
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

M
as

te
r’s

 th
es

is

Ivan Ushakov

Phase diagram of an extended Kane-
Mele-Hubbard model in strongly
correlated regime

Master’s thesis in Nanotechnology

Supervisor: Alireza Qaiumzadeh

July 2020





Ivan Ushakov

Phase diagram of an extended Kane-
Mele-Hubbard model in strongly
correlated regime

Master’s thesis in Nanotechnology
Supervisor: Alireza Qaiumzadeh
July 2020

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Abstract

The main purpose of this thesis is to consider an extended Kane-Mele-Hubbard model in strongly correlated regime
from reference [1], where both anisotropic exchanges and Dzyaloshinskii-Moriya interactions (DMI) are present,
and then apply Abrikosov fermion and Schwinger boson mean-field theories in order to construct phase diagrams,
in a way similar to reference [2]. From Abrikosov fermion mean-field theory, we found that the DMI closes the gaps
of the gapped spin liquids, turning the phase diagram into gapless spin liquid. At the same time, for intermediate
DMI strength, the chiral gapped spin liquid phase, which is stable against gauge fluctuations, begins to occur for
systems with strong anisotropic exchange, which is not observed when DMIs are abscent. When DMI is dependent
on intrinsic spin-orbit interaction and the next nearest neighbor hopping, the spin liquid gap closes completely.
From Schwinger boson mean-field theory, we found that strong DMI in general introduces more order to the
system, although the spin-liquid might still exist when anisotropic exchange is weak. In addition, in this thesis we
present how a spin-Hamiltonian can be derived from a second quantized electron Hamiltonian, a general idea behind
bosonization and fermionization, a simple example with Jordan-Wigner and Holstein-Primakoff transformations,
and symmetries in quantum mechanics.
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1 Introduction

A development of fast and power-efficient high-capacity electronic devices is of central importance these days. The
area of spintronics (electronics where electron spin is exploited) is a large area of research in both theoretical and
experimental physics. In the end of the 80’s, A. Fert and P. Grünberg independently discovered Giant magnetoresis-
tance (GMR)[3][4]. In turn, GMR was used to create a variety of ferromagnetic spintronic devices, one of these being
hard disk drives (HDD). Most of the experimentally achieved devices thus far have been ferromagnetic, despite the
existence of other magnetic phases like anti-ferromagnets (AFM). In order to exploit potential possibilities of other
phases, it might be important to construct a good theoretical description that can build a bridge between theory,
experiments and eventually device engineering.

Figure 1: Suppose that we have a hexagonal lattice defined by triangular sections. Suppose also that the spins are of AFM
nature, meaning that they ”want” to point in opposite direction of each other. As seen from the figure, the geometry does not
allow all the interactions to be satisfied simultaneously, and leads to magnetic frustration.

In theoretical physics, a particular interest is attributed to the so-called spin liquid phases in magnetic materials.
The driving force behind these are known as magnetic frustrations, an effect that arises in localized electron spins,
where different exchange interactions cannot be satisfied simultaneously. An example is illustrated in figure 1, where
the frustration arises from geometrical and AFM nature of the material. This gives a very large degeneracy of the
ground state, which in turn leads to thermal fluctuations in a correlated manner at low temperatures, giving rise to
a liquid-like matter. For classical fluctuations, the spins tend to order or freeze as T → 0. However, when quantum
effects are taken into the account, we get quantum fluctuations even when T → 0. With strong enough quantum
fluctuations, the material is defined as quantum spin liquid (QSL), a phase with lack of order, different superpositions
of spins, high quantum entanglement, fractional excitations and emerging gauge fields[5].

The QSLs have not been consistently defined experimentally, although there are some recent candidates. For in-
stance, experiments have shown that Ce2Zr2O7 pyrochlore shows signs of a 3D QSL[6]. Another candidate is
EtMe3Sb[Pd(dmit)2]2[7]. For practical reasons, we want to investigate possibility of QSLs in materials defined by
a honeycomb lattice. This is a reasonable approach because honeycomb lattice materials are 2D materials that can be
obtained experimentally. In particular, there have recently been obtained magnetic 2D honeycomb materials, stable
even at room temperature[8]. In addition, 2D materials are more practical to work with theoretically than 3D materi-
als, and there exists a strong theoretical knowledge related to magnetic honeycomb materials. One of the most known
is the so-called Kane-Mele-Hubbard (KMH) model, which we are going to consider later in the text.

With this in mind, our goal for the master thesis is to investigate potential existence of QSLs in an extended strongly
correlated KMH model from reference [1], and compare the result with phase diagram from reference [2]. In particular,
we want to see how anisotropic exchanges and Dzyaloshinskii-Moriya interactions (DMI) influence the phase diagram
in a such model, and what kind of phases it predicts. For Kagome lattices, it is in general known that long-range
order occurs for strong DMI, whilst small DMI is subject to discussion[9][10].

The thesis is structured in following way: In chapter 2, we discuss spin-Hamiltonians, and how these can be obtained.
In chapter 3, we introduce the main idea behind bosonization and fermionization, and show some examples. In chapter
4, we introduce the specific techniques that are going to be used for the derivation of the phase diagram. In chapter
5, we apply these techniques to the models from references [2][1], in order to construct phase diagrams. Finally, in
chapter 6, we conclude and discuss outlook.

1.1 Mathematical conventions

In this thesis, the site dependent spin components are written as Ŝ
(α)
i , where i denotes the site, and α denotes the

component direction. The directions are sometimes going to be denoted as {x, y, z} and other times as {1, 2, 3}, but
these notions are completely equivalent. The site independent spins are denoted as Ŝα. The unit-vectors in these
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directions are denoted as ~eα in order to avoid confusion with position operators. However, the unit vectors in an
arbitrary direction are denoted as n̂, and so are number operators. The specific notions should be obvious from the
context. In addition, the spins are either represented by symbols or numbers, with the following correspondance:

↑ ↔ 1; ↓ ↔ 2. (1.1.1)

That is, we have for example that:
2∑

α=1

f̂†iαf̂iα = f̂†i↑f̂i↑ + f̂†i↓f̂i↓. (1.1.2)

2



2 Spin Hamiltonians

When considering classical magnetic models in branches like statistical physics, we usually deal with Hamiltonians of
the form H({~Si}), where ~Si is a vector with certain magnitude pointing in certain direction. A typical example is
nearest neighbor interaction Hamiltonian of a 1D chain:

1

2

∑
〈i,j〉

J ~Si · ~Sj = JS2
N∑
i=1

cos θi,i+1, (2.0.1)

where J represents interactions, S is spin magnitude, and θi,i+1 is the angle between the spins at sites i and i + 1.
We see that if J < 0 the Hamiltonian is minimized when all the spins point in the same direction, and we get a
ferromagnetic ground state. If J > 0, the spins point in opposite directions, giving AFM. In quantum mechanics, the
spin components are replaced with the corresponding spin operators, and the analysis of the ground state becomes
more complicated. We will eventually return to that, but first, we will try to answer the following question: can
spin-Hamiltonians like 2.0.1 be obtained from more fundamental quantum mechanical models, so that we know they
represent our system in a realistic way?

2.1 A simple example: Antiferromagnetic Heisenberg Hamiltonian from half-filled
Hubbard model in a strongly correlated regime

2.1.1 The Hubbard model

The aim of this section is to show how an effective quantum mechanical spin-Hamiltonian can be derived from a second
quantized electron Hamiltonian. When doing so, we will not define some general method, but rather show the idea
through a simple, but important example. We follow the derivation from references [11][12]. Suppose that we have
the following second quantized eletron Hamiltonian:

Ĥ = −
∑
i,j

∑
α

tij ĉ
†
iαĉjα + U

∑
i

n̂i↑n̂i↓; tii = 0; tij = t∗ji, (2.1.1)

where i goes over all sites, and j = j(i) represents all the neighbors of the site i. This is known as the Hubbard model1,
and is of central importance in condensed matter physics. The first term, known as electron hopping, corresponds to
effective kinetic energy of the electrons in a periodic potential, and can be derived from the tight-binding model, where
the electrons are independent from each other (electron-electron Coulomb interactions are neglected)[13]. The second
term in 2.1.1 is the simplest way to introduce such electron-electron interactions. As we see, the term is non-zero only
when there are two electrons (with opposite spins) on the same site. Thus, when U > 0, the electrons on the same
site tend to be repulsed from each other. If U � tij ;∀i, j, the model is said to be strongly correlated. In addition, if
the number of electrons is the same as number of sites, the model is said to be half-filled.

The main challenge with this Hamiltonian is that each ĉ†iαĉjα-term contains operators from different sites, meaning
that assigning these terms to a spin-operator (which by definition has a specific site) is not possible. Instead, we want

to rewrite our Hamiltonian as a function of ĉ†iαĉiβ-pairs. Manipulating operators is a difficult task, and appropriate
approximations should usually be performed. One way is to approximate our Hamiltonian to an effective Hamiltonian
which is only valid for a subset of states of interest. For the applications in this thesis, this subset corresponds to
the states close to the ground state, known as low energy subspace (LES). The other part of the space is then known
as high energy subspace (HES). We see that for half-filled Hubbard model in strongly correlated regime, the system
eigenstates with exactly one electron per site have much lower energies than other eigenstates. We can use these two
subspaces of eigenstates as definitions for LES and HES, respectively.

2.1.2 Low and high energy subspace projections of a Hamiltonian

The idea of this subsection is to give an expression for an effective Hamiltonian for LES eigenstates. Let {|L〉} and
{|H〉} correspond to orthonormalized sets of LES and HES energy eigenstates, respectively. The projection operators
on the corresponding subspaces are then given by:

P̂ =
∑
L

|L〉 〈L| ; Q̂ =
∑
H

|H〉 〈H| . (2.1.2)

1Note that tij in this model is independent of the spin. When considering spin-orbit interactions, it turns out that this amplitude is
spin-dependent, meaning that the model becomes different.

3



Since the Hilbert space is complete, we must have that:

P̂ + Q̂ = 1. (2.1.3)

In addition, since the eigenstates are orthonormal, we have:

P̂ 2 =
∑
L,L′

|L〉 〈L|L′〉 〈L′| =
∑
L,L′

|L〉 〈L′| δLL′ = P̂ . (2.1.4)

In exactly the same manner, we can show that:
Q̂2 = Q̂ (2.1.5)

P̂ Q̂ = Q̂P̂ = 0. (2.1.6)

By using these relations, we rewrite the time-independent Schrödinger equation (TISE) as:

Ĥ |ψ〉 = E |ψ〉 =⇒ Ĥ(P̂ + Q̂) |ψ〉 = E(P̂ + Q̂) |ψ〉 =⇒
Q̂Ĥ(P̂ + Q̂) |ψ〉 = EQ̂ |ψ〉 =⇒ (Q̂ĤQ̂− E)(Q̂ |ψ〉) = −Q̂Ĥ(P̂ |ψ〉) =⇒

Q̂ |ψ〉 = −(Q̂ĤQ̂− E)−1Q̂Ĥ(P̂ |ψ〉).

(2.1.7)

Putting 2.1.7 back into TISE, we have:

Ĥ |ψ〉 = Ĥ(P̂ + Q̂) |ψ〉 = ĤP̂ |ψ〉+ ĤQ̂Q̂ |ψ〉 =

ĤP̂ P̂ |ψ〉 − ĤQ̂(Q̂ĤQ̂− E)−1Q̂ĤP̂ P̂ |ψ〉 = E(P̂ + Q̂) |ψ〉 .
(2.1.8)

Multiplying both sides with P̂ from the left, we get:[
P̂ ĤP̂ − P̂ ĤQ̂(Q̂ĤQ̂− E)−1Q̂ĤP̂

]
(P̂ |ψ〉) = E(P̂ |ψ〉) . (2.1.9)

We see that this effectively is the TISE for LES states P̂ |ψ〉, where the effective LES Hamiltonian is given by:

Ĥeff = P̂ ĤP̂ − P̂ ĤQ̂(Q̂ĤQ̂− E)−1Q̂ĤP̂ . (2.1.10)

2.1.3 Effective low energy subspace Hamiltonian of half-filled strongly correlated Hubbard model

We now try to find effective LES Hamiltonian for 2.1.1, with the assumption that the model is half-filled and strongly
correlated. We divide the Hamiltonian into two terms:

Ĥ = ĤK + ĤU , (2.1.11)

where
ĤK := −

∑
i,j

∑
α

tij ĉ
†
iαĉjα; ĤU := U

∑
i

n̂i↑n̂i↓. (2.1.12)

In order to make progress, we will have use for the identities in the following proposition:

Proposition 2.1. For the Hamiltonian 2.1.1 and the projection operators defined in terms of LES and HES for
this Hamiltonian, following identities are true:

P̂ ĤP̂ = P̂ ĤK P̂ = P̂ ĤU P̂ = 0 (2.1.13)

Q̂ĤP̂ = Q̂ĤK P̂ (2.1.14)

P̂ ĤQ̂ = P̂ ĤKQ̂ (2.1.15)

4



Proof. For an arbitrary state |Ψ〉, we have:

P̂ ĤU P̂ |Ψ〉 = P̂ ĤU

∑
L

〈L|Ψ〉 |L〉 = P̂U
∑
L

〈L|Ψ〉
∑
i

n̂i↑n̂i↓ |L〉 = 0, (2.1.16)

where in the last equality, we used the fact that any |L〉 has only singly-occupied sites. On the other hand,

P̂ ĤK P̂ |Ψ〉 = P̂ ĤK

∑
L

〈L|Ψ〉 |L〉 = −P̂
∑
L

〈L|Ψ〉
∑
i,j

∑
α

tij ĉ
†
iαĉjα |L〉 =

−P̂
∑
L

〈L|Ψ〉
∑
i,j

∑
α

tij |H(i, j, α)〉 = 0,
(2.1.17)

where in the third equality, we used the fact that an |L〉 only has singly-occupied sites, meaning that ĉ†iαĉjα |L〉 =

|H(i, j, α)〉, where |H(i, j, α)〉 is a HES state2. In the last equality, we used the fact that P̂ |H〉 = 0 for any HES state.
Combining 2.1.16 and 2.1.17, the identity 2.1.13 is proved.

Next, for an arbitrary state |Ψ〉:

Q̂ĤU P̂ |Ψ〉 = Q̂ĤU

∑
L

〈L|Ψ〉 |L〉 = Q̂U
∑
L

〈L|Ψ〉
∑
i

n̂i↑n̂i↓ |L〉 = 0, (2.1.18)

which proves 2.1.14. Finally, since a projection operator is always Hermitian, and so is ĤK and Ĥ, 2.1.15 is just the
adjoint of 2.1.14. This completes the proof.

By using the results in proposition 2.1, our effective Hamiltonian 2.1.10 becomes:

Ĥeff = −P̂ ĤKQ̂(Q̂ĤQ̂− E)−1Q̂ĤK P̂ . (2.1.19)

Our next step is to find (Q̂ĤQ̂ − E)−1. At this point, we make approximations based on the fact that our system
is strongly correlated (U � tij). First of all, we have that the two ĤK-operators in Ĥeff contribute with t2ij . We

then set tij = 0 for the (Q̂ĤQ̂ − E)−1-factor in order to get lowest order approximation. In such a case, we get

Q̂ĤQ̂ = Q̂ĤU Q̂ → U , where the limit comes from the fact that rightmost ĤK in the effective Hamiltonian creates
only one doubly occupied site in a LES state. The energy for a such eigenstate is given by E = 0, and thus, we end
up with following lowest order approximation:

(Q̂ĤQ̂− E)−1 ≈ 1

U
. (2.1.20)

Inserting this into 2.1.19, we end up with:

Ĥeff ≈ −P̂
Ĥ2
K

U
P̂ , (2.1.21)

where Q̂ has been eliminated based on an argument similar to the one used in 2.1.17. Inserting the expression for Ĥk

into 2.1.21, we have:

Ĥeff = − 1

U

∑
i,j

∑
α

∑
i′,j′

∑
β

tijti′j′ P̂ ĉ
†
iαĉjαĉ

†
i′β ĉj′βP̂ . (2.1.22)

The rightmost P̂ in this expression turns an arbitrary state into a linear combination of LES eigenstates. This means
that for non-zero Ĥeff-terms, we must have that ĉ†iαĉjαĉ

†
i′β ĉj′β doesn’t turn all of these eigenstates to HES states

(because the leftmost P̂ turns all HES states to 0). This means that for non-zero terms, ĉ†iαĉjαĉ
†
i′β ĉj′β cannot create

a double occupancy. As we see, this operator anihilates electrons at sites j and j′, and recreates them at sites i and
i′. In order to not have a double occupancy, we must either have i = j and i′ = j′, or i = j′ and j = i′. Since tii ≡ 0,
the former case gives zero-terms, and we are left with i = j′ and j = i′. We thus get:

Ĥeff = − 1

U

∑
i,j

∑
αβ

tijtjiP̂ ĉ
†
iαĉjαĉ

†
jβ ĉiβP̂ = − 1

U

∑
i,j

∑
αβ

|tij |2P̂ ĉ†iαĉjαĉ
†
jβ ĉiβP̂ =

− 1

U

∑
i,j

∑
αβ

|tij |2P̂ ĉ†iαĉjα(δij − ĉiβ ĉ†jβ)P̂ = − 1

U

∑
i,j

∑
αβ

|tij |2P̂ ĉ†iαĉiβ ĉjαĉ
†
jβP̂ =

− 1

U

∑
i,j

∑
αβ

|tij |2P̂ ĉ†iαĉiβP̂ P̂ ĉjαĉ
†
jβP̂ ,

(2.1.23)

2For i = j we have tij = 0, so these situations are disregarded.
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where in the last equality, we used the fact that rightmost P̂ creates a linear combination of LES eigenstates, whilst
ĉjαĉ

†
jβ creates and annihilates an electron at the same site, meaning that the state is still a linear combination of LES

eigenstates. Thus, inserting a P̂ in the middle will not affect anything. We have now obtained a Hamiltonian, where
the operators belong to the same site for each operator pair, and we are thus ready to rewrite these operator pairs in
terms of spin operators.

2.1.4 Rewriting second quantization operators in terms of spin operators

When achieving a fermionic Hamiltonian on the ĉ†iαĉiβ ĉjαĉ
†
jβ-form, the procedure for rewriting the Hamiltonian in

terms of spin operators is quite standard. We know that the defining property for a spin- 1
2 operators are the commu-

tation relations:

[Ŝ
(a)
i , Ŝ

(b)
i ] = i~

3∑
c=1

εabcŜ
(c)
i ; a, b ∈ {1, 2, 3}, (2.1.24)

and the constraint:

~̂S2
i = ~2S(S + 1) =

3~2

4
. (2.1.25)

We want to find some function Si({ĉiα}, {ĉ†iα}), where the anti-commutation relations of the fermions imply both
2.1.24 and 2.1.25. A standard process here is to use the relation3:

~̂Si =
~
2

2∑
α,β=1

ĉ†α~σαβ ĉβ . (2.1.26)

It is straight forward to show that 2.1.26 satisfies commutation relations in 2.1.24. In addition, by using the complete-
ness relation of Pauli matrices4, it is straight forward to show that 2.1.26 implies:

~̂S2
i =

3~2

4
(n̂i↑ + n̂i↓)(2− n̂i↑ − n̂i↓). (2.1.27)

For the LES eigenstates in our half-filled Hubbard model, n̂i↑ + n̂i↓ ≡ 1, meaning that 2.1.25 follows directly from
2.1.27. However, this model can also be used in cases with no occupancy and double occupancy. By considering total
spin at each site, both of these situations give 0 spin, which also follows from 2.1.27.

For further progress, we formulate following proposition, which can easily be proved by direct inspection:

Proposition 2.2. Given the operator ~̂Si defined in 2.1.26, following identities hold:

ĉ†iαĉiβ =
δαβ
2

(n̂i↑ + n̂i↓) +
1

~
~̂Si · ~σβα (2.1.28)

ĉiαĉ
†
iβ = δαβ(1− n̂i↑ + n̂i↓

2
)− 1

~
~̂Si · ~σαβ . (2.1.29)

Based on this, we have:

ĉ†iαĉiβP̂ =
[δαβ

2
(n̂i↑ + n̂i↓) +

1

~
~̂Si · ~σβα

]
P̂ =

[δαβ
2

+
1

~
~̂Si · ~σβα

]
P̂ , (2.1.30)

ĉiαĉ
†
iβP̂ =

[
δαβ(1− n̂i↑ + n̂i↓

2
)− 1

~
~̂Si · ~σαβ

]
P̂ =

[δαβ
2
− 1

~
~̂Si · ~σαβ

]
P̂ . (2.1.31)

Inserting these identities into 2.1.23, and dropping the P̂ -operators in the middle with the same argument as earlier,
we get:

Ĥeff = − 1

U

∑
i,j

∑
αβ

|tij |2P̂ ĉ†iαĉiβP̂ P̂ ĉjαĉ
†
jβP̂ =

− 1

U
P̂
∑
i,j

∑
αβ

|tij |2
[1

4
δαβ +

1

2~
δαβ( ~̂Si · ~σβα − ~̂Sj · ~σαβ)− 1

~2
( ~̂Si · ~σβα)( ~̂Sj · ~σαβ)

]
P̂ .

(2.1.32)

3This relation is going to be used in a reversed manner when applying Abrikosov fermionization in chapter 5. There is however a
significant difference between electron operators and Abrikosov fermion operators. Whilst the former by definition act in physical particle
Fock space, the latter act in quasi-particle Fock space, which corresponds to the Hilbert space of a system with constant number of electrons.

4See A.0.3 in appendix A
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For the first term, we have: ∑
i,j

∑
αβ

|tij |2
δαβ
4

=
∑
i,j

|tij |2

2
. (2.1.33)

For the second term: ∑
i,j

∑
αβ

|tij |2δαβ( ~̂Si · ~σβα − ~̂Sj · ~σαβ) =
∑
i,j

∑
α

|tij |2( ~̂Si − ~̂Sj) · ~σαα = 0, (2.1.34)

where in the last equality, we used the fact that for each |tij |2( ~̂Si − ~̂Sj)-term, there also exists a |tji|2( ~̂Sj − ~̂Si) =

−|tji|2( ~̂Si − ~̂Sj)-term in the sum. For the last term, we have:

∑
αβ

( ~̂Si · ~σβα)( ~̂Sj · ~σαβ) =

3∑
a,b=1

∑
αβ

Ŝ
(a)
i σ

(a)
βασ

(b)
αβŜ

(b)
j =

3∑
a,b=1

Ŝ
(a)
i Tr

(
σ(a)σ(b)

)
Ŝ

(b)
j = 2

3∑
a=1

Ŝ
(a)
i Ŝ

(a)
j = 2 ~̂Si · ~̂Sj ,

(2.1.35)

where we used the fact that Tr
(
σ(a)σ(b)

)
= 2δab. Putting all these expressions back into 2.1.32, we get:

Ĥeff = P̂
∑
i,j

Jij

[
~̂Si · ~̂Sj −

~2

4

]
P̂ , (2.1.36)

where we defined:

Jij :=
2|tij |2

U~2
> 0. (2.1.37)

Dropping the P̂ -operators by assuming that we are only interested in LES states, we arrive at an AFM spin-
Hamiltonian. We emphasize once again that the derivation was based on lowest order t/U -expansion, and higher
order expansions are possible (see reference [14] for a rigorous derivation). In addition, it should be said that the
projection method is not the only approach. For instance, exactly the same results could have been obtained by using
the time-independent perturbation theory, with ĤK as pertubation[13].
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3 Concept of bosonization and fermionization

Working analytically with spin-Hamiltonians like the one derived in previous section is difficult. The main challenge
arises from the fact that commutation relations of spin operator components give another spin component (see 2.1.24).
Our goal in this thesis is to extract ground state information from a spin-Hamiltonian, which is obtained by solving
the TISE Ĥ |Ψ〉 = E |Ψ〉 for the lowest eigenvalues E.

The idea to solve this equation near the ground state is following: suppose that we can define a set of some quasiparticles
in a such way, that different excitations of these quasiparticles represent different energy eigenstates of the system.
More specifically, the higher degree of excitation gives higher energy eigenvalue. The ground state is then given by
no excitation, and the lowest excitations are given by single quasiparticle excitations. Based on the theory of second
quantization, a perfect choice for such quasiparticles would be fermions or bosons. First of all, a number operator is
defined for fermions and bosons, from which the degree of excitation is directly obtained. This number defines the
Fock space of the quasiparticles, which can be set to correspond to the Hilbert space of our system. Secondly, the
commutation relations for bosons and anti-commutation relations for fermions give numbers, rather than operators,
meaning that this simplifies analytical work drastically. Thirdly, spin operators can be written as lowering and rising
operators, which in some sense have properties in common with creation and annihilation operators. These facts can
be exploited to construct fermionic or bosonic quasiparticles from spin-operators, and this is known as fermionization
and bosonization, respectively.

3.1 General approach

Our initial goal is to find a set of functions {f (α)
i }, so that

f
(α)
i ({ân}, {â†n}) = Ŝ

(α)
i ; α ∈ {1, 2, 3}, (3.1.1)

for a set {ân} of fermionic or bosonic operators. Such transformations can be directly inserted into spin-Hamiltonians.
At this point, it should be said that in some cases, the fermionic or bosonic operators represent some physically
existing quasiparticles or particles, whilst in other cases, they represent a purely mathematical abstraction, without

physical motivation, constructed to solve specific problems[15]. If the functions f
(α)
i are polynomic, and so is the spin-

Hamiltonian H({Ŝ(α)
i }), then the Hamiltonian becomes polynomic in fermionic or bosonic operators. The task then

is to find some canonical transformations5, so that the Hamiltonian can be written in terms of number operators only,
with the ground state usually corresponding to no quasiparticles6. This process is known as diagonalization. In the
following, we will show a general approach for diagonalizing quadratic Hamiltonians, which are of central importance.
Then, we will show some simple examples of fermionization and bosonization.

3.2 Quadratic Hamiltonians: a general diagonalization approach with Bogoliubov trans-
formations

In this section, we will present a general approach to diagonalization of quadratic Hermitian Hamiltonians. In addition,
we will present some specific examples of diagonalization that will be used later in the thesis. Starting with some
mathematical conventions, we have that the mathematical difference between fermions and bosons essentially is the
sign in the commutator, and a lot of expressions related to fermions and bosons will only have a difference in sign.
Therefore, it is customary to define following quantity:

ζ :=

{
−1 for fermions

+1 for bosons
(3.2.1)

With this definition, we can combine fermionic anti-commutator and bosonic commutator into one relation, given by

[Â, B̂]ζ := ÂB̂ − ζB̂Â =

{
{Â, B̂} for fermions

[Â, B̂] for bosons.
(3.2.2)

5Canonical transformation of fermionic or bosonic operators means that the corresponding anti-commutation or commutation relations
are preserved.

6This is not always the case. In section 5.3, we will consider Abrikosov fermions at half-filling, meaning that number of quasiparticles
is conserved. In a such case, the ground state is given by all quasiparticles occupying lower energy bands, whilst excitations happen to
higher bands.
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Next, for a lattice with N sites, a general quadratic Hamiltonian can be written on the form:

Ĥ =

N∑
j,j′=1

[
Cjj′ â

†
j âj′ +Djj′ âj â

†
j′ + Ejj′ âj âj′ + Fjj′ â

†
j â
†
j′

]
+G, (3.2.3)

where Cjj′ , Djj′ , Ejj′ , Fjj′ and G are constant coefficients, and {âj} are either fermionic or bosonic operators. The
idea is to organize this Hamiltonian into a matrix defined by the coefficients. By using the definition in 3.2.2, we must
have:

[âj , â
†
j′ ]ζ = δjj′ (3.2.4)

[âj , âj′ ]ζ = 0 (3.2.5)

[â†j , â
†
j′ ]ζ = 0. (3.2.6)

By applying these ζ-commutations, we can rewrite our Hamiltonian to:

Ĥ =

N∑
j,j′=1

[
(Cjj′ + ζDj′j)â

†
j âj′ + Ejj′ âj âj′ + Fjj′ â

†
j â
†
j′

]
+G+ Tr(D), (3.2.7)

where D is an N ×N matrix defined by coefficients Djj′ .

Next, we must have that our Hamiltonian is Hermitian, meaning that Ĥ = Ĥ†. We have that:

Ĥ† =

N∑
j,j′=1

[
(C∗j′j + ζD∗jj′)â

†
j âj′ + E∗j′j â

†
j â
†
j′ + F ∗j′j âj âj′

]
+G∗ + Tr(D∗). (3.2.8)

Defining:
2Ajj′ := Cjj′ + ζDj′j , (3.2.9)

and setting 3.2.7 equal to 3.2.8, we must have that:

Ajj′ = A∗j′j ; Fjj′ = E∗j′j . (3.2.10)

In addition, we have:

N∑
j,j′=1

[
Ejj′ âj âj′ + Fjj′ â

†
j â
†
j′

]
=

N∑
j,j′=1

[
ζEjj′ âj′ âj + ζFjj′ â

†
j′ â
†
j

]
=

N∑
j,j′=1

[
ζEj′j âj âj′ + ζFj′j â

†
j â
†
j′

]
, (3.2.11)

meaning that:
Ejj′ = ζEj′j ; Fjj′ = ζFj′j . (3.2.12)

The terms G and Tr(D) are constants, and can be dropped in the initial Hamiltonian. Defining Bjj′ := Fjj′ , we
summarize these results in the following proposition:

Proposition 3.1. A Hermitian Hamiltonian which is quadratic in either fermionic or bosonic creation and
annihilation operators can always be written on the form:

Ĥ =

N∑
j=1

N∑
j′=1

[
2Ajj′ â

†
j âj′ +Bjj′ â

†
j â
†
j′ +B∗jj′ âj′ âj

]
, (3.2.13)

where Ajj′ = A∗j′j ; Bjj′ = ζBj′j

This Hamiltonian can be organized into a matrix by following proposition, which is easily proved by direct inspection:

Proposition 3.2. The Hamiltonian in Proposition 3.1 can be written on the form:

Ĥ =
[
â† â

] [ A B
ζB∗ ζA∗

] [
â

â†

]
− ζTr(A). (3.2.14)

Here, A and B are N ×N matrices defined by coefficients [Ajj′ ] and [Bjj′ ], respectively, and the operator vectors
are defined as[
â† â

]
=
[
â†1 . . . â†N â1 . . . âN

]
and

[
â

â†

]
=
[
â† â

]†
. The matrices have following properties: A =
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A†; B = ζBT .

Given a Hamiltonian written on the same form as in Proposition 3.1, we can easily rewrite it into a matrix form in
proposition 3.2. The idea then is pretty simple - we want to find an invertible matrix T, so that when having the
Hamiltonian7:

Ĥ =
[
â† â

]
H

[
â

â†

]
=
[
â† â

]
(T†)−1︸ ︷︷ ︸[

ĉ† ĉ
]

(T†HT)︸ ︷︷ ︸
D

T−1

[
â

â†

]
︸ ︷︷ ︸ ĉ

ĉ†


, (3.2.15)

the matrix D := T†HT becomes diagonal, and, at the same time, the operator transformation[
ĉ

ĉ†

]
=
[
ĉ1 . . . ĉN ĉ†1 . . . ĉ†N

]T
= T−1

[
â

â†

]
(3.2.16)

is canonical. Such transformation is in general known as Bogoliubov transformation. If such T is found, the Hamiltonian
becomes diagonal in the ĉ-operators:

Ĥ =
[
ĉ† ĉ

]
D

[
ĉ

ĉ†

]
=
[
ĉ† ĉ

]

D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . D2N


[

ĉ

ĉ†

]
=

N∑
i=1

[
Diĉ
†
i ĉi +Di+N ĉiĉ

†
i

]
=

N∑
i=1

[
(Di + ζDi+N )ĉ†i ĉi +Di+N

]
.

(3.2.17)

Defining the operator J in C2N by the transformation:

J

[
u
v

]
=

[
v∗

u∗

]
; u,v ∈ CN , (3.2.18)

we summarize following general quadratic diagonalization theorem:

Theorem 3.1. Given a Hamiltonian on the form

Ĥ =
[
â† â

]
Hζ

[
â

â†

]
− ζTr(A); Hζ =

[
A B
ζB∗ ζA∗

]
, (3.2.19)

suppose that we can find an orthonormal set of N eigenvectors {x1, . . . ,xN} of the matrix

M =

[
A B
−B∗ −A∗

]
, (3.2.20)

with eigenvalues εi ≥ 0. Then, the set {Jx1, . . . ,JxN} is also a set of orthonormal eigenvectors with eigenvalues
ε′i = −εi. If
{x1, . . . ,xN ,Jx1, . . . ,JxN} is orthonormal, and hence spans C2N , then we can rewrite our Hamiltonian as

Ĥ =

N∑
i=1

[
2εiĉ

†
i ĉi + ζεi

]
− ζTr(A), (3.2.21)

where ĉ-operators are of same type (fermionic or bosonic) as â-operators, and are defined by the transformation[
ĉ

ĉ†

]
= T−1

[
â

â†

]
; T =

[
x1 . . . xN Jx1 . . . JxN

]
. (3.2.22)

7Note that the matrix T is not necessarily unitary. In fact, this matrix turns out to be unitary for fermions, but pseudo-unitary for
bosons.
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A proof of this theorem, as well as the conditions for existence of the necessary eigenvectors, can be found in ref-
erence [16]. In particular, fermionic matrices are diagonalizable this way when Hermitian, and bosonic matrices are
diagonalizable this way when positive definite (all eigenvalues positive). We now have a very general diagonalization
method that allows us in theory to approach any kind of quadratic Hamiltonians, and in subsection 3.3.2, we will
show how theorem 3.1 can be used directly. It should however be said that for most applications, the Hamiltonian
matrices become unpractially large, and finding all the eigenvalues might be a challenge. In many cases, the matrix
can be decoupled into smaller blocks - in particular, for a periodic lattice, we can use Fourier transform to achieve
this. The smaller blocks can then be solved by using theorem 3.1. However, even the resulting blocks might be larger
than necessary, and therefore, we will present some modified versions of theorem 3.1 in subsections 3.4.1 and 3.4.2.
These involve smaller matrices, and are constructed specifically to solve diagonalization problems that will arise in
sections 5.3 and 5.4.

3.3 Example: Bogoliubov transformation of a relevant special case

In this section, we will consider a Hamiltonian which is relevant if one wants to derive the results that will be presented
in Holstein-Primakoff example in 3.5.2. The Hamiltonian is given by:

Ĥ = γ(â†1â1 + â†2â2) + λâ†1â
†
2 + λâ2â1 =

γ(â†1â1 + â†2â2) +
λ

2
(â†1â

†
2 + ζâ†2â

†
1) +

λ

2
(â2â1 + ζâ1â2); γ, λ ∈ R.

(3.3.1)

We see that in this model, we have two non-diagonal terms with either two creation or two annihilation operators.
It is also easy to verify that the Hamiltonian is Hermitian. We will now diagonalize this Hamiltonian by doing the
Bogoliubov transformation directly, and then perform the same diagonalization by using theorem 3.1.

3.3.1 Diagonaliztion by doing Bogoliubov transformation directly

In this subsection, we closely follow the approach from reference [17]. We start with defining following Bogoliubov
transformation:

â†1 = uĉ†1 + vĉ2 (3.3.2)

â†2 = uĉ†2 + ζvĉ1 (3.3.3)

We want this transformation to be canonical, meaning that we require:

[ĉi, ĉ
†
j ]ζ = δij (3.3.4)

[ĉi, ĉj ]ζ = 0 (3.3.5)

[ĉ†i , ĉ
†
j ]ζ = 0; i, j ∈ {1, 2}. (3.3.6)

Assuming that these relations are true, we then have:

[â1, â
†
2]ζ = −ζ[â†2, â1]ζ = [u∗ĉ1 + v∗ĉ†2, uĉ

†
2 + ζvĉ1]ζ = 0 = [â2, â

†
1]ζ (3.3.7)

[â1, â
†
1]ζ = [u∗ĉ1 + v∗ĉ†2, uĉ

†
1 + vĉ2]ζ = |u|2[ĉ1, ĉ

†
1]ζ + |v|2[ĉ†2, ĉ2]ζ = |u|2[ĉ1, ĉ

†
1]ζ − ζ|v|2[ĉ2, ĉ

†
2]ζ = |u|2 − ζ|v|2 (3.3.8)

[â2, â
†
2]ζ = [u∗ĉ2 + ζv∗ĉ†1, uĉ

†
2 + ζvĉ1]ζ = |u|2 − ζ|v|2 (3.3.9)

[â†1, â
†
2]ζ = [uĉ†1 + vĉ2, uĉ

†
2 + ζvĉ1]ζ = ζuv[ĉ†1, ĉ1]ζ + vu[ĉ2, ĉ

†
2]ζ = vu− uv = 0 = [â2, â1]ζ . (3.3.10)

Thus, in order to not get any contradictions, we must have:

|u|2 − ζ|v|2 = 1. (3.3.11)

Next, based on proposition 3.1, we see that:

2A11 = γ; 2A22 = γ; B12 =
λ

2
; B21 = ζ

λ

2
; 0 otherwise. (3.3.12)
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According to proposition 3.2, we then have:

Ĥ =
1

2

[
â†1 â†2 â1 â2

] 
γ 0 0 λ
0 γ ζλ 0
0 ζλ ζγ 0
λ 0 0 ζγ



â1

â2

â†1
â†2

− ζγ =

1

2

[
â†1 â2 â†2 â1

] 
γ λ 0 0
λ ζγ 0 0
0 0 γ ζλ
0 0 ζλ ζγ



â1

â†2
â2

â†1

− ζγ =

1

2

[ [
â†1 â2

] [γ λ
λ ζγ

] [
â1

â†2

]
+
[
â†2 â1

] [ γ ζλ
ζλ ζγ

] [
â2

â†1

]]
− ζγ.

(3.3.13)

We have thus reduced the Hamiltonian matrix into two smaller blocks. This will simplify the further process. Next,
since we are working with real parameters, it is reasonable to assume that the Bogoliubov coefficients in 3.3.2 and
3.3.3, u and v are real. Writing this transformation on the matrix form, we then have:[

â1

â†2

]
=

[
u v
ζv u

] [
ĉ1
ĉ†2

]
=⇒

[
â†1 â2

]
=
[
ĉ†1 ĉ2

] [u ζv
v u

]
(3.3.14)

[
â2

â†1

]
=

[
u ζv
v u

] [
ĉ2
ĉ†1

]
=⇒

[
â†2 â1

]
=
[
ĉ†2 ĉ1

] [ u v
ζv u

]
(3.3.15)

From this, we see that

Ĥ =
1

2

[ [
ĉ†1 ĉ2

] [u ζv
v u

] [
γ λ
λ ζγ

] [
u v
ζv u

] [
ĉ1
ĉ†2

]
+

[
ĉ†2 ĉ1

] [ u v
ζv u

] [
γ ζλ
ζλ ζγ

] [
u ζv
v u

] [
ĉ2
ĉ†1

] ]
− ζγ,

(3.3.16)

so that we want [
u ζv
v u

] [
γ λ
λ ζγ

] [
u v
ζv u

]
=

[
γ(u2 + ζv2) + 2ζλuv λ(u2 + ζv2) + 2γuv
λ(u2 + ζv2) + 2γuv ζγ(u2 + ζv2) + 2λuv

]
(3.3.17)

and [
u v
ζv u

] [
γ ζλ
ζλ ζγ

] [
u ζv
v u

]
=

[
γ(u2 + ζv2) + 2ζλuv ζλ(u2 + ζv2) + 2ζγuv
ζλ(u2 + ζv2) + 2ζγuv ζγ(u2 + ζv2) + 2λuv

]
, (3.3.18)

to be diagonal. We see that this is achieved when:

λ(u2 + ζv2) + 2γuv = 0 (3.3.19)

From 3.3.11, we also have the constraint:
u2 − ζv2 = 1. (3.3.20)

This constraint can be satisfied by writing:

u = cos(ηζθ); v = −ζηζ sin(ηζθ); θ ∈ R, (3.3.21)

where we defined:

ηζ :=
(1− ζ) + i(1 + ζ)

2
=

{
1 ζ = −1

i ζ = +1
. (3.3.22)

We thus have:
λ(u2 + ζv2) + 2γuv = λ[cos2(ηζθ) + ζη2

ζ sin2(ηζθ)]− 2ζηζγ cos(ηζθ) sin(ηζθ) =

λ cos(2ηζθ)− ζηζγ sin(2ηζθ) = 0 =⇒

tan(2ηζθ) =
λ

ζηζγ
=⇒

θ =
1

2ηζ

[
arctan

(
λ

ζηζγ

)
+ nπ

]
; n ∈ Z.

(3.3.23)
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We have now found an expression for u and v which makes 3.3.17 and 3.3.18 diagonal. Finally, we want to find the
diagonal values. We have:[

u v
ζv u

] [
γ ζλ
ζλ ζγ

] [
u ζv
v u

]
=

[
u v
ζv u

] [
γ ζλ
ζλ ζγ

] [
u ζv
v u

]
=

[
ε̃ 0
0 ζε̃

]
, (3.3.24)

where we defined:
ε̃ := γ(u2 + ζv2) + 2ζλuv (3.3.25)

Inserting 3.3.21 and θ from 3.3.23 into 3.3.25, we have

ε̃ = γ cos

(
arctan

(
λ

ζηζγ

)
+ nπ

)
− ηζλ sin

(
arctan

(
λ

ζηζγ

)
+ nπ

)
=

γ√
1−ζ λ2

γ2

− ζ λ
2

γ
1√

1−ζ λ2

γ2

when n is even

− γ√
1−ζ λ2

γ2

+ ζ λ
2

γ
1√

1−ζ λ2

γ2

when n is odd.

(3.3.26)

For the sake of second quantization stability, we want ε̃ ≥ 0. This is because we want no quasiparticle exitation to
correspond to the groundstate. This is not possible when some exitations have negative energies. Thus, we choose n
to be even when γ ≥ 0 and odd when γ < 0. We then get that:

ε̃ =
γ2√

γ2 − ζλ2
− ζ λ2√

γ2 − ζλ2
=
√
γ2 − ζλ2 (3.3.27)

Inserting 3.3.27 and 3.3.24 into 3.3.16, we finally get:

Ĥ =
√
γ2 − ζλ2(ĉ†1ĉ1 + ĉ†2ĉ2) + ζ(

√
γ2 − ζλ2 − γ) (3.3.28)

and the diagonalization process is completed.

3.3.2 Diagonalization with theorem 3.1

The direct Bogoliubov transformation process presented in previous subsection is quite standard. However, we see that
the process is lengthy, cumbersome and limiting, and instead of doing all the transformations, we can find eigenvalues
of appropriate matrices, and then use theorem 3.1. Taking a look at this theorem and returning to the first equality
in 3.3.13, we have that:

A =
1

2

[
γ 0
0 γ

]
; B =

1

2

[
0 λ
ζλ 0

]
. (3.3.29)

The M-matrix is then given by:

M =
1

2


γ 0 0 λ
0 γ ζλ 0
0 −λ −γ 0
−ζλ 0 0 −γ

 . (3.3.30)

Finding the eigenvalues of this matrix is not a very difficult task, and we obtain:

m1,m2 =
1

2

√
γ2 − ζλ2 (3.3.31)

m3,m4 = −1

2

√
γ2 − ζλ2. (3.3.32)

We see that the eigenvalues have a structure which is expected from the theorem. From 3.2.21, we then get:

Ĥ =
√
γ2 − ζλ2(ĉ†1ĉ1 + ĉ†2ĉ2) + ζ(

√
γ2 − ζλ2 − γ), (3.3.33)

which is exactly the same result. This shows the strength of theorem 3.1.
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3.4 Some modified diagonalization theorems

As we see in theorem 3.1, the vector
[
â† â

]
contains the subvector â twice. Because of that, the Hamiltonian matrix

Hζ is twice as large as necessary. As we will see in sections 5.3 and 5.4, it is often possible to organize the Hamiltonians
into smaller matrices, where the entries in the vectors correspond to different operators only. For that reason, we are
going to present two alternative diagonalization theorems.

3.4.1 A modified fermionic diagonalization approach

Suppose that we have a Hermitian m×m matrix H, and that our Hamiltonian, up to constant near, is given by:

Ĥ = â†Hâ; â =
[
α̂1 . . . α̂m

]T
, (3.4.1)

where â is m-sized vector with fermionic operators as entries. As we see, the vector entries have unique operators. We
then define an m×m transformation matrix T in a such way, that

Tâ = ĉ =
[
γ̂1 . . . γ̂m

]T
, (3.4.2)

(Tâ)† = â†T† = ĉ† =
[
γ̂†1 . . . γ̂†m

]
(3.4.3)

become canonical transformations. At the same time, having:

Ĥ = â†Hâ = â†T†(T†)−1HT−1Tâ = ĉ†Dĉ, (3.4.4)

where we defined D := (T†)−1HT−1, we want D to be diagonal, meaning that we can write it on the form:

D = diag (λ1, . . . , λm). (3.4.5)

At this point, we want to determine whether a such transformation matrix can exist. For fermionic operators in â, we
have that:

{âp′ , â†p} = Ip′p, (3.4.6)

where I is the identity matrix. In order to have a canonical transformation, the same relation must hold for ĉ-vector:

Ip′p = {ĉp′ , ĉ†p} = {(Tâ)p′ , (Tâ)†p} = {
m∑

p′′=1

Tp′p′′ âp′′ ,
m∑

p′′′=1

T∗pp′′′ â
†
p′′′} =

m∑
p′′,p′′′=1

[
Tp′p′′(T

†)p′′′p{âp′′ , â†p′′′}
]

=

m∑
p′′,p′′′=1

Tp′p′′Ip′′p′′′(T
†)p′′′p = (TIT†)p′p = (TT†)p′p.

(3.4.7)

Thus, we have following property:

Proposition 3.3. A transformation matrix T for fermions is canonical if and only if it is unitary.

If the transformation is canonical for fermions, we then have:

D = (T†)−1HT−1 = THT†, (3.4.8)

which means that H should be unitary diagonalizable. From the spectral theorem in linear algebra, we know that H
is diagonalizable by a unitary matrix if and only if H is normal. Having that all Hermitian matrices are normal, we
have thus proved that diagonalization is possible.

The next step is then to find the diagonal elements in a such diagonalization. Suppose that:

D = THT† = diag (λ1, . . . , λm). (3.4.9)

Writing the matrix T† more explicitly on the form:

T† =
[
~w1 . . . ~wm

]
, (3.4.10)

we have:
H
[
~w1 . . . ~wm

]
=
[
~w1 . . . ~wm

]
diag (λ1, . . . , λm) =

[
λ1 ~w1 . . . λm ~wm

]
, (3.4.11)

which means that:
H~wp = λp ~wp; p ∈ {1, 2, . . . ,m}. (3.4.12)

Thus, we get following proposition:
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Proposition 3.4. A Hermitian matrix H in a Hamiltonian of the form 3.4.1 can be canonically diagonalized with
a unitary matrix T, so that:

D = THT† = diag (λ1, . . . , λm), (3.4.13)

where {λp} are eigenvalues of H.

Returning back to 3.4.4, we summarize the results in following theorem:

Theorem 3.2. Given a Hermitian m×m matrix H and a Hamiltonian:

Ĥ = â†Hâ; â =
[
α̂1 . . . α̂m

]T
, (3.4.14)

where {α̂i} are fermionic operators, the Hamiltonian can be canonically diagonalized into:

Ĥ = ĉ† diag (λ1, . . . , λm)ĉ =

m∑
p=1

λpγ̂
†
pγ̂p, (3.4.15)

where {γ̂p} are fermionic operators and {λp} are eigenvalues of H.

3.4.2 A modified bosonic diagonalization approach

In previous subsection, we had that all entries in operator vector â were fermionic annihilation operators. As we see
from equation 3.4.6, the exactly same approach would not work for bosonic operators. However, we can reorganize
the entries in the operator vector, and define a slightly modified unit matrix. In such a case, we should have the same
amount of creation and annihilation operators in the operator vectors, and for that reason, we rewrite dimensions of
our matrices and vectors to 2m. Suppose than we now have a 2m× 2m Hamiltonian matrix:

H =

[
M1 M2

M3 M4

]
, (3.4.16)

where Mi are m×m square matrices, and suppose next that our Hamiltonian is given by:

Ĥ = â†Hâ; â =
[
α̂1 . . . α̂m α̂†m+1 . . . α̂†2m

]T
, (3.4.17)

where â is 2m-sized vector with bosonic operators. Unlike the fermionic case, half of the vector entries are written as
annihilation operators, and another half as creation operators.

In the same manner as for fermionic case, we define a 2m× 2m transformation matrix T:

Tâ = ĉ =
[
γ̂1 . . . γ̂m γ̂†m+1 . . . γ̂†2m

]T
, (3.4.18)

(Tâ)† = â†T† =
[
γ̂†1 . . . γ̂†m γ̂m+1 . . . γ̂2m

]
, (3.4.19)

which we want to be canonical. Again, we write:

Ĥ = â†Hâ = â†T†(T†)−1HT−1Tâ = ĉ†Dĉ, (3.4.20)

where D = (T†)−1HT−1. Also here, we want D to be diagonal. However, this time, we write diagonal entries on slightly
different form:

D = diag (λ1, . . . , λm,−λm+1, . . . ,−λ2m). (3.4.21)

Next, we introduce a slightly modified 2m× 2m unit matrix, known as para unit matrix Ĩ, with entries defined by:

Ĩp′p :=


1 if p′ = p and p ∈ {1, 2, . . .m}
−1 if p′ = p and p ∈ {m+ 1,m+ 2, . . . 2m}
1 if p′ 6= p

. (3.4.22)

We then have that:
[âp′ , â

†
p] = Ĩp′p, (3.4.23)
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which is analogous to 3.4.6. In order to have a canonical transformation, the same relation must hold for the ĉ-vector:

Ĩp′p = [ĉp′ , ĉ
†
p] = [(Tâ)p′ , (Tâ)†p] = [

2m∑
p′′=1

Tp′p′′ âp′′ ,
2m∑
p′′′=1

T∗pp′′′ â
†
p′′′ ] =

2m∑
p′′,p′′′=1

[
Tp′p′′(T

†)p′′′p[âp′′ , â
†
p′′′ ]
]

=

2m∑
p′′,p′′′=1

Tp′p′′ Ĩp′′p′′′(T
†)p′′′p = (TĨT†)p′p.

(3.4.24)

Thus, we have a following property:

Proposition 3.5. A transformation matrix T for bosons is canonical if and only if following holds:

TĨT† = Ĩ ⇐⇒ T†ĨT = Ĩ , (3.4.25)

where Ĩ is a para unit matrix. A such matrix T is known as pseudo-unitary matrix.

Next, we want to find the condition for D to be diagonal. Suppose this is the case, so that

D = (T†)−1HT−1 = diag (λ1, . . . , λm,−λm+1, . . . ,−λ2m) = ĨL, (3.4.26)

where we defined:
L := diag (λ1, . . . , λm, λm+1, . . . , λ2m). (3.4.27)

We then have:
HT−1 = ĨT−1L, (3.4.28)

where we have assumed that T is pseudo-unitary. We write T−1 more explicitly as:

T−1 =
[
~w1 . . . ~w2m

]
=

[
~u1 . . . ~u2m

~v1 . . . ~v2m

]
, (3.4.29)

where ~ui and ~vi are vectors of same size. We then have,

H

[
~u1 . . . ~u2m

~v1 . . . ~v2m

]
= Ĩ

[
~u1 . . . ~u2m

~v1 . . . ~v2m

]
diag (λ1, . . . , λ2m) = Ĩ

[
λ1~u1 . . . λ2m~u2m

λ1~v1 . . . λ2m~v2m

]
, (3.4.30)

meaning that
H~wp = λpĨ ~wp ⇐⇒ ĨH~wp = λp ~wp, (3.4.31)

where we have used the fact that Ĩ2 = I. We thus end up with following proposition:

Proposition 3.6. If a matrix H is diagonalizable by a pseudo-unitary matrix T, such that

(T†)−1HT−1 = diag (λ1, . . . , λm,−λm+1, . . . ,−λ2m), (3.4.32)

then the values {λp} are eigenvalues of the matrix ĨH.

The central question then is when such diagonalization is possible. Fortunately, following theorem (which we cite word
by word) is proved in reference [18]:

Theorem 3.3. A 2m-square Hermitian matrix H can be pseudo-unitary diagonalized into a matrix with all
diagonal elements positive if and only if H is positive definite.

A Hermitian matrix is positive definite if and only if all of its eigenvalues are positive. Thus, when diagonalizing bosonic
matrices, we should find eigenvalues of H to ensure that the matrix is diagonalizable, and then find eigenvalues of
ĨH to find diagonal elements. The fact that all diagonal elements are positive also ensures stability of the second
quantization.

Returning back to 3.4.20, we end up with following theorem:

Theorem 3.4. Given a Hermitian 2m× 2m matrix H and a Hamiltonian:

Ĥ = â†Hâ; â =
[
α̂1 . . . α̂m α̂†m+1 . . . α̂†2m

]T
, (3.4.33)
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where {α̂i} are bosonic operators, the Hamiltonian can be canonically diagonalized into:

Ĥ = ĉ† diag (λ1, . . . , λm,−λm+1, . . . ,−λ2m)ĉ =

m∑
p=1

λpγ̂
†
pγ̂p −

2m∑
p=m+1

λpγ̂
†
pγ̂p −

2m∑
p=m+1

λp, (3.4.34)

if and only if H has all of its eigenvalues positive. Here, {γ̂i} are bosonic operators and {λp} are eigenvalues of

ĨH. {λp} are positive for p ∈ {1, 2, . . . ,m} and negative for p ∈ {m+ 1,m+ 2, . . . , 2m}, so that all the terms in
3.4.34 have positive coefficients.

It should be said that a theorem similar to theorem 3.4 can also be derived for fermions. In such a case, we use
fermionic anti-commutation relation and unit matrix in 3.4.23, and then follow the same derivation approach, as we
did for theorem 3.2. A such fermionic diagonalization theorem can then be used to diagonalize a Hamiltonian that
would arise if one derives the results that we are going to present in subsection 3.5.1.

3.5 Examples of fermionization and bosonization: XY-chain in transverse magnetic
field

We will now finish this chapter by presenting a simple model, and summarize some results when the model is treated
with a fermionization technique known as Jordan-Wigner transformation (JWT), and a bosonization technique known
as Holstein-Primakoff transformation (HPT). Suppose that our system is described by the Hamiltonian:

Ĥ = −
N∑
j=1

[
J (x)Ŝ

(x)
j Ŝ

(x)
j+1 + J (y)Ŝ

(y)
j Ŝ

(y)
j+1 + 2SBŜ

(z)
j

]
; Ŝ

(α)
N+1 = Ŝ

(α)
1 , ∀α ∈ {x, y, z}, (3.5.1)

where the lattice is a 1D evenly spaced chain and S = 1
2 is the electron spin number. Physically, we see that this

model represents a chain being closed in a ring (periodic boundary condition), where the spins interact with nearest
neighbors anisotropically in the xy-plane (represented by J (x) and J (y)), and also with an external transverse magnetic
field (represented by B) in the z-direction.

This model can be exactly fermionized by using the JWT. Close to the ground state (or when S → ∞), the model
might be effectively bosonized by HPT. In the next two subsections, we will introduce these transformations and
summarize the results when these transformations are applied to the model.

3.5.1 Fermionization with Jordan-Wigner transformation

The JWT is defined as:

Ŝ
(x)
j =

~
2
e
iπ

∑j−1

j′=1
n̂j′ f̂j + H.c.

Ŝ
(y)
j = i

~
2
e
iπ

∑j−1

j′=1
n̂j′ f̂j + H.c.

Ŝ
(z)
j = ~

(
n̂j −

1

2

)
,

(3.5.2)

where {f̂j} are fermionic operators, and n̂j = f̂†j f̂j is the number operator. By direct inspection, it is straight forward

to show that this transformation is true for 1
2 -spins. However, we see that the sum within the exponent requires linear

ordering of lattice sites. Even if we define some spiral-like linear ordering in 2D or 3D lattices, the realistic neighbor
interactions would be virtually impossible to implement. Therefore, JWT is only suited for 1D lattices, although there
exists a modified version of JWT that works in 2D[19]. In addition, the total number of fermionic particles in JWT
is not conserved, and the JW fermions do not represent physical particles, but are rather convenient mathematical
objects, known as auxiliary quasiparticles[15].

By inserting 3.5.2 into 3.5.1, doing Fourier transformation of the fermionic operators, and then diagonalizing the
resulting Hamiltonian, we end up with following Hamiltonian[20]:

Ĥ =
∑
k

ε
(JW)
k (f̂†k f̂k + f̂†−kf̂−k − 1), (3.5.3)

where

ε
(JW)
k =

~2J

2

[(
cos(ka)− 2B

~J
)2

+ γ2 sin2(ka)
] 1

2

. (3.5.4)
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Here, J and γ are defined by the relations:

J (x) = J
1 + γ

2
; J (y) = J

1− γ
2

, (3.5.5)

a is lattice constant, and k represents the 1D Brillouin zone in the reciprocal space of the chain. A plot of 3.5.4 can
be seen in figure 2a.

3.5.2 Bosonization with Holstein-Primakoff transformation

The HPT relative to the z-axis is defined as:

Ŝ
(+)
j = ~(

√
2S − â†j âj)âj

Ŝ
(−)
j = ~â†j

√
2S − â†j âj

Ŝ
(z)
j = 2~(S − â†j âj),

(3.5.6)

where Ŝ
(±)
j := Ŝ

(y)
j ± iŜ(y)

j , and {âj} are bosonic operators. In fact, these bosonic operators represent real physical
quasiparticles known as magnons[15]. By assuming that the ground state is highly ordered along the z-direction (or
that spins behave classically with S →∞), the square-roots can be expanded to the lowest order. The excitations of
magnons then represent small fluctuations around the z-direction.

In order to insert 3.5.6 into 3.5.1, we should first define the ordered direction. For strong magnetic field, we would
expect this direction to be parallel to the field. However, for weak fields, the situation becomes more complicated. To
overcome this, we can use a semiclassical approach: we replace the spin operators in 3.5.1 with vector values, and then
minimize the Hamiltonian as function of these vector values. Assuming that all spins point in the same direction, we
can then find the assumed ordering direction of the ground state. Assuming without loss of generality that J (x) > |J (x)|
and B ≥ 0, we can then perform Fourier transform and diagonalization to get following Hamiltonian[21]:

Ĥ =
∑
k

ε
(HP)
k (â†kâk + â†−kâ−k + 1), (3.5.7)

where {âk} are bosonic operators, and

ε
(HP)
k =


~B
[(

1− ~J (x)

B
cos(ka))(1− ~J (y)

B
cos(ka)

)] 1
2

J (x) ≤ B

~2J (x)
[(

1− B2

(~J (x))2
cos(ka))(1− J (y)

J (x)
cos(ka)

)] 1
2

J (x) > B.
(3.5.8)

A plot of 3.5.8 can be seen in figure 2b.

(a) Jordan-Wigner fermionization. (b) Holstein-Primakoff bosonization.

Figure 2: Contour plots of εk as function of magnetic field B and reciprocal space coordinate ka with ~ = 1, J = 4 and
γ = 0.2. This gives J(x) = 2.4.
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We are not going to analyze the results in detail. However, it should be noted that although the dispersions in figure
2 have some similarities, the models are physically very different, and a careful physical analysis should be done in
order to make any comparisons and conclusions.
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4 Symmetric bosonization and fermionization

We have previously treated Holstein-Primakoff transformation as a bosonization technique. For practical reasons,
however, due to its square-root nature, we had to assume that the states near the ground state are highly ordered
along some direction z. This then allowed low order expansion approximations of the square-roots. However, if we
are to consider disordered states like QSLs, this technique is obviously out of question. In this chapter, we want to
introduce a technique that is more of an isotropic nature, and where rotational invariance can be manifested. When
doing so, we also introduce some concepts from group theory which are strongly related to many physical concepts
discussed in this thesis.

4.1 Group theory

Mathematically, a set G is called a group if there exists a certain operation ”·” between all its elements, and when
following axioms are satisfied:

∀ a, b ∈ G : (a · b) ∈ G (closure property)
∀ a, b, c ∈ G : (a · b) · c = a · (b · c) (associative property)
∃ e ∈ G : e · a = a · e = a, ∀a ∈ G (existence of identity element)
∀ a ∈ G,∃ a−1 ∈ G : a · a−1 = a−1 · a = e (existence of inverse element).

(4.1.1)

Physically, many groups that we are going to consider are related to spatial rotations (mostly in R3) about some origin
point. For instance, the G can be thought as a set of all possible rotations in 3D space about some fixed point, with
each element representing a specific rotation. The group operation is then to combine two subsequent rotations into
one single rotation8.

If a group in addition is a continuous set, it is said to be a Lie group. For instance, the group of all rotations is a Lie
group because we are able to perform all kind of infinitesimal rotations.

4.2 Matrix groups

From classical mechanics, we know that a spatial rotation can be represented by an orthogonal matrix, whilst many
quantum mechanical transformations are based on unitary matrices9. It is therefore instructive to classify some types
of matrix groups. The most general ones are groups of all real or complex invertible matrices of dimension n, known
as general linear groups of degree n, and usually denoted as GL(n,R) and GL(n,C), respectively. Using matrix
multiplication as group operation, we obviously see that all group axioms are satisfied. However, as we will see, we
are interested in more specific matrix groups. We now define following sets:

Definition 4.1.
A set of all orthogonal matrices of dimension n is denoted as O(n)
A set of all unitary matrices with dimension n is denoted as U(n)
A set of all orthogonal matrices with dimension n and determinant 1 is denoted as SO(n)
A set of all unitary matrices with dimension n and determinant 1 is denoted as SU(n)

Proposition 4.1. All the sets defined in definition 4.1 are groups.

Proof. The second axiom is obviously satisfied due to associative property of any matrix multiplication. The third
axiom is satisfied because an identity matrix is orthogonal, unitary and has a determinant equal to 1. The inverse
matrices do by definition exist for both orthogonal and unitary matrices, and due to a fundamental property of
determinants det

(
A−1

)
= det(A)

−1
, if a matrix has determinant equal to 1, then so does its inverse matrix. Thus, we

are left with only showing that first axiom is satisfied.

Suppose that O1 and O2 are arbitrary orthogonal matrices, and let their matrix product be O3 := O1O2. Then,

OT3 O3 = (O1O2)T (O1O2) = OT2 O
T
1 O1O2 = I (4.2.1)

O3O
T
3 = O1O2(O1O2)T = O1O2O

T
2 O

T
1 = I. (4.2.2)

8If the rotation elements are represented as matrices, the operation is just matrix multiplication.
9A matrix O is orthogonal if: OOT = OTO = I. A matrix U is unitary if: UU† = U†U = I
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Thus, a product of two orthogonal matrices is itself an orthogonal matrix. Same argument holds for unitary matrices.
Next, suppose that O1 and O2 both have determinant equal to 1. Then, having that det(AB) = det(A) det(B), O3

has determinant equal to 1 as well. Same holds for unitary matrices.

With these definitions in mind, we point out the most important matrix groups in this thesis are U(1) and SU(2).
However, due to its intuition friendly nature, the SO(3) group is going to be heavily discussed for the sake of concept
understanding.

4.3 Homomorphism between some matrix groups

As we already have mentioned, our physical applications of groups will mostly be related to spatial rotations. However,
the spatial rotations can be represented with different groups, as we now will show:

4.3.1 SO(2) and U(1) isomorphism

Suppose that we are performing a counterclockwise rotation of some point (x, y) in 2D space by an angle θ. The
rotated point (x′, y′) might then be expressed by following matrix notation:

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
. (4.3.1)

For any real θ, we see that our rotation matrix is from the SO(2) group, and in fact, the set of all such rotation
matrices is a complete SO(2) group.

However, there is another way of representing such rotations. Suppose instead that we write our point in a complex
plane as x+ iy. Next, suppose that we multiply this complex number by eiθ, where θ ∈ R. We get:

eiθ(x+ iy) = (cos θ + i sin θ)(x+ iy) = (x cos θ − y sin θ) + i(x sin θ + y cos θ) = x′ + iy′. (4.3.2)

Thus, eiθ performs a counterclockwise rotation of a complex number by an angle θ, just like our SO(2) matrix did on
a vector in R2. A complex number of the form eiθ (θ ∈ R) has a norm of 1, and thus forms the U(1) group.

We thus see that we can represent the same physical phenomena with different groups. Such groups are mathematically
said to be homomorphic. In addition, if there is a one-to-one correspondance between group elements, the groups are
said to be isomorphic, and as we see, this is in fact the case for SO(2) and U(1).

4.3.2 SO(3) and SU(2) 1:2 homomorphism

The concept of 2D rotations and complex numbers can be extended to 3D. We give a brief sketch of the process, but
ommit mathematical details10. First of all, we can show that a 3D rotation can be represented by an SO(3) matrix,
but also by a unit quaternion11. Secondly, it turns out that unit quaternions are isomorphic to SU(2). Finally, for
each 3D rotation, there exist two different unit quaternions that represent the same process. Thus, we say that there
is a 1:2 homomorphism between SO(3) and SU(2). As we will later see, in quantum mechanics, the SO(3) group is
related to the rotations of spin-1 operators, whilst the SU(2) group is related to the rotations of spin- 1

2 operators.

4.4 SO(3), SU(2), and rotations in R3 space

In this subsection, we provide more details related to rotations in 3D space and the corresponding groups. In particular,
we want to rewrite the group elements in terms of generators, which will play a fundamental role when connecting
group theory with quantum mechanics.

10More information can be found in [22]
11Quaternions are an extension of complex numbers, with one real unit and three different imaginary units.
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4.4.1 Euler angles

Figure 3: An Euler rotation is defined by three angles. In z-y’-z’ convention, the first rotation is performed around the z-axis,
the second around resulting y′-axis, and the last around resulting z′-axis.

The idea of Euler angles is to define a set of angles relative to some origin and some coordinate system in order to
describe any 3D rotation. For convenience, we use a so-called z-y’-z’ convention of Euler angles due to their close
relation to polar angles (see figure 3). Suppose that we start with some orthonormal coordinate system {~ex, ~ey, ~ez},
which we rotate counterclockwise by an angle φ in the xy-plane. This gives a rotated coordinate system {~ex′ , ~ey′ , ~ez}.
Next, suppose that we rotate the resulting coordinate system counterclockwise by an angle θ in the zx’-plane. This
then gives a new coordinate system {~ex′′ , ~ey′ , ~ez′}. Finally, we rotate the resulting coordinate system counterclockwise
by an angle χ in the x”y’-plane, and obtain final coordinate system {~ex′′′ , ~ey′′ , ~ez′}. The total process is depicted in
figure 3, and can be described as follows:

{~ex, ~ey, ~ez}
φ→ {~ex′ , ~ey′ , ~ez}

θ→ {~ex′′ , ~ey′ , ~ez′}
χ→ {~ex′′′ , ~ey′′ , ~ez′}. (4.4.1)

This defines a set of Euler angles {φ, θ, χ} that give us a way to perform a general rotation in 3D. However, this
method seems to be complicated due to the fact that rotations are intrinsic (the coordinate system is changing).
For practical reasons, we want to describe a general rotation by extrinsic rotations (rotations relative to some fixed
coordinate system), and fortunately, this can easily be done by using following theorem:

Theorem 4.1. Suppose that R(α, n̂) denotes a right-hand rotation by an angle α about some axis defined by
the unit vector n̂. Then, for the Euler rotations defined above, we have

R(χ,~ez′)R(θ,~ey′)R(φ,~ez) = R(φ,~ez)R(θ,~ey)R(χ,~ez) (4.4.2)

In other words, the same Euler rotation can be described by z-y-z rotations around the initial fixed coordinate system,
but with angles arranged in opposite order. In addition, it turns out that any kind of rotation in 3D can be described
by a such decomposition. We will later use Euler angles to describe rotations of Schwinger bosons and Abrikosov
fermions, but at this point, we introduce another technique that allows rotations in 3D.

4.4.2 Rodrigues’ rotation formula

It turns out that instead of describing a general 3D rotation by a coordinate system and three angles, we can equally
well describe it as a single rotation about some axis. Suppose that this axis is defined by a unit vector n̂, and that
the angle of rotation is ψ. The rotation is then described by R(ψ, n̂). Given an arbitrary point ~x ∈ R3, we want to
find an expression for ~x′ := R(ψ, n̂)~x.
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Figure 4: The concept of a Rodrigues’ rotation. A point ~x = ~x⊥ + ~x‖ is rotated by an angle ψ around an axis defined by a
unit vector n̂. The resulting point is given as ~x′ = ~x′⊥ + ~x‖. The unit vectors i amd j define the coordinate system in the plane
of rotation.

We follow the idea depicted in figure 4. Suppose first that we decompose our ~x into a part normal to n̂ and a part
orthogonal to it:

~x = ~x‖ + ~x⊥, (4.4.3)

where
~x‖ = (~x · n̂)n̂, (4.4.4)

~x⊥ = ~x− (~x · n̂)~n. (4.4.5)

Based on the figure 4, we see that ~x‖ is invariant during the rotation, whilst ~x⊥ changes direction on the rotation
circle. Thus, we see that the perpendicular component changes to

~x′⊥ = |~x⊥|(i cosψ + j sinψ) = ~x⊥ cosψ + j|~x⊥| sinψ, (4.4.6)

where i and j are unit vectors in the rotation circle (see figure 4). The unit vectors are defined in a such way that
{i, j, n̂} form an orthonormal right-hand coordinate system, and i = ~x⊥/|~x⊥|. Based on that, we have

j =
n̂× ~x⊥
|n̂× ~x⊥|

=
n̂× ~x⊥
|~x⊥|

=
n̂× ~x
|~x⊥|

(4.4.7)

Inserting 4.4.7 and 4.4.5 into 4.4.6, we get

~x′⊥ = [~x− (~x · n̂)n̂] cosψ + (n̂× ~x) sinψ (4.4.8)

Finally, since ~x‖ is invariant during the rotation, we just add 4.4.4 to 4.4.8, and obtain Rodrigues’ formula:

Theorem 4.2 (Rodrigues’ formula).

R(ψ, n̂)~x = (cosψ)~x+ (1− cosψ)(n̂ · ~x)n̂+ (sinψ)(n̂× ~x); ∀~x ∈ R3. (4.4.9)

4.4.3 Generators of SO(3) group

In this subsection, we will derive the so-called generators of the SO(3) group by using the Rodrigues’ formula. As
briefly discussed in section 4.1, a Lie group is based on continous transformations (in our case continuous rotations).
The idea is that the neighborhood of a group element can be expanded in terms of generators, and that each group
element then can be written as an exponential of these generators12.

We start off by Taylor-expanding Rodrigues’ formula into an infinitesimal angle ∆ψ:

R(∆ψ, n̂)~x = ~x+ ∆ψ(n̂× ~x) +O
(
(∆ψ)2

)
. (4.4.10)

12In this classical approach, the generators will turn out to be matrices. However, when moving to quantum mechanics, the generators
happen to be well-known operators.
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Next, suppose that for each choice of ~n, there exists a 3× 3 matrix J(~n), so that

(~n× ~x) = −iJ(n̂)~x; ∀~x ∈ R3. (4.4.11)

If a such matrix exists, our rotation becomes

R(∆ψ, n̂) = I − i∆ψJ(n̂) +O
(
(∆ψ)2

)
, (4.4.12)

where I is identity matrix. Finally, by using a fundamental mathematical property of exponential function

ex = lim
N→∞

(
I +

x

N

)N
, (4.4.13)

we get

R(ψ, n̂) = lim
N→∞

R(
ψ

N
N, n̂) = lim

N→∞
R(∆ψN, n̂) = lim

N→∞

(
R(∆ψ, n̂)

)N
=

lim
N→∞

(
I − i∆ψJ(n̂)

)N
= lim
N→∞

(
I − i ψ

N
J(n̂)

)N
= e−iψJ(n̂)

(4.4.14)

Thus, we have expressed our rotation in terms of an exponential. We now try to find an expression for generator
matrices with the following idea: we find three generators that represent rotations about our three coordinate axes,
and then try to use these as a basis for an arbitrary generator J(n̂)13. Suppose that our coordinate system is defined
by the orthonormal right-hand basis {~e1, ~e2, ~e3}. Then, our task is to solve:

(~ek × ~x) = −iJk~x; k ∈ {1, 2, 3}. (4.4.15)

By using the fundamental mathematical property of cross products:

~a×~b =

3∑
i=1

3∑
j=1

3∑
k=1

aibjεijk~ek, (4.4.16)

where εijk is Levi-Civita symbol, we have:

(~ek × ~x)i =

3∑
k′=1

3∑
j=1

δkk′xjεk′ji = −
3∑
j=1

εijkxj (4.4.17)

At the same time,

(−iJk~x)i = −i
3∑
j=1

(Jk)ijxj . (4.4.18)

Since those two equations are true ∀~x ∈ R3, we must have that:

(Jk)ij = −iεijk. (4.4.19)

This defines our basis generator matrices, so the final question is how those are related to arbitrary generators.
Applying 4.4.16 to 4.4.11, we have:

(n̂× ~x)i = −
3∑
j=1

3∑
k=1

εijknkxj =
[
− iJ(n̂)~x

]
i

= −i
3∑
j=1

[
J(n̂)

]
ij
xj . (4.4.20)

Again, being true ∀~x ∈ R3, we must have that:

[
J(n̂)

]
ij

= −i
3∑
k=1

εijknk. (4.4.21)

Inserting 4.4.19 into 4.4.21, we finally get:

[
J(n̂)

]
ij

=

3∑
k=1

nk(Jk)ij =⇒ J(n̂) = n1J1 + n2J2 + n3J3. (4.4.22)

Inserting this result into 4.4.14, we end up with the following theorem:

13Mathematically, we say that a such basis spans the Lie algebra of SO(3). The Lie algebra of SO(3) is known as so(3), whilst the Lie
algebra of SU(2) is known as su(2).
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Theorem 4.3.
R(ψ, n̂) = e−iψ(n1J1+n2J2+n3J3), (4.4.23)

where (Jk)ij = −iεijk and i, j, k ∈ {1, 2, 3}.

Based on theorem 4.1 and 4.3, we now see that an Euler rotation is given by:

R(φ,~e3)R(θ,~e2)R(χ,~e3) = e−iφJ3e−iθJ2e−iχJ3 . (4.4.24)

4.4.4 Relation between SO(3) generators and spin-1 operators

An important point should be made based on the results from previous subsection. By direct inspection, we see that
our generator basis obeys the communtation relations14:

[Ji, Jj ] = i

3∑
k=1

εijkJk; i, j ∈ {1, 2, 3}. (4.4.25)

Thus, if we have written

e−iψ(n1J1+n2J2+n3J3) = e−i
ψ
~ (n1~J1+n2~J2+n3~J3), (4.4.26)

and performed the substitution
~Jk 7→ Jk, (4.4.27)

the commutation relations for SO(3) basis generators would be exactly the same as for quantum mechanical angular
momentum operator. The question is then: what kind of angular momentum is this? Writing out our generator basis
explicitly (in the new ~-formalism defined in 4.4.26 and 4.4.27), we have:

J1 = ~

0 0 0
0 0 −i
0 i 0

 ; J2 = ~

 0 0 i
0 0 0
−i 0 0

 ; J3 = ~

0 −i 0
i 0 0
0 0 0

 . (4.4.28)

But we do also know from quantum mechanics that the spin-1 operators, when projected on z-axis eigenstates, are
given by:

J ′1 =
~√
2

0 1 0
1 0 1
0 1 0

 ; J ′2 =
~√
2

0 −i 0
i 0 −i
0 i 0

 ; J ′3 = ~

1 0 0
0 0 0
0 0 −1

 . (4.4.29)

In the matter of fact, 4.4.28 can be obtained from 4.4.29 by a unitary transformation. Thus, we conclude that
{J1, J2, J3} are related to the spin-1 operator.

4.4.5 Generators of SU(2) group and spin- 1
2 operators

As described in the previous subsection, the SO(3) group is related to spin-1 particles. In this thesis, however, we
are interested in fermions, which are spin- 1

2 particles. We are thus interested in finding a matrix group, where the
generators can be proportional to the Pauli matrices. In fact, as we will now show, this is the case for SU(2) group.

We begin with finding an expression for arbitrary U ∈ SU(2). Writing a general complex 2× 2 matrix:

U =

[
a11 + ib11 a12 + ib12

a21 + ib21 a22 + ib22

]
; aij , bij ∈ R, (4.4.30)

the inverse of this matrix is then given by

U−1 =
1

det(U)

[
a22 + ib22 −a12 − ib12

−a21 − ib21 a11 + ib11

]
. (4.4.31)

Since we are considering the SU(2) group, we must have that det(U) = 1 and U−1 = U†. Thus,

U† =

[
a11 − ib11 a21 − ib21

a12 − ib12 a22 − ib22

]
= U−1 =

[
a22 + ib22 −a12 − ib12

−a21 − ib21 a11 + ib11

]
. (4.4.32)

14Since the basis generators do not commute, e−iψ(n1J1+n2J2+n3J3) 6= e−iψn1J1e−iψn2J2e−iψn3J3 in theorem 4.3. This reminds us
about the fact that rotations in 3D do not commute.
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This means that
a11 = a22; b11 = −b22; a21 = −a12; b21 = b12. (4.4.33)

Defining
u0 := a11; u1 := b12; u2 := a12; u3 := b11, (4.4.34)

we thus see that any SU(2) matrix can be written on the form

U =

[
u0 + iu3 u2 + iu1

−u2 + iu1 u0 − iu3

]
;

{
u0, u1, u2, u3 ∈ R

u2
0 + u2

1 + u2
2 + u2

3 = 1
, (4.4.35)

and that this matrix can be decomposed to

U = u0I + iu1σ1 + iu2σ2 + iu3σ3 = u0I + i~u · ~σ, (4.4.36)

where I is an identity matrix, and σk’s are Pauli matrices. This is the first foreshadowing to the fact that SU(2) is
related to the spin- 1

2 operators.

Next, inspired by the derivation of SO(3) generators, we want in a similar manner to express our general SU(2) matrix
in terms of an exponential that depends on some unit vector n̂ and some angle η. Suppose that a such representation
exists for any SU(2) matrix, and is of the same form as for SO(3):

U(η, n̂) = e−iηn̂·~σ. (4.4.37)

By using Taylor expansion, we can then rewrite this as

e−iηn̂·~σ =

∞∑
m=0

(−iηn̂ · ~σ)m

m!
=

∞∑
m=0

(−i)2mη2m (n̂ · ~σ)2m

(2m)!
+

∞∑
m=0

(−i)2m+1η2m+1 (n̂ · ~σ)2m+1

(2m+ 1)!
. (4.4.38)

By using the relation15 (~v · ~σ)2 = I|~v|2 for all ~v ∈ R3, and the Taylor expansions of sine and cosine functions, we have

e−iηn̂·~σ = I

∞∑
m=0

(−1)m
η2m

(2m)!
− i(n̂ · ~σ)

∞∑
m=0

(−1)m
η2m+1

(2m+ 1)!
= I cos η − i(n̂ · ~σ) sin η. (4.4.39)

Comparing 4.4.39 with 4.4.36, we realize that the expressions are the same when

u0 = cos η; ~u = −(sin η)n̂. (4.4.40)

From 4.4.35, we see that the constraint u2
0 + u2

1 + u2
2 + u2

3 = 1 is automatically satisfied with this transformation. The
question is then whether this transformation covers all the elements in the SU(2) group. The constraint implies that
−1 ≤ u0 ≤ 1 and |~u|2 ≤ 1. If η ∈ [0, π], then we see that all the possible values of u0 are covered by cos η. On the
other hand, −n̂ can represent any direction in R3, whilst sin η represents all vector lengths from 0 to 1, which means
that all possible vectors ~u are covered, and there is also a one-to-one correspondence.

These results imply that any SU(2) matrix is uniquely determined by some unit vector n̂ and an angle η ∈ [0, π], with
the relation given in 4.4.37. However, as we remember from section 4.4, all 3D rotations can uniquely be determined
by a unit vector and an rotation angle in the iterval [0, 2π]. Thus, we conclude that our η corresponds to the half of
the rotation angle ψ, so that ψ = 2η. We end up with the following theorem:

Theorem 4.4. Any matrix U ∈ SU(2) is uniquely given by

U(ψ, n̂) = e−iψn̂·
~σ
2 , (4.4.41)

where n̂ ∈ R3 is a unit vector, ψ ∈ [0, 2π] and ~σ are Pauli matrices.

Rewriting

e−iψn̂·
~σ
2 = e−i

ψ
~ n̂·

~~σ
2 , (4.4.42)

we see that the generators (in ~-formalism) are given by

Sk =
~
2
σk; k ∈ {1, 2, 3}, (4.4.43)

15This relation can be proved by expanding the parenthesis, and using the fact that {σi, σj} = 2Iδij for Pauli matrices.
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which is the spin- 1
2 operator projected on its z-axis eigenstates. An SU(2) element is then given by

U(ψ, n̂) = e−i
ψ
~ n̂·~S , (4.4.44)

and we have therefore shown that SU(2) is related to spin- 1
2 operators in the same way as SO(3) is related to spin-1

operators16.

4.5 Connection with quantum mechanics

4.5.1 Quantum mechanical rotations

In the last part of previous section, we showed that SO(3) and SU(2) groups are directly related to quantum mechanical
spin-1 and spin- 1

2 operators, respectively, through the so-called generators. In this section, we want to extend the
concept of these groups to quantum mechanical systems, and realize that these groups then represent rotations of
spins or angular momentas in 3D space.

We know that in quantum mechanics, a physical observable A corresponds to a Hermitian operator Â. Different
physical states correspond to different vectors |ψ〉 in Hilbert space, and the expectation value of this observable, that
we can meassure experimentally for a given physical state |ψ〉, is given by

〈A〉 = 〈ψ|Â|ψ〉 . (4.5.1)

Now, suppose that some unitary operator Û transforms any state |ψ〉 into some other state |ψ′〉:
|ψ′〉 = Û |ψ〉 . (4.5.2)

We want to see how the expectation value of some observable A changes when we perform a such state transformation.
Having that Û−1 = Û† for a unitary transformation, we have

〈ψ′|Â|ψ′〉 = 〈ψ|Û†ÂÛ |ψ〉 . (4.5.3)

This is true for any state |ψ〉, meaning that instead of regarding this procedure as a state transformation, we can
regard this as an operator transformation:

Â′ = Û†ÂÛ . (4.5.4)

Now, suppose that our observable is some angular momentum

~̂J = Ĵ1~e1 + Ĵ2~e2 + Ĵ3~e3, (4.5.5)

with defining commutations

[Ĵi, Ĵj ] = i~
∑
k=1

εijkĴk; i, j ∈ {1, 2, 3}. (4.5.6)

Next, we generalize 4.4.44 to quantum mechanical operators:

e−i
ψ
~ n̂·~S 7→ e−i

ψ
~ n̂· ~̂J , (4.5.7)

where at this point, ~̂J can be any kind of angular momentum satisfying 4.5.6. Having that this is a unitary operator,
we want to see what kind of transformation it does. Without loss of generality, we consider n̂ = ~e3. Then, based on
4.5.4, we have the transformation:

Ĵ ′i = ei
ψ
~ Ĵ3 Ĵie

−iψ~ Ĵ3 ; i ∈ {1, 2, 3}. (4.5.8)

Due to the exponential form of the transformation, we can use Baker-Hausdorff theorem17, along with the commutation
relations, to do following:

Ĵ ′1 = ei
ψ
~ Ĵ3 Ĵ1e

−iψ~ Ĵ3 =

∞∑
n=0

1

n!
[Ĵ1,−i

ψ

~
Ĵ3]n = Ĵ1 + [Ĵ1,−i

ψ

~
Ĵ3] + . . . = Ĵ1 − ψĴ2 + . . . =

Ĵ1 − ψĴ2 +
1

2!
[−ψĴ2,−i

ψ

~
Ĵ3] + . . . = Ĵ1 − ψĴ2 −

1

2!
ψ2Ĵ1 + . . . = Ĵ1 − ψĴ2 −

1

2!
ψ2Ĵ1+

1

3!
[−ψ2Ĵ1,−i

ψ

~
Ĵ3] + . . . = Ĵ1 − ψĴ2 −

1

2!
ψ2Ĵ1 +

1

3!
ψ3Ĵ2 + . . . =

Ĵ1(1− 1

2!
ψ2 + . . .)− Ĵ2(ψ − 1

3!
ψ3 + . . .) = Ĵ1

∞∑
n=0

(−1)n
ψ2n

(2n)!
− Ĵ2

∞∑
n=0

(−1)n
ψ2n+1

(2n+ 1)!
= Ĵ1 cosψ − Ĵ2 sinψ.

(4.5.9)

16Mathematically, since the exponential forms are the same for SO(3) and SU(2), we say that Lie algebras so(3) and su(2) are isomorphic.
The 1:2 homomorphism between the groups is due to the difference in generators.

17See appendix A to recall the theorem.
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In exactly the same manner, we find
Ĵ ′2 = Ĵ1 sinψ + Ĵ2 cosψ, (4.5.10)

Ĵ ′3 = Ĵ3. (4.5.11)

Organizing this in a matrix, we haveĴ ′1Ĵ ′2
Ĵ ′3

 = ei
ψ
~ Ĵ3

Ĵ1

Ĵ2

Ĵ3

 e−iψ~ Ĵ3 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

Ĵ1

Ĵ2

Ĵ3

 . (4.5.12)

But this is a rotation of our angular momentum operator around the z-axis by ψ. Thus, we can conclude with the
following:

Theorem 4.5. The unitary operator

Û ~̂J
(ψ, n̂) = e−i

ψ
~ n̂· ~̂J (4.5.13)

produces a rotation of the corresponding angular momentum operator ~̂J by an angle ψ about an axis defined by
n̂.

We want to consider this theorem more carefully from the physical point of view. In general, the total angular
momentum for a physical particle is given by

~̂J = ~̂L+ ~̂S, (4.5.14)

where ~̂L is orbital angular momentum related to the spatial position of the particle, and ~̂S is intrinsic spin angular
momentum related to the spin orientation of the particle. Thus, in this case, Û ~̂J

(ψ, n̂) produces a global rotation of

the particle - both in its spatial orientation and in its intrinsic spin. Û~̂L
(ψ, n̂) on the other hand, produces only spatial

rotation of the particle, without rotating the spin, whilst Û ~̂S
(ψ, n̂) produces only spin rotation of the particle, without

changing the spatial orientation.

In this thesis, the positions of the spins are in rather fixed lattice sites, and we are thus interested in only making
spin rotations. Therefore, we conclude this section with the fact that the operator Û ~̂S

(ψ, n̂) produces rotations of the

particle spin.

4.5.2 Concept of symmetry breaking

We have earlier derived a unitary operator transformation, which was given by equation 4.5.4. An operator Â is then
said to be invariant under a unitary transformation Û when:

Û†ÂÛ = Â ⇔ ÂÛ = Û Â ⇔ [Â, Û ] = 0 (4.5.15)

That is, the operator is invariant under a unitary transformation if and only if the operator commutes with the
transformation. Suppose that we consider a Lie group of transformations Û(q), where q is the amount of transformation.
Then, as we have seen earlier, there exists a generator Q̂, so that:

Û(q) = e−i
q
~ Q̂. (4.5.16)

If we consider an infinitesimal amount of transformation ∆q, we can rewrite 4.5.16 as:

Û(∆q) = 1− i

~
Q̂∆q + Ô(∆q2). (4.5.17)

Suppose that Â is invariant under this infinitesimal transformation. Then,

[Â, 1− i

~
Q̂∆q + Ô(∆q2)] = − i

~
[Â, Q̂]∆q + Ô(∆q2) = 0. (4.5.18)

Since ∆q → 0, we must have that:
[Â, Q̂] = 0. (4.5.19)

This means that an operator is invariant under a continuous transformation in some topological neighborhood if and
only if the operator commutes with the generator of the continuous transformation.
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When an operator is invariant under a discrete transformation, we say that the operator has a discrete symmetry.
Analogously, when an operator is invariant under a continuous transformation, we say that the operator has a contin-
uous symmetry. If the operator under consideration is the Hamiltonian, we say that those are the symmetries of the
system. For instance, the system (Hamiltonian) might be invariant under the transformation z 7→ −z (known as Z2

symmetry), which is a discrete symmetry. On the other hand, the Hamiltonian might be invariant under any spin- 1
2

rotation transformation (SU(2) symmetry), which is a continuous symmetry.

Next, for simplicity, suppose that our Hamiltonian is given by:

Ĥ =
J

2

∑
〈i,j〉

~̂Si · ~̂Sj ; J < 0. (4.5.20)

This is a simple ferromagnetic model, meaning that for a ground state, all the spins are pointing in the same direction.
Intuitively, the system (Hamiltonian) should be invariant if we perform a global spin rotation. That is, if all the spin
operators in the Hamiltonian are rotated in the same manner. We can show this explicitly by using 4.5.19. Having
that the total spin operator of the system is given by:

~̂Stot :=
∑
i

~̂Si, (4.5.21)

the global rotation generator about a unit vector n̂ is given by:

Q̂ = n̂ · ~̂Stot = nxŜ
(x)
tot + nyŜ

(y)
tot + nzŜ

(z)
tot . (4.5.22)

Suppose that we consider following commutation relation:

[ ~̂Si · ~̂Sj , Ŝ(z)
tot ] = [Ŝ

(x)
i Ŝ

(x)
j + Ŝ

(y)
i Ŝ

(y)
j + Ŝ

(z)
i Ŝ

(z)
j , Ŝ

(z)
i + Ŝ

(z)
j ] =

[Ŝ
(x)
i , Ŝ

(z)
i ]Ŝ

(x)
j + [Ŝ

(y)
i , Ŝ

(z)
i ]Ŝ

(y)
j + [Ŝ

(x)
j , Ŝ

(z)
j ]Ŝ

(x)
i + [Ŝ

(y)
j , Ŝ

(z)
j ]Ŝ

(y)
i =

−i~Ŝ(y)
i Ŝ

(x)
j + i~Ŝ(x)

i Ŝ
(y)
j − i~Ŝ(y)

j Ŝ
(x)
i + i~Ŝ(x)

j Ŝ
(y)
i = 0.

(4.5.23)

Having that the Hamiltonian 4.5.20 is a sum of ~̂Si · ~̂Sj-terms, we must have that:

[Ĥ, Ŝ
(z)
tot ] = 0. (4.5.24)

In exactly the same manner, we can show a similar relation for Ŝ
(x)
tot and Ŝ

(y)
tot . Thus, we have:

[Ĥ, n̂ · ~̂Stot] = 0; ∀n̂, (4.5.25)

and the Hamiltonian is invariant under any kind of global spin rotation. However, as we mentioned, a ground state
of this Hamiltonian does not have the same symmetry. A global rotation of a ground state would in general produce
another ground state, pointing in a different direction. We say that the ground state spontaneously breaks the system
symmetry. This concept is impornant, because ordered phases usually can be described in terms of broken symmetries.

4.6 Schwinger bosons and Abrikosov fermions

Aimed with the spin rotation theory from previous sections in this chapter, we now want to find a fermionization and
bosonization technique where SU(2)-invariance is manifested. More precisely, we don’t want to have one direction
more special that some other. In order to find a such representation, we introduce the concept of bilinear operators.

4.6.1 Derivation through bilinear operators

Suppose that we can write some Hermitian operator Â on the form

Â =

n∑
i,j=1

â†iAij âj = â†Aâ, (4.6.1)

where â = [â1, . . . ân]T , the set of operators {âi} is either a set of bosonic or fermionic operators, and [Aij ] is some
n× n Hermitian matrix. This is known as bilinear form.
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Next, suppose that two Hermitian operators Â and B̂ can be written on the bilinear form 4.6.1, in terms of the same set
of bosonic or fermionic operators. Then, by using the bosonic commutation relations or fermionic anti-commutation
relations, it is straight-forward to show that

[Â, B̂] = [â†Aâ, â†Bâ] = â†[A,B]â, (4.6.2)

which is true for {âi} being both bosonic and fermionic. With this relation in mind, we now turn to spin-operators.
Having the defining property

[Ŝi, Ŝj ] = i~
3∑
k=1

εijkŜk, (4.6.3)

suppose that each of the spin componets can be written on bilinear form in terms of the same bosonic or fermionic
operators:

Ŝi = â†Siâ; i ∈ {1, 2, 3}. (4.6.4)

At this point, we have not made any definitions of matrices Si, other than that they are Hermitian. By combining
4.6.2 and 4.6.3, we get

[Ŝi, Ŝj ] = â†[Si, Sj ]â = i~
3∑
k=1

εijkŜk = i~
3∑
k=1

εijkâ
†Skâ =⇒ [Si, Sj ] = i~

3∑
k=1

εijkSk. (4.6.5)

Thus, such matrices should obey the same commutation relations as the spin operators. The natural choice for the
matrices is then the spin operators projected on z-axis eigenstates, which for spin- 1

2 are given by

Si =
~
2
σi; i ∈ {1, 2, 3}, (4.6.6)

where {σ1, σ2, σ3} are Pauli matrices. We then get:

Ŝi =
~
2

â†σiâ; i ∈ {1, 2, 3}. (4.6.7)

For this particular spin-1
2 case, such bosonic operators are known as Schwinger bosons, whilst such fermionic operators

are known as Abrikosov fermions (or Schwinger fermions).

In addition, it turns out that the Fock space for Schwinger bosons and Abrikosov fermions is limited by the following
constraint:

â†1â1 + â†2â2 = n̂a1
+ n̂a2

= 1, (4.6.8)

which basically tells us that exactly one such boson or fermion exists for a spin- 1
2 particle in a given state18. For

Abrikosov fermions, this constraint can be derived from the spin- 1
2 constraint

~̂S2 ≡ ~2S(S + 1) =
3~2

4
, (4.6.9)

by direct insertion of 4.6.7 into 4.6.9 and by using the completeness relation of Pauli matrices19. For Schwinger

bosons, the 4.6.8 constraint can be derived by considering spin eigenstates (of ~̂S2 and Ŝz) written in terms of second

quantization (in Schwinger bosons), and applying the ~̂S2 operator to give the constraint in 4.6.9 (see for instance
equation 7.9 in reference [23]).

We now summarize these results in following definition:

Definition 4.2 (Schwinger bosons and Abrikosov fermions). Suppose that some bosonic or fermionic operators
{â↑, â↓} satisfy following equations:

Ŝi =
~
2

[
â†↑ â†↓

]
σi

[
â↑
â↓

]
; i ∈ {1, 2, 3}, (4.6.10)

â†↑â↑ + â†↓â↓ = 1, (4.6.11)

where {Ŝ1, Ŝ2, Ŝ3} are spin-1
2 operator components. Them, such bosonic operators are known as Schwinger bosons,

18Since there are two such bosons or fermions per spin- 1
2

particle, it is common to denote such bosons or fermions as spin up and spin
down. That is, â1 = â↑ and â2 = â↓.

19See appendix A for the completeness relation of Pauli matrices.
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whilst such fermionic operators are known as Abrikosov fermions.

4.6.2 Rotations of Schwinger bosons and Abrikosov fermions

With this definition, unlike the approximated Holstein-Primakoff transformation, we see that Schwinger bosons and
Abrikosov fermions are of a more isotropic nature. Every spin component is given on the same form, relative to a
Pauli matrix in the corresponding direction. In fact, as we now will show, such operators transform like vectors in
SU(2) when spin-rotated.

Considering the general bilinear operator in 4.6.1, suppose that ~v = [v1 . . . vn]T is an eigenvector of the matrix [Aij ]
with eigenvalue v. We define a corresponding commutation eigenoperator v̂† as

v̂† =

n∑
i=1

â†ivi = â†~v. (4.6.12)

The reason for that name is that we have:
[Â, v̂†] = â†A~v = vv̂†, (4.6.13)

which is easily obtained by direct insertion, and by using commutation or anti-commutation relations for bosons or
fermions, respectively. We can then use this relation along with Baker-Hausdorff theorem to Â-rotate the commutation
eigenoperator by angle θ:

ei
θ
~ Âv̂†e−i

θ
~ Â = v̂† + [v̂†,−i θ

~
Â] + . . . = v̂† + i

θ

~
vv̂† + . . . = v̂† + i

θ

~
vv̂† +

1

2!

(
i
θ

~
v
)2
v̂† + . . . = ei

θ
~v v̂†. (4.6.14)

Turning back to the spin-operators, we want to consider the spin-rotation:[
(â†1)′

(â†2)′

]
= ei

χ
~ Ŝ3ei

θ
~ Ŝ2ei

φ
~ Ŝ3

[
â†1
â†2

]
e−i

φ
~ Ŝ3e−i

θ
~ Ŝ2e−i

χ
~ Ŝ3 , (4.6.15)

which is a general Euler rotation described in theorem 4.1. Having that eigenvectors and corresponding eigenvalues
for S3 are

~v1 =

[
1
0

]
, v1 =

~
2

; ~v2 =

[
0
1

]
, v2 = −~

2
, (4.6.16)

we use 4.6.12 to get
v̂†1 = â†1; v̂†2 = â†2, (4.6.17)

and then 4.6.14 to perform the first rotation:

ei
φ
~ Ŝ3

[
â†1
â†2

]
e−i

φ
~ Ŝ3 =

[
â†1e

iφ2

â†2e
−iφ2

]
=

[
ei
φ
2 0

0 e−i
φ
2

] [
â†1
â†2

]
. (4.6.18)

In similar manner, we use eigenvectors and eigenvalues of S2:

~v1 =

[
1
i

]
, v1 =

~
2

; ~v2 =

[
i
1

]
, v2 = −~

2
, (4.6.19)

to get:

v̂†1 = â†1 + iâ†2

v̂†2 = iâ†1 + â†2
=⇒

â†1 =
1

2
(v̂†1 − iv̂

†
2)

â†2 =
1

2
(v̂†2 − iv̂

†
1)

. (4.6.20)

We then perform the second rotation:

ei
θ
~ Ŝ2

[
â†1
â†2

]
e−i

θ
~ Ŝ2 =

1

2
ei
θ
~ Ŝ2

[
v̂†1
v̂†2

]
e−i

θ
~ Ŝ2 − i

2
ei
θ
~ Ŝ2

[
v̂†2
v̂†1

]
e−i

θ
~ Ŝ2 =

1

2

[
v̂†1e

i θ2 − iv̂†2e−i
θ
2

v̂†2e
−i θ2 − iv̂†1ei

θ
2

]
=[

â†1 cos θ2 − â
†
2 sin θ

2

â†1 sin θ
2 + â†2 cos θ2

]
=

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

] [
â†1
â†2

]
.

(4.6.21)
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The third rotation is the same as the first, but with angle χ. Thus, the total rotation is given by:[
(â†1)′

(â†2)′

]
= ei

χ
~ Ŝ3ei

θ
~ Ŝ2ei

φ
~ Ŝ3

[
â†1
â†2

]
e−i

φ
~ Ŝ3e−i

θ
~ Ŝ2e−i

χ
~ Ŝ3 =[

ei
φ
2 0

0 e−i
φ
2

][
cos θ2 − sin θ

2

sin θ
2 cos θ2

] [
ei
χ
2 0

0 e−i
χ
2

] [
â†1
â†2

]
=

[
ei
φ+χ

2 cos θ2 −ei
φ−χ

2 sin θ
2

ei
−φ+χ

2 sin θ
2 ei

−φ−χ
2 cos θ2

] [
â†1
â†2

] (4.6.22)

We realize that this is an SU(2) matrix. From that, we see that under a spin rotation, the Schwinger bosons and
Abrikosov fermions transform like vectors in SU(2), and this further manifests the isotropic nature of the transfor-
mation. At this point, we leave the symmetry discussion of these operators, and rather find a way to work with
them.

4.7 Mean-field approximation

Although Schwinger bosons and Abrikosov fermions provide a more isotropic friendly transformation, the calculations
are not necessarily easier than for the techniques considered earlier. While earlier techniques and approximations
allowed us to write the Hamiltonian function on quadratic form in bosonic or fermionic operators, we now see that
the spin operators written on Schwinger boson or Abrikosov fermion form are given on quadratic form, meaning
that a spin-Hamiltonian which is quadratic in spin-operators will be quartic in bosonic or fermionic operators. This
means that we cannot directly apply diagonalization techniques introduced earlier to obtain ground state information.
However, there is a standard technique known as mean-field approximation that allows us to approximate quatric form
to quadratic form.

The general idea is following: when bosonic or fermionic operators are given on quartic form, we have a certain
”interaction” between these particles (unlike the quadratic case, where the particles are free). The idea then is to
approximate all these interactions into a certain constant ”average” interaction field. That is, the effect from other
bosons or fermions comes as a certain mean-field on otherwise independent particles.

4.7.1 General approach

Starting very generally, suppose that our Hamiltonian is given by:

Ĥ = Ô1Ô2, (4.7.1)

where Ô1 and Ô2 are some operators. Suppose that we are considering our system in the states close to the ground
state20, so that the difference:

∆Ôi := Ôi − 〈Ôi〉; i ∈ {1, 2}, (4.7.2)

becomes very small when our Hamiltonian is projected down on the subspace of such states. Here, 〈Oi〉 = 〈G|Ôi|G〉,
where |G〉 is the system ground state. We can then write:

Ĥ =
(
∆Ô1 + 〈Ô1〉

)(
∆Ô2 + 〈Ô2〉

)
= ∆Ô1〈Ô2〉+ ∆Ô2〈Ô1〉+ 〈Ô1〉〈Ô2〉+ ∆Ô1∆Ô2 =

Ô1〈Ô2〉+ Ô2〈Ô1〉 − 〈Ô1〉〈Ô2〉+ ∆Ô1∆Ô2.
(4.7.3)

If the relevant states are sufficiently close to the ground state, we can neglect the last term ∆Ô1∆Ô2. This is the mean-
field approximation. Now, to be more specific, suppose that the operators Ôi are linear combinations of quadratic
fermionic or bosonic operators {âi,k}, so that:

Ôi =
∑
k,l

C
(i)
kl â
†
i,kâi,l. (4.7.4)

Our initial Hamiltonian is then quartic in these operators. However, writing the Hamiltonian as in 4.7.3, we get:

Ĥ =
∑
k,l

[
〈Ô2〉C(1)

kl + 〈Ô1〉C(2)
kl

]
â†i,kâi,l − 〈Ô1〉〈Ô2〉+ ∆Ô1∆Ô2. (4.7.5)

By neglecting ∆Ô1∆Ô2, we thus end up with a quadratic Hamiltonian. We summarize the results:

20In general, any relevant state can be chosen here. Or, we can even take thermodynamical average. However, for the applications in
this thesis, we are considering the ground state.
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Definition 4.3. Given two operators Ô1 and Ô2, the mean-field approximation of their product is defined as:

Ô1Ô2 7→ Ô1〈Ô2〉+ Ô2〈Ô1〉 − 〈Ô1〉〈Ô2〉. (4.7.6)

The task then is to find the numbers 〈Ô1〉 and 〈Ô2〉. Usually, we need to make some physical and symmetrical
assumptions to make this task solvable. One way is to assume some values, insert these values into the mean-field
Hamiltonian, and see if we get any contradictions. If we do, we apply some numerical algorithm to adjust that number
until the Hamiltonian becomes consistent. This is one way of finding mean-field constants self-consistently. Another
way is to solve self-consistency equations which we now will present.

4.7.2 Self-consistency equations

Suppose that the Hamiltonian is approximated to:

Ĥ = Ô1〈Ô2〉+ Ô2〈Ô1〉 − 〈Ô1〉〈Ô2〉, (4.7.7)

The ground state energy is given by:
E0 = 〈Ĥ〉. (4.7.8)

Differentiation of ground state energy with respect to one of the mean-field constants gives:

∂

∂〈Ô1〉
E0 = 〈 ∂

∂〈Ô1〉
Ĥ〉 = 〈Ô2 − 〈Ô2〉〉 = 〈Ô2〉 − 〈Ô2〉 = 0, (4.7.9)

and similar for differentiation with respect to 〈Ô2〉. These equations are known as self-consistency equations, and
they should always be satisfied when we arrive at a ground state as function of mean-field parameters. Since we are
interested in the ground state, we can thus determine mean-field parameters by minimizing total energy with respect
to these parameters.

As a final remark in this chapter, it should be said that mean-field approximations in reality are very crude, and one
should be careful when making conclusions in models where such approximations are involved, as they at best are
qualitative[24]. For that reason, different mean-field approaches are usually applied to the same model of interest,
and a conclusion is made based on results from different approaches. In the next chapter, we will apply two different
mean-field theories - Abrikosov fermion mean-field theory and Schwinger boson mean-field zero-flux theory.
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5 Application to Kane-Mele-Hubbard model

In this chapter, we will introduce an extended KMH model, to which we will apply Abrikosov fermion and Schwinger
boson mean-field theories. Given different interaction parameters in the KMH model, the mean-field theories might
give different sets of mean-field parameters, which might represent different physical phases. Since mean-field approx-
imations at best are qualitative, the aim of this chapter is to give a qualitative description of predicted physical phases
in extended KMH model, and in particular to find conditions for potential quantum spin liquids. In order to define
and understand the KMH model, we need to define some central properties of the honeycomb lattice, for which this
model is defined. In the following section, we define the lattice, and some of its properties.

5.1 The honeycomb lattice

5.1.1 Direct lattice

The honeycomb lattice is depicted in figure 5a. As we see, this lattice is not a Bravais lattice, but rather two hexagonal
(triangular) Bravais lattices symmetrically superimposed on each other21. This figure also defines the nearest neighbor
(NN) and next nearest neighbor (NNN) vectors in a honeycomb lattice. A set of all the sites i (on both sublattices)
with all the corresponding NNs for each site j = j(i) is denoted as 〈i, j〉. Analogously, a such set for NNNs is denoted
as 〈〈i, j〉〉. In this thesis, we do not go beyond the NNNs.

In addition, we want to define a quantity related to NNN hopping through an intermediate NN site. We consider the
situation depicted in figure 5b. Suppose that we have an electron at a site i, which ”moves” through an intermediate
NN site k. If the electron then lands on the NNN site j1, we see that the overall process is represented by a left turn,
whilst for j2, the process is represented by a right turn. In order to differentiate between these two situations, we
assosiate them with numbers 1 and −1, respectively.

(a) The honeycomb lattice consists of two hexagonal sublattices. In

the figure, the nearest neighbor (NN) vectors are denoted as ~δ
(A)
1 , ~δ

(A)
2

and ~δ
(A)
3 for sites at sublattice A, whilst ~δ

(B)
1 , ~δ

(B)
2 and ~δ

(B)
3 denote NN

vectors for sublattice B. The next nearest neighbors (NNN) vectors are
the same for both sublattices, and are denoted as ~ε1, ~ε2, ~ε3, ~ε4, ~ε5 and
~ε6.

(b) The νij parameter is a defining quan-
tity for NNN spin-orbit interactions. If the
electron at site i makes a left turn through
an intermediate NN site k when passing to
NNN, the νij = 1. If the electron makes a
right turn, νij = −1.

Figure 5: Some defining properties in this paper related to the honeycomb lattice.

Suppose that the vector pointing from site i to k in figure 5b is denoted as ~dik. Next, suppose that the vector pointing
from k to j (where j ∈ {j1, j2}) is denoted as ~dkj . We then define the vector ~νij as:

~νij :=
~dik × ~dkj

|~dik × ~dkj |
. (5.1.1)

From this definition, we see that the turn quantity νij is given by

νij = ~νij · ~e3, (5.1.2)

21In other words, a honeycomb lattice can be described by a hexagonal Bravais lattice, with each site having a two-atomic basis separated
with one of the NN vectors.
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where ~e3 is the unit vector pointing in z-axis direction (out of paper in figure 5).

We have that each site is associated with either sublattice A or sublattice B. Each NNN for a site is assosiated with
one of the ~εl vectors and a value νij = ν

(X)
l , where X is the sublattice, and l is the index of associated NNN vector.

We summarize quantitative properties of the NNN vectors in table 1, where a is distance between two NNs.

Table 1: Properties of the NNN vectors from figure 5a. Here, a is lattice constant, defined as distance between two NNs.

Vector Formula
Associated νij
on sublattice A

Associated νij
on sublattice B

~ε1
a

2
[
√

3~e1 + 3~e2] ν
(A)
1 = 1 ν

(B)
1 = −1

~ε2
a

2
[−
√

3~e1 + 3~e2] ν
(A)
2 = −1 ν

(B)
2 = 1

~ε3 −a
√

3~e1 ν
(A)
3 = 1 ν

(B)
3 = −1

~ε4
a

2
[−
√

3~e1 − 3~e2] ν
(A)
4 = −1 ν

(B)
4 = 1

~ε5
a

2
[
√

3~e1 − 3~e2] ν
(A)
5 = 1 ν

(B)
5 = −1

~ε6 a
√

3~e1 ν
(A)
6 = −1 ν

(B)
6 = 1

We also derive NN vectors from figure 5a:

~δ
(A)
1 =

a

2
(
√

3~e1 + ~e2); ~δ
(A)
2 =

a

2
(−
√

3~e1 + ~e2); ~δ
(A)
3 = −a~e2, (5.1.3)

and ~δ
(B)
l = −~δ(A)

l .

5.1.2 Reciprocal lattice

In order to do a decoupling of periodic interactions in a large lattice, it is often necessary to do Fourier expansions.
Therefore, it is useful to define the reciprocal space of honeycomb lattice as well. In order to define the reciprocal
lattice, we should define two non-parallel primitive translation vectors {~a1,~a2} for our direct lattice. We define:

~a1 = ~ε1; ~a2 = ~ε2. (5.1.4)

The reciprocal lattice primitive vectors {~b1,~b2} are found from the equation[25]:

~bi · ~aj = 2πδij ; i, j ∈ {1, 2}, (5.1.5)

which gives:

~b1 =
2π

a
√

3

[
~e1 +

1√
3
~e2

]
; ~b2 =

2π

a
√

3

[
− ~e1 +

1√
3
~e2

]
, (5.1.6)

which gives a hexagonal reciprocal lattice. Next, given that interactions have the same periodicity as direct lattice,
the properties of reciprocal space are periodic by Wigner–Seitz cell, known as the first Brillouin zone, denoted here
by B1. Because of this periodicity, the area spanned by B1 is equivalent to area spanned by ~b1 and ~b2. This fact will
make summations over B1 way more convenient in some following sections.

5.2 The model

Having defined main properties of a honeycomb lattice, we can now present the Kane-Mele-Hubbard model, which is
described by following Hamiltonian[26]:

ĤKMH
0 = −t1

∑
〈i,j〉

∑
α

ĉ†iαĉjα + U
∑
i

n̂i↑n̂i↓ + i
λR
2

∑
〈i,j〉

∑
α

(~σ × d̂ij)3ĉ
†
iαĉjα + iλSO

∑
〈〈i,j〉〉

∑
αβ

νijσ
(3)
αβ ĉ
†
iαĉjβ . (5.2.1)
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The first term represents NN electron hopping: t1 > 0 is the hopping amplitude, whilst ĉ†iα and ĉiα are creation and
annihilation operators, respectively, for an electron at site i with spin α. The second term represents the repulsion of
two electrons being at the same site: U � t1 is on-site repulsion amplitude and n̂iα = ĉ†iαĉiα is number operator of
electrons at site i with spin α. The third term represents NN spin-orbit interation, known as Rashba coupling: λR > 0
is Rashba coupling amplitude, ~σ = σ(1)~e1 + σ(2)~e2 + σ(3)~e3 is Pauli matrix vector, and d̂ij = ~dij/|~dij |. The last term
represents intrinsic spin-orbit interaction, where λSO > 0 is the amplitude.

From symmetry arguments, it turns out that NN Rashba coupling cancels out when the system (more precisely
Hamiltonian) is invariant under the inversion z 7→ −z[27]. This symmetry might be broken by for example applying
electric field in z-direction or putting the material on a substrate. However, we assume that no such symmetry breaking
is present, and neglect the term. Then, based on higher order t/U expansion similar to the one in chapter 2, it is
possible to derive following effective spin-Hamiltonian from 5.2.1[2]:

ĤKMH
0 = J1

∑
〈i,j〉

~̂Si · ~̂Sj + J2

∑
〈〈i,j〉〉

~̂Si · ~̂Sj + Γ
∑
〈〈i,j〉〉

~̂Si · [diag (−1,−1, 1) ~̂Sj ], (5.2.2)

where

J1 = 4
t21
U
− 16

t41
U3

; J2 = 4
t41
U3

; Γ =
λ2
SO

U
. (5.2.3)

We see that the first term in 5.2.2 represents isotropic scalar product interaction between NN spins, second term
represents isotropic scalar product interaction between NNN spins, and the third term represents anisotropic exchange
between NNN spins. Thus, spin-orbit interactions (λSO) introduce an anisotropic nature to the KMH model.

The aforementioned spin-Hamiltonian has been treated with Abrikosov fermion and Schwinger boson mean-field the-
ories in reference [2]. However, the fact that 5.2.1 considers NNN spin-orbit interactions, but not the NNN electron
hopping, gives this model some limitations. By adding NNN electron hopping to the KMH model:

ĤKMH
(ext) := ĤKMH

0 − t2
∑
〈〈i,j〉〉

∑
α

ĉ†iαĉjα, (5.2.4)

where t2 > 0, following spin-Hamiltonian can be derived[1]:

ĤKMH
(ext) = J1

∑
〈i,j〉

~̂Si · ~̂Sj + J2

∑
〈〈i,j〉〉

~̂Si · ~̂Sj + Γ
∑
〈〈i,j〉〉

~̂Si · [diag (−1,−1, 1) ~̂Sj ] +D
∑
〈〈i,j〉〉

νij~e3 · ( ~̂Si × ~̂Sj), (5.2.5)

where

J1 =
2t21
U

; J2 =
2t22
U

; Γ =
2λ2

SO

U
; D =

4t2λSO
U

. (5.2.6)

We see that NNN hopping introduces a new kind of term to the spin-Hamiltonian, which in fact is DMI. Furthermore, if
NNN hopping amplitude t2 is of comparable size to intrinsic spin-orbit interaction λSO, then the DMI is of comparable
size to NNN isotropic exchange and anisotropic exchange. This motivates us to reapply the approach in reference [2]
to 5.2.5, and in the rest of the thesis, we will do so. At this point, we define following operators:

Ĥ1 := J1

∑
〈i,j〉

~̂Si · ~̂Sj ; Ĥ2 := J2

∑
〈〈i,j〉〉

~̂Si · ~̂Sj ; ĤΓ := Γ
∑
〈〈i,j〉〉

~̂Si · [diag (−1,−1, 1) ~̂Sj ];

ĤDMI = D
∑
〈〈i,j〉〉

νij~e3 · ( ~̂Si × ~̂Sj).
(5.2.7)

The Hamiltonian treated in reference [2] is then given by:

Ĥ0 := Ĥ1 + Ĥ2 + ĤΓ, (5.2.8)

and the new Hamiltonian we want reapply the techniques to is given by:

Ĥ := Ĥ0 + ĤDMI. (5.2.9)

Further, to begin with, we will treat J1, J2,Γ, D as independent parameters, although from 5.2.6, we see that:

D2 = 4J2Γ. (5.2.10)
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5.3 Abrikosov fermion mean-field approach

In this section, we will treat 5.2.8 and 5.2.9 with Abrikosov fermion mean-field approach. For the former, we want
to reproduce results from reference [2] to be sure that we are following the approach correctly. In parallel, we also
apply the approach to the latter Hamiltonian. First, we will insert the Abrikosov fermions into spin-Hamiltonians, and
decouple the resulting operator into appropriate mean-field operators to perform mean-field approximations. We will
then use symmetry of honeycomb lattice to reduce amount of mean-field parameters. Then, we will perform Fourier
transformation and diagonalization techniques in order to determine the ground state energy and the excitations. We
will then present physical phases for differnt mean-field parameters, and finally, we will present numerical method to
determine mean-field parameters for different interaction parameters and show the results through phase diagrams.

5.3.1 Abrikosov fermions and decoupling

As already discussed in section 4.6, the Abrikosov fermions are given by

~̂Si =
~
2

[
f̂†i↑ f̂†i↓

]
~σ

[
f̂i↑
f̂i↓

]
=

~
2

∑
αβ

f̂†iα~σαβ f̂iβ , (5.3.1)

and are constrained by

n̂i =
∑
α

f̂†iαf̂iα = f̂†i↑f̂i↑ + f̂†i↓f̂i↓ = 2S = 1, (5.3.2)

where S = 1
2 is the spin of electrons in our lattice, and i denotes a honeycomb lattice site. We will now insert 5.3.1

into different spin interactions in 5.2.7. When doing so, and decoupling these into convenient mean-field operators for
both Abrikosov fermions and Schwinger bosons, following relation is useful:

Proposition 5.1. Given a set of fermionic or bosonic operators {âiα}, constrained by∑
α

â†iαâiα = 1, (5.3.3)

following is true: ∑
αβ

â†jαâiβ â
†
iβ âjα = 2 + ζ =

{
1, fermions

3, bosons.
(5.3.4)

In addition, for an arbitrary 3× 3 matrix A = [Aij ], it is convenient to define:

gαβγδ := ~σαβ · (A~σγδ) =

3∑
i,j=1

σ
(i)
αβAijσ

(j)
γδ . (5.3.5)

Then, by using the definition of Pauli matrices, we find:

G(A) :=


g1111 g1112 g1121 g1122

g1211 g1212 g1221 g1222

g2111 g2112 g2121 g2122

g2211 g2212 g2221 g2222

 =


A33 A31 − iA32 A31 + iA32 −A33

A13 − iA23 A11 −A22 − i(A12 +A21) A11 +A22 + i(A12 −A21) −A13 + iA23

A13 + iA23 A11 +A22 − i(A12 −A21) A11 −A22 + i(A12 +A21) −A13 − iA23

−A33 −A31 + iA32 −A31 − iA32 A33

 ,
(5.3.6)

which for a diagonal matrix D with two equal diagonal entries:

D =

D1 0 0
0 D1 0
0 0 D3

 , (5.3.7)

simplifies to

G(D) =


D3 0 0 −D3

0 0 2D1 0
0 2D1 0 0
−D3 0 0 D3

 . (5.3.8)
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Starting with the isotropic interactions, we use 5.3.1 and 5.3.8 to write:

~̂Si · ~̂Sj =
~2

4

∑
αβγδ

f̂†iαf̂iβ f̂
†
jγ f̂jδ(~σαβ · ~σγδ) = −~2

4

∑
αβγδ

f̂†jγ f̂iβ f̂
†
iαf̂jδ(~σαβ · ~σγδ) +

~2

4

∑
αγδ

f̂†jγ f̂jδ(~σαα · ~σγδ) =

−~2

4

[
f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + f̂†j↓f̂i↓f̂

†
i↓f̂j↓ − f̂

†
j↑f̂i↓f̂

†
i↓f̂j↑ − f̂

†
j↓f̂i↑f̂

†
i↑f̂j↓ + 2f̂†j↑f̂i↑f̂

†
i↓f̂j↓ + 2f̂†j↓f̂i↓f̂

†
i↑f̂j↑

]
+

~2

4

[
f̂†j↑f̂j↑ + f̂†j↓f̂j↓ − f̂

†
j↑f̂j↑ − f̂

†
j↓f̂j↓

]
= −~2

4

[
2f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + 2f̂†j↓f̂i↓f̂

†
i↓f̂j↓ −

∑
αβ

f̂†jαf̂iβ f̂
†
iβ f̂jα+

2f̂†j↑f̂i↑f̂
†
i↓f̂j↓ + 2f̂†j↓f̂i↓f̂

†
i↑f̂j↑

]
= −~2

2

[
f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + f̂†j↓f̂i↓f̂

†
i↓f̂j↓ + f̂†j↑f̂i↑f̂

†
i↓f̂j↓ + f̂†j↓f̂i↓f̂

†
i↑f̂j↑ −

1

2

]
=

−~2

2

∑
αβ

f̂†jαf̂iαf̂
†
iβ f̂jβ +

~2

4
= −~2

2

∑
αβ

Â
†(α)
i,j Â

(β)
i,j +

~2

4

(5.3.9)

where we have defined following decoupling operator:

Â
(α)
i,j := f̂†iαf̂jα. (5.3.10)

Next, we want to decouple our anisotropic term in a similar manner:

~̂Si · [diag (−1,−1, 1) ~̂Sj ] =
~2

4

∑
αβγδ

f̂†iαf̂iβ f̂
†
jγ f̂jδ

[
~σαβ · [diag (−1,−1, 1)~σγδ]

]
=

−~2

4

∑
αβγδ

f̂†jγ f̂iβ f̂
†
iαf̂jδ

[
~σαβ · [diag (−1,−1, 1)~σγδ]

]
+

~2

4

∑
αγδ

f̂†jγ f̂jδ

[
~σαα · [diag (−1,−1, 1)~σγδ]

]
=

−~2

4

[
f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + f̂†j↓f̂i↓f̂

†
i↓f̂j↓ − f̂

†
j↑f̂i↓f̂

†
i↓f̂j↑ − f̂

†
j↓f̂i↑f̂

†
i↑f̂j↓ − 2f̂†j↑f̂i↑f̂

†
i↓f̂j↓ − 2f̂†j↓f̂i↓f̂

†
i↑f̂j↑

]
+

~2

4

[
f̂†j↑f̂j↑ + f̂†j↓f̂j↓ − f̂

†
j↑f̂j↑ − f̂

†
j↓f̂j↓

]
= −~2

4

[
2f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + 2f̂†j↓f̂i↓f̂

†
i↓f̂j↓ −

∑
αβ

f̂†jαf̂iβ f̂
†
iβ f̂jα−

2f̂†j↑f̂i↑f̂
†
i↓f̂j↓ − 2f̂†j↓f̂i↓f̂

†
i↑f̂j↑

]
= −~2

2

[
f̂†j↑f̂i↑f̂

†
i↑f̂j↑ + f̂†j↓f̂i↓f̂

†
i↓f̂j↓ − f̂

†
j↑f̂i↑f̂

†
i↓f̂j↓ − f̂

†
j↓f̂i↓f̂

†
i↑f̂j↑ −

1

2

]
=

−~2

2

∑
αβ

(2δαβ − 1)Â
†(α)
i,j Â

(β)
i,j +

~2

4
,

(5.3.11)

Finally, we want to decouple DMI in a similar manner:

~e3 · ( ~̂Si × ~̂Sj) = Ŝxi Ŝ
y
j − Ŝ

y
i Ŝ

x
j = i

~2

4
(f̂†i↑f̂i↓ + f̂†i↓f̂i↑)(−f̂

†
j↑f̂j↓ + f̂†j↓f̂j↑)+

i
~2

4
(f̂†i↑f̂i↓ − f̂

†
i↓f̂i↑)(f̂

†
j↑f̂j↓ + f̂†j↓f̂j↑) = i

~2

2

[
f̂†i↑f̂i↓f̂

†
j↓f̂j↑ − f̂

†
i↓f̂i↑f̂

†
j↑f̂j↓

]
=

i
~2

2

[
f̂†j↑f̂i↑f̂

†
i↓f̂j↓ − f̂

†
j↓f̂i↓f̂

†
i↑f̂j↑

]
= i

~2

2
Â
†(↑)
i,j Â

(↓)
i,j + H.c..

(5.3.12)

As we can see, the DMI can be decoupled into exactly the same operators as isotropic and anisotropic interactions,
meaning that we can follow the same mean-field theory as presented in reference [2]. We summarize the results of this
subsection with following proposition:

Proposition 5.2. Given a set of Abrikosov fermions {f̂iα} constrained by 5.3.2, following decouplings are true:

~̂Si · ~̂Sj = −~2

2

∑
αβ

Â
†(α)
i,j Â

(β)
i,j +

~2

4
(5.3.13)

~̂Si · [diag (−1,−1, 1) ~̂Sj ] = −~2

2

∑
αβ

(2δαβ − 1)Â
†(α)
i,j Â

(β)
i,j +

~2

4
(5.3.14)

~e3 · ( ~̂Si × ~̂Sj) = i
~2

2
Â
†(↑)
i,j Â

(↓)
i,j + H.c., (5.3.15)
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where
Â

(α)
i,j := f̂†iαf̂jα. (5.3.16)

5.3.2 Mean-field approximation and ansatz

Applying the mean-field approximation as described in definition 4.3, we now have that:

~̂Si · ~̂Sj 7→ −
~2

2

∑
αβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + 〈Â(β)

i,j 〉Â
†(α)
i,j − 〈Â

(α)
i,j 〉
∗〈Â(β)

i,j 〉
]

=

−~2

2

∑
αβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
+

~2

2

∣∣∣∑
α

〈Â(α)
i,j 〉

∣∣∣2 (5.3.17)

~̂Si · [diag (−1,−1, 1) ~̂Sj ] 7→ −
~2

2

∑
αβ

(2δαβ − 1)
[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + 〈Â(β)

i,j 〉Â
†(α)
i,j − 〈Â

(α)
i,j 〉
∗〈Â(β)

i,j 〉
]

=

−~2

2

∑
αβ

(2δαβ − 1)
[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
+

~2

2

∑
αβ

(2δαβ − 1)〈Â(α)
i,j 〉
∗〈Â(β)

i,j 〉
(5.3.18)

~e3 · ( ~̂Si × ~̂Sj) 7→ i
~2

2

[
〈Â(↑)

i,j 〉
∗Â

(↓)
i,j + 〈Â(↓)

i,j 〉Â
†(↑)
i,j − 〈Â

(↑)
i,j 〉
∗〈Â(↓)

i,j 〉
]

+ H.c. (5.3.19)

The number of mean-field constants 〈Â(α)
i,j 〉 is of the same order as number of sites in our lattice, which is assumed

to approach infinity. Solving an infinite set of self-consistency equations to find these constants is obviously out of
question. However, the symmetry of honeycomb lattice should allow us to reduce this number drastically. We now
make several physical assumptions.

The first assumption is that
∑
α〈Â

(α)
i,j 〉 for NN is site and neighbor independent. This is reasonable because we treat

the material sheet as infinite, and because each site has a 3-fold symmetry. Thus, we write:∑
α

〈Â(α)
〈i,j〉〉 = χ1 ∈ R, (5.3.20)

where this number is real because
∑
α〈Â

(α)
〈i,j〉〉 =

∑
α〈Â

(α)
〈j,i〉〉

∗.

The second assumption is that NNN 〈Â(α)
i,j 〉 also is site independent due to same argument. However, as we see from

figure 5a, the quantity is neighbor dependent. To see this, we recall that NNN spin-orbit interactions in our physical
model only happen through an intermediate site. From the figure, we see that an NNN can be obtained either by a
”right” turn or a ”left” turn. For each site, three NNNs are obtained by a right turn, whilst three are obtained by a
left turn. As seen in figure 6, if the path from i to j takes a left turn, the the same path from j to i takes a right turn.

Figure 6: The upper path corresponds to f̂†iαf̂jα, whilst the lower path corresponds to f̂†jαf̂iα. The paths are hermitian
conjugates of each-other, and the only physical difference is that upper path takes a right turn, whilst lower path takes a left
turn.

Futhermore, we have that:

〈Â(α)
〈〈i,j〉〉〉 = 〈f̂†iαf̂jα〉 = 〈Â(α)

〈〈j,i〉〉〉
∗ = 〈f̂†jαf̂iα〉

∗. (5.3.21)

This means that 〈Â(α)
〈〈i,j〉〉〉 reduces to only two different values, which only depend on the turn, and differ by phase.

We can thus write:

〈Â(α)
〈〈i,j〉〉〉 = χ2e

−iφανij ; χ2, φα ∈ R, (5.3.22)
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where νij was defined in 5.1.2.

It should be said that in the mean-field approximation, we should always ensure that the constraint 5.3.2 is satisfied.
This is usually implemented with Lagrange multipliers, and we will later do that in Schwinger boson mean-field
approach. However, for half-filled Abrikosov fermion case, the lagrange multipliers can all be set to 0 at mean-field
level[2].

5.3.3 Fourier transform

We are now ready to put mean-field approximations 5.3.17, 5.3.18, and 5.3.19 with mean-field parameters 5.3.20 and
5.3.22 into our different Hamiltonian terms in 5.2.8 and 5.2.9. Due to periodicity of the lattice, the interactions can
then be decoupled by using Fourier transform. Starting with the isotropic NN-interaction term, we have:

Ĥ
(MF)
1 = −~2J1

2

∑
〈i,j〉

∑
α

[
χ1Â

(α)
i,j + H.c.

]
+
∑
〈i,j〉

~2J1χ
2
1

2
, (5.3.23)

with: ∑
〈i,j〉

Â
(α)
i,j =

∑
〈i,j〉

f̂†iαf̂jα =
∑
~r

3∑
l=1

[
f̂
†(A)
~rα f̂

(B)

~r+~δ
(A)
l α

+ f̂
†(B)
~rα f̂

(A)

~r+~δ
(B)
l α

]
. (5.3.24)

Here, (X) in f̂
(X)
~rα tells us whether the operator acts on sublattice A or B. Next, each sublattice has a fixed origin

site. The vector ~r then points from the origin in one of the sublattices to another site in the same sublattice and is
summed over all sublattice sites.

We now expand our Abrikosov fermion operators to Fourier series by writing:

f̂
(X)
~rα =

1√
N

∑
~k

ei
~k·~rf̂

(X)
~kα

; X ∈ {A,B}. (5.3.25)

Here, ~k = kx~e1 + ky~e2 is summed over the first Brillouin zone B1 of a given sublattice22, and N is number of sites on
the given sublattice.

We then have: ∑
~r

f̂
†(A)
~rα f̂

(B)

~r+~δ
(A)
l α

=
1

N

∑
~r

∑
~k~k′

e−i
~k·~rei

~k′·(~r+ ~
δ
(A)
l )f̂

†(A)
~kα

f̂
(B)
~k′α

=

1

N

∑
~k~k′

ei
~k′·~δ(A)

l

∑
~r

ei(
~k′−~k)·~rf̂

†(A)
~kα

f̂
(B)
~k′α

=
∑
~k

ei
~k·~δ(A)

l f̂
†(A)
~kα

f̂
(B)
~kα

,

(5.3.26)

where in the last equality, we used the identity:∑
~r

ei(
~k′−~k)·~r = Nδ~k~k′ . (5.3.27)

Inserting 5.3.26 into 5.3.23, we have:

Ĥ
(MF)
1 = −~2J1χ1

2

∑
α

∑
~r

3∑
l=1

[
f̂
†(A)
~rα f̂

(B)

~r+~δ
(A)
l α

+ f̂
†(B)
~rα f̂

(A)

~r+~δ
(B)
l α

+ H.c.
]

+
∑
~r

3~2J1χ
2
1 =

−~2J1χ1

2

∑
α

∑
~k

3∑
l=1

[
ei
~k·~δ(A)

l f̂
†(A)
~kα

f̂
(B)
~kα

+ ei
~k·~δ(B)

l f̂
†(B)
~kα

f̂
(A)
~kα

+ H.c.
]

+
∑
~k

3~2J1χ
2
1 =

−~2J1χ1

∑
~k

∑
α

[
η~kf̂
†(A)
~kα

f̂
(B)
~kα

+ H.c.
]

+
∑
~k

3~2J1χ
2
1,

(5.3.28)

22The reciprocal space is actually the same for sublattice A and B because the two sublattices are just shifted relative to each other.
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where for the constant term, we used the fact that there are two sublattices and three NNs for each site, and in the

last equality, we used the fact that ~δ
(A)
l = −~δ(B)

l , and defined:

η~k :=

3∑
l=1

ei
~k·~δ(A)

l = ei
~k·~δ(A)

1 + ei
~k·~δ(A)

2 + ei
~k·~δ(A)

3 =

ei
a
2 (kx

√
3+ky) + ei

a
2 (−kx

√
3+ky) + e−iaky = e−ikya + 2ei

kya

2 cos (

√
3

2
kxa).

(5.3.29)

Finally, we can rewrite 5.3.28 to:

Ĥ
(MF)
1 = ~2

∑
~k

[
− J1χ1

∑
α

[
f̂
†(A)
~kα

f̂
†(B)
~kα

] [ 0 η~k
η∗~k 0

][
f̂

(A)
~kα

f̂
(B)
~kα

]
+ 3J1χ

2
1

]
. (5.3.30)

We note that this Hamiltonian is of the same form as the Fourier transformation of the second quantized tight-binding
model for graphene. In a such model, electron-electron Coulomb interactions are neglected, meaning that the electrons
are independent, and only affected by the periodic atomic potential. The electronic structure of the mobile graphene
electrons in a such model gives gapless Dirac cones. This means that when only considering NN-contributions, the
Abrikosov fermions are in some sense independent, and behave like electrons in graphene. Furthermore, it can be
shown that this situation corresponds to the gapless QSL phase[2]. Thus, if the mean-field approximation allows
χ2 = 0, the NNN contribution becomes 0, and we get a gapless QSL phase.

Next, we want to consider the NNN isotropic and anisotropic interactions. As we see from 5.3.17 and 5.3.18, both of
these are decoupled in the same manner, except for the anisotropic factor (2δαβ−1). This means that the NNN isotropic
and anisotropic terms of the Hamiltonian can be combined to do a Fourier transformation instead of considering the
two separately. By inserting 5.3.17 and 5.3.18 into Ĥ2 + ĤΓ, we have:

Ĥ
(MF)
2 + Ĥ

(MF)
Γ = −~2J2

2

∑
〈〈i,j〉〉

∑
αβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
− ~2Γ

2

∑
〈〈i,j〉〉

∑
αβ

(2δαβ − 1)
[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
+

~2J2

2

∑
〈〈i,j〉〉

∣∣∣∑
α

〈Â(α)
i,j 〉

∣∣∣2 +
~2Γ

2

∑
〈〈i,j〉〉

∑
αβ

(2δαβ − 1)〈Â(α)
i,j 〉
∗〈Â(β)

i,j 〉.
(5.3.31)

We start with the operator term:

−~2J2

2

∑
〈〈i,j〉〉

∑
αβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
− ~2Γ

2

∑
〈〈i,j〉〉

∑
αβ

(2δαβ − 1)
[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
=

−~2

2

∑
〈〈i,j〉〉

∑
αβ

Jαβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
,

(5.3.32)

where we defined:
Jαβ := J2 + Γ(2δαβ − 1) = J−(1− δαβ) + J+δαβ ; J± := J2 ± Γ. (5.3.33)

By using 5.3.22, we then have:

−~2

2

∑
〈〈i,j〉〉

∑
αβ

Jαβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
= −~2

2

∑
〈〈i,j〉〉

[
J−
[
〈Â(↑)

i,j 〉
∗Â

(↓)
i,j + 〈Â(↓)

i,j 〉
∗Â

(↑)
i,j

]
+

J+

[
〈Â(↑)

i,j 〉
∗Â

(↑)
i,j + 〈Â(↓)

i,j 〉
∗Â

(↓)
i,j

]
+ H.c.

]
= −~2

2

∑
〈〈i,j〉〉

∑
α

[[
J−〈Â(ᾱ)

i,j 〉
∗ + J+〈Â(α)

i,j 〉
∗]Â(α)

i,j + H.c.
]

=

−~2χ2

2

∑
〈〈i,j〉〉

∑
α

[[
J−e

iφᾱνij + J+e
iφανij

]
f̂†iαf̂jα + H.c.

]
=

−~2χ2

2

∑
X

∑
~r

6∑
l=1

∑
α

[[
J−e

iφᾱν
(X)
l + J+e

iφαν
(X)
l

]
f̂
†(X)
~rα f̂

(X)
~r+~εlα

+ H.c.
]
,

(5.3.34)
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where ᾱ means opposite spin of α, X sums over the two sublattices A and B, and ν
(X)
l was defined in table 1. The

vector ~r is the same as in NN case, and since we consider the same sublattices as we did for NN Fourier transformation,
we can use 5.3.25 here as well. Doing following Fourier transformation:∑

~r

f̂
†(X)
~rα f̂

(X)
~r+~εlα

=
1

N

∑
~r

∑
~k~k′

e−i
~k·~rei

~k′·(~r+~εl)f̂
†(X)
~kα

f̂
(X)
~k′α

=

1

N

∑
~k~k′

ei
~k′·~εl

∑
~r

ei(
~k′−~k)·~rf̂

†(X)
~kα

f̂
(X)
~k′α

=
∑
~k

ei
~k·~εl f̂

†(X)
~kα

f̂
(X)
~kα

,

(5.3.35)

we can insert 5.3.35 into 5.3.34, which gives:

−~2

2

∑
〈〈i,j〉〉

∑
αβ

Jαβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
=

−~2χ2

2

∑
X

∑
~k

∑
α

6∑
l=1

[[
J−e

iφᾱν
(X)
l + J+e

iφαν
(X)
l

]
ei
~k·~εl f̂

†(X)
~kα

f̂
(X)
~kα

+ H.c.
]

=

−~2χ2

2

∑
X

∑
~k

∑
α

[
S

(X)
~kα

f̂
†(X)
~kα

f̂
(X)
~kα

+ H.c.
]
,

(5.3.36)

where we defined the quantity

S
(X)
~kα

:=

6∑
l=1

[(
J−e

iφᾱν
(X)
l + J+e

iφαν
(X)
l

)
ei
~k·~εl
]
. (5.3.37)

We now consider this quantity for sublattice A by using table 1:

S
(A)
~kα

=

6∑
l=1

[
J−e

iφᾱν
(A)
l + J+e

iφαν
(A)
l

]
ei
~k·~εl =

[
J−e

iφᾱ + J+e
iφα
][
ei
a
2 (
√

3kx+3ky) + e−ia
√

3kx + ei
a
2 (
√

3kx−3ky)
]
+[

J−e
−iφᾱ + J+e

−iφα
][
ei
a
2 (−
√

3kx+3ky) + e−i
a
2 (
√

3kx+3ky) + eia
√

3kx
]
.

(5.3.38)

The first parenthesis in the two terms can be split into a cosine and a sine part:

J−e
±iφᾱ + J+e

±iφα = (J− cosφᾱ + J+ cosφα)± i(J− sinφᾱ + J+ sinφα). (5.3.39)

The total cosine part of 5.3.38 is then given by[
J− cosφᾱ + J+ cosφα

][
ei
a
2

√
3kx(ei

a
2 3ky + e−i

a
2 3ky ) + e−i

a
2

√
3kx(ei

a
2 3ky + e−i

a
2 3ky ) + eia

√
3kx + e−ia

√
3kx
]

=[
J− cosφᾱ + J+ cosφα

][
(ei

a
2

√
3kx + e−i

a
2

√
3kx)(ei

a
2 3ky + e−i

a
2 3ky ) + eia

√
3kx + e−ia

√
3kx
]

=[
J− cosφᾱ + J+ cosφα

][
4 cos (

√
3

2
kxa) cos (

3

2
kya) + 2 cos (

√
3kxa)

]
= Aαζ~k,

(5.3.40)

where we defined:
Aα := J− cosφᾱ + J+ cosφα (5.3.41)

ζ~k := 2
[
2 cos (

√
3

2
kxa) cos (

3

2
kya) + cos (

√
3kxa)

]
. (5.3.42)

Similarly, the total sine part of 5.3.38 is given by:

i
[
J− sinφᾱ + J+ sinφα

][
ei
a
2 3ky (ei

a
2

√
3kx − e−i a2

√
3kx)+

e−i
a
2 3ky (ei

a
2

√
3kx − e−i a2

√
3kx)− (eia

√
3kx − e−ia

√
3kx)

]
=

i
[
J− sinφᾱ + J+ sinφα

][
(ei

a
2 3ky + e−i

a
2 3ky )(ei

a
2

√
3kx − e−i a2

√
3kx)− (eia

√
3kx − e−ia

√
3kx)

]
=

−
[
J− sinφᾱ + J+ sinφα

][
4 cos (

3

2
kya) sin (

√
3

2
kxa)− 2 sin (a

√
3kx)

]
=

−
[
J− sinφᾱ + J+ sinφα

]
4 sin (

√
3

2
kxa)

[
cos (

3

2
kya)− cos (

√
3

2
kxa)

]
= −Bαξ~k.

(5.3.43)
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where we defined:
Bα := J− sinφᾱ + J+ sinφα (5.3.44)

ξ~k := 4 sin (

√
3

2
kxa)

[
cos (

3

2
kya)− cos (

√
3

2
kxa)

]
. (5.3.45)

The quantity 5.3.38 is the sum of 5.3.40 and 5.3.43:

S
(A)
~kα

= Aαζ~k −Bαξ~k. (5.3.46)

Next, by taking a look at table 1, we see that ν
(A)
l = −ν(B)

l . From 5.3.38, we see that the ν-value only determines
the sign in front of the φ-values. Hence, sublattice B part can be obtained from sublattice A part by doing the
substitutions φᾱ 7→ −φᾱ and φα 7→ −φα. We then have:

S
(B)
~kα

= Aαζ~k +Bαξ~k, (5.3.47)

and 5.3.36 becomes:

−~2

2

∑
〈〈i,j〉〉

∑
αβ

Jαβ

[
〈Â(α)

i,j 〉
∗Â

(β)
i,j + H.c.

]
= −~2χ2

2

∑
X

∑
~k

∑
α

[
S

(X)
~kα

f̂
†(X)
~kα

f̂
(X)
~kα

+ H.c.
]

=

−~2χ2

∑
X

∑
~k

∑
α

S
(X)
~kα

f̂
†(X)
~kα

f̂
(X)
~kα

= −~2χ2

∑
~k

∑
α

[
f̂
†(A)
~kα

f̂
†(B)
~kα

] [Aαζ~k −Bαξ~k 0

0 Aαζ~k +Bαξ~k

][
f̂

(A)
~kα

f̂
(B)
~kα

]
.

(5.3.48)

Next, we want to consider the constant terms in 5.3.31:

~2J2

2

∑
〈〈i,j〉〉

∣∣∣∑
α

〈Â(α)
i,j 〉

∣∣∣2 +
~2Γ

2

∑
〈〈i,j〉〉

∑
αβ

(2δαβ − 1)〈Â(α)
i,j 〉
∗〈Â(β)

i,j 〉 =
~2

2

∑
〈〈i,j〉〉

∑
αβ

Jαβ〈Â(α)
i,j 〉
∗〈Â(β)

i,j 〉 =

~2

2

∑
〈〈i,j〉〉

[
J+

(
〈Â(↑)

i,j 〉
∗〈Â(↑)

i,j 〉+ 〈Â(↓)
i,j 〉
∗〈Â(↓)

i,j 〉
)

+ J−
(
〈Â(↑)

i,j 〉
∗〈Â(↓)

i,j 〉+ 〈Â(↓)
i,j 〉
∗〈Â(↑)

i,j 〉
)]

=

~2χ2
2

∑
〈〈i,j〉〉

[
J+ + J− cos (φ↑ − φ↓)

]
= 12~2χ2

2

∑
~k

[
J+ + J− cos (φ↑ − φ↓)

]
,

(5.3.49)

where we have used 5.3.22 and the fact that there are two sublattices and six NNNs for each site. By combining 5.3.48
and 5.3.49, our Hamiltonian term in 5.3.31 becomes:

Ĥ
(MF)
2 + Ĥ

(MF)
Γ = ~2

∑
~k

[
− χ2

∑
α

[
f̂
†(A)
~kα

f̂
†(B)
~kα

] [Aαζ~k −Bαξ~k 0

0 Aαζ~k +Bαξ~k

][
f̂

(A)
~kα

f̂
(B)
~kα

]
+

12χ2
2

[
J+ + J− cos (φ↑ − φ↓)

]]
.

(5.3.50)

Finally, we do the same to the DMI term. By inserting 5.3.19 into ĤDMI, we have:

Ĥ
(MF)
DMI = i

~2D

2

∑
〈〈i,j〉〉

νij

[
〈Â(↑)

i,j 〉
∗Â

(↓)
i,j + 〈Â(↓)

i,j 〉Â
†(↑)
i,j − 〈Â

(↑)
i,j 〉
∗〈Â(↓)

i,j 〉
]

+ H.c. =

~2Dχ2

2

∑
〈〈i,j〉〉

νij

[
ieiφ↑νij Â

(↓)
i,j + ie−iφ↓νij Â

†(↑)
i,j + H.c.

]
− i~

2D

2

∑
〈〈i,j〉〉

νijχ
2
2

[
ei(φ↑−φ↓)νij − e−i(φ↑−φ↓)νij

]
=

~2Dχ2

2

∑
〈〈i,j〉〉

νij

[
ieiφ↑νij f̂†i↓f̂j↓ − ie

iφ↓νij f̂†i↑f̂j↑ + H.c.
]

+ ~2Dχ2
2

∑
〈〈i,j〉〉

sin (φ↑ − φ↓).

(5.3.51)
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Inserting the Fourier transformation 5.3.35 into the first term, we get:

~2Dχ2

2

∑
〈〈i,j〉〉

νij

[
ieiφ↑νij f̂†i↓f̂j↓ − ie

iφ↓νij f̂†i↑f̂j↑ + H.c.
]

=

~2Dχ2

2

∑
X

∑
~r

6∑
l=1

ν
(X)
l

[
ieiφ↑ν

(X)
l f̂

†(X)
~r↓ f̂

(X)
~r+~εl↓ − ie

iφ↓ν
(X)
l f̂

†(X)
~r↑ f̂

(X)
~r+~εl↑ + H.c.

]
=

~2Dχ2

2

∑
X

∑
~k

6∑
l=1

ν
(X)
l

[
iei
~k·~εleiφ↑ν

(X)
l f̂

†(X)
~k↓

f̂
(X)
~k↓
− iei~k·~εleiφ↓ν

(X)
l f̂

†(X)
~k↑

f̂
(X)
~k↑

+ H.c.
]

=

~2Dχ2

∑
X

∑
~k

6∑
l=1

ν
(X)
l

[
sin (~k · ~εl + φ↓ν

(X)
l )f̂

†(X)
~k↑

f̂
(X)
~k↑
− sin (~k · ~εl + φ↑ν

(X)
l )f̂

†(X)
~k↓

f̂
(X)
~k↓

]
=

−~2Dχ2

∑
X

∑
~k

∑
α

C
(X)
~kᾱ

f̂
†(X)
~kα

f̂
(X)
~kα

,

(5.3.52)

where

C
(X)
~kα

:= σα

6∑
l=1

sin (φα + ν
(X)
l

~k · ~εl); σα =

{
+1, if α =↑
−1, if α =↓

. (5.3.53)

By using table 1, we find this quantity more explicitly for the two sublattices:

C
(A)
~kα

= 2σα

[
sin (φα +

√
3

2
kxa+

3

2
kya) + sin (φα +

√
3

2
kxa−

3

2
kya) + sin (φα −

√
3kxa)

]
(5.3.54)

C
(B)
~kα

= 2σα

[
sin (φα −

√
3

2
kxa−

3

2
kya) + sin (φα −

√
3

2
kxa+

3

2
kya) + sin (φα +

√
3kxa)

]
. (5.3.55)

We now summarize the results of this subsection in following proposition:

Proposition 5.3. The Hamiltonians Ĥ0 and Ĥ = Ĥ0 + ĤDMI from section 5.2, decoupled with Abrikosov
fermions as in proposition 5.2 and approximated by a mean-field theory described in subsection 5.3.2, are given
by:

Ĥ
(MF)
0 = ~2

∑
~k

[∑
α

([
f̂
†(A)
~kα

f̂
†(B)
~kα

] [− χ2(Aαζ~k −Bαξ~k) −J1χ1η~k
− J1χ1η

∗
~k

−χ2(Aαζ~k +Bαξ~k)

][
f̂

(A)
~kα

f̂
(B)
~kα

])
+

3J1χ
2
1 + 12χ2

2

[
J+ + J− cos (φ↑ − φ↓)

]]
,

(5.3.56)

and Ĥ(MF) = Ĥ
(MF)
0 + Ĥ

(MF)
DMI ;

Ĥ
(MF)
DMI = ~2

∑
~k

[∑
α

([
f̂
†(A)
~kα

f̂
†(B)
~kα

] [−Dχ2C
(A)
~kᾱ

0

0 −Dχ2C
(B)
~kᾱ

][
f̂

(A)
~kα

f̂
(B)
~kα

])
+ 12Dχ2

2 sin (φ↑ − φ↓)

]
, (5.3.57)

where

η~k = e−ikya + 2ei
kya

2 cos (

√
3

2
kxa), (5.3.58)

Aα := J− cosφᾱ + J+ cosφα, (5.3.59)

Bα := J− sinφᾱ + J+ sinφα, (5.3.60)

ζ~k := 2
[
2 cos (

√
3

2
kxa) cos (

3

2
kya) + cos (

√
3kxa)

]
, (5.3.61)

ξ~k := 4 sin (

√
3

2
kxa)

[
cos (

3

2
kya)− cos (

√
3

2
kxa)

]
, (5.3.62)
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C
(A)
~kα

= 2σα

[
sin (φα +

√
3

2
kxa+

3

2
kya) + sin (φα +

√
3

2
kxa−

3

2
kya) + sin (φα −

√
3kxa)

]
, (5.3.63)

C
(B)
~kα

= 2σα

[
sin (φα −

√
3

2
kxa−

3

2
kya) + sin (φα −

√
3

2
kxa+

3

2
kya) + sin (φα +

√
3kxa)

]
. (5.3.64)

Here,

J± := J2 ± Γ; σα =

{
+1, if α =↑
−1, if α =↓

, (5.3.65)

and χ1, χ2, φ↑, φ↓ ∈ R are mean-field parameters.

5.3.4 Diagonalization, groundstate energy and excitations

Having our Hamiltonians on matrix form in proposition 5.3, we are now ready for the diagonalization. We start with

the Hamiltonian without DMI. According to theorem 3.2, our aim is to find eigenvalues E
(±)
~kα

of the matrix:

H(MF)
~kα,0

=

[
− χ2(Aαζ~k −Bαξ~k) −J1χ1η~k

− J1χ1η
∗
~k

−χ2(Aαζ~k +Bαξ~k)

]
, (5.3.66)

which are found by solving following equation:

det
(
IE

(±)
~kα
− H(MF)

~kα,0

)
=

∣∣∣∣∣E
(±)
~kα

+ χ2(Aαζ~k −Bαξ~k) J1χ1η~k
J1χ1η

∗
~k

E
(±)
~kα

+ χ2(Aαζ~k +Bαξ~k)

∣∣∣∣∣ =[
E

(±)
~kα

+ χ2(Aαζ~k −Bαξ~k)
][
E

(±)
~kα

+ χ2(Aαζ~k +Bαξ~k)
]
− J2

1χ
2
1|η~k|

2 =

(E
(±)
~kα

)2 + 2χ2Aαζ~kE
(±)
~kα

+ χ2
2

[
(Aαζ~k)2 − (Bαξ~k)2

]
− J2

1χ
2
1|η~k|

2 = 0,

(5.3.67)

which gives:

E
(±)
~kα

= −χ2Aαζ~k ±
√
χ2

2(Bαξ~k)2 + J2
1χ

2
1|η~k|2, (5.3.68)

which effectively is exactly the same result as equation 28 in reference [2]. The diagonalized Hamiltonian is then given
by:

Ĥ
(MF)
0 = ~2

∑
~k

[∑
α

[
E

(+)
~kα

φ̂
†(A)
~kα

φ̂
(A)
~kα

+ E
(−)
~kα

φ̂
†(B)
~kα

φ̂
(B)
~kα

]
+ 3J1χ

2
1 + 12χ2

2

[
J+ + J− cos (φ↑ − φ↓)

]
. (5.3.69)

For the ground state in half-filled fermionic case, only the lower bands are occupied, meaning that the ground state
energy is given by:

E
(no DMI)
(tot)

~2
=
∑
~k

[
E

(−)
~k↑

+ E
(−)
~k↓

+ 3J1χ
2
1 + 12χ2

2

[
J+ + J− cos (φ↑ − φ↓)

]]
, (5.3.70)

and the excitations are described by E
(+)
~kα

.

Finally, we do the same procedure for the Hamiltonian with DMI. We have the following matrix:

H(MF)
~kα

= H(MF)
~kα,0

+ H(MF)
~kα,DMI

=

[
−Dχ2C

(A)
~kᾱ
− χ2(Aαζ~k −Bαξ~k) −J1χ1η~k
− J1χ1η

∗
~k

−Dχ2C
(B)
~kᾱ
− χ2(Aαζ~k +Bαξ~k)

]
. (5.3.71)

We get: ∣∣∣∣∣E
(±)
~kα

+Dχ2C
(A)
~kᾱ

+ χ2(Aαζ~k −Bαξ~k) J1χ1η~k
J1χ1η

∗
~k

E
(±)
~kα

+Dχ2C
(B)
~kᾱ

+ χ2(Aαζ~k +Bαξ~k)

∣∣∣∣∣ =∣∣∣∣∣E
(±)
~kα

+ ΘA J1χ1η~k
J1χ1η

∗
~k

E
(±)
~kα

+ ΘB

∣∣∣∣∣ =
[
E

(±)
~kα

+ ΘA

][
E

(±)
~kα

+ ΘB

]
− J2

1χ
2
1|η~k|

2 =

(E
(±)
~kα

)2 + (ΘA + ΘB)E
(±)
~kα

+ ΘAΘB − J2
1χ

2
1|η~k|

2 = 0,

(5.3.72)
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where we defined:
ΘA := Dχ2C

(A)
~kᾱ

+ χ2(Aαζ~k −Bαξ~k), (5.3.73)

ΘB := Dχ2C
(B)
~kᾱ

+ χ2(Aαζ~k +Bαξ~k). (5.3.74)

This gives:

E
(±)
~kα

= −ΘA + ΘB

2
±
√

(ΘA + ΘB)2

4
−ΘAΘB + J2

1χ
2
1|η~k|2 = −ΘA + ΘB

2
±
√

(ΘA −ΘB)2

4
+ J2

1χ
2
1|η~k|2 =

−χ2

[
D
C

(A)
~kᾱ

+ C
(B)
~kᾱ

2
+Aαζ~k

]
±

√
χ2

2

(DC
(A)
~kᾱ
−DC(B)

~kᾱ
− 2Bαξ~k)2

4
+ J2

1χ
2
1|η~k|2.

(5.3.75)

We can now summarize the results of this subsection in following proposition:

Proposition 5.4. The ground state energies of half-filled fermionic Hamiltonians Ĥ
(MF)
0 and Ĥ(MF) = Ĥ

(MF)
0 +

Ĥ
(MF)
DMI presented in proposition 5.3 are given by:

E(tot)

~2
=
∑
~k

[
E

(−)
~k↑

+ E
(−)
~k↓

+ C
]
, (5.3.76)

with E
(−)
~kα

being occupied bands, and E
(+)
~kα

representing the excitations.

Here, for Ĥ
(MF)
0 , we have:

E
(±)
~kα

= −χ2Aαζ~k ±
√
χ2

2(Bαξ~k)2 + J2
1χ

2
1|η~k|2, (5.3.77)

C = 3J1χ
2
1 + 12χ2

2

[
J+ + J− cos (φ↑ − φ↓)

]
, (5.3.78)

and for Ĥ(MF), we have:

E
(±)
~kα

= −χ2

[
D
C

(A)
~kᾱ

+ C
(B)
~kᾱ

2
+Aαζ~k

]
±

√
χ2

2

(DC
(A)
~kᾱ
−DC(B)

~kᾱ
− 2Bαξ~k)2

4
+ J2

1χ
2
1|η~k|2, (5.3.79)

C = 3J1χ
2
1 + 12χ2

2

[
J+ + J− cos (φ↑ − φ↓)

]
+ 12Dχ2

2 sin (φ↑ − φ↓). (5.3.80)

We see that Ĥ(MF) reduces to Ĥ
(MF)
0 when D = 0, just as expected, so that the general discussion at this point will

involve the results with DMI included.

5.3.5 Physical phases

Depending on the mean-field parameters χ1, χ2, φ↑, φ↓ ∈ R, the form of our Hamiltonian and the dispersions will
change, and some different forms will represent different physical phases. Following the approach in reference [2], we
will consider three physical phases, and check which of these is most likely to exist for different interaction parameters
J1, J2,Γ, D. Based on that, we can construct a phase diagram. In this subsection, we will present the three physical
phases, and determine what values mean-field parameters must have for these phases.

In order to define the three phases, we first recall our mean-field approximated Hamiltonian before Fourier transfor-
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mations were performed. Combining 5.3.23, 5.3.31 and 5.3.51, we have that:

Ĥ(MF) = −~2J1χ1

2

∑
〈i,j〉

∑
α

[
f̂†iαf̂jα + H.c.

]
− ~2χ2

2

∑
〈〈i,j〉〉

∑
α

[[
J−e

iφᾱνij + J+e
iφανij

]
f̂†iαf̂jα + H.c.

]
−

~2Dχ2

2

∑
〈〈i,j〉〉

∑
α

νij

[
iσαe

iφᾱνij f̂†iαf̂jα + H.c.
]

+
∑
〈i,j〉

~2J1χ
2
1

2
+

~2χ2
2

∑
〈〈i,j〉〉

[
J+ + J− cos (φ↑ − φ↓) +D sin (φ↑ − φ↓)

]
=

−~2J1χ1

2

∑
〈i,j〉

∑
α

[
f̂†iαf̂jα + H.c.

]
− ~2χ2

2

∑
〈〈i,j〉〉

∑
α

[[
J−e

iφᾱνij + J+e
iφανij +Dσαe

i(φᾱ+π
2 )νij

]
f̂†iαf̂jα + H.c.

]
+

∑
〈i,j〉

~2J1χ
2
1

2
+ ~2χ2

2

∑
〈〈i,j〉〉

[
J+ + J− cos (φ↑ − φ↓) +D sin (φ↑ − φ↓)

]
.

(5.3.81)

With this formula in mind, we now present Hamiltonians for the three phases: gapless spin liquid, chiral spin liquid,
and topologically gapped spin liquid, as described in reference [2].

Gapless spin liquid phase The gapless spin liquid phase is effectively described by the non-interacting graphene
Hamiltonian:

Ĥ(gapless) = C
∑
〈i,j〉

∑
α

f̂†iαf̂jα + H.c., (5.3.82)

where C ∈ R. From 5.3.81, we see that this phase is obtained when χ2 = 0.

Chiral gapped spin liquid Next, we consider the chiral gapped spin liquid, which effectively is described by
Haldane model on a honeycomb lattice:

Ĥ(chiral) = C1

∑
〈i,j〉

∑
α

f̂†iαf̂jα + iC2

∑
〈〈i,j〉〉

∑
α

νij f̂
†
iαf̂jα + H.c., (5.3.83)

where C1, C2 ∈ R \ {0}. From 5.3.81, this means that we must have:

J−e
iφᾱνij + J+e

iφανij +Dσαe
i(φᾱ+π

2 )νij = iC2νij = C2e
iπ2 νij =⇒

J+e
i(φα−π2 )νij + (Dσα + J−e

−iπ2 νij )eiφᾱνij = C2 ∈ R =⇒

J+ sin (φα −
π

2
) + J− sin (φᾱ −

π

2
) +Dσα sinφᾱ =

Dσα sinφᾱ − J+ cosφα − J− cosφᾱ = 0.

(5.3.84)

At the same time, C2 should be invariant when inverting the spins, meaning that:

J+e
i(φᾱ−π2 )νij + (Dσα + J−e

−iπ2 νij )eiφᾱνij = J+e
i(φα−π2 )νij + (Dσᾱ + J−e

−iπ2 νij )eiφανij =⇒
2Γ(eiφα − eiφᾱ) +Dσαe

iπ2 (eiφα + eiφᾱ) = 0
(5.3.85)

We see immediately that when D = 0, a solution is given by φα = φᾱ = ±π2 and χ1, χ2 6= 0, which agrees well
with reference [2]. If Γ = 0, then φα = φᾱ + π = nπ and χ1, χ2 6= 0, where n is an integer. When both D and
Γ are non-zero, the situation becomes more complicated, and solutions should be checked individually for different
interaction parameters.

Topologically gapped spin liquid Finally, we consider the topologically gapped spin liquid, which effectively is
described by Kane-Mele model for the topological insulator phase on honeycomb lattice:

Ĥ(topological) = C1

∑
〈i,j〉

∑
α

f̂†iαf̂jα + iC2

∑
〈〈i,j〉〉

∑
α

σανij f̂
†
iαf̂jα + h.c, (5.3.86)

where C1, C2 ∈ R \ {0}. In similar manner as for chiral gapped spin liquid phase, we get:

Dσα sinφᾱ − J+ cosφα − J− cosφᾱ = 0, (5.3.87)
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2J2σα(eiφα + eiφᾱ)−Deiπ2 (eiφα − eiφᾱ) = 0. (5.3.88)

Here, when D = 0, a solution is given by φα = −φᾱ = ±σα π2 and χ1, χ2 6= 0, which also agrees with reference [2]. If

J2 = 0, then φα = φᾱ = nπ and χ1, χ2 6= 0, where n is an integer. The dispersions E
(±)
~kα

for the presented phases are
plotted in figure 7b.

(a) First Brillouin zone and some important points: Γ, T, K and
M. The distance from Γ to T is 3

4
of distance from Γ to K. The

Γ-point should not be confused with the anisotropic interaction
parameter Γ.

(b) Dispersions E
(±)
~kα

as functions of ~k for the three spin liquid

phases. The points Γ, T, K, M are defined in figure 7a. The
green plot is for gapless spin liquid, red for chiral gapped spin
liquid, and blue for topologically gapped spin liquid. In half-
filling case, the lower bands are occupied in the ground state, and
upper bands represent excitations. The numerical parameters
are J1 = 1, J2 = 0.5, Γ = 0.1, and D = 0. For chiral and
topologically gapped spin liquids, we used χ2 = 0.5.

Figure 7: First Brillouin zone and dispersions for different quantum spin liquids in Abrikosov fermion mean-field theory.

We see that equations 5.3.84 and 5.3.87 are exactly the same. Thus, for a given set of interaction parameters J2,Γ, D,
we can find necessary φ↑, φ↓ that give chiral gapped spin liquid phase by simultaneously solving 5.3.87 and 5.3.88. On
the other hand, we can find necessary φ↑, φ↓ that give topologically gapped spin liquid phase by simultaneously solving
5.3.87 and 5.3.85. We have used Levenberg–Marquardt algorithm to solve 5.3.87 numerically, and the found soultions
always satisfied either 5.3.88 or 5.3.85. An initial guess close to φ↑ = φ↓ = π

2 mostly returned a solution for chiral
gapped spin liquid phase, whilst an initial guess close to φ↑ = −φ↓ = π

2 mostly returned a solution for topologically
gapped spin liquid phase.

5.3.6 Summing over first Brilluoin zone

In subsection 5.1.2, we defined reciprocal space and first Brilluoin zone B1 of honeycomb lattice. In addition, in 5.3.25,
we defined a ~k-sum over B1 without further specifications. In order to define this sum more precisely, we should define
boundary conditions for our honeycomb lattice. In this thesis, we will consider periodic boundary condition along the
direct lattice primitive vectors {~a1,~a2} defined in subsection 5.1.2. We start by writing ~k as a linear combination of
~b1 and ~b2:

~k = m1
~b1 +m2

~b2. (5.3.89)

We now determine {m1,m2} by implementing periodic boundary condition. We had that each sublattice had N sites.
Suppose that there are N1 sites in ~a1 direction and N2 sites in ~a2 direction, so that N = N1N2. Going back to Fourier
transformation formula 5.3.25, we then must have that:

f̂~r+Nj~aj = f̂~r =⇒
∑
~k∈B1

ei
~k·~rf̂~k =

∑
~k∈B1

eiNj
~k·~ajei

~k·~rf̂~k =⇒ Nj~k · ~aj = 2πnj ; nj ∈ Z. (5.3.90)

Combining 5.3.89, 5.3.90 and 5.1.5, we have that:

mi =
ni
Ni

; i ∈ {1, 2}. (5.3.91)

Finally, as discussed in subsection 5.1.2, we had that first Brillouin zone is periodic and equivalent to the area spanned
by ~b1 and ~b2. Inserting 5.3.91 into 5.3.89, and setting N1 = N2 = N , we end up with following proposition:
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Proposition 5.5. Given periodic boundary condition along translation vectors ~a1 = ~ε1 and ~a2 = ~ε2, suppose
that each sublattice of our honeycomb lattice has N sites along each of these directions, so that N 2 = N . Then,
the ~k-sum in 5.3.25 runs over B1, defined by:

B1 :=
{
~k
∣∣∣ kx =

2π

aN
√

3
(nx − ny); ky =

2π

3aN
(nx + ny); nx, ny ∈ {1, 2, . . .N}

}
. (5.3.92)

With this proposition, we can now evaluate our ~k-sums numerically.

5.3.7 Numerical method and phase diagram

Our next step is to determine mean-field parameters χ1, χ2, φ↑, φ↓ as functions of interaction parameters J1, J2,Γ, D.
In the same manner as in 4.7.9, we can differentiate the ground state average of 5.3.81 with respect to χ1, χ2, φ↑, φ↓,
and show that all should be equal to 0. Thus, our aim is to find minimal critical point of the total ground state energy
in 5.3.76, with respect to mean-field parameters. We have used symbolic computation to do differentiation of total
energy and find self-consistency equations. Then, by using the Levenberg–Marquardt algorithm, we have solved the
four resulting non-linear equations numerically. For each set of interaction parameters, we used three initial guesses
for the mean-field parameters, with each representing one of the three liquid phases presented in subsection 5.3.5. If
solutions for several phases were found at a given point, then we kept the one with lowest total energy. Based on
equation 5.3.81, we defined following quantity as transition parameter between gapless and gapped phases:

b1 :=

∣∣χ2

∣∣∣∣J−eiφᾱνij + J+e
iφανij +Dσαe

i(φᾱ+π
2 )νij

∣∣∣∣J1χ1

∣∣ . (5.3.93)

Numerically, we defined a phase as gapless, if b1 < 0.0001, and gapped otherwise. The resulting phase diagrams can
be found in figure 8.
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(a) D = 0. (b) D = 0.0025J1.

(c) D = 0.010J1. (d) D = ±2
√
J2Γ.

Figure 8: Phase diagrams for the extended Kane-Mele-Hubbard model, obtained with Abrikosov fermion mean-field theory
for different Dzyaloshinskii-Moriya interactions D. Green color corresponds to gapless spin liquid phase, red color corresponds
to chiral gapped spin liquid phase, and blue color corresponds to topologically gapped spin liquid phase. For all cases, we used
N = 20, which gives 800 lattice sites in total. The resolution is 50× 50 points.

For D = 0, figure 8a reassembles the results from reference [2] very well. The only difference is the numerical value
of transition between gapless phase and the other phases, which we see is J2 ∨ Γ ∼ 0.33J1 in our case, and ∼ 0.85J1

in the article. This difference might be due to possibly different numerical approaches. As we slightly introduce the
DMI, we see from figure 8b that spin liquid gap closes for weak anisotropy with strong isotropic NNN interaction and
vise versa. With increasing DMI, the gap continues to close until it reaches initial transition zone ∼ 0.33J1 (we found
that this happens at D ∼ 0.0070J1). After that, a certain inversion happens between chiral gapped and topologically
gapped phases, as seen in figure 8c. Thus, we see that with strong DMI, chiral gapped phase is possible even when
Γ > J2, and topologically gapped phase is possible even when Γ < J2. Finally, we have used relation 5.2.10 in figure
8d. In this case, the gap closes completely, except for the axes, where D = 0.

5.4 Schwinger boson mean-field approach

As we saw in previous section, Abrikosov fermion mean-field approach is well-suited for studying potential spin liquids
in detail. However, the method is at best qualitative, and an analysis with alternative method is reasonable. In this
section, we are going to apply Schwinger boson mean-field approach in order to make a deeper analysis of physical
phases. In particular, whilst Abrikosov fermion mean-field approach gives insight about spin liquid, Schwinger boson
mean-field approach is well-suited for determining where exactly the spin liquid might be expected. This section
is structured in similar manner to section 5.3, where we do insertion, decoupling, mean-field approxiamtion, Fourier
transform, and diagonalization, which gives us ground state energy and excitations. Based on that, we present physical
phases and construct phase diagrams.
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5.4.1 Schwinger bosons and decoupling

As discussed in section 4.6, the Schwinger bosons are given by

~̂Si =
~
2

[
b̂†i↑ b̂†i↓

]
~σ

[
b̂i↑
b̂i↓

]
=

~
2

∑
αβ

b̂†iα~σαβ b̂iβ , (5.4.1)

and are constrained by

n̂i =
∑
α

b̂†iαb̂iα = 2S, (5.4.2)

where S = 1
2 is the spin of electrons in our lattice.

Starting with the isotropic interaction term, we can use 5.4.1, 5.3.8, 5.4.2 and proposition 5.1 to do following decoupling,
which also can be found in reference [28]:

~̂Si · ~̂Sj =
~2

4

[
B̂†ijB̂ij − Â

†
ijÂij − 1

]
, (5.4.3)

where we have defined
B̂ij := b̂†i↑b̂j↑ + b̂†i↓b̂j↓; Âij := b̂i↑b̂j↓ − b̂i↓b̂j↑. (5.4.4)

In a very similar manner, we can do following decoupling for anisotropic interaction term, which also can be found in
reference [2]:

~̂Si · [diag (−1,−1, 1) ~̂Sj ] =
~2

4

[
D̂†ijD̂ij − Ê†ijÊij − 1

]
, (5.4.5)

where we have defined
D̂ij := b̂†i↑b̂j↑ − b̂

†
i↓b̂j↓; Êij := b̂i↑b̂j↓ + b̂i↓b̂j↑. (5.4.6)

Finally, for our purposes, we also want to find similar decoupling for the DMI-term. We will now derive this step in
detail. Having from 5.4.1 that

Ŝx =
~
2

(b̂†↑b̂↓ + b̂†↓b̂↑); Ŝy = i
~
2

(b̂†↓b̂↑ − b̂
†
↑b̂↓), (5.4.7)

we have that the DMI-component becomes

~e3 · ( ~̂Si × ~̂Sj) = Ŝxi Ŝ
y
j − Ŝ

y
i Ŝ

x
j = i

~2

4

[
(b̂†i↑b̂i↓ + b̂†i↓b̂i↑)(b̂

†
j↓b̂j↑ − b̂

†
j↑b̂j↓)− (b̂†i↓b̂i↑ − b̂

†
i↑b̂i↓)(b̂

†
j↑b̂j↓ + b̂†j↓b̂j↑)

]
=

i
~2

4

[
2b̂†i↑b̂i↓b̂

†
j↓b̂j↑ − 2b̂†i↓b̂i↑b̂

†
j↑b̂j↓

]
= i

~2

4

[
2b̂†j↓b̂i↓b̂

†
i↑b̂j↑ − 2b̂†j↑b̂i↑b̂

†
i↓b̂j↓

]
.

(5.4.8)

This can be decoupled in terms of aforementioned mean-field operators in several ways:

~e3 · ( ~̂Si × ~̂Sj) = i
~2

4

[
(b̂†j↑b̂i↑ + b̂†j↓b̂i↓)(b̂

†
i↑b̂j↑ − b̂

†
i↓b̂j↓)− (b̂†j↑b̂i↑ − b̂

†
j↓b̂i↓)(b̂

†
i↑b̂j↑ + b̂†i↓b̂j↓)

]
=

i
~2

4

[
B̂†ijD̂ij − D̂†ijB̂ij

]
,

(5.4.9)

or:

~e3 · ( ~̂Si × ~̂Sj) = i
~2

4

[
(b̂†j↓b̂

†
i↑ − b̂

†
j↑b̂
†
i↓)(b̂i↑b̂j↓ + b̂i↓b̂j↑)− (b̂†j↓b̂

†
i↑ + b̂†j↑b̂

†
i↓)(b̂i↑b̂j↓ − b̂i↓b̂j↑)

]
=

i
~2

4

[
Â†ijÊij − Ê

†
ijÂij

]
,

(5.4.10)

In references [28][2], when several decouplings were possible, an average was taken, so we do the same for the DMI:

~e3 · ( ~̂Si × ~̂Sj) = i
~2

8

[
Â†ijÊij + B̂†ijD̂ij

]
+ H.c. (5.4.11)

We summarize all these decouplings in the following proposition:

Proposition 5.6. Given a set of Scwinger bosons {b̂iα} constrained by 5.4.2, following decouplings are true:

~̂Si · ~̂Sj =
~2

4

[
B̂†ijB̂ij − Â

†
ijÂij − 1

]
(5.4.12)

~̂Si · [diag (−1,−1, 1) ~̂Sj ] =
~2

4

[
D̂†ijD̂ij − Ê†ijÊij − 1

]
(5.4.13)
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~e3 · ( ~̂Si × ~̂Sj) = i
~2

8

[
Â†ijÊij + B̂†ijD̂ij

]
+ H.c., (5.4.14)

where

B̂ij := b̂†i↑b̂j↑ + b̂†i↓b̂j↓; Âij := b̂i↑b̂j↓ − b̂i↓b̂j↑; D̂ij := b̂†i↑b̂j↑ − b̂
†
i↓b̂j↓; Êij := b̂i↑b̂j↓ + b̂i↓b̂j↑. (5.4.15)

5.4.2 Mean-field approximation

In order to make our Hamiltonian quadratic, and hence diagonalizible, we now perform a mean-field approximation
with respect to the decoupled operators, as described in section 4.7. We then have that (we also drop constant terms
that are not dependent on mean-field parameters):

~̂Si · ~̂Sj 7→
~2

4

[
〈B̂ij〉∗B̂ij − 〈Âij〉∗Âij + H.c.

]
+

~2|〈Aij〉|2

4
− ~2|〈Bij〉|2

4
(5.4.16)

~̂Si · [diag (−1,−1, 1) ~̂Sj ] 7→
~2

4

[
〈D̂ij〉∗D̂ij − 〈Êij〉∗Êij + H.c.

]
+

~2|〈Eij〉|2

4
− ~2|〈Dij〉|2

4
(5.4.17)

~e3 · ( ~̂Si × ~̂Sj) 7→ i
~2

8

[
〈Âij〉∗Êij + 〈Êij〉Â†ij + 〈B̂ij〉∗D̂ij + 〈D̂ij〉B̂†ij − 〈Âij〉

∗〈Êij〉 − 〈B̂ij〉∗〈D̂ij〉
]

+ H.c. (5.4.18)

5.4.3 Implementing the Schwinger boson constraint: Lagrange multipliers and chemical potential

We can now insert the aforementioned mean-field approximations into the Hamiltonians Ĥ0 and Ĥ = Ĥ0 + ĤDMI. As
mentioned before, the mean-field approximation is at best qualitative, so we have to ensure its self-consistency. First
of all, the self-consistency equations should be satisfied. The task is therefore related to total energy minimization
with respect to mean-field parameters. In addition, we must have that the Schwinger boson constraint 5.4.2 is true.
The latter property can be implemented by introducing Lagrange multipliers, which is done by adding following term
to the mean-field Hamiltonian in question:

ĤL = ~2
∑
i

µi(n̂i − κ). (5.4.19)

Here, µi are the Lagrange multipliers, and can physically be regarded as chemical potentials for the Schwinger bosons.
κ = 〈n̂i〉 is boson density at mean-field level, which is treated as a continuous parameter that represents quantum
limit when κ→ 0 and classical limit when κ→∞[24].

5.4.4 Mean-field ansatz: the zero-flux mean-field theory

We must have that the mean-field parameters (also known as ansatz) 〈Âij〉, 〈B̂ij〉, 〈Êij〉, 〈D̂ij〉 and the chemical
potentials µi are invariant under gauge-group and physical lattice symmetry groups. The Schwinger boson mean-field
theory for a honeycomb lattice has been rigorously studied in reference [28]. It is then shown that there can be only
two different Schwinger boson mean-field theories in a honeycomb lattice: zero-flux theory and π-flux theory. In this
thesis, we’re only going to consider the zero-flux theory.

Based on the zero-flux theory for honeycomb lattice in reference [28] and [2], we reduce our mean-field parameters and
chemical potentials to:

Table 2: Mean-field parameters for a honeycomb lattice, based on Schwinger boson mean-field zero-flux theory.

Sublattice A: 〈Â〈i,j〉〉 = −∆1 〈Â〈〈i,j〉〉〉 = +νij∆2 〈B̂〈i,j〉〉 = 〈B̂〈〈i,j〉〉〉 = 〈D̂〈〈i,j〉〉〉 = 0 〈Ê〈〈i,j〉〉〉 = ∆3 µi = µ

Sublattice B: 〈Â〈i,j〉〉 = +∆1 〈Â〈〈i,j〉〉〉 = −νij∆2 〈B̂〈i,j〉〉 = 〈B̂〈〈i,j〉〉〉 = 〈D̂〈〈i,j〉〉〉 = 0 〈Ê〈〈i,j〉〉〉 = ∆3 µi = µ,

where ∆1,∆2,∆3, µ ∈ R.

5.4.5 Fourier transform

We start by taking a look at the Lagrange term:

ĤL = ~2µ
∑
i

(n̂i − κ). (5.4.20)
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We have: ∑
i

n̂i =
∑
i

∑
α

b̂†iαb̂iα =
∑
~r

∑
α

∑
X

b̂
†(X)
~rα b̂

(X)
~rα , (5.4.21)

where X runs over sublattices A and B. In the same manner as we did in 5.3.25, we define Fourier transform for
bosons:

b̂
(X)
~rα =

1√
N

∑
~k

ei
~k·~r b̂

(X)
~kα

. (5.4.22)

We then have:∑
i

n̂i =
∑
~r

∑
α

∑
X

b̂
†(X)
~rα b̂

(X)
~rα =

1

N

∑
~k~k′

∑
~r

∑
α

∑
X

ei(
~k′−~k)·~r b̂

†(X)
~kα

b̂
(X)
~k′α

=
∑
~k~k′

∑
α

∑
X

δ~k~k′ b̂
†(X)
~kα

b̂
(X)
~k′α

=

∑
~k

∑
α,X

b̂
†(X)
~kα

b̂
(X)
~kα

=
∑
~k

∑
X

[
b̂
†(X)
~k↑

b̂
(X)
~k↑

+ b̂
†(X)
~k↓

b̂
(X)
~k↓

]
=
∑
~k

∑
X

[
b̂
†(X)
~k↑

b̂
(X)
~k↑

+ b̂
†(X)

−~k↓
b̂
(X)

−~k↓

]
=

∑
~k

∑
X

[
b̂
†(X)
~k↑

b̂
(X)
~k↑

+ b̂
(X)

−~k↓
b̂
†(X)

−~k↓
− 1
]

=
∑
~k

[
b̂
†(A)
~k↑

b̂
(A)
~k↑

+ b̂
†(B)
~k↑

b̂
(B)
~k↑

+ b̂
(A)

−~k↓
b̂
†(A)

−~k↓
+ b̂

(B)

−~k↓
b̂
†(B)

−~k↓
− 2
]
.

(5.4.23)

Inserting 5.4.23 into 5.4.20, we have

ĤL = ~2µ
∑
~r

∑
X

(
∑
α

[
b̂
†(X)
~rα b̂

(X)
~rα

]
− κ) = ~2µ

[∑
~r

∑
α

∑
X

b̂
†(X)
~rα b̂

(X)
~rα − 2

∑
~r

κ
]

=

~2µ
∑
~k

[
b̂
†(A)
~k↑

b̂
(A)
~k↑

+ b̂
†(B)
~k↑

b̂
(B)
~k↑

+ b̂
(A)

−~k↓
b̂
†(A)

−~k↓
+ b̂

(B)

−~k↓
b̂
†(B)

−~k↓
− 2− 2κ

]
=

~2
∑
~k

[ [
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]

µ 0 0 0

0 µ 0 0

0 0 µ 0

0 0 0 µ




b̂
(A)
~k↑
b̂
(B)
~k↑

b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

− (2 + 2κ)µ

]
.

(5.4.24)

We are now ready to put mean-field approximations 5.4.16, 5.4.17 and 5.4.18 into different Hamiltonian terms in Ĥ0

and Ĥ = Ĥ0 + ĤDMI. Starting with the isotropic NN-interaction term:

Ĥ
(MF)
1 = −~2J1

4

∑
〈i,j〉

[
〈Âij〉∗Âij + H.c.

]
+

~2J1

4

∑
〈i,j〉

|〈Âij〉|2, (5.4.25)

we have: ∑
〈i,j〉

〈Âij〉∗Âij =
∑
〈i,j〉

〈Âij〉∗(b̂i↑b̂j↓ − b̂i↓b̂j↑). (5.4.26)

Considering the first sum on the right hand side in 5.4.26, we split the sum into the two sublattices and do the Fourier
transform:

∑
〈i,j〉

〈Âij〉∗b̂i↑b̂j↓ =
∑
~r

3∑
l=1

[
〈Â

~r,~r+~δ
(A)
l

〉∗b̂(A)

~r↑
b̂
(B)

~r+~δ
(A)
l ↓

+ 〈Â
~r,~r+~δ

(B)
l

〉∗b̂(B)

~r↑
b̂
(A)

~r+~δ
(B)
l ↓

]
=

∆1

∑
~r

3∑
l=1

[
b̂
(B)

~r↑
b̂
(A)

~r+~δ
(B)
l ↓
− b̂(A)

~r↑
b̂
(B)

~r+~δ
(A)
l ↓

]
= ∆1

∑
~k

3∑
l=1

[
e−i

~k·~δ(B)
l b̂

(B)
~k↑

b̂
(A)

−~k↓
− e−i~k·~δ

(A)
l b̂

(A)
~k↑

b̂
(B)

−~k↓

]
.

(5.4.27)

Inserting this back into 5.4.26, we get:

∑
〈i,j〉

〈Âij〉∗Âij = ∆1

∑
~k

3∑
l=1

[
e−i

~k·~δ(B)
l b̂

(B)
~k↑

b̂
(A)

−~k↓
− e−i~k·~δ

(A)
l b̂

(A)
~k↑

b̂
(B)

−~k↓
+

e−i
~k·~δ(B)

l b̂
(B)
~k↓

b̂
(A)

−~k↑
− e−i~k·~δ

(A)
l b̂

(A)
~k↓

b̂
(B)

−~k↑

]
= 2∆1

∑
~k

[
η~k b̂

(A)

−~k↓
b̂
(B)
~k↑
− η∗~k b̂

(B)

−~k↓
b̂
(A)
~k↑

]
,

(5.4.28)
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where:

η~k =

3∑
l=1

ei
~k·~δ(A)

l = e−ikya + 2ei
kya

2 cos (

√
3

2
kxa). (5.4.29)

Putting this into 5.4.25, we can organize our Hamiltonian term into following matrix:

Ĥ
(MF)
1 = ~2

∑
~k

[
J1∆1

2

[
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]


0 0 0 η~k

0 0 −η∗~k 0

0 −η~k 0 0

η∗~k 0 0 0




b̂
(A)
~k↑
b̂
(B)
~k↑
b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

+
3

2
J1|∆1|2

]
, (5.4.30)

where for the constant term, we have used the fact that there are two sublattices and that each site has three NNs.

Next, in similar manner, we consider the isotropic NNN-interaction sum:

Ĥ
(MF)
2 = −~2J2

4

∑
〈〈i,j〉〉

[
〈Âij〉∗Âij + H.c.

]
+

~2J2

4

∑
〈〈i,j〉〉

|〈Âij〉|2. (5.4.31)

We then have that the operator terms is:∑
〈〈i,j〉〉

〈Âij〉∗Âij =
∑
〈〈i,j〉〉

〈Âij〉∗(b̂i↑b̂j↓ − b̂i↓b̂j↑); (5.4.32)

∑
〈〈i,j〉〉

〈Âij〉∗b̂i↑b̂j↓ =
∑
~r

6∑
l=1

[
〈Â~r,~r+~εl〉∗b̂

(A)
~r↑ b̂

(A)
~r+~εl↓ + 〈Â~r,~r+~εl〉∗b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
=

∑
~r

6∑
l=1

[
ν

(A)
l ∆2b̂

(A)
~r↑ b̂

(A)
~r+~εl↓ − ν

(B)
l ∆2b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
=

∑
~k

6∑
l=1

∆2

[
ν

(A)
l e−i

~k·~εl b̂
(A)
~k↑

b̂
(A)

−~k↓
− ν(B)

l e−i
~k·~εl b̂

(B)
~k↑

b̂
(B)

−~k↓

]
=

∑
~k

6∑
l=1

∆2ν
(A)
l e−i

~k·~εl
[
b̂
(A)
~k↑

b̂
(A)

−~k↓
+ b̂

(B)
~k↑

b̂
(B)

−~k↓

]
;

(5.4.33)

∑
〈〈i,j〉〉

〈Âij〉∗b̂i↓b̂j↑ =
∑
~k

6∑
l=1

∆2ν
(A)
l e−i

~k·~εl
[
b̂
(A)
~k↓

b̂
(A)

−~k↑
+ b̂

(B)
~k↓

b̂
(B)

−~k↑

]
=

∑
~k

6∑
l=1

∆2ν
(A)
l ei

~k·~εl
[
b̂
(A)
~k↑

b̂
(A)

−~k↓
+ b̂

(B)
~k↑

b̂
(B)

−~k↓

]
.

(5.4.34)

Inserting 5.4.34 and 5.4.33 into 5.4.32, we have:∑
〈〈i,j〉〉

〈Âij〉∗Âij = −i2∆2

∑
~k

ξ~k
[
b̂
(A)
~k↑

b̂
(A)

−~k↓
+ b̂

(B)
~k↑

b̂
(B)

−~k↓

]
, (5.4.35)

where

ξ~k =

6∑
l=1

ν
(A)
l sin (~k · ~εl) = 4 sin (kxa

√
3

2
)
[

cos (kya
3

2
)− cos (kxa

√
3

2
)
]
. (5.4.36)

Putting 5.4.35 into 5.4.31, we get:

Ĥ
(MF)
2 = ~2

∑
~k

[
J2∆2

2

[
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]


0 0 −iξ~k 0

0 0 0 −iξ~k
+iξ~k 0 0 0

0 +iξ~k 0 0




b̂
(A)
~k↑
b̂
(B)
~k↑
b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

+ 3J2|∆2|2
]
. (5.4.37)
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Next, in a very similar manner, we consider the anisotropic interaction sum:

Ĥ
(MF)
Γ = −~2Γ

4

∑
〈〈i,j〉〉

[
〈Êij〉∗Êij + H.c.

]
+

~2Γ

4

∑
〈〈i,j〉〉

|〈Êij〉|2. (5.4.38)

∑
〈〈i,j〉〉

〈Êij〉∗Êij =
∑
〈〈i,j〉〉

∆3(b̂i↑b̂j↓ + b̂i↓b̂j↑) = 2∆3

∑
~k

ζ~k
[
b̂
(A)
~k↑

b̂
(A)

−~k↓
+ b̂

(B)
~k↑

b̂
(B)

−~k↓

]
, (5.4.39)

where:

ζ~k =

6∑
l=1

cos (~k · ~εl) = 2
[
2 cos (kxa

√
3

2
) cos (kya

3

2
) + cos (kxa

√
3)
]
. (5.4.40)

We get:

Ĥ
(MF)
Γ = ~2

∑
~k

[
Γ∆3

2

[
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]


0 0 −ζ~k 0

0 0 0 −ζ~k
−ζ~k 0 0 0

0 −ζ~k 0 0




b̂
(A)
~k↑
b̂
(B)
~k↑
b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

+ 3Γ|∆3|2
]
. (5.4.41)

Finally, we determine the DMI-term:

Ĥ
(MF)
DMI = i

~2D

8

∑
〈〈i,j〉〉

νij

[
〈Âij〉∗Êij − 〈Êij〉∗Âij − 〈Âij〉∗〈Êij〉

]
+ H.c.. (5.4.42)

Considering the terms sparately, we start with:∑
〈〈i,j〉〉

νij〈Âij〉∗Êij =
∑
〈〈i,j〉〉

νij〈Âij〉∗(b̂i↑b̂j↓ + b̂i↓b̂j↑); (5.4.43)

∑
〈〈i,j〉〉

νij〈Âij〉∗b̂i↑b̂j↓ =
∑
~r

6∑
l=1

[
ν

(A)
l ν

(A)
l ∆2b̂

(A)
~r↑ b̂

(A)
~r+~εl↓ − ν

(B)
l ν

(B)
l ∆2b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
=

∆2

∑
~r

6∑
l=1

[
b̂
(A)
~r↑ b̂

(A)
~r+~εl↓ − b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
= ∆2

∑
~k

6∑
l=1

e−i
~k·~εl
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
;

(5.4.44)

∑
〈〈i,j〉〉

νij〈Âij〉∗b̂i↓b̂j↑ = ∆2

∑
~k

6∑
l=1

ei
~k·~εl
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
. (5.4.45)

Putting 5.4.45 and 5.4.44 into 5.4.43, we get:∑
〈〈i,j〉〉

νij〈Âij〉∗Êij = 2∆2

∑
~k

ζ~k
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
. (5.4.46)

In similar manner, ∑
〈〈i,j〉〉

νij〈Êij〉∗Âij =
∑
〈〈i,j〉〉

νij〈Êij〉∗(b̂i↑b̂j↓ − b̂i↓b̂j↑); (5.4.47)

∑
〈〈i,j〉〉

νij〈Êij〉∗b̂i↑b̂j↓ =
∑
~r

6∑
l=1

[
ν

(A)
l ∆3b̂

(A)
~r↑ b̂

(A)
~r+~εl↓ + ν

(B)
l ∆3b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
=

∆3

∑
~r

6∑
l=1

ν
(A)
l

[
b̂
(A)
~r↑ b̂

(A)
~r+~εl↓ − b̂

(B)
~r↑ b̂

(B)
~r+~εl↓

]
= ∆3

∑
~k

6∑
l=1

ν
(A)
l e−i

~k·~εl
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
;

(5.4.48)

∑
〈〈i,j〉〉

νij〈Êij〉∗b̂i↓b̂j↑ = ∆3

∑
~k

6∑
l=1

ν
(A)
l ei

~k·~εl
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
. (5.4.49)
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By putting 5.4.49 and 5.4.48 into 5.4.47, we get:∑
〈〈i,j〉〉

νij〈Êij〉∗Âij = −i2∆3

∑
~k

ξ~k
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
. (5.4.50)

Before putting the terms together, we also want to determine the constant term:

∑
〈〈i,j〉〉

νij〈Âij〉∗〈Êij〉 =
∑
~r

6∑
l=1

[
ν

(A)
l ν

(A)
l ∆2∆3 − ν(B)

l ν
(B)
l ∆2∆3

]
= 0. (5.4.51)

By putting 5.4.46, 5.4.50 and 5.4.51 into 5.4.42, then we have:

i
~2D

8

∑
〈〈i,j〉〉

νij

[
〈Âij〉∗Êij − 〈Êij〉∗Âij − 〈Âij〉∗〈Êij〉

]
=

~2
∑
~k

[
− D∆3

4
ξ~k + i

D∆2

4
ζ~k
][
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
= −~2

∑
~k

τ∗~k
[
b̂
(A)

−~k↓
b̂
(A)
~k↑
− b̂(B)

−~k↓
b̂
(B)
~k↑

]
,

(5.4.52)

where we defined:

τ~k :=
D∆3

4
ξ~k + i

D∆2

4
ζ~k. (5.4.53)

We now summarize the results of the subsection in the following proposition:

Proposition 5.7. The Hamiltonians Ĥ0 and Ĥ = Ĥ0 +ĤDMI from section 5.2, decoupled with Schwinger bosons
as in proposition 5.6 and approximated by the zero-flux mean-field theory summarized in table 2, are given by:

Ĥ
(MF)
0 = ~2

∑
~k

[ [
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]


µ 0 −ψ~k η̃~k

0 µ −η̃∗~k −ψ~k
−ψ∗~k −η̃~k µ 0

η̃∗~k −ψ∗~k 0 µ




b̂
(A)
~k↑
b̂
(B)
~k↑
b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

+

3

2
J1|∆1|2 + 3J2|∆2|2 + 3Γ|∆3|2 − (2 + 2κ)µ

]
,

(5.4.54)

and Ĥ(MF) = Ĥ
(MF)
0 + Ĥ

(MF)
DMI ;

Ĥ
(MF)
DMI = ~2

∑
~k

[
b̂
†(A)
~k↑

b̂
†(B)
~k↑

b̂
(A)

−~k↓
b̂
(B)

−~k↓

]


0 0 −τ~k 0

0 0 0 τ~k

−τ∗~k 0 0 0

0 τ∗~k 0 0




b̂
(A)
~k↑
b̂
(B)
~k↑
b̂
†(A)

−~k↓
b̂
†(B)

−~k↓

 , (5.4.55)

where

η̃~k :=
J1∆1

2
η~k; ψ~k :=

Γ∆3

2
ζ~k + i

J2∆2

2
ξ~k; τ~k :=

D∆3

4
ξ~k + i

D∆2

4
ζ~k, (5.4.56)

η~k = e−ikya + 2ei
kya

2 cos (

√
3

2
kxa), (5.4.57)

ξ~k = 4 sin (kxa

√
3

2
)
[

cos (kya
3

2
)− cos (kxa

√
3

2
)
]
, (5.4.58)

ζ~k = 2
[
2 cos (kxa

√
3

2
) cos (kya

3

2
) + cos (kxa

√
3)
]
. (5.4.59)

Here, κ is boson density, and µ,∆1,∆2,∆3 ∈ R are mean-field parameters.
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5.4.6 Diagonaliztation through Bogoliubov transformation

Having organized our Hamiltonians into matrices, we are now ready for the diagonalization as described in theorem
3.4. We start with the Hermitian matrix presented in 5.4.54, given by:

H(MF)
~k,0

:=


µ 0 −ψ~k η̃~k

0 µ −η̃∗~k −ψ~k
−ψ∗~k −η̃~k µ 0

η̃∗~k −ψ∗~k 0 µ

 (5.4.60)

In order to use theorem 3.4, we have to be sure that the matrix is positive definite, which means that all eigenvalues
are positive. By using symbolic computation, we find the four eigenvalues of this matrix to be:

λi = µ(±)1

√
(±)2

√
−η̃~k(ψ~k − ψ

∗
~k
)2η̃∗~k

+ |ψ~k|2 + |η̃~k|2 = µ(±)1

√
(±)22|η̃~k| Im

{
ψ~k
}

+ |ψ~k|2 + |η̃~k|2. (5.4.61)

In order to keep these eigenvalues positive, we get following constraints:

|ψ~k|
2 + |η̃~k|

2 ≥ 2|η̃~k|| Im
{
ψ~k
}
| (5.4.62)

µ >
√

2|η̃~k|| Im
{
ψ~k
}
|+ |ψ~k|2 + |η̃~k|2. (5.4.63)

The first constraint is always satisfied by definition:

|ψ~k|
2 + |η̃~k|

2 − 2|η̃~k|| Im
{
ψ~k
}
| = Re

{
ψ~k
}2

+ (| Im
{
ψ~k
}
| − |η̃~k|)

2 ≥ 0. (5.4.64)

The second constraint implies that chemical potential for bosons has to be positive. This fact can physically be hard
to interpret, because chemical potential for bosons typically is supposed to be negative.

Next, as described in theorem 3.4, we find the energy dispersion by finding eigenvalues of ĨH(MF)
~k,0

. By using symbolic

computation, we find that the four eigenvalues are:

λ̃i = (±)1

√
µ2(±)22|η̃~k|| Im

{
ψ~k
}
| − |ψ~k|2 − |η̃~k|2. (5.4.65)

We must thus have:
µ2 > 2|η̃~k|| Im

{
ψ~k
}
|+ |ψ~k|

2 + |η̃~k|
2. (5.4.66)

We see that when this is satisfied, the positive definiteness constraint in 5.4.63 is also satisfied, as long as µ > 0. We
now define the energy dispersion as positive eigenvalues in 5.4.65. After rewriting slightly, we get:

E±~k
=

√
µ2 − (|η̃~k| ± Im

{
ψ~k
}

)2 − Re
{
ψ~k
}2
. (5.4.67)

By using theorem 3.4, we can diagonalize our Hamiltonian 5.4.54 into:

Ĥ
(MF)
0

~2
=
∑
~k

[
E+
~k

(β̂
†(A)
~k↑

β̂
(A)
~k↑

+ β̂
†(A)

−~k↓
β̂

(A)

−~k↓
) + E−~k

(β̂
†(B)
~k↑

β̂
(B)
~k↑

+ β̂
†(B)

−~k↓
β̂

(B)

−~k↓
)+

E+
~k

+ E−~k
+

3

2
J1|∆1|2 + 3J2|∆2|2 + 3Γ|∆3|2 − (2 + 2κ)µ

]
.

(5.4.68)

The ground state is then given by abscence of β-bosons, which gives us following ground state energy:

E(tot)

~2
=
∑
~k

[
E+
~k

+ E−~k
+

3

2
J1|∆1|2 + 3J2|∆2|2 + 3Γ|∆3|2 − (2 + 2κ)µ

]
, (5.4.69)

which agrees well with the results in reference [2]23.

23The only difference is sign and factor for the constant µ-term. After checking other references like reference [24], we concluded that
the difference is a typo.
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Next, in the same manner, we want to find the ground state energy when DMI is included. Considering the matrix:

H(MF)
~k

:= H(MF)
~k,0

+ H(MF)
~k,DMI

=


µ 0 −ψ~k − τ~k η̃~k

0 µ −η̃∗~k −ψ~k + τ~k

−ψ∗~k − τ
∗
~k

−η̃~k µ 0

η̃∗~k −ψ∗~k + τ∗~k 0 µ

 , (5.4.70)

the symbolic computation of eigenvalues of ĨH(MF)
~k

gives following dispersions:

E±~k,DMI
=

√
µ2 ±

√
Ξ~k − |ψ~k|2 − |η̃~k|2 − |τ~k|2, (5.4.71)

where
Ξ~k := −ψ2

~k
|η̃~k|

2 + ψ2
~k
(τ∗~k )2 + 2|ψ~k|

2|η̃~k|
2 − (ψ∗~k)2|η̃~k|

2 + τ2
~k

(ψ∗~k)2 + 2|ψ~k|
2|τ~k|

2 + τ2
~k
|η̃~k|

2+

(τ∗~k )2|η̃~k|
2 + 2|η̃~k|

2|τ~k|
2 = |η̃~k|

2
[
(τ2
~k

+ 2|τ~k|
2 + (τ∗~k )2)− (ψ2

~k
− 2|ψ~k|

2 + (ψ∗~k)2)
]
+[

(ψ~kτ
∗
~k

)2 + 2|ψ~kτ~k|
2 + [(ψ~kτ

∗
~k

)∗]2
]

= |η̃~k|
2
[
(τ~k + τ∗~k )2 − (ψ~k − ψ

∗
~k
)2
]

+ (ψ~kτ
∗
~k

+ ψ∗~kτ~k)2 =

|η̃~k|
2
[
4 Re

{
τ~k
}2

+ 4 Im
{
ψ~k
}2]

+ 4 Re
{
ψ~kτ

∗
~k

}2

.

(5.4.72)

We have that:

ψ~kτ
∗
~k

= (Re
{
ψ~k
}

+ i Im
{
ψ~k
}

)(Re
{
τ~k
}
− i Im

{
τ~k
}

) =

Re
{
ψ~k
}

Re
{
τ~k
}

+ Im
{
ψ~k
}

Im
{
τ~k
}

+ i
[

Im
{
ψ~k
}

Re
{
τ~k
}
− Re

{
ψ~k
}

Im
{
τ~k
}]

=⇒
(5.4.73)

Re
{
ψ~kτ

∗
~k

}
= Re

{
ψ~k
}

Re
{
τ~k
}

+ Im
{
ψ~k
}

Im
{
τ~k
}
. (5.4.74)

We thus obtain:
Ξ~k = 4|η̃~k|

2(Re
{
τ~k
}2

+ Im
{
ψ~k
}2

) + 4(Re
{
ψ~k
}

Re
{
τ~k
}

+ Im
{
ψ~k
}

Im
{
τ~k
}

)2. (5.4.75)

We now summarize the results of this subsection:

Proposition 5.8. The ground state energies of Hamiltonians Ĥ
(MF)
0 and Ĥ(MF) = Ĥ

(MF)
0 + Ĥ

(MF)
DMI presented in

proposition 5.7 are given by:

E(tot)

~2
=
∑
~k

[
E+
~k

+ E−~k
+

3

2
J1|∆1|2 + 3J2|∆2|2 + 3Γ|∆3|2 − (2 + 2κ)µ

]
, (5.4.76)

where

E±~k
=

√
µ2 − (|η̃~k| ± | Im

{
ψ~k
}
|)2 − Re

{
ψ~k
}2

(5.4.77)

for Ĥ
(MF)
0 , and

E±~k
=

√
µ2 ±

√
Ξ~k − |ψ~k|2 − |η̃~k|2 − |τ~k|2 (5.4.78)

for Ĥ(MF), where

Ξ~k = 4|η̃~k|
2(Re

{
τ~k
}2

+ Im
{
ψ~k
}2

) + 4(Re
{
ψ~k
}

Re
{
τ~k
}

+ Im
{
ψ~k
}

Im
{
τ~k
}

)2. (5.4.79)

The excitation energies are described by E±~k
.

With D = 0, 5.4.78 reduces to 5.4.77, as expected.

5.4.7 Physical phases, numerical methods and phase diagrams

In general, three different physical phases are expected to appear in Schwinger boson mean-field zero-flux theory. The
phases are described by the dispersion24 E−~k

in 5.4.78, and depend on the mean-field parameters ∆1,∆2,∆3, µ and

24Since E+
~k
≥ E−

~k
, and because the phases are determined by the gap, the phase information is extracted from E−

~k
.
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interaction parameters J1, J2,Γ, D. As discussed in references [28][2], a gapped dispersion (E−~k
> 0; ∀~k) corresponds

to a phase known as zero-flux Z2 spin liquid (Z2). We see that this is obtained when µ� ∆1,∆2,∆3. If the dispersion
is gapless, the bosons will begin to condense, leading to an ordered phase. A condensate at the Γ-point corresponds to
the Néel order (NO), whilst a condensate anywhere between T-point and K-point corresponds to the incommensurate
magnetic order (IMO).

Just like in Abrikosov fermion mean-field approach, the mean-field parameters for a given set of interaction param-
eters can be determined by solving self-consistency equations, and choosing solutions that give lowest total energy
(or minimizing total energy). Also here, we have used symbolic computation to find self-consistency equations by
diffirentiating total energy 5.4.76 with respect to mean-field parameters. However, constructing relevant initial guesses
is now more difficult to do. Therefore, we have used a Monte-Carlo-like method, where we defined initial guesses
randomly. For our interaction parameters of interest, we found it most convenient to define ∆1,∆2,∆3 as random
values between 0 and 1, and µ between 0 and 10. For each given set of interaction parameters, we typically generated
a set of 60 initial guesses (although some points close to Γ = 0 required more guesses in order to find solutions). In
addition, the Levenberg–Marquardt algorithm tended to enter imaginary domain due to square-root nature of the
dispersion. This difficulty was overcome by doing following transformation25:

E±~k
=

√
µ2 ±

√
Ξ~k − |ψ~k|2 − |η̃~k|2 − |τ~k|2 7→

√∣∣∣µ2 ±
√

Ξ~k − |ψ~k|2 − |η̃~k|2 − |τ~k|2
∣∣∣. (5.4.80)

Based on 5.4.78, the transition parameter between gapped and gapless phases was defined as:

tS :=

∣∣∣∣∣µ
2 −

√
Ξ~k0
− |ψ~k0

|2 − |η̃~k0
|2 − |τ~k0

|2

µ2

∣∣∣∣∣, (5.4.81)

where we numerically defined a phase as gapless if tS < 0.0005. In addition, we had to determine a suitable value for
boson density, κ. As expected from the quantum nature of spin liquids, a low κ-value (quantum limit) tended to give
pure Z2 phase diagrams. On the other hand, a higher κ-value (closer to classical limit) tended to turn IMO into NO
by a first-order phase transition (as expected from reference[28]), and Z2 into NO by a second-order phase transition.
The transitions for D = 0 are illustrated in figure 9.

25After some numerical experiments, we found that no alternative solutions were introduced with this transformation. However, the
probability of finding a physical solution increased.
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(a) J2 = 5J1, Γ = 2J1, D = 0. (b) J2 = 2J1, Γ = 5J1, D = 0.

(c) J2 = Γ = 0.2J1, D = 0.

Figure 9: Normalized plots of the dispersion E−~k in 5.4.78 for different boson densities κ when no Dzyaloshinskii-Moriya

interactions are present. The critical value κc ∼ 0.3139 seems to reproduce results from reference [2] in the best way. Purple
color represents zero-flux Z2 spin liquid (gapped), yellow color represents Néel order (gapless at Γ-point) and cyan color represents
incommensurate magnetic order (gapless between T- and K-point). When approaching extreme quantum limit κ � κc, the
entire phase diagram tends to take a continuous second-order transition into spin liquid, as seen from figures 9a, 9b, 9c. Above
critical value, as seen in figure 9a, the incommensurate order phase tends to take a discontinuous first-order transition into Néel
order phase (mathematically, this is because the dispersion enters imaginary plane at condensation point, and all such solutions
suddenly become unphysical). Closer to the classical limit (κ� κc), the liquid phase continuously turns into Néel order phase,
which for D = 0 happens at approximately κ ∼ 0.65, as seen in figure 9c. For κ = κc, we achieve a phase diagram with all three
phases, as will be seen in figure 10a. The mean-field parameters were found by solving self-consistency equations and picking a
solution with lowest total energy.

The critical boson density κc, as defined in figure 9, changed as function of D - with higher D giving lower κc. In
other words, higher DMI introduced more order to the system. Because of that, no such quantity could be defined for
the case, where D is given by 5.2.10. The phase diagrams for different D and κ can be seen in figure 10.
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(a) D = 0, κ = κc = 0.3139.
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(b) D = 0.0025J1, κ = κc = 0.3125.
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(c) D = 0.010J1, κ = κc = 0.3100.
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(d) D =
√
J2Γ, κ = 0.2000.

Figure 10: Phase diagrams for the extended Kane-Mele-Hubbard model, obtained with Schwinger boson zero-flux mean-field
theory for different Dzyaloshinskii-Moriya interactions D and boson densities κ. Purple color corresponds to zero-flux Z2 spin
liquid phase, yellow color corresponds to Néel order, cyan color corresponds to incommensurate magnetic order, and white color
corresponds to no found solution. For all cases, we used N = 20, which gives 800 lattice sites in total. The resolution is only
10× 10 due to long computation time.

Figure 10a agrees quite well with the results from reference [2], except for that the Z2-area is somewhat closer to the
origin in our case (the difference might be due to different numerical approaches). From the figures 10a, 10b, 10c, we
see that as D increases, the IMO phase becomes less achievable for weak isotropic NNN interactions, J2. At the same
time, the Z2-area becomes longer, and a spin liquid can be achieved for higher J2, when anisotropic interaction Γ is
small. However, the κ-value for our phase diagrams is decreasing with increasing D, meaning that for a constant κ,
the order in the system is generally increasing when DMI is introduced.

Constructing a phase diagram with D as function of J2 and Γ for a κ close to the ones used in other cases was
challenging numerically, as the probability of finding a solution decreased. Therefore, based on the results from figures
9 and 10a, we propose that a such phase diagram would reassemble figure 10a close to the axes, and having NO phase
otherwise. After some numerical experiments, we did however discover an interesting result with D = 2

√
J2Γ and

κ ∼ 0.2, as seen in figure 10d. For this particular low value of κ, IMO phase condenced when J2 = Γ.

5.5 Discussion

In this section, we want to briefly discuss the results obtained with Abrikosov fermion mean-field theory and Schwinger
boson mean-field zero-flux theory. As discussed in reference [2], the gapless and topologically gapped spin liquids might
be surpressed by gauge fluctuations and instanton effects. However, the chiral gapped phase is stable due to nontrivial
topology. Thus, although further investigations about the former two spin liquids are needed, the gap opening in
Abrikosov fermion mean-field approach might suggest lattice ordering when DMI is introduced. At the same time,
for intermediate DMI (when 5.2.10 is not valid), the chiral gapped phase becomes available in some Γ > J2-areas.
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The argument about lattice ordering is further suggested by the Schwinger boson mean-field approach. However, we
should still remember that mean-field theories at best are qualitative, and that rigorous conclusions cannot be made.

6 Conclusion and outlook

In this thesis, we have considered derivation of a spin-Hamiltonian, the general idea behind bosonization and fermion-
ization, and symmetry in quantum mechanics. We then applied Abrikosov fermion and Schwinger boson mean-field
theories to an extended Kane-Mele-Hubbard model, where Dzyaloshinskii-Moriya interactions were included. Based
on these theories, we constructed phase diagrams that possibly suggest increased ordering.

Our next goal is to analyze the extended model with other approaches. In particular, we would like to construct a phase
diagram by using a classical approach, such as Luttinger-Tisza method[29][30][31][32][33][34] or classical Monte-Carlo
simulations[35]. In addition, we would like to extend our Kane-Mele-Hubbard model even further, by introducing a
scalar spin chirality interaction term, defined by[36][37]:

~̂Si · ( ~̂Sj × ~̂Sk), (6.0.1)

and repeat the approach in this thesis. In addition, we would like to discuss thermal Hall effect, and how our results
can be connected with experiments[38][39].
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A Some important mathematical theorems

Theorem A.1 (Baker-Hausdorff theorem). Given two operators Â and B̂ in the same space, following relation
holds:

e−B̂ÂeB̂ =

∞∑
n=0

1

n!
[Â, B̂]n, (A.0.1)

where
[Â, B̂]0 = Â; [Â, B̂]n = [[Â, B̂]n−1, B̂]. (A.0.2)

Theorem A.2 (Completeness relation for Pauli matrices). Following identity is true for Pauli matrices:

~σαβ · ~σγδ :=

3∑
i=1

σ
(i)
αβσ

(i)
γδ = 2δαδδβγ − δαβδγδ (A.0.3)
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