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Abstract

Strong coupling between heterogeneous quantum systems enable the construction of hy-
brid quantum systems, which can leverage the unique properties of the constituent sys-
tems for novel applications. In this thesis, I describe an experiment aiming to characterize
the coupling between magnons in a thin film of yttrium iron garnet (YIG) and excitons
in atomically thin layers of a transition metal dichalcogenide (TMD).

Magnons are strong candidates for applications in quantum-information processing,
as they can carry information without suffering from Ohmic losses [1], and have been
demonstrated to couple strongly to superconducting qubits [2]. TMDs on the other hand,
are 2D materials with strong optical properties and potential applications in the creation
of artificial materials with novel properties [3]. A strong coupling between magnons
and excitons in TMDs would expand the range of applicability of both systems, and in
particular could provide magnon-based hybrid quantum systems with a strong optical
response, which has been a bottleneck in previous attempts at implementations [4].

The coupling is achieved by piling thin flakes of TMD onto a YIG film to make a
van der Waals heterostructure, where the exchange interactions in the interface between
the materials lead to a magnetic proximity effect, which couples the resonance energy of
the excitonic modes to the out-of-plane magnetization in the YIG film. The YIG film is
magnetized with an in-plane magnetic field, after which a magnon population is excited,
resulting in an oscillating out-of-plane magnetization which induces a dynamic shift in
the exciton resonance energy. By probing the excitons with a laser at a fixed wavelength,
the dynamic shift in the resonance manifests itself as an amplitude modulation, which
can be measured to determine the magnon–exciton coupling strength.

The thesis details an experimental setup and a set of experiments designed to gen-
erate and analyze such an experimental signal, including a robust theoretical framework
to describe the YIG–TMD heterostructure and its interaction with the probe laser. The
results of the experiments show that the setup is capable of identifying and addressing
TMD flakes, as well as exciting magnetostatic modes in the YIG film, however, subse-
quent experiments could not be performed due to delays resulting from the COVID-19
pandemic.

The thesis concludes by addressing the challenges encountered in the acquisition of
the experimental results, and discussing future directions for successive experiments.
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Sammendrag

Sterk kobling mellom heterogene kvantesystemer kan brukes til å konstruere hybridkvan-
tesystemer, der de unike egenskapene til de individuelle systemene kan anvendes for inno-
vative muligheter. Denne tesen gjør rede for et eksperiment med mål om å karakterisere
koblingen mellom magnoner i en tynnfilm med yttrium-jern-granat (YIG) og eksitoner i
atomisk tynne lag av et overgangsmetalldikalkogenid (TMD).

Magnoner er sterke kandidater for anvendelser i kvanteinformasjonsprosessering grun-
net evne til å transportere informasjon uten å lide ohmske tap [1], samt at de kan kobles
sterkt til superledende qubits [2]. TMDer, på den andre siden, er 2D-materialer med
sterke optiske egenskaper og med mulige anvendelser i syntetisering av kunstige mate-
rialer med ekstraordinære egenskaper [3]. Om systemene kan kobles sterkt sammen vil
det videre forsterke potensialet til begge systemer for nyskapende anvendelser, spesielt
for magnon-baserte hybridsystemer da det kan forsterke optiske egenskaper, hvis svakhet
tidligere har vært et hinder for enkelte anvendelser [4].

Det koblede systemet er en van der Waals-heterostruktur, konstruert ved å feste tynne
flak av et TMD oppå en tynnfilm av YIG, der interaksjoner i overflaten fører til at reso-
nansenergien til eksitonene kobles til den transversale magnetiseringen i YIG-filmen gjen-
nom den magnetiske nærhetseffekten (’magnetic proximity effect’). Ved å magnetisere
YIG-filmen parallelt med planaksen og eksitere magnoner, vil den oscillerende transver-
sale magnetiseringen forårsaket av magnonene skifte resonansenergien til eksitonene dy-
namisk. Dersom man så belyser eksitonene med laserlys med en bestemt bølgelengde
vil det dynamiske skiftet forplante seg i form av en amplitudemodulasjon i det reflek-
terte lyssignalet. Koblingen mellom magnonene og eksitonene kan så bestemmes ved å
analysere dette signalet.

Tesen presenterer et eksperimentelt oppsett og et sett med eksperimenter som kan
generere og analysere et slikt signal, og forankrer det i et robust teoretisk rammeverk
for YIG-TMD heterostrukturen inklusiv interaksjon med signaler fra omgivelsene. De
eksperimentelle resultatene viser at oppsettet er i stand til å identifisere, og kan anven-
des på TMD-flak, i tillegg til å kunne eksitere magnetostatiske magnoner i YIG-filmen.
Ytterligere planlagte eksperimenter kunne dessverre ikke gjennomføres grunnet COVID-
19-pandemien.

Tesen konkluderer med en diskusjon om utfordringer som fremkom under eksperi-
mentet, og mulige retninger for fremtidige eksperimenter.
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1. Introduction

From its humble theoretical beginnings in the early 20th century, quantum mechanics has
come to dominate the cutting edge of modern technology. But as quantum systems are
pushed to their limits, inherent limitations become obstacles hindering further develop-
ment. Coupling separate quantum systems to construct hybrid quantum systems presents
a way forward, as the unique strengths of the constituent systems can be leveraged to
surpass individual shortcomings.

Taking as an example the leading implementation in the burgeoning field of quantum
computation, superconducting qubit-based quantum computers, the nature of the inher-
ent microwave communication and control presents substantial challenges to increasing
the number of qubits and communication between separate quantum computers. This
has led to a significant amount of research focused on constructing hybrid quantum sys-
tems that facilitate microwave-to-optical transduction, which would allow for the use of
highly stable optical signals for quantum communication [5, 6].

Magnons, the quanta of collective spin excitations in magnetically-ordered systems,
hold promise as platforms for information processing as well as hybrid quantum systems
[1, 7]. Much like electrons in electronics, magnons can be used as information carriers to
carry and store information, but do not suffer from the same drawbacks, such as Ohmic
losses [1]. As magnonic modes can be coupled strongly to superconducting qubit-systems
[2], they provide a gateway for the advancement of quantum computation and quantum
sensing [7–9]. Though magnonic modes have wide applicability due to their intrinsic
magnetic properties and microwave-domain radiative transitions, attempts at leveraging
magneto-optic effects in magnon-based hybrid quantum systems has been limited by an
inherently weak coupling [4], preventing access to the optical domain.

Group 6 transition metal dichalcogenides (TMDs) are two-dimensional semiconduc-
tors with direct band gaps. The band gaps support the creation of excitons, bound states
of an electron and a hole, which constitute strong optical transitions. Exploiting the novel
physical properties of TMDs and its excitonic modes holds great promise for applications
in photonics and valleytronics [10,11], as well as hybrid quantum systems [6]. By stacking
atomically thin layers of TMD togehter with other 2D materials such as graphene and
hexagonal boron nitride(h-BN), or on top of a bulk substrate, one can create van der
Waals heterostructures to enhance and alter their properties. This further expands the
prospects of TMDs as a platform for developing functional and effective hybrid quantum
systems [3, 12].

The resonance frequency of excitonic modes in TMDs can be coupled to an out-of-
plane magnetization through the magnetic proximity effect, which is realized by piling
a layer of TMD onto a magnetic substrate. By exciting magnons in the substrate, the
oscillating magnetization will lead to a dynamic shift in the excitonic resonance energy,
constituting a magnon–exciton coupling. The goal of the experiment detailed in this thesis
is to characterize the coupling strength between the excitonic and magnonic modes, which
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will determine the viability and effectiveness of magnon–exciton-based hybrid quantum
systems.

1.1 Thesis overview
The structure of the thesis is as follows:

Chapter 2 presents the theoretical background of the thesis. The reader is first fa-
miliarized with the quantum mechanical description of the isolated magnon and exciton
systems, and some of the properties of TMDs. The focus then shifts to the framework
of open quantum systems and input–output theory, which acts as a starting point to
introducing external coupling to an isolated system, and lays the foundation for the
generation of an experimental signal. This framework is applied to the coupled magnon–
exciton system, and input-output theory is used to derive an expression for the optical
output-signal.

Chapter 3 details the construction of an experimental setup capable of generating
such a signal, and the signal readout-scheme employed to extract the magnon–exciton
coupling strength.

In Chapter 4, experimental results are presented and discussed. Unfortunately, the
progress of the experiment was halted for a significant amount of time due to the COVID-
19 pandemic, and as such, some of the experimental results could not be obtained in time.
This chapter presents the experimental results that were obtained and details the planned
procedures of the experiments that were to have taken place.

Chapter 5 presents a conclusion of the thesis, and discusses steps that may be taken
to improve future experiments.



2. Theory

The aim of this thesis is to characterize a ferromagnet–TMD heterostructure, specifically
how a magnon population in the ferromagnet affects the optical properties of the excitonic
modes in the TMD. This chapter presents the reader with the theoretical background
that is needed to understand the physics of the individual components and the coupling
between them, and how the system can be experimentally probed to obtain information.
Section 2.1 will present the Heisenberg picture-formulation of quantum mechanics, and
the rotating wave approximation, both of which will dictate the form of the dynamics
of the system. Section 2.2 will present the basic mechanisms of ferromagnetism which
will be used to derive a model for magnons in a magnetostatic mode in a ferromagnet,
and the dynamics of the induced magnetization. Section 2.3 will present a Hamiltonian
for excitonic modes in semiconductors, and familiarize the reader with TMDs and their
properties. Finally, Section 2.4 will introduce the framework of open quantum systems
and input-output theory, which will be used to derive an expression for an optical output
signal from the coupled magnon–exciton system.

2.1 The Heisenberg picture and the rotating wave
approximation

The Heisenberg picture

In order to characterize the coupling between separate systems in a hybrid quantum
system, it is instrumental that the dynamics of the system can be determined. However,
the description and determination of the dynamics depend on the formulation of quantum
mechanics employed.

There are three main formulations of quantum mechanics, the Schrödinger picture,
the Heisenberg picture, and the interaction picture. In the Schrödinger picture, the state
of the system is time-dependent whereas the quantum mechanical operators are time-
independent. The dynamics are governed by the time-dependent Schrödinger equation

Ĥ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 , (2.1)

where |ψ(t)〉 is the time-dependent state of the system, and Ĥ is the time-independent
Hamiltonian of the system. In the Heisenberg picture, however, the operators themselves
are time-dependent, whereas the states are time-independent. The dynamics are then
given by the equations of motion of the constituent operators, which are governed by the
Heisenberg equation

dÔ(t)
dt = i

~
[Ĥ, Ô], (2.2)
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where Ô is an operator in the Hamiltonian. The interaction picture can be seen as
something in the middle, where both the states and the operators are time-dependent,
but is not of interest for this thesis.

A time-dependent operator in the Heisenberg picture, Ô(t), is related to a time-
independent operator in the Schrödinger picture, Ô, as

Ô(t) = eiĤt/~Ôe−iĤt/~. (2.3)

It is often notationally convenient to keep the time-dependence implicit, writing Heisen-
berg picture operators as Ô(t), and using the relation Eq.(2.3) only when the explicit
time-dependence is of interest.

A central difference between the dynamics as formulated in the Schrödinger and
Heisenberg pictures is that the Schrödinger picture describes the combined mechanics
of the total system, whereas the Heisenberg picture describes the coupled dynamics of
the operators themselves. The Heisenberg picture is thus well-suited to describe the dy-
namics of individual degrees of freedom, which allows for the description of signals going
into and coming out of a quantum mechanical system, as will be detailed in Section 2.4.
The rotating wave approximation
Generally, a coupling between quantum mechanical systems may include contributions of
many forms, but it is often useful to approximate the coupling in terms of its dominant
contributions. For Hamiltonians formulated in terms of creation and annihilation oper-
ators, this can be accomplished by employing the rotating wave approximation (RWA),
which is widely used in the field of quantum optics [13,14].

The rotating wave approximation is most easily explained in the Heisenberg picture,
where the time-dependence of annihilation and creation operators takes the form of a
complex exponential factor:

ĉ±j (t) ∝ e∓(iEjt)/~,

where Ej is the energy of the particle j, and the superscript + (−) denotes its creation
(annihilation) operator. For products of creation and annihilation operators, each op-
erator is accompanied by a complex exponential, resulting in the expectation value of
product of exclusively creation (annihilation) operators being proportional to a complex
exponential of the form 〈∏

j

ĉ±j

〉
∝ exp

(
∓ i

∑
j

Ejt/~
)
.

In other words, these operators oscillate at a high frequency compared to linear terms
and products of an equal number of creation and annihilation operators, and thus their
contributions to the dynamics quickly average to zero. Neglecting the terms oscillating
at higher frequencies constitutes the RWA.
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2.2 Magnons in a ferromagnet
Magnons, also known as spin waves, are quanta of collective spin excitations in magneti-
cally ordered systems. It is often convenient to distinguish between two types of magnonic
modes, exchange spin waves and dipolar spin waves, for which the dynamics are domi-
nated by exchange and dipolar interactions respectively, which relate to the interactions
from which magnetic ordering in ferromagnets originates [1]. For the purposes of this
thesis, the attention will be restricted to dipolar spin waves, also known as magnetostatic
modes. As excitonic modes interact with magnons through the magnon-induced magne-
tization, it is of interest to characterize the relation between a magnon population and
the magnetization in a ferromagnet. To elucidate the dynamics, the reader will first be
presented with a recap of fundamental concepts in magnetism, and a quantum description
of magnetic ordering in ferromagnets. The latter will also provide useful concepts for the
description of physical phenomena in transition metal dichalcogenides.

2.2.1 Magnetic moments
The elementary unit in magnetic systems is the magnetic moment. Magnetic moments
in atoms and molecules are generated by charged particles with an angular momen-
tum. In quantum mechanics, total angular momentum, J , is generally equal to the sum,
J = L + S, of the angular orbital momentum, L, resulting from the orbital motion
of the particle, and spin angular momentum, S. As spin angular momentum has no
classical analogue, we will for this introductory section restrict the attention to orbital
angular momentum in order to elucidate the dynamics of magnetic moments. However,
the expressions containing orbital angular momentum can easily be generalized by sub-
stituting the orbital angular momentum with total angular momentum, L → J . This
section draws inspiration from Chapter 1.2 and 1.3 in Ref. [15].

Charged particles in orbital motion will generate a magnetic moment µ = IAen,
proportional to the current I and area of the orbit Aen, where en is the unit vector
perpendicular to the area. This magnetic moment will generate a magnetic dipole field,
and interact with other magnetic moments and fields, experiencing the torque

τ = µ×B, (2.4)

where B is the magnetic flux density at the position of the magnetic moment.
As the normal vector of the orbital is either parallel or antiparallel to the angular

momentum vector of the charged particle, the magnetic moment µ can be reexpressed in
terms of angular momentum L as

µ = ±γL, (2.5)

where the sign is the same as the sign of the charge, and γ, a quantity known as the
gyromagnetic ratio, has been introduced. This gyromagnetic ratio can be expressed as
[15]:

γ = g
|q|

2mq

, (2.6)

where q and mq are the charge and mass respectively of the charged particle, and the
factor g is known as the spectroscopic splitting or simply the g-factor. The numerical
value of the gyromagnetic ratio is dependent on the origin of the angular momentum,
taking the value gS ≈ 2 for spin angular momentum, S, and gL = 1 for orbital angular
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ωp

B
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Figure 2.1: Illustration of a magnetic moment µ induced by an electron in orbital motion. The magnetic
moment precesses with precession frequency ωp about an applied magnetic field with flux density B.

momentum, L. Though the charged particles in atoms and molecules, electrons and
protons1, both have non-zero angular momentum, the inverse mass dependence in Eq (2.6)
means the magnetic moments of protons are negligible compared to the magnetic moments
of electrons, as mp/me ≈ 103. Hence, proceeding, only the magnetic moments of the
electrons will be considered2.

Substituting Eq. (2.5) into Eq. (2.4) and reexpressing torque in terms of angular mo-
mentum yields for an electron:

dL

dt = −|γ|L×B. (2.7)

This equation has the same form as the equation of motion for a spinning top in a
gravitational field, and as such this is a suitable classical analogue to picture the dynamics
of magnetic moments in external magnetic fields. Similarly to the center of mass of a
spinning top in a gravitational field, the magnetic moment will precess around an applied
magnetic field with a precession frequency ωP , which can be shown to be [15]:

ωP = |γB|. (2.8)

Unlike the case for the spinning top, this is independent of the angular momentum. The
dynamics of a magnetic moment in an external magnetic field is illustrated in Fig. 2.1.

2.2.2 Origins of magnetic ordering
The magnetic properties of a volume of material can be characterized by the dynamics
of the magnetization. The magnetization, M , is defined as the net density of magnetic
moments:

M = 1
V

∑
i

µi, (2.9)

where µi is the magnetic moment of the ith electron, and V is the volume of the magnetic
material. For there to be a net magnetization in a material there has to be some amount

1Neutrons also have a non-zero magnetic moment even though they are electrically neutral, owing to
the magnetic moments of the charged quarks they are composed of. The magnetic moment of a neutron
is quantitatively similar to that of a proton, so the same arguments will apply.

2It should, however, be noted that the magnetic moments of protons are important in other contexts,
especially as they give rise to nuclear magnetic resonance (NMR)
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of ordering in the magnetic moments, as opposing contributions would otherwise sum to
zero.

Though one can generally split magnetic materials into various categories depending
on the dynamics of the magnetization, we will in this thesis restrict the attention to
ferromagnets, which exhibit a net magnetization both in the presence of an external
magnetic field, called an induced magnetization, as well as in the absence of one, called
a spontaneous magnetization3. From a quantum mechanical perspective, the magnetic
ordering can be attributed to two contributions to the Hamiltonian: the Zeeman energy
and the exchange interaction.

The Zeeman energy is related to the torque in Eq.(2.4), and can be shown to be [15]:

ĤZ = −
∑
i

Bµ̂i,z, (2.10)

where the sum is over all of the electrons in the material, and the z-axis is taken to be
parallel to the magnetic flux density such that B = Bez with ez the unit vector in the z
direction. This means that it is energetically favorable for the magnetic moment to align
with the applied magnetic field. The Zeeman energy by itself can explain an induced
net magnetization in the presence of an external magnetic field. However, even though
magnetic moments are sources of dipole magnetic fields, dipolar coupling between the
magnetic moments alone is not strong enough to support long-range magnetic ordering
against thermal disruption in the absence of external magnetic fields [16].

The origin of such spontaneous magnetic ordering is known as the exchange interac-
tion which has the same physical origin as the Pauli exclusion principle. For neighboring
electrons, the spatial wave function of the electrons must be either symmetric or anti-
symmetric for an antiparallel or parallel spin state respectively. The different spatial
distribution leads to a difference in the Coulomb energy, which makes it energetically
favorable for the spin of an electron to align either parallel or antiparallel to that of a
neighboring electron [17]. The effect of the interaction between two electrons i and j can
be modeled using the Heisenberg Hamiltonian, which is of the form

Ĥe = −2JŜi · Ŝj, (2.11)

where the quantity J is detmermined by the exchange integral which depends on the
overlap between the wave functions of the two particles. For a multidimensional lattice
with N sites, the model can be extended to

ĤeN = − 2
N

∑
〈i,j〉

Ji,jŜi · Ŝj, (2.12)

where the sum is over all sites i and neighboring sites j denoted with the notation 〈i, j〉.
This model assumes that all spins are localized at the sites of the crystal lattice; al-
though the situation in a crystal is much more complicated than that, the Hamiltonian
of Eq (2.12) nonetheless predicts many phenomena found in magnets, in particular the
phenomena of interest for this thesis. For positive values of J , it will be energetically
favorable for neighboring spins to align, resulting in a spontaneous magnetization even
in the absence of external magnetic fields.

3This definition is also valid for ferrimagnets, which will be considered ferromagnets for the purposes
of this thesis.
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The total Hamiltonian of a ferromagnetic lattice can now be obtained as the sum
of Eq (2.10) and Eq. (2.12). The presence of quantized collective spin excitations, also
known as magnons, can then be derived using this as a starting point, resulting in a
Hamiltonian of the form [Appendix A]

Ĥmagnon =
∑
k

n̂k~ωk. (2.13)

where n̂k is the number operator of the magnonic mode with wave vector k, and with
~ωk the energy of a single excitation.

2.2.3 Magnetization of magnetostatic modes in a ferromagnet
In order to characterize the magnon–exciton coupling, which originates from the out-of-
plane magnetization stemming from the magnons in the magnetic material, the dynamics
of the magnetization must be characterized. As the magnitude of the magnon-induced
magnetization is highly dependent on the mean magnetization in the system, we will
focus on the dynamics in an external magnetic field H = B/µ, where B is the magnetic
flux density and µ is the permeability of the medium. This section draws heavily on
chapter 1.4-1.5 in [16].

It can be shown, that for the case where the magnetic field has a small harmonically
time-dependent component, the magnetization will similarly have a small harmonically
time-dependent component [Appendix B]. The oscillating magnetic field and magnetiza-
tion can then be expressed as the real parts of complex vectors:

h(t) = Re{hC(t)} = Re{h̃e−iωt},
m(t) = Re{mC(t)} = Re{m̃e−iωt},

(2.14)

where the complex amplitudes, h̃ and m̃, behave according to the linearized equation of
motion

−iωm̃+ γµ0m̃×H0 = −γµ0M 0 × h̃, (2.15)
where H0 and M 0 are the time-independent parts of the magnetic field and magnetiza-
tion, respectively, which are assumed to be parallel.

Losses can be accounted for by the transformation [Appendix B]:
γµ0H0 → γµ0H0 − iαω, (2.16)

where α is a dimensionless parameter which characterizes the rate of dissipation and
depends on the material.

This equation can be concisely expressed using tensor notation
m̃ = χ̄h̃, (2.17)

where the tensor χ̄ is known as the susceptibility tensor. With the mean magnetic field
and magnetization along the z-axis, the susceptibility tensor can be expressed as

χ̄ =

 χ −iχa 0
iχa χ 0
0 0 0

 , (2.18)

where, accounting for losses, the quantities χ = χ′ + iχ′′ and χa = χ′a + iχ′′a are defined
by the relations Eq. (B.25).

The linearized equation of motion thus leads to an induced time-dependent mag-
netization perpendicular to the mean magnetization, with no contributions from time-
dependent components parallel to the time-independent part of the magnetic field.
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Ferromagnetic resonance
At a specific frequency, ω = ωres, the real part of χa changes sign, and the imaginary
parts of χ and χa pass through a maximum. This frequency is denoted as the resonance
and is defined by the relation:

ω2
res = ω2

H

1 + α2 , (2.19)

where ωH ≡ γµ0H0. At resonance, the parameters in the susceptibility tensor have the
following values [Eqs. (B.25)]:

χ′res = ωM
2ωH

,

χ′′res = ωM
2αωres

,

χ′a,res = 0,

χ′′a,res = ωM
2αωH

≈ χ′′res,

(2.20)

where ωM ≡ γµ0M0.
To see the result of the damped equation of motion on the time-dependent part of

the magnetization one can inspect the time derivative of the oscillating magnetization
components ṁx, ṁy [Eq. (2.14)]:

ṁx(t) = Re{ṁC
x (t)} = Re{−iωm̃xe

−iωt}

= Re
{
− iω

[
(χ′ + iχ′′)h̃x + e−iπ/2(χ′a + iχ′′a)h̃y

]
e−iωt

}
= Re

{
− iω

(
χ′h̃x + e−iπ/2χ′ah̃y

)
e−iωt + ω

(
χ′′h̃x + e−iπ/2χ′′ah̃y

)
e−iωt

}
= Re

{
− iω

(
χ′h̃x + e−iπ/2χ′ah̃y

)
e−iωt

}
+ ωχ′′Re

{
h̃xe

−iωt
}

+ ωχ′′aRe
{
e−i(ωt−

π
2 )
}

= ωχ′′hx(t) + ωχ′′ah
′
y(t) + Re

{
− iω

(
χ′h̃x + e−iπ/2χ′ah̃y +

)
e−iωt

}
,

= ωχ′′hx(t) + ωχ′′ah
′
y(t) + χ′ḣx(t) + χ′aḣ

′
y(t), (2.21)

where h′y(t) is −π/2 out of phase with hy(t). This means positive χ′′res and χ′′a,res lead to the
magnetization increasing proportionally to the oscillating magnetic field. In other words,
the magnetization is absorbing magnetic energy from the oscillating magnetic field. This
phenomenon is called ferromagnetic resonance, and can be measured experimentally. As
χ′′res, χ

′′
a,res are inversely proportional to the rate of dissipation α, a lower rate of dissipation

will lead to higher rate of absorption of energy at resonance [Eq. (2.20)].
Uniform-precession magnetostatic mode
In order to determine the spatial distribution of the total magnetic fieldH , it is generally
required that one solves Maxwell’s equations for the appropriate boundary conditions.
Thus, the geometry of the ferromagnet must be known in order to determine the dynamics
of the system.

The simplest case to solve is the uniform-precession mode, also known as the Kit-
tel mode, in ellipsoidal samples in a uniform applied magnetic field. In this mode, all
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magnetic moments in the magnet precess uniformly and in phase, as is illustrated in
Fig. 2.2.

The uniform-precession mode is a magnetostatic mode, which is valid in the mag-
netostatic approximation to Maxwell’s equations. In this approximation, the spatial
dependence of the magnetic field is assumed to vary sufficiently slowly to approximate
it as constant in space in Maxwell’s equations [15]. As exchange interactions are very
short-ranged and thus lead to high-frequency spatial variation, they must contribute neg-
ligibly to magnetostatic modes compared to the long-ranged dipolar interactions. Hence,
magnetostatic modes are also commonly referred to as dipolar spin waves.

In the case of the uniform-precession mode, the total magnetic field can be written
as [16]:

H = He − N̄M , (2.22)

where the subscript e denotes an external field, and N̄ is the demagnetization tensor.
The demagnetization tensor is diagonal in the axes of the ellipsoid:

N̄ =

Nx 0 0
0 Ny 0
0 0 Nz

 , (2.23)

where Nx, Ny, Nz are known as the demagnetization factors, which depend on the shape
of the ellipsoid and are generally required to sum up to 1:

Nx +Ny +Nz = 1. (2.24)

The time-independent part H0 and time-dependent part h can then be expressed as

H0 = H0e − N̄M 0, (2.25)
h = he − N̄m. (2.26)

In order for the magnetostatic approximation to be valid, the sample size must be small
compared to the wavelength of the external oscillating magnetic field he in the sample.
Furthermore, the oscillating magnetization must be uniform across the sample.

For the case of a thin circular disk4, a limiting case of an ellipsoid, in the xz-plane
with the z-axis aligned parallel with the external magnetic field, H0e = H0ez, the de-
magnetization factors are [16]:

Nx = 0, Ny = 1, Nz = 0.

Suppose the time-dependent part of the magnetic field is normal to the disk, he =

 0
hy
0

,
as illustrated in Fig. 2.2. The quantities H0 and h can then be expressed as

4Ref. [15] presents the same result for thin films without referencing the geometry, and other papers
have made use of similar modes for rectangular films [18]. As such it will be assumed that the thin films
need not necessarily be circular.
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H0e
he

Figure 2.2: Illustration of the uniform-precession magnetostatic mode in a thin circular disk. The
static component of the applied magnetic field, H0e is parallel to the z-axis, whereas the harmonically
oscillating component he is aligned with the y-axis. The magnetic moments in the thin circular disk will
then precess uniformly in phase about the mean magnetization, which is parallel to the applied magnetic
field.

H0 =

 0
0
H0

−
0 0 0

0 1 0
0 0 0


 0

0
M0



=

 0
0
H0

 , (2.27)

h =

 0
hy
0

−
0 0 0

0 1 0
0 0 0


mx

my

mz



=

 0
hy −my

0

 . (2.28)

Substituting into the undamped linearized equation of motion (B.10) yields:

−iωm̃x + ωHm̃y = ωM(h̃y − m̃y)
−iωm̃y − ωHm̃x = 0.

(2.29)

The solutions to this equation are

m̃x = − iωMω

ωH(ωH + ωM)− ω2 h̃y,

m̃y = 1
ωH(ωH + ωM)− ω2ωMωH h̃y.

(2.30)
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From this we can identify the susceptibility tensor as

χ̄ =


0 −iωMω/

(
ωH(ωH + ωM)− ω2

)
0

0 ωMωH/
(
ωH(ωH + ωM)− ω2

)
0

0 0 0



=

0 −iχa 0
0 χ 0
0 0 0

 . (2.31)

As the amplitude of the ratio |m̃x/m̃y| = ω/ωH 6= 1, the oscillating out-of-plane compo-
nent of the magnetization will trace an ellipse in the xy-plane.

Taking losses into account, the susceptibility χ (χa) can be decomposed into its real
and imaginary parts χ = χ′ + iχ′′ (χ = χ′a + iχ′′a), where the components can be written
as

χ′ = 1
D
ωHωM

[
ωH(ωH + ωM)− (1− α2)ω2

]
+ 1
D
α2ω2ω2

M ,

χ′′ = 1
D
αωMω

[
ω2
H + (1 + α2)ω2

]
,

χ′a = 1
D
ωMω

[
ωH(ωH + ωM)− (1 + α2)ω2

]
,

χ′′a = 1
D
αωMω

2(2ωH + ωM),

D =
[
ωH(ωH + ωM)− (1 + α2)ω2

]2
+ α2ω2(2ωH + ωM)2.

(2.32)

The resonance frequency of the uniform-precession mode is then the frequency at
which the imaginary components, χ′′ and χ′′a, pass through a maximum, which can be
identified as

ω2
res = ωH(ωH + ωM)

1 + α2 . (2.33)

Magnons in the uniform-precession magnetostatic mode

For the description of the coupled magnon–exciton system it is of interest to characterize
the magnetization of the uniform-precession magnetostatic mode in terms of magnon
creation and annihilation operators. In the following derivation, it will be assumed that
the uniform-precession mode is driven with a classical radiation field, as is the case in the
experiment in this thesis, such that the system is in a coherent state. This state of the
quantum uniform-precession mode will have the same properties as before, as coherent
states follow Maxwell’s equations.

Supposing, as in the previous section, that the magnet is placed in an external mag-
netic field, and further imposing a temperature of T = 0 K and an absence of driv-
ing, all of the magnetic moments in the material will align along the external mag-
netic field H0 = H0ez, such that the magnetization of the material can be written as
[Eqs. (2.5), (2.9)]:

Mz = γ
~
2
N

V
, (2.34)
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where the total angular momentum at a site has been assumed to be equal to 1
2 for

simplicity, and N is the number of magnetic moments.
In the uniform-precession mode, all magnetic moments precess uniformly in phase

such that the magnetization is uniform throughout the volume of the magnet at any given
time. This allows for the magnetic moments, or correspondingly, angular momentum to
be treated collectively, similar to the treatment in Ref. [19]. The system is then treated
as a Dicke state, named after the paper first detailing such a treatment, Ref. [20]. For
such a system, the square of the total angular momentum can be written as [19]:

J2 = ~2N

2

(
N

2 + 1
)
, (2.35)

which corresponds to treating the spins collectively by transforming the eigenvalues of the
total angular momentum operator J → NJ = N

2 . This allows for the total magnetization
to be written as

M 2 = 1
V 2γ

2~2N

2

(
N

2 + 1
)
. (2.36)

As the excitation of magnons in an in-plane magnetized substrate would increase
the transverse component of the magnetization, the transverse magnetization should be
expressible in terms of magnon creation and annihilation operators. To this end, the
square of the total magnetization is expanded in terms of the components transverse and
parallel to the applied magnetic field, yielding [Eq. (2.36)]

M2
t +M2

z = 1
V
γ2~2N

2

(
N

2 + 1
)
, (2.37)

where Mt is the transverse magnetization. The non-zero transverse component in the
absence of driving and thermal fluctuations can be interpreted as the result of vacuum
fluctuations of a magnonic mode. Substituting in the expression Eq. (2.34), the transverse
magnetization can then be expressed as

Mt = γ
~
2

√
N

V
. (2.38)

In order to proceed, it is useful to specify a basis in which the transverse component
is expressed. A conventional choice would be to express the magnetization in terms of
the Cartesian x- and y-components:

M2
t = m2

x +m2
y, (2.39)

however, it can just as easily be expressed in the m± basis, specified similarly to the spin
± basis Eq. (A.2):

m± = mx ± imy. (2.40)

In this basis, the square of the transverse magnetization reads:

M2
t = 1

2(m+m− +m−m+), (2.41)
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which means the transverse magnetization can be written as

Mt =
√

1
2(m+m− +m−m+). (2.42)

By treating the magnetization components m+ and m− as proportional to collective
spin operators in a similar manner to Ŝ+ and Ŝ− in Appendix A, the ansatz is made that
the magnetization operators m̂+ and m̂− may be written as

m̂+ = 1
V
γ
~
2
√

2Nâ†,

m̂− = 1
V
γ
~
2
√

2Nâ,
(2.43)

where â (â†) is a magnon annihilation operator (creation operator). From Appendix A
we know that the creation of a magnon lowers the magnetization parallel to an exter-
nal magnetic field. Eqs. (2.43) similarly state that the operator m̂+ raises the trans-
verse magnetization, by creating a magnon. Substituting into Eq. (2.42) we obtain the
operator-valued equation:

M̂t = γ
~
2

√
N

V

√
â†â+ ââ†

= γ
~
2

√
N

V

√
2n̂+ 1, (2.44)

where n̂ ≡ â†â is the number operator. At T = 0 K and no driving, there should be
no magnons in the system, meaning the expectation value 〈n̂〉 = 0, which allows for
Eq. (2.38) to be recovered from Eq. (2.44).

An equation of motion for the annihilation operator â can now be obtained by reex-
pressing the equation of motion of the uniform-precession mode in terms of m−. To this
end we will follow an approach similar to the treatment of Eq. (2.29). Using instead the
time-space linearized equation of motion yields [Eq. (B.7)]

˙̃mx = − (ωM + ωH)m̃y + ωH h̃y,

˙̃my = ωHm̃x.
(2.45)

In order to express this in the m± basis, the Cartesian components will have to be
scaled in such a way that they can be written as

Ṁx = − ωSMy + ωH h̃S,y,

Ṁy = ωSMx,
(2.46)

where h̃S,y is a scaled magnetic field amplitude, and the scaled components of the mag-
netization are defined as

Mx = A1m̃x,

My = A2m̃y.
(2.47)

Combining Eqs. (2.46) and (2.47) yields the relation:

ωS = (ωM + ωH)A1

A2
= ωH

A2

A1
(2.48)
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which has the solution for ωS:

ωS =
√
ωH(ωM + ωH), (2.49)

which corresponds to the resonance frequency of the uniform-precession mode, Eq. (2.33),
with losses neglected. The equation of motion of the scaled magnetizationM− ≡Mx −
iMy, can then be written as

Ṁ− = − ωSMy − iωSMx + ωHA1h̃y

= − iωSM− + ωHA1h̃y. (2.50)

Accounting for losses corresponds to the transformation:

ωS →
√

(ωH − iαω)(ωH − iαω + ωM) = ω′S − iω′′S, (2.51)

ω′S ≡ Re(
√

(ωH − iαω)(ωH − iαω + ωM)),

ω′′S ≡ − Im(
√

(ωH − iαω)(ωH − iαω + ωM)).

The equation of motion of the magnetizationM− with losses can then be identified as

Ṁ− = − iω′SM− − ω′′SM− + (ωH − iαω)A1h̃y. (2.52)

As the magnetic field hy is proportional to the radiation field it stems from [21], the
magnetic field amplitude h̃y can be written in terms of the photon flux of the originating
radiation, lin, as

h̃y = βlin, (2.53)

where β is the proportionality constant. By replacing the magnetization with the anni-
hilation operator of the magnon using Eq. (2.43) and substituting a quantized version of
Eq. (2.53) for the magnetic field amplitude yields an equation of motion for the magnon
annihilation operator [Eq. (2.52)]:

˙̂a = − iω′S︸︷︷︸
iω0

â− ω′S︸︷︷︸
γT
2

â+ ωHβA1
2V

~γ
√

2N︸ ︷︷ ︸√
γe

l̂in

= − iω0â−
γT
2 â+√γmwl̂in, (2.54)

where the quantities ω0, γT , γmw can be determined experimentally. This equation is
called the quantum Langevin equation of the magnonic mode, which will be discussed in
more detail in Section 2.4.



16 2. Theory

2.3 Excitons in transition metal dichalcogenides
Transition metal dichalcogenides is a family of 2D materials which contains a number of
semiconductors. By shining light with a specific frequency at such a semiconductor one
can create a bound state known as an exciton, consisting of an excited valence electron
electrostatically bound to the hole it leaves behind. The presence of excitonic modes
provides semiconductor transition metal dichalcogenides with a strong optical response,
which can be combined with other properties to construct novel and effective quantum
hybrid systems. This section will start by presenting a derivation of the excitonic Hamil-
tonian from a quantum mechanical description of a semiconductor system interacting
with classical light. Proceeding, the section will acquaint the reader with the proper-
ties of transition metal dichalcogenides, which will present a way to couple the excitonic
modes in transition metal dichalcogenides to magnonic modes in a ferromagnet.

h+
aB e-

b)

E1
E2

E3 Ebg

K' k

E

VB

CB

a)

E3B

Figure 2.3: a) Illustration of the band structure of a semiconductor with a direct band gap. The resonance
energy of the exciton with quantum numbers n is denoted as En, whereas the band gap energy is denoted
as Ebg. The binding energy of the exciton with quantum number n = 3 is also shown, denoted as E3B.
b) Illustration of the constituent bound electron and hole of a Wannier-Mott exciton, colored orange
and white respectively. The Bohr-radius aB of the exciton state is several times larger than the lattice
parameter.

2.3.1 Quantum mechanical description of excitons in a
semiconductor

In order to describe the dynamics of a magnon–exciton hybrid quantum system, a Hamil-
tonian for the excitonic modes is needed. To this end, we will first derive a quantum
mechanical Hamiltonian of a semiconductor interacting with coherent light in terms of
creation and annihilation operators of valence and conduction band electrons. The result-
ing dynamics will then be used to reexpress the Hamiltonian in terms of exciton creation
and annihilation operators. The derivation is an adapted approach from chapter 10 of
Ref. [22] combined with elements from chapters 10 and 11 of Ref. [23]. The spin index
will be absorbed into the wave vector k for simplicity of notation. Though it gener-
ally is possible to excite valence band electrons into states with the opposite spin, such
transitions are dipole-forbidden and thus depend on relatively weak interactions. The
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corresponding excitonic modes, aptly named dark exciton modes, will be neglected due
to their significantly lower optical response.

Hamiltonian and dynamics in terms of electronic operators

For a semiconductor system with single valence and conduction bands, the Hamiltonian
and the dynamics of the system are most easily expressed in terms of creation and an-
nihilation operators of valence and conduction band electrons, which are quasiparticles
representing electrons confined to their given band. Furthermore, it is convenient to re-
place the valence band electron operators with valence band hole operators, which are
defined by the following relations [Eq. (C.2)]:

ĉh,k = ĉ†v,−k,

ĉ†h,k = ĉv,−k,
(2.55)

where the subscript h (v) denotes the operator for a valence band hole (electron), and
k is the quantum number of the particle, which is assumed to correspond to the wave
vector and spin.

The Hamiltonian of a semiconductor interacting with light can be written as [Ap-
pendix C]

Ĥ =
∑
k

(
εc,kĉ

†
c,kĉc,k + εh,kĉ

†
h,kĉh,k

)
+ 1

2
∑

k,k′q 6=0
V (q)

(
ĉ†c,k+q ĉ

†
c,k′−q ĉc,k′ ĉc,k

+ ĉh,k+q ĉh,k′−q ĉ
†
h,k′ ĉ

†
h,k

+ 2ĉ†c,k+q ĉh,k′−q ĉ
†
h,k′ ĉc,k

)
+
∑
k

~(gωd ĉ
†
c,kĉ
†
h,−ke

−iωdt + h.c.).

(2.56)

Here, the first two terms constitute the unperturbed Hamiltonian of the two-band semi-
conductor, where ĉc,k and εc,k (ĉh,k and εh,k) is the annihilation operator and energy,
respectively, of a conduction band electron (valence band hole) with quantum number k
hereafter simply referred to as electron (hole). The quantity V (q) in the second term is
the Fourier transform of the Coulomb potential. The last term represents the interaction
with the coherent light with frequency ωd, also referred to as the optical drive. The inter-
action is characterized by the coupling strength gωd , which is proportional to the electric
field strength of the light and dipole moment between the electrons and the holes.

The dynamics of the semiconductor–light system can be obtained by inspecting the
semiconductor Bloch equations. The semiconductor Bloch equations are the coupled
equations of motion of the expectations values of the electron and hole populations,
nc,k ≡ 〈ĉ†c,kĉc,k〉 and nc,k ≡ 〈ĉ†h,−kĉh,−k〉, and the pair operator, Pch,k ≡ 〈ĉh,−kĉc,k〉. The
semiconductor Bloch equations can be derived from the Hamiltonian Eq. (2.56), which
is shown in Appendix C. For the experiment detailed in this thesis, we are interested in
the dynamics in the ultralow density regime, where the electron and hole populations are
low enough to be neglected, such that the dynamics of the system are determined only
by the equation of motion of the expectation value of the pair operator. This equation
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of motion can be written as [Eq. (C.10)]]:

dPch(r)
dt = − i

~
(Eg + ~2

2m∗r
∇2 + VCoulomb)Pch(r) + igωdδ(r)Vc, (2.57)

where Eg is the band gap energy, VCoulomb is the Coulomb energy of the electron–hole pair,
Vc is the quantization volume, and the energy of the conduction-band electrons and holes
has been written in terms of the energy of effective single particle states with a reduced
mass m∗c = mcmh/(mc + mh), where mc and mh are the effective masses of the electron
and hole quasiparticles. The solutions of this inhomogeneous linear differential equation
can be expressed in terms of solutions of the corresponding homogeneous differential
equation, which satisfies [22,23]:

−
[ ~2

2m∗r
∇2 + VCoulomb(r)

]
ψn(r) = Enψn(r), (2.58)

where ψn(r) is the wave function of a combined electron-hole quasiparticle with quantum
number n. This equation is known as the Wannier equation, and was derived under
the assumption that the total variation of the Coulomb potential within the extent of
the wave function is small, which is valid as long as the average separation between
the conduction-band electron and the hole, i.e. their Bohr radius, is large compared
to the lattice parameter [23]. The energy spectrum consists of a discrete part, where
En < 0, corresponding to the case where the Coulomb attraction is strong enough to
bind the constituent electron and hole in a hydrogen-like state with a hydrogenic energy
spectrum, and a continuous part, where En > 0 [22]. The bound states with a discrete
energy spectrum is commonly referred to as Wannier or Wannier-Mott excitons. The
Wannier equation describes excitons in both 2D and 3D materials, where the two cases
have slightly different energy spectrums in terms of the dependence on the quantum
number n [23]:

E3D
n ∝

1
n2 (2.59)

E2D
n ∝

1
(n+ 1/2)2 . (2.60)

An illustration of a Wannier-Mott exciton and the band structure of excitonic modes is
shown in Fig. 2.3.

Hamiltonian in terms of excitonic operators

As the wave functions of the excitons satisfy the homogeneous equation of motion, a
Hamiltonian constructed from exciton annihilation and creation operators should yield
the same equations of motion as Eq. (2.56). The total Hamiltonian may then be expressed
in terms of exciton operators if a relation between exciton operators and electron and
hole operators is found. The creation of an exciton with quantum number ν and wave
vector K can be expressed in bra-ket notation as

Ĉ†ν,K = |ν,K〉 〈0| . (2.61)
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Using the completeness relation ∑k |k〉 〈k| = 1 with electron and hole states
|k,−k′〉 = ĉ†c,kĉ

†
h,−k′ |0〉, the exciton creation operator can be expressed as

Ĉ†ν,K =
∑
k,k′
|k,−k′〉 〈k,−k′| |ν,K〉 〈0|

=
∑
k,k′
〈k,−k′| |ν,K〉 |k,−k′〉 〈0|

=
∑
k,k′
〈k,−k′| |ν,K〉 ĉ†c,kĉ

†
h,−k′ , (2.62)

where the relation ĉ†c,kĉ
†
h,−k′ = |k,−k′〉 〈0| was used. The term 〈k,−k| |ν,K〉 can be

evaluated as [23]:

〈k,−k′| |ν,K〉 =
∫

d3r
∫

d3r′ 〈k,−k′ | r, r′〉 〈r, r′ | ν,K〉

=
∫

d3r
∫

d3r′e−ik·re−ik
′·r′
eiK(r+r′)/2ψν(r − r′)

= δ
[
K − (k − k′)

]
ψν
(
(k + k′)/2

)
, (2.63)

where ψnu(k) is the Fourier transform of the exciton wave function ψν(r). The exciton
creation operator can then be written as [22]:

Ĉ†ν,K =
∑
k

ψν(k)ĉ†
c, 1

2K+kĉ
†
h, 1

2K−k
. (2.64)

The commutation relation between exciton annihilation and creation operators can then
be shown to be [22]:[

Ĉν,K , Ĉ
†
µ,K′

]
= δν,µδK,K′ −

∑
k

|ψν(k)|2(nc,k + nh,k). (2.65)

Thus, the excitons behave as bosons for sufficiently low densities where nc,k = nh,k ≈ 0.
The free exciton Hamiltonian can now be written in the form:

Ĥexc,0 =
∑
ν,K

~ωexc,νĈ
†
ν,KĈν,K , (2.66)

which, provided ~ωexc,ν = εc,Kbg +εh,Kbg +Eν whereKbg is the position of the band gap in
momentum space, gives approximately the same energy as the unperturbed Hamiltonian,
Eq. (2.56).

In order to diagonalize the interaction Hamiltonian, which is the last term in Eq. (2.56),
the pair operator ĉ†h,−kĉ

†
c,−k must be expressed in terms of exciton operators. To this end,

we multiply Eq. (2.64) with ψν(κ) from the left, and sum over all quantum numbers ν:∑
ν

ψ∗ν(κ)Ĉ†ν,K =
∑
k

[∑
ν

ψ∗ν(κ)ψν(k)
]

︸ ︷︷ ︸
δk,κ

ĉ†
c, 1

2K+kĉ
†
h, 1

2K−k

= ĉ†
c, 1

2K+κĉ
†
h, 1

2K−κ
. (2.67)

Thus, the pair operator in the interaction Hamiltonian can be identified as

ĉ†c,kĉ
†
h,−k =

∑
ν

ψ∗ν(k)Ĉ†ν ,
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where Ĉ†ν ≡ Ĉ†ν,q
∣∣∣
q=0

. The interaction Hamiltonian can then be written as

Ĥexc, int ≈
∑
k,ν

~(gωdψ
∗
ν(k)Ĉ†ν + h.c.)

=
∑
k,ν

~(g̃k,ωd,νĈ
†
ν + h.c.), (2.68)

where g̃k,ωd,ν ≡ gωdψ
∗
ν(k).

The total Hamiltonian of the semiconductor–light system expressed in terms of exciton
creation and annihilation operators is then:

Ĥexc =
∑
k,ν

~ωexc,νĈ
†
ν,kĈν,k +

∑
k,ν

~(g̃k,ωd,νĈ
†
ν + h.c.). (2.69)

2.3.2 Transition metal dichalcogenides
Transition metal dichalcogenides (TMDs) is a family of semiconducting and metallic ma-
terials which are made up of transition metal and chalcogen atoms. In this thesis, the fo-
cus will be restricted to Group-6 TMDs with chemical formula MX2, M ∈ {W,Mo}, X ∈
{S, Se}, which are semiconductors with similar electronic band structures, which will be
referred to simply as TMDs from this point on. Bulk TMDs are made up of 2D layers
with a honeycomb lattice structure where the layers are bound together by weak van der
Waals forces, much like graphite. Similar to isolation of graphene from graphite, single
layers of TMDs can be extracted from bulk crystals to yield stable 2D materials [3]. A key
difference with graphene however, is the absence of a center of inversion in the unit cell
of monolayer TMDs, which opens up degenerate direct band gaps at the ±K points with
novel physical properties [24,25]. The 1st Brillouin zone of TMDs is shown in Fig. 2.4b).
Circular dichroism and valley pseudospin
A qualitative understanding of the optical properties of TMDs can be obtained by inspect-
ing an effective two-band model of the Hamiltonian close to the ±K points [26]. Using
the same coordinate system as in Section 2.2.3 with y as the out-of-plane direction, and
ignoring for now spin for simplicity, the Hamiltonian reads

Ĥ±K = at(±~kxσ̂x + ~kzσ̂y) + ~∆/2σ̂z

= ~
(

∆/2 at(±kx + ikz)
at(±kx − ikz) −∆/2

)
, (2.70)

where k is the wave vector with respect to the ±K point, the components of σ̂ are the
Pauli matrices, a is the lattice parameter, t is the hopping integral which is related to the
electronic transport properties, and ~∆ = Eg is the band gap energy. The Hamiltonian
acts on a spinor of the form

|ψ〉 =
(
ψU
ψL

)
.

Unlike valence and conduction bands, the eigenstates ψU and ψL are coupled by k as
evidenced by the k dependence of the off-diagonal elements, meaning the eigenstates
generally consist of superpositions of the valence and conduction band. However, at the
±K points where kx = kz = 0, the Hamiltonian is diagonalized in k, which means the
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eigenstate ψU and ψL corresponds to the conduction band and valence band, respec-
tively. At the ±K points, the diagonal and off-diagonal elements describe the energy and
coupling respectively, of the valence and conduction band electrons.

Interaction with light can be included by the substitution

~k→ ~k − eA,

where A is the vector potential of the light. As A can take complex values, Eq. (2.70)
must be adjusted as

Ĥ±K =
(

~∆/2 at[±(~kx − eAx) + i(~kz − e/~Az)]
at[±(~kx − eA∗x)− i(~ky − eA∗z)] −~∆/2

)
,

(2.71)

where the superscript ∗ denotes complex conjugation, in order to ensure that the Hamil-
tonian is Hermitian. For light propagating in the y direction with a right-hand-circular
polarization, σ+ polarized light, there is a −π/2 phase difference between the x and z com-
ponents, meaning the components of the vector potential can be written as Ax = A0/

√
2

and Az = −iA0/
√

2. Substituting into Eq. (2.71) with kx = kz = 0, i. e. at the ±K
points, yields

ĤK =
(

~∆/2 −
√

2A0eat

−
√

2A0eat −~∆/2

)
, (2.72)

Ĥ−K =
(
~∆/2 0

0 −~∆/2

)
. (2.73)

This means right-hand-circularly polarized light couples the valence and conduction band
for the K points exclusively. This is reversed for left-hand-circularly polarized light,
σ− polarized light, where the bands are coupled exclusively at the −K points. This
constitutes an optical selection rule called circular dichroism, where the choice of circular
polarization corresponds to a choice between the K and −K points in the Brillouin zone,
commonly referred to as valleys due to the corresponding minimum in the conduction
band.

The choice of valley can be written as a pseudospin, τ ∈ {−1, 1}, where ±1 cor-
responds to ±K. The pseudospin τ is commonly referred to as the valley index, and
constitutes a degree of freedom. The presence of degenerate valleys and optical selection
rules makes TMDs promising platforms for research in the field of valleytronics, which
aims to use the valley degree of freedom to transport, store, and manipulate information.
This is similar to the field of spintronics, where the spin degree of freedom is used for
information processing.
Excitons in TMDs
By shining light at the resonance frequency with the appropriate circular polarization,
one can selectively excite excitons in the K or −K valley, making excitons good can-
didates for information carriers in valleytronics applications. Due to a large spin-orbit
splitting, the valence band5 is split into two sub-bands depending on the spin of the va-
lence electron, such that there are two distinct spin-polarized band gaps in each valley,
which are commonly denoted A and B [27], see Fig. 2.5. The spin-orbit coupling, and

5The conduction band is also split into sub-bands, though the energy difference is much smaller.
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Figure 2.4: a) Illustration of the band gaps in a monolayer TMD, situated in the ±K valleys, with VB and
CB denoting valence band and transduction band, respectively. The valence electrons in the ±K valley
can be selectively addressed by light with circular polarization σ±, meaning the valleys exhibit circular
dichroism. b) Illustration of the first Brillouin zone, shaded gray, of a transition metal dichalcogenide,
with ±K valleys annotated.

A
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E

Figure 2.5: Illustration of the spin-orbit splitting of the valence and conduction bands into spin-polarized
sub-bands. The red and blue coloring denotes spin-down and spin-up (spin-up and spin-down) polariza-
tion of the sub-bands at the K (−K) valley respectively.

accordingly spin polarization, is dependent on the valley index, such that the A band gap
is entirely spin-up polarized in one valley, and entirely spin-down polarized in the other.

As a side note, though the band gaps at the ±K points are only direct for monolayers
of TMDs [28], similar excitonic resonances have also been experimentally observed in
multilayer TMDs [29].

Though TMDs are 2D semiconductors, their excitonic modes are qualitatively dif-
ferent to the ones found in more conventional quasi-2D quantum-well semiconductors.
The binding energies of the excitonic modes are substantially greater in TMDs, with
typical binding energies around ∼ 300 meV [30] compared to ∼ 10 meV for commonly
used GaAs quantum-wells [31]. A convenient consequence of the high binding energy is
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the presence of robust excitonic resonances at substantially higher temperatures allowing
for operation even at room temperature [29]. The high binding energy, combined with
a relatively high effective mass [32], leads to an effective Bohr-radius on the order of
∼ 1 nm. This renders the approximation used to obtain the Wannier equation invalid,
and consequently, the resonance energies of the excitonic modes in TMDs do not follow a
hydrogenic energy spectrum [30, 33]. The excitonic modes are in this case referred to as
tightly-bound Wannier-Mott excitons6, which can still be modeled using a Hamiltonian
of the form Eq. (2.69)7.
Magnetic moment of TMDs and valley-Zeeman splitting
As TMDs are 2D materials, the orbital motion of electrons, and the resultant electric cur-
rents, are confined in-plane, producing an out-of-plane orbital magnetic moment. Com-
bined with the strong spin-orbit coupling, this results in shift in the Zeeman energy
[Eq. (2.10)], and thus a shift in the band gap, in out-of-plane magnetic fields. As the sign
of the spin polarization is opposite for the K and −K valleys, the sign of the Zeeman
shift will correspond to the valley index, and as such the degeneracy between the valleys
will be lifted in strong out-of-plane magnetic fields [35]. This phenomenon is referred to
as the valley-Zeeman effect in reference to the similar spin-Zeeman effect, which lifts the
degeneracy of electronic orbitals with opposite spin in magnetic fields.

The valley-Zeeman effect on the resonance energy of excitonic modes can be mod-
elled quantum mechanically in a similar manner as the Zeeman energy, by including a
contribtuion to the Hamiltonian of the form

Ĥv-Z =
∑
ν

τgνByĈ
†
νĈν , (2.74)

where ν is the quantum number of the excitonic mode, τ is the valley index, By is the
out-of-plane magnetic flux density, and gν is the related coupling strength for the given
excitonic mode.
Van der Waals heterostructures and proximity-enhanced valley-Zeeman
effect
By isolating layers of 2D materials and piling them on a substrate to form a stack of one
or more layers, we can create artificial structures known as van der Waals heterostructures
with a form similar to layered van der Waals materials such as bulk TMDs [3]. Exchange
interactions in the interfaces between the materials may then result in drastically dif-
ferent properties, such as one material adopting a property of the other. As exchange
interactions are very short-ranged, the resultant effects, aptly named proximity effects,
will only apply to the first few successive layers [36].

The magnetic proximity effect is an example of such an effect, obtained by piling the
layer onto a magnetic substrate. The magnetic proximity effect in TMDs leads to a sub-
stantially enhanced valley-Zeeman splitting dependent on the out-of-plane magnetization
of the substrate rather than a magnetic field [12,37]; we will call this effect the proximity-
enhanced valley-Zeeman effect. Exchanging magnetic flux density for magnetization, this
can be modeled as a contribution to the Hamiltonian of the form [Eq. (2.74)]

Ĥp-v-Z =
∑
ν

τgν,pm̂yĈ
†
νĈν , (2.75)

6Not to be confused with Frenkel excitons which are made up of electrons and holes at the same site,
and are commonly referred to as tightly-bound excitons.

7As is done in the literature, see for instance Ref. [34]
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where m̂z is the operator for the out-of-plane magnetization in the substrate. This effect
may be used to couple the excitonic modes to magnonic modes by way of a dynamically
induced shift in the exciton resonance frequency due to a magnon-induced oscillating
out-of-plane magnetization.
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2.4 Open quantum systems
The purpose of this thesis is to characterize the coupling between an excitonic and a
magnonic system. It is not uncommon for a system to be described quantum-mechanically
in an isolated form, where the connection to an environment outside of the system is
neglected. Indeed, both excitons and magnons can be described in such a manner, yielding
Hamiltonians in the familiar form of harmonic oscillators. However, just as the excitonic
and magnonic systems may couple to each other, they will also couple to the environment,
and as such, it is natural to treat the magnon–exciton system as coupled open quantum
systems, connected to each other and the environment.

The quantum theory for such systems, commonly referred to as open quantum systems,
can be split into two main approaches: the master equation approach, and input–output
theory. The master equation yields insight as to how the system evolves when connected
to the environment. This is achieved by a procedure where the environmental degrees of
freedom are traced out, yielding a coarse-grained time-evolution of the reduced density
matrix of the system [21]. Input–output theory on the other hand, focuses instead on how
the environment is affected by the system, providing a relation between an input field
in the environment, the state of the environment before an interaction with the system,
and the corresponding output field, the state of the environment after the interaction,
see Fig. 2.6.

In this thesis, input–output theory will be used to characterize the dependency of an
environmental output field on the internal magnon–exciton coupling strength in a coupled
magnon–exciton system. The coupling strength may then be determined experimentally
by measurement and analysis of the environmental output fields.

The first section will present the basic principles of input-output theory, which will
be used to derive a relation between the outgoing and incoming modes of a field in the
environment when it is allowed to interact with a quantum system as a heat bath. In the
next section, this approach will be extended to include the effects of external driving of
the system, in the form of a coherent state of the bath modes. This will be used in the
last section to find an expression for the optical output-signal from a magnon–exciton
system that is driven doubly with classical microwave-domain and optical radiation.

2.4.1 Quantum Langevin equation and input–output theory
The coupling between a quantum mechanical system and the environment, in this con-
text referred to as a heat bath, provides the system with a channel by which excited
states can decay in a dissipative process. As such, the coupling to the heat bath may
effectively be described as a form of damping. Unfortunately, describing a damped sys-
tem quantum-mechanically is not possible with the canonical-quantization approach as
that would require the system to be conservative. As an alternative approach, one can
construct a total Hamiltonian for the coupled system and environment from the Hamil-
tonians of the undamped system, the environment, and the interaction between them.
The total Hamiltonian can then be used to obtain the combined dynamics of the system
and the environment. This section will follow the steps laid out in Ref. [13] to derive
an equation of motion known as the quantum Langevin equation using the input–output
theory procedure. The derivation is done in the Heisenberg picture. where the operators
themselves are time-dependent. The time-dependence of operators will generally be sup-
pressed, i.e writing Ô(t) as Ô, but will be written out explicitly in some cases, such as
when time is an integration parameter.
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Figure 2.6: Illustration of the input field at time t0, defined in Eq. (2.121), and output field at time t1,
defined in Eq. (2.92) in relation to the system.

The total Hamiltonian of the system coupled to the environment can be written as

Ĥ = ĤS + Ĥb + Ĥint, (2.76)

where ĤS is the Hamiltonian of the isolated system, Ĥb is the Hamiltonian of the heat
bath, and Ĥint is the Hamiltonian of the system-bath interaction.

The Hamiltonian of the heat bath will be written in the form:

Ĥb = ~
∫ ∞
−∞

dω
2π ωb̂

†(ω)b̂(ω), (2.77)

where the operators b̂(ω) and b̂†(ω) are bosonic annihilation and creation operators which
satisfy the commutation relation:[

b̂(ω), b̂†(ω′)
]

= 2πδ(ω − ω′). (2.78)

The expression for the heat bath corresponds to the Hamiltonian of a continuum of inde-
pendent harmonic oscillators. For the case where the system is coupled to a radiative heat
bath, such that it dissipates radiatively, the integral form of the heat bath Hamiltonian
can be obtained from the Hamiltonian of quantized photonic modes [21]:

Ĥphoton =
∑
k

~ωk(b̂†kb̂k + 1
2), (2.79)

where the operator b̂†k (b̂k) creates (annihilates) a photon with quantum number k, usually
taken to be the wave number. By neglecting the constant vacuum contribution 1/2 and
taking the continuum limit, Eq. (2.77) is recovered. Physically, this corresponds to taking
the limit Vc →∞ for the quantization volume, which is also known as the thermodynamic
limit. Though the physical limit of a frequency is zero, and one might then expect the
lower limit of an integration over frequency to be zero, this is not the case in a frame
rotating at frequency Ω, where the range will shift to (−Ω,∞). In optical experiments
such as the one detailed in this thesis, characteristic frequencies of the system are high
enough that the lower limit can be approximated as −Ω→ −∞ [13].

The interaction between the system and the heat bath is assumed to be linear8 in one
of the system operators ĉ. This allows the interaction Hamiltonian to be written in the
form:

Ĥint = i~
∫ ∞
−∞

dω
2π κ(ω)

[
b̂†(ω)ĉ− ĉ†b̂(ω)

]
, (2.80)

8Though this assumption does not give the most general form of a coupling, it is practically ubiquitous
in quantum optics [13].
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where κ(ω) is the coupling strength between the system and the heat bath mode at
frequency ω. Generally, a linear coupling would also allow for coupling terms of the form
ĉ†b̂† or b̂ĉ, but such terms are neglected in the rotating wave approximation.

The dynamics of the coupled system and environment can be characterized by the
equations of motion of the constituent operators, which are governed by the Heisenberg
equation, Eq. (2.2). Using this relation, the equations of motion of the bath operator
b̂(ω) and system operator ĉ are written as:

˙̂
b(ω) = − iωb̂(ω) + κ(ω)ĉ (2.81)

˙̂c = i

~
[
ĤS, ĉ

]
−
∫ ∞
−∞

dω
2π κ(ω)b̂(ω). (2.82)

Eq. (2.81) can be solved by referring to the initial conditions, at a time t0 < t:

b̂(ω) = e−iω(t−t0)b̂0(ω) + κ(ω)
∫ t

t0
dt′e−iω(t−t′)ĉ(t′), (2.83)

where b̂0(ω) ≡ b̂(ω)|t=t0 is the annihilation operator of the bath mode at frequency ω at
an initial time t0 < t, which satisfies the same commutation relation as b̂. Substituting
into the equation of motion of the system operator ĉ yields [Eq (2.82)]:

˙̂c = i

~
[
ĤS, ĉ

]
−
∫ ∞
−∞

dω
2π κ(ω)e−iω(t−t0)b̂0(ω)

−
∫ ∞
−∞

dω
2π
[
κ(ω)

]2 ∫ t

t0
dt′e−iω(t−t′)ĉ(t′).

(2.84)

In order to proceed we employ the first Markov approximation, in which the coupling
constant is assumed to be independent of frequency, such that it can be written as

κ(ω) = √γb, (2.85)

where γb can be shown to be the spontaneous rate of dissipation to the thermal bath,
given by Fermi’s golden rule [38]. The now-constant coupling strength can then be taken
outside the integral, and the order of the integrals in the second term of Eq. (2.84) can
be exchanged.

By using the relations [13]:∫ ∞
−∞

dω
2π e

−iω(t−t′) = δ(t− t′), (2.86)∫ t

t0
dt′f(t′)δ(t− t′) = 1

2f(t), (2.87)

and defining the input field, b̂in as

b̂in ≡
∫ ∞
−∞

dω
2π e

−iω(t−t0)b0(ω), (2.88)

Eq. (2.84) becomes:

˙̂c = i

~
[
ĤS, ĉ

]
− γb

2 ĉ−
√
γbb̂in. (2.89)
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This equation is known as the quantum Langevin equation, and is also commonly re-
ferred to as the Heisenberg-Langevin equation. For the simple case where the system is a
harmonic oscillator, with the system Hamiltonian ĤS = ~ω0ĉ

†ĉ, Eq. (2.89) reduces to

˙̂c = −iω0ĉ−
γb
2 ĉ−

√
γbb̂in. (2.90)

The equation of motion of the system variable ĉ has been found by referring to the
initial conditions of the bath modes, b̂in. However, it is also possible to obtain an equation
of motion by instead referring to the final conditions of the bath modes, at a time t1 > t,
writing the solution to Eq. (2.81) as

b̂(ω) = e−iω(t−t1)b̂1(ω)−√γb
∫ t1

t
dt′e−iω(t−t′)ĉ(t′), (2.91)

where b̂1(ω) ≡ b̂(ω)|t=t1 is the annihilation operator of the bath mode at frequency ω at
a final time t1 > t, satisfying the same commutation relation as b̂. Defining the output
field b̂out as

b̂out =
∫ ∞
−∞

dω
2π e

−iω(t−t1)b1(ω), (2.92)

and following the same procedure as for the quantum Langevin equation, we arrive at
the time-reversed quantum Langevin equation [13]:

˙̂c = i

~
[
ĤS, ĉ

]
+ γb

2 ĉ−
√
γbb̂out. (2.93)

For the case of a harmonic oscillator, this expression reduces to

˙̂c = −iω0ĉ+ γb
2 ĉ−

√
γbb̂out. (2.94)

Subtracting Eq. (2.94) from Eq. (2.90) yields the input–output relation:

b̂out(t)− b̂in(t) = √γbĉ(t). (2.95)

The procedure of obtaining an input–output relation from the quantum Langevin and
time-reversed quantum Langevin equations is referred to as input–output theory. The
output field can now be determined by solving the quantum Langevin equation and
substituting into the input–output relation, with the input field specified as an initial
condition.

In general, the system may be coupled to the environment through more than one
dissipative processes. Additional processes can be taken into account by adding corre-
sponding bath and interaction Hamiltonians to Eq. (2.76), and following the same proce-
dure as for the single heat bath case to obtain additional terms in the quantum Langevin
equation as well as an additional input–output relation

˙̂c = − iω0ĉ−
γb
2 ĉ−

γe
2 ĉ−

√
γbb̂in −

√
γeêin, (2.96)

êout(t)− êin(t) = √γeĉ(t), (2.97)

where γe, êin, and êout is the coupling rate, input-, and output field respectively of the
external heat bath or heat baths. As we might not control these other bath modes, and as
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such might not be able to specify their input or output modes, the added damping stem-
ming from the other heat baths may be approximated by writing the quantum Langevin
equation as

˙̂c = − iω0ĉ−
γT
2 ĉ−√γbb̂in, (2.98)

where γT
2 ≡

γb+γe
2 is the total damping rate of the harmonic oscillator, and where the

input field of the external heat bath has been neglected.

2.4.2 Input–output theory for driven harmonic oscillators
The relation Eq. (2.95) between the input and output fields was derived for a system
with a simple harmonic oscillator Hamiltonian. Certain systems have multiple harmonic
oscillator modes, as is the case for both the magnonic and excitonic systems. By applying
monochromatic radiation in a coherent state to selectively drive a specific mode, such
systems can effectively be considered as simple harmonic oscillator systems. The added
coherent-state radiation, which can be described classically using numbers rather than
operators, can be treated in two ways. The first option is to treat the drive as part of
the input field, such that the input field contains both a classical part and a quantum
mechanical part, using the previously derived input-output theory. However, the classical
radiation will excite a population in the system, which may lead to interactions. In our
case, where a microwave drive induces a magnon population that interacts with the
excitonic modes, it is practical to treat the added excitations explicitly, as part of the
system. This is the second option, which will be the focus of this section. The procedure
presented is based on a similar procedure in Refs. [39,40].

The classical drive adds a field in the heat bath that can be represented with numbers
rather than operators, and as such, the bath modes are split into a classical part and a
quantum part

b̂(ω)→ b̂(ω) + 2πlde−iωdtδ(ω − ωd), (2.99)
b̂†(ω)→ b̂†(ω) + 2πldeiωdtδ(ω − ωd), (2.100)

where ωd is the frequency of the driving radiation and ld is the photon flux of the drive
given by the relation ld =

√
Pd/(~ωd) where Pd is the power of the drive. This results in

the addition of the term

Ĥd = i~√γbld
(
ĉ†e−iωdt − ĉeiωdt

)
, (2.101)

to the Hamiltonian Eq. (2.76). The total Hamiltonian of the driven harmonic oscillator
coupled to a heat bath then reads

Ĥ = ~ω0ĉ
†ĉ︸ ︷︷ ︸

ĤS

+ i~√γbldĉ†e−iωdt − i~√γbldĉeiωdt︸ ︷︷ ︸
Ĥd

+ ~
∫ ∞
−∞

dω
2π ωb̂

†(ω)b̂(ω)︸ ︷︷ ︸
Ĥb

+ i~
∫ ∞
−∞

dω
2π
√
γb
[
b̂†(ω)ĉ− ĉ†b̂(ω)

]
︸ ︷︷ ︸

Ĥint

(2.102)

In order to obtain a Hamiltonian in a similar form as in the previous section, the
driving term will have to be dealt with. To this end, a unitary transformation is applied
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to the Hamiltonian using the displacement operator [40]:

D̂(α) = eαĉ
†−α∗ĉ, (2.103)

transforming the Hamiltonian as [40]:
ˆ̃H = D̂†(α)ĤD̂(α)− i~D̂†(α) ˙̂

D(α) (2.104)
= ~ω0(ĉ† + α∗)(ĉ+ α) + i~√γbld(ĉ† + α∗)e−iωdt − i~√γbld(ĉ+ α)eiωdt

+ i~
∫ ∞
−∞

dω
2π
√
γb
[
b̂†(ω)(ĉ+ α)− (ĉ† + α∗)b̂(ω)

]
+ Ĥb + i~(α̇∗ĉ− α̇ĉ†).

(2.105)

The displaced Hamiltonian can be written as

ˆ̃H = ~ω0ĉ
†ĉ+ i~

∫ ∞
−∞

dω
2π
√
γb
[
b̂†(ω)(ĉ+ α)− (ĉ† + α∗)b̂(ω)

]
+ Ĥb, (2.106)

by neglecting all non-operator valued terms in Eq. (2.105), and setting

α̇ = −iω0α +√γblde−iωdt. (2.107)

The first term of Eq. (2.105) adds the constant term ~ω0|α|2 to the Hamiltonian, which
is promptly neglected. From this one can surmise that the displacement transformation
changes the driving term into a displacement of the annihilation and creation operators,
where the square of the displacement corresponds to a number of excitations na = |α|2
added to the system. For the purposes of solving for α, the additional damping term
−(γT/2)α is added to the equation of motion Eq. (2.107). This ensures that the number
of added excitation does not grow infinitely in the case where the system is driven on
resonance, ωd = ω0. The equation of motion for α now reads

α̇ = −iω0α−
γT
2 α +√γblde−iωdt, (2.108)

where γT ≡ γb +γe is the total dissipation rate of the system, with γe the dissipation rate
to other heat baths, which in this case corresponds to the nonradiative dissipation rate.
Writing α as

α(t) = α̃e−iωdt, (2.109)

and substituting this expression into Eq. (2.108), the solution for α̃ can be identified as

α̃ =
√
γb

i(ω0 − ωd)− γT
2

√
Pd
~ωd

. (2.110)

The solution for α may then be identified as [Eq. (2.109)]

α =
√
γb

i(ω0 − ωd)− γT
2

√
Pd
~ωd

e−iωdt. (2.111)

Substituting Eq. (2.111) into the expression for the displaced Hamiltonian yields [Eq. (2.106)]:
ˆ̃H = ~ω0ĉ

†ĉ

+ i~
∫ ∞
−∞

dω
2π
√
γb
[
b̂†(ω)e−iωdt(ĉeiωdt + α̃)− (ĉ†e−iωdt + α̃∗)b̂(ω)eiωdt

]
+ Ĥb.

(2.112)
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Proceeding, a set of unitary transformations will be applied in order to express the
Hamiltonian in a more convenient form. These transformations are characterized by
unitary operators of the form

Û = e−iβtx̂
†x̂, (2.113)

where x̂ is an annihilation operator. As with the displacement transformation, the trans-
formed Hamiltonian can be found by the relation:

Ĥtransformed = Û †ĤÛ − iÛ † ˙̂
U. (2.114)

This transformation can be done term by term, where all terms that commute with
x̂†x̂ can be neglected, leaving terms proportional to x̂ or its Hermitian conjugate. The
transformation of the operator x̂ can be expressed as

x̂transformed = Û †x̂Û , (2.115)

where the final term in Eq. (2.114), here equal to

−iÛ † ˙̂
U = −βx̂†x̂ (2.116)

is added to the sum of all transformed terms of the Hamiltonian. A simple way of
evaluating Eq. (2.115) is to take the partial time derivative of both sides, yielding:

∂

∂t
x̂transformed = ∂Û †

∂t
x̂Û + Û †x̂

∂Û

∂t

= iβx̂†x̂Û †x̂Û − iβÛ †x̂Û x̂†x̂
= − iβ

[
Û †x̂Û , x̂†x̂

]
= − iβÛ †[x̂, x̂†x̂]Û
= − iβÛ †x̂Û
= − iβx̂transformed (2.117)

the solution to this equation can be written as

x̂transformed = x̂transformed|t=0e
−iβt

= x̂e−iβt, (2.118)

where Eq. (2.115) was used to evaluate x̂transformed|t=0.
By applying the unitary transformation Û1 = e−iωdtĉ

†ĉ and subsequently
Û2 = e−iωdt

∫
dω′b̂†(ω′)b̂(ω′), all exponentials in the integral in Eq. (2.112) can be removed.

The full effective Hamiltonian can then be written as

Ĥeff = ~ (ω0 − ωd)︸ ︷︷ ︸
∆ω0

ĉ†ĉ+ i~
∫ ∞
−∞

dω
2π
√
γb
[
b̂†(ω)(ĉ+ α̃)− (ĉ† + α̃∗)b̂(ω)

]

+ ~
∫ ∞
−∞

dω
2π (ω − ωd)︸ ︷︷ ︸

∆ω

b̂†(ω)b̂(ω).
(2.119)
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Figure 2.7: Illustration of the detuned input and output fields interacting with a classically driven system.
The output field contains a contribution from the classical drive, here colored red, which corresponds to
the term proportional to α̃ in Eq. (2.123).

Following the same procedure as for the harmonic oscillator in the absence of driving,
the quantum Langevin equation for a driven harmonic oscillator can be written as

˙̂c = −i∆ω0ĉ−
γb
2 (ĉ+ α̃)−√γbb̂in,d, (2.120)

where the detuned input field b̂in,d has been defined as

b̂in,d ≡
∫ ∞
−∞

ei∆ω(t−t0)b0(ω). (2.121)

The effect of the driving on the quantum Langevin equations can thus be summarized as
the set of transformations:

ω0 → (ω0 − ωd),
γb
2 ĉ→

γb
2 (ĉ+ α̃),∫ ∞

−∞

dω
2π e

iω(t−t0) →
∫ ∞
−∞

dω
2π e

i∆ω(t−t0),∫ ∞
−∞

dω
2π e

iω(t−t1) →
∫ ∞
−∞

dω
2π e

i∆ω(t−t1).

(2.122)

Applying these transformation to the input–output relation in the absence of driving,
Eq. (2.95), yields the input–output relation for the driven harmonic oscillator:

b̂out,d(t)− b̂in,d(t) = √γb
(
ĉ(t) + α̃

)
. (2.123)

A sketch of the input and output fields for a classically driven system is shown in
Fig. 2.7

2.4.3 Coupling excitons in a transition metal dichalcogenide to
magnons

The valley-Zeeman splitting induced by a static out-of-plane magnetic field has been
experimentally demonstrated for several different species of TMD [36, 41]. However, we
propose that the proximity-induced valley-Zeeman splitting may be used to facilitate a
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coupling between magnons and excitons in the TMD by way of the oscillating out-of-
plane magnetization induced by magnons in an in-plane magnetized magnetic substrate.
In this section we will derive the Hamiltonian and quantum Langevin equations for a
system consisting of driven magnons in the uniform-precession magnetostatic mode of an
in-plane magnetized thin film magnetic substrate, as discussed in Section 2.2.3, coupled
to a driven exciton in a thin layer of TMD piled onto the substrate.

Supposing excitons in theK valley of the TMD are selectively driven close to resonance
by coherent optical light with polarization σ+ and frequency ωd,op, and magnons in the
uniform-precession mode in the magnetic substrate are selectively driven by coherent
microwave radiation at the resonance with frequency ωd,mw = ωmag, and neglecting all
other excitonic and magnonic modes, the total Hamiltonian of the system may be written
as [Section 2.4.2, Eqs. (2.54) and (2.69)]:

Ĥexc-mag = ~ωexcĈ
†Ĉ + ~ωmagâ

†â+ ~gmag-excm̂yĈ
†Ĉ︸ ︷︷ ︸

Ĥint,exc-mag

+ ~
∫ ∞
−∞

dω
2π ωb̂

†
op(ω)b̂op(ω) + ~

∫ ∞
−∞

dω
2π ωb̂

†
mw(ω)b̂mw(ω)

+ i~√γ op

∫ ∞
−∞

dω
2π
[
b̂†op(ω)Ĉ − Ĉ†b̂op(ω)

]
+ i~√γ mw

∫ ∞
−∞

dω
2π
[
b̂†mw(ω)â− â†b̂mw(ω)

]
+ ld,opĈ

†e−iωd,opt + ld,opĈe
iωd,opt + ld,mwâ

†e−iωmagt + ld,mwâe
iωmagt,

(2.124)

where Ĉ (Ĉ†) is the annihilation (creation) operator of a single excitonic mode in the
K-valley, â (â†) is the annihilation (creation) operator of the magnons in the uniform
precession magnetostatic mode, b̂ (b̂†) are bath mode fields, and ld are the photon fluxes
of the drives, where the subscript ’op’ (’mw’) corresponds to optical modes (microwave
modes). To proceed, the out-of-plane magnetization m̂y will have to be expressed in terms
of magnon annihilation and creation operators. In the classical limit, the out-of-plane
magnetization can be expressed as

m̃y = i

2(m̃− − m̃+). (2.125)

Using the relations Eq. (2.43), the out-of-plane magnetization operator can be written as

m̂y = 1
V
γ
~
4
√

2N i(â− â†)
2 . (2.126)

This allows for Ĥint,exc-mag in Eq. (2.124) to be expressed as

Ĥint,exc-mag = ~gmag-exc
i(â− â†)

2 Ĉ†Ĉ, (2.127)

where the prefactor from Eq. (2.126) has been absorbed into the coupling rate gmag-exc.
The Hamiltonian is in a similar form as Eq. (2.102) with the exception of the added

interaction term Ĥint,exc-mag. In order to determine the effective Hamiltonian, the trans-
formation of this term must be determined whereas the rest of the Hamiltonian can be
treated in a similar manner to Eq. (2.102) in Section 2.4.2. For the displacement trans-
formations, only the first term of Eq. (2.104) will have to be calculated as the last term is
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already accounted for in the transformation of the rest of the Hamiltonian: Taking first
the displacement transformation for the microwave drive yields

ˆ̃Hint,exc-mag = D†(αmag)Ĥint,exc-magD(αmag), (2.128)

where D(αmag) ≡ eαmagâ†−α∗magâ, with the solutions for αmag [Section 2.4.2]

αmag = −
2√γ mw

γT, mag

√
Pd,mw

~ωmag︸ ︷︷ ︸
√
nmageiπ

e−iωmagt, (2.129)

√
nmag ≡

2√γ mw

γT, mag

√
Pd,mw

~ωmag
, (2.130)

where nmag is the added number of magnons induced by the microwave drive, and
γT, mag ≡ γmw + γe, mag is the total dissipation rate of the magnons, with γe, mag de-
noting the nonradiative dissipation rate of the magnons. The transformed interaction
Hamiltonian can then be written as [Section 2.4.2]:

ˆ̃Hint,exc-mag = ~gmag-exci
( â+ αmag − â† − α∗mag

2
)
Ĉ†Ĉ

= ~gmag-exci
â− â†

2 Ĉ†Ĉ + ~gmag-exc
√
nmagi

e−i(ωmagt−π) − ei(ωmagt−π)

2︸ ︷︷ ︸
−i sin(ωmagt−π)

Ĉ†Ĉ

≈ ~gmag-exc
√
nmag sin(ωmagt+ π)Ĉ†Ĉ. (2.131)

The first term in the second line is ignored as it is dependent on quantum fluctua-
tions of the magnonic mode and provides a negligible contribution compared to the term
dependent on the coherent drive. The sine function is rewritten as sin(ωmagt − π) =
cos(ωmagt− 3π/2) in order to comply with conventions used in Section 3.2.19. The phase
offset −3π/2 in the cosine is neglected as the instantaneous phase has no impact on the
dynamics of the system. Applying the transformation for the optical drive yields

Ĥint,exc-mag,eff = D†(αexc) ˆ̃Hint,exc-magD(αexc), (2.132)
D(αexc) ≡ eαexcĈ†−α∗excĈ , (2.133)

αexc =
√
γ op

i(ωexc − ωd,op)− γT, exc
2

√
Pd,op

~ωd,op︸ ︷︷ ︸
α̃exc

e−iωd,opt, (2.134)

α̃exc ≡
√
γ op

i(ωexc − ωd,op)− γT,exc
2

√
Pd,op

~ωd,op
, (2.135)

where γT,exc ≡ γop+γe, exc is the total dissipation rate of the excitons, with γe, exc denoting
the nonradiative dissipation rate. Ignoring the non-operator valued terms then yields the
effective interaction Hamiltonian

Ĥint,exc-mag,eff = ~gmag-exc
√
nmag cos(ωmagt)Ĉ†Ĉ

+ ~gmag-exc
√
nmag cos(ωmagt)

(
Ĉ†α̃∗exce

−iωd,opt + α̃excĈe
iωd,opt

)
≈ ~gmag-exc cos(ωmagt)Ĉ†Ĉ. (2.136)

9In the case where the microwave drive is not exactly on resonance, the cosine term should addition-
ally include a contribution corresponding to Arg(α̃mag) which is dependent on the drive frequency.
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The first term in the first line is linear in Ĉ†Ĉ, and thus represents an energy shift of
the excitonic mode, whereas the second term has the same shape as the driving term in
Eq. (2.102), and thus represents a magnon-induced displacement of the excitonic mode.
The magnon-induced displacement is expected to be small compared to the optical drive-
induced displacement, and has been neglected in the final line.

As the effective magnon–exciton interaction term can be approximated as a shift to
the resonance frequency of the excitonic mode, we suppose the effect of the coupling is
most easily measured on the optical side. Hence, it is of interest to find an expression for
the output optical field b̂op,out, which can be obtained using the input-output relation for
the excitonic coupled to optical fields, and the solution of the quantum Langevin equation
of the excitonic annihilation operator.

Following the derivation in Section 2.4.2 yields an approximate effective Hamiltonian
of the form

Ĥexc-mag,eff = ~∆ωexc,eff(t)Ĉ†Ĉ + ~∆ωmagâ
†â

+ ~
∫ ∞
−∞

dω
2π∆ωopb̂

†
op(ω)b̂op(ω) + ~

∫ ∞
−∞

dω
2π∆ωmwb̂

†
mw(ω)b̂mw(ω)

+ i~√γ op

∫ ∞
−∞

dω
2π
[
b̂†op(ω)(Ĉ + α̃exc)− (Ĉ† + α̃∗exc)b̂op(ω)

]
+ i~√γ mw

∫ ∞
−∞

dω
2π
[
b̂†mw(ω)(â+√nmag)− (â† +√nmag)b̂mw(ω)

]
,

(2.137)

where the quantities ∆ωexc,eff, ∆ωmag, ∆ωop, and ∆ωmw have been defined as

∆ωexc,eff(t) ≡ (ωexc − ωd,op) + gmag-exc
√
nmag cos

(
ωmagt

)
,

∆ωmag ≡ ωmag − ωmag,

∆ωop ≡ ω − ωd,op,

∆ωmw ≡ ω − ωmag,

(2.138)

The quantum Langevin equation for the excitonic mode can then be obtained as
[Eq. (2.120)]

˙̂
C = −i∆ωexc,eff(t)Ĉ − γT, exc

2 (Ĉ + α̃exc)−
√
γopb̂op,in, (2.139)

where the input field is defined as

b̂op,in ≡
∫ ∞
−∞

dω
2π e

i∆ωop(t−t0)b0,op(ω), (2.140)

where b0,op ≡ bop|t=t0 .
In order to make use of the input-output relation, the quantum Langevin equation

Eq. (2.139) must be solved. Conventionally, this is achieved by solving the Fourier-
transformed quantum Langevin equation to find an expression for Ĉ(ω) which can be put
into the Fourier-transformed input-output relation to find an expression for the output
field. However, as ∆ωexc,eff contains a cosine term, the Fourier transform of the quantum
Langevin equation will contain an implicit relation on Ĉ(ω ± ωmag).

There are at least two ways to find approximate solutions to the implicit equation.
If the implicit relation can be expanded perturbatively in orders of a small parameter,
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one can approximate the solution to arbitrary order. Alternatively, if the frequency ωmag
varies slowly compared to the relevant timescale of the system, it can be approximated as
constant. Thus, one can ignore the time-dependence of the cosine for the purposes of the
Fourier transform, and use the solution of the Fourier-transformed quantum Langevin
equation to find an expression for the output field. Transforming this expression back
using the reverse-Fourier transform, and considering again the time-dependence of the
cosine term, yields an approximate expression for the time-domain output signal.

As the signal analysis will examine the Fourier spectrum of the output field, we will
take the first approach. Taking the Fourier transform of the quantum Langevin equation,
Eq. (2.139), yields:

−iωĈ(ω) = − i(ωexc − ωd,op)Ĉ(ω)

− 1
2gmag-exc

√
nmag

[
Ĉ(ω + ωmag) + Ĉ(ω − ωmag)

]
− γT, exc

2
[
Ĉ(ω) + α̃excδ(ω)

]
−√γopb̂op,in(ω),

(2.141)

which has the solution for Ĉ(ω):

Ĉ(ω) =
−√γopb̂op,in(ω)− γT, exc

2 α̃excδ(ω)
−i
(
ω − (ωexc − ωd,op)

)
+ γT, exc

2

−
gmag-exc

√
nmag

2
Ĉ(ω + ωmag) + Ĉ(ω − ωmag)
−i
(
ω − (ωexc − ωd,op)

)
+ γT, exc

2

.

(2.142)

Setting b̂op,in = 0, as the thermal occupancy of optical modes is negligible even at room-
temperature, and defining the function

β(ω) =
gmag-exc

√
nmag

2i
(
ω − (ωexc − ωd,op)

)
− γT, exc

,

Eq. (2.142) can be solved iteratively in powers of β(ω) as

Ĉ1(ω) = γT, excα̃exc

gmag-exc
√
nmag

β(ω)δ(ω)

Ĉ2(ω) = Ĉ1(ω) + β(ω)
(
Ĉ1(ω + ωmag) + Ĉ1(ω − ωmag)

)
Ĉ3(ω) = Ĉ2(ω) + β(ω)

(
Ĉ2(ω + ωmag) + Ĉ2(ω − ωmag)

)
...

Ĉn(ω) = Ĉn−1(ω) + β(ω)
(
Ĉn−1(ω + ωmag) + Ĉn−1(ω − ωmag)

)
, (2.143)

where Ĉn is the nth iteration of the Fourier solution to the quantum Langevin equation.
As terms from higher iteration orders will contain factors of β(aωmag)β(bωmag) where

a is a non-zero integer and b is an integer, β(aωmag)β(bωmag)) < 1 denotes the domain
of validity for our approach, as the nth solution would otherwise diverge for increasing
n. Thus a strict requirement for the validity of the approach is g2

exc-magnmag < (ωmag +
γT, exc)γT, exc.
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One can generally split coupled systems into a set of regimes depending on how strong
the coupling g is compared to the dissipation γ and characteristic frequency ω0. Of
special interest is the strong coupling regime, where g > κ, and the ultrastrong and deep-
strong coupling regimes, where g . ω0 and g > ω0, respectively [42]. The derivation can
accommodate coupling in the strong regime, gmag-exc

√
nmag > γT, exc, as long the coupling

is significantly weaker than ultrastrong and deep-strong coupling, gmag-exc
√
nmag � ωmag,

such that g2
exc-magnmag < ωmagγT, exc. It is expected that the derivation will be invalid

in the ultrastrong and deep-strong coupling regimes, as the RWA is not valid for such
strongly coupled systems [42].

Neglecting terms of second order in β(ω−aωmag)), i. e. approximating Ĉ(ω) ≈ Ĉ2(ω),
the solution to the quantum Langevin equation is written as

Ĉ(ω) ≈ γT, excα̃excδ(ω)
2i
(
ω − (ωexc − ωd,op)

)
− γT, exc

+
gmag-exc

√
nmag

2i
(
ω − (ωexc − ωd,op)

)
− γT, exc

 γT, excα̃excδ(ω + ωmag)
2i
(
ω + ωmag − (ωexc − ωd,op)

)
− γT, exc

+ γT, excα̃excδ(ω − ωmag)
2i
(
ω − ωmag − (ωexc − ωd,op)

)
− γT, exc

.
(2.144)

Substituting into the input-output relation for driven systems, the Fourier transform of
Eq. (2.123), and setting b̂op,in(ω) = 0, the output field in the optical channel from the
magnon–exciton system is expressed as

b̂op,out(ω) = √γop
(
ĉ(ω) + α̃excδ(ω)

)
= √γop

2i(ωexc − ωd,op)
2i
(
ωexc − ωd,op)

)
+ γT, exc

δ(ω)

+√γop
gmag-exc

√
nmag

2i
(
ω − (ωexc − ωd,op)

)
− γT, exc

 γT, excα̃excδ(ω + ωmag)
2i
(
ω + ωmag − (ωexc − ωd,op)

)
− γT, exc

+ γT, excα̃excδ(ω − ωmag)
2i
(
ω − ωmag − (ωexc − ωd,op)

)
− γT, exc

.
(2.145)
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Now that an expression for an output field containing a dependency on the magnon–
exciton coupling strength has been derived, the attention is shifted to how this can be
measured with an experimental setup. The goal of the experimental setup is two-fold, it
should: 1. Facilitate the doubly driven magnon–exciton interaction in such a way that
the optical output-fields can be measured, and 2. Establish a signal readout scheme, in
which the magnon–exciton coupling strength can be determined. Both goals have related
requirements that must be satisfied. There is a multitude of setups which may success-
fully achieve both of these goals; however, we are ultimately limited by the availability of
equipment in the lab. Furthermore, a specific choice made to satisfy one of the require-
ments might result in additional requirements or restrictions on the experimental setup.
The chapter will be structured as to give the reader a clear picture of which restrictions
follow from what.

3.1 Generating a signal
In order to measure an output signal it will first have to be generated. To this end it is
useful to physically picture the procedure presented in Section 2.4.3: Itinerant microwaves
excite magnons which interact with the excitonic modes in an in-plane magnetized mag-
netic substrate–TMD monolayer heterostructure. By selectively driving the exciton in
either the +K or −K valley by a circularly polarized optical drive, the excited exciton
will experience an oscillating shift in its excitonic resonance, effectively resulting in an
oscillating shift in its reflectivity. This is illustrated in Fig. 3.1.

This process requires the experimental setup to contain all of the following:

• A magnetic substrate–TMD heterostructure

• In-plane magnetic field

• Microwave drive for the magnetic substrate

• Circularly polarized optical drive for the TMD monolayer

3.1.1 YIG–MoSe2 Heterostructure
The system presented in Section 2.4.3 consists of a monolayer of TMD piled onto a thin-
film magnetic substrate. Yttrium iron garnet(YIG) was chosen as the magnetic substrate.
YIG has a high Curie temperature of 559 K, and is widely used in microwave devices,
particularly in applications of magnetostatic modes [15].

The high Curie temperature of the YIG combined with the strong excitonic binding
energies of the TMDs allow for experiments to be performed on YIG–TMD samples at
room temperature. Though it is of interest to characterize the magnon–exciton coupling



40 3. Experimental setup

M

E

+K-K k

σ+σ-

TMD

Amplitude

modulation

Figure 3.1: Illustration of the signal generation process. Flakes of TMD of varying thickness are situated
on top of an in-plane magnetized substrate. The oscillating magnetization stemming from magnons in
the uniform-precession mode induces a dynamic shift in the resonance frequency of the excitonic modes
of the TMD, leading to a dynamic shift in the reflectivity for circularly polarized light. The inset is an
illustration of the magnon-induced oscillation in the band gap energies at the ±K points.

at cryogenic temperatures, as many candidates for hybrid quantum systems require opera-
tion at such temperatures, the use of YIG–TMD heterostructures allowed for preliminary
experiments to be performed at room temperature. The results of the preliminary ex-
periments can be found in Ref. [39]. For these preliminary experiments, molybdenum
diselenide, MoSe2, was chosen as the TMD, due to the availability of a diode laser op-
erating at a wavelength of 785 nm which is close to the resonance wavelength of the A
exciton at room temperature. This diode laser was also used in the development of the
experimental setup detailed in this thesis. As molybdenum diselenide samples were avail-
able from the previous experiment, Ref. [39], MoSe2 was chosen as the TMD for this
experimental setup. It should be noted that the experiment in Ref. [39] was limited to
studying thicker multi-layer flakes of MoSe2, as the signal-to-noise ratio of the thinner
flakes was too small. This further motivates going to lower temperatures, as this leads to
an increase in the optical response [29].

Reaching cryogenic temperatures requires the sample to be placed in a cryogenic
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environment. To this end the sample is connected to the cold-finger component of a
continuous-flow cryostat. In order to ensure the integrity of the sample, and in order to
reach low temperatures, the sample must additionally be placed in a vacuum chamber.
Otherwise, the moisture in the air might corrode the surface at low temperatures [3],
and the surrounding air may act as a heat bath, limiting the cool down of the sample.
Even at room temperature, placing the sample in a vacuum environment might help in
minimizing degradation of the sample, as surrounding gases might otherwise react with
the optical drive laser to damage the surface.

As going to cryogenic temperatures shifts the excitonic resonance frequencies of MoSe2
[29], the optical drive source in such an experiment should have an adjustable frequency,
ruling out the use of the fixed-frequency diode laser employed in the preliminary experi-
ments. Hence, a Ti:sapphire laser with an adjustable driving frequency was acquired.

The samples were provided by the Iwasa lab at the University of Tokyo. The fabricated
samples consist of a 10 µm thick 5 mm× 5 mm film of YIG with flakes of MoSe2 piled
on top. The thickness of the TMD flakes range from mono- and bilayers to flakes of
thicknesses on the order of tens of layers. A single flake may itself contain several areas
with different thicknesses, with areas of uniform thickness typically having dimensions of
10 µm×10 µm. This imposes a number of new requirements on the optical drive. Firstly,
the laser spot size on the surface of the sample should be confined to an area smaller than
10 µm × 10 µm. Additionally, the laser spot must be focused at the position of a given
flake with high precision. To this end, it is of interest to image the surface of the sample
in such a way that the position of the drive can be determined.

3.1.2 Optical drive and optics

Using a laser as the optical drive allows for the use of optical elements to control the
intensity, polarization, and beam waist of the driving laser beam. This section presents
the optical elements necessary for signal creation, whereas the construction of the optical
elements in terms of optical components in the lab is left for Appendix D

The laser light can be modeled as a Gaussian beam, the shape of which can be char-
acterized by two quantities, the beam waist and the depth-of-focus, both illustrated in
Fig. 3.2. The beam waist is defined as the radial distance from the optical axis at which
the beam intensity has been reduced by a factor of 1/e2, and can be regarded as the
radius of the beam at a given point along the optical axis. The depth-of-focus on the
other hand, is defined as the distance from a focus point of a beam, i. e. where the beam
waist is minimized, to the point where the beam waist is a factor of

√
2 larger than that

of the minimum value.
For most of the optical path it is practical for the light to be collimated, which means

that the beam is neither converging nor diverging, i. e. a fixed beam waist. In this case
the depth-of-focus is approximately infinite and will not be of any concern; the depth-of-
focus is only relevant for when the light beam is focused. As for the beam waist, certain
optical components require the use of optical fibers, which puts restrictions on the size of
the beam waist. Hence, in the experiment, the beam waist was around 0.5 mm − 1 mm
for most of the optical path.

Though the sample is placed in a vacuum environment, the vacuum chamber used is
outfitted with a window, allowing for most of the optical elements to be placed outside
of the vacuum chamber with no need for vacuum compatibility.
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√2

Figure 3.2: Graph of the beam waist of a focused beam. The beam waist has a minimum value of W0 at
the focal point, which is situated at z = 0 in the graph. The beam waist increases to a value of

√
2W0

after a length z0 which is defined as the depth of focus.

Objective lens
As the typical single-thickness dimensions of a sample TMD flake are small, the laser
beam must be focused into a small spot at the sample surface by employing an objective
lens. In order for the focused beam waist to be sufficiently small, the focal length of the
objective lens must be quite short. Due to the placement of the sample in the vacuum
chamber, the objective lens must be placed inside of the vacuum chamber to be sufficiently
close to the sample surface. As a result, the conventional objective lenses available in
the lab could not be used, as they consist of multiple lenses separated by media such as
air, and the pressure in the pockets between the lenses is incompatible with a vacuum
environment.

A single lens was instead used as the objective lens. In the case where the incoming
beam is collimated, the beam waist at the focal point of a single lens, W ′

fp, can be
approximated as [43]

W ′
fp ≈

λ

πW0
f, (3.1)

where λ is the wavelength of the light, W0 is the beam waist of the incident light, and f
is the focal length of the lens.

In order to achieve a sufficiently small spot size using a single lens with the shortest
focal length commercially available, the beam waist must be increased to the order of
10 mm. To this end, an optical element known as a Galilean expander is added to the
optical path. The Galilean expander increases or decreases the beam width of incoming
light depending on its direction. The working principle and construction of the expander
is detailed in Appendix D.

Using the expander and objective lens, an optical drive can be provided to a sufficiently
small area of the sample. The output signal will then be contained in the light reflected
from the sample. To complete the signal generation, the reflected light should be collected
and isolated from the incident light. A simple way of doing so is to illuminate the sample
perpendicularly, and separate the input and output light by adding a circulator before
the objective lens. A circulator is a component with three ports where light entering
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Figure 3.3: Illustration of setup of optical elements required to obtain an output signal and to perform
scanning focal microscopy. The input field is colored red, and the reflected output field is colored blue.
Areas where the input and output field overlap are colored purple.

one port will exit through the next port in a cyclical fashion. For our purposes, an
effective circulator with functioning first and second ports suffices to separate the reflected
light from the incident light, as is shown in Fig. 3.3. The construction of a circulator
is detailed in Appendix D. Rather conveniently, the circulator component employed in
the experiment shifts the polarization of linearly polarized light in port 1 to circularly
polarized light out of port 2, such that the optical drive has the correct polarization at
the sample surface provided it is linearly polarized before entering the circulator.

An optical setup with the components necessary to create an optical signal is illus-
trated in Fig 3.3. The schematic of the complete optical setup is shown in Fig. 3.4 where
the construction of the optical components is explained in Appendix D.

Controlling the position of the optical drive and imaging the sample

With small TMD flakes and an even smaller laser spot at the sample surface, it is impor-
tant that the position of the laser relative to the flakes can be determined and controlled.
Additionally, as TMDs only have direct band gaps in the monolayer limit, it is important
that the thickness of a given area of a flake can be identified.

To control the position of the laser spot on the sample, the sample is attached to
vacuum-compatible positioners with sub-micrometer precision. An additional positioner
was attached to the lens to control the relative distance to the sample surface.

Using the setup illustrated in Fig. 3.3, the sample surface can be imaged with a
technique known as scanning confocal microscopy [44]. In scanning confocal microscopy,
the reflected intensity from a contiguous set of coordinates is measured and stored as
pixels, which can be put together to create an image of the sample surface. This process
is illustrated in Fig. 3.5. As a coordinate position of the laser spot on the sample surface is
known for every pixel of the image, scanning confocal microscopy additionally facilitates
the control of the laser spot in relation to TMD flakes.
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Figure 3.4: Schematic of the optical setup employed in the lab for the experiment. a) shows the setup just
after the laser, which polarizes the laser with an isolator, and adjusts the intensity with an attenuator.
This part is connected to area b) through an optical fiber. b) shows the construction of a local oscillator
branch. A half-wave plate (HWP) is used in conjunction with a polarizing beam splitter to adjust
the proportions of light that enters to the local oscillator and the sample optical path. The local
oscillator branch passes through an acousto-optic modulator (AOM). When the AOM is active the
resulting diffracted light of first order is passed into an optical fiber. The other branch is sent into
an optical fiber where it passes through an EOM. When the EOM drive is active, the light entering
into the sample optical path will be phase-modulated. c) shows optical path to the sample. The
incoming light is entirely transmitted through the PBS, and the beam waist is increased by the Galilean
expander. Passing through a quarter-wave plate (QWP) the light has its polarization shifted to a
clockwise or counterclockwise circular polarization before entering the vacuum chamber and being focused
and reflected at the sample surface. Passing back through the QWP, the reflected light has its polarization
shifted to the orthogonal linear polarization, such that the polarization has been shifted 90° compared to
the light prior to the QWP. The reflected light then has its beam waist reduced by the Galilean expander
before its entirely reflected by the PBS, and passed into an optical fiber. The reflected light is then mixed
with the local oscillator before detection by a photodiode. Not pictured is the permanent magnet, which
is situated over and under the sample, such that the magnetic field is in the y direction.
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Figure 3.5: Illustration of the process of creating scanned images using scanning confocal microscopy.
The star symbol corresponds to measurement of the reflected light intensity. The red arrows correspond
to movement of the focused laser spot on the sample surface, which in the experiment is achieved by
moving the sample.

Determination of flake thickness
Flake positions can be identified from the images by the contrast in reflectivity as com-
pared to the substrate. Furthermore, as the light will not be completely transmitted by a
single layer of TMD, the reflected light from underlying layers will yield a higher reflected
intensity for areas with more layers of TMD, facilitating identification of thickness for a
given area of a flake.

This can be modeled, in a manner similar to what is done in Ref. [39], by writing the
reflectivity of a flake with a number of layers NL as

r(NL) = rbg(1− r1L)2NL + r1L

NL−1∑
k=0

(1− r1L)2k, (3.2)

where rbg is the reflectivity of the background, in this case the YIG film, and r1L is the
reflectivity of a single layer of TMD. The amplitude of the electric field of the reflected
light, Erefl, can then be written as

Erefl = r(NL)Ei, (3.3)

where Ei is the amplitude of the electric field of the incoming light. The intensity of the
reflected light, Irefl will then be proportional to the square of r(NL):

Irefl ∝ |Erefl|2 =
(
r(NL)

)2
|Ei|2. (3.4)

The model assumes each layer of TMD reflects (transmits) a ratio r1L ((1 − r1L)) of
the incoming light. The reflected light from a given layer will then have to be transmitted
through all preceding layers, each transmitting a ratio (1− r1L) of the reflected light. As
for the light transmitted through all layers of TMD, a fraction rbg will be reflected by
the YIG film, of which each layer of TMD will transmit a fraction of (1− r1L). The total
reflected light is then the sum of the light reflected by each layer of TMD and the YIG
film. The treatment does not take internal reflection between layers into account, but
this is expected to be negligible, as the single layer reflection was determined to be 6 %
in the experiment in Ref. [39].

Thus, by determining the single layer reflectivity r1L and background reflectivity rbg,
one can determine the thickness of a flake by comparing the reflected intensity to the
reflected intensity of the background.
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Figure 3.6: Sketch of the dimensions of the electromagnet (left) and permanent magnet (right) as well
as their respective magnetic fields.

In order to determine the thickness more accurately, one can compare the scanned im-
ages with atomic force microscopy (AFM) measurements, given that the relation between
the coordinates of the scanned images and AFM measurements is known. For Ref. [39],
such measurements were performed by the Iwasa lab, where the sample was additionally
imaged using white-light imaging, allowing for relative coordinates to be determined by
comparing flake positions with scanned images. This characterization was scheduled to
be performed on a given sample after the experiments in our lab had been completed.
As our experiments could not be completed due to delays, this characterization was not
performed on our sample.

3.1.3 Microwave drive and in-plane magnetization
In order to excite magnons with a corresponding out-of-plane magnetization, a harmoni-
cally oscillating out-of-plane microwave drive must be supplied to an in-plane magnetized
substrate.

To magnetize the substrate, a magnet must be placed in the vacuum chamber. Two
types of magnets were available in the lab for this purpose: an electromagnet and a
permanent magnet. The electromagnet provides a highly uniform magnetic field with
good controllability of the applied field strength over a relatively large volume, at the
expense of taking up a lot of space. The permanent magnet on the other hand, taking up
considerably less space, provides a less uniform magnetic field over a smaller volume, with
no controllability of the applied field strength. Due to the limited space available in the
vacuum chamber, the permanent magnet was chosen. Additionally, a coil was attached
to the magnet to allow for small adjustments of the magnetic field by supplying a DC
voltage. As the sample dimensions themselves were small, the smallness and relative lack
of uniformity of the magnetic field were not expected to be problematic. Fig. 3.6 shows
a comparative illustration of the spatial dimensions and applied magnetic fields of the
permanent magnet and electromagnet.
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Figure 3.7: Photo of the permanent magnet, sample, and the microwave coil in the vacuum chamber.
The permanent magnet is outlined in blue. The objective lens is also visible down and to the right of
the sample surface.

With the substrate magnetized, magnons can be excited by placing a one-loop coil
bearing a microwave-frequency alternating current close to the sample surface. The
current in the coil will induce an oscillating out-of-plane magnetic field which can be
described in the form presented in Section 2.2.3. Fig. 3.7 shows a photo of the permanent
magnet, sample, and microwave coil placed inside of the vacuum chamber.

The coil is connected to a network analyzer, allowing for the measurement of ferro-
magnetic resonance, which is measured by recording the proportion between the output
power of the network analyzer and the power returning from the coil, referred to as the
reflected power. The excitation of magnons will absorb some of the microwave power,
and as such decrease the reflected power relative to the incoming power. Plotting the
ratio S11 ≡ reflected power

output power for a range of frequencies, the resonance frequencies of different
magnon modes can be identified as dips in the spectrum. Substituting the solution to the
Fourier transform of Eq. (2.98) into the input–output relation1 Eq. (2.95) one can obtain
the following expression for S11 ≡ b̂out/b̂in

S11(ω) =
i(ω − ωm)− 1

2(γe − γmw)
i(ω − ωm)− 1

2(γe + γmw) , (3.5)

1The input–output relation for the undriven case was chosen in order to treat the drive as the input
field.
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where ω is the frequency of the alternating current, ωm is the resonance frequency of the
magnonic mode, γmw is the coupling to the microwave coil and γe is the coupling to other
external modes.

By fitting the measured ferromagnetic resonance to this formula, the magnon reso-
nance frequency ωmag and coupling rate γmw can be determined, which can be used to
determine the effective number of magnons nmag.

3.2 Signal readout
Now that the signal has been created, the magnon–exciton coupling strength can be
extracted by measurement and analysis. In order to figure out how this information can
be extracted from the signal, we must first understand how the information is stored.

3.2.1 Information storage in modulation-induced sidebands
To store information using light one can make use of one of its degrees of freedom. In our
case, we may restrict the attention to information storage in the amplitude and phase of
the complex electric field of the light

E(t) = A(t)eiθ(t), (3.6)

where A(t) and θ(t) is the amplitude and phase of the light, respectively, and spatial
dependence has been suppressed for simplicity. Assuming the light is initially in the form
of a plane wave with amplitude A0 and frequency ω,

E0(t, ω) = A0e
−iωt, (3.7)

information may be stored by amplitude modulation(AM) or phase modulation(PM).
These methods are also conventionally used in radio communication for information stor-
age and transmission using radio waves [45]. Using amplitude- and phase-modulation,
the information is stored in what is known as sidebands in the frequency spectrum of the
waves. Assuming harmonic time-dependence for simplicity, modulation of amplitude and
phase can be expressed as [45]

A(t) = A0

(
1− M

2
[
1− cos(ωmodt)

])
, (3.8)

θ(t) = ωt+M cos(ωmodt), (3.9)

where M and ωmod are denoted as the modulation depth and modulation frequency re-
spectively.

The electric field of amplitude-modulated light can then be expressed as

E(t, ω)AM = A0

(
1− M

2
[
1− cos(ωmodt)

])
e−iωt

= A0
(
1− M

2
)
e−iωt + A0

M

4
(
e
−i
(
ω+ωmod

)
t + e

−i
(
ω−ωmod

)
t
)
, (3.10)

which is equivalent to the sum of three waves, one with the original frequency denoted as
the carrier, and an additional two with a positive or negative frequency shift denoted as
the upper and lower sideband respectively. The term sideband originates from the shape
of the Fourier spectrum of such a wave, as seen in Fig 2a).
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The electric field of phase-modulated light can be written as [45]:

E(t, ω)PM = A0e
−iωte−iM cos(ωmodt) (3.11)

= A0e
−iωt

[
1 + iM cos(ωmodt)−

M2

2 cos2(ωmodt) + . . .
]

= A0

[(
1− M2

4 + · · ·
)
eiωt

+ i
(M

2 + · · ·
)(
e
−i
(
ω+ωmod

)
t + e

−i
(
ω−ωmod

)
t
)

−
(M2

8 + · · ·
)(
e
−i
(
ω+2ωmod

)
t + e

−i
(
ω−2ωmod

)
t

+ · · ·
)
.

(3.12)

In principle, phase-modulated light contains an infinite number of sidebands. In the case
where the modulation depth is small M � 1, higher order terms can be neglected to
obtain a two-band approximation for phase-modulated light:

E(t, ω)PM ≈ A0

[
e−iωt + i

M

2
(
e−i(ω+ωmod)t + e−i(ω−ωmod)t

)]
. (3.13)

An illustration of the spectrum of phase-modulated light is shown in Fig. 3.8b).
Beating
When two plane waves with different frequencies are added together, the total signal will
have the frequency of the wave with the higher amplitude, whereas the amplitude will os-
cillate at the difference in frequency between the waves, a phenomenon known as beating.
As the upper and lower sidebands from both AM and PM are equally spaced with respect
to the carrier frequency, they will produce beating signals of the same frequency, where
the relative phase between the beating signals determines whether the signals interfere
constructively or destructively. For amplitude-modulated light, the two sidebands inter-
fere constructively. For phase-modulated light, however, the upper and lower sidebands
interfere destructively in such a way that the beating signals cancel [45]. This can also
be seen from the expressions for the intensities of AM and PM signals [Eqs;(3.10) and
(3.11)]:

IPM(t) ∝ |E(t, ω)PM|2 = |AO|2, (3.14)

IAM(t) ∝ |E(t, ω)AM|2 = |AO|2
(

1− M

2
[
1− cos(ωmodt)

])2
, (3.15)

meaning the intensity is oscillating for the amplitude-modulated signal, whereas the
phase-modulated intensity is no different from the unmodulated intensity. This means
pure phase modulation cannot be detected by a photodiode. Graphs of beating signals
resulting from amplitude modulation and phase modulation are shown in Fig 3.8c) and
Fig 3.8d) respectively.

3.2.2 Modulation resulting from magnon–exciton coupling
The magnon–exciton coupling results in a harmonically oscillating shift of the exciton
resonance frequency, and the resultant oscillating reflectivity will modulate the amplitude
of reflected light. The dynamic shift in the resonance frequency can be considered as
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Figure 3.8: Illustration of the Fourier spectrum and recorded beating of AM- and PM-signals. a) Fourier
spectrum of an amplitude-modulated signal. b) Fourier spectrum of a phase-modulated signal, showing
only the first order sidebands. c) Graph of beating signal produced by amplitude modulation. Vertical
axis is the electric field of the signal. d) Graph of beating signal produced by phase modulation. Vertical
axis is the electric field of the signal.

a modulation, with modulation frequency ωmod ≡ ωmag, and modulation depth M ≡
gmag-exc

√
nmag:

ωexc, eff = ωexc − ωd,op + gmag-exc
√
nmag cos(ωmagt)

= ωexc − ωd,op +M cos(ωmodt). (3.16)

From this expression, it is evident that the same effect can be achieved without magnons
present by using a phase-modulated drive with the same modulation frequency and mod-
ulation depth, effectively reproducing Eq. (2.145). Though the reflected signal will be
both amplitude-modulated and phase-modulated, only the AM-induced sidebands will
contribute to the beating with the carrier, as the PM-induced sidebands will produce
beating signals that cancel.
Electro-optic modulator and optical setup for calibration

In order to introduce a controlled phase-modulation of the light, we make use of an optical
component known as an electro-optic modulator (EOM). Light passing through an EOM
experiences a phase shift as [43]

θ(t) = θ0(t)− π V
Vπ

(3.17)
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Figure 3.9: Illustration of the setup used to calibrate the electro-optic modulator. The input light and
phase-modulated light is colored red, whereas the freuqency shifted local oscillator is colored yellow.
Areas where the phase-modulated light and local oscillator overlap are colored orange.

where θ0(t) is the phase of the unmodulated light, V is the voltage applied to the EOM,
and Vπ is a parameter known as the half-wave voltage which is constant for a specific
EOM. By applying an AC voltage, the phase of the modulated wave can be written as

θ(t) = θ0(t) + −πVamp

Vπ︸ ︷︷ ︸
M(Vamp)

cos(ωmodt), (3.18)

where Vamp and ωmod is the amplitude and frequency, respectively, of the applied voltage,
which results in a phase modulation with effective modulation depth M and modulation
frequency ωmod [Eq. (3.9)]. Thus, if the half-wave voltage is known, a controlled output
signal can be generated in order to determine a relation between modulation depth and
measured sideband amplitude.

To determine the half-wave voltage, one can examine the Fourier spectrum amplitude
of one of the sidebands compared to that of the carrier and use Eq. (3.12) to determine the
modulation depth. As mentioned previously, one cannot measure the sidebands of purely
phase-modulated light, as the beating signals of the upper and lower sidebands cancel
exactly. A simple way of circumventing this issue is to split the light into two paths,
modulating the light in one path and shifting the frequency of the light in the other
before mixing the two paths and measuring the light with a photodiode. The sidebands
and the carrier will then produce individual beating signals with the frequency shifted
unmodulated light, usually denoted as the local oscillator. The setup for this calibration
procedure is illustrated in Fig. 3.9.

The frequency shift is provided by an acousto-optic modulator(AOM). Light passing
through an AOM interacts with an acoustic wave, which leads to diffraction of the light
beam [43]. The diffracted light experiences a Doppler frequency shift with the sign and
magnitude dependent on the order of the diffraction peak [43]. Thus, by isolating a
diffraction peak of non-zero order, the acousto-optic modulator will effectively provide
an attenuation2 and frequency shift of the incident light.

2As all other diffraction peaks are blocked.
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Using the experimental setup presented in the previous chapter we can perform a number
of experiments. The first experiments aim to determine the resonance frequency of the
magnons and excitons, and identify flake positions on the sample. Using this informa-
tion, the final experiment can be carried out to determine the magnon–exciton coupling
strength. Unfortunately, due to the COVID-19 pandemic, only the first two experiments
presented could be performed. As for the rest of the experiments, the planned experi-
mental procedure is presented.

4.1 Ferromagnetic resonance
Ferromagnetic resonance is measured by recording the S11 spectrum, which in this case
is defined as the reflected microwave power from the microwave coil normalized by the
power sent into the coil. By measuring the ferromagnetic resonance, one can determine
the resonance frequencies of the magnetostatic modes in the substrate. This information is
used in subsequent experiments to drive the magnetostatic mode of interest at resonance.

Measured ferromagnetic resonance is shown in Fig. 4.1, along with a curve fitting
of one of the modes obtained using Eq. (3.5). The unknown parameters in Eq. (2.54)
were determined by the fitting to be ω0 = ωmag = 7.148 GHz, γmw = 0.235 MHz, γT =
γe + γmw = 2.334 MHz for the specific mode shown in Fig.4.1b).
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Figure 4.1: Ferromagnetic resonance (FMR) characterized by the S11 spectrum for the microwave coil.
a) FMR spectrum over a large frequency span. The dips correspond to absorption of energy due to
excitation of magnons in a magnetostatic mode in the substrate. The large variations over long spans
of frequency are due to the spectral response of the components and constitute noise. The red arrow
shows the relative position of the high-resolution spectrum. b) High-resolution spectrum around a single
magnetostatic mode. The dashed red line corresponds to a curve fit of Eq. (3.5) with the parameters
ωmag = 7.148 GHz, γe = 2.099 MHz, and γmw = 0.235 MHz.
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Figure 4.2: High resolution scans of three areas on the sample surface obtained with a Galilean expander
in the optical setup. The areas with a higher reflectivity correspond to flakes of MoSe2.

4.2 Imaging with scanning confocal microscopy
The sample surface is imaged using a technique known as scanning confocal microscopy,
which is presented in more detail in Section 3.1.2.

Fig. 4.2 shows scanned images of three areas containing particularly large flakes on the
sample. The results presented are preliminary results obtained during the development of
the experimental procedure, using the diode laser. The white areas shown are expected
to be the result of the surface being uneven, i. e. not completely flat, such that light
was reflected out of the optical setup. Unfortunately, sufficient data was not recorded to
determine the parameters in Eq. (3.2), and as such, the thickness of the flakes in the scan
cannot be estimated.

4.2.1 Effect of the Galilean expander

The addition of a Galilean expander results in a smaller focused spot size on the sample
surface, leading to an increased contrast in the recorded image. The difference in contrast
in the image of three flakes with and without the Galilean expander is shown in Fig. 4.3.
The intensity of the incident light was adjusted between measurements, however the
reflected light in the setup with a Galilean expander was reduced by about a factor of 3
compared to the setup without an expander.

4.3 Reflection spectroscopy
When going to lower temperatures, it is important that the resonance frequency and the
reflection spectrum at a specific temperature can be determined. To this end reflection
spectroscopy was supposed to be performed as follows.

The laser spot is placed at a flake position, and the reflected intensity is recorded for
a range of wavelengths. As the Ti:sapphire laser has a non-trivial power spectrum, the
change in optical drive power at different wavelengths must be compensated for. This can
be done by either normalizing the reflected spectrum by the spectrum of the incoming
light, or by adjusting the incoming intensity for each wavelength to a set intensity.

For reference, the temperature dependence of the reflection spectrum of MoSe2 on a
non-magnetic substrate can be seen in Ref. [29], and the reflection spectrum of MoSe2
on a ferromagnetic substrate at a low temperature can be seen in Ref. [6].
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Figure 4.3: a) Low resolution scan of the sample surface performed without a Galilean expander in the
optical setup. Each pixel in the scanned image corresponds to a 10 µm × 10 µm area on the sample.
b) Low resolution scan of the sample surface performed with a Galilean expander added to the optical
setup. Each pixel in the scanned image corresponds to a 10 µm × 10 µm area on the sample. The areas
annotated as 1, 2, and 3 are assumed to represent the same areas of the sample surface for both scanned
images. Higher resolution scans of these areas, taken with a higher incident optical intensity, are shown
in Fig. 4.2

4.4 Determination of the magnon–exciton coupling
strength

The experimental procedure to determine the coupling strength can be split into three
stages. The first stage is to establish the voltage dependence of the modulation depth
provided by the EOM in the experimental setup, as is detailed in Section 3.2.2. In this
stage, the optical drive only passes through the AOM and EOM. For the second stage,
the AOM and magnon drive are deactivated, and the phase-modulated drive is applied
to the sample. The phase-modulation of the drive results in an amplitude modulation
in the light reflected from the TMD flakes, and measuring the beating without the local
oscillator results in the sidebands induced by the phase-modulation of the light canceling.
The amplitude of the AM-induced beating can then be recorded for a range of modulation
depths. In the third and final stage, the EOM is deactivated and the magnon drive is
activated, such that one can compare the magnon-induced beating amplitude with the
previously recorded EOM-induced beating to determine the modulation depth of the
magnons. This modulation depth is equal to gmag-exc

√
nmag, where nmag at resonance is

given by the relation [Eq.(2.130)]

nmag = 4γmw

γ2
T, mag

Pmw

~ωmag
.

Thus, by calculating nmag, one can determine the magnon–exciton coupling strength from
the modulation depth.
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Though this procedure was not performed in this experiment, Ref. [39] determined
the magnon–exciton coupling to be gmag-exc = (6.2± 0.8)× 10−2 Hz/√magnon [gmag-exc =
(7.1± 0.8)× 10−2 Hz/√magnon] for +K [−K] valley excitons in a 19-layer flake of MoSe2
using a similar procedure1. The findings of Ref. [39] suggested that the magnon–exciton
coupling may increase substantially for a decreasing number of layers of MoSe2, and as
such, the aim of this experiment was to characterize the magnon–exciton coupling of
thinner flakes by lowering the temperature to obtain a sufficiently strong signal-to-noise
ratio.

1It should be noted that the procedure in Ref. [39] compared the beating of single sidebands of
the reflected phase-modulated drive with single sidebands of the magnon-modulated light, by using the
AOM-modulated light as a local oscillator. This means the pure phase-modulation of the light also
contributed to the sideband amplitude, resulting in an underestimation of the magnon–exciton coupling.
The measured value may rather be considered as a lower bound for the magnon–exciton coupling of a
19-layer flake.
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This thesis describes the experimental characterization of the proximity-mediated cou-
pling between magnons and excitons in a TMD-ferromagnet van der Waals heterostruc-
ture. Using input-output theory and a Hamiltonian description of driven excitonic and
magnonic modes as open quantum systems we have established an expression for an op-
tical output signal of the coupled magnon–exciton system, where the magnon–exciton
interaction induces sidebands in the spectrum of the output signal. We have constructed
an experimental setup that can generate such a signal and designed a set of experiments
to determine the numerical value of the magnon–exciton coupling strength. Though the
final experiments could not be performed, the results of the first two experiments yield
insight as to what can be done to improve the prospects of future experiments.
YIG film and ferromagnetic resonance
As is evident in Fig. 4.1, multiple magnonic modes where observed in the magnetic sub-
strate. Though the uniform-precession mode was of most interest, discerning the reso-
nance frequency of this specific mode from the others is a difficult task. The number of
observed modes may be a result of the inhomogeneity of the magnetic field supplied by
the permanent magnet. As such, it could be beneficial to replace the permanent magnet
with an electromagnet with a more uniform magnetic field. The added controllability
compared to the permanent magnet would also enable the investigation of the depen-
dence of the magnonic resonance frequency on the external magnetic field, which should
follow Eq. (2.33) for the uniform-precession mode.

If the difficulty in discerning the appropriate magnetostatic modes turns out to be a
limiting factor even with a homogeneous magnetic field, one could additionally change the
magnetic substrate geometry to a sphere. YIG spheres have well-characterized magneto-
static modes [46], and have seen extensive use in the literature [2,7]. However, switching
the substrate to a spherical geometry would make it exceedingly difficult to collect the
reflected light, and as such one would have to find a different way of obtaining an ex-
perimental signal, such as placing the sphere in a cavity and examining reflection and
transmission coefficients in a similar manner as Refs. [2,8]. Such a setup could potentially
also facilitate the construction of TMD–magnon–superconducting qubit hybrid quantum
systems, by adding a microwave cavity containing a superconducting qubit to make a
double optical-and-microwave cavity.
Optical drive and Galilean expander
Due to the placement of the sample in the vacuum chamber and the strict requirements
on the focused beam waist, a single lens had to be used as the objective lens, with a
Galilean expander placed outside of the chamber to increase the incident beam waist.
It is evident from the scans that the addition of a Galilean expander improves contrast
between flakes and background and allows for the acquisition of higher resolution scans.
However, as was noted in the experimental results, the reflected intensity was reduced
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by around a factor of 3 compared to the setup without the expander. As the incident
laser intensity should be kept low to prevent degradation of the sample quality, and
for the low-excitation limit to be valid for the excitons, the Galilean expander limits
the strength of the reflected signal that can be achieved with the setup. The Galilean
expander also adds a considerable amount of complexity to the alignment procedure, as
the laser should pass through the center of both lenses to achieve the desired result. In
actuality, the alignment was not perfect, and as such, the Galilean expander added an
element of noise and uncertainty to the experimental setup.

A significant issue with the single lens and the Galilean expander, which is composed
of single lenses, is that of chromatic aberration, which means the focal lengths of the lenses
are dependent on the wavelength of the light. The issue can be dealt with by realigning
the system for a new wavelength. However, as realignment is a time-consuming process,
chromatic aberration represents a substantial challenge in the case where the wavelength
of the light is changed during the experimental procedure, such as for the reflection
spectroscopy experiment. This issue is especially pronounced in higher temperatures, at
which the linewidth of the exciton resonance is on the order of 10 nm [29].

There are at least two ways of solving this problem. The simplest solution is to acquire
a cryo-compatible objective lens, which can be used in a vacuum environment. It should
be noted that such lenses are expensive and typically have a long lead time for delivery.
The second option is to address the placement of the sample in the vacuum chamber.
One can either use a vacuum chamber with a different geometry, or redesign the sample
holder, both of which to move the placement of the sample close to the window of the
vacuum chamber. This would allow for the use of a commercial objective lens outside
of the vacuum chamber, which would provide a sufficiently small focused beam waist
without the need for a Galilean expander.
Other sample combinations
As the Ti:sapphire laser provides an optical drive with an adjustable frequency, the setup
is not restricted to the use of MoSe2 as the TMD. Different TMD species have exhibited
static valley-Zeeman shifts of substantially different magnitudes under otherwise similar
conditions [36], and as such, other TMDs may couple more strongly to magnetostatic
modes.



A. Magnons in a ferromagnetic lattice

For a ferromagnet, the presence of quantized spin excitations in the lattice, also known
as magnons, can be derived from its Hamiltonian. The derivation presented is known as
the method of Holstein and Primakoff [47]. This appendix will take an adapted approach
drawing heavily on the derivation in Ref. [15]. For simplicity, orbital angular momentum
will be neglected in the following derivation, L = 0, and for interactions between sites
only nearest neighbor interactions will be taken into account.

The Hamiltonian of a ferromagnet can then be written as

Ĥ = −2 J
~2

∑
j,δ

Ŝj · Ŝj+δ −
gµBB0

~
∑
j

Ŝjz, (A.1)

where the subscript j runs over all lattice sites, and the subscript j + δ runs over all
nearest neighbor sites with δ a nearest neighbor vector. The first term is identified as the
Heisenberg Hamiltonian (2.11), whereas the second represents the Zeeman energy of the
ferromagnet (2.10), with the z-axis oriented in the same direction as the applied magnetic
field.

The spin product in (A.1) can be reexpressed in terms of raising and lowering opera-
tors:

Ŝ+
j = Ŝjx + iŜjy,

Ŝ−j = Ŝjx − iŜjy.
(A.2)

The basis for the raising and lowering operators (A.2) is a set of states with quantum
number sjz for the spin in direction z located at lattice site j, denoted as |sjz〉. These
are the eigenstates of the operator Ŝjz with eigenvalues sjz obeying:

Ŝjz |sjz〉 = ~sjz |sjz〉 .

Application of the raising and lowering operators obeys

Ŝ±j |sjz〉 = λ± |sjz ± 1〉 (A.3)
=⇒ 〈sjz| Ŝ∓j = 〈sjz ± 1|λ∗±, (A.4)

where the value λ± is a complex number. Taking the inner product between Eqs. (A.3)
and (A.4) yields:

〈sjz| Ŝ∓j Ŝ±j |sjz〉 = 〈sjz ± 1|λ∗±λ± |sjz ± 1〉 = |λ±|2. (A.5)

The relation

S2
j = 1

2(S+
j S
−
j + S−j S

+
j ) + S2

jz, (A.6)
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can be combined with the commutation relation[
S+
j , S

−
j

]
= S+

j S
−
j − S−j S+

j = 2~Sjz, (A.7)

to yield:

S−j S
+
j = S2

j − Sjz(Sjz + ~), (A.8)
S+
j S
−
j = S2

j − Sjz(Sjz − ~). (A.9)

Inserting these equations into Eq. (A.5) yields:

+ : |λ+|2 = 〈sjz| Ŝ−j Ŝ+
j |sjz〉

= 〈sjz|S2
j − Sjz(Sjz + ~) |sjz〉

= ~2(s(s+ 1)− sjz(sjz + 1))

=⇒ λ+ = ~
√

(s(s+ 1)− sjz(sjz + 1))

=⇒ S+
jz |sjz〉 = ~

√
(s(s+ 1)− sjz(sjz + 1)) |sjz + 1〉 . (A.10)

− : |λ−|2 = 〈sjz| Ŝ+
j Ŝ
−
j |sjz〉

= 〈sjz|S2
j − Sjz(Sjz − ~) |sjz〉

= ~2(s(s+ 1)− sjz(sjz − 1))

=⇒ λ− = ~
√

(s(s+ 1)− sjz(sjz − 1))

=⇒ S−jz |sjz〉 = ~
√

(s(s+ 1)− sjz(sjz − 1)) |sjz − 1〉 , (A.11)

where the relation S2
j = ~2sj(sj + 1) with sj the total spin at site j has been used.

Substituting the ladder operators Eq. (A.2) into the Hamiltonian yields:

Ĥ = − 2 J
~2

∑
j,δ

[1
2
(
Ŝ−j Ŝ

+
j+δ + Ŝ+

j Ŝ
−
j+δ

)
+ ŜjzŜj+δ,z

]
− gµBB0

~
∑
j

Ŝjz. (A.12)

Proceeding, the basis states are changed. Due to the first term of the Hamiltonian,
Eq. (A.1), the ground state of the system will have all spins aligned. Due to the second
term, all spins in the ground state are aligned in the direction of the applied magnetic
field. Thus, ground state energy is identified as

Eg = −2JNZS
2

~2 − gµBB0

~
NS, (A.13)

where N is the number of lattice sites, and 2Z is the number of nearest neighbors.
As an attempt at a first excited state one can inspect what happens when a single

spin in the lattice is flipped. For simplicity, we will inspect the energy of the spin flip in
a one dimensional lattice, Z = 2, where a single spin flip yields the energy [Eq. (A.1)]

Esf = Eg + 8JS
2

~2 + 2gµBB0

~
S. (A.14)

If the single spin flip is instead spread out over multiple sites, such that the sum of
deviations is equal to one spin, the first term in Eq. (A.1) will yield a lower energy. This
is due to the the increase in energy being quadratic in small angles between neighboring
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Single spin-flip Distributed spin-flip

Figure A.1: Illustration of a spin-flip in a one-dimensional lattice. The deviation in the spin stemming
from a magnon will generally be distributed over many lattice sites to minimize the energy, as illustrated
on the right-hand side.

spins, whereas the sum of deviations is linear in this quantity1. Thus, the lowest energy
excitations will have the spin excitation distributed over multiple sites [17].

As the energy of the state depends on the number of spin deviations from the ground
state, the quantum number for the new basis is chosen to be the number of spin devi-
ations nj at site j. Multiple spin deviations can exist in the same location as long as
the sum of deviations on any given site is less than or equal to the total spin, and as
such the spin deviations are not subject to the Pauli exclusion principle; rather, they
behave as bosons. The states can then be expressed as harmonic oscillator eigenstates
|nj〉. The corresponding creation and annihilation operators âj, â†j create and annihilate
a quasiparticle known as the magnon which corresponds to a single spin being flipped in
the lattice, in general spread out over multiple lattice sites.

The operators in the new basis are defined by the following equations:

[âi, â†j] = δij, (A.15)
[âi, âj] = [â†i , â

†
j] = 0, (A.16)

âj |nj〉 =√nj |nj − 1〉 , (A.17)
â†j |nj〉 =

√
nj + 1 |nj + 1〉 , (A.18)

â†j âj |nj〉 = nj |nj〉 . (A.19)

By noting that both the old and new operators act on the spin in the z direction at site
j, expressed as sjz in the original basis and s − nj in the new basis, the transformation

1For small angles θ, sin θ ≈ θ, cos θ ≈ 1− θ2. ∆E ∝ − cos θ,
∑

i Siz ∝ sin θ.
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from the original basis to the new can be expressed as

Ŝjz |nj〉 = ~(s− nj) |nj〉
= ~(s− â†j âj) |nj〉 (A.20)

Ŝ+
j |nj〉 = ~(s(s+ 1)− (s− nj)(s− nj + 1))1/2 |nj − 1〉

= ~(2snj − n2
j + nj)1/2 |nj − 1〉

= ~
√

2s
(

1− nj − 1
2s

)1/2√
nj |nj − 1〉

=⇒ Ŝ+
j = ~

√
2s
(

1−
â†j âj

2s

)
âj, (A.21)

Ŝ−j |nj〉 = ~(s(s+ 1)− (s− nj)(s− nj − 1))1/2 |nj + 1〉 ,
= ~(2s(1 + nj)− n(

j1 +−nj))1/2 |nj + 1〉

= ~
√

2s
√
nj + 1

(
1− nj

2s

)1/2
|nj + 1〉

=⇒ Ŝ−j = ~
√

2sâ†j
(

1−
â†j âj

2s

)
, (A.22)

Where the relations in Eqs. (A.17) – (A.19) were used. The equations (A.21) and (A.22)
are known as the Holstein-Primakoff transformation.

In order for the Hamiltonian to be diagonalizable, the operators in the new basis are
linearized by employing the low temperature approximation. In this approximation the
number of exciations is assumed to be small, â†j âj << 2s, such that the square root term
in Eqs. (A.21) and (A.22) can be approximated as

(
1−

â†j âj

2s
)1/2
≈ 1 (A.23)

The spin ladder operators can then be expressed as

Ŝ+
j = ~

√
2sâj, (A.24)

Ŝ−j = ~
√

2sâ†j. (A.25)

Substituting Eqs. (A.20), (A.24) and (A.25) into the Hamiltonian and keeping terms
to second order in creation/annihilation operators yields [Eq. (A.12)]:

Ĥ = − 2Js
∑
j,δ

[â†j âj+δ + âj â
†
j+δ − â

†
j âj − â

†
j+δâj+δ + s]− gµBB0

∑
j

(s− â†j âj)

= − 2JNZs2 − gµBB0Ns+ Ĥ′,
Ĥ′ = − 2Js

∑
j,δ

[â†j âj+δ + âj â
†
j+δ − â

†
j âj − â

†
j+δâj+δ] + gµBB0

∑
j

(â†j âj) (A.26)

To diagonalize the Hamiltonian, the Fourier transformed operators âk, â†k are intro-
duced:

â†k = 1√
N

∑
j

eik·rj â†j, (A.27)

âk = 1√
N

∑
j

e−ik·rj â†j, (A.28)
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where rj is the position vector of lattice site j. These new operators create and annihilate
magnons with wavenumber k and have the commutation relation

[âk, â†k′ ] = 1
N

∑
j

ei(k
′−k)rj = δk′,k, (A.29)

where δk′,k is the Kronecker delta. The inverse transform is:

â†j = 1√
N

∑
k

e−ik·rj â†k, (A.30)

âj = 1√
N

∑
k

eik·rj â†k. (A.31)

Substituting into Eq. (A.26) yields:

Ĥ′ = − 2Js
N

∑
jδkk′

(
e−i(k−k

′)·rjeik
′·δâ†kâk′ + ei(k−k

′)·rje−ik
′·δâkâ

†
k′

− e−i(k−k′)·rj â†kâk′ − e−i(k−k′)·(rj+δ)â†kâk′

+ gµBB0

N

∑
jkk′

e−i(k−k
′)·rj â†kâk′

)

= − 2Js
∑
δk

(
eiδ·kâ†kâk + e−iδ·k(â†kâk + 1)− 2â†kâk

)
+ gµBB0

∑
k

â†kâk

= − 2Js
∑
k

[
â†kâk(γk + γ−k − 2)

]
− 2Js

∑
δk

e−iδ·k︸ ︷︷ ︸
=0

+gµBB0
∑
k

â†kâk

=
∑
k

(
2JsZ(2− γk − γ−k) + gµBB0

)
â†kâk, (A.32)

where the quantity γk has been defined as γk ≡
∑
δ e

iδ·k, which depends on the geometry
of the lattice.

By defining the dispersion relation

~ωk = 2JsZ(2− γk − γ−k) + gµBB0, (A.33)

the magnons can be described using the bosonic Hamiltonian

Ĥmagnon =
∑
k

n̂k~ωk. (A.34)

As the Hamiltonian for magnons is diagonalizable in k-space rather than position
space, the configuration of spin deviations will generally move around the lattice, giving
rise to the name spin wave.





B. Magnetization of a ferromagnet

In this appendix we will derive the dynamics of the magnetization of a ferromagnet in a
magnetic field with a small time-dependent component, drawing on a similar derivation
in Chapter 1.2-1.4 in [16].

The magnetization of a material is defined as the total magnetic moment per unit
volume of a magnet:

M = 1
V

∑
i

µi, (B.1)

where V is the volume of the material, ∑i sums over all lattice sites i, and µi is the
magnetic moment at site i.

The equation of motion for a magnetic moment can be obtained by substituting eq.
(2.5) into eq. (2.7), which can then be summed over all sites to obtain an equation of
motion for the magnetization:

dM
dt = −γµ0M ×H . (B.2)

We consider the time-dependent component of the magnetic field as a perturbation:

H(t) = H0 + h(t), (B.3)

where h(t) is a field with harmonic time dependence that is small compared to the static
field H0.

The magnetization can be expressed in a similar manner;

M(t) = M 0 +m(t), (B.4)

where m(t) is a harmonically time-dependent magnetization, which we assume to be
small compared to the mean magnetization M 0.

Inserting into the equation of motion (B.2) yields:

d
dt(M0 +m) = −γµ0(M0 +m)× (H0 + h). (B.5)

This expression can be split by order in the small parameters h and m, and solved
order by order.

The zeroth-order equation is:

H0 ×M 0 = 0. (B.6)

This means that the direction of equilibrium magnetization is parallel to the static
field H0.
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The first-order equation is:

dm
dt + γµ0m×H0 = −γµ0M 0 × h (B.7)

Neglecting the second order equation, the equation of motion has been linearized in
the parameters h and m.

Due to the harmonic time dependence m and h can be written as the real parts of
the complex vectors rotating in the complex plane:

mC = m̃e−iωt, (B.8)
hC = h̃e−iωt, (B.9)

where ω is the frequency of the time dependent oscillation, and m̃, h̃ are complex ampli-
tudes of the oscillations.

Substituting into eq. (B.7) yields:

−iωm̃+ γµ0m̃×H0 = −γµ0M 0 × h̃. (B.10)

By aligning the z-axis so that H0 = H0ez and M 0 = M0ez with ez the unit vector
in the direction z, eq. (B.10) can be expressed in terms of Cartesian components:

−iωm̃x + γµ0H0m̃y = γµ0M0h̃y, (B.11)
−iωm̃y − γµ0H0m̃x = − γµ0M0h̃x, (B.12)

−iωm̃z = 0. (B.13)

This can be reexpressed in tensor notation:

m̃ = χ̄h̃, (B.14)

χ̄ ≡

 χ −iχa 0
iχa χ 0
0 0 0

 , (B.15)

χ ≡ (γµ0)2M0H0

(γµ0H0)2 − ω2 , χa ≡
γµ0M0ω

(γµ0H0)2 − ω2 , (B.16)

where χ̄ is known as the susceptibility tensor.
Equation (B.2) does not contain any damping terms, even though it is energetically

favorable for the magnetization M to align with the magnetic field H . In actuality,
there will be some form of damping in the system, and if the damping is relatively small,
there are a number of ways of phenomenologically adding damping to the equation of
motion [16].

One method, proposed by T. Gilbert [48]1, modifies Eq. (B.2) as

dM
dt = −γµ0M ×H + α

M
M × ∂M

∂t , (B.17)

where α is a small dimensionless parameter that characterizes the rate of dissipation.
1It was originally proposed in an unpublished paper in 1955
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Inserting eqs. (B.3) and (B.4) into the damped equation of motion (B.17) yields:

d
dt
(
M 0 +m(t)

)
= − γµ0

(
M 0 +m(t)

)
×
(
H0 + h(t)

)
+ α

M0

(
M 0 +m(t)

)
× ∂

∂t
(
M 0 +m(t)

)
,

(B.18)

where the amplitude of the magnetization in the denominator of the dissipative term has
been replaced with the average amplitude of the magnetization:

〈M〉 = M0 + 〈m(t)〉︸ ︷︷ ︸
=0

.

Equation (B.18) can be separated by order in the small parameters h and m, and
solved order by order. The zeroth order equation is:

H0 ×M 0 = 0. (B.19)

This means that the direction of the equilibrium magnetizationM0 is parallel to the static
part of the field H0. The first order equation is

dm(t)
dt = − γµ0M 0 × h(t)− γµ0m(t)×H0

+ α

M0
M 0 ×

∂m(t)
∂t

=⇒ −γµ0M 0 × h̃ = − iωm̃+ γµ0m̃×H0 + iω
α

M0
M 0 × m̃ (B.20)

Neglecting the second-order equation, the equation of motion has been linearized in the
parameters h and m. Equivalent linearized equations of motion can be obtained from
the lossless case by transforming the amplitude H0 as [Eq.(B.10)]:

γµ0H0 → γµ0H0 − iαω. (B.21)

The susceptibility tensor with losses can then be found by making use of the relation
Eq.(B.21) with Eq.(B.15):

m̃ = χ̄h̃, (B.22)

χ̄ ≡

 χ −iχa 0
iχa χ 0
0 0 0

 , (B.23)

χ ≡ χ′ + iχ′′, χa ≡ χ′a + iχ′′a. (B.24)
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using the following definitions:

ωH ≡ γµ0H0,

ωM ≡ γµ0M0,

χ′ = 1
D
ωHωM

[
ω2
H − (1− α2)ω2

]
,

χ′′ = 1
D
αωMω

[
ω2
H + (1 + α2)ω2

]
,

χ′a = 1
D
ωMω

[
ω2
H − (1 + α2)ω2

]
,

χ′′a = 2
D
αωmωhω

2,

D =
[
ω2
H − (1 + α2)ω2

]2
+ 4α2ω2ω2

H ,

(B.25)



C. Semiconductor–Light Hamiltonian and
Bloch equations

In this appendix, the quantum mechanical Hamiltonian for a semiconductor interacting
with light is presented, from which a set of coupled differential equations characterizing
the dynamics of the system, known as the semiconductor Bloch equations, is derived. The
section follows an adapted approach from chapter 10 of Ref. [22]. For the semiconductor
it will be assumed that the dynamics can be described using a two-band model with
single valence and conduction bands. The light will be assumed to be in a coherent state,
such that it can be treated classically.

Hamiltonian of the semiconductor–light system

The light-semiconductor interaction is treated using perturbation theory, splitting the
Hamiltonian into two parts:

Ĥ(t) = Ĥ0 + V̂ (t), (C.1)

where H0 is the unperturbed Hamiltonian of the semiconductor without light present,
and V̂ (t) represents the interaction energy of the light-semiconductor interaction. The
unperturbed Hamiltonian will initially be written in terms of creation and annihilation
operators for conduction band electrons and valence band holes. The conduction band
electron is a quasiparticle representing an electron confined to the conduction band.
The valence band hole, on the other hand, is a quasiparticle representing the absence
of a valence band electron, presumably as it has been excited to the conduction band,
which has the opposite momentum, spin and charge, and same effective mass as the
corresponding valence band electron. Formally, the annihilation and creation operators
of the valence band hole are defined as

ĉh,k = ĉ†v,−k,

ĉ†h,k = ĉv,−k,
(C.2)

where subscript h (v) denotes a valence band hole (electron), and k is the quantum
number of the particle, which is assumed to correspond to the wave vector and spin of
the particle. It is assumed that the conduction band electron and valence band hole,
hereafter referred to simply as electron and hole, follow the anticommutation relations

{ĉb,k, ĉ†b’,k′} = δbb’δkk′ (C.3)
{ĉb,k, ĉb’,k′} = {ĉ†b,k, ĉ

†
b’,k′} = 0 (C.4)

where the band index b = c (b = h) denotes an electron (hole) operator.
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Using the creation and annihilation operators for the electron and the hole, the un-
perturbed Hamiltonian can be written as [22]

Ĥ0 =
∑
k

(
εc,kĉ

†
c,kĉc,k + εh,kĉ

†
h,kĉh,k

)
+ 1

2
∑

k,k′q 6=0
V (q)

(
ĉ†c,k+q ĉ

†
c,k′−q ĉc,k′ ĉc,k

+ ĉh,k+q ĉh,k′−q ĉ
†
h,k′ ĉ

†
h,k

+ 2ĉ†c,k+q ĉh,k′−q ĉ
†
v,k′ ĉc,k

)
.

(C.5)

where εc,k (εh,k) is the energy of an electron (hole) with quantum number k, and V (q) is
the Fourier transform of the Coulomb interaction between the particles.

The interaction between the semiconductor system and light is treated in the long
wavelength approximation(LWA) and dipole approximation. In the LWA the electric field
is treated as if it is the same for all interacting particles, i. e. spatial variations are not
taken into account. This is valid as long as the relevant length scales are small compared
to the wavelength of the light. For light in the optical regime, the wavelength in a
semiconductor is several orders of magnitudes larger than the lattice constant, which is
the relevant length scale of the semiconductor. The dipole approximation treats the light
as if it is classical and approximates the interaction energy as the interaction between
the dipole moments in the system and the electric field component of the light, which
typically dominates the optical response of a material [14]. This approximation neglects
transitions where a valence band electron is excited into a conduction band state with
the opposite spin, as such transitions are dependent on higher-order interactions. Thus
excitonic modes stemming from such transitions, denoted as dark excitons, are neglected
due to their low optical response.Writing the interaction energy as the shift in dipole
energy due to the electric field of the light yields the interaction Hamiltonian [22]:

Ĥint ≈
∑
k

~(gωd ĉ
†
c,kĉ
†
h,−ke

−iωdt + h.c.), (C.6)

where ωd is the frequency of the classical light, denoted as the optical drive, gωd is the
coupling strength of the light and electrons, which is proportional to the electric field
strength of the light and dipole moment between the electrons and the holes, and h. c.
denotes Hermitian conjugate. From the interaction Hamiltonian, one can surmise that
the interaction between semiconductor and light results in the creation and annihilation
of electron-hole pairs, which happens due to the absorption and emission of light.

The total Hamiltonian of the semiconductor–light system can then be written as

Ĥ = Ĥ0 + Ĥint

=
∑
k

(
εc,kĉ

†
c,kĉc,k + εh,kĉ

†
h,kĉh,k

)
+ 1

2
∑

k,k′q 6=0
V (q)

(
ĉ†c,k+q ĉ

†
c,k′−q ĉc,k′ ĉc,k

+ ĉh,k+q ĉh,k′−q ĉ
†
h,k′ ĉ

†
h,k

+ 2ĉ†c,k+q ĉh,k′−q ĉ
†
v,k′ ĉc,k

)
+
∑
k

~(gωd ĉ
†
c,kĉ
†
h,−ke

−iωdt + h.c.).

(C.7)
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Semiconductor Bloch equations
The dynamics of the semiconductor system can be explained by the dynamics of the
conduction band electrons and the valence band holes. The interaction with light results
in the creation and annihilation of electron–hole pairs, and as such the dynamics of
the total semiconductor–light system can be formulated as the coupled dynamics of the
electron and hole populations and the electron–hole pairs. One such approach is the
semiconductor Bloch equations, which is a set of differential equations for the expectation
values of the electron and hole number operators, nb,k ≡ 〈ĉ†b,kĉb,k〉, and the expectation
value of the pair operator Pch,k ≡ 〈ĉh,−kĉc,k〉.

The semiconductor Bloch equations are obtained by taking the expectation value of
the Heisenberg equations of motion of the corresponding operators. For the pair operator
this yields [Eq. (2.2)]

dP̂ch,k

dt = − i

~
(εc,k + εh,k)P̂ch,k + igωd

[
1− ĉ†h,−kĉh,−k − ĉ

†
c,kĉc,k

]
+ i

~
∑
k′,q 6=0

V (q)
(
δ−k,k′−qPch,k−q + ĉ†h,k′−q ĉh,k′ ĉh,−kĉc,k−q

+ ĉ†c,k′+q ĉc,k′ ĉh,−k+q ĉc,k + ĉ†c,k′−q ĉc,k′ ĉc,k−q ĉh,−k

+ ĉ†h,k′−q ĉh,−k−q ĉh,k′ ĉc,k
)
.

(C.8)

Taking the expectation value of the operators, there is an issue with the four-operator
terms in the final sum; the four-operator term expectation values are dependent on six-
operator expectation values, which are dependent on eight-operator expectation values
etc. [23]. In order to obtain a closed set of equations that can be solved, the random
phase approximation is employed. This approximation assumes, much like the RWA, that
a subset of the operators has a dominant time dependence, meaning the four-operator
terms can be approximately factorized in terms of the dominant subset by inserting
delta functions, essentially picking out the dominant terms and neglecting all others.
The resultant expectation values are then further factorized in terms of two-operator
expectation values, which in this case yields [23]:

dPch,k

dt ≈ − i

~

[
εc,k + εh,k −

∑
q 6=0

V (q)(nc,k−q + nh,k−q)
]
Pch,k

+
(
igωd + i

~
∑
q 6=0

V (q)Pch,k−q

)
[1− nc,k − nh,k],

(C.9)

where Pch,k ≡ 〈P̂ch,k〉 is the expectation value of the pair operator, and nc,k ≡ 〈ĉ†c,kĉc,k〉
(nh,k ≡ 〈ĉ†h,kĉh,k〉) is the expectation value of the number conduction-band electrons
(holes).

In the low excitation limit, also known as the ulralow density regime, where the number
of excited conduction-band electrons and valence-band holes are small enough that they
can be neglected in the equations of motion of the system, nc,k = nh,k = 0. The equation
of motion then reads:

dPch,k

dt =− i

~
(
Eg + ~2k2

2m∗r
Pch,k

)
+ i

~

(
~gωd + V (q)Pch,k−q

)
, (C.10)
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where Eg is the band gap-energy, and the energy of the conduction-band electrons and
holes, relative to the top of the valence band, has been written in terms of the energy of
effective single particle states with a reduced mass m∗c = mcmh/(mc +mh).



D. Construction of optical elements in the
experimental setup

Chapter 3 presented a number of optical elements used in the experimental setup, but
did not specify much beyond their function. This appendix will expand on the working
principles of the optical elements and how they were constructed in the lab using beam
splitters, lenses and wave plates. For the electro-optic and acousto-optic modulators,
commercial components were used, and as such the construction of these elements will
not be detailed. The appendix will conclude with a schematic of the entire experimental
setup in terms of optical components.

D.1 Attenuators
The lasers used in the setup must operate at a power above the so-called laser threshold.
As such, the laser is operated at a power which is higher than what is desired for the
optical drive, and consequently, optical elements known as attenuators had to be used to
adjust the optical power to a satisfactory level. An attenuator can be constructed using
a half-wave plate and a polarizing beam splitter.

The half-wave plate is an optical component constructed from a birefringent material,
which has anisotropic refractive properties. A birefringent material is characterized by its
orthogonal fast and slow axes, where the fast and slow refers to the relative phase-speed
of the electric field component of light along said axis. Thus, light traveling through a
birefringent material will obtain a relative phase shift between the electric field compo-
nents along the fast and slow axes, where the size of the phase shift will be proportional
to the thickness of the material and the wavelength of the light, changing the polarization
of the light. A half-wave plate has a thickness such that light with a specific frequency
will obtain a relative phase shift of π, displacing the waves by a half wavelength, between
the fast and slow axis. A half-wave plate acting on linearly polarized light will in effect
rotate the polarization with an angle dependent on the relative angle between the fast
axis of the wave plate and the polarization of the incident light [49].

A polarizing beam splitter (PBS) similarly distinguishes between two axes, which
we will refer to as its eigenaxes. The PBS will reflect all light polarized along one of
its eigenaxes, and transmit all of the light polarized along the other, orthogonal axis.
By placing a half-wave plate in front of the PBS, one can adjust the ratio between
transmitted and reflected light by rotating the wave plate. Thus, one can create an
adjustable attenuator by combining a half-wave plate and a PBS, and blocking either the
reflected or transmitted light, as illustrated in Fig. D.1.

D.2 Galilean expander
In the experimental setup, a Galilean expander is used to increase the beam waist of
the laser beam before the objective lens, resulting in a reduced focused beam waist at
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Incoming 

polarized light

HWP PBS
Output

polarized light

Figure D.1: Schematic of an optic attenuator consisiting of a half-wave plate (HWP) and a polarizing
beam splitter (PBS) with one of the output paths blocked. The light polarized along an eigenaxis of the
PBS is colored red or blue depending on the axis. Areas where light of both polarizations overlap are
colored purple.

the surface of the sample. More generally, a Galilean expander is an anisotropic optical
element with two ports that increases the beam waist of light entering through one port,
and reduces the beam waist of light entering through the other.

A Galilean expander can be constructed from two thin-lenses, one negative and one
positive lens. Light passing through a thin lens obeys the Gaussian lens formula [49]:

1
so

+ 1
si

= 1
f
, (D.1)

where the light spreads out from a point at distance so in front of the lens, and the light
is focused at a point at distance si after the lens, and where f is the focal length of the
lens. Lenses can be characterised by the sign of the focal length, denoting them as either
positive or negative. Negative lenses, f < 0, will spread incoming light such that the
distance si is negative, as opposed to positive lenses which focuses incident light. The
mechanics of positive and negative lenses are illustrated in Figs. D.2a) & b).

A Galilean expander can be constructed from a negative and positive lens with coin-
ciding focal points. Collimated light entering through the negative lens will be spread by
the negative lens and collimated by the positive lens, effectively increasing the radius of
the collimated light. Collimated light entering through the positive lens however, will be
focused by the positive lens and collimated by the negative lens, effectively reducing the
radius of the light. This is illustrated in Fig. D.2c).

D.3 Circulator
A circulator is a component with at least three ports, for which a signal entering through
one port will exit through the next in a cyclical fashion, commonly used to separate an
incident and reflected signal. For this use specifically, it is sufficient for the circulator to
have a functioning first and second port. An optical circulator satisfying these require-
ments can be be constructed from a polarizing beam splitter and a quarter-wave plate.
The quarter-wave plate, similarly to the half-wave plate will shift the polarization of the
incident light. For the special case where the fast-axis of the quarter-wave plate subtends
a 45° angle with the eigenaxes of the PBS, the light exiting from the PBS and entering
through the quarter-wave plate will be polarized circularly [49]. If light passes through
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so si so si

f1, f2

L1 L2

2W1 2W2

a) b)

c)

Figure D.2: a) Illustration of the mechanics of a lens with a positive focal length. The light rays emerge a
length so before the lens, and are focused after a length si after the lens. b) Illustration of the mechanics
of a lens with a negative focal length. Here the light rays are spread by the lens, as if they are focused
to a negative length si after the lens. c) Illustration of a collimated beam passing through a Galilean
expander. The lenses are placed such that their focal points, f1 and f2, coincide. For a beam entering
through the positive (negative) lens, the beam waist is increased (decreased) from W1 (W2) to W2 (W1).
The optical axis is shown in all figures as a dashed horizontal line.

two quarter-wave plates, the total effect will be equal to that of a half-wave plate. With
the fast axis rotated 45° with respect to the linear polarization of the incident light, the
polarization will be rotated by 90°. Thus, light transmitted through the PBS and passing
through the wave plate twice, once as incident light and once as reflected, will be linearly
polarized along the other eigenaxis of the PBS, resulting in total reflection at the PBS,
constituting the operation of a circulator. This process is illustrated in Fig. D.3.

An added convenience of the circulator on this form is that the light can be linearly
polarized before passing through the quarter-wave plate and after passing through the
quarter wave plate again, which is desired for compatibility with polarizing beam splitters
and as such attenuators. Furthermore, the light focused at the sample will be circularly
polarized, which is necessary to address a specific valley of the TMD.

D.4 Other optical components in the setup
In addition to the components presented, the optical setup uses three additional types of
components: an isolator, fiber adapters, and mirrors.

The isolator is placed just after the laser, and serves two purposes. Its main purpose
is to admit incident light and block reflected light, such that no light is reflected back
into the laser device. It additionally acts as an initial polarizer, polarizing the laser to a
linear polarization, which is a requirement for the use of wave plates.



Incoming 

polarized light
QWPPBS

Figure D.3: Schematic of an optical circulator constructed from a polarizing beam splitter (PBS) and
a quarter-wave plate (QWP). The incident light is assumed to be linearly polarized such that it passes
through the PBS, whereas the reflected light will enter the PBS with the orthogonal linear polarization
such that it is entirely reflected. The color of the light denotes the polarization, where red denotes
horizontal linear polarization, orange denotes circular polarization, and yellow denotes vertical linear
polarization.

Fiber adapters are used to transfer the light to and from optical fibers. Some of
the optical components, such as the fiber adapters and lenses, are very sensitive to the
relative position and direction of the beam’s incidence. For instance, the formulas used
for the mechanics of the lenses assumes the beam enters at the center of the lens and that
it propagates along the optical axis. In order to control the position and direction of the
beam, two mirrors with adjustable angles are used. Each mirror provides two degrees of
freedom in adjusting the angle of reflection, which collectively provides control of both
the position and direction of the reflected beam. The process of adjusting the mirrors to
position the laser beam is referred to as alignment. For this process it is also common to
adjust the position of the components themselves.

A schematic of the optical setup, containing all of the components, is shown in Fig. 3.4.
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tively. The valence electrons in the ±K valley can be selectively addressed
by light with circular polarization σ±, meaning the valleys exhibit circular
dichroism. b) Illustration of the first Brillouin zone, shaded gray, of a transi-
tion metal dichalcogenide, with ±K valleys annotated. . . . . . . . . . . . . 22

2.5 Illustration of the spin-orbit splitting of the valence and conduction bands
into spin-polarized sub-bands. The red and blue coloring denotes spin-down
and spin-up (spin-up and spin-down) polarization of the sub-bands at the K
(−K) valley respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Illustration of the input field at time t0, defined in Eq. (2.121), and output
field at time t1, defined in Eq. (2.92) in relation to the system. . . . . . . . . 26

2.7 Illustration of the detuned input and output fields interacting with a classically
driven system. The output field contains a contribution from the classical
drive, here colored red, which corresponds to the term proportional to α̃ in
Eq. (2.123). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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3.1 Illustration of the signal generation process. Flakes of TMD of varying thick-
ness are situated on top of an in-plane magnetized substrate. The oscillating
magnetization stemming from magnons in the uniform-precession mode in-
duces a dynamic shift in the resonance frequency of the excitonic modes of
the TMD, leading to a dynamic shift in the reflectivity for circularly polarized
light. The inset is an illustration of the magnon-induced oscillation in the
band gap energies at the ±K points. . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Graph of the beam waist of a focused beam. The beam waist has a minimum
value of W0 at the focal point, which is situated at z = 0 in the graph. The
beam waist increases to a value of

√
2W0 after a length z0 which is defined as

the depth of focus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Illustration of setup of optical elements required to obtain an output signal

and to perform scanning focal microscopy. The input field is colored red, and
the reflected output field is colored blue. Areas where the input and output
field overlap are colored purple. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Schematic of the optical setup employed in the lab for the experiment. a)
shows the setup just after the laser, which polarizes the laser with an iso-
lator, and adjusts the intensity with an attenuator. This part is connected
to area b) through an optical fiber. b) shows the construction of a local
oscillator branch. A half-wave plate (HWP) is used in conjunction with a
polarizing beam splitter to adjust the proportions of light that enters to the
local oscillator and the sample optical path. The local oscillator branch passes
through an acousto-optic modulator (AOM). When the AOM is active the re-
sulting diffracted light of first order is passed into an optical fiber. The other
branch is sent into an optical fiber where it passes through an EOM. When
the EOM drive is active, the light entering into the sample optical path will
be phase-modulated. c) shows optical path to the sample. The incoming light
is entirely transmitted through the PBS, and the beam waist is increased by
the Galilean expander. Passing through a quarter-wave plate (QWP) the light
has its polarization shifted to a clockwise or counterclockwise circular polar-
ization before entering the vacuum chamber and being focused and reflected
at the sample surface. Passing back through the QWP, the reflected light has
its polarization shifted to the orthogonal linear polarization, such that the
polarization has been shifted 90° compared to the light prior to the QWP.
The reflected light then has its beam waist reduced by the Galilean expander
before its entirely reflected by the PBS, and passed into an optical fiber. The
reflected light is then mixed with the local oscillator before detection by a
photodiode. Not pictured is the permanent magnet, which is situated over
and under the sample, such that the magnetic field is in the y direction. . . . 44

3.5 Illustration of the process of creating scanned images using scanning confocal
microscopy. The star symbol corresponds to measurement of the reflected
light intensity. The red arrows correspond to movement of the focused laser
spot on the sample surface, which in the experiment is achieved by moving
the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Sketch of the dimensions of the electromagnet (left) and permanent magnet
(right) as well as their respective magnetic fields. . . . . . . . . . . . . . . . 46
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3.7 Photo of the permanent magnet, sample, and the microwave coil in the vacuum
chamber. The permanent magnet is outlined in blue. The objective lens is
also visible down and to the right of the sample surface. . . . . . . . . . . . 47

3.8 Illustration of the Fourier spectrum and recorded beating of AM- and PM-
signals. a) Fourier spectrum of an amplitude-modulated signal. b) Fourier
spectrum of a phase-modulated signal, showing only the first order sidebands.
c) Graph of beating signal produced by amplitude modulation. Vertical axis
is the electric field of the signal. d) Graph of beating signal produced by phase
modulation. Vertical axis is the electric field of the signal. . . . . . . . . . . 50

3.9 Illustration of the setup used to calibrate the electro-optic modulator. The
input light and phase-modulated light is colored red, whereas the freuqency
shifted local oscillator is colored yellow. Areas where the phase-modulated
light and local oscillator overlap are colored orange. . . . . . . . . . . . . . . 51

4.1 Ferromagnetic resonance (FMR) characterized by the S11 spectrum for the
microwave coil. a) FMR spectrum over a large frequency span. The dips
correspond to absorption of energy due to excitation of magnons in a mag-
netostatic mode in the substrate. The large variations over long spans of
frequency are due to the spectral response of the components and constitute
noise. The red arrow shows the relative position of the high-resolution spec-
trum. b) High-resolution spectrum around a single magnetostatic mode. The
dashed red line corresponds to a curve fit of Eq. (3.5) with the parameters
ωmag = 7.148 GHz, γe = 2.099 MHz, and γmw = 0.235 MHz. . . . . . . . . . . 53

4.2 High resolution scans of three areas on the sample surface obtained with a
Galilean expander in the optical setup. The areas with a higher reflectivity
correspond to flakes of MoSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 a) Low resolution scan of the sample surface performed without a Galilean
expander in the optical setup. Each pixel in the scanned image corresponds
to a 10 µm× 10 µm area on the sample. b) Low resolution scan of the sample
surface performed with a Galilean expander added to the optical setup. Each
pixel in the scanned image corresponds to a 10 µm×10 µm area on the sample.
The areas annotated as 1, 2, and 3 are assumed to represent the same areas of
the sample surface for both scanned images. Higher resolution scans of these
areas, taken with a higher incident optical intensity, are shown in Fig. 4.2 . . 55

A.1 Illustration of a spin-flip in a one-dimensional lattice. The deviation in the
spin stemming from a magnon will generally be distributed over many lattice
sites to minimize the energy, as illustrated on the right-hand side. . . . . . . 61

D.1 Schematic of an optic attenuator consisiting of a half-wave plate (HWP) and
a polarizing beam splitter (PBS) with one of the output paths blocked. The
light polarized along an eigenaxis of the PBS is colored red or blue depending
on the axis. Areas where light of both polarizations overlap are colored purple. 74
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D.2 a) Illustration of the mechanics of a lens with a positive focal length. The
light rays emerge a length so before the lens, and are focused after a length
si after the lens. b) Illustration of the mechanics of a lens with a negative
focal length. Here the light rays are spread by the lens, as if they are focused
to a negative length si after the lens. c) Illustration of a collimated beam
passing through a Galilean expander. The lenses are placed such that their
focal points, f1 and f2, coincide. For a beam entering through the positive
(negative) lens, the beam waist is increased (decreased) from W1 (W2) to W2
(W1). The optical axis is shown in all figures as a dashed horizontal line. . . 75

D.3 Schematic of an optical circulator constructed from a polarizing beam splitter
(PBS) and a quarter-wave plate (QWP). The incident light is assumed to be
linearly polarized such that it passes through the PBS, whereas the reflected
light will enter the PBS with the orthogonal linear polarization such that it is
entirely reflected. The color of the light denotes the polarization, where red
denotes horizontal linear polarization, orange denotes circular polarization,
and yellow denotes vertical linear polarization. . . . . . . . . . . . . . . . . . 76

84



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Patrik Isene Sund

Characterization of a proximity-
mediated magnon–exciton coupling in a
ferromagnet/transition metal
dichalcogenide van der Waals
heterostructure

Master’s thesis in MTFYMA

Supervisor: Jeroen Danon (NTNU) and Koji Usami (University of Tokyo)

August 2020


	Acknowledgment
	Abstract
	Sammendrag
	List of Abbreviations
	Introduction
	Thesis overview

	Theory
	The Heisenberg picture and the rotating wave approximation
	Magnons in a ferromagnet
	Magnetic moments
	Origins of magnetic ordering
	Magnetization of magnetostatic modes in a ferromagnet

	Excitons in transition metal dichalcogenides
	Quantum mechanical description of excitons in a semiconductor
	Transition metal dichalcogenides

	Open quantum systems
	Quantum Langevin equation and input–output theory
	Input–output theory for driven harmonic oscillators
	Coupling excitons in a transition metal dichalcogenide to magnons


	Experimental setup
	Generating a signal
	YIG–MoSe2 Heterostructure
	Optical drive and optics
	Microwave drive and in-plane magnetization

	Signal readout
	Information storage in modulation-induced sidebands
	Modulation resulting from magnon–exciton coupling


	Experimental results
	Ferromagnetic resonance
	Imaging with scanning confocal microscopy
	Effect of the Galilean expander

	Reflection spectroscopy
	Determination of the magnon–exciton coupling strength

	Conclusion and future directions
	Magnons in a ferromagnetic lattice
	Magnetization of a ferromagnet
	Semiconductor–Light Hamiltonian and Bloch equations
	Construction of optical elements in the experimental setup
	Attenuators
	Galilean expander
	Circulator
	Other optical components in the setup

	References
	List of Figures

