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Abstract

In this thesis, we investigate two methods for numerical transport in the periodic double gyre
system presented in Shadden et al. (2005), by solving an advection-diffusion problem using both
an Eulerian and a Lagrangian formulation. The two-dimensional advection-diffusion equation is
solved directly using the Crank-Nicolson finite difference method on a uniform grid, a so-called
Eulerian fluid method. The diffusion coefficient is set to be constant in all systems, and to avoid
oscillating solutions of the Crank-Nicolson scheme related to advection-dominated systems; we are
forced to apply a relatively high diffusivity, with maximum cell Péclet numbers in the range Pecell ∈
{0.16, 3.24}. We present the Lagrangian particle method by deriving and solving the stochastic
differential equation whose Fokker-Planck equation is equivalent to the advection-diffusion equation
for smooth velocity and diffusion functions. By first applying Monte-Carlo techniques to achieve a
discrete set of solutions, we estimate the probability density by applying a kernel density estimator.
We demonstrate that the Lagrangian method produces the same results as the Eulerian fluid
method for the double gyre system with constant diffusion. We define the optimal kernel bandwidth
by minimizing the integrated squared error relative to a high-resolution Eulerian solution. The
optimal bandwidth is found to decrease with the number of Lagrangian particles, and the relationship
is estimated using the function form ∆optimal ∼ 1/N b. The parameter b is estimated to be
0.133 ± 0.070 throughout the integration time of T = 10, which also was the period of the
time-varying velocity field. The optimal bandwidth is found to have a clear increasing trend with
diffusivity, as expected. The optimal bandwidth is finally found to have an ambiguous relation
relative to time, and it is discussed whether the behavior might be related to the periodicity of the
flow field. It is suggested that future work ought to include higher resolution Eulerian grids, lower
diffusion constants, and system boundaries that have a smaller effect on the solution.



Sammendrag

Denne oppgaven undersøker numerisk transport i to dimensjoner i et periodisk dobbel-vortex
strømningsfelt som presentert i Shadden et al. (2005) med konstant diffusjon, gjennom å benytte
både eulerske og lagrangske metoder. Adveksjon-diffusjonligningen er løst direkte gjennom å bruke
den endelige differansemetoden Crank-Nicolson på en uniform grid, referert til som en eulersk
fluid metode. Bruk av sentrale endelige differansemetoder for å løse adveksjonsdominerte systemer
involverer ofte problemer relatert til oscillerende løsninger. For å unngå negative verdier i løsningen
blir det benyttet høyere diffusjon for å senke det maksimale Péclet-tallet per gridcelle, som blir
brukt i området {0.16, 3.24}. Den lagranske partikkelmetoden er presentert gjennom å utlede en
stokastisk differensialligning hvis Fokker-Planck ligning er lik adveksjon-diffusjonligningen dersom
både diffusjonen og strømningsfeltet er glatt. Det er benyttet en Monte Carlo teknikk for å løse
den stokastiske differensialligningen gjentatte ganger, hvor løsningene kan sees på som et stokastisk
utvalg fra distribusjonen. Kernel density estimering (Kernel-tettheter) er benyttet for å estimere
og konstruere fordelingen utvalget kommer fra. Partikkelmetoden gir likt resultat som den direkte
eulerske metoden for adveksjon-diffusjonligningen i dobbel-vortex systemet med konstant diffusjon.
En optimal båndbredde på kernel-funksjonen er definert som den båndbredden som minimerer
integrert kvadratisk feil relativt til en eulerk løsning med høy oppløsning. Det er funnet at den
optimale båndbredden er synkende for økende antall partikler, og forholdet mellom båndbredde og
partikler er estimert ved kurvetilpasning til funksjonen ∆optimal ∼ 1/N b. Parameteren b er estimert
til 0.133±0.070 gjennom hele integrasjonstiden T = 10 (som også er perioden til strømningsfeltet).
Den optimale båndbredden viser en klar økning som funksjon av diffusjon, men viser tvetydighet
som funksjon av tid, men med en økende trend gjennom simuleringstiden. Det diskuteres hvorvidt
resultatet kan være påvirket av strømningsfeltets periodiske oppførsel. Det trekkes frem at fremtidig
arbeid bør inkludere høyere oppløsning av den eulerske gridden og lavere diffusjon, for dermed å
senke Péclet-tall per celle. Samtidig bør andre grensebetingelser vurderes, eventuelt også undersøke
større simuleringområder for å hindre den sterke påvirkning fra grensene.
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Definitions and Notation

Vectors and scalars

For vectors we use use bold types and square brackets, e.g., u = [u, v, w]. Unit vectors are
additionally marked with hats, e.g., x̂. Vector components are also expressed using unit vectors,
e.g., u = ux̂ + vŷ + wẑ. Scalars are given in nonbold.

Notation for differentiation

For partial derivatives we will be using either of the notations ∂x = ∂
∂x , and ∂xx = ∂2

∂x2 , whenever
convenient. For derivatives of univariate functions we also use Lagrange’s notation, e.g. f ′(x).
Higher derivatives are indicated using additional prime marks, and even higher order derivatives
with superscripts of numerals in parentheses, e.g. f (n)(x).

Other mathematical expressions

Values averaged over space are indicated with a bar, e.g., ā. The norm is written |a|. The normal
distribution is indicated by N (µ, σ2), with a mean µ and variance σ2. The symbol ∼ is used to
indicate proportionality, e.g., f ∼ (∆x)2.

xi and yj are the values of the coordinates x and y at the nodes i and j. Subscripts are for points
in space, and the superscripts are for points in time, e.g., fni .

Matrices and column vectors

Matrices in general are written in the font A. Some matrices however, when implemented numerically
in this thesis, are written in the font A. These are

C and Cj,i: Concentration matrix

U and Uj,i: Velocity matrix (matrix version of velocity field u)

V and Vj,i: Velocity matrix (matrix version of velocity field v)

D and Dj,i: Diffusion coefficient matrix

C,U,V,D are all row-ordered column vectors of the same fields.

Acronyms

PDE Partial Differential Equation

ODE Ordinary Differential Equation

SDE Stochastic Differential Equation

KDE Kernel Density Estimation

ISE Integrated Squared Error
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Chapter 1

INTRODUCTION

The major global challenges of environmental pollution are a result of rapid industrialization and
urbanization, continuing exploitation of natural resources, and escalating production of industrial
wastes and consumer goods, bringing about unfavorable alterations to the environment. By directly
or indirectly affecting the natural energy cycle and radiation levels, and both the chemical and
physical constitution of organisms, environmental pollution attracts our attention due to its severe
long-term consequences. The unfortunate effects are evident in all parts of the environment,
from loss of biodiversity and vegetation, to the excessive amount of hazardous substances in the
atmosphere and oceans. Solving some of the problems related to environmental pollution, or
attempting to avoid the more severe consequences, requires accurate knowledge about how pollution
is transported, settled, and degraded over time. Accurate transport models can be great tools
for studying the physical and chemical processes in the atmosphere and ocean, predicting future
changes in the climate, and evaluating the effects of different mitigation efforts.

Numerical transport models are mainly based on either a Lagrangian or an Eulerian formulation
of fluid kinematics, or a combination of the two complementary descriptions. The Eulerian
approach is based on describing fluid motion in a reference frame that is fixed in space. In
the Lagrangian description, the observer follows along with the observed matter, describing the
motion from the point of view of the time-dependent position of the fluid "parcel." The two
formulations result in two separate mathematical descriptions of fluid motion, and also numerical
frameworks for modelling transport. The more direct and mathematically complex method is the
Eulerian, for which advection-diffusion problems typically are solved using, e.g., finite difference
methods to approximate solutions to partial differential equations on the fixed Eulerian grid.
This is the approach used in most ocean circulation models, and is also commonly applied to
pollution transport problems such as air pollution (Christensen, 1997), global ocean microplastic
transport (Mountford and Morales Maqueda, 2019), or oil spill scenarios (Meier and Höglund,
2013). Although it is the most conventional method for modeling transport problems, the Eulerian
method has certain disadvantages. For many applications, the less computationally demanding
Lagrangian method can be used, by looking at the problem from another perspective, literally.
The method is used in many of the same problems, including air pollution (Stohl et al., 2002),
marine transport of debris and plastic (Lebreton et al., 2012; Wichmann et al., 2019; Onink et al.,
2019), and oil spills (French-McCay, 2004; De Dominicis et al., 2013).

1.1 EULERIAN AND LAGRANGIAN TRANSPORT
MODELS

The Eulerian and Lagrangian methods have different approaches to solving transport problems,
but both attempt to solve them as advection-diffusion problem. A Lagrangian formulation focuses

1



CHAPTER 1. INTRODUCTION Section 1.1

on an individual particle’s trajectory, while the Eulerian formulation describes the transport of
physical quantities in terms of their concentration fields.

The physical phenomena where particles, energy, or other physical quantities are transported inside
a physical system due to advection and diffusion processes is described by the Advection-Diffusion
Equation,

∂C

∂t
+∇ ·

(
uC
)

= ∇ · (D∇C) , (1.1.1)

where C is the concentration field of the physical quantity of interest, and D is the diffusivity. The
background flow field u is typically predefined and given by an Eulerian model or an analytical field.
Because the advection-diffusion equation can be interpreted as a Fokker-Planck Equation, for which
the concentration field is considered the probability density function of particles, an alternative
method can be derived for solving it. In applied meteorology and oceanography particularly, the
so-called Lagrangian particle method presents an elegant alternative to the Eulerian method. In the
case of, e.g., a pollutant transported in a fluid flow, it is possible to derive a stochastic differential
equation that models the motion of a single pollutant particle, say by a random walk model.
When the stochastic differential equation is solved for an ensemble of particles, e.g., by using
discrete stochastic schemes for the particle dynamics, then the distribution of particles evolves
in a manner consistent with the advection-diffusion equation (1.1.1). The Lagrangian particle
method solution is a discrete set of particles, and the construction of the density field implied by
the particle positions is called "gathering". There are many ways to construct the density field
(see, e.g., Lynch et al. (2014)), such as using histograms or kernel density estimation. The particle
method provides a much more intuitive physical interpretation of the transport problem, dealing
with discrete elements and not with the continuous fields as in the Eulerian fluid method.

There are advantages and disadvantages to both methods. E.g., oil spills are traditionally simulated
as a large number of particles following the Lagrangian formulation, with the benefit of resolving
processes on multiple scales. However, the solution does depend heavily on the number of virtual
particles initially released. The Eulerian method resolves the entire field as a whole, without
needing to consider the specific initial amount of particles, but is at risk of missing small-scale
processes due to the grid’s fixed resolution. Additionally, the method treats all grid cells equally,
resulting in just as high computational effort for simulating areas with low concentrations as areas of
high concentrations. There are ways to go about the problems related to the grid by implementing
adaptive unstructured grids. Still, this will result in a relatively computationally demanding
method. The Lagrangian particle method offers specific advantages because it focuses on individual
particle trajectories. The method presents the opportunity to give each virtual particle individual
properties (see van Sebille et al. (2018) and references therein), such as, e.g., buoyancy, age, or
sinking velocities describing everything from fluid elements to organisms. Lagrangian particle
trajectories can be investigated in reverse time as well (e.g., Sebille et al. (2015); Prants et al.
(2017)), a technique particularly important in problems where we are concerned with where tracers
have been or have come from, rather than where they are headed for, such as, e.g., the source of
an oil spill. All in all, the Lagrangian method is versatile, explicitly conserves concentration, and
reasonably easy to implement in transport applications whenever the velocity field is given. This
thesis will investigate the Lagrangian particle method and how it compares to the Eulerian method,
using tools such as histograms and kernel density estimations to compare the resolved distributions.
This will be done for an analytical flow field to be presented in the following.

1.1.1 Analytical double gyre flow field
Both Lagrangian and Eulerian modeling of environmental transport require a known flow field.
The field can be known through measurements but is often a result of an Eulerian model (van
Sebille et al., 2018), or a combination of both. A third option is to use analytical flow fields as
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(a) t = 0, t = 0.5, t = 1 (b) t = 0.25

(c) t = 0.75

Figure 1.1.1: Double-gyre flow field for parameters A = 0.1, ω = 2π, and ε = 0.25.

approximations to real environmental flows or merely as a tool in, e.g., developing computational
methods.

There are many ways to either measure fluid flow or model the flow using Eulerian models, which
give the flow data at specific locations (measuring) or on a particular grid (modeling). To find the
flow field at any other point or at any other time than what you have measured or modelled, you
have to resort to techniques such as interpolation, to approximate the flow field values. However,
depending on the resolution of the field, such an approximation might average over important flow
patterns or eddies, and result in uncertainty. Measuring is time-consuming, resource-intensive, and
unpredictable (and unknown) factors can influence the data. Even though the history of surface
current measurements can be traced far back (see, e.g., Stewart (2008)), the measurement accuracy
is questionable (Maximenko et al., 2012), making modeling the preferable choice. Modeling is a
better option because we can achieve high-resolution fields for large areas, but it also gives the
opportunity to predict future behavior and forecasting. For applications in environmental fluid
mechanics, transport modeling usually requires that the velocity field is pre-calculated, commonly
from an Eulerian model, before applying either Eulerian or Lagrangian models for a variety of
transport applications.

Using analytical fields rather than fields from Eulerian models, gives access to the velocity value
at any point in both time and space, and does not require large data sets. Of course, analytical
fields never truly describe a real environmental system, but they can represent simplified models
of said systems. Analytical fields can be of great use in testing numerical models before applying
the "findings" to a real-world case study, using real data generated by a high-quality numerical
model. In some cases, analytical fields do model real flows relatively well, e.g., simple vortices are
found in the general ocean on multiple scales and have a simple analytical expression. Of course,
the analytical fields do not describe the real flow exactly, nor will they ever represent a complete
system. Still, they are particularly helpful for smaller closed domains and certain scales.

A simple yet interesting analytical flow field is the double-gyre flow given in Shadden et al. (2005).
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This field will be given much attention in the numerical part of this thesis, and is therefore discussed
and mathematically presented fully in this introductory section. The double-gyre flow is a simplified
dynamical model, consisting of two counter-rotating vortices that alternately expand and contract
periodically. The velocity field represents the flow of an incompressible fluid; however, the flow is
not an approximated solution to the Navier-Stokes equation. The time-periodic velocity field is
defined in the xy-plane, in the region x ∈ [0, 2] and y ∈ [0, 1], and is given by

u =

[
u

v

]
= πA

[
− sin(πf(x)) cos(πy)

cos(πf(x)) sin(πy)∂xf

]
(1.1.2)

where

f(x, t) = a(t)x2 + b(t)x, (1.1.3)

a(t) = ε sin(ωt),

b(t) = 1− 2ε sin(ωt),

where A determines the magnitude of the velocity vectors. The flow is time-independent for
ε = 0, and will look identical to Fig. 1.1.1a at all times, with equal-sized gyres. By turning on
the time-dependency, i.e., letting ε > 0, the central line separating the vortices will oscillate left
and right as time passes with a frequency ω/2π. As the oscillations start, the gyres alternately
expand and contract periodically, as shown in Fig. 1.1.1. How far this periodical motion shifts
the separation line from the original separation point on the x-axis depends on the value of ε. It
can be shown (Shadden et al., 2005, p. 291, Eq. 77) that ε is the amplitude of the oscillating
motion. Thus, for very small values of ε, the system can be considered a perturbation from the
time-independent case of ε = 0. Figure D.1 in Appendix D.1 visualizes the effect of a change in ε,
showing the gyres at their maximum and minimum sizes during one period.

Lagrangian Coherent Structures: Mixing, turbulence and chaotic flows

The standard approach of predicting trajectories, by running numerical models and use resulting
velocity fields to forecast trajectories, is relatively sensitive to the choices of spatial and temporal
initial conditions (Peacock and Haller, 2013). Compensating by computing a larger number of
solutions for the same scenario might give a better idea, but it can also typically produce large
distributions of advected particles that completely hide the key organizing structures of the flow
(Peacock and Haller, 2013). These structures referred to as the "hidden skeleton of fluid flow"
(Peacock and Haller, 2013) are the underlying structures creating the tracer patterns with coherent
features we find in nature. The existence of the emerging Lagrangian coherent structures (LCSs)
(Haller and Yuan, 2000; Shadden et al., 2005; Peacock and Haller, 2013; Haller, 2015) in turbulent
fluid flow is clear from observations, but it is harder to both define what they are and describe them
physically. The double-gyre system presented above (Shadden et al., 2005) provides a simple means
of investigating further the LCSs as parts of the turbulent flow. It is also a very visually descriptive
flow of the workings of LCSs, as strong attracting LCSs ensure thin filaments of concentration
that have been stretched along the structures. The resulting chaotic stirring in the flow leads to
enhanced diffusive mixing via repeated stretching and folding of fluid elements (Pratt et al., 2015).
The double gyre flow is a prime tool for investigating these structures, and although finding the
LCSs is outside of the scope of this thesis, we will be able to observe the dynamical behavior as
part of the advection patterns emerging, giving a different picture of the flow than the field itself.
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1.2 OBJECTIVES
This thesis aims at describing concepts behind Lagrangian particle methods and Eulerian fluid
methods for solving advection-diffusion problems, and provide practical insight into numerical
schemes in both formulations, using their performance in a specific double gyre system as a case
study.

Objectives

The one-dimensional advection-diffusion equation is a well-investigated numerical problem, and our
wish is to shed some light on the same setup in two dimensions. We intend to investigate a diffusive
system with a double gyre flow, in the hopes of achieving a better understanding of constraints in
numerical advection-diffusion problems in general, discovering the pitfalls of numerical calculations,
and get a better feel of the two-dimensional aspects of modeling transport problems.

Our goal is to introduce the transport methods through an overview of theoretical aspects, supported
by simple yet instructional numerical examples. We intend to get familiar with the mathematical
framework, proficient references, and numerical schemes theoretically and methodically. Through
this work, it should be shown that the two formulations give equivalent solutions given that the
right criteria are fulfilled; criteria which should be explicitly expressed and demonstrated. The
Lagrangian particle method gives a discrete set of numerical particles as solution, for which we
should construct a probability density function using kernel density estimation. We wish to find the
optimal kernel bandwidth, and investigate how it depends on system variations such as diffusion,
time, and number of Lagrangian particles used in construction of the density distribution.

1.3 OUTLINE
The thesis is organized in five chapters, roughly divided in three parts:

Introduction and theory: Chapters 1, 2

Numerical work: Chapters 3, 4

Discussion and conclusion: Chapter 5

Chapter 1 gives an introduction to the background and motivation behind the thesis, through
a description of the two complementary formulations of fluid motion; Chapter 2 starts with
an introduction to environmental transport, and describes the conventional method for solving
the advection-diffusion equation in the Eulerian formulation, through the use of finite difference
methods. The main focus of the chapter is investigating the theory and techniques behind the
Lagrangian formulation; an introduction to stochastic differential equations (SDEs), their numerical
solutions via time discrete approximations and Monte-Carlo simulations, all with a focus on
how the advection-diffusion equation can be solved through the Lagrangian particle method;
Chapter 3 presents the numerical implementations and results of solving the two-dimensional
advection-diffusion equation using both formulations; Chapter 4 compares the two methods, and
describes the optimal estimation parameter for minimizing the difference between the solutions;
Chapter 5 offers a discussion on different aspects of the simulation results and a conclusion.
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Chapter 2

FORMULATING THE
ADVECTION-DIFFUSION
PROBLEM

Using an Eulerian method is the conventional way to solve transport problems, but it is not the
only way. In this chapter, we introduce transport phenomena through the Eulerian formulation
(Section 2.1), before we direct all our attention to the Lagrangian formulation through the theory
of stochastic differential equations and their numerical solutions (Sections 2.2-2.4). The two
formulations are compared using simple and illustrative numerical examples to emphasize their
connection (Section 2.5).

2.1 TRANSPORT PHENOMENA
Environmental fluid mechanics is the study of fluid mechanical processes that affect the fate and
transport of physical quantities through the hydrosphere and atmosphere, describing the naturally
occurring fluid flows of air and water and the quantities carried by these. The unified study of
transport phenomena includes the transport of mass, momentum, and heat, as they have closely
related mathematical frameworks, and frequently occur simultaneously in environmental problems
(Bird, 2002). This section gives a short introduction to environmental transport and shows how
advection-diffusion problems can be treated in the Eulerian formulation.

In the Eulerian framework, environmental fluid mechanics is the study of the fluid mechanical
processes that change concentrations; that be of mass, momentum, or heat. The concentration is,
put in simple terms of mass, a measure of the amount of substance within a mixture. Mathematically,
we express the concentration, C, of a species i in a mixture as

C =
mi

V
, (2.1.1)

where mi is the total mass of the species i, and V is the volume of the mixture (can be length or
area, in one and two dimensions respectively). The processes that change the concentration can be
classified into one of two main categories: transport and transformation, altering the concentration
through transport by physical means and through reactions within the mixture.
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Scales of environmental fluid motion

Environmental fluid mechanics ranges from the study of the atmosphere, the oceans, lakes, and
rivers - to tiny creeks, and airflows around buildings. The motions present occur in a correspondingly
wide range of scales; from small surface ripples to large circulation systems the size of continents.
The scales of relevance range from millimeters to thousands of kilometers, and from seconds to
years (Gualtieri et al., 2012). Regional-scale dynamics can be described up to the limit of 100 km
(Socolofsky and Jirka, 2002). It can be shown that above this scale, the Coriolis effect due to the
Earth’s rotation must be accounted for, and thus we are stepping into the realm of geophysical
fluid dynamics. It differs from environmental fluid mechanics by taking into account stratification
and rotation, rather than stratification and turbulence (Gualtieri et al., 2012). The wide range
of scales is the cause of, in large part, the difficulties associated with understanding fluid motion
in the environment. The dominating processes describing the motion in a system vary with the
system’s scale. See Gualtieri et al. (2012) for typical velocity, time, and length scales for the most
common fluid processes and systems.

2.1.1 The Advection-Diffusion Equation
Transport refers to the process of moving quantities by physical means; mass, momentum, or heat
is transported from one physical region of the system to another. The transport is a result of an
influence on the quantity by the composition (concentration gradient), temperature, or velocity
gradients. This movement of properties can be described by the Transport Equation – or from a
mathematical point of view – the Convection-Diffusion Equation. The transport equation describes
how a scalar physical quantity is transported in space, and can be derived straightforwardly from
the general continuity equation,

∂tρ+∇ · j = S. (2.1.2)

The continuity equation (2.1.2) states that the rate of change for a scalar quantity ρ in an
infinitesimal control volume is given by the divergence of the total flux j and the net volumetric
source S, describing any generation or consumption inside the control volume.

In nature, the transport processes are a combination of advection and diffusion (Socolofsky and
Jirka, 2002). While most of us have an intuitive understanding of transport through advection,
the contribution to transport through the action of random motions is harder to envision. As
advection moves the center of mass along the general flow direction, the particles will at the same
time be spread to a larger (less concentrated) region due to diffusion. If a diffusive system is left
untouched, it will end up in an equilibrium state of uniform concentration. Figure 2.1.1 illustrates
how particles in a diffusive system (no advection) end up uniformly distributed in the domain,
after having been transported to areas of less concentration. These are the two inherent properties
of diffusion: the transport is from regions of high concentration to low concentration, and it is
"random in nature" (Socolofsky and Jirka, 2002). Diffusion is the macroscopic description of
the process that results from the random motion originating from microscopic (perfectly elastic)
collisions in material. Both the material that diffuses and the medium in which the diffusion occurs
can be in any of the three physical states; solid, gas, or liquid. The diffusion rate depends on the
materials; for instance, gas will diffuse relatively fast in another gas relative to in a solid. Diffusion
can also have origin in irregular turbulent velocity fluctuations, and is then referred to as turbulent
diffusion. While molecular mixing is important in the smallest scales, turbulent diffusion is the
dominant mechanism in a large range of time and length scales.

Returning to a more general and mathematical approach, we find the flux contributions that
appear in the transport equation. Say that the scalar field described by the continuity equation
(2.1.2) is the concentration field of some physical quantity. Thus ρ might represent, e.g., species
concentration for mass transfer or temperature for heat transfer. The flux measures the amount
of the quantity or substance of interest that will flow through a unit area of the control volume’s
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Figure 2.1.1: An example of the time development of 1000 particles in a diffusive system (constant
diffusion).

surface during a unit time interval. For simplicity, let ρ stand for the concentration of a chemical
species present in a fluid, and rename it C. Firstly, the diffusive flux is given by Fick’s first law
(Csanady, 1973, p. 5) as

jdiffusion = −D∇C, (2.1.3)

where the factor of proportionality, D, is called the diffusion coefficient. For molecular diffusion,
the diffusivity D is a property of both the material transported and the medium it is transported
in. Second, the mean fluid flow has the associated advective flux given by

jadvection = uC, (2.1.4)

where u is the flow velocity of the medium. In Appendix A.1 we have derived the transport equation
in one dimension, mainly following Hundsdorfer (2003), before describing the possible incorporation
of transformation into the system as a final step. Here, we disregard the transformation processes,
and merely present the one-dimensional advection equation found in Appendix A.1,

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
, (2.1.5)

specifically for a system with constant flow velocity u, constant diffusivity D.

2.1.2 Eulerian formulation of solving advection-diffusion problems
Chapter 1 introduces the direct approach of the Eulerian method for solving advection-diffusion
problems, both for calculating the flow itself but also for the transport of physical quantities.
Typically, the so-called fluid method for solving transport phenomena involves solving partial
differential equations such as the advection-diffusion equation (2.1.5) on a fixed grid, e.g., using
finite difference methods1. One such numerical scheme is Crank-Nicolson2; an implicit second
order method in time, known for its unconditional numerical stability. Considering a typical
one-dimensional second order partial differential equation, written in a general form,

∂C

∂t
= F

(
x, t, C,

∂C

∂x
,
∂2C

∂x2

)
, (2.1.6)

with discretization C(i∆x, n∆t) = Cni , for which the function F = Fni is evaluated for the values
i, n, and Cni , the Crank-Nicolson scheme is given by

1See Appendix A.2 Finite Difference Methods for an introduction.
2See Appendix A.3: Crank-Nicolson Scheme for an introduction.
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fn+1
i − fni

∆t
=

1

2

[
Fn+1
i

(
x, t, C,

∂C

∂x
,
∂2C

∂x2

)
+ Fni

(
x, t, C,

∂C

∂x
,
∂2C

∂x2

)]
. (2.1.7)

Applied to the advection-diffusion equation (2.1.5), the scheme results in a system of algebraic
equations, which in matrix form can be written as the problem

LCn+1 = RCn. (2.1.8)

The system is solved iteratively, with multi-diagonal sparse matrices L and R, for the concentration
field Cn+1. The concentration solution can be found through direct matrix inversion

Cn+1 = L−1RCn, (2.1.9)

and works well for obtaining a solution for a relatively small domain. However, matrix inversion
is computationally expensive, and it must be noted that the size of the matrices L and R grow
with the square of the size of the vector C. Computational efforts can be reduced by choosing
an iterative method (see, e.g., Barrett et al. (1994)) for solving the system. Consider the linear
system LC = b at a time n + 1, for b = RCn; The general objective of iterative methods is
constructing a sequence of improving approximate solutions {C(k)}∞k=1, that converge to the fixed
vector C∗ which is the solution of the linear system. An example of one such method is the
Biconjugate Gradient Stabilized Method (see, e.g., Barrett et al. (1994, page 27)), specifically
developed for solving non-symmetric linear systems such as the Crank-Nicolson scheme applied to
the advection-diffusion equation.

2.2 STOCHASTIC DIFFERENTIAL EQUATIONS
Stochastic differential equations (SDEs) are used to model various phenomena in nature, such as
population dynamics and turbulence, as well as in industry and even finance. We are particularly
interested in the Fokker-Planck equation in this section, a family of partial differential equations
(PDEs) that can be used in numerous fields, as it describes the time evolution of a probability
density function. The equation has a close relation to the phenomenon of Brownian motion of
particles, described by the Wiener process – an important stochastic process with the Markov
property. This section as a whole gives the framework and theoretical background for using
the Fokker-Planck equation corresponding to the Advection-Diffusion Equation, in other words,
introducing the Lagrangian formulation for solving advection-diffusion problems.

2.2.1 Introduction to stochastic processes
A stochastic process means that one has observations of a system at certain times, and that the
outcome of these observations, the values observed, is at each time a random variable (Blomberg,
2007). The evolution of numerous quantities can be described as stochastic processes, such as,
e.g., daily closing prices of an index or the number of phone calls occurring in a day. For every
observation made, there is a certain probability to get a certain outcome. This probability will
frequently depend on previous observations, but it can also be completely independent of previous
outcomes. This short introductory section will review necessary definitions for understanding
stochastic processes; random variables that change with time. Basic references for this are e.g. van
Kampen (2007) and Brémaud (2020).

Definition of stochastic processes and sample paths

A sequence of random variables Xt0 , Xt1 , Xt2 , ... can be thought to describe the evolution of a
probabilistic system over discrete instants of time t0 < t1 < t2 < . . . . The collection of random
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variables is indexed by some index set, often time t (and we will refer to it as a time set from now
on), and Xt ∈ <d or any subset of it. We then say that it is a d-dimensional stochastic process,
where the totality of its joint distribution functions,

FXti1 , ...,Xtij (xi1 , ..., xij ) = P (Xti1 ≤ xi1 , ..., Xtij ≤ xij ), (2.2.1)

is called the probability law (see, e.g., Kloeden (1992) and Platen (2010)).

Stochastic processes are defined for a time set T , which can be both discrete and continuous.
Discrete time stochastic processes are defined on a set of discrete time points t0, t1, t2, ... where
t0 < t1 < t2 < . . . . While continuous time stochastic processes can have both bounded time
sets such as the interval [0, 1], or be defined on an unbounded set such as T ∈ [0,∞). Say that
we freeze the outcome ω = {Xt0 , Xt1 , . . .} of a discrete time stochastic process, then the time
trajectory Xt(ω) forms what is called a sample path of the process. In other words, the sample
path describes the time evolution of a physical variable X for the specific outcome ω (Levy, 2020).

Time variability of a stochastic process

For both continuous and discrete time sets T , it is useful to differentiate stochastic processes
depending on their distinct temporal relationships. For a time t ≥ 0, the mean and variance, first
and second moment respectively, is given by

µ(t) = E[Xt], σ2(t) = V ar(Xt) = E
[
(Xt − µ(t))

2
]
. (2.2.2)

The expectation value is the central tendency of the observations. It is the sum of the products of
observations and their probabilities of occurrence, i.e., a weighted average. The variance describes
the spread of the observations from the average value. And lastly, we mention the covariance,
which is a measure of the joint variability of two random variables (Levy, 2020),

Cov(Xs, Xt) = E [(Xs − µ(s)) (Xt − µ(t))] . (2.2.3)

for s, t ∈ T . The relationships presented; the expectation, variance, and covariance provide
important and distinguishable information about the time variability of stochastic processes.

The Markov property

A Markov process {Xt} (e.g., Pinsky (2011, p. 79), Blomberg (2007, p. 179)) is a stochastic
process with the property that, given the value of Xt, the values of Xs for s > t are not influenced
by the values of Xu for u < t. Or in words; the next value of the process only depends on the
known present value, and not on any of the past outcomes of the process. When a process has this
property, we say that it is Markov or has the Markov property. For a process with time index set
T = (0, 1, 2, ...), and whose state space is a finite or countable set, the Markov property is given by

P (Xn+1 = j|X0 = i0, ..., Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i), (2.2.4)

for all time points n and all states i0, ..., in−1, i, j. Eq. (2.2.4) describes how the conditional
probability distribution of the future state Xn+1 (conditional on both present and all past values
of the process) depends only on the present state. This memorylessness is found in stochastic
processes such as the Poisson process, or of bigger interest to us – the Wiener process – that we
will have a closer look at in the next section.
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Figure 2.2.1: Realizations of Wt, the Wiener process. The Wiener process increments, ∆W = Wtn+1 −
Wtn , are Gaussian with mean µ = 0 and variance σ2 = tn+1 − tn, here given for 10000 time steps of size
∆t = 10−3.

2.2.2 Brownian Motion and the Wiener Process
Through the observation of the irregular motion of pollen particles suspended in water, a special
kind of physical process was discovered. Today it is known as Brownian motion, after botanist
Robert Brown who first described the phenomenon (see, e.g., Zwanzig (2001); Blomberg (2007);
Petroni (2020)). The erratic motion he observed was later explained by Albert Einstein by the
random collisions with the molecules of the liquid. The phenomenon is highly observable in the
natural world, not only found in pollen particles suspended in water, but any particle suspended
in a fluid. The mathematical framework describing the motion includes the concept of a stochastic
process that represents the position of a particle, a process named theWiener process. The physical
process and the mathematical process are both frequently referred to as Brownian motion, although
somewhat misleading.

The Wiener process represents a mathematical idealization of the Brownian motion of suspended
particles in a fluid (Levy, 2020). It is an important Markov process, used heavily in the construction
of stochastic models. Figure 2.2.1 shows three realizations of the process, visualizing the erratic,
random movement. The Wiener process Wt is characterized by the following basic properties:

The Wiener Process (2.2.5)

2.2.5.i – Independence:
Wt −Ws is independent of {Wτ}τ≤s ∀ 0 ≤ s ≤ t

2.2.5.ii – Stationarity:
The statistical distribution of Wt+s −Ws is independent of s (and therefore equivalent in
distribution to Wt.)

2.2.5.iii – Gaussianity:
Wt is a Gaussian Process with mean and covariance
E[Wt] = 0 and E[Wt ·Ws] = min(t, s).
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Figure 2.2.2: For increasing values of N , three realizations of the function WN
t given by Eq. (2.2.8).

2.2.5.iv – Continuity:
With probability 1, Wt viewed as a function of t is continuous (i.e. the set of discontinuities
has measure zero).

Property 2.2.5.iv is crucial and its most striking feature: the sample paths of a Wiener process
are continuous almost surely, but are also nowhere differentiable almost surely. The constantly
changing direction causes the sample paths of the process to be fractal curves (Levy, 2020).

To get a better feel of the stochastic process, we will look at a short construction by scaling a
random walk in one dimension, as suggested by, e.g., Vanden-Eijnden (2006). We start by letting
{ξk}k∈N be a sequence of independent identically distributed (i.i.d.) discrete random variables with
equal probability 1/2 for the values ±1. In essence, there is an equal probability of stepping to the
left and step to the right. Thus, we have expectation and variance of the i.i.d. variables given by
E[ξk] = 0 and E[ξ2

k] = 1. Next, we can define the position of a random walk Xn as a function of
time n,

Xn =

n∑
k=1

ξk for P (ξk = ±1) =
1

2
,∀n ∈ N. (2.2.6)

By scaling and by applying the central limit theorem (e.g., Kadanoff (2000, Chapter 3.6)), we find
that the distribution of XN/

√
N converges to a standard normal distribution:

XN −N · µξk
σξk ·

√
N

=
XN√
N
−−−−→
N→∞

N (0, 1). (2.2.7)

We can then define the piecewise constant random function WN
t on t ∈ [0, 1] by letting

WN
t = XbNtc/

√
N, (2.2.8)
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Figure 2.2.3: Three realizations of the Wiener process, each with three levels of resolution.

where bNtc indicates the floor function. Hence, we have gone from a discrete random walk to a
continuous step function. Finally, it can be shown that as N →∞,WN

t converges to the stochastic
process Wt – the Wiener process:

WN
t −−−−→

N→∞
Wt. (2.2.9)

Figure 2.2.2 shows some realizations for three different discretizations of WN
t , and see how with

increasing N , the process starts to look like the Wiener Process, as suggested by Eq. (2.2.9).

We will look at some stochastic processes where the Wiener process contributes with random
fluctuations. The Wiener process and its direct transformations, including geometric Brownian
motion and the Ornstein-Uhlenbeck process, are the most frequently used diffusion models in
applications (Platen, 2010). For more flexibility, one can control the resolution of the processes.
In other words, use time steps of a variety of sizes for the same exact process. From a realization
of a high-resolution process, increments can be added to create a process with a coarser resolution.
In other words, if the finest resolution process has increments

{0,∆W1,∆W2,∆W3,∆W4,∆W5,∆W6, ...} at times [t0, t1, t2, . . . , t5, t6, ...]

then the coarser resolution process will be described by the combined increments

{0, (∆W1 + ∆W2), (∆W3 + ∆W4), (∆W5 + ∆W6), . . .} at times [t0, t2, t4, t6, . . .].

Figure 2.2.3 shows the concept of changing the resolution of a particular realization of a process,
starting from the one with the finest resolution.

2.2.3 Stochastic differential equations
Differential equations with one or more terms containing stochastic processes are called stochastic
differential equations (see, e.g., Kloeden (1992); Øksendal (2003)). Their solutions are also stochastic
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processes. The most common form of stochastic differential equations (SDEs) is ordinary differential
equations (ODEs) with additional perturbations in the form of a white noise term. As with
stochastic processes in general, SDEs model various systems of variability and fluctuations, such
as thermal fluctuations or stock prices.

In the following, we will distinguish stochastic models from deterministic through an introduction
containing ODEs. We will then move on to Itô calculus and the Itô process that will introduce us to
stochastic differential equations. We should mention that there are two formulations of stochastic
calculus, but we shall only concern ourselves with Itô Calculus in this thesis.

Stochastic and deterministic models

Stochastic processes can be contrasted with deterministic processes. Contrary to stochastic models,
a deterministic model will describe precisely how the system will evolve; any number of realizations
will result in the same outcome. In a stochastic model however, where the evolution of the system
is at least partially random, each realization will give non-identical results. Both types of models
build on solving differential equations as time evolves. We start by looking at a deterministic
model, and will take a closer look at stochastic differential equations in the following sections.

We start out by looking at an ordinary differential equation,

dZt
dt

= a(Zt, t) (2.2.10)

or in the differential form,

dZt = a(Zt, t)dt, (2.2.11)

that can be seen as a degenerate form of a stochastic differential equation, as a is yet to be defined
(Kloeden, 1992, Chp. 3.1). More accurately, we write Eq. (2.2.11) as an integral equation,

Zt = Z0 +

∫ t

0

a(Zs, s)ds, (2.2.12)

where Zt = Z(t;Z0, t0) is a solution satisfying the initial condition Zt0 = Z0. Assumptions are
made on a (e.g., Lipschitz continuity in Kloeden (1992, p. 76)) to ensure the existence of a unique
solution Z(t;Z0, t0) for each initial condition, and the solutions are related by the evolutionary
property

Z(t;Z0, t0) = Z(t;Z(s;Z0, t0), s) (2.2.13)

for all t0 ≤ s ≤ t. Of course, this deterministic process Zt does not show any form of randomness;
the future is determined completely by the present.

To put this in perspective, let us look at the simple example of a deterministic model of a particle
in one dimension, being advected passively through a velocity field. The trajectory of the particle
is defined by the ordinary differential equation (ODE)

ẋ = u(x, t), (2.2.14)

where u is the velocity at time t and position x. To ensure a unique solution the initial condition
must be provided x(t0) = x0. The initial value problem can be solved numerically by using
numerical integration of the differential equation. We rewrite the equation as an integral equation,
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Figure 2.2.4: Euler method for different time steps ∆t approximating the solution of ẋ = u(x, t) for
u(x, t) = x log(2), and initial condition x(0) = 1. The example field is from a numfys.net notebook called
Euler’s method. The analytic solution is x(t) = 2t.

xt = x0 +

∫ t

0

u(x, s)ds, (2.2.15)

it can be solved using the Forward Euler method (see, e.g., Sauer (2014, p. 284)), with a discrete
fixed time step ∆t. That is, for u = u(x, t), the approximation of the solution of the ODE (2.2.14)
can be written

x(t+ ∆t) = x(t) + u∆t. (2.2.16)

Since there are no random terms in the deterministic model, the trajectory is determined and will
not change from realization to realization. Only the value of the time step ∆t can change the time
trajectory of x. An example of a time-discrete approximation using the Euler method is shown in
Figure 2.2.4, along with the analytic solution.

However, for most realistic models, we must add some kind of noise term either additionally or to
the velocity field itself. This can of course be done by redefining the coefficient a in Eq. (2.2.10),
to be stochastic, in other words going from a deterministic to a stochastic model. We shall now
explain differential equations in which one or more of the terms is a stochastic process. We will see
how stochastic differential equations have solutions that themselves are stochastic processes, and
thus we return to the concept of sample paths as discussed in subsection 2.2.1.

Itô stochastic differential equations

The inclusion of random effects in differential equations leads to two distinct classes of equations,
one for which the solution has differentiable sample paths and the class that gives non-differentiable
sample paths. The latter is the one we will focus on in this chapter, and will be the basis for the
numerical work in Chapter 3 and Chapter 4. The first and simplest of the two classes of equations
includes random effects by introducing random coefficients, random initial value, or a combination
of the two. These are solved in the same manner as the ODE presented in the previous chapter,
"sample path by sample path" (Kloeden, 1992). This results in sample paths of the solution
process that are differentiable functions, which the second class lack. The forcing in the second
class of SDEs is through an irregular stochastic process such as Brownian motion, and can be
studied through the eyes of either Itô calculus or Stratonovich stochastics, two dominating versions
of stochastic calculus (e.g., Øksendal (2003); Kloeden (1992)). As the title suggests, we shall look
at the second class of SDEs in the framework of Itô calculus.
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The Itô Process

An Itô process is a type of stochastic processX = {Xt, t ≥ 0} described by Japanese mathematician
Kiyoshi Itô, and here presented using theory mainly from Kloeden (1992). The Itô process has the
form

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dWs (2.2.17)

for t ≥ 0. The process consists of an initial value X0 = x0, which may be random. The second
term of the process is a slowly varying component called the drift, which is a Lebesgue integral of
a process over time. The second integral is an Itô stochastic integral with respect to the Wiener
process W = {Wt, t ≥ O} (see Section 2.2.2), referred to as the diffusion. This is a rapidly varying
continuous random component that we shall investigate further. We rewrite the integral equation
(2.2.17) into a differential equation

dXt = a(Xt)dt+ b(Xt)dWt. (2.2.18)

When the Itô process is written in terms of differentials, it is called an Itô stochastic differential
equation (SDE). In general, a d-dimensional SDE can be written (Platen, 2010)

dXt = a(Xt)dt+ b(Xt)dWt, (2.2.19)

with initial value X0 ∈ <d, and the d-dimensional Wiener process W. An elementary example of
a solution of the integral equation (2.2.17), or equivalently the SDE in Eq. (2.2.18), is one for

Xt = µt+ σWt, (2.2.20)

for constants µ and σ. With constant coefficients a(Xt) = µ and b(Xt) = σ, we can directly
integrate the SDE to find the process of Brownian motion with drift µ and diffusion coefficient σ.
Another example is the standard geometric Brownian motion, or exponential Brownian motion,
for which a(Xt) = µXt and b(Xt) = σXt. The stochastic process Xt is said to follow a geometric
Brownian motion if it satisfies the SDE

dXt = µXtdt+ σXtdWt. (2.2.21)

It has the solution (in Itô calculus)

Xt = X0 exp

((
µ− σ2

2

)
t+ σWt

)
, (2.2.22)

Shown in Fig. 2.2.5 for a range of values σ.

2.2.4 The Fokker-Planck Equation
The Fokker-Planck equation, or Kolmogorov forward equation, is a second-order partial differential
equation that describes the time evolution of a probability density function (see, e.g., Haken (2004);
Platen (2010); Risken (1996)). It is an equation of many names and many applications, arising
in a number of different fields (Frank, 2020). E.g., solid-state physics, chemical physics, circuit
theory, and quantum optics (Tatari et al., 2007). The Fokker-Planck equation is used to describe
everything from fluctuations in the intensity of laser light (Risken et al., 1966), to the stochastic
behavior of exchange rates (Ivanova et al., 2003). The equation was first introduced to describe
the Brownian motion of particles. For a derivation of the Fokker-Planck equation, see for instance
Risken (1996, Chp. 4); Haken (2004, Chp. 4).
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Figure 2.2.5: Realizations of Geometric Brownian Motion for different values of σ, X0 = 100.

In this thesis, we are interested in the class of stochastic differential equations (SDEs) of the form

dXt = X0 + a(Xt)dt+ b(Xt)dWt, (2.2.23)

as presented in the sections above. Assume that the process Xt has a drift term a(·) and a diffusion
term b(·) that are "moderately smooth functions" (Kloeden, 1992, p. 37). Following Theorem 1
from Gichman (1972, p. 102)3, the explicit criterion on the smoothness of the coefficients is – in
simplified terms – that:

[...] the partial derivatives
∂a

∂x
,

∂b

∂x
, and

∂2b

∂x2
exist. (2.2.24)

Then, then the corresponding transition probability density p = p(x, t|x0, t0) satisfies the Fokker-Planck
equation

∂p

∂t
=

1

2

∂2

∂x2

{
b(x, t)2p

}
− ∂

∂x

{
a(x, t)p

}
. (2.2.25)

Here p describes the transition probability density from an initial position x0 and time t0, to a
position x at a later time t.

We could, e.g., let the Itô process Xt describe a particle position with a deterministic term that
represents the advection and a random term that represents diffusion. Then the Fokker-Planck
equation describes in this case, given that the smoothness criteria on the coefficients (2.2.24) are
fulfilled, the time development of the probability distribution for particle position.

The Fokker-Planck equation equivalent to the advection-diffusion equation

We now look at an example of a stochastic process whose Fokker-Planck equation is the advection-
diffusion equation. This example will tie a connection between the Eulerian and Lagrangian
formulation, which is a large part of the scope of this thesis. We start by rewriting the Fokker-Planck
equation (2.2.25) into

∂p

∂t
=

∂

∂x

(
b2

2

∂p

∂x

)
− ∂

∂x

[(
a− 1

2

∂

∂x
b2
)
p

]
, (2.2.26)

3The full theorem is given in Appendix A.5.
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and compare this to the advection-diffusion equation (see Appendix A.1, Eq. A.5). We state it
here again for clarity,

∂p

∂t
=

∂

∂x

(
D
∂p

∂x

)
− ∂

∂x
(up), (2.2.27)

for diffusion coefficient D, and fluid flow velocity u. We have replaced the concentration C with
the normalized concentration to describe the probability distribution p.

By matching the terms in the two equations, we find the coefficients

D = b2/2

u = a− ∂xb2/2
→ b =

√
2D,

→ a = u+ ∂xD.
(2.2.28)

Thus, we have found the SDE

dXt = (u+ ∂xD) dt+
√

2DdWt (2.2.29)

whose Fokker-Planck equation is the advection-diffusion equation. In other words, solving the
SDE (2.2.29) for a large number of realizations is equivalent to solving the advection-diffusion
equation (2.2.27), assuming coefficients satisfy the criteria (2.2.24). In the following section we
shall use time-discrete approximations for solving SDEs, and will further discuss the equivalence
of solving the PDE (2.2.27) and SDE (2.2.29) in Section 2.5: EQUIVALENCE OF EULERIAN
AND LAGRANGIAN FORMULATIONS.

2.3 TIME DISCRETE APPROXIMATIONS
We have been introduced to stochastic differential equations (SDEs), such as the Fokker-Planck
equation, in the previous section. We now want to look at the methods that exist for numerically
solving these equations. Essentially, we will only consider the Itô stochastic process X = {Xt, t0 ≤
t ≤ T} that satisfy the SDE

dXt = a(t,Xt)dt+ b(t,Xt)dWt (2.3.1)

on t0 ≤ t ≤ T with the initial value Xt0 = X0.

In the following theory on time discrete approximations of Itô processes, we use Kloeden (1992)
as the main reference. We limit our discussion in this thesis to only time discrete approximations,
and mainly consider the simplest one – the Euler-Maruyama approximation. We also look at
the Milstein approximation, as well as discuss the convergence criteria and errors occurring in
simulations.

2.3.1 Numerical schemes for solving Itô stochastic differential equations
Time discrete methods means that the Itô process is approximated for a given time discretization

t0 = τ0 < τ1 < · · · < τn < · · · < τN = T, (2.3.2)

of the time interval [t0, T ]. We only consider equidistant discretization times, such that the nth
time interval ∆t is equal for all increments;

τn+1 − τn = ∆n = ∆t =
T − t0
N

. (2.3.3)
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The approximations, being time discrete, only give the approximated values at the discretization
times (2.3.2). Any other required values, intermediate values, must be found through estimation
based on the discrete values we have obtained, i.e., interpolation.

The Euler-Maruyama Approximation

The simplest time discrete approximation of an Itô process is the Euler-Maruyama Approximation,
or sometimes referred to as simply the Euler approximation or the Euler method. The approximation
is a time-discrete process Y = {Y (t), t0 ≤ t ≤ T} that satisfy the iterative scheme

Yn+1 = Yn + a(τn, Yn)(τn+1 − τn) + b(τn, Yn)(Wτn+1
−Wτn), (2.3.4)

for n = 0, 1, 2..., N − 1 with initial value Y0 = X0, and here given for an arbitrary time step size
(Platen, 2010, p. 246). The process is defined on the time interval (2.3.2), and we write Yn = Y (τn)
for the value of the time-discrete Euler-Maruyama approximation at the discretization time τn. The
last term of the approximation contains the difference between two preceding increments of the
Wiener process, the stochastic process defined in more detail in Section 2.2.2. Considering that we
will only look at equidistant time steps, we simplify the notation of the scheme to

Yn+1 = Yn + a∆t+ b∆Wn, (2.3.5)

where ∆Wn = Wτn+1
−Wτn

∆Wn = Wτn+1
−Wτn (2.3.6)

is an increment of the Wiener process over the subinterval τn ≤ t ≤ τn+1. More generally, in
multiple dimensions, d = 1, 2, ..., the kth component of the Euler-Maruyama scheme is given by

Y kn+1 = Y kn + ak∆t+ bk∆W k, (2.3.7)

for component k = 1, 2, ..., d. We remind ourselves that the increments are independent identically
distributed random variables, ∆Wn ∼ N (0,∆t), or in other words have the properties

E[∆Wn] = 0, and E[(∆Wn)2] = ∆t. (2.3.8)

On a final side note about the scheme, we have that the stochastic scheme can easily be translated to
the deterministic Euler scheme by letting the random term be zero, or essentially let the diffusion
coefficient b ≡ 0. This result in an ordinary differential equation dXt = a(t,Xt)dt that can be
numerically integrated using the deterministic Euler scheme (2.2.16), as in the example in Figure
2.2.4.

The Milstein Approximation

The second approximation process we shall introduce is the Milstein Approximation. It is similar
to the Euler-Maruyama approximation but has an additional term from the Wagner-Platen series
(that we return to in Section 2.3.2). The recursive discrete-time approximation scheme is given by

Yn+1 = Yn + a∆t+ b∆Wn +
1

2
bb′{(∆Wn)2 −∆t}. (2.3.9)

The additional term contains the derivative of the diffusion coefficient, b′ = ∂xb, as well as a random
contribution from the squared Wiener process increment, (∆Wn)2.

19



CHAPTER 2. THE ADVECTION-DIFFUSION PROBLEM Section 2.3

An important observation is that not only for b ≡ 0, the scheme is equivalent to the Euler-Maruyama
approximation, but also for any function b that gives ∂xb ≡ 0. In other words, any constant
diffusion coefficient will result in the two schemes being equivalent. Even a diffusion constant that
varies in time, b = b(t), will still satisfy ∂xb = 0, and thus give the same approximation as the
Euler-Maruyama scheme.

Finally, we also mention that in the multidimensional case, d = 1, 2, ..., the kth component of the
Milstein scheme is given by

Y kn+1 = Y kn + ak∆t+ bk∆W k
n +

1

2

(
d∑
l=1

bl
∂bk

∂xl

)
{(∆W k

n )2 −∆t}, (2.3.10)

for k = 1, 2, ..., d.

2.3.2 Accuracy and convergence in numerical simulations
To simulate a trajectory, we first choose a numerical scheme and decide the time discretization.
Following a recursive formula (in our case), we start with the initial value Y0 = X0 at t0 and
generate the next value recursively. One often assumes that with a fine enough time discretization,
the resulting trajectory must have close resemblance to the Itô process. However, there will always
be some errors in numerical solutions of stochastic differential equations (SDEs). Our goal will be
to get resulting trajectories of the approximating process that converge towards the Itô process.

The errors can originate from both systematic and statistical sources as well as round-off errors,
hence to numerically solve for accurate and converging solutions, the errors should be determined
and minimized, at least to a level of acceptable accuracy. In that way, we can ensure that our
results make sense and are actually approximating the process we are interested in. Choosing
the approximating scheme of a process depends on which convergence criteria we wish to be most
effective. This again depends on what property we are interested in approximating, whether it be
a good pathwise approximation or some functional of the Itô process. Finding the real objective of
the simulation is therefore important before choosing a numerical scheme to apply to the problem.
The numerical schemes presented; the Euler-Maruyama approximation (2.3.5) and the Milstein
approximation (2.3.9), are yet to be categorized by their convergence properties. We shall have a
look at errors, convergence criteria, and the order of these two schemes in the following subsections.

Absolute error

One of the most basic ideas is that by the end of a simulation, the final position or state of the
process should be as close to the real process as possible. Say that an Itô process at the final time
T has the value XT , then the absolute error in the approximation solution YN is defined as

ε(∆t) = E [|XT − YN |] ≤
√

E
[
|XT − YN |2

]
, (2.3.11)

for T = t0 + N∆t (Kloeden, 1992). A relatively low absolute error suggests a closeness of the
sample paths of the actual Itô process X and the approximation Y at time T . However, we do
not always know the Itô process that is the solution of the SDE we are trying to solve. In that
case we do not have a solution XT to calculate the absolute error (2.3.11) from. An alternative
approach is assuming that the absolute error must be small as ∆t→ 0. In other words, calculate a
high-resolution approximation Y and assume that it is "close enough" to the true process solution
X. Then, we calculate the absolute error relative to this sample path. The fine resolution solution
must use a sufficiently small time step ∆tmin, and we use the notation YN ′ , for the simulation
using N ′ = T/∆tmin time steps to calculate the final time instant T (for t0 = 0). Thus, the
approximating absolute error is written
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ε(∆t) = E [|YN ′ − YN |] , (2.3.12)

with N = N(∆t) for a fixed T . For now, we will return to the true solution of the Itô process XT ,
but knowing that we might have to interchange it for YN ′ wherever we lack a known solution.

The Strong Convergence Criterion

The strong convergence of a numerical scheme is defined (Kloeden, 1992, p. xxiv) as follows:

An approximating process Y converges in the strong sense with order γ ∈ (0,∞] if there exists a
finite constant K and a positive constant δ0 such that

E[|XT − YN |] ≤ K(∆t)γ (2.3.13)

for any time discretization with maximum step size ∆t ∈ (0, δ0).

In essence, the criterion defined above says something about the closeness in path between the
approximation and the Itô process, and in what order it is affected by the time step size.

The Weak Convergence Criterion

The closeness in path of an approximation to an Itô process is not always the most relevant criteria
for a good approximation. In some cases, we are more interested in the probability distribution of
a random variable, than the actual pathwise behavior. In this case, we are interested in, e.g., the
expectation value E[XT ] or the second moment E[(XT )2], and thus we need a good approximation
of the probability distribution of XT .

In practical cases, our interest in the expectation might come from the desire to look at the system
as a whole. Instead of looking at a specific particle moving in a specific path, we are interested in,
e.g., the center of mass of the particles if many were to be transported in the same system. We
define, as in (Kloeden, 1992, p. xxv), the weak convergence criterion to be:

The time discrete approximation Y converges in the weak sense with order β ∈ (0,∞] if for any
polynomial g there exists a finite constant K and a positive constant δ0 such that

|E [g(XT )]− E [g(YN )] | ≤ K(∆t)β , (2.3.14)

for any time discretization with maximum step size ∆t ∈ (0, δ0).

Under the weak and strong convergence criteria we will further look at errors in solving SDEs in
Section 2.4.2.

Classifying numerical methods

The numerical schemes presented have not yet been classified with regards to their convergence.
To do that, we go beyond just the formulas presented. They originate from and can be classified
by comparing them to parts of the stochastic Taylor formula, or Wagner-Platen formula (see, e.g.,
(Platen, 2010, p. 187)). Following the Wagner-Platen formula, we find the following representation
for the Itô process:

Xt = Xt0 + a(Xt0)

∫ t

t0

ds+ b(Xt0)

∫ t

t0

dWs

+b(Xt0)b′(Xt0)

∫ t

t0

∫ s2

t0

dWs1dWs2 +R.

(2.3.15)
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This stochastic Taylor expansion can be used to form time-discrete Taylor approximations when
applied at successive time steps. R is the remainder consisting of higher-order multiple stochastic
integrals involving the process itself, the coefficients, and their derivatives.

First of all, truncating theWagner-Platen formula after the Itô integral gives us the Euler-Maruyama
scheme (2.3.5). The Euler-Maruyama scheme converges in the strong sense4 with γ = 0.5, and
usually converges with weak order β = 1. The stochastic Taylor expansion (2.3.15) gives a strong
convergence of 0.5 since the increments ∆Wn of the Wiener process are of root mean square
order (∆t)1/2. In the deterministic case, for zero diffusion, the Euler approximation for ordinary
differential equations (ODEs) converges with order 1.

Continuing with the Wagner-Platen formula (2.3.15), including the next term, we obtain the
Milstein scheme (2.3.9). To show this, we can rewrite the double integral as

∫ t

t0

∫ s2

t0

dWs1dWs2 =
1

2
{(∆Wn)2 −∆t}. (2.3.16)

The Milstein approximation converges with strong order γ = 1, under the assumption that
E[(X0)2] < ∞, and specific smoothness and continuity conditions on the coefficients5. In a weak
sense, the Milstein approximation converges with order β = 1. We sum up the order of convergence
for the two schemes, for a general case:

Euler-Maruyama: Strong convergence ∼ (∆t)
1
2 Weak convergence ∼ (∆t)1

Milstein: Strong convergence ∼ (∆t)1 Weak convergence ∼ (∆t)1

The link between the two schemes in the case of a constant diffusion coefficient, briefly commented
on in section 2.3.1, will also change the apparent order of a scheme. An example is when
using the Euler-Maruyama scheme with a diffusion coefficient that satisfies ∂xb = 0, in other
words, a constant diffusion coefficient. The Euler-Maruyama scheme is then equivalent to the
Milstein approximation, as the last term in (2.3.9) is zero. In other words, for a constant b, the
Euler-Maruyama has the same order of strong convergence as the Milstein scheme; γ = 1. The
same applies for diffusion of the form b(x, t) = b(t).

The Euler-Maruyama scheme gives good numerical results for near-constant drift and diffusion
coefficients a and b, and is often computationally more efficient as it has fewer terms and the
same order of weak convergence (Platen, 2010). Of course, if the strong convergence is of interest
the Milstein scheme is preferred, but the numerical stability of the method is worse than of the
Euler-Maruyama scheme. A review of other approximation schemes of higher order can be found
in, e.g., Kloeden (1992),Gräwe (2011), and Gräwe et al. (2012).

2.4 MONTE CARLO SIMULATIONS
Stochastic numerical methods and Monte Carlo methods (Sauer, 2014; Landau, 2009) use stochastic
techniques (random numbers) to solve problems that might be deterministic in principle. Monte
Carlo algorithms can be used to solve computational problems involving stochastic differential
equations (SDEs), which scarcely have analytical solutions, by performing multiple simulations
to find the probability of specific outcomes. It is an efficient numerical method, having evolved
from a "last resort" solution to a leading methodology, much due to its simplicity and general
applicability (Kroese et al., 2014). Even though some distinguish between a simulation, a Monte

4Under "Lipschitz and bounded growth conditions on the coefficients a and b" (Kloeden, 1992, p. xxvii).
5Conditions are that a and b are twice continuously differentiable, and that a, a′, b, b′, and b′′ satisfy

a uniform Lipschitz condition following Kloeden (1992, p. xxviii).
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Carlo (MC) method and an MC simulation6, we will in this thesis use Monte Carlo as a wide term
to address the family of methods using repetition of simulations to discover long run outcomes of
events (see Sawilowsky (2003)). We introduce the Monte Carlo method and associated errors in
the following, and discuss the tradeoff between step size and sample size, as well as the probability
density estimation from finite size samples from Monte Carlo simulations.

2.4.1 Introduction to the Monte Carlo Simulation Method
From our discussion about deterministic and stochastic models in subsection 2.2.3, we know that
the result from running a random model is intrinsically random. While the deterministic model
will have the same result every time it is run, the stochastic result can be considered a ”sample”
from the true distribution of the random variable. The Monte Carlo method solves a problem by
repeatedly simulating the same stochastic model. The class of approaches that are described as
Monte Carlo methods are mainly used in problems involving optimization, numerical integration
(estimation), and generating draws from a probability distribution (sampling) (Kroese et al., 2014).

We will demonstrate the concept of Monte Carlo simulation with a relatable and intuitive example:
Say that you have a fisherman sitting in a boat, and he does not know at what depth in the water
he is more likely to catch a fish. He is interested in catching a lot of fish, and knows that if he
registers every catch he might get a better idea of the probability as a function of depth, and hence
find where it is expected that he will catch the most fish. First, he registers 20 fish, but is unable
to say where the probability is higher. Even though there are depths where he has caught more
fish than others - who is to say that that is not just a coincidence? See Figure 2.4.1 below. He
wants more certainty, and he intuitively fishes some more, and stops after having caught 200 fish.
The pattern that emerges is what he has been looking for! He sees that the probability of catching
fish is larger for some areas, and he now thinks he knows where he will get most fish by estimating
a mean of the observations. If he had continued the experiment, he could have obtained an even
clearer idea, and with less uncertainty (see Figure 2.4.1).

In this example of the fisherman, the probability distribution was estimated by making a histogram
out of the observations, where the peak described the area of highest probability for catching fish.
This is in essence equivalent to estimating the mean (Y in Figure 2.4.1) of the independent and
identically distributed (iid) random variables Zi, that are the samples from the true distribution.
The mean value of the observations works as an estimate of the parameter µ of the true distribution,
and as shown in Figure 2.4.1 the variance σ can also be estimated (σ̂). The technique of sampling
repeatedly from an unknown distribution, for the purpose of estimating said distribution, is a form
of Monte Carlo simulation. We will have a closer look at how well such an estimation works in the
following, but as we have seen with this short example – the more samples we had, the better the
estimation.

2.4.2 Convergence and accuracy
It is important to remember that Monte Carlo methods only provide an approximation of the actual
solution, and hence the approximation error is essential to consider when analyzing the solutions.
We will shortly claim that very large samples are necessary to acquire low variance estimates (i.e.,
low errors). There have been efforts toward reducing sample sizes, including the main objective
behind variance-reducing sampling techniques (Wilson, 1984; L’Ecuyer, 1994), but that will not be
highlighted in this thesis.

6Sawilowsky (2003) distinguishes between a simulation, an MC method, and an MC simulation. The
simulation itself is described as an abstract model or representation of reality. He further distinguishes the
MC method, and MC simulation, by stating that the method is “use of stochastic techniques to solve...
a deterministic problem” (Moshman (1967, p. 250) via Sawilowsky (2003)), and the MC simulation is a
combination of simulations with many repetitions (MC method) to obtain statistical properties of a system.
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Figure 2.4.1: The distribution of fish as a function of depth estimated using Monte Carlo simulations
(number of simulations described as observations). The true distribution (dashed line) has an expected
value µ = 10.60 and a variance σ = 3.70. The sample mean Y is shown in each subplot, as an estimation
of the mean of the true distribution, along with the variance of the samples, named σ̂. The estimation
improves with number of observations, a concept that is further discussed in subsection 2.4.2.

Estimating a sample mean

First, we shall look at the error that comes with estimating a mean; the convergence rate of a
Monte Carlo simulation. We will look at what rate the estimation error decreases as the number of
points N used to estimate grows. Consider the independent, identically distributed (iid) random
variables Zi corresponding to random samplings from a distribution (as with the caught fish in the
example above). The expectation value of the samples is E[Zi] = µ, the mean of the distribution.
Then the mean value of the simulation is the expectation value of the random variable Y =
(Z1 + Z2 + ...+ ZN )/N ,

E[Y ] = E
[
Z1 + Z2 + ...+ ZN

N

]
=

∑N
i=1 µ

N
=
Nµ

N
= µ. (2.4.1)

The variable Y is called the sample mean, and will be different from the true mean of the
distribution it intends to estimate; the distribution of Zi. Y has a variance of

E

[(
Z1 + ...+ ZN

N
− µ

)2
]

=
1

N2

N∑
i=1

E[(Zi − µ)2] =
1

N2
Nσ2 =

σ2

N
, (2.4.2)

where σ2 is the variance of the iid random variables Zi. Therefore, we see that the standard
deviation of Y decreases as σ/

√
N . Thus, the error in estimating the mean will decrease with the

number N of realizations as
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Error ∝ 1√
N
. (2.4.3)

An improvement of the accuracy of the mean estimation is in other words expensive, as it demands
a large number of samples for relatively small increases in accuracy. E.g., if you want to improve
the accuracy by one digit, i.e., reduce σ by a factor of 10 we would have to increase the number of
samples N by 102.

We return to the example of the fisherman, to show how the estimate improves with the total
number of simulations in a specific application. The distribution of fish as a function of depth,
given by the dashed line in Fig. 2.4.1, has a known expectation value µ and standard deviation σ.
We try to estimate the expectation value for different numbers of samples from the true distribution.
In Fig. 2.4.2 we have simulated for four different sample sizes N , and have run these simulations
100 times for each N . With trend lines plotted as described in the figure text, the figure clearly
shows the convergence ∼ 1/

√
N as expected in this Monte Carlo simulation.
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Figure 2.4.2: Scatter plot of sample means of N samples, 100 simulations, and trend line showing the
true mean of the distribution with one standard deviation. The expectation value of the true distribution
(shown in Figure 2.4.1) from which the samples are collected is µ = 10.6 and the standard deviation is 3.7.

Statistical and systematic error

Monte Carlo simulations use random variables to find the probability of specific outcomes, resulting
in two intrinsic errors that we need to consider properly (Komori et al., 1994). The error in
estimating the mean of a distribution, discussed above, is also called statistical error εstat, and
depends on the total number of simulations performed. The central limit theorem (e.g., Kadanoff
(2000, Chapter 3.6)) concludes that, for a large number of independent simulationsN , the statistical
error εstat becomes asymptotically Gaussian with mean zero and variance V ar[εstat] = 1

N V ar[Y (T )],
as we saw above (Eq. (2.4.2)).

The other error of interest is the systematic error εsys, or numerical error, which is dependent on
the accuracy of the numerical model and discretization used. In this case, the error comes from
the fact that we are no longer sampling from the true distribution. In the fish distribution example
(see Section 2.4.1) we have sampled directly from the true distribution, and thus the systematic
error is zero.

In applications, a relatively large systematic error can be hard to discover when the true solution
is unknown. However, the systematic error most often originates from too large time steps ∆t.
As discussed in Section 2.3.2 concerning time discrete approximations, we consider that if the
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numerical method is correctly implemented and the correct conditions apply, then we assume that
using a small enough time step will ensure a low systematic error.

Tradeoff between step size and sample size

In simplified terms, we can express the total error of a Monte Carlo simulation as

ε = εstat(N) + εsys(∆t), (2.4.4)

where N is the sample size, and ∆t is the time step size. As we generally need to consider both
errors, we must balance the increase in number of Monte Carlo simulations and the reduction in
step size, to ensure accuracy but also computational efficiency. The errors are accordingly also
called discretization error (εsys) and Monte Carlo averaging error (εstat) (Detemple et al., 2006).
A trade-off between these two errors is presented by Duffie & Glynn (1995), taking into account the
weak convergence criteria. We have previously (Section 2.3) looked at both the Euler-Maruyama
approximation and the Milstein approximation, which both have weak order of convergence 1.
When using these numerical schemes to approximate a solution of a stochastic differential equation
(SDE), it is done on a specific time interval [0, T ]. This suggests that using Monte Carlo for a
d-dimensional problem requires roughly d2TN/∆t calculations, where N is the sample size and ∆t
is the time step (e.g., Platen and Bruti 2010, page 481). Of course, simply decreasing dimension d
or the length of simulation interval T , will decrease the number of calculations needed. However,
if we assume them given, we can purely concern ourselves with the relationship between step size
and sample size. It is suggested by Duffie & Glynn (1995) that under suitable conditions, with a
scheme of weak order β, the efficient choice is to increase N at the order (∆t)−2β . In the case of
both the Euler-Maruyama and the Milstein approximation, this implies that a halving of the time
step size, should be accompanied by an increase of the number of simulations by a factor 4.

Monte Carlo simulation using time discrete approximations

An example of a Monte Carlo simulation is sampling a solution from a time discrete approximation,
e.g., the Euler-Maruyama approximation (see Section, 2.3.1) repeatedly. The numerical scheme
approximates the Itô process X = {Xt, t0 ≤ t ≤ T}, which is the solution of the stochastic
differential equation (SDE)

dXt = a(t,Xt)dt+ b(t,Xt)dWt.

The approximation is the continuous time stochastic process Y = {Y (t), t0 ≤ t ≤ T}, satisfying
the iterative scheme given by

Yn+1 = Yn + a∆t+ b∆W,

for equidistant time steps ∆t, and increments of the Wiener process ∆W . Thus, applying the
theory behind Monte Carlo in this case involves running several realizations of the scheme up to
the time τ ′, where the random Wiener process ensures a different result each time. Say we run N
simulations, then we have N sample paths. Then, depending on our interest, we might want to
estimate the mean value or perhaps the distribution from which the samples are drawn.

As an example, we can apply the Euler-Maruyama approximation to an SDE repeatedly. The
SDE presented in subsection 2.2.4 is an excellent example due to its relevance in this thesis: the
SDE whose Fokker-Planck equation is the Advection-Diffusion Equation (ADE). We have that
a = u+∂xD and b =

√
2D as stated in Eq. (2.2.28) by comparing the ADE and the Fokker-Planck

equation. We look at a system with constant diffusion and drift

D = D0 and u = u0. (2.4.5)

for simplicity. Then, the approximating process that we can use to simulate the Itô process is
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Yn+1 = Yn + u0∆t+
√

2D0∆W. (2.4.6)

Since the numerical scheme uses random numbers in the modeling of Brownian motion, every
outcome is different.

For completion in this section, we mention how the same system can also be solved with, e.g., the
Milstein approximation as presented in subsection 2.3.1. The coefficients for the ADE are found in
Eq. (2.2.28), and D and u are given above in Eq. (2.4.5). Thus, the approximation in Eq. (2.3.9)
gives the following scheme we solve recursively

Yn+1 = Yn + (u+ ∂xD)∆t+
√

2D∆Wn +
1

2

√
2D∂xDb

′{(∆Wn)2 −∆t}. (2.4.7)

However, due to the constant system (2.4.5), the derivative of the diffusion coefficient is zero,

∂xD = 0 and
∂

∂x
b =

∂

∂x

√
2D = 0. (2.4.8)

Hence, as Eq. (2.4.7) is reduced to Eq. (2.4.6); the two schemes are in essence identical.

2.4.3 Kernel Density Estimation
Kernel density estimation (KDE) is a technique to estimate a probability density function f(x) from
its independent and identically distributed samples {Xi}. The contrasting, typically parametric
technique, involves obtaining the best estimator θ̂ of θ for a given density family f(x|θ), e.g., such
as the Normal family N(µ, σ2) where θ = (µ, σ2). Contrary to this type of parametric estimation,
the kernel density estimation is what is called a nonparametric estimation method. It means that
it estimates the distribution itself, i.e. f̂(x) of f(x). In this manner, no prior knowledge or any
underlying distribution needs to be relied upon, and the estimation is driven by the structure in
the data alone. In other words, the technique is highly applicable, as it can uncover important
patterns in the data while filtering noise and ignoring irrelevant details (Gramacki, 2018, page
vii). We shall look at a particular type of nonparamteric density estimation that uses kernels –
symmetric weighting functions of each sample – to estimate smooth probability density functions.
The smoothness is largely controlled by a parameter called the bandwidth, i.e., the width of the
kernel function. To introduce kernel density estimation properly, we take a detour by explaining
the simplest nonparametric density estimator: the histogram, before discussing different kernels,
error criteria, and finally bandwidth selection.

The histogram

The simplest form of nonparametric density estimation is the widely known histogram. Typically,
one divides the sample space into a number of bins of constant width, and the density is approximated
by counting the number of samples within each bin. We saw an example of such approximation in
Figure 2.4.1, where the probability density function was approximated, and from it, the distribution
mean. To approximate a probability density function using a histogram, we start by sampling from
the true (usually unknown) distribution f(x). The number of data points X0, X1, . . ., Xn falling
into the j-th bin Bj , are denoted #{Xi ∈ Bj}. Thus, we estimate the probability density function
by the estimator

f̂(x) =
#{Xi ∈ Bj}

nh
=

k

nh
, (2.4.9)

for every x ∈ Bj . The approximation requires two parameters to be defined; the bin width h
and the bin origin (lower boundary of bin B0). From this apparent simplicity of the method, also
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Figure 2.4.3: Histograms with bin width h = 0.1 for 100 samples (blue dots) from a bimodal distribution
(dashed line). The difference in bin origin x0 gives drastic differences in estimations.

Figure 2.4.4: Histograms with bin origin x0 = 0 for 100 samples (blue dots) from bimodal distribution
(dashed line). The difference in bin width h gives drastic differences in estimations.

originates some disadvantages. First, both the bin width and the choice of bin origin have a large
influence on the estimation. Figure 2.4.3 shows how offsets of the bin origin change the shape
of the final density estimate for constant bin width. Figure 2.4.4 shows on the other hand how
varying bin widths affect the final density estimate. Of course, the discontinuity in the estimated
density function is almost certainly not related to the underlying density distribution, and is (as
shown in the figures presented) a result of the choices of bin origin and bin width, and a natural
feature of the histogram.

Kernel Density Estimation

There are ways to get around the disadvantages of the histogram presented above; both the loss
of information due to "binning", and the discontinuity in the density function estimates. Kernel
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Figure 2.4.5: The distribution of 1000 random samples (blue dots) from a bimodal Gaussian distribution
(dashed line) are estimated using both histogram and KDE. The histogram has bin origin x0 = 0, and bin
width h. Three kernel density estimations are calculated using three different bandwidths, ∆.

Density Estimation (KDE) (Simonoff, 1996; Silverman, 1986; Scott, 1992; Gramacki, 2018) removes
both the restriction of bins and can employ smooth functions to create continuous density estimates.
It is a widely used tool for data smoothing of finite size samples.

If we picture the histogram in the previous subsection as a stack of blocks, one block for each
data point, then the histogram is revealed by stacking these blocks in the appropriate grid (bins).
However, if we do not restrict ourselves to the grid (bins), we can center the blocks on the data
point it represents. By summing up all potential contributions, we find a new estimate of the
distribution. The estimate is unaffected by the choice of grid (bin origin); it is driven by the
underlying data. The estimator, analogous to the histogram estimator (2.4.9), is

f̂(x) =
#{Xi ∈ (x− h, x+ h]}

2Nh
=

1

Nh

N∑
i=1

K

(
x−Xi

h

)
, (2.4.10)

where K is a squared density function often called tophat or box-kernel, and h is the width of
the function. This is the idea behind KDE – it works by passing a kernel function over each
sample point. A kernel function is restricted to being a non-negative, real-valued, integrable, and
symmetric function, that must also satisfy the normalization requirement,

∫∞
−∞K(u)du = 1. The

requirements ensure that the KDE results in an actual probability density function. In the case
above, a box-kernel is placed over each point it represents, resulting in a discontinuous function
estimate as seen in Figure 2.4.5 for a finite data sample. Some of the estimates are better than
others, in this case they differ only due to the choice of bandwidth, ∆, of the kernel. The parameter
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Figure 2.4.6: Shows a Gaussian kernel density estimate, and how a Gaussian curve contributes in each
point to the total estimation curve. The resulting estimate functions as a nonparametric model of the
distribution of points (in this case uniform distribution). In above simulation a bandwidth of ∆ = 0.1 has
been used, and the kernels are resized to 1/5 of original value for a better visual presentation.

referred to as bandwidth, or also smoothing parameter, is the scaling parameter of the kernel
function setting the standard deviation of the distribution.

However, KDE is a known tool for data smoothing, and multiple smoother kernels can be applied
to construct a representation of the sample data points. The blocks considered need not be square
boxes, but any kernel function K that satisfy the requirements. There are a number of different
kernels, some of the more commonly used functions are presented in Figure 2.4.7. A typical smooth
kernel is the widely used Gaussian kernel. Figure 2.4.6 shows a number of data points, and the
overlying kernels representing each point. The kernels are then added up to estimate a density
function as seen in the figure – a smooth estimate of the density. When estimating a distribution
of sample points using KDE using a particular kernel and a set number of samples, only one
parameter must be specified: the bandwidth. As with the bin width in the histogram, the kernels’
width will drastically change the representation of data. We discuss the smoothing parameter
further in subsection 2.4.3.

Error criteria for density estimates

For optimizing the method of density estimation, we need some criteria to be able to measure
an error. For a typical density estimation problem, we can define the mean-square error (MSE)
criterion

MSE{f̂(x)} = E[f̂(x)− f(x)]2 = Var{f̂(x)}+ Bias2{f̂(x)} (2.4.11)

where Bias{f̂(x)} = E[f̂(x)] − f(x). This criterion treats the density estimator as a point-wise
estimator. It might be more applicable to define a criterion that considers the entire density surface.
Examples of such global criteria are the L∞ and L1 norms (see, e.g., Scott (1992, p. 38)), and the
more applicable L2 norm (or Euclidean norm) defined as

ISE =

∫
[f̂(x)− f(x)]2dx. (2.4.12)

It is often referred to as the integrated squared error (ISE). The criterion depends on both the
true unknown distribution f(x), the estimator used f̂(x), and the sample size. The ISE itself is a
random variable, and thus it is more convenient to define a criterion that averages over realizations.
For this reason, the mean of the ISE is another criterion; the mean integrated squared error (MISE):
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Figure 2.4.7: Typical kernels of bandwidth ∆ used in kernel density estimation, shown along with a
sample point and the corresponding histogram of bin width h.

MISE = E[ISE] = E

[∫
[f̂(x)− f(x)]2dx

]
=

∫
E
[
f̂(x)− f(x)

]2
dx =

∫
MSE{f̂(x)}dx ≡ IMSE,

(2.4.13)

or also named the integrated mean squared error (IMSE). Scott (1992, p. 38) calls attention to
the fact that it can be interpreted as both a measure of average global error and the accumulated
pointwise error. The MISE criterion could be modified by including a weight function, which gives
a criterion that is even more specified for a particular optimization of an estimator.

Smoothing parameter

The level of smoothness of a KDE is typically controlled by the smoothing parameter known as
the bandwidth or window width (often denoted bw, t or h in literature). For a histogram with
constant bin width, the primary and secondary smoothing parameters are the bin width and bin
origin. For a kernel estimator, the bandwidth serves as the smoothing parameter (Scott, 2012).
We use the notation ∆ for the kernel bandwidth in this thesis.

The performance of the estimator f̂ for f depends crucially on the value of ∆ (Fortmann-Roe et al.,
2012). The optimal bandwidth is the bandwidth for which the estimator satisfies some criterion
of error or objective-specific criterion. An example is optimizing the estimator with respect to
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the ISE, and thus the bandwidth which gives the lowest ISE is the optimal bandwidth of the
problem. In general, what is defined as an optimal bandwidth depends on our objective, as the
optimal bandwidth is not an obvious and unique definition. There exist a number of bandwidth
algorithms or "bandwidth estimators" applicable for different problems, e.g., Silverman’s rule
of thumb7 (Silverman, 1986), Scott’s rule of thumb (Scott, 1992), and Sheather-Jones bandwidth
algorithm (Sheather and Jones, 1991). See, e.g., discussions in Silverman (1986) and Scott (2012)
on methods for selecting the optimal smoothing parameter, and Gramacki (2018) for a relatively
up to date introduction to bandwidth selectors.

In Figure 2.4.6 we saw how the kernels are added up to form a complete estimator of a distribution
of points. To illustrate the effects of bandwidth choice in kernel density estimation, we have a
closer look at the creation of a Gaussian KDE. We let {Xi} be N independent realizations from
an unknown distribution f(x), then the estimator is explicitly defined (e.g., Botev et al. (2010))
as the sum

f̂(x) =
1

N

N∑
i=1

φ(x,Xi), x ∈ <, (2.4.14)

where φ is the Gaussian kernel with standard deviation set by the bandwidth ∆;

φ(x,Xi) =
1√

2π∆
exp

(
−(x−Xi)

2

2∆

)
. (2.4.15)

Figure 2.4.8 shows how different bandwidth choices heavily affect the resulting estimate smoothness
for a given number of samples. Obviously, for an insufficient number of sample points, the global
error tends to be large regardless of bandwidth choices. The details of the distribution will drown
in a broad ∆, while a narrow ∆ will mainly describe the distribution of the points of one specific
realization, and not the distribution from which they are sampled. Generally speaking, the more
samples available, the narrower the bandwidth can be allowed to be. For a further discussion about
bandwidth selection in KDE, see, e.g., Kile (2010) and references therein.

2.5 EQUIVALENCE OF EULERIAN AND LAGRANGIAN
FORMULATIONS

We have been introduced to the advection-diffusion equation and seen how it can be solved using
an Eulerian formulation in Section 2.1, or what we refer to as an Eulerian fluid method. In the
rest of this chapter, we have looked at solving the advection-diffusion equation from a Lagrangian
perspective, solving the problem using a Lagrangian particle method. We shall now look at the
concept of equivalence between the two methods by comparing the two formulations of the same
problem numerically, and investigating further how they differ. The advection-diffusion equation,

∂

∂t
C +

∂

∂x

(
uC
)

=
∂

∂x

(
D
∂

∂x
C
)
, (2.5.1)

describes the physical phenomena where particles, energy, or other physical quantities are transferred
inside a physical system due to both advection and diffusion. The Eulerian fluid method for solving
the partial differential equation (PDE), Eq. (2.5.1), entails calculating the resulting probability
distribution of the physical quantity in question as a function of time and space, by means of a
finite difference scheme. In this subsection we shall use the Crank-Nicolson scheme as presented

7Numerical examples can be found at https://kdepy.readthedocs.io/en/latest/bandwidth.html
(implementation of KDE in Python 3.5+ package).
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Figure 2.4.8: Gaussian kernel density estimate (KDE) for samples (gray dots) from a bimodal distribution
(dashed line) for different values of bandwidth ∆. Sample points and scaled kernels are shown below the
estimation (right column only displays every tenth kernel).

in Appendix A.3 for solving Eq. (2.5.1). Solving the same problem using the Lagrangian particle
method essentially means solving the stochastic differential equation (SDE),

dXt = (u+ ∂xD) dt+
√

2DdWt, (2.5.2)

whose Fokker-Planck Equation is the advection-diffusion equation, as discussed in Section 2.2.4.
The drift and diffusion coefficient were in this case found to be

a(x, t) = u(x, t) + ∂xD(x, t) and b(x, t) =
√

2D(x, t). (2.5.3)

The solution of the SDE (2.5.2), is calculated by the means of Monte Carlo simulations by using
the Euler-Maruyama scheme (2.3.5) for integration.

Computational example: Constant diffusion in an initially Gaussian system

The comparison between solving the PDE and the SDE can be made for a purely diffusive system,
and we will first show it for a constant diffusion ∂xD = 0. For a system with initial distribution
described by a Gaussian function, the two methods are applied, and the results are as expected.
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Figure 2.5.1: From an initially Gaussian distributed concentration, the solution of the two separate
formulations are presented at two instants t > 0. Blue is the Eulerian solution, yellow is the Lagrangian
solution. The diffusion (scaled with D0 = 0.01) is a stationary and continuously differentiable function, a
constant, shown in the left subplot. Periodic boundary conditions are applied. The Monte Carlo method
obtains a solution using N = 100000 simulations, and a time step of dt = 0.0002. The histogram estimates
the solution with 1000 bins. The Eulerian method has a spatial discretization of dx = 0.01. Time t here
is just time steps taken.

Figure 2.5.2: From an initially Gaussian distributed concentration, the solution of the two separate
formulations are presented at two instants t > 0. Blue is the Eulerian solution, yellow is the Lagrangian
solution. The diffusion (scaled with D0 = 0.01) is a stationary and continuously differenatiable Gaussian
function shown in the left subplot. Periodic boundary conditions are applied. The Monte Carlo method
obtains a solution using N = 100000 simulations, and a time step of dt = 0.0002. The histogram estimates
the solution with 1000 bins. The Eulerian method has a spatial discretization of dx = 0.01. Time t here
is just time steps taken.

The evolution of the probability distribution, shown in Figure 2.5.1 for both formulations, shows
overlapping solutions indicating equivalence. The constant diffusion widens the probability density
distribution, describing a spread of the tracer (or other physical quantity) as time passes. Would the
system have evolved further, the concentration would eventually have ended up evenly distributed.
The constant diffusion can be replaced by a variable diffusion: We can look at a system with
diffusion described by a Gaussian function, as shown in the left-most subplot of Figure 2.5.2. The
two methods produce overlapping results and appear to behave in the exact same manner yet
again.
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Both the examples presented have continuously differentiable diffusion functions D(x), complying
to the criterion (2.2.24) of smoothness on the coefficients a(·) and b(·). However, in the next
subsection, we will see that whenever the smoothness assumption fails, the two formulations do
not produce the same result. The the SDE in Eq. (2.5.2) can no longer describe through the
Fokker-Planck equation the same evolution of the probability distribution as the advection-diffusion
equation (2.5.1).

2.5.1 "Moderately smooth functions"-criteria and when it fails
The importance of the assumption that the coefficients a(·) and b(·) are "moderately smooth
functions" should not be taken lightly. It is a crucial assumption for the link to the advection-diffusion
equation, but even so is often a forgotten or disregarded principle (as in, e.g., Chiri et al. (2020);
De Dominicis et al. (2013)). The criteria (2.2.24) on the coefficients a(·) and b(·), practically means
that the diffusion, D, must be continuous and must have a continuous derivative, such that the
second derivative exists. Furthermore, the velocity field must also be a continuous function, such
that ∂xa(x, t) exits.

Computational example: Comparing Eulerian and Lagrangian methods under
the well-mixed condition

The importance of the fulfillment of the smoothness criterion can be shown by looking at a system
for which the smoothness criterion is not fulfilled, and compare it to a slightly adjusted system
that does fulfill the criterion. We shall look at a purely diffusive system, letting u = 0. As seen in,
e.g., Chiri et al. (2020) and De Dominicis et al. (2013), discontinuous step functions are sometimes
used to describe the diffusion in a system. The step function can easily be replaced by a smoother
counterpart with a continuous derivative to show how this will change the computation results. As
an example, we shall use a box function (see Figure 2.5.3), and a smoothed-out box function (see
Figure 2.5.4), as the diffusion coefficient D(x). The box function is chosen instead of the simple
step function to keep the diffusion function continuous at the boundaries when periodic boundary
conditions are applied.

We initiate the system in a well-mixed state (Thomson, 1987). This is a condition of the system
that implies that for a diffusive system D(x) > 0 ∀x, an initially evenly distributed tracer will
remain in the well-mixed state for all times. This can easily be seen from the diffusion equation

∂C

∂t
=
∂D

∂x

∂C

∂x
+D

∂2C

∂x2
, (2.5.4)

that by initially letting ∂xC = 0 everywhere, concentration does not change in time either, ∂tC = 0.
The condition is commonly used to test implementations of Lagrangian particle models, and applied
in this case to see a clear difference when the formulations are not equivalent. Starting by looking
at a square box diffusion function, i.e., a discontinuous function with no defined derivative. The
coefficient a(x) is shown for zero velocity in Figure 2.5.3. The Eulerian and Lagrangian methods are
applied to the problem, and solutions are shown after t time steps. As expected from the Eulerian
solution, the system stays well-mixed throughout the integration time. However, the Lagrangian
solution shows striking deviations at and around the points of discontinuity in a. In other words,
the figure clearly describes the consequences of disregarding the smoothness criteria (2.2.24).

Slight changes in the diffusion function gives a smooth coefficient a(·), and we can demonstrate
how the two formulations are equivalent under the same well-mixed condition as in Figure 2.5.3.
The system in Figure 2.5.4 demonstrates how a smoothed out box function as diffusion coefficient,
a continuously differentiable function, does not affect the well-mixed distribution, and by that
demonstrates again the principle of equivalence between the two formulations. This concept is
investigated further in two dimensions in Appendix B.1: Squared and smooth box diffusion in zero
advection, where the exact same behavior is confirmed.
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Figure 2.5.3: From an initially well-mixed concentration, the solution of the two separate formulations
are presented at two instants t > 0. Blue is the Eulerian solution, yellow is the Lagrangian solution. The
diffusion (scaled with D0 = 0.01) is a stationary and discontinuous function shown in the left subplot.
Periodic boundary conditions are applied. The Monte Carlo method obtains a solution using N = 100000
simulations, and a time step of dt = 0.0001. The histogram estimates the solution with 1000 bins. The
fluid method has a spatial discretization of dx = 0.01. Time t here is just time steps taken.

Figure 2.5.4: From an initially well-mixed concentration, the solution of the two separate formulations
are presented at two instants t > 0. Blue is the Eulerian solution, yellow is the Lagrangian solution.
The diffusion (scaled with D0 = 0.01) is a stationary and continuously differentiable function (∂xD is
continuous). Periodic boundary conditions are applied. The Monte Carlo method obtains a solution using
N = 100000 simulations, and a time step of dt = 0.0001. The histogram estimates the solution with 1000
bins. The fluid method has a spatial discretization of dx = 0.01. Time t here is just time steps taken.
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Chapter 3

CONCENTRATION FIELD IN
DIFFUSIVE DOUBLE GYRE
FLOW

In the Eulerian formulation we solve the advection-diffusion equation which describes the time
evolution of a probability density function (of some physical quantity). We refer to this method
as the Eulerian fluid method. The solution can, e.g., describe the concentration field of some
specimen or tracer present in a fluid. The same partial differential equation can also be solved
using what we call a Lagrangian particle method. Instead of solving the equation directly, we solve
a stochastic differential equation for a number of Lagrangian particles – i.e., simulate independent
realizations of the stochastic process that is the solution of the SDE. The simulation results can be
considered samples from the probability density distribution itself. Through density estimation we
can produce matching results to the fluid method, as these methods are equivalent under certain
criteria (see Section 2.2.4).

This chapter presents implementation and results using both formulations of the advection-diffusion
problem. The Eulerian fluid method and the Lagrangian particle method are used to solve the
advection-diffusion equation in the double gyre flow presented in Chapter 1, in a system with
constant diffusion. All implementations are written in Python, and when appropriate, we list
explicit implementations or imports of libraries.

Double gyre system

The double gyre system presented in Chapter 1 is straightforwardly implemented as a velocity
field in two dimensions. For the discretized domain in the fluid method, the implementation of
numerically calculated derivatives by a central finite difference method is found in Section 3.1.2.
The particle method uses a forward finite difference method (Section 3.3.1), and the method is not
confined to the grid structure. The parameters of the double gyre flow field are

A = 0.1, ε = 0.1, ω =
2π

10
. (3.0.1)

The field is defined on the domain x ∈ [0, 2] and y ∈ [0, 1]. For the sake of simplicity we use this
domain in all numerical implementations (such as in Appendix B.1).
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Table 3.0.1: Implemented time step sizes ∆t, and the number of time steps Nt, for the maximum
integration time T = 10.

∆t 0.1 0.05 0.025 0.0125 0.00625
Nt 100 200 400 800 1600

∆t 0.003125 0.001562 0.00078125 0.00039063 0.00019531
Nt 3200 6400 12800 25600 51200

Setup for numerical simulations

The two methods for solving the advection-diffusion equation are run separately. For them to
solve the same problem, the two system descriptions must be equivalent. In Section 3.1 and 3.3
we describe in detail the implementations of each method, but their common setup is introduced
in the following.

Discretization. The fluid method will use a discretized spatial grid, while the particle method is
continuous in space. Both methods are discrete in time, and we must set the time step ∆t and
also the length of the simulation as the number of time steps Nt. To compare simulations at the
same point in time, we have chosen a set of available time steps through halving an initial large
discretization. The largest time step is set to ∆t = 0.1, and thus the range of available time steps
is given as {∆t} = 0.1 · {

(
1
2

)0
,
(

1
2

)1
,
(

1
2

)2
,
(

1
2

)3
, . . . ,

(
1
2

)9}. The maximum integration time is set
to T = 10, and thus the number of time steps is given by Nt = T/∆t. The temporal discretizations
available are summed up in Table 3.0.1.

Initial conditions. The initial condition for the computations in this chapter is set to be a
two-dimensional Gaussian function, centered in the middle of the domain,

G(x, y) = exp

(
− (x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

)
, (3.0.2)

for parameter values given in Table 3.0.2. In the fluid method, the initial probability distribution
is normalized,

C(x, y, 0) =
G(x, y)∫∫
G(x, y) dx dy

, (3.0.3)

where the Gaussian function is numerically integrated over the grid. Matching the initial conditions
of the fluid method, the initial position in each simulation (Np simulations at the time) in the
particle method is drawn from the multivariate normal distribution1

x_0, y_0 = np.random.multivariate_normal(mean, cov, Np).T

with mean and variance described by

mean =
[
µx µy

]
, and cov =

[
σ2
x 0

0 σ2
y

]
, (3.0.4)

1The initial conditions can be replicated for Np particles by using the same seed for the numpy random
number generator. This has been done when comparing the Euler-Maruyama scheme for different time
step sizes (see Section 3.4.1), looking at strong convergence.
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for values given in Table 3.0.2.

Boundary conditions. The spatial boundary condition is set to be periodic. For a Lagrangian
particle, this means that any integration that returns a position outside the domain will find the
periodic equivalence of the position at the opposite side. For the fluid method, the periodicity
means that for the boundary grid points, their neighbours are found at the other side of the
domain. The specific implementations of the boundary condition in the two methods are given in
Section 3.1.2 for the fluid method and Section 3.3.1 for the particle method.

Table 3.0.2: Parameter values for initial probability density distribution in both formulations.

µx µy σx σy

1.0 0.5 0.1 0.1

3.1 FLUID METHOD: NUMERICAL IMPLEMENTATION
To solve the partial differential equation called the advection-diffusion equation, we have discretized
both the spatial and temporal domain. We have used the finite difference method Crank-Nicolson
to approximate derivatives, and applied periodic boundary conditions. The system is solved using
numerical linear algebra. This section shows all implementations in as much detail as needed
to replicate, without necessarily providing the actual code. It follows a natural outline from
discretization, implementing the chosen scheme and solving the resulting linear system. The
section ends with a discussion about the constraints in the method. These assumptions, limits
and concerns are taken into consideration when setting up of the numerical simulations. Results
from computations will be presented in the next section, but first, a thorough presentation of the
implementation.

3.1.1 Domain discretization
The spatial domain of interest is divided into grid cells with sides of lengths ∆x and ∆y. The
non-dimensional domain is the rectangle x ∈ [0, 2] and y ∈ [0, 1]. The domain is discretized as

x = x0 + i∆x, and y = y0 + i∆y,

for x0 = ∆x
2 and y0 = ∆y

2 . The grid resulting from this discretization is presented in Figure 3.1.1 for
a small example system. The numerical grid is implemented using numpy.meshgrid. Specifically
for the one-dimensional arrays x of length Nx, and y of length Ny, the two-dimensional grid is
produced as follows

xx, yy = np.meshgrid(x, y)

By this manner, the grid arrays xx and yy are of the shape (Ny,Nx). The grid points are accessed
row-wise as in the example matrix X, presented as visual pseudocode to the right in Figure 3.1.1.
All two-dimensional quantities are handled in a row-wise manner. All spatially dependent fields
have the same structure as the matrix X: The concentration Cj,i, the velocities Uj,i and Vj,i, and
the diffusion field Dj,i.

The temporal discretization is given by the index n, and expressed

t = t0 + n∆t,

where we only use a constant time steps ∆t, and let t0 = 0.

39



CHAPTER 3. CONCENTRATION FIELD IN DIFFUSIVE SYSTEM Section 3.1

x

y

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(4,0) (4,1) (4,2) (4,3) (4,4)

x x x x0 0 0 0+Δ x +2Δ x +3Δ x

y0

y0 +Δ y

y0+2Δ y

y0+3Δ y

y0+4Δ y

i=0 i=1 i=2 i=3

j=0

j=1

j=2

j=3

j=4 X = 

X    = (j,i)ji

Figure 3.1.1: Two-dimensional grid shown for a small example domain. An example two-dimensional
field matrix X is shown to the right. Two points are explicitly marked in both the grid and the matrix.
The matrix is presented with row zero at the top, and the last row at the bottom.

Row-ordering

Even though the two-dimensional numerical fields - concentration C, velocity components U and
V, and diffusion D - are defined as matrices, we shall more frequently use them in a column
vector form. They are flattened out row-wise to adapt to the one-dimensional shape. E.g., the
concentration matrix Cj,i is flattened to become

C =



C0,0
C0,1
C0,2
...

C0,Nx−2

C0,Nx−1

C1,0
C1,1
...
Cj,i
Cj,i+1

Cj,i+2

...
CNy−1,Nx−2

CNy−1,Nx−1



(3.1.1)

This is the format referred to as a row-ordered column vector in the following, or simply column
vector.
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3.1.2 Crank-Nicolson scheme in two dimensions
We used the Crank-Nicolson scheme to approximate the derivatives in the advection-diffusion
equation, resulting in equations solved through numerical linear algebra. We will describe the
derivation of the scheme for the specific equation and the specific discretization chosen. Periodic
boundary conditions are applied and explained in detail.

Deriving the scheme explicitly for the two-dimensional advection-diffusion equation

The Crank-Nicolson scheme for the advection-diffusion equation in two-dimensions is found by first
expressing the equation

∂C

∂t
= ∇ · (D∇C)−∇ · (uC), (3.1.2)

for two-dimensional operator ∇ = ∂xx̂ + ∂yŷ. It is further assumed that

D = D(x, y) C = C(x, y, t) u = u(x, y, t) = ux̂ + vŷ

By writing it out,

∂C

∂t
=
∂D

∂x

∂C

∂x
+D

∂2C

∂x2
+
∂D

∂y

∂C

∂y
+D

∂2C

∂y2
− ∂u

∂x
C − u∂C

∂x
− ∂v

∂y
C − v ∂C

∂y
, (3.1.3)

the common order of derivatives can be collected, as

∂C

∂t
=

(
∂D

∂x
− u
)
∂C

∂x
+

(
∂D

∂y
− v
)
∂C

∂y
+D

∂2C

∂x2
+D

∂2C

∂y2
+

(
−∂u
∂x
− ∂v

∂y

)
C. (3.1.4)

The scalar field is discretized as

C(x, y, t) = C(x0 + i∆x, y0 + j∆y, t0 + n∆t) = C(xi, yj , tn).

To keep the notation from Section 3.1.1 defining the discretization, we shall describe the two
dimensional matrix at a time tn by

Cnj,i = C(xi, yj , tn).

(It should be noted that in most implementations the first dimension in the matrix is also the
first dimension in space (x). Hence, the presentation above is used to not confuse the reader
and stick with the structure of the grid implemented.) The approximations to the derivatives are
expressed through the Crank-Nicolson scheme (Section A.3). They are listed below, expressing the
derivatives evaluated at the point (xi, yj , tn).

∂C

∂t
=
Cn+1
j,i − Cnj,i

∆t
(3.1.5)

∂C

∂x
=

1

2

[
Cn+1
j,i+1 − C

n+1
j,i−1

2∆x
+
Cnj,i+1 − Cnj,i−1

2∆x

]
(3.1.6)
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∂C

∂y
=

1

2

[
Cn+1
j+1,i − C

n+1
j−1,i

2∆x
+
Cnj+1,i − Cnj−1,i

2∆x

]
(3.1.7)

∂2C

∂x2
=

1

2

[
Cn+1
j,i+1 − 2Cn+1

j,i + Cn+1
j,i−1

∆x2
+
Cnj,i+1 − 2Cnj,i + Cnj,i−1

∆x2

]
(3.1.8)

∂2C

∂y2
=

1

2

[
Cn+1
j+1,i − 2Cn+1

j,i + Cn+1
j−1,i

∆y2
+
Cnj+1,i − 2Cnj,i + Cnj−1,i

∆y2

]
(3.1.9)

The scheme is central in space, and hence result in a spatial five-point stencil, as seen in Figure
A.6 of Appendix A.3, considering neighboring points in both directions. The derivation is shown in
full in Appendix C.2, and here we present only the resulting scheme for convenience. The solution
can be written, for the left hand side matrix L and right hand side matrix R, and the row-ordered
column vector form of C (see Section 3.1.1):

L ·Cn+1 = R ·Cn. (3.1.10)

The matrices of the scheme are square (Nx ·Ny)× (Nx ·Ny), and the concentration vector C is
of shape (Nx ·Ny). Let the matrices L and R be indexed through their row number r and column
number c, as [r, c], then the matrices are expressed explicitly through

L :
[r, r]

[r, r ± 1]

[r, r ±Nx]

−→ 1 +Dλx +Dλy − (−∂xu− ∂yv) ∆t/2

−→ ∓ (∂xD − u)αx −Dλx/2
−→ ∓ (∂yD − v)αy −Dλy/2

(3.1.11)

R :
[r, r]

[r, r ± 1]

[r, r ±Nx]

−→ 1−Dλx −Dλy + (−∂xu− ∂yv) ∆t/2

−→ ± (∂xD − u)αx +Dλx/2

−→ ± (∂yD − v)αy +Dλy/2

(3.1.12)

where we have simplified, using the following variables

λx =
∆t

(∆x)2
λy =

∆t

(∆y)2
αx =

∆t

4∆x
αy =

∆t

4∆y
.

Before applying any boundary conditions, the matrices of the spatial five-stencil Crank-Nicolson
scheme are five-diagonal sparse matrices, as illustrated in Figure 3.1.2. The offsets at ±1 and ±Nx,
have opposing signs as found in Eq. (3.1.11) and (3.1.12), and the main diagonals are connected
through Lr,r = −Rr,r + 2. An additional short note about the calculation of the matrices is found
in Appendix C.2, explaining in detail the construction of the matrices as functions of the fields
D(x, y) and u(x, y, t), and their derivatives.
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Figure 3.1.2: The five-point stencil of the Crank-Nicolson scheme result in five-diagonal matrices R and
L. Additionally to the main diagonal, the offsets are ±1 and ±Nx.

Periodic boundary conditions

Following the spatial five-point stencil of the Crank-Nicolson scheme, periodic boundary conditions
are applied in two dimensions. The implementation is described in detail by applying it to a smaller
example system. The example system is presented as a (3×5) grid (Ny = 3, Nx = 5), as pictured
in Figure 3.1.3. The grid points are named by number as in Figure 3.1.4, in the order they appear
in the concentration vector C, in other words natural row order. Figure 3.1.4 shows in detail how
the rows of the matrix are found, based on where we find the neighbouring points in the 5-point
stencil. This approach results in the final matrix represented by Figure 3.1.5.

Estimating derivatives

The Crank-Nicolson scheme matrices contain terms including the differentiated velocities in both
dimensions, ∂xu and ∂yv. The derivatives are calculated using the central finite difference method
(see Section A.2), solving

∂xU = Mx̂ ·U and ∂yV = Mŷ ·V, (3.1.13)

where U and V are row-ordered column vectors of the two dimensional velocity fields Uj,i and Vj,i.
Mk̂ is the central difference matrix in dimension k̂. The central difference matrices are implemented
with periodic boundaries.

Ny=3

Nx=5

Figure 3.1.3: Example system grid with centered grid points.
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.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0

0,1

1,2

2,4

(a) (b) (c)

Figure 3.1.4: Visual description of boundary conditions, where the colors represent the different stencil
points described in 3.1.5. The figure shows (a) the grid index (j, i), (b) shows the stencil on the grid
according to the periodic boundary condition, and (c) the location of the same points in the concentration
vector C.

j,i-1 j,i+1 j+1,ij-1,i j,i

Figure 3.1.5: Matrix structure used in Crank-Nicolson scheme, with periodic boundary conditions. Shown
for an example grid. To the right, the grid with 5-point stencil shown, where colored cells correspond to
grid points (i, j).
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Iteratively solving linear system

The matrix equation (3.1.10) at a time tn,

L ·Cn+1 = R ·Cn, (3.1.14)

is solved by performing two consecutive operations. First an inner product to calculate the right
hand side b = R ·Cn. Followed by an iterative method for solving the linear equation L ·Cn+1 =
b. The chosen iterative method, the biconjugate gradient stabilized method, is imported and
implemented as follows:

from scipy.sparse.linalg import bicgstab

# So l v e e q ua t i o n Lc = b a t t ime n+1
b = R.dot(c)
c, conv = bicgstab(L, b, tol = 1e−12)

The program exits whenever the tolerance is not met. The method is selected because the matrix
L is not symmetric, and to avoid the computationally expensive operation of inverting the matrix.

3.1.3 Constraints of numerical model
As presented in Appendix A.3, the Crank-Nicolson scheme is unconditionally stable. The scheme
has different behavior when solving different systems; thus the constraints presented in this subsection
are constraints for solving an advection-diffusion problem specifically. Even though the scheme
considered unconditionally stable, there are still some measures that should be taken to ensure a
correct solution.

Advection- and diffusion-dominated systems

The choice of implementing a central finite difference scheme is well reasoned with the wish of not
obtaining oscillating solutions. However, for non-smooth solutions, this is not guaranteed. For the
advection-diffusion problem, the balance between length scale and the value of transport-terms is
described through the Péclet number (for mass) as

Pe =
advective transport rate
diffusive transport rate

=
Lu

D
, (3.1.15)

for a diffusion coefficient D and velocity u. A system is said to be advection-dominated if Pe� 1,
and diffusion-dominated if reversely Pe � 1. To avoid completely the oscillating behavior, the
grid size ∆x and ∆y must be small enough. For the central difference scheme, the restriction on
the numerical approximations is set by the cell Péclet number

Pecell,x =
∆xu

D
and Pecell,y =

∆yv

D
. (3.1.16)

The cell Péclet number is restricted to

Pecell ≤ 2. (3.1.17)

to avoid oscillations and negative values in the solution according to Hundsdorfer (2003, p. 67).
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Restrictions on diffusion relative grid size

The constraints presented above suggest that we can not simulate a system with a diffusion
coefficient that is "too low," as this will result in the restriction of a relatively fine grid. To avoid
unnecessarily long and computationally costly computations, we have not worked with systems
larger than the grid size of (400 × 800), which is a grid cell size of ∆x = ∆y = 0.0025. Grids are
from here on out referred to by their matrix shape (Ny ×Nx).

Our efforts have been focused on a slightly coarser grid through the calculations. We have
concentrated our efforts on the (200 × 400) grid, which has worked well in most simulations
(all of Chapter 4 is presented in this grid resolution). To stay within the restrictions the cell
Péclet number sets on our calculations, we stay clear of the oscillating solution by calculating
for appropriate diffusion coefficients. A list of parameters for four different constant diffusion
coefficients D0 are presented in Table 3.1.1.

Table 3.1.1: Parameter dependency shown for four different values of D0. Dark gray cells have cell Péclet
numbers above the limit (3.1.17). Time steps ∆t are calculated using Eq. (3.1.19).

D0 ∆x = ∆y (Ny ×Nx) Pecell ∆t

0.01 0.02 (50× 100) 0.6277 0.04
0.01 (100× 200) 0.3141 0.01
0.005 (200× 400) 0.1571 0.0025
0.0025 (400× 800) 0.0785 0.000625

0.005 0.02 (50× 100) 1.2554 0.08
0.01 (100× 200) 0.6281 0.02
0.005 (200× 400) 0.3142 0.005
0.0025 (400× 800) 0.1571 0.00125

0.001 0.02 (50× 100) 6.2770 0.4
0.01 (100× 200) 3.1408 0.1
0.006667 (150× 300) 2.0942 0.044444
0.005 (200× 400) 1.5707 0.025
0.004 (250× 500) 1.2566 0.016
0.003333 (300× 600) 1.0472 0.011111
0.002857 (350× 700) 0.8976 0.008163
0.0025 (400× 800) 0.7854 0.00625

0.0005 0.02 (50× 100) 12.5540 0.8
0.01 (100× 200) 6.2816 0.2
0.005 (200× 400) 3.1414 0.05
0.0025 (400× 800) 1.5708 0.0125

Relation between spatial and temporal resolution

As the cell Péclet number depends on both spatial resolution and the diffusivity, we must be careful
when we change the resolution. Even though Crank-Nicolson is an unconditionally stable scheme,
we must ensure that the solution to which it converges is the correct one. To ensure stability in
explicit schemes when solving advection- and diffusion-dominated problems, the time step is often
restricted to respectively |u|∆t∆x ≤ 1 and D∆t

(∆x)2 ≤
1
2 . This results in the limits
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∆t ≤ ∆x

|u|
and ∆t ≤ (∆x)2

2D
. (3.1.18)

As we have chosen the Crank-Nicolson scheme for unconditional stability, we assume that these
constraints are relatively harsh and have decided to opt for the less strict constraint

∆t ≤ (∆x)2

D
. (3.1.19)

Solutions that follow the above limit of time step size, along with a maximum cell Péclet number
Pecell ≤ 2, should give non-oscillating solutions.

3.2 FLUID METHOD: NUMERICAL RESULTS
In this section, we show the results from computing the probability density function as it evolves
with time. Numerical implementations are fully described in the previous section, and only
relevant parameters and constants are given here. The advection-diffusion equation is solved
using the finite difference scheme Crank-Nicolson, and the iterative solver bicgstab (biconjugate
gradient stabilized method) from the scipy.sparse.linalg library. The flow velocity field is
the double gyre flow, and the diffusion is set to be constant over the domain, D(x, t) = D0. The
system is solved for a range of different discretizations and diffusion constants. From an initial
Gaussian distribution, we first look at the convergence of the Crank-Nicolson scheme with respect
to the spatial and temporal discretization. A large part of the results includes investigating the
conservation of mass in the system, and seeing how poor choices of diffusion and discretization can
result in oscillating and negative valued solutions.

3.2.1 Convergence of Crank-Nicolson numerical scheme

Convergence in time

Figure 3.2.1 shows that the Crank-Nicolson scheme has an approximated second-order convergence
in time, as expected. The integrated squared error is computed relative to a solution using the
smallest time step available (∆t = 0.1 · (1/2)9), and all solutions have been computed on a (200×
400)-grid. It shows that even for time steps much larger than the limit ∆t ≤ (∆x)2

D0
, would allow,

see Table 3.1.1, the solutions converge following a second order trend.

Convergence in space

The convergence rate of the Crank-Nicolson scheme with regards to the grid discretization was
investigated. We see that even for systems with Pecell = Pecell(D0,∆x) > 2, the convergence
trend follows a constant slope in the log-log plot in Figure 3.2.2. The figure shows the convergence
of the scheme with grid discretization ∆x. The time step is constant for all grids, ∆t = 0.1 · (1/2)9,
and satisfy ∆t ≤ (∆x)2/D0 in all discretizations. The regression is computed using curve_fit
from scipy.optimize.

3.2.2 Conservation of mass
Since diffusive and advective processes do not create or destroy mass, they only redistribute mass;
the total mass should remain conserved in the system. As we have seen with Figures 3.2.1 and
3.2.2, the solution should converge to the true solution using a small enough time step ∆t and grid
spacing ∆x. However, what also needs to be accounted for is the Péclet number, as mentioned in
Section 3.1.3. Thus, we look at the conservation of mass as a function of time for different diffusion
coefficients and different spatial discretizations in Figure 3.2.3. The time steps are regulated so
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Figure 3.2.1: Log-log plot of the convergence in time of the Crank-Nicolson scheme, for four different
diffusion constants D0, on a (200 × 400)-grid. The integrated squared error is relative solutions using a
small time step, ∆t = 0.1 · (1/2)9. The slopes are calculated by taking the logarithm of the dataset (for
each D0), and computing a linear regression. Only filled data points are used in the regression analyses.
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Figure 3.2.2: Log-log plot of the convergence of the Crank-Nicolson method in space, for four different
diffusion constants D0 and four different discretizations. The integrated squared error (ISE) is calculated
relative a finer discretization, a (400×800)-grid. Upper legends apply in both subplots, and Péclet numbers
are given in order from finest to coarsest discretization (including for the relative grid of discretization
∆x = 0.0025). Lower legends show the approximated slope – the convergence rate – calculated by direct
curve fitting to the function f(x, a, b) = axb. Only filled in data points are used in the curve fitting. The
time step is ∆t = 0.1 · (1/2)9 for all calculations.

48



CHAPTER 3. CONCENTRATION FIELD IN DIFFUSIVE SYSTEM Section 3.2

that they are sufficiently small to satisfy ∆t ≤ (∆x)2/D0, and selected from the range of time steps
∆t in Table 3.0.1. The deviations during an integration time of T = 10, are of the scale 10−13 to
10−11. It shows how simulations with higher Péclet numbers deviate less, and how higher diffusion
gives rise to higher deviations.

For more details, we also looked at extreme values of the solutions. We found the minima of
the distribution in all four diffusive systems. Plots showing the minima are found in Appendix
D, Figures D.4a and D.4b. They show that in systems with lower diffusion, D0 = 0.001 and
D0 = 0.0005, the concentration solution contains unphysical negative numbers. In all but one
subplot, we find negative values as the minima of the simulations at some time in the integration.
This oscillating behavior was expected due to higher cell Péclet numbers, but is also present in
calculations with assumed sufficiently low cell Péclet numbers. The distributions have been plotted
at different times T to observe these oscillations, and are found in Appendix D, Figures D.5-D.8.
The striking feature is particularly visible in Figure D.8a, describing the same system as the top
right subplot in Figure D.4b.

Figure 3.2.3: The deviation from original mass (
∫∫

C(x, y, 0) dx dy = 1 over the domain) as a function of
time, for Crank-Nicolson method (CNM), with grid size (Nx,Ny). To the right, in colors corresponding
to the descriptions in the legend, the maximum cell Péclet number is shown.
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3.2.3 Concentration solution
From an initially Gaussian distribution, the fluid method gives the solution as a distribution on a
specific grid. As already mentioned, subplots of the results can be found in Appendix D (Figures
D.5-D.8), in a small scale, for a variety of diffusion constants, grid sizes and times. For a grid of size
(200 × 400), the results are plotted for all four diffusion constants. Figure 3.2.4 shows the system
with the lowest diffusion, and thus most clear features. The thin filaments expected in the double
gyre flow are present, but the features are rapidly diffusing even in this system with relatively low
diffusion. For higher diffusion constants D0 = {0.001, 0.005, 0.01}, the results are given in Figures
D.2b-D.3b in Appendix D.

Figure 3.2.4: The probability density distribution at different integration times T , resulting from solving
the advection-diffusion equation using Crank-Nicolson on a (200 × 400)-grid for the smallest time step
(∆t = 0.0001953125, see Table 3.0.1).

3.3 PARTICLE METHOD: NUMERICAL IMPLEMENTATION
To solve the advection-diffusion equation in the Lagrangian formulation, the stochastic differential
equation (SDE), Eq. (2.2.29),

dXt = a(Xt)dt+ b(Xt)dWt with a = u+ ∂xD, and b =
√

2D,

has been solved for a large number of simulations. This SDE was found in Section 2.2.4 to have a
Fokker-Planck equation that is equivalent to the advection-diffusion equation. To solve the SDE
we have used the time-discrete approximation Euler-Maruyama, with periodic boundary conditions
applied. The system is integrated with discrete time steps ∆t and a Wiener process associated with
the step size. The probability density function is found using kernel density estimation (KDE).
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This section shows all implementations in as much detail as needed to replicate, without necessarily
providing the actual code. The outline of this implementation section includes the derivation
of the Euler-Maruyama scheme in two dimensions, boundary conditions, and approximation of
derivatives using finite differences. Running the scheme sufficiently many times (enough particles),
as well as wishing to save the state of the system at particular times, require some memory.
The section ends with a discussion about the resolution of the Wiener process for different time
discretizations, and how the problem has been partitioned to stay within reasonable computational
time. Implementations relevant for KDE are not presented, and are put off to the next chapter
where it plays a larger role (see Chapter 4.1). Results from computations will be presented in the
next section, but first, a thorough presentation of the implementation.

3.3.1 Two-dimensional Euler-Maruyama scheme
We used Euler-Maruyama to integrate the two-dimensional stochastic process Xt for a large
number of Lagrangian particles, resulting in a set of solutions that together can be interpreted
through KDE as a concentration. In the following, the implementation of the two-dimensional
scheme is explained, along with boundary conditions. Theoretical concepts in this section will
not be introduced further. For introductions see Chapter 2.2 for stochastic differential equations
(SDEs); including the Itô process (Section 2.2.3), the Fokker-Planck equation (Section 2.2.4), and
an introduction to the Wiener process (Section 2.2.2). The Euler-Maruyama scheme is presented
in Chapter 2.3.1, and a general introduction to Monte-Carlo methods is given in Chapter 2.4.

For the two-dimensional Itô process (Eq. (2.2.19)),

dXt = a(Xt)dt+ b(Xt)dWt,

the coefficients that still ensures that its Fokker-Planck equation describes the time evolution of a
probability density function equivalent to the advection-diffusion equation, are

a =

[
u+ ∂xD

v + ∂yD

]
and b =

[√
2D√
2D

]
. (3.3.1)

The Euler-Maruyama scheme is then, for the two-dimensional position X =

[
x

y

]
written

Xn =

[
xn−1 + (u+ ∂xD)∆t+

√
2D∆W x

n

yn−1 + (u+ ∂yD)∆t+
√

2D∆W y
n

]
= Xn−1 + a∆t+ b∆W (3.3.2)

for b =
√

2D. Each increment of the Wiener process, ∆W k, is N (0,∆t). The derivatives of the
diffusion function, ∂xD and ∂yD, are calculated using forward difference with a difference δx and
δy set to 10−6.

Boundary conditions

The iterative scheme (3.3.2) is implemented straightforwardly, using periodic boundary conditions
in the spatial dimensions. This ensures that any particle leaving the domain on either side reappears
on the opposite side,

X[0] = X[0]%Lx
X[1] = X[1]%Ly

51



CHAPTER 3. CONCENTRATION FIELD IN DIFFUSIVE SYSTEM Section 3.3
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Figure 3.3.1: Illustration of adapting the Wiener process to the temporal resolution at hand. A: 20
files containing the cumulative sum of random normal increments of scale

√
∆tmin. B: From each file, the

increments of the finest resolution Wiener process can be found for all Np = 5000 number of particles. C:
The same file is used to calculate the increments of coarser Wiener processes (larger time steps). In total,
using all files in A, results in 100 000 Wiener processes, all expressed in 10 different resolutions (numbered
in the figure from highest to lowest resolution).

where Lx and Ly are domain lengths, and X.shape = (2,Np) for two dimensions andNp particles,
where X holds the particle positions.

3.3.2 The Wiener process for multiple resolutions
The two-dimensional Wiener process Wt is used in the Euler-Maruyama scheme (3.3.2). For
each iterative step in the scheme, two increments ∆W of the Wiener process is required, one
in each dimension. Because the process depends on the discretization, ∆W ∼ N (0,∆t), the
implementation is flexible for different time steps ∆t. It is based on creating and accessing files for
the finest temporal resolution that is available (Table 3.0.1).

The idea is, illustrated through Figure 3.3.1, to first (A) create wiener processes in two dimensions

dW = np.random.normal(loc = 0, \
scale = np.sqrt(dt_min), \
size = (2, Nt_max, Np))

W = np.cumsum(np.insert(dW, 0, \
np.zeros(dW[0,0,:].shape), axis=1), axis = 1)

for the finest resolution that we wish to look at; for Nt_max number time steps, and dt_min step
size. It is saved to file as the cumulative sum.

In total, we ran the procedure 20 times, creating 20·Np two-dimensional Wiener processes over
the time interval [0,Nt_max∗dt_max] (see Table 3.0.1). Number of particles per round is set to
Np = 5000 to keep computational time practical, resulting in 100 000 available particles in total.
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Provided with the cumulative sum from file (Figure 3.3.1, B), the coarser resolution process
increments can be found by combining increments:

Nskip = int(dt/self.dt_min)
# Get DW_n a t a l l t ime s t e p s n
DW = W[:,::Nskip ,:][:,1:] − W[:,::Nskip,:][:,:−1]

Each of the resulting arrays (Figure 3.3.1, C) of shape (2,Nt,Np) describe the same process
as in B (when they origin from the same process in A), only with a coarser resolution. E.g.,
the coarsest resolution gives the Wiener process increments only at 100 time-instants. A severe
downside to the method is that the number of time steps must be provided beforehand, however,
this is a prerequisite if we want to investigate the convergence of the Euler-Maruyama method in
the strong sense (see Section 2.3.2).

3.3.3 Monte Carlo simulations
The handling of the Wiener process for a range of different time step sizes, sets the approach of
the simulations. One simulation is iteratively computing, for Nt time steps,

Xn = Xn−1 + a∆t+ b∆W,

for X.shape = (2,1) describing a single coordinate in two dimensions. TheMonte Carlo simulation
is repeatedly computing realizations of the above approximation. The total number of simulations
is denoted N , and is also called the total number of Lagrangian particles, or just the number of
particles. The simulations are split up into M runs, with Np particles per run, given in Table
3.3.1.

Table 3.3.1: The setup in the Lagrangian particle model includes Np number of particles per run, for M
runs. This makes a total of Nmax Lagrangian particles.

Np M Nmax

5000 20 100000

3.4 PARTICLE METHOD: NUMERICAL RESULTS
In this section, we show the results from computing the probability density function as it evolves in
time in the Lagrangian formulation. The implementation is fully described in the previous section,
and only relevant parameters and constants are given here. The advection-diffusion equation is
solved through Monte Carlo simulations of the appropriate stochastic differential equation, using
the discrete-time approximation Euler-Maruyama for integration. The flow velocity field is the
double gyre flow, and the diffusion is set to be constant over the domain, D(x, t) = D0. From an
initial Gaussian distribution, we consider the convergence of the Euler-Maruyama method, both
in a weak and a strong sense. We also look at how kernel density estimation (KDE) is used to
transform the simulations of separate Lagrangian particles into a probability density function.

3.4.1 Strong and Weak Convergence
The convergence of the Euler-Maruyama scheme is calculated in both the weak and strong sense
(see Section 2.3.2). The Figures 3.4.1 and 3.4.2, confirm that the Euler-Maruyama scheme has a
strong convergence
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Figure 3.4.1: Strong convergence of the Euler-Maruyama scheme after a time T , at different time steps
∆t, for a constant diffusion D0 = 0.001. Showing results from 20 simulations, each of 5000 realizations,
along with the mean of these simulations. The slopes of the lines are computed using curve fitting to the
function f(∆t) = a(∆t)b. The dashed line is a curve fit for all simulations, while the full line only uses the
average value at each time step for the curve fit, and only calculated for filled data points.

E [|XT − YN |] ≤ K(∆t)γ , γ ≈ 1,

and a weak convergence

|E [XT ]− E [YN ] | ≤ K(∆t)β , β ≈ 1,

as anticipated for a constant diffusion coefficient. This result comes from simulations with 100 000
Lagrangian particles, at both T = 4 and T = 10, and the rate of convergence in respectively the
strong and weak sense, γ and β, were found through curve fitting.

3.4.2 Estimated concentration solution
After the integration time T = 10, the particles are distributed as seen in the first subplots of Figure
3.4.3. Attempting to use the Monte Carlo simulations of 10 000 and 100 000 Lagrangian particles to
approximate a distribution through kernel density estimation (KDE) result in different distributions
as seen in Figure 3.4.3. The distributions are highly sensitive to the relationship between the
bandwidth selected, and the number of particles used in the estimation. The bandwidth is a
crucial parameter of KDE, that we will look at more closely in the next chapter, Chapter 4.
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Figure 3.4.2: Weak convergence of the Euler-Maruyama scheme after a time T , at different time steps
∆t, for a constant diffusion D0 = 0.001. See Figure 3.4.1 for further explanation of setup.

Figure 3.4.3: Contour plot of the Euler-Maruyama scheme results for 10 000 and 100 000 Lagrangian
particles, after an integration time T = 10. The diffusion is constant, D0 = 0.001, and the time step is
∆t = 0.05. First row is a scatter plot of the particles. Using the results to estimate the probability density
distribution result in the three lowest rows of the plot. Kernel density estimation (KDE) with bandwidth,
∆, set to three different values.
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Chapter 4

BANDWIDTH SELECTION IN
KERNEL DENSITY ESTIMATION

This chapter compares solutions from the Eulerian fluid method and the Lagrangian particle
method for solving the advection-diffusion equation, through kernel density estimation of the
particle method results. The system is the same as implemented in Chapter 3; a double gyre
flow with constant diffusion. The optimal width of the kernel function, the co-called bandwidth,
is found by minimizing the integrated squared error relative to the Eulerian fluid solution.

4.1 IMPLEMENTATION
The fluid method gives the solution on a grid: the probability density function describing the
concentration over the domain. This grid was thoroughly described in Section 3.1.1. The particle
method returns N (number of simulations) two-dimensional coordinates inside the domain, that
can be viewed as samples from the solution distribution. To compare the two solvers, we estimate
a density function based on the samples by using a Gaussian kernel density estimator (see Section
2.4.3).

4.1.1 Kernel Density Estimator
The density function based on the samples from the particle method was estimated using FFTKDE
from the KDEpy package, which takes in a scalar bandwidth through the parameter bw, used
for all samples. To account for periodic boundary conditions, nine duplicates of the particle
method solution were used. This means that eight copies of the original particle solution are
placed around the original solution, surrounding the original domain. Consequently, the correct
boundary conditions are applied when computing the kernel density estimate for the entire new
domain, x ∈ [−2, 4] and y ∈ [−1, 2]. See Appendix C.1 for a full description of the implementation
of the estimator, including the boundary conditions.

4.1.2 Implementation of double gyre system with constant diffusion
In the two following sections, Sections 4.2 and 4.2.3, we continue from last chapter by further
investigating the solution of the advection-diffusion equation in a system with double gyre flow
and constant diffusion. In Chapter 3, this system was described for a number of parameters. To
keep the implementations simpler in this chapter, i.e., to focus on other parts of the simulations,
we have set the values of both the grid size and the time step. The following parameters have been
used.
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• Discretization grid (fluid method), (Ny ×Nx) (200× 400)

• Lagrangian particles per simulation (particle method), Np 5000

• Maximum number of runs (particle method), M 20

• Range of total number of particles (particle method), N {100, . . . , 100000}

• Time step ∆t 0.00019531 (= 0.1 ( 1
2 )9)

• Set of diffusion constants, {D0} {0.01, 0.005, 0.001, 0.0005}

• Set of available times, {T} {0, 2, 4, 6, 8, 10}

For a better understanding of the maximum number of runsM , Lagrangian particles per simulation
Np, and total number of particles N , refer to description in Section 3.3.3, Table 3.3.1, where this
is explained through the implementation of the particle method. The double gyre flow parameters
are the same as in the previous chapter, given in (3.0.1).

Curve-fitting problems

To investigate the dependency of the optimal bandwidth with respect to number of particles used
by the particle method, the data can be fitted to a function of choice using curve-fitting. After
some experimentation, we settled on the functional form

f(N) = ∆optimal =
a

N b
+ c, (4.1.1)

for which the data points (N,∆optimal), for specific systems given by the diffusion coefficient
D = D0, are attempted to fit. We have set the bounds to a ∈[0,∞), b ∈ [0,∞), c ∈ [0, 10−10],
using the following method:

from scipy.optimize import curve_fit

def function(x,a,b,c):
return a∗(x∗∗(−b))+ c

opt_parms , parm_cov = curve_fit(function, Np_vec, optimal_bw , \
bounds = ([0,0,0 ],[np.inf,np.inf,1e−10]))

a, b, c = opt_parms

4.2 OPTIMAL BANDWIDTH IN DOUBLE GYRE SYSTEM
This section presents the results from experiments described in Section 4.1.2: Comparing solutions
of the advection-diffusion equation in the double gyre system with constant diffusion. We focus on
the particle method, investigating the bandwidth of the kernel density estimator. The bandwidth
is optimized with regard to the integrated squared error (ISE) relative to the fluid solution. In
following, we present results from computations of the ISE for four different diffusion constants:
D0 = {0.01, 0.005, 0.001, 0.0005}. We look at the behavior of the error through the integration
period by investigating the error as a function of bandwidth at different times T = {2, 4, 6, 8, 10}.
We will also look at the optimal bandwidth as a function of both diffusion, time, and the number
of simulations available.
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4.2.1 Optimal bandwidth with regards to ISE
Figures 4.2.1-4.2.4 give the integrated squared error (ISE) as a function of bandwidth in systems
with different diffusion coefficients D(x, y) = D0. The overall trend shows a constant ISE for the
lowest bandwidths before the error reaches a minimum in most subplots, and then increases again
with the bandwidth. The optimal bandwidth ∆optimal is considered to be the bandwidth for which
the ISE has a minimum.

Bandwidths smaller than the size of the grid cells used to compute the kernel density estimation,
∆ < ∆x, give a constant ISE. As we have used a square grid and symmetric kernels in our
estimations, then any kernel with bandwidth set to be smaller than the cell length will be integrated
as part of the density of that cell no matter the bandwidth, as long as the entire kernel falls within
the cell. For Figures 4.2.1-4.2.4, the spatial grid has discretization ∆x = ∆y = 5 · 10−3, clearly
concurring with the behaviour observed in the subplots.

The optimal bandwidth has a decreasing trend with number of particles; the optimal bandwidth
is lower when the density estimation is based on more Lagrangian particles. As a function of time,
the optimal bandwidth appears to increase from the first subplot at time T = 2 to the maximum
integration time T = 10. It is also noticeable from the figures that the ISE is lower for simulations
with many particles versus fewer particles, particularly in proximity to the optimal bandwidth and
for even lower bandwidths. For higher values of the bandwidth, the errors appear quite coinciding.
Another noticeable feature is that the ISE appears to generally be higher in systems with lower
diffusion relative systems with higher diffusion, as seen for N = 100000 in Table D.1.

Comparing Figures 4.2.1-4.2.4 qualitatively, we find that the larger the diffusion is, the larger
is also the optimal bandwidth. In Figure 4.2.3 (D0 = 0.005) and Figure 4.2.4 (D0 = 0.01), the
solution presented for N = 100 Lagrangian particles shows a concerningly large optimal bandwidth,
approaching the size of the system, and potentially larger than the range of bandwidths tested. It
is a clear sign that the system is not properly described by such few particles, at least for diffusion
of this scale, and after an integration time sufficiently large to smear out the system. Too few
particles will not be able to describe properly the remaining structures of the distribution, and
relies on high bandwidths to represent the system as well-mixed instead.
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Figure 4.2.1: Plot of the integrated squared error (ISE) between the fluid method solution and the kernel
density estimate of the particle method solution using N number of particles, in the double gyre system.
The systems are simulated for D0 = 0.0005, ∆t ≈ 0.0002, on a (200× 400)-grid, and plotted for a time T .

Figure 4.2.2: Plot of the integrated squared error (ISE) between the fluid method solution and the kernel
density estimate of the particle method solution using N number of particles, in the double gyre system.
The systems are simulated for D0 = 0.001, ∆t ≈ 0.0002, on a (200× 400)-grid, and plotted for a time T .
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Figure 4.2.3: Plot of the integrated squared error (ISE) between the fluid method solution and the kernel
density estimate of the particle method solution using N number of particles, in the double gyre system.
The systems are simulated for D0 = 0.005, ∆t ≈ 0.0002, on a (200× 400)-grid, and plotted for a time T .

Figure 4.2.4: Plot of the integrated squared error (ISE) between the fluid method solution and the kernel
density estimate of the particle method solution using N number of particles, in the double gyre system.
The systems are simulated for D0 = 0.01, ∆t ≈ 0.0002, on a (200× 400)-grid, and plotted for a time T .
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Figure 4.2.5: The optimal bandwidth ∆optimal as a function of diffusion constant D0. N is the number
of Lagrangian particles (number of simulations) in the particle method, and T is integration time. These
calculations are done on a (200 × 400)-grid, for a time step ∆t ≈ 0.0002. Note that the x-axis is plotted
on a logarithmic scale.

4.2.2 Optimal bandwidth as a function of diffusion and time
Figure 4.2.5 shows the optimal bandwidth as a function of diffusion for a selected few cases. The
trend is increasing for higher diffusion. The figure shows a larger spread in optimal bandwidths
for higher diffusion in systems with different number of particles N . The relationship between
the optimal bandwidth and the number of Lagrangian particles is investigated further in the next
section.

The optimal bandwidth as a function of time is presented in Figure 4.2.6, see also Table D.1 in
Appendix D for N = 100000 specifically. The optimal bandwidth shows an increasing trend, but
the results are somewhat ambiguous as they show what we can consider oscillating behavior, with
alternating low and high values. These might be effects due to the periodic velocity field, as this is
particularly visible in the systems with lower diffusion and thus more advection-dominated. The
flow field has a period of 10, and thus might be behind the oscillations in the subplots in Figure
4.2.6, where high values occur between the time when the field has a maximum perturbation
(t = 2.5, 7.5) and when it is back to a central position (t = 0, 5, 10). However, the premise is
questionable and would require many data points to base a conclusion on.
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Figure 4.2.6: Optimal bandwidth as a function of time, for four cases with different number of Lagrangian
particles used in simulations.

4.2.3 Optimal bandwidth as a function of Lagrangian particles
We have estimated the relationship between the optimal bandwidth and the number of Lagrangian
particles, and assumed (see Eq. (4.1.1) in implementations) that the relationship can be described
through a function inversely proportional to the number of Lagrangian particles

∆optimal ≈
a

N b
. (4.2.1)

With results from the previous section fresh in mind, we choose to only use data from simulations
with N ≥ 1000, to keep clear of too low number of particles in our simulations. Figures 4.2.7-4.2.10
show the curve fit to the function (4.1.1), and the resulting parameters a and b, giving constant
slopes in a log-log representation. The parameter b describes the rate at which which the optimal
bandwidth falls, ( 1

N )b, and is further presented in Table 4.2.1, as a function of both time and
diffusion. The mean of all parameter estimations of b presented in Table 4.2.1 is
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Figure 4.2.7: The optimal bandwidth ∆optimal versus total number of particles N used in particle
method, with a curve fit to function f(N). The curve fit parameters are given in the legend. The curve
fit parameter estimation is here made for the double gyre system with constant diffusion D0 = 0.0005, at
times T .

Figure 4.2.8: The optimal bandwidth ∆optimal versus total number of particles N used in particle
method, with a curve fit to function f(N). The curve fit parameters are given in the legend. The curve
fit parameter estimation is here made for the double gyre system with constant diffusion D0 = 0.001, at
times T .

b = 0.133± 0.070,

given with one standard deviation of the data used. Averaged values over all diffusion values for
particular times, or all times for a particular value diffusion constant, give lower variances. At
early integration times (T = 2, 4) the variance of the parameter estimations is lower than for later
times, as we see in Table 4.2.1.
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Figure 4.2.9: The optimal bandwidth ∆optimal versus total number of particles N used in particle
method, with a curve fit to function f(N). The curve fit parameters are given in the legend. The curve
fit parameter estimation is here made for the double gyre system with constant diffusion D0 = 0.005, at
times T .

Figure 4.2.10: The optimal bandwidth ∆optimal versus total number of particles N used in particle
method, with a curve fit to function f(N). The curve fit parameters are given in the legend. The curve fit
parameter estimation is here made for the double gyre system with constant diffusion D0 = 0.01, at times
T .
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Table 4.2.1: Optimization parameters from curve fit to function f(N) ∼ 1/Nb, where f(N) is the optimal
bandwidth ∆optimal, and N is number of Lagrangian particles used in total for simulation. See curve fits
and data points in Figures 4.2.7-4.2.10. Average values are given as mean over respectively all columns
at a specific times (·)D, and all rows at specific diffusion (·)t, with one standard deviation of the set of
values. Lower right corner (green cell) shows the mean value and standard deviation of all data parameter
estimations.

Curve Fit Parameter: b
T \ D 0.01 0.005 0.001 0.0005 (Average)D
2 0.175 0.190 0.213 0.212 0.197 ± 0.016
4 0.103 0.074 0.061 0.053 0.073 ± 0.019
6 0.264 0.138 0.125 0.110 0.160 ± 0.062
8 0.152 0.061 0.040 0.020 0.068 ± 0.050
10 0.255 0.188 0.135 0.094 0.168 ± 0.060
(Average)t 0.190 ± 0.062 0.130 ± 0.055 0.115 ± 0.061 0.098 ± 0.065 0.133 ± 0.070
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Chapter 5

DISCUSSION AND CONCLUSION

5.1 DISCUSSION
The Advection-Diffusion Equation is commonly applied to solve transport problems in industry
as well as in research, and we have in this thesis applied it to an advection-diffusion problem in a
periodic domain, implementing a double gyre flow as presented in Shadden et al. (2005), with a
constant diffusion coefficient. In this thesis, we investigated the two formulations of fluid motion,
Eulerian and Lagrangian; and saw how the advection-diffusion equation can be approached in
both formulations. For the Eulerian fluid method and the Lagrangian particle method to give
the same solution to advection-diffusion problems, the advection and diffusion coefficients must
be "smooth functions." We saw through one- and two-dimensional numerical examples in Chapter
2.5 and Appendix B, how unfulfilled criteria in practice makes the particle method no longer
equivalent with the Eulerian fluid method, as it no longer describes the same behaviour as the
advection-diffusion equation. Due to the strong deviations from the Eulerian method we have seen
in our examples, the consequences presented seem too grave for us not to comment on. In the main
numerical work of this thesis we have not had to consider the criteria further, as we have kept the
diffusion a constant throughout, and thus implemented a "smooth function" complying with the
requirements.

We implemented the Eulerian fluid method in Chapter 3 by using the finite difference method
Crank-Nicolson, and presented some unforeseen challenges in terms of restrictions to the model.
Eulerian methods tend to be unstable for advection-dominated problems, and the requirement to
keep the maximum cell Peclet number sufficiently low is easy to implement in theory to avoid
oscillating solutions. However, with limited computing power the resolution required to solve for
low diffusion was not achievable, and we opted for a solution with a grid size of ∆x = ∆y = 0.005
for most computations. This way we avoided the strongest oscillations that we found for lower
grid resolutions in Figures D.7 and D.8, giving unphysical negative values as in Figure D.4b. The
chosen discretization resolution was sufficiently fine for the higher diffusion constants we used,
D0 = 0.01, 0.005, 0.001, but not for the lowest D0 = 0.0005, which gave a maximum cell Peclet
number larger than 2 (Pecell ≈ 3.14). Even though oscillating solutions and constrictions in
diffusion scale were a challenge, the scheme presented itself as a robust method with excellent
convergence of the Crank-Nicolson scheme in both time and space, and the iterative solver was
consistently convergent. It was only for systems with large oscillations, due to coarse grids or low
diffusion constants, that the iterative method would not converge.

For the Lagrangian particle method, the two-dimensional Euler-Maruyama scheme was easily
implemented and with no particular constraints, and the challenges that presented themselves
were related to computational efforts of creating and keeping in memory large arrays of random
numbers for the Wiener process. Downsides to our chosen method of storing the Wiener process
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as arrays in files were that the number of time steps, or in other words the integration time, had
to be specified before computing the Wiener process. The partitions we opted for, running 5000
particles in 20 runs, gave affordable computations for sufficiently many particles for our application.
The scheme gave an anticipated order of convergence of 1 in a weak sense, relative high-resolution
solutions, and a strong order of convergence of 1 due to the fact that the method is equivalent to
the higher-order Milstein scheme for the constant diffusion we implemented.

To compare the two methods, we applied a kernel density estimator from KDEpy as, e.g., Figure
3.4.3 shows, turning the sample-based particle method solution into a discrete density function. By
implementing the KDE on the same grid points as the Eulerian grid, the comparison through the
integrated squared error was made. Through minimizing the ISE, we found the optimal bandwidth
for systems with diffusion D0 at different integration times, and for a range of Lagrangian particles,
and the results were presented in Figures 4.2.1-4.2.4. We found an optimal bandwidth in all except
three cases, where a relatively high diffusion and too few particles resulted in an optimal bandwidth
set as high as 1 (highest tested bandwidth), which is half the length of the domain, deeming it
inaccurate. This low number of particles was neglected in further plots. Generally, we found that
the optimal bandwidth has an increasing trend with both diffusion and time, as shown in Figures
4.2.5 and 4.2.6. The latter was questioned as to whether it shows signs of the periodicity of the flow
field affecting the bandwidth, but cannot be confirmed with the amount of data points presented.
However, it does present an interesting feature in the calculation of the optimal bandwidth, where
it potentially is linked with the period and maybe even the perturbations (ε) of the flow field. The
optimal bandwidth decreases with number of particles, and we used curve fitting to estimate the
rate ∆optimal ∼ 1

Nb
, for which we found the factor b ≈ 0.133 ± 0.070. It was estimated that the

optimal bandwidth falls quicker with the number of particles for higher diffusion than for lower
diffusion, as presented in Table 4.2.1. In addition to emphasizing the need for larger bandwidths
when handling fewer particles, the results confirm that when the average distance between the
particles increases, the bandwidth must also increase to maintain a smooth distribution. To acquire
more data points, the optimal bandwidth could have been calculated more frequently throughout
the integration, and also for a longer integration time to achieve better estimations of b, and also
further investigate the bandwidth as a function of time as discussed above.

A lot of the interesting advective behavior in the flow was smeared out due to the harsh constraints
in the direct fluid method, which forced us to apply higher diffusion than what we had intentions
of. The distribution from the Eulerian method was plotted for all diffusion constants, in Figures
D.2a-D.3b, demonstrating how the diffusion is erasing any distinct features during the integration
time, and only for the two systems with lowest diffusivity we can still make out advection patterns
after a time T = 10. Another concern is the periodic boundary conditions, which unintentionally
were causing the spread of the distribution to become wider than needed be. By not offering any
boundaries that forced the mass to stay within the domain walls, the distribution was not reflected
back nor pushed together to create a slimmer shape. The distribution was allowed to flow freely
over to the other side of the periodic boundary. If the distribution could have been contained
by the domain boundaries, we could potentially have had slightly more informative results even
with as high diffusion as we have looked at. It would require reflections implemented in the kernel
density estimator as well. The initial condition of the distribution affected the evolution in time,
as the simulations were initiated with a symmetric Gaussian function centered in the domain,
with a standard deviation of 0.1. Other less spread out distributions, such as, e.g., a single point,
or a uniform distribution within a square or circle, would be less diffused from the start of the
integration, and thus the simulations would for a longer time have stronger advective features.

5.1.1 Future Work
Since much of the interesting advection-patterns are hidden in the solutions presented due to
relatively large diffusion coefficients, one of the main suggestions for future work would be to solve
advection-dominated systems for longer times. In essence, this means turning the diffusion down
drastically, an alteration that must be accompanied by an appropriately fine spatial grid. As
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mentioned in the discussions above, the boundary conditions applied in this thesis might not be
the most relevant conditions for a gyre system in a small domain. Alternatively to periodic spatial
boundary conditions, no-flux boundary conditions can be applied, or alternatively look at larger
systems where the boundaries have less impact on the solution. Additionally, further investigating
how the initial distribution affects the solutions can be worth studying. Finally, the integration
time can be increased to look at how the system evolves further, and get a better indication as
to how the optimal bandwidth behaves as a function of time. Due to the already large scope of
this thesis, we have chosen not to look further into the alterations and suggestions above at this
moment. Also, we do not have the computational effort and time required given the requirements
for the high resolution that follows an advection-dominated problem; thus we have chosen not to
proceed with further work at this moment.

5.2 CONCLUSION
In this thesis, we have investigated the Lagrangian particle method and how it compares to the
traditional Eulerian fluid method for solving advection-diffusion problems, particularly in a double
gyre flow with constant diffusion. We conclude that for this system, the two methods give the
same solution for the analytical velocity field in two dimensions on a periodic domain. The
numerical schemes applied both have their advantages and disadvantages. The fluid method was
confirmed unstable for advection-dominated systems and found to require great computational
efforts through using fine enough spatial discretization needed to overcome oscillations. However,
it does conveniently return the solution density distribution on an Eulerian grid, and requires few
implementation steps outside of the matrix implementation of the Crank-Nicolson finite difference
scheme, due to easily accessible python libraries.

The particle method does not require the same large computations, but did demand large sets of
Wiener processes that can be computationally heavy to produce, and in our case, store. The method
is still considered to be intuitive and easily implemented. The Lagrangian particle solutions are
considered samples from a probability density distribution, which has been estimated in this thesis
using kernel density estimation, which is one method for presenting the solution as a concentration
field rather than samples from one.

We have optimized the estimations by investigating an optimal kernel bandwidth with regards to
the integrated squared error relative to a high-resolution Eulerian solution. The optimal kernel
bandwidth was found to decrease with the number of Lagrangian particles, and the relationship
was estimated using the function form ∆optimal ∼ 1/N b. The parameter b is estimated to be
0.133±0.070 throughout the integration time of T = 10, which also is the period of the time-varying
velocity field. The optimal bandwidth was found to have a clear increasing trend with increasing
diffusivity in the simulation system. Along with the need for larger bandwidths for fewer particles,
this confirms that when the average distance between particles increases in general, the bandwidth
must increase to maintain the construction of a smooth distribution. The bandwidth was finally
found to have an ambiguous relation relative to the time, and we have suggested that it might be
related to the periodicity of the velocity field. Further work will include lowering the diffusion to
investigate the optimal bandwidth in a strongly advective system for longer integration times, and
looking at potentially larger domains, and applying different boundary conditions, to not influence
the solution in the degree presented in this thesis work.
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Appendix

APPENDIX

A COMPLIMENTARY THEORY AND DERIVATIONS

A.1 Derivation of the Advection-Diffusion Equation
The fluid mechanical processes investigated in this thesis can be classified into one of two main
categories: transport and transformation. Transport processes in nature are when quantities are
physically moved, changing of the spatial location, in the system. Transformations on the other
hand, changes the composition of the system. In this section we derive the advection and diffusion
equations separately in one dimension, before returning to the unified advection-diffusion equation,
and finally, discuss how transformation can be incorporated into the transport equation.

Say you have a closed region with two different types of molecules present in a fluid. We can
imagine the system as a box with black and white spheres representing the two different molecules,
as in Figure A.1. A mean fluid flow is present (gray arrows), transporting the molecules to the
right as time passes. They are also transported by random motion moving the spheres (orange
arrows). At the same time transformation processes might occur; The molecules can react with
other substances in the fluid, or be added to (or leaked from) the system through some source
(or sink). Figure A.1 shows how the fluid mechanical processes of transport and transformation
changes the composition of the mixture as well as the distribution of each species. Sources (or
sinks) within the region could add (or subtract) from the concentrations. This is however out of
the scope of this thesis.

Figure A.1: After a time ∆t the two types of molecules have undergone the processes of transport and
transformation. White molecules have reacted with substances in the fluid, and has a lower concentration
after ∆t, while there is a source increasing the concentration of black molecules, represented by a red star.
A bold orange arrow shows the transport for one of the molecules produced by of the mean fluid flow, that
is common for all the particles.
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Figure A.2: Schematic of a control volume with a crossflow u, inspired by Figure 2.1 in Socolofsky and
Jirka (2002).

The Advection Equation

We begin by considering the infinitesimal control volume presented in Figure A.2, containing some
chemical or biological species. Let C(x, t) describe the concentration of the species, that only
changes in the x-direction. The species is carried along with some flow u = ux̂. Consider the
average concentration C̄(x, t) inside the control volume which in the x-direction is limited by
[x − 1

2δx, x + 1
2δx] for a small number δx. Considering the conservation of mass of the species in

this conserved system, the change of C̄(x, t) per unit of time must be the net balance of inflow and
outflow over the boundaries,

∂

∂t
C̄(x, t) =

1

δx

[
u(x− 1

2
δx, t)C(x− 1

2
h)− u(x+

1

2
δx, t)C(x+

1

2
δx)
]
. (A.1)

Now, if we let δx→ 0, it follows that the concentration satisfies

∂

∂t
C(x, t) +

∂

∂x

(
u(x, t)C(x, t)

)
= 0, (A.2)

which is the advection (or convection) equation.

The Diffusion Equation

In a similar way to deriving the advective flux, we can consider the transport via diffusion. We
still consider the control volume shown in Figure A.2. The change in C̄(x, t) is caused by gradients
in the concentration field. Again considering the net balance of inflow and outflow at the two
boundaries (x− 1

2δx) and (x− 1
2δx), and following Fick’s first law (2.1.3) of diffusive flux, we find

∂

∂t
C̄(x, t) =

1

δx

[
D(x− 1

2
h, t)

∂

∂x
C(x− 1

2
h, t)−D(x+

1

2
δx, t)

∂

∂x
C(x+

1

2
δx, t)

]
, (A.3)

where D(x, t) is the diffusion coefficient. Again we let δx → 0, ending up with the diffusion
equation,
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(a) Illustrating advection (b) Illustrating advection and diffusion.

Figure A.3: The center off mass is transported downstreams for the purely advective system, while the
diffusive system additionally shows a spread in particles.

∂

∂t
C(x, t) =

∂

∂x

(
D(x, t)

∂

∂x
C(x, t)

)
, (A.4)

describing the change in concentration due to diffusive transport.

The Advection-Diffusion Equation

The derivation of the Advection-Diffusion Equation (ADE) relies on the principle of superposition:
advection and diffusion can be added together if they are linearly independent. We assume that
they are; the presence of a mean flow does not bias the parallel diffusion process (Socolofsky and
Jirka, 2002). Thus, we get the one-dimensional form of the advection-diffusion equation

∂

∂t
C(x, t) +

∂

∂x

(
u(x, t)C(x, t)

)
=

∂

∂x

(
D(x, t)

∂

∂x
C(x, t)

)
, (A.5)

that describes the physical phenomena where particles, energy, or other physical quantities are
transferred inside a physical system due to both advection and diffusion. Depending on the context,
the equation is referred to as the convection–diffusion equation, drift-diffusion equation, or (generic)
scalar transport equation (Atangana, 2018).

In a similar way, the 3-D advection-diffusion can be developed as:

∂

∂t
C(x, t) +∇ ·

(
u(x, t)C(x, t)

)
= ∇ ·

(
D(x, t)∇C(x, t)

)
(A.6)

where we do not assume that the diffusion is constant in time or space, and u = [u, v, w] is the
three-dimensional velocity vector field.

Incorporating transformation with the transport equation

Transformation is the "production (or loss) of a given species of interest through physical, chemical,
or biological processes" (Socolofsky and Jirka, 2002). This means that the mass of the species is no
longer conserved in a system with transformation processes. Examples of physical, chemical, and
biological process are radioactive decay, dissolution of carbon dioxide in water, and photosynthesis.
The processes transform the composition, while keeping the total mass of the system conserved.

To incorporate transformation with the transport equation (A.5), we must find an expression that
describes the change in concentration of a given species under a transformation process. A system
with transformation processes, can also be called a reactive system, and can hence be described by
the characteristic reaction rate k of the transformation reaction. In a general n-th order reaction,
the change in a species q is given by ∂tq = ±kqn. A reaction term can be added directly to the
advection-diffusion equation as

∂C

∂t
+∇ · (uC) = ∇ · (D∇C) +R, (A.7)
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where R can describe multiple reactions of different orders. The above equation is referred to as
the advection-diffusion-reaction equation, but we will in the following not concern ourselves with
reactive systems and stick to only the transportation aspects of fluid mechanical processes.

A.2 Finite Difference Methods
Partial differential equations (PDEs), such as the advection-diffusion equation (A.5), are differential
equations with more than one independent variable, where the solution is a function or a vector
of functions. Since PDEs typically have infinitely many solutions, it is necessary to specify both
the domain and boundary conditions to achieve a particular solution. Even so, most PDEs do not
have analytical solutions, and the solution can only be found through approximations. A numerical
technique for solving differential equations is the Finite Difference Method. The derivatives are
approximated through finite differences, which essentially are the differences obtained by incrementing
successively the dependent variable of a function by a fixed amount, e.g. f(x+ ∆x)− f(x). There
are different types of finite differences, and thus also finite difference schemes applicable for solving
PDEs. In this thesis we are particularly interested in the Crank-Nicolson implicit scheme, which
is used to numerically solve the advection-diffusion equation. In the following we will classify
finite differences using Taylor’s theorem, before we in the next section will demonstrate how the
Crank-Nicolson scheme can be applied to the advection-diffusion equation in one dimension.

Taylor’s Formula

The finite difference approximation of derivatives can be derived from the Taylor’s formula by
Taylor’s Theorem (see Theorem 4 in Spivak (1994, p. 417), given in Appendix A.4). Taylor’s
formula with Lagrange reminder (e.g., Adams (2013, p. 275)) is

f(x+ ∆x) = f(x) +
f ′(x)

1!
∆x+

f (2)(x)

2!
(∆x)2 + ...+

f (n)(x)

n!
(∆x)n +Rn(x+ ∆x), (A.8)

where f is some function which has derivatives up to order (n+ 1) in an interval containing x and
x + ∆x, and a remainder term that satisfy limn→∞Rn = 0. Truncating the series after k terms,
results in an approximating polynomial Pk(x+ ∆x) ≈ f(x+ ∆x) with a remainder term Rk. The
error denotes the difference from the approximating polynomial of degree k,

Pk(x+ ∆x) = f(x) +
f ′(x)

1!
(∆x) + ...+

f (k)

k!
(∆x)k +Rk(x1) (A.9)

and the original function f . The remainder is given by

Rn(x+ ∆x) =
f (n+1)(x1)

(n+ 1)!
(∆x)n+1, (A.10)

for x1 ∈ [x, x+ ∆x]. The Taylor polynomials can be used to approximate derivatives, and we will
show this for the lowest derivative first, by truncating the series after the second term:

f(x+ ∆x) = f(x) +
f ′(x)

∆
x+R1(x+ ∆x), (A.11)

where the remainer term is R1(x1) ∼ (∆x)2. The expression can be solved for the derivative f ′,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
− R1(x1)

∆x
, (A.12)
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and given in terms of the big-O-notation,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x), (A.13)

where O(∆x) indicates that the truncation error is proportional to ∆x. The approximation is
hence of order 1, according to the following definition (Definition 6.1 from Frey (2017, p. 80)):

Definition 1 The approximation of the derivative f ′ as a point x is of order p (p > 0) if there
exists a constant C > 0, independent of h, such that the error between the derivative and its
approximation is bounded by C(∆x)p (i.e. is exactly O((∆x)p)).

Types of finite differences

Consider the function g = g(x, t), discretized as gni = g(i∆x, n∆t), over a uniform grid

tn = n∆t, and xi = i∆x.

The truncations to the Taylor polynomial that we looked at above, involves approximating the
derivative of a function by using the function itself evaluated at neighbouring points on the
grid. Depending on at which neighbouring points we evaluate the function, the order of the
approximations differ.

Using the approximation (A.13) of the first spatial derivative gives

∂g

∂x
(xi, tn) ∼=

gni+1 − gni
∆x

, (A.14)

which is called the forward difference approximation. Another order 1 approximation is the
backward difference, given as

∂g

∂x
(xi, tn) ∼=

gni − gni−1

∆x
. (A.15)

The first derivative g′ can also be approximated through a central difference by combining the two
expressions given above. Adding the expressions for the derivative,

2
∂g

∂x
(xi, tn) ∼=

gni+1 − gni
∆x

+
gni − gni−1

∆x
, (A.16)

yields the central difference

∂g

∂x
(xi, tn) ∼=

gni+1 − gni−1

2∆x
, (A.17)

which is an order 2 approximation. We find the order by writing the approximations as the
truncated polynomials of the Taylor series

f(x+ ∆x) = f(x) +
f ′(x)

1!
∆x+

f (2)(x)

2!
(∆x)2 +

f (3)(x1+)

3!
(∆x)3 (A.18)

and
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Figure A.4: Illustration of the backward, forward and central differences to approximate the first spatial
derivative of a function g(x, t) at the point (xi, tn). The domain is discretized with xi = i∆x and tn = n∆t,
yielding the discretized function gni = g(i∆x, n∆t).

f(x−∆x) = f(x)− f ′(x)

1!
∆x+

f (2)(x)

2!
(∆x)2 − f (3)(x1−)

3!
(∆x)3 (A.19)

for x1+ ∈ [x, x+ ∆x] and x1− ∈ [x−∆x, x]. The central difference is

f(x+ ∆x)− f(x−∆x)

2∆x
= f ′(x) +

f (3)(x1)

3!
(∆x)2 (A.20)

for x1 ∈ [x−∆x, x+ ∆x] (using the Intermediate Value Theorem, see, e.g., Spivak (1994, p. 120)).
Expressing the derivative as in our notation, we get

f ′(x) ∼=
f(x+ ∆x)− f(x−∆x)

2∆x
+O((∆x)2), (A.21)

where O((∆x)2) is the big-O-notation indicating an error proportional to (∆x)2.

The three types of finite differences presented are shown in Figure A.4, describing how they differ
in approximation of the slope. The methods can be written as linear systems, for each of the three
types of finite differences as

D ·

g(xi−1, t)

g(xi, t)

g(xi+1, t)

 = g′(xi, t)



Dcentral =
[
−1 0 1

]
· 1

2∆x

Dbackward =
[
−1 1 0

]
· 1

∆x

Dforward =
[
0 −1 1

]
· 1

∆x

(A.22)

When using a finite difference approach to compute the derivative on an entire grid at once, e.g.,
when solving partial or ordinary differential equations on a defined domain, the equations can
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i-1 i+1     i
x/Δx

t/Δt

n

n+1

Figure A.5: The Crank-Nicolson stencil for a one-dimensional problem.

be written as a matrix system. As an example, the backward difference method can be used to
approximate the first derivative of a one-dimensional problem g(xi) on a grid of N points using
the following set up

1

∆x



−1 1 0 0 0 . . . 0 0

−1 1 0 0 0 . . . 0 0

0 −1 1 0 0 . . . 0 0

0 0 −1 1 0 . . . 0 0
...

. . .
...

0 0 . . . 0 −1 1 0 0

0 0 . . . 0 0 −1 1 0

0 0 . . . 0 0 0 −1 1


·



g(x0)

g(x1)

g(x2)

g(x3)
...

g(xN−3)

g(xN−2)

g(xN−1)


=



g′(x0)

g′(x1)

g′(x2)

g′(x3)
...

g′(xN−3)

g′(xN−2)

g′(xN−1)


(A.23)

where a forward difference is used at the boundary. This linear representation is very convenient
when solving large systems numerically. We will shortly look at a specific numerical scheme used
to solve differential equations using finite differences, and how the problem can be written in a
matrix form that is solvable with established methods of linear algebra.

The example function was originally a function of both space and time g = g(x, t), and the temporal
derivative could have just as simply been used as the example. When using finite differences to
solve time-dependent problems however, one is introduced to the concept of explicit and implicit
methods. To illustrate, we calculate the temporal derivative of the function g(x, t) using the
backward and the forward difference as

∂g

∂t
(xi, tn) ∼=

gni − g
n−1
i

∆t
, and

∂g

∂t
(xi, tn) ∼=

gn+1
i − gni

∆t
. (A.24)

The explicit method, the backward difference, uses the state of the system at a previous time
(n− 1), to calculate the state of the system at a current time (n). The implicit method however,
requires that one solves an equation for both the current (n) and the later time (n+1 ), as we see
in the forward difference above, requiring extra computations.
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A.3 Crank-Nicolson Scheme
The numerical scheme called Crank-Nicolson is an implicit second order method in time, known for
its unconditional numerical stability. It is the numerical scheme used for solving the advection-diffusion
equation in the Eulerian formulation in this thesis, and for that reason we have given it extra
attention in this section, where the scheme is presented and applied to the advection-diffusion
equation in one-dimension.

Consider a typical one-dimensional second order partial differential equation

∂f

∂t
= F

(
x, t, f,

∂f

∂x
,
∂2f

∂x2

)
, (A.25)

with discretization f(i∆x, n∆t) = fni , for which the function F = Fni is evaluated for the values i,
n, and fni . The Crank-Nicolson scheme uses the forward Euler method at the time n

fn+1
i − fni

∆t
= Fni

(
x, t, f,

∂f

∂x
,
∂2f

∂x2

)
(A.26)

and the backward Euler method at n+ 1,

fn+1
i − fni

∆t
= Fn+1

i

(
x, t, f,

∂f

∂x
,
∂2f

∂x2

)
. (A.27)

Thus, for the second order partial differential equation (A.25), the Crank-Nicolson scheme is

fn+1
i − fni

∆t
=

1

2

[
Fn+1
i

(
x, t, f,

∂f

∂x
,
∂2f

∂x2

)
+ Fni

(
x, t, f,

∂f

∂x
,
∂2f

∂x2

)]
. (A.28)

Because the Crank-Nicolson scheme is a combination of an explicit and an implicit method, the
scheme results in an implicit method. In one and two dimensions, the stencil expressed by the
scheme is seen in Figure A.5 and Figure A.6 respectively.

n

t/Δt

i-2 i-1 i+1 i+2i

j-1
j

j+1

y/Δy

x/Δx

n+1

Figure A.6: Illustration of the Crank-Nicolson stencil for a two-dimensional problem.
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Crank-Nicolson scheme for solving the Advection-Diffusion Equation

The first step in applying a finite difference method such as the Crank-Nicolson scheme to the
advection-diffusion equation is discretizing the domain, e.g., t ∈ [0, T ] and x ∈ [0, xf ], such that

0 = t0 < t1 < t2 < · · · < tNt−2 < tNt−1 = T,

0 = x0 < x1 < x2 < · · · < xNx−2 < xNx−1 = xf .

which we express xi = i∆x, and tn = n∆t, for equidistant spatial and temporal steps. Next, the
PDE itself is discretized. This indicates that the requirement that the equation is fulfilled in the
entire domain, is relaxed to apply only at the discrete points of the grid,

(2.1.5) −→ ∂C(i∆x, n∆t)

∂t
+ u

∂C(i∆x, n∆t)

∂x
= D

∂2C(i∆x, n∆t)

∂x2
.

Then the derivatives can be replaced by the finite differences, which for the implicit Crank-Nicolson
scheme, means transforming all parts of the PDE using the following

∂C

∂t
→ Cn+1

i − Cni
∆t

∂C

∂x
→ 1

2

(
Cn+1
i+1 − C

n+1
i−1

2(∆x)
+
Cni+1 − Cni−1

2(∆x)

)

∂2C

∂x2
→ 1

2(∆x)2

(
(Cn+1

i+1 − 2Cn+1
i + Cn+1

i−1 ) + (Cni+1 − 2Cni + Cni−1)
)
.

(A.29)

Implementing the above scheme results in the linear system

LCn+1 = RCn, (A.30)

where C has the form of a column vector, containing the state of the system at all points xi, at
respective times n (current) and n + 1 (future). The system (A.30) can be solved through direct
matrix inversion

Cn+1 = L−1RCn, (A.31)

and works well for obtaining a solution for a relatively small domain. However, matrix inversion
is computationally expensive, and it must be noted that the size of the matrices L and R grow
with the square of the size of the column vector C. Some computational effort can be avoided by
defining the matrices L and R as sparse matrices (i.e., containing very few non-zero elements).

Iterative methods (see, e.g., Barrett et al. (1994)) is another approach for solving linear systems
such as Eq. (A.30). Consider the linear system LC = b at a time n + 1, for b = RCn. The
general objective of an iterative method is to construct a sequence of improving approximate
solutions {C(k)}∞k=1, that converges to the fixed vector C∗ which is the solution of the linear
system. One such method specifically developed for solving non-symmetric linear systems (such as
the Crank-Nicolson scheme applied to the advection-diffusion equation) is the Biconjugate Gradient
Stabilized Method (often abbreviated BiCGSTAB), (see, e.g., Barrett et al. (1994, page 27)).
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A.4 Taylor’s Theorem
Taylor’s Theorem is here presented as in Spivak (1994, p.417).

Theorem A.1 (Taylor’s Theorem) Suppose that f ′, . . . , f (n+1) are defined on [a, x], and that
Rn,a(x) is defined by

f(x) = f(a) + f ′(a)(x− a) + . . .+
f (n)(a)

n!
(x− a)n +Rn,a(x).

Then

(1) Rn,a(x) = f(n+1)(t)

n! (x− t)n(x− a)for some t in (a, x).

(2) Rn,a(x) = f(n+1)(t)
(n+1)! (x− a)n+1for some t in (a, b).

Moreover, if f (n+1) is integrable on [a, x], then

(3) Rn,a(x) =
∫ x
a
f(n+1)(t)

n! (x− t)ndt

(If x < a, then the hypothesis should state that f is (n+1)-times differentiable on [x, a]; the number
t in (1) and (2) will then be in (x, a), while (3) will remain true as stated, provided that f (n+1) is
integrable on [x, a].)

A.5 The Fokker-Planck equation
The following theorem is Theorem 1 from from Gichman (1972), page 102, given here for a
clarification of the smoothness criteria on the coefficients a(·) and b(·):

Theorem A.2 (Kolmogorov’s first equation) Assume the partial derivatives

∂

∂x
a(x, t),

∂

∂x
b(x, t),

∂2b(x, t)

∂x2
,

∂p(x, t, y, s)

∂s
,

∂p(x, t, y, s)

∂y
, and

∂2p(x, t, y, s)

∂y2

exits. Then for s > t, p(x, t, y, s) satisfies

∂p(x, t, y, s)

∂s
=

1

2

∂2

∂y2
(b(y, s)p(x, t, y, s))− ∂

∂y
(a(y, s)p(x, t, y, s))

In the above theorem, we have kept the original notation. We have used the notation p(x, t|x0, t0)
in Chapter 2 for the transition probability density from an initial position x0 and initial time t0.
It should also be noted that the coefficient b is not defined as in subsection 2.2.4 in this thesis, but
defined in the following way as b = σ2 for the stochastic differential equation

dη(t) = a(t, η(t))dt+ σ(t, η(t))dw(t), (A.32)

in Gichman (1972), e.g., on page 67. Hopefully without creating confusion, our notation is b = σ.
To be specific, in the notation we have used in Chapter 2, the correct partial derivatives including
the drift coefficient presented in the theorem above, is written in our notation as

∂(b2)

∂x
and

∂2(b2)

∂x2
. (A.33)
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We have however kept the expressions simple, ∂xb and ∂2
xb in Eq. (2.2.24), as they i.e. both assume

that both the first and second derivatives of the coefficient b exist,

∂(b2)

∂x
= 2b

∂b

∂x
and

∂2(b2)

∂x2
= 2

(
∂b

∂x

)2

+ 2b
∂2b

∂x2
. (A.34)

B COMPLIMENTARY NUMERICAL WORK

B.1 Equivalence of Eulerian and Lagrangian formulations in 2D
Through the numerical examples in Section 2.5 we looked at a purely diffusive system with a
box-shaped diffusion function in the middle of the domain. This is the two-dimensional problem
equivalent to the one presented in Section 2.5.1: we look at a discontinuous diffusion coefficient
with a square box shape, as well as a smooth diffusion coefficient describing the smoothed out
counterpart. We solve the advection-diffusion equation using the fluid method and the particle
method described in Chapter 3, and use kernel density estimation to compare the solutions.

Implementation of diffusive system in two variants

The square box function Db is implemented in two dimensions as

Db(x) = Db(x, y) =

D0 if |x− a| ≤ R, and |y − b| ≤ R,
0.1D0 else, for x ∈ [0, 2],y ∈ [0, 1] ,

(B.1)

for parameters given in Table B.1.

The smooth box function Ds is implemented using a hyperbolic tangent function θ, with respect
to a distance function, d(x),

θ(x) =
1 + tanh

(d(x)
w

)
2

, (B.2)

where w is the transition width (approximately controls the thickness of the smooth transition
zone). The distance function is given by

d(x) = d(x, y) = R− [(x− a)γ + (y − b)γ ]
1
γ . (B.3)

This result in the following diffusion coefficient

Ds(x) = θ(x) ·D0 + 0.1D0, (B.4)

implemented for the parameters in Table B.1.

Table B.1: Parameters for implementation of the box function Db(x) using Eq. (B.1), and the smooth
box function Ds(x) using Eqns. (B.2-B.4).

a b R w γ

1 0.5 0.3 0.1 100

XI
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Well-mixed initial condition

The well-mixed condition, discussed in Chapter 2.5, is implemented as a uniform field over the
entire domain for the fluid method, ensuring that it integrates to one. For the particle method,
the N particles’ initial positions are drawn from the uniform distribution np.random.uniform in
each dimension.

Figure B.1: The two-dimensional diffusion coefficients: left subplots shows the smooth function Ds(x, y),
and right subplot shows the discontinuous function Db(x, y). Both diffusion coefficients have a minimum
value of 0.001 and a maximum value of 0.011, and a box shape of length 0.6. The diffusion constant is
D0 = 0.01, and they are displayed on a (200× 400)-grid.

Squared and smooth box diffusion in zero advection

The criterion for there to be an equivalence between solving the advection-diffusion equation using
the fluid method and the particle method, evolves around the smoothness of the drift and diffusion
coefficients u(x, y, t) and D(x, y, t). For a purely diffusive system, the criterion (2.2.24) explicitly
demands that the diffusion coefficient is twice continuously differentiable.

In Section 2.5.1, the diffusion coefficients investigated were the one-dimensional box function
and a smoothed out counterpart, which respectively are discontinuous and smooth functions.
The numerical example showed how the non-smooth box-shaped diffusion gave deviating results
comparing the two formulations. However, the smoothed out counterpart of the non-differentiable
box-diffusion turned the problem back to a satisfying description in both formulations. It fulfilled
the requirements, and hence the two methods were found to give the same results. For the
two-dimensional numerical example, we solve the advection-diffusion equation in a system with
the two-dimensional versions of the box and the smoothed box given as given in Section B.1.
Figure B.1 shows the two diffusion fields that we have investigated, Ds(x) and Db(x). With the
initial condition being the well-mixed condition, the distribution is expected to remain a uniform
distribution for however long the simulation lasts.

The advection-diffusion equation is solved for a non-smooth diffusion coefficientDb, using Crank-Nicolson
scheme in two dimensions, and is shown at different times to the right (c) in Figure B.2. The fluid
method gives a uniform distribution at all integration times. Solving the same system using the
particle method solution, result in a different result, as expected. Figure B.2 gives the Lagrangian
particles to the left (a), and the estimated distribution in the center plot (b). The results resemble
the one dimensional case, with growing concentration just outside the box boundaries, where the
discontinuities are found. The two formulations are not equivalent for diffusion coefficient Db.
Attempting to solve the system for the differentiable counterpart of the box-shaped diffusion, gives
the desired results: The two formulations appear to be equivalent. Figure B.3 shows both the
Lagrangian particles (a), the estimated probability density (b), and the fluid method solution (c)
describing the exact same well-mixed result.
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Figure B.2: Concentration C(x, y, t = T ) on a (200 × 400)-grid. The system is nonadvective, with a
discontinuous diffusion coefficient Db given by Eqn. (B.1). The diffusion constant is D0 = 0.01, and the
bandwidth of the kernel density estimator is ∆ = 0.01.

Figure B.3: Concentration C(x, y, t = T ) on a (200 × 400)-grid. The system is non-advective, with a
smooth diffusion coefficient Ds given by Eqns. (B.2-B.4). The diffusion constant is D0 = 0.01, and the
bandwidth of the kernel density estimator is ∆ = 0.01.
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C NOTES ON NUMERICAL IMPLEMENTATION

C.1 KDE with periodic boundary conditions
Because we want to compare the results of the particle method directly with the fluid method
results, we need to know the estimating distribution at the exact same grid points. We apply
periodic boundary conditions by duplicating the solution, such that the original domain has eight
duplicates surrounding it, as in Figure C.1. The kernel density estimator is applied to the entire
area, x ∈ [−2, 4] and y ∈ [−1, 2], such that the boundaries are treated periodically. The solution
obtained in the original domain, x ∈ [0, 2] and y ∈ [0, 1], is normalized to properly describe a
density function. Note that the kernel density estimator expects no samples to lie outside of the
convex closure (see Figure C.2) of the grid, and for that reason the grid is made slightly larger at
all boundaries.

Figure C.1: Plot showing periodic boundary conditions in KDEpy implementations, here for 5000
particles and a bandwidth ∆ = 0.05. The samples are from simulations in the double gyre flow, after
an integration time T = 8. The upper subplot shows both particles and density estimation for the entire
area, while the lower subplot shows only the density estimation for the domain x ∈ [0, 2] and y ∈ [0, 1].

. .

. .

convex 
closure

grid point

Figure C.2: The convex closure (or convex hull) is the smallest convex set that encloses the shape, which
here is the smallest square that encloses the grid points, excluding the parts of the grid cells that fall
outside of this minimum square.
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C.2 Crank-Nicolson scheme 2D

Explicit implementation

A thorough description of the scheme implementations in two dimensions is presented here, a
continuation from Section 3.1.2.

The scheme is central in space, and hence result in a spatial five-point stencil, as seen in Figure
A.6 of Appendix A.3, considering neighboring points in both directions. Thus, by inserting the
approximations (3.1.5)-(3.1.9) into the two-dimensional advection-diffusion equation, we end up
with the following:

Cn+1
j,i − Cnj,i

∆t
=

1

2

(
∂D

∂x
− u
)[Cn+1

j,i+1 − C
n+1
j,i−1

2∆x
+
Cnj,i+1 − Cnj,i−1

2∆x

]

+
1

2

(
∂D

∂y
− v
)[Cn+1

j+1,i − C
n+1
j−1,i

2∆x
+
Cnj+1,i − Cnj−1,i

2∆x

]

+
D

2

[
Cn+1
j,i+1 − 2Cn+1

j,i + Cn+1
j,i−1

(∆x)2
+
Cnj,i+1 − 2Cnj,i + Cnj,i−1

(∆x)2

]

+
D

2

[
Cn+1
j+1,i − 2Cn+1

j,i + Cn+1
j−1,i

(∆y)2
+
Cnj+1,i − 2Cnj,i + Cnj−1,i

(∆y)2

]

+
1

2

(
−∂u
∂x
− ∂v

∂y

)[
Cn+1
j,i + Cnj,i

]

(C.1)

Next, the equation is rearranged putting all expressions at a future time n+ 1 to the left side, and
all expressions at the time n to the right side:

Cn+1
j,i

(
1 +

D∆t

∆x2
+
D∆t

∆y2
−
[
−∂u
∂x
− ∂v

∂y

]
∆t

2

)
+ Cn+1

j,i+1

(
−
[
∂D

∂x
− u
]

1

2

∆t

2∆x
− D∆t

2(∆x)2

)
+ Cn+1

j,i−1

(
+

[
∂D

∂x
− u
]

1

2

∆t

2∆y
− D∆t

2(∆x)2

)
+ Cn+1

j+1,i

(
−
[
∂D

∂y
− v
]

1

2

∆t

2∆y
− D∆t

2(∆y)2

)
+ Cn+1

j−1,i

(
+

[
∂D

∂y
− v
]

1

2

∆t

2∆y
− D∆t

2(∆y)2

)
= Cnj,i

(
1− D∆t

∆x2
− D∆t

∆y2
+

[
−∂u
∂x
− ∂v

∂y

]
∆t

2

)
+ Cnj,i+1

(
+

[
∂D

∂x
− u
]

1

2

∆t

2∆x
+

D∆t

2(∆x)2

)
+ Cnj,i−1

(
−
[
∂D

∂x
− u
]

1

2

∆t

2∆y
+

D∆t

2(∆x)2

)
+ Cnj+1,i

(
+

[
∂D

∂y
− v
]

1

2

∆t

2∆y
+

D∆t

2(∆y)2

)
+ Cnj−1,i

(
−
[
∂D

∂y
− v
]

1

2

∆t

2∆y
+

D∆t

2(∆y)2

)
.

(C.2)
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The left and right hand side of Eq. (C.2) are, with opposite signs, almost identical. To simplify,
the following variables are defined

λx =
∆t

(∆x)2
λy =

∆t

(∆y)2
αx =

∆t

4∆x
αy =

∆t

4∆y

We rewrite the equation in simplified terms:

Cn+1
j,i

(
1 +Dλx +Dλy −

[
−∂u
∂x
− ∂v

∂y

]
∆t

2

)
+ Cn+1

j,i+1

(
−
[
∂D

∂x
− u
]
αx − 1

2
Dλx

)
+ Cn+1

j,i−1

(
+

[
∂D

∂x
− u
]
αx − 1

2
Dλx

)
+ Cn+1

j+1,i

(
−
[
∂D

∂y
− v
]
αy − 1

2
Dλy

)
+ Cn+1

j−1,i

(
+

[
∂D

∂y
− v
]
αy − 1

2
Dλy

)
= Cnj,i

(
1−Dλx −Dλy +

[
−∂u
∂x
− ∂v

∂y

]
∆t

2

)
+ Cnj,i+1

(
+

[
∂D

∂x
− u
]
αx +

1

2
Dλx

)
+ Cnj,i−1

(
−
[
∂D

∂x
− u
]
αx +

1

2
Dλx

)
+ Cnj+1,i

(
+

[
∂D

∂y
− v
]
αy +

1

2
Dλy

)
+ Cnj−1,i

(
−
[
∂D

∂y
− v
]
αy +

1

2
Dλy

)

(C.3)

This can be written, for the left hand side matrix L and right hand side matrix R, and the
row-ordered column vector form of C (see Section (3.1.1)):

L ·Cn+1 = R ·Cn. (C.4)

The matrices of the scheme are square (Nx ·Ny)× (Nx ·Ny), and the concentration vector C is
of shape (Nx ·Ny). The matrices are explicitly expressed in Eqs. (3.1.11) and (3.1.12).
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Scheme matrices

Each row in the scheme matrices are functions of the same point in space. In other words, for any
function within the creation of the matrix diagonals (see (3.1.12) and (3.1.11)), one must ensure
that the entry is a function of the correct spatial point. In the illustration below, the function f can
be any field U , V, ∂xU , ∂yV, D, ∂xD, ∂yD. Note how each row is a function of a particular point
(yj , xi), written as (j, i). A pitfall here could be assuming that the functions accessed column-wise.
The main diagonal is equal in both approaches.

f(0,0) f(0,0) f(0,0) f(0,0) f(0,0)

f(0,1) f(0,1) f(0,1) f(0,1) f(0,1)

f(0,2) f(0,2) f(0,2) f(0,2) f(0,2)

f(0,3) f(0,3) f(0,3) f(0,3) f(0,3)

f(0,4) f(0,4) f(0,4) f(0,4) f(0,4)

f(1,0) f(1,0) f(1,0) f(1,0) f(1,0)

f(1,1) f(1,1) f(1,1) f(1,1) f(1,1)

f(1,2) f(1,2) f(1,2) f(1,2) f(1,2)

f(1,3) f(1,3) f(1,3) f(1,3) f(1,3)

f(1,4) f(1,4) f(1,4) f(1,4) f(1,4)

f(2,0) f(2,0) f(2,0) f(2,0) f(2,0)

f(2,1) f(2,1) f(2,1) f(2,1) f(2,1)

f(2,2) f(2,2) f(2,2) f(2,2) f(2,2)

f(2,3) f(2,3) f(2,3) f(2,3) f(2,3)

f(2,4) f(2,4) f(2,4) f(2,4) f(2,4)

Figure C.3: Illustration of the dependency of the fields within the matrices R and L in the Crank-Nicolson
scheme. Colors are presented in Figure 3.1.5, displaying the five-point stencil.
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D ADDITIONAL FIGURES AND TABLES
t=

0.0
0

ε= 0.1 ε= 0.4 ε= 0.7

t=
0.2

5
t=

0.7
5

Figure D.1: The double gyre system for different values of ε (see Section 1.1.1). The first row describes
the flow at times t = 0, 0.5, 1. The parameters of the flow are A = 0.1, and ω = 2π. The dimensions of
each plot is x ∈ [0, 2] and y ∈ [0, 1].

Table D.1: The optimal bandwidth ∆optimal for N = 100000, for four different values of diffusion.

T \ D 0.01 0.005 0.001 0.0005

2 ∆optimal 0.0029 0.0207 0.0109 0.0093

ISE 0.0048 0.0137 0.0601 0.0863

4 ∆optimal 0.0629 0.0531 0.0381 0.0375

ISE 0.0197 0.0705 0.3929 0.7688

6 ∆optimal 0.0655 0.0591 0.0303 0.0285

ISE 0.00032 0.0247 0.1893 0.4089

8 ∆optimal 0.1200 0.1400 0.0755 0.0747

ISE 0.0012 0.0195 0.3277 0.6495

10 ∆optimal 0.1000 0.0997 0.0505 0.0463

ISE 0.0003 0.0072 0.2085 0.4361
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(a)

(b)

Figure D.2: Contour plot of the fluid method solution, in a system of (a)D0 = 0.0005 and (b)D0 = 0.001.
Computations on a (200×400)-grid with a time step of ∆t = 0.0001953125.
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(a)

(b)

Figure D.3: Contour plot of the fluid method solution, in a system of (a) D0 = 0.005 and (b) D0 = 0.01.
Computations on a (200×400)-grid with a time step of ∆t = 0.0001953125.
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(a)

(b)

Figure D.4: Minima of Crank-Nicolson method (CNM) solution over the grid of size (Nx,Ny). (a) No
negative values are found, and cell Peclet numbers in each system satisfy Pecell ≤ 2 (see limit (3.1.17)),
except in one single case where Pecell = 2.5 (D = 0.005 for grid (Nx,Ny)=(50,25)). (b) High cell Peclet
numbers (Pecell > 2) give rise to unphysical negative numbers, or "oscillating solutions", marked in red
. See also, Figures D.5-D.8 for reference to distributions, showing a clear oscillating feature in the most

severe cases. See Table 3.1.1 for a list of maximum cell Peclet numbers for different systems.
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(a) Concentration C(x, y, t): ∆t = 0.1, (25 × 50) grid, max(Pecell) = 1.2541.

(b) Concentration C(x, y, t): ∆t = 0.025, (50 × 100) grid, max(Pecell) = 0.6277.

(c) Concentration C(x, y, t): ∆t = 0.00625, (100 × 200) grid, max(Pecell) = 0.3141.

(d) Concentration C(x, y, t): ∆t = 0.0015625, (200 × 400) grid, max(Pecell) = 0.1571.

(e) Concentration C(x, y, t): ∆t = 0.000390625, (400 × 800) grid, max(Pecell) = 0.0785.

Figure D.5: The solution using Crank-Nicolson for different times T , for the constant diffusion D = 0.01.
Each subplot shows the domain x ∈ [0, 2],y ∈ [0, 1] (cont.)
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(a) Concentration C(x, y, t): ∆t = 0.1, (25 × 50) grid, max(Pecell) = 2.5083.

(b) Concentration C(x, y, t): ∆t = 0.05, (50 × 100) grid, max(Pecell) = 1.2554.

(c) Concentration C(x, y, t): ∆t = 0.0125, (100 × 200) grid, max(Pecell) = 0.6281.

(d) Concentration C(x, y, t): ∆t = 0.003125, (200 × 400) grid, max(Pecell) = 0.3142.

(e) Concentration C(x, y, t): ∆t = 0.00078125, (400 × 800) grid, max(Pecell) = 0.1571.

Figure D.6: The solution using Crank-Nicolson for different times T , for the constant diffusion D = 0.005.
Each subplot shows the domain x ∈ [0, 2],y ∈ [0, 1] (cont.)
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(a) Concentration C(x, y, t): ∆t = 0.1, (25 × 50) grid, max(Pecell) = 12.5416.

(b) Concentration C(x, y, t): ∆t = 0.1, (50 × 100) grid, max(Pecell) = 6.2770.

(c) Concentration C(x, y, t): ∆t = 0.1, (100 × 200) grid, max(Pecell) = 3.1408.

(d) Concentration C(x, y, t): ∆t = 0.0125, (200 × 400) grid, max(Pecell) = 1.5707.

(e) Concentration C(x, y, t): ∆t = 0.003125, (400 × 800) grid, max(Pecell) = 0.7854.

Figure D.7: The solution using Crank-Nicolson for different times T , for the constant diffusion D = 0.001.
Each subplot shows the domain x ∈ [0, 2],y ∈ [0, 1] (cont.)
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(a) Concentration C(x, y, t): ∆t = 0.1, (25 × 50) grid, max(Pecell) = 25.0831.

(b) Concentration C(x, y, t): ∆t = 0.1, (50 × 100) grid, max(Pecell) = 6.2770.

(c) Concentration C(x, y, t): ∆t = 0.1, (100 × 200) grid, max(Pecell) = 6.2816.

(d) Concentration C(x, y, t): ∆t = 0.025, (200 × 400) grid, max(Pecell) = 3.1414.

(e) Concentration C(x, y, t): ∆t = 0.00625, (400 × 800) grid, max(Pecell) = 1.5708.

Figure D.8: The solution using Crank-Nicolson for different times T , for the constant diffusion D =
0.0005. Each subplot shows the domain x ∈ [0, 2],y ∈ [0, 1]. (cont.)
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