(6.75b)

for the uncoupled density modes, and

bq = S2j

(
Σ2jBq,j + ∆2jB

†
−q,j

)
(6.76a)

b†q = S−1
j2

(
Σ2jB

†
q,j + ∆2jB−q,j

)
(6.76b)

for the single phonon mode present. In the spinless case, the basis is two-
dimensional, and I am only interested in the single mode βq corresponding
to the Bogoliubov transformed density operators, since the phonon operator
bq does not appear in the electron propagator. The aq-bosons appearing in
φr(x, t) can be represented through eq. (5.73). With implied summation over
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j and dropping the index i = 1, these are

aq = uqβq + vqβ
†
−q

= uqSj

(
ΣjBq,j + ∆jB

†
−q,j

)
+ vqS

−1
1

(
ΣjB†−q,j + ∆jBq,j

)
=
(
uqSjΣj + vqS

−1
j ∆j

)
Bq,j +

(
uqSj∆j + vqS

−1
j Σj

)
B†−q,j

≡
∑
j

(
UjBq,j + VjB

†
−q,j

)
(6.77)

a†q = vqβ−q + uqβ
†
q .

=
(
vqSjΣj + uqS

−1
j ∆j

)
B−q,j +

(
vqSj∆j + uqS

−1
j Σj

)
B†q,j

≡
∑
j

(
V †j B−q,j + U†jB

†
q,j

)
, (6.78)

where I introduced the matrix quantities U(q) and V (q) by (no implicit sum-
mation)

Uj = uqSjΣj + vqS
−1
j ∆j U†j = uqS

−1
j Σj + vqSj∆j (6.79a)

Vj = uqSj∆j + vqS
−1
j Σj V †j = uqS

−1
j ∆j + vqSjΣj . (6.79b)

Inserting the property u2
q − v2

q = 1, these matrix quantities satisfy

UjU
†
j − VjV

†
j = (uqSjΣj + vqS

−1
j ∆j)(vqSj∆j + uqS

−1
j Σj)

− (uqSj∆j + vqS
−1
j Σj)(vqSjΣj + uqS

−1
j ∆j)

= uqSjΣjvqSj∆j − uqSj∆jvqSjΣj + vqS
−1
j ∆juqS

−1
j Σj − vqS−1

j ΣjuqS−1
j ∆j

+ u2
qSjS

−1
j (Σ2

j −∆2
j ) + v2

qS
−1
j Sj(∆2

j − Σ2
j )

(6.39)= SjS
−1
j , (6.80)

which implies the sum rule

∑
j

(
UjU

†
j − VjV

†
j

)
= 1. (6.81)

The time evolution of the B-bosons may now enter, and I compute the
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commutation relations for the fermion density bosons, yielding

[aq(t), a†q′(t
′)] = [UjBq,j(t) + VjB

†
−q,j(t), V

†
kB−q′,k(t′) + U†kB

†
q′,k(t′)]

= UjV
†
k [Bq,j(t), B−q′,k(t′)]︸ ︷︷ ︸

=0

+UjU†k [Bq,j(t), B†q′,k(t′)]

+ VjV
†
k [B†−q,j(t), B−q′,k(t′)] + VjU

†
k [B†−q,j(t), B

†
q′,k(t′)]︸ ︷︷ ︸

=0

= UjU
†
ke−iλq,jteiλq′,kt

′
δqq′δjk − VjV †k eiλq,jte−iλq′,kt

′
δqq′δjk

= (UjU†j e−iλq,j(t−t
′) − VjV †j eiλq,j(t−t

′))δqq′ . (6.82)

As in the case with no density-interactions, eq. (6.81) that the bosons still
satisfy bosonic commutation relations at equal times [aq(t), a†q(t)] = 1. The
fields φ(x, t) are now given by

φr(x, t) = −i
∑
q

eiqx
(
UjBq,je−iλq,jt + VjB

†
−q,je

iλq,jt
)

(6.83a)

φ†r(x, t) = i
∑
q

e−iqx
(
V †j B−q,je

−iλq,jt + U†jB
†
q,je

iλq,jt
)

(6.83b)

Comparing these to the case in eq. (6.49), the cases are similar with the sub-
stitutions SjΣj → Uj and Sj∆j → Vj . The fields satisfy the commutation
relation

[φr(x, t), φ†r′(x
′, t′)] =

∑
q

∑
q′

eiqxe−iq
′x′ [aq(t), a†q′(t

′)]

= δrr′
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|eiq(x−x
′)
∑
j=1,2

(
UjU

†
j e−iλq,j(t−t

′) − VjV †j eiλq,j(t−t
′)
)
.

(6.84)

Computing Z

As a reminder, Z is given in eq. (6.8). The commutator [φ0, φ
†
0] is unchanged

compared to eq. (6.51) without density-interactions, but X and Y appearing
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in Z will be affected. I now compute these, starting with X which is

X = i(φ† + φ)− i(φ†0 + φ0)

=
∑
q

{
e−iqx

(
V †j B−q,je

−iλq,jt + U†jB
†
q,je

iλq,jt
)
−
(
V †j B−q,j + U†jB

†
q,j

)
+
(
UjBq,j + VjB

†
−q,j

)
− eiqx

(
UjBq,je−iλq,jt + VjB

†
−q,je

iλq,jt
)}

=
∑
q

(
U†jB

†
q,j

(
e−iqxeiλq,jt − 1

)
+ V †j B−q,j

(
e−iqxe−iλq,jt − 1

)
+ UjBq,j

(
1− eiqxe−iλq,jt

)
+ VjB

†
−q,j

(
1− eiqxeiλq,jt

))
, (6.85)

whose form is equivalent with that of eq. (6.52). I can therefore at once write
down the expectation values 〈X2〉 at once, using the form in eq. (6.53). The
result is

〈X2〉 =
∑
q

∑
q′

{[
U†j
(
e−iqxeiλq,jt − 1

)
Uj
(
1− eiqxe−iλq,jt

)
+ V †j

(
e−iqxe−iλq,jt − 1

)
Vj
(
1− eiqxeiλq,jt

)]
(1 + 2nB(λq,j))

}
δqq′

T=0=
∑
q

Θ(ηrq)
2π
L|q|

e−ξ|q|
{
UjU

†
j

(
e−iqxeiλq,jt + eiqxe−iλq,jt − 2

)
+ V †j Vj

(
eiqxeiλq,jt + e−iqxe−iλq,jt − 2

)}
. (6.86)

Y is given in eq. (6.4b) as

Y = [φ, φ†0] − [φ0, φ
†]

=
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
{

eiqx
(
UjU

†
j e−iλq,jt − VjV †j eiλq,jt

)
− e−iqx

(
UjU

†
j eiλq,jt − VjV †j e−iλq,jt

)}
(6.87)
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I can now compute Z as

Z = 1
2 〈X

2〉+ 1
2Y + [φ0, φ

†
0]

= 1
2
∑
q

Θ(ηrq)
2π
L|q|

e−ξ|q|

×
{
UjU

†
j

(
e−iqxeiλq,jt + eiqxe−iλq,jt − 2 + eiqxe−iλq,jt − e−iqxeiλq,jt

)
+ VjV

†
j

(
eiqxeiλq,jt + e−iqxe−iλq,jt − 2− eiqxeiλq,jt + e−iqxe−iλq,jt

)
+ 2
}

=
∑
q

Θ(ηrq)
2π
L|q|

e−ξ|q|
(
UjU

†
j (eiqxe−iλq,jt − 1) + VjV

†
j

(
e−iqxe−iλq,jt − 1

)
+ 1
)

=
∑
q

∑
j=1,2

Θ(ηrq)
2π
L|q|

e−ξ|q|
{(
UjU

†
j eiqx + VjV

†
j e−iqx

)
e−iλq,jt − 2VjV †j

}
,

(6.88)

where the j-summation is reinserted for explicitness. The exact Green’s func-
tion is given in terms of Z in eq. (6.7). This integral can in most cases not
be computed analytically, however some approximations can be made to bring
G>r to a form for which physical interpretations are easier to extract.

Explicit Form of Coefficients

The eigenvalues of the combined problem with density-density interactions are
equivalent to those in eq. (6.56), but with an altered coupling constant given
by the transformation

G̃q → eθq G̃q, (6.89)

where θq is determined by the Bogoliubov transformation that decouples the
density-density interaction in eq. (5.72). Hence, the S-matrices has the same
form as in eq. (6.57), and by inserting these in eq. (6.79), I find

VjV
†
j = (uqSj∆j + vqS

−1
j Σj)(uqS−1

j ∆j + vqSjΣj)
= u2

qSjS
−1
j ∆2

j + v2
qSjS

−1
j Σ2

j + uqvq∆jΣj((Sj)2 + (S−1
j )2)

≡ cj,− + v2
q (cj,+ + cj,−) + uqvqdj . (6.90)

Here, I defined the coefficients

dj ≡ ∆jΣj((Sj)2 + (S−1
j )2). (6.91)

Since these coefficients do not include terms on the form SjS
−1
j , the normal-

ization of S require extra care. By ensuring that determinants of the matrices
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in eq. (6.57) are equal, the coefficients are found to be

dj =
(
ε2
q − λ2

q,j

)
4λq,jεq

(
(λ2
q,j − ω2

q )2

G̃q
√
Qq

+ G̃q√
Qq

)
, (6.92)

where I have inserted the definitions of Σj and ∆j in eq. (6.37).
UjU

†
j is similarly found to be

UjU
†
j = cj,+ + v2

q (cj,+ + cj,−) + uqvqdj . (6.93)

The first two terms of V V † and UU† involves the coefficients cj,± from eq. (6.61).
Note that in the limit of zero coupling, i.e. β → 0, and with the assumed form
of the coupling 4G̃2

q = β|q|4, the coefficients dj in eq. (6.92) goes as

d1 = −
√
β

8v2
F

+O
(
β

3
2

)
(6.94a)

d2 =
√
β

8vsvF
+O

(
β

3
2

)
. (6.94b)

Closed Form Approximation

In the case of non-interacting fermions in section 6.2.1, I considered a coupling
gq = αq to the acoustic phonon branch. I will approximate eθq ' eθ0 and
absorb this into the interaction strength. Repeating the assumption of the
electron phonon coupling in the present case, the coefficients dj in eq. (6.92)
become q-independent as well as cj,±. The fermion interaction introduces new
quantities uq and vq satisfying u2

q − v2
q = 1. These quantities are dependent

on the specific interaction. The most common method of continuing analytic
investigations [32–34, 82] is by replacing the potential with an exponential
cutoff resulting in

sinh2(θq) = v2
q = νe−Λ|q|. (6.95)

Unlike the normal geology models, phonon interactions introduces an anoma-
lous term with the product uqvq of both Bogoliubov weights. Using the ap-
proximation in eq. (6.95), this term can for small coupling strengths ν be
written

uqvq =
√

(1 + νe−Λ|q|)νe−Λ|q|

= ν
1
2 e−

Λ|q|
2

(
1 + ν

2 e−Λ|q| +O
(
ν2))

' ν 1
2 e−

Λ|q|
2 + ν

3
2

2 e−
3Λ|q|

2 . (6.96)
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The resulting greater Green’s function is by eq. (6.7)

G>r (x, t)eiµt = eikF ηrx

L
eZ1+Z2 , (6.97)

with Z = Z1 +Z2 given in eq. (6.88). Inserting eq. (6.90) in the expression for
Z and the above approximations for the density-density interactions, I find in
the large L-limit

eZ =
∏
j=1,2

{(
1

2π
L (ξ − iηrx+ iujt)

)cj,+ ( ( 2π
L ξ
)2

2π
L (ξ + iηrx+ iujt)

)cj,−

×
(

Λ2

(Λ− iηrx+ iujt)(Λ + iηrx+ iujt)

)ν(cj,++cj,−)

×
( 1

4Λ2

( 1
2Λ− iηrx+ iujt)( 1

2Λ + iηrx+ iujt)

)ν 1
2 dj

×
( 9

4Λ2

( 3
2Λ− iηrx+ iujt)( 3

2Λ + iηrx+ iujt)

) 1
2ν

3
2 dj

(6.98)

with the approximation ξ + Λ ' Λ. This form of the Green’s function is
hardly any more convenient to work with than the exact expression using Z
in eq. (6.88). Moreover, this approximation puts a strong restriction on the
strength of the scattering potential, whose assumed form is already dubious.
This restriction can be avoided1 by including more terms of the Taylor ex-
pansion in eq. (6.96), which will appear as cloud factors in eq. (6.98) with
decreasing singularities. The analytic expression for Z given in eq. (6.88) still
hold, where I do not assume the specific interaction nor the approximate form
of the electron-phonon coupling, which is known to be important for the shape
of spectral peaks [34].

By setting the density-interaction to zero, i.e. ν = 0, I recover the same
expression for G>r as in eq. (6.71). Correspondingly, I can turn off the electron-
phonon interaction by letting β → 0. The coefficients dj follow eq. (6.94) and
is 0 in this limit. The remaining constants cj± defined in eq. (6.61) is cj+ = δj1
and cj− = 0. Lastly, u1 is the unperturbed Fermi velocity vF . By inserting
these in eq. (6.98), the resulting Green’s function in the limit of no electron-
phonon coupling is

iG>r (x, t)eiµt = iηr
2π eikF ηrx 1

x− ηrvF t+ iηrξ

(
Λ2

x2 − (vF t− iΛ)2

)ν
. (6.99)

1I still assume ν to be less than one, such that the Taylor series converges.
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This is the expected result, as it is the closed form approximation of eq. (5.86)
under the same assumptions [32].

6.2.3 Spinful Fermions
As shown in section 5.3.1, the dynamics of the spinful system can be split
into independent degrees of freedom for separate quantum numbers. In the
problem of electron-phonon interactions, this is particularly useful since the
interaction term ∑

q,σ

gqρ−q,σuq (6.100)

is spin independent. The charge and spin-parts of the density waves ρr(q)
and σr(q) are defined in eq. (5.58). The corresponding boson operators aq,c
and aq,s are defined in eq. (5.59), describing charge (c) and spin (s) density
wave fluctuations. The bosons aq,σ is related to these by eq. (5.60). The total
density wave excitation appearing in the interaction term can be represented
in terms of ρ(q), σ(q) through∑

r

ρr,σ(q) = 1
2
∑
r

(ρr(q) + σσr(q)) . (6.101)

Summing over spins thus cancels out the spin-density wave σr(q) if there is no
other spin-dependency, and the density wave interacting with phonons is

ρ−q =
(

π

L|q|

) 1
2 (
a†q,c + a−q,c

)
. (6.102)

The interaction term of the Hamiltonian is therefore

Hint =
∑
q

gq

(
π

L|q|

) 1
2

(a†q,c + a−q,c)uq, (6.103)

and the total Hamiltonian for the dynamics of the system is

H =
∑
q

εq(a†q,caq,c + a†q,saq,s) +Hph +Hint, (6.104)

where Hph is given in eq. (6.19) and εq = vF |q|. That one of the normal
modes of this model is a spin wave oscillating with the unperturbed dispersion
was pointed out by Engelsberg and Varga [30] analyzing the eigenmodes of
the system. This is already evident from the Hamiltonian in eq. (6.104),which
is already diagonal in the spin-operators. The diagonalization procedure of
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the charge terms is identical to the spinless case in section 6.2.1, with the
replacement

G̃q →
√

2G̃q. (6.105)

By inserting the representation of charge-density bosons found in eqs. (6.36)
and (6.38) into the spin dependent operators in eq. (5.60), the resulting time
evolved operators are

aq,σ(t) = 1√
2

(
Sj

(
ΣjBq,j(t) + ∆jB

†
−q,j(t)

)
+ σaq,s(t)

)
(6.106a)

a†q,σ(t) = 1√
2

(
S−1
j

(
ΣjB†q,j(t) + ∆jB−q,j(t)

)
+ σa†q,s(t)

)
, (6.106b)

and the commutation relations are

[aq,σ(t), a†q′,σ′(t
′)] = 1

2

(
SjS

−1
k

(
ΣjΣk[Bq,j(t), B†q′,k(t′)]

+ ∆j∆k[B†−q,j , B−q′,k(t′)]
)

+ σσ′[aq,s(t), a†q′,s(t
′)]
)

= 1
2

(
SjS

−1
j

(
Σ2
je−iλq,j(t−t

′) −∆2
jeiλq,j(t−t

′)
)

+ σσ′e−iεq(t−t
′)
)
δqq′ . (6.107)

At t = t′, eq. (6.107) reduces to the normal commutator

[aq,σ(t), a†q′,σ′(t)] = δσσ′δqq′ . (6.108)

The spin-dependent fields φr,σ(x, t) are now given by

φr,σ(x, t) = −i√
2

∑
q

eiqx
{
Sj

(
ΣjBq,je−iλq,jt + ∆jB

†
−q,je

iλq,jt
)

+σaq,se−iεqt
}

(6.109a)

φ†r,σ(x, t) = i√
2

∑
q

e−iqx
{
S−1
j

(
ΣjB†q,je

iλq,jt + ∆jB−q,je−iλq,jt
)

+ σa†q,seiεqt
}
, (6.109b)

which includes the quantum number σ. However, this quantum number only
serves a purpose in the calculations of correlation functions involving fermion
fields with opposite spin. For the computation of Green’s functions, the spins
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are of the two fields are taken to be equal. The commutator of the fields is

[φr,σ(x, t), φ†r′,σ′(x
′, t′)] =

∑
q

∑
q′

ei(qx−q
′x′)[aq,σ(t), aq′,σ′(t′)]

= δrr′
∑
q 6=0

Θ(ηrq)
π

L|q|
e−ξ|q|eiq(x−x

′)

×
(
SjS

−1
j

(
Σ2
je−iλq,j(t−t

′) −∆2
jeiλq,j(t−t

′)
)

+ σσ′e−iεq(t−t
′)
)
. (6.110)

For helical states, the delta-function δrr′ for left / right branches is equivalent
to δσσ′ , as right-moving electrons carry spin opposite to that of left-movers.

Computing Z

With the explicit form of φ for the spinful case, I can proceed with the calcula-
tions of the greater Green’s function which is on the form G>r ∼ exp(Z), where
Z is defined in eq. (6.8) and its constituent operators X,Y in eq. (6.4). For
equal coordinates, the commutator of the φ-fields remain unchanged compared
to eq. (6.51) by the inclusion of spin,

[φ0, φ
†
0] =

∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|, (6.111)

but both X and Y gain additional terms corresponding to the spin-degrees.
Y is

Y ≡ [φ, φ†0] − [φ0, φ
†]

= δrr′
∑
q

Θ(ηrq)
π

L|q|
e−ξ|q|

{
eiqx

(
SjS

−1
j

(
Σ2
je−iλq,jt −∆2

jeiλq,jt
)

+ e−iεqt
)

− e−iqx
(
SjS

−1
j

(
Σ2
jeiλq,jt −∆2

je−iλq,jt
)

+ eiεqt
)}
, (6.112)

and X is computed as

X ≡ i(φ† + φ)− i(φ†0 + φ0)

=
∑
q

(
e−iqxa†q,σ(t)− a†q,σ(0) + (aq,σ(0)− eiqxaq,σ(t)

)
(6.106)= 1√

2

∑
q

{
e−iqx

(
S−1
j

(
ΣjB†q,je

iλq,jt + ∆jB−q,je−iλq,jt
)

+ σa†q,seiεqt
)

−
(
S−1
j

(
ΣjB†q,j + ∆jB−q,j

)
+ σa†q,s

)
+
(
Sj

(
ΣjBq,j + ∆jB

†
−q,j

)
+ σaq,s

)
− eiqx

(
Sj

(
ΣjBq,je−iλq,jt + ∆jB

†
−q,je

iλq,jt
)

+ σaq,se−iεqt
)
. (6.113)
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The expectation value 〈X2〉 can now be computed using the commutation
properties of the bosonic operators in X. Since most operators commute, only
terms with one creation- and one destruction operator will survive when taking
the expectation value, and I obtain

〈X2〉 = 1
2
∑
q

∑
q′

{
〈B†q,jBq′,k〉S

−1
j Σj

(
e−iqxeiλq,jt − 1

)
SkΣk

(
1− eiq

′xe−iλq′,kt
)

+ 〈B−q,jB†−q′,k〉S
−1
j ∆j

(
e−iqxe−iλq,jt − 1

)
Sk∆k

(
1− eiq

′xeiλq′,kt
)

+ 〈B†−q,jB−q′,k〉Sj∆j

(
1− eiqxeiλq,jt

)
S−1
k ∆k

(
e−iqxe−iλq′,kt − 1

)
+ 〈Bq,jB†q′,k〉SjΣj

(
1− eiqxe−iλq,jt

)
S−1
k Σk

(
e−iq

′xeiλq′,kt − 1
)

+ 〈a†q,saq′,s〉
(
e−iqxeiεqt − 1

) (
1− eiq

′xe−iεq′ t
)

+ 〈aq,sa†q′,s〉
(
1− eiqxe−iεqt

) (
e−iq

′xeiεq′ t − 1
)
. (6.114)

At zero temperature, the Bose distribution is zero for all q 6= 0, such that

〈X2〉 T=0= 1
2
∑
q

Θ(ηrq)
2π
L|q|

e−ξ|q|
{
SjS

−1
j

[
Σ2
j (eiqxe−iλq,jt + e−iqxeiλq,jt − 2)

+ ∆2
j (eiqxeiλq,jt + e−iqxe−iλq,jt − 2)

]
+ (eiqxe−iεqt + e−iqxeiεqt − 2)

}
.

(6.115)

The function Z can now be evaluated as

Z = 1
2 〈X

2〉+ 1
2Y + [φ0, φ

†
0]

= 1
4
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|
{
cj,+

(
2eiqxe−iλq,jt − 2

)
+ cj,−

(
2e−iqxe−iλq,jt − 2

)
+ (2eiqxe−iεqt − 2) + 4.

}
≡ Zs + Zc, (6.116)

with
Zs = 1

2
∑
q 6=0

Θ(ηrq)
2π
L|q|

e−ξ|q|eiqxe−ivF |q|t (6.117)

and

Zc = 1
2
∑
q,j

Θ(ηrq)
2π
L|q|

e−ξ|q|
{(
cj,+eiqx + cj,−e−iqx

)
e−iλq,jt − 2cj,−

}
,

(6.118)
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where I use the same notation as in eq. (6.61) for the coefficients SjS−1
j Σ2

j and
SjS

−1
j ∆2

j appearing in eq. (6.115). I have for clarity reinstated the summation
over j. Notice the similarity of Zc with Z in the spinless case given in eq. (6.55).
The only difference is a factor 1/2 corresponding to a reduction of eventual
singularities appearing in closed form approximations of the Green’s function.
Zs represents a non-interacting system with a square root singularity at ηrx =
vF t. Denoting the interacting spinless Green’s function by G>r (x, t; g), the
spinful Green’s function is therefore

iG>rσ(x, t)eiµt = eikF ηrx

L
eZs+Zc =

(
iG>r (x, t, 0)iG>r (x, t,

√
2g)
) 1

2
, (6.119)

also pointed out by Meden et al. [31] and announced in eq. (6.9).

Closed Form Approximation

As for the spinless case, I approximate the electron-phonon coupling as gq '
αq. The charge-part of the Hamiltonian reduces to eq. (6.71) with all exponents
reduced by a factor 2. Inserting eq. (6.119), I obtain

iG>rσ(x, t)eiµt = iηreiηrkF x

2π

(
1

ηrx− vF t+ iξ

) 1
2
(

1
ηrx− u1t+ iξ

)c1,+/2
×
(

1
ηrx− u2t+ iξ

)c2,+/2( ξ2

ηrx+ u1t− iξ

)c1,−/2( ξ2

ηrx+ u2t− iξ

)c2,−/2
.

(6.120)

This propagator involves square root correlations in the spin-channel, and can
not be explained as a Fermi liquid quasiparticle. Moreover, since vF 6= uj
for α 6= 0, the Green’s function shows that the system exhibit spin-charge
separation caused by phonon interactions alone.

6.2.4 Conclusions, Single Branch Correction
I have in this section computed the real space single particle greater Green’s
function for multiple interacting systems, and found explicit formulas for the
function Z(x, t) appearing as iG> ∼ exp(Z). Several closed form expressions
has been found for an assumed linear coupling gq = αq.

For the spinless case with density-density-interactions, additional coeffi-
cients dj is introduced. These scale as dj ∼ α for small couplings. The closed
form approximation in eq. (6.98) is dubious because of a suppressed Taylor
expansion and restriction on the scattering potential. I check that the zero
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coupling limit of this representation reproduces earlier results. With the ad-
dition of electron density interactions, I generalize the results of Meden et al.
[31] by the integral representation in eq. (6.88).

For a general q-dependent interaction potential that cannot be approx-
imated by sinh2(θq) ∼ νe−Λ|q|, obtaining a closed form expression for the
Green’s function is difficult. Obtaining analytic spectral properties of the sys-
tem requires a double Fourier transform of the Green’s function. At one of
the edges of a QSH insulator, the right-movers carry spin up, and left-movers
spin down. The correlation functions for both is known through the parameter
ηr = ηrσ which is ηR↑ = −ηL↓ = 1. This describes helicity as a single quantum
number, which is modeled as a spinless Luttinger liquid [57, 58].

6.3 Multibranch Nanoribbon Phonons

In this section, I extend the theory to consider the interaction with several
phonon branches. The procedure follows the theory described in section 6.1.1,
but the explicit diagonalization and integration is performed numerically. I
will denote the number of independent phonon branches with nν , for which
each phonon branch has dispersion ωq,ν and couples to density waves with
the coupling strength gνq . The effective coupling element G̃q from eq. (6.47) is
plotted in fig. 6.2 over half the Brillouin zone for the five lowest energetically
lying energy eigenstates. For small q, the effective coupling behaves as |G̃q| ∼
q2, demonstrating that the approximations made in the single phonon branch
case is qualitatively correct. In fig. 6.3, the phonon spectrum is plotted with
the effective coupling constant marked. For the acoustic branches, the effective
coupling constant correlates with the localization shown in fig. 4.10. This is
not the case for the localized optical branches, but these are more important
for sufficiently small q.

Since the diagonalization procedure follows the same lines as for a single
phonon branch, the Green’s G>r function may immediately be written on the
same form as in eq. (6.7), where Z depends on the specific system. Unless
otherwise stated, I will set the Fermi velocity to vF = 4eVa

~ as in eq. (4.56).
The resulting Green’s functions are computed for small Ny. I will from here
only consider right-moving electrons, i.e. r = R and ηR = 1. If spin degrees
are accounted for, a spin-up projection is assumed. The Fermi momentum is
set to kF = π/6a, and the effective bandwidth is in all calculations taken to
be ξ = 1/kF . The system length L is determined by the desired discretization
resolution. In these calculations, this is set to L = 1500a.
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Figure 6.2: The effective coupling parameter G̃νq for the five energetically
lowest lying phonon modes ν. The width of the system is Ny = 31. The cou-
pling for the remaining modes are not qualitatively different, and the acoustic
modes marked in blue and orange are the modes with strongest coupling at
the Brillouin zone boundary.

6.3.1 Spinless Fermions Without Density-Interactions
In the single branch case, the combined coefficients SjS−1

j Σj and SjS
−1
j Σj

was introduced for j = 1, 2. For the multi-branch case on an armchair edge
graphene nanoribbon with nν independent phonon modes, the index j takes
the values

j = 1, . . . , nν + 1 = 1, . . . , 4Ny + 1, (6.121)

where Ny is the number of carbon atoms of the nanoribbon along its width,
These coefficients are shown for a small system size and small q in fig. 6.4.
They satisfy the same sum rule as in eq. (6.62), whose generalization is to the
multibranch case is

4Ny+1∑
j=1

SjS
−1
j (Σ2

j −∆2
j ) = 1, (6.122)

which is numerically fulfilled with high precision for all values of q. I reca-
pitulate the coefficients that were introduced in section 6.1. The quantities
Sj = Sj1 are components of the first column in the matrix S that diagonalize
the boson Hamiltonian. Written in terms of generalized coordinates and con-
jugate momenta, the diagonalization is a similarity transform M = SDS−1.
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Figure 6.3: Phonon spectrum and effective coupling constant G̃q for a system
of width Ny = 31. For all phonon modes, the coupling goes to zero as q → 0.

Thus, Sj picks out the projection of normal modes onto the fermionic density
bosons which I have conveniently put on index 1 in the chosen basis. The
coefficients Σj and ∆j are defined in eq. (6.37) and relates the energy of the
non-interacting excitations to the ones in the interacting system. These sat-
isfy the relation Σ2

j −∆2
j = 1∀j and can hence be associated with hyperbolic

functions which is expected in an exactly solvable interacting boson system.
This relation also makes the sum rule in eq. (6.122) evident.

For the spinless case without density-density interactions, the form of Z
follows eq. (6.55), which in the multi-branch case is given by

Z =
∑
q>0

4Ny+1∑
j=1

2π
Lq

e−ξqSjS−1
j

{
Σ2
jeiqxe−iλq,jt + ∆2

je−iqxe−iλq,jt − 2∆2
j

}
.

(6.123)
The hybridized energy spectrum λq,j for a system of width Ny = 31 is

show in fig. 6.5, where the projection onto density-bosons is shown. The
fingerprints of density-bosons are small if the effective coupling is smaller than
the energy gap between phonon modes. For vF |q| > ωΓ ' 0.2eV, the fermions
are close to unaltered by the phonons. This is also evident from the form of the
coefficients shown in fig. 6.4, which is completely dominated by a single value
close to 1 for qa > 0.05. As noted, the coupling with the highest energy level
optical branches is strong, and the hybridization almost erase the fingerprints
of density-oscillations.
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Figure 6.4: The q-dependent factors appearing in Z for a system with width
Ny = 5 corresponding to j = 1, . . . , 21. Notice that for larger q, only one
coefficient dominates in the upper plot. The coefficients in the bottom panel
are three orders of magnitude smaller than those in the upper panel.

The relative correction to the real space Green’s function is shown in fig. 6.6
for a small system Ny = 6, and the effect of phonon interactions to the oth-
erwise non-interacting system is apparent. The singularity in the vicinity of
x = vF t is reduced, and a cloud of particle-hole excitations caused by phonon
interactions lagging behind the electron density wave gets increasingly visi-
ble for larger x, t. Since the characteristic singularity at x = vF t is reduced
compared to the free propagator G0, it is expected that this will appear as a
broadening of spectral peaks. For Landau quasiparticles, this corresponds to
a finite lifetime τk.

6.3.2 Spinless Fermions With Density-Interactions

As shown by comparing eqs. (6.55) and (6.88), the change of Z(x, t) when
adding density interactions is represented by the transformation

SjS
−1
j Σ2

j → UjU
†
j (6.124a)

SjS
−1
j ∆2

j → VjV
†
j , (6.124b)
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Figure 6.5: Hybridization of phonons and density on the armchair edges for
a system with Ny = 31 at small values of qa. The color of the branches is
determined by the projection onto density-bosons ρψ which transitions close
to avoided crossings.

where Uj and Vj are defined in eq. (6.79) and satisfy the sum rule

4Ny+1∑
j=1

(
UjU

†
j − VjV

†
j

)
= 1. (6.125)

Hence, Z states for the spinless case

Z =
∑
q>0

4Ny+1∑
j=1

2π
Lq

e−ξq
{(
UjU

†
j eiqx + VjV

†
j e−iqx

)
e−iλq,jt − 2VjV †j

}
. (6.126)

For a repulsive interaction, such as for instance the Coulomb interaction be-
tween electrons, the Bogoliubov mixing parameter θq given in eq. (5.72) is
negative. As in eq. (6.74), the density-density interaction renormalize the
electron-phonon coupling through gq → gqeθq , which means that the phonon
interactions are suppressed for repulsive interactions.

In the numerical calculations, I have taken the density-density interaction
to be on the form of a Coulomb interaction

Vq = ν

q2 , (6.127)
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Figure 6.6: The absolute relative correction to the spinless Green’s func-
tion G0 caused by phonon interactions in the spinless case without density-
interactions.

where ν is some coupling scale which I can vary. The renormalized Fermi
dispersion is then given by eq. (5.68) as

ε̃q = |q|vF
√

1 + ν

πvF q2 . (6.128)

Requiring that the Bogoliubov mixing parameter θq and energy is real puts
a restriction on the interaction strength. All ν > 0 is allowed, however the
strength of attractive potentials are bounded by

ν > −4π3vF
L2 ≡ −ν0, (6.129)

which is vanishing in the continuum limit L→∞. The excitation spectrum of
the combined electron-phonon system is affected due to both the renormalized
coupling constant and dispersion. In the low q limit, the spectrum goes as

ε̃q = ωP + 1
2m∗ q

2 +O
(
q4), (6.130)

where the effective mass is given by

m∗ ≡ 1
vF

√
ν

πvF
, (6.131)
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Figure 6.7: Hybridized bosonic excitation spectrum with Coulomb-like in-
teraction and strength ν = ν0 for a system of width Ny = 31. The colors
is determined by the projection of eigenstates onto Bogoliubov transformed
density-bosons ρ̃ψ. The plasma frequency of this system is ωP ' 0.05eV.

and the plasma frequency is

ωP ≡
√
νvF
π
. (6.132)

This non-zero frequency describes oscillations in the electron density with zero
propagation. As also pointed out by Tomonaga [25], ωP is independent on the
system length for a repulsive Coulomb-like interaction and only depends on
the strength ν. The onset of density-interactions thus causes the excitation of
oscillations in the long distance limit to cost a finite amount of energy, and
also acquire a mass.

The hybridization between phonons and Bogoliubov transformed density-
bosons in the presence of Coulomb-interaction is shown in fig. 6.7 for the
same system as in fig. 6.5. If the plasma frequency ωP is greater than the
phonon scale ωΓ, the presence of phonons will not affect the resulting fermion
propagation as the fermions and phonons will not hybridize.

Since the low-energy limit of the density-bosons behaves different from
for the case without density-density interactions, the behavior of momentum
resolved Green’s functions near the Fermi points q = k−ηrkF is expected to be
qualitatively different from the ν = 0 case. This is expected, as any interaction
in the “g-ology”-models are known to destroy the discontinuity at the Fermi
level, even at zero temperature [23], and the characteristic power-law behavior
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Figure 6.8: Relative correction to the non-interacting Green’s function
G0(x, t) without (left) and with (right) electron phonon coupling present. The
interaction strength is in both panels ν = 0.1ν0, and the system size is Ny = 6.

of the spectral function is known highly dependent of the specific interaction
[34].

The relative correction including density-density interactions is shown for a
small system size in fig. 6.8 both with and without electron-phonon corrections
present. The coupling scale is set to ν = 0.1ν0.

At this coupling strength, the Coulomb interaction is the most apparent
contribution to the relative difference. This is consistent with Tomonaga [25],
who pointed out that the effect of external perturbations to the plasma fre-
quency is negligible for small q. The cone-like shape appears due to the non-
vanishing plasma frequency ωP and nonlinear spectrum in this finite system.
However, the presence of phonons reduces the sharpness of the cone edges near
x = vF t, and partly recovers the amplitude reduction in the Green’s function
by electron interactions, as seen by the inverse “S”-like shape in the right panel
of fig. 6.8.

6.3.3 Spinful Fermions
For the spinful case, Z is given by the constituent spin and charge sectors
Zs + Zc shown in eqs. (6.116) to (6.118). Since Zs is independent of the
phonon coupling, the relative correction to the Green’s function will therefore
only be dependent on Zc, which for the spinless case has a rescaled electron-
phonon coupling constant g →

√
2g. The coefficients appearing in Zc is shown

in fig. 6.9 for the same parameters as fig. 6.4.
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Figure 6.9: The same coefficients as in fig. 6.4, but with a rescaled coupling
g →

√
2g which appears in the spin-dependent Green’s functions. The coeffi-

cients SjS−1
j ∆2

j reach values over twice the largest value in the spinless case,
but is still multiple orders of magnitude smaller than SjS−1

j Σ2
j .

In the case of no electron-electron interaction, the spin-sector is unaltered
by the onset of electron-phonon coupling, and propagates with the free Fermi
velocity vF . In the charge sector, the hybridization of density bosons and
phonons appears as a cloud of particle-hole excitations away from the charac-
teristic singularity at x = vF t. As pointed out, this suggests that spin-charge
separation occur in the absence of spin-dependent interactions.

I now add a spin-dependent potential as in eq. (5.63). I take the shift from
the Coulomb interaction in eq. (6.127) to be a constant on the form

Uq = U ≡ νs
π

2 vF , (6.133)

where νs is dimensionless and sets the coupling scale for the spin sector. The
renormalized dispersion for Bogoliubov spin-density bosons is then

ε̃s,q = |q|vF
√

1 + νs ≡ ṽs|q| (6.134)

which means that the constant shift to the Coulomb interaction is restricted
to

U ≥ −π2 vF , (6.135)
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and the Bogoliubov mixing parameter θq,s is constant and determined by

tanh(2θq,s) = −νs
νs + 2 . (6.136)

The generalization of Zs(x, t) to include spin-dependent interactions is com-
pletely equivalent to the spinless case without density-interactions in eq. (5.86),
and states

Zs =
∑
q>0

π

Lq
e−ξq

(
eiqxe−iṽF qt + 2 sinh2(θq,s)

(
cos(qx)e−iṽF qt − 1

))
. (6.137)

With the assumed spin-dependent potential, this integral can be solved ana-
lytically, and the spin-part of the Green’s function is on the form

Gs ∼
(

1
x− ṽst+ iξ

) 1
2
(

ξ2

(x− ṽst+ iξ)(−x− ṽst+ iξ)

) γs
4

, (6.138)

where I have skipped prefactors, and introduced the constantγs ≡ sinh2(θq,s)
which for |νs| � 1 is γs ' ν2

s

16 . The relative correction to the spin sector is for
weak interactions therefore dominated by

Gs
G0
s

∼
(

x− vF t+ iξ

x− vF
√

1 + νst+ iξ

) 1
2

, (6.139)

since the “cloud” factor in eq. (6.138) is very close to unity for small couplings.
As seen in eqs. (6.134) and (6.139), a finite νs causes spin-densities to propagate
with a velocity different than the unperturbed Fermi velocity. The charge-
sector remains unaffected by the inclusion of spin dependency, apart from
the aforementioned normalization of density-operators and rescaling of the
electron-phonon coupling strength.

The relative correction to the Green’s function is shown in fig. 6.10 for an
armchair ribbon of width Ny = 6 where electron-phonon coupling and spin-
interaction is turned on individually. The strength of the Coulomb interactions
is ν = 0.1ν0 and the spin-dependent shift is taken to be νs = 0.01. For the case
without Coulomb or spin-interaction, the addition of spin degrees of freedom
in the system only appears as a renormalization of coupling g, and the relative
correction is as expected very similar to the equivalent quantity in fig. 6.6
for the spinless case. By increasing the spin-interaction scale νs, the relative
correction to the Green’s function is dominated by the poles of eq. (6.139).
By comparing the top row of fig. 6.10 with the spinless case in fig. 6.8, the
cone-shape has a visible reduced sharpness at its edges. This is expected as
all exponents are reduced by a factor 2 by including spin degrees of freedom.
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Figure 6.10: Relative correction to the spinful Green’s function without
(left column) and with (right column) electron phonon coupling. For the top
row, spin-interaction is set to zero. For the bottom row, the spin coupling
is determined by eq. (6.133) with νs = 0.01. G0 denotes the noninteracting
Green’s function where gq = Vq = Uq = 0.

6.3.4 Conclusions, Multibranch Corrections

I have in this section numerically computed phonon corrections to the single
particle Green’s function. By utilizing the theory described in section 6.1.1,
I can immediately write down the generalizations of the results in section 6.2
for the different cases I consider.

The electron-phonon coupling behave as gq ∼ αq for small q, which justifies
the approximations made in section 6.2, and is found by projecting phonon
eigenstates onto the edge of a graphene nanoribbon. The coupling is only rel-
evant for energy scales vF |q| < ωΓ, and the long distance physics is dominated
by the coupling as q → 0+.

The effect of phonons has been demonstrated to dampen the singularity
in G(x, t) at x = vF t as x and t increases, which will appear as a broadening
of δ-peaks in the spectral function. The inclusion of a Coulomb-like interac-
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tions result in a non-zero plasma frequency ωq. This is seen to appear as a
precocious cloud of particle-hole excitations. Repulsive interactions suppress
the electron-phonon coupling, and the lattice vibrations become irrelevant if
ωP > ωΓ. Including spin degrees of freedom, adding a spin-dependent inter-
action renormalize the velocity of the spin-sector.
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7.1 Summary

Starting with a brief re capitulation of many-body quantum mechanics and an
introduction to topological insulators, I have in this thesis studied the effect
of phonons coupled to a fermionic density waves residing on the edge of a
Quantum Spin Hall (QSH) insulator. More specifically, I have had the aim
of computing one-particle correlation functions in the presence of quantized
lattice vibrations on a graphene nanoribbon with armchair edge geometry.
Gapless states residing in the bulk gap of a simple topological model is shown
to be localized at the edges. A one-dimensional electron theory with linear
dispersion is then used to model these close to the Fermi momentum. To
obtain the phonon dynamics of the system, I follow the derivation of Thingstad
et al. [69], Falkovsky [72] for the bulk bands, and apply the couplings to the
finite width nanoribbon.

Following von Delft and Schoeller [76], I derive the bosonization identity
for electrons in one dimension. This is used to compute the explicit forms of
the single particle propagator in an interacting system.

I rederive the resulting form for the Green’s function found by Meden et al.
[31], and proceed to find a closed form approximation for a system with a linear
electron-phonon coupling and a single acoustic phonon branch. I expand upon
this framework, and derive equivalent forms of the correlation function in
presence of a possibly spin-dependent two-electron interaction.

The resulting theory generalizes naturally to include several phonon branches,
and by projecting phonon eigenstates onto the edges I numerically compute the
single electron Green’s function in their presence. This is then compared with
the noninteracting Green’s function G0, and the relative correction induced by
phonons is discussed for different scenarios.

In the spinless case without Coulomb interaction, the electron phonon cou-
pling result in a cloud of particle-hole excitations lagging after a reduced sin-
gularity at x = vF t, where vF is the Fermi velocity. Adding a Coulomb-type
interaction results in a plasma frequency in the infrared limit, whose effect on
the relative correction to the Green’s function is apparent, although phonon
interactions partly suppresses this effect in the vicinity of the aforementioned
particle-hole cloud. I show that density-density interactions renormalize the
electron-phonon coupling strength which is suppressed for repulse interactions.
Adding spin degrees of freedom to the system scales this coupling with a factor√

2, and spin-charge separation occur as a consequence of phonon interactions.
This is not realized by QSH insulators as the states are described by a single
helicity quantum number and is equivalent to a spinless Luttinger liquid.
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7.2 Extensions
Although the real space correlation functions give necessary physical insights
to the system, the connection to experiments is usually found by considering
the spectral function A(k, ω). To find this, a double Fourier transform of
G(x, t) needs to be performed. These are hard to obtain analytically, since the
closed form approximations found (see for instance eq. (6.120)) involve branch
cuts. The Fourier transform of the exact form for the propagator is worse,
since the integral appearing in the quantity Z(x, t) is generally difficult to
compute other than in a few simple cases. One way to proceed with analytic
investigations is by recursively expanding G(x, t) in its Laurent series and
using the Cauchy product of series to analytically perform the x-integration.
The time integral can then be performed by replacing δ-functions by narrow
Lorentzian functions [33, 34]. To my knowledge, this approach has neither
been applied to an acoustic phonon branch nor to the combined problem with
both density-interactions and coupling to quantized lattice vibrations present.

The calculations I have presented deals with the electron-phonon coupling
in a non-perturbative fashion, although several crude approximate simplifica-
tions have been made. It would therefore be interesting to compare the results
with the perturbative analysis by Apostol and Baldea [83], which I was only
made aware of at a late stage in this work.

In topological insulators, spin-orbit interactions are known to be important.
By the addition of such interactions, or even external magnetic fields, the
lattice symmetry z → −z can be broken, and the assumption that out of plane
phonon modes do not couple to fermions no longer hold. Crude estimates for
the coupling to these modes can be calculated. Transverse out of plane phonons
can also give rise to a spin-phonon coupling [61] which can be included in the
computation of Green’s functions.

Lastly, the effect of phonon interactions on top of 2kF electron-electron
scatterings is not considered in this work. At the edges of QSH insulators, such
a scattering event requires a spin-flipping mechanism and is in the “g-ology”-
models known as the g1⊥ scattering process. In the presence of a Rashba
impurity, it has been shown that transverse phonons can induce such scatter-
ing terms [62], and that the quantized spin Hall conductance is conserved to
leading order in order.
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A.1 Rashba Spin-Orbit Coupling on an Arm-
chair Nanoribbon

In appendix I show the explicit matrix form of a Rashba spin-orbit coupling
on an armchair nanoribbon. Beginning with the Hamiltonian

HSOC = iλSOC
∑
〈i,j〉

∑
σ,σ′

c†iσ(δij × σ)zcjσ′ , (A.1)

the same transformations as in section 4.2 is carried out. Here, the intrinsic
spin degrees of freedom of the lattice fermions is not neglected, and I compute

HSOC = iλSOC
∑
D

∑
i∈D

∑
σ,σ′

∑
δ

c†i,σ,D (δxσy − δyσx) ci+δ,σ′,D′

= iλSOC
∑
D

∑
(x,y)∈D

∑
σ,σ′

∑
δ

1
Nx

×
∑
k1,k2

e−ik1xc†k1,y,σ,D
(δxσy − δyσx) eik2(x+δx)ck2,y+δy,σ′,D′

= iλSOC
∑
D

∑
y

∑
σ,σ′

∑
δ

∑
k

c†k,y,σ,D (δxσy − δyσx) eikδxck,y+δy,σ′,D′ .

By using the familiar spinor representation for the fermion spins, σ ∈ (↑, ↓)

where |↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
, the relevant matrix elements are

〈↑|σx|↓〉 = 1 〈↑|σy|↓〉 = −i (A.2a)
〈↓|σx|↑〉 = 1 〈↓|σy|↑〉 = i (A.2b)

while other combinations of spins yield 0. For simplicity, I now use the notation
ak,y,σ ≡ ck,y,σ,A and bk,y,σ ≡ ck,y,σ,B . Using these relations and the nearest-
neighbor vectors in fig. 4.9, the spin-interaction term is

HSOC = iaλSOC
∑
y

∑
k

(
a†k,y,↑ (−ibk,y,↓ − ω∗θkbk,y+1,↓ + ωbk,y−1,↓)

+ a†k,y,↓ (ibk,y,↑ − ωθkbk,y+1,↑ + ω∗bk,y−1,↑)

+ b†k,y,↑ (iak,y,↓ + ω∗θ∗kak,y−1,↓ − ωak,y+1,↓)

+ b†k,y,↓ (−iak,y,↑ + ωθ∗kak,y−1,↑ − ω∗ak,y−1,↑)
)
,

with ω = 1
2 (i+

√
3) = eiπ6 . Introducing the spinful basis

ψk = (ak,1,↑, ak,1,↓, bk,1,↑, bk,1,↓, . . . , ak,Ny,↑, ak,Ny,↓, bk,Ny,↑, bk,Ny,↓) (A.3)
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and α ≡ iω leads to the matrix representation

HSOC = λSOC



1 α∗θk
−1 −αθk

−1 −α
1 α∗

α 1
−α∗ −1

−α∗θ∗k −1
αθ∗k 1

. . .


.

(A.4)
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A.2 Mathematical Identities
Lattice Summation
When introducing discrete Fourier transformed operators into a lattice Hamil-
tonian, the identity ∑

i

ei(k−k
′)ri = Nδ(k − k′) (A.2.1)

is often used, where N is the number of lattice sites covered in the summation
over i.

Hilbert Space Operator Identities
Consider two operators A and B acting on a Hilbert space, H. The Baker-
Campbell-Hausdorff formula states

eAeB = eA+B+ 1
2 [A,B]+Higher order commutators. (A.2.2)

An alternative, and equivalent representation of this is

eiBλAe−iBλ = A+ iλ[B,A] + (iλ)2

2! [B, [B,A]] + . . . . (A.2.3)

Thus, if the commutator [B,A] = αA. where α ∈ C is a complex number,
then this relation implies

eiBλAe−iBλ = Aeiλα. (A.2.4)

If C ≡ [A,B] with [C,A] = [C,B] = 0, i.e. that C is a (complex) number,
then the relation

e−Bf(A)e−B = f(A+ C) (A.2.5)

holds for a function f . Both f and the exponential function is here defined by
its Taylor series representation.

If the Hamiltonian is on the form H =
∑
i ωib

†
i bi, describing free bosons,

and X =
∑
i(αibi + βib

†
i ) with αi, βi ∈ C is an operator, then [76]〈

eX
〉

= e
1
2 〈X2〉. (A.2.6)
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