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Abstract
In this master’s thesis, we consider two-flavor QCD at finite isospin chemical potential
within chiral perturbation theory to next-to-leading order in the low-energy expansion.
We calculate the pion condensate and the chiral condensate at zero temperature with both
vanishing and finite pionic source. We compare our results at finite pionic source with
recent (2+1)-flavor lattice QCD results and find that they are in good agreement. We also
calculate the free energy and the pion condensate at finite temperature and use the results
to generate the phase-transition curve between the normal phase and the pion-condensed
phase. The phase-transition curve exhibits a significant temperature dependence and is in
poor agreement with the recent lattice QCD simulations as well as various effective-model
results in the QCD literature. The poor agreement on the phase-transition curve between
χPT and LQCD carries into poor agreements on the pion condensate as well. Finally, we
calculate the chiral condensate at finite temperature and use the result to investigate the
chiral crossover at small values of the isospin chemical potential. We find that χPT to
next-to-leading order predicts a pseudo-critical temperature that is much higher than on
the lattice.

As we increase the temperature, we find a new type of behavior in the density evo-
lution of the ground-state configuration. Instead of rotating smoothly on the Goldstone
manifold, the ground-state evolution changes discontinuously at some value of the isospin
chemical potential in the pion-condensed phase at high temperatures. We discuss how the
discontinuity arises by studying the renormalized free energy at finite temperature.

Finally, this thesis also provides a detailed discussion of how to renormalize the density-
dependent pion masses in the pion-condensed phase, and we show that one of the branches
is a massless Goldstone boson.
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Samandrag
I denne avhandlinga studerer me two-flavor QCD ved endeleg isospin kjemisk potensial
ved å bruke kiral perturbasjonsteori forbi leiande orden i lågenergi ekspansjonen. Me
reknar ut pionkondensatet og det kirale kondensatet ved null temperatur både med og
utan pionkilde. Me samanliknar resultata med pionkilde opp mot nylege (2 + 1)-flavor
QCD simuleringar på gitteret, og finn godt samsvar. Me brukar imaginær-tid formalis-
men for kvantefeltteoriar til å rekne ut den frie energien og pionkondensatet ved endeleg
temperatur. Uttrykka me kjem fram til blir brukt til å generera faseovergangskurva som
separerer den normale fasen frå den pionkondenserte fasen. Kurva er tydeleg påverka
av temperatureffektar og gir eit dårleg samsvar med simuleringar på gitteret og effektive
modell berekningar i litteraturen. Det dårlege samsvaret mellom faseovergangskurvene
medfører at samsvaret mellom pionkondensata ved endeleg temperatur også vert dårlege.

Vidare reknar me ut det kirale kondensatet ved endeleg temperatur, og brukar resul-
tatet til å studere den kirale faseovergangen for låge verdiar av isospinpotensialet. Det
viser seg at kiral perturbasjonsteori til leiande orden anslår ein pseudokritisk temperatur
som er mykje høgare enn det som er observert på gitteret.

Me observerer ei ny type oppførsel i isospintetthetsutviklinga til grunntilstanden på
Goldstone-mangfoldigheita ved moderat til høge temperaturar. Grunntilstandskonfig-
urasjonen endrar seg diskontinuerleg ved ein temperaturavhengig verdi for isospinpoten-
sialet i den pionkondeserte fasen, før han held fram med å rotere på ein glatt måte. Me
diskuterer utviklinga til grunntilstanden ved å sjå på den frie energien.

Denne avhandlinga inneheld også ein grundig diskusjon om korleis ein skal renor-
malisere dei isospinavhengige massane i den kondenserte fasen. Me visar også at ein av
eksitasjonane i den pionkondenserte fasen er eit masselaust Goldstone boson.
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Chapter 1

Introduction

Quantum chromodynamics[1], or QCD for short, is the gauge field theory describing the
strong interaction in the celebrated Standard Model (SM) of particle physics. It has had
huge success in explaining and predicting a range of different phenomena through almost
50 years of experiments and observations. Although QCD is formulated using only a few
ingredients it gives rise to an extremely rich theory, containing a variety of phases, chiral
symmetry breaking, confinement, asymptotic freedom, etc. Unfortunately, many of the
properties of the theory are not directly computable from currently available ab-initio
predictive methods. Thus, QCD remains an active research area that we continue to learn
from almost half a century after its discovery.

In the following, we provide a somewhat non-technical overview of some properties
of QCD. The goal is to provide a reader that is not an expert in the field with a basic
understanding of the motivation underlying the work in this thesis. A more technical
treatment is postponed to chapters two and three, where we revisit some of the ideas in a
more mathematical manner.

Introduction to QCD

To provide a rough overview of quantum chromodynamics, we compare it with quantum
electrodynamics (QED), the quantum theory of electromagnetism. QED describes the
interaction of electrically charged elementary particles; QCD describes the interactions of
colored elementary particles. Electromagnetic interactions are mediated by massless spin-
1 particles called photons, strong interactions by massless spin-1 particles called gluons.
There is only one type of electric charge, while the color charge comes in three different
varieties; red (r), green (g), and blue (b). Each of the colors have a corresponding anticolor;
antired (r̄), antigreen (ḡ) and antiblue (b̄).1

Quarks are massive elementary spin 1
2 particles carrying one unit of color charge. For

each type of quark there is an antiquark carrying one unit of anticolor, analogously to
the electron and anti-electron (positron) in QED, which have identical intrinsic properties
except that they carry opposite electric charge. The color of a quark can be changed in an
interaction with a gluon, as shown diagrammatically in the figure at the top of the next
page. In this diagram, a blue quark turns into a red quark emitting a blue-antired (br̄)
gluon. This process conserves color charge, like all other QCD processes.

1Similarly to the electric charge q, which has an opposite charge −q.
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CHAPTER 1. INTRODUCTION

The diagram above illustrates an important feature of QCD; gluons carry one unit of
color and one unit of anticolor. This means that unlike photons, gluons carry the charge of
the interaction and therefore interact among themselves, giving rise to additional vertices
on the following form:

The fact that gluons carry color causes the strength of the strong interaction to become
increasingly weaker at high energies. This effect is known as asymptotic freedom and was
first discovered by Gross, Wilczek [2] and Politzer[3] in 1973. In 2004 they shared the Nobel
prize for their discovery. Asymptotic freedom implies that the theory becomes increasingly
strongly interacting at lower energies, and causes perturbation theory to break down at
energies below ∼ 1 GeV. Studying QCD below this energy scale is notoriously hard, and
requires non-perturbative techniques. We will elaborate further on this issue in the next
sections.

Quarks and gluons are not observed as free particles in our low-energy, everyday world.
Instead, they form bound states, referred to as hadrons. This property is known as color
confinement. QCD describes color confinement by imposing that only color-neutral states
can be observed in nature at low energies. Confinement has not been proven analytically
yet, but its existence is well supported by numerical simulations known as lattice QCD
(LQCD), where QCD is defined on a discretized spacetime.

Color confinement prevents physicists from performing experiments on bare quarks
and gluons. They must therefore rely on experimental studies of hadrons to better their
understanding of how QCD is realized in nature. An example is given by spectroscopy
experiments of hadrons, which have shown that there are six different types of quarks in
nature.2 The different quarks are distinguished by a new quantum number, called flavor.
In this work, we will only deal with the two lightest quark flavors, the up (u) quark and
down (d) quark, whose masses are only a few MeV.

Phase diagram of nuclear matter I

In the following, we consider QCD in thermal equilibrium and introduce the phase struc-
ture of the theory. We begin by considering the grand-canonical3 phase diagram for
hadronic matter as a function of the temperature T and the baryonic chemical poten-
tial µB. The baryon chemical potential is related to the quark chemical potential µq as

2Theoretical studies have shown it to be very unlikely that there exist new types of quarks that have
not already been discovered.

3The grand canonical ensemble is the natural statistical ensemble to work within relativistic theories,
where particles may be created and annihilated.
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µB = 3µq. It is the conjugate parameter to the baryon number density nB = 1
3(nq − nq̄)

in the grand canonical ensemble. Therefore, one may think intuitively about µB as a
parameter that determines the baryon density, i.e. the excess of quarks over antiquarks in
the system.

It turns out that QCD has an extremely rich phase structure[4, 5], as shown by the
conjectured QCD phase diagram in Fig.1.1. We say conjectured, because only parts of
the phase diagram have been explored through first-principle calculations. For example,
at very high temperatures, where QCD is perturbative due to asymptotic freedom, we
know that there is a state of matter where quarks and gluons are no longer confined,
referred to as a quark-gluon plasma (QGP). The phase transition from hadronic matter to
QGP is referred to as the deconfinement transition, and LQCD simulations suggest that
it occurs at a temperature around 160 MeV[6]. Experiments have confirmed the existence
of a quark-gluon plasma, and the first direct observation of QGP was announced at the
Relativistic Heavy Ion Collider (RHIC) in 2005[7–9].

Asymptotic freedom also implies that the theory becomes perturbative at asymptoti-
cally large values for µI , where the system enters a color superconducting phase referred
to as the color-flavor-locked (CFL) phase[5, 10–12].4 The remaining parts of the phase
diagram, i.e. essentially all of Fig.1.1, is inaccessible to perturbative calculations. This is
not completely disastrous since we still have LQCD, which is also a first-principle calcu-
lation method. It turns out, however, that LQCD is (currently5) useless in regions of the
phase diagram where the value of the baryon chemical potential is not very small. This is
due to the notorious fermion sign problem, which we briefly review in the following.

sQGP

uSC
dSC
CFL
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Quarkyonic
   Matter

Quark-Gluon Plasma

Hadronic Phase

Color Superconductors?

Te
m

pe
ra

tu
re

  T

Baryon Chemical Potential  mB

Inhom

ogeneous  S
cB

Liquid-Gas

Nuclear Superfluid
CFL-K ,  Crystalline CSC
Meson supercurrent
Gluonic phase, Mixed phase

0

Figure 1.1: Conjectured QCD phase diagram in the µB − T plane. The figure is taken
from Ref.[4] with permission from the authors.

Fermion sign problem

In LQCD calculations the QCD partition function Z is written as a Euclidean path inte-
gral,

Z =

∫
DADq̄Dqe−S . (1.1)

4As we will see in great detail in chapter 2, QCD is (approximately) invariant under something called
flavor symmetry transformations, and color symmetry transformation. The CFL phase gets its name from
the fact that color symmetry transformations are locked to flavor symmetry transformations in this phase.

5It may be possible to solve QCD at finite baryon density with for example quantum computers in the
future since the sign problem is absent in quantum algorithms[13].
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CHAPTER 1. INTRODUCTION

Here A denotes the gluon fields, q̄, q the quark fields, and S the QCD action, which can
be written on the following schematic form,

S = SYM +

∫
d4xq̄Mq. (1.2)

SYM is the Yang-Mills action depending purely on gauge fields (the gluons), and M denotes
the Euclidean Dirac operator, which depends on gauge fields and the baryon chemical
potential. The quark fields can be integrated out of the path integral in Eq.(1.1) to yield
the following expression (where we have ignored unimportant constants),

Z =

∫
DAe−SYM detM(µB). (1.3)

In numerical lattice calculations the integrand in the path integral,

ρ(A) ∼ e−SYM detM(µB), (1.4)

is interpreted as a probability weight for configurations of gauge fields, and should there-
fore be positive and real[14]. However, it turns out that the Dirac determinant becomes
complex at nonzero (real-valued) baryonic chemical potential,

[detM(µB)]
∗ = detM(−µ∗B) ∈ C. (1.5)

This results in a complex probability weight ρ(A), so standard Monte-Carlo importance
sampling methods are no longer applicable. For this reason, alternative methods have
been proposed to gain insight into the phase diagram at small µB. These include ana-
lytic continuation from an imaginary µB[15], and Taylor expansion around µB = 0[16].
However, none of the proposed methods have seen much success beyond small values for
µB.

We note that the fermion sign problem has nothing to do with the Grassmannian
nature of fermions, but only the complexity of the determinant M , and it is therefore also
present in bosonic theories.

Effective theories and modeling

The absence of applicable first-principle-calculation methods has forced physicists to ap-
proach the phase diagram of dense QCD in more pragmatic ways. One way to go is to
simplify QCD by taking certain limits of the parameters of the theory, and use the simpli-
fied results to gain insights about real QCD. Two well-known examples include taking the
number limit of colors Nc to infinity, and changing the number of spacetime dimensions
from (3 + 1) to (1 + 1).

Another, and so far more successful approach, is to resort to QCD models and effective
theories. Effective models are constructed in a way that correctly describes a specific fea-
ture of QCD. Examples include the Nambu-Jona-Lasinio (NJL) model[17] and the Quark
Meson (QM) model[18, 19], which have the same dynamical chiral symmetry breaking
pattern as QCD and are commonly used to model the so-called chiral transition.6 On the
other hand we have effective theories, which are based on more sophisticated principles.
Unlike effective models, which are often constructed with the single purpose of under-
standing a specific phenomenon, effective theories attempt to describe the full behavior
of QCD at some energy scale. The most famous example is Chiral Perturbation theory
(χPT)[21–23], which is used to study the low-energy dynamics of QCD. χPT is only based

6There are also Polyakov loop extended versions of the NJL and QM models[20], referred to as PNJL
and PQM models, which are used to model the deconfinement transition in QCD.
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on the low-energy degrees of freedom and symmetries of QCD and has successfully pre-
dicted a variety of low-energy QCD phenomena to high levels of accuracy. We will discuss
χPT in much greater detail in chapters two and three.

A question that arises in the context of dense strongly-interacting matter is how ac-
curate the effective modeling- and theory predictions are. Since LQCD is unavailable, we
have no ab-initio results to compare model predictions with. Luckily, there are regimes of
QCD that can provide useful insights about the level of agreement we may expect between
model results and actual QCD at finite values for µB. We elaborate further on this in the
following section.

Phase diagram of nuclear matter II

There is nothing stopping us from adding more axes (i.e. external parameters) to Fig.1.1,
to construct a higher-dimensional phase diagram. For instance, instead of having a com-
mon chemical potential µq = 1

3µB for all quark flavors, we can associate a chemical poten-
tial µf to each of them. Since we consider QCD with two flavors, we may include µu and
µd, or equivalently µB = 3

2(µu + µd) and µI = 1
2(µu − µd). The subscript I is short for

isospin, and µI determines the excess of up quarks over down quarks in the system. There
are many physical settings where µI 6= 0, for example; in the evolution of the early uni-
verse, inside compact stellar objects like neutron stars, and in certain heavy-ion collisions.
Such systems are typically characterized by nonzero values for µB, µI , and T . However,
we will forget about realistic physical systems for now and only consider the QCD phase
diagram in the (µI , T ) plane at µB = 0. Something wonderful happens here; the Dirac
determinant becomes positive, detM(µI) ≥ 0,[24] i.e there is no fermion sign problem
anymore. The absence of the fermion sign problem means that the entire (µI , T ) plane is
accessible to standard lattice Monte Carlo simulations, at least in principle.

The QCD phase diagram in the (µI , T ) plane was conjectured in a seminal paper by
Stephanov and Son [25] in 2001. A possible scenario for the phase diagram is displayed
in Fig.1.2. The lower-left corner shows a hadronic phase, similar to the QCD phase
that we experience in our low-energy everyday world. As we increase the temperature,
we encounter a deconfinement transition (red dashed line) to a quark-gluon plasma. By
moving along the µI -axis, we reach the blue phase in the figure, which is a Bose-Einstein
condensate (BEC) of electrically charged pions, referred to as the pion-condensed phase.
The blue line indicates the phase transition to the BEC phase. For very large values of
µI , there is a transition to a Bardeen-Cooper-Schrieffer (BCS)[26] state of weakly bound
Cooper pairs. Perturbative calculations have confirmed the existence of the BCS and the
QGP phases.

The (µI , T ) phase plane is an interesting playground where one can compare effective
theory and model results with LQCD simulations. It helps us check consistency, and esti-
mate the accuracy of various effective approaches in different phases of strongly interacting
matter. Although the (µI , T ) diagram is of limited usefulness in direct applications when
µB = 0, it provides insight to the (µB, T ) phase diagram, both on the conceptual and on
the technical level. Broadly speaking, this summarizes a lot of the motivation behind the
efforts that have been put into the (µI , T ) phase diagram in the past 20 years.

Various regions of the (µI , T ) diagram have now been studied through a number of
approaches. This includes χPT[25, 28–30], hard thermal loop perturbation theory[31], the
functional renormalization group[32], and a number of effective descriptions like; the NJL
model[33–36], the QM model[37], the linear sigma model[38], random matrix models[39],
the holographic principle[40], and many more. More recently, Brandt et al. published high-
precision lattice QCD simulations[27, 41–43], where they computed the BEC-transition
curve (the blue line in Fig.1.2), the deconfinement-transition curve(the red line in Fig.1.2),

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Conjectured QCD phase diagram in the µI − T plane at µB = 0. The figure
is taken from Ref.[27] with permission from the authors.

and various thermodynamical quantities.7 Their results at vanishing temperature have
been compared to χPT at next-to-leading order by Adhikari and Andersen in a series of
very recent papers[44–47]. Their work show a generally good agreement between LQCD
and χPT in the pion-condensed phase at zero temperature. The work in this thesis is a
continuation of the study of χPT in the pion-condensed phase beyond leading order.

Thesis outline

This thesis is organized as follows. Chapter 2 reviews some useful background material on
QCD and two-flavor χPT at zero temperature. It also includes a discussion of low-energy
QCD at finite isospin chemical potential. In chapter 3, we review renormalization in χPT
and demonstrate the procedure by renormalizing the parameters of the Lagrangian to one
loop. In chapter 4, we present the ansatz for the ground state configuration in the pion-
condensed phase, along with the χPT Lagrangian written in terms of pion fields. We also
present some useful tree-level relations and a derivation of the free energy to one loop. In
chapter 5, we provide a detailed discussion of how to renormalize the neutral pion mass
mπ0 to next-to-leading order in the pion-condensed phase. Chapter 6 discusses the two
remaining quasi-particle modes in the pion-condensed phase, and we show that one of
them is massless to next-to-leading order in the low-energy expansion. In chapter 7, we
calculate the free energy, the chiral condensate, and the pion condensate at finite isospin
density with both vanishing and non-vanishing (pseudoscalar) pionic source. We compare
our finite pionic source results with recent lattice data, and discuss the results. Chapter 8
starts with a brief review of thermal and statistical field theory and a derivation of Splittorff
et al.’s analytical low-temperature approximation of the BEC phase-transition curve[48].
We proceed to calculate the free energy and the pion condensate at finite temperature and
use the results to generate the BEC-transition curve numerically. We discuss our result
for the phase-transition curve and compare it with NJL-model and recent lattice QCD
results. We also calculate the chiral condensate at finite temperature and briefly discuss

7This work was motivated by the possibility of a new class of compact stars called pion stars, whose
main constituent is a Bose-Einstein condensate of charged pions.
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the chiral transition. We summarize our results in chapter 9 and discuss some possible
improvements and extensions of our work. Details about calculations and derivations are
found in Appendices B-E.
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Part I

Introduction and preliminaries





Chapter 2

Symmetry breaking and effective
theories

In this chapter, we first summarize the basic properties of the QCD Lagrangian, empha-
sizing its global symmetries. We proceed to introduce the concept of effective field theories
(EFTs) and discuss chiral Perturbation theory as an effective field theory for QCD. We
then discuss the transformation properties of the degrees of freedom in χPT and outline
the construction of the chiral Lagrangian. In the final section, we discuss two-flavor QCD
at nonzero chemical potentials. Conclusively, we show how the isospin chemical potential
enters the chiral Lagrangian.

2.1 QCD and symmetries

QCD is the non-abelian gauge theory 1for the strong interaction in nature, with color
SU(3) 2as the underlying gauge group[1, 2, 50, 51]. The theory contains eight gauge
bosons, i.e one gauge boson for each generator of the gauge group, and they are called
gluons. The matter fields of QCD are color-carrying spin 1

2 fermions called quarks. In
chapter 1 we mentioned that there are six types of quarks known to exist, and we distin-
guish them with a quantum number called flavor. The six flavors of quark have different
masses, but similar properties with respect to the gluon fields. The QCD Lagrangian,
which is obtained from the gauge principle, reads[52],

LQCD =
∑
f

q̄f
(
i /D −mf

)
qf −

1

4
F aµνF

aµν , (2.1)

/D ≡ γµDµ, (2.2)
Dµ = ∂µ + igsλaA

a
µ, (2.3)

F aµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcv. (2.4)

Here λa denotes the a’th Gell-Mann matrix,3 Aa denotes the a’th gluon field, F aµν is the
non-abelian field strength tensor and gs denotes the QCD coupling constant. γµ are the
Dirac matrices, and Dµ is the covariant derivative. /D acts on color and Dirac indices only,
which means that it is independent of flavor. For each quark flavor f the quark field qf

1For the reader unfamiliar with non-abelian gauge theory we recommend the treatment of the subject
in Ref.[49] as a good introduction and reference.

2Thereby making up the SU(3) component of the SU(3) × SU(2) × U(1) Standard Model of particle
physics.

3The Gell-Mann matrices are the generators of SU(3) in the fundamental representation.
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CHAPTER 2. SYMMETRY BREAKING AND EFFECTIVE THEORIES

consists of a color triplet (subscripts r, g, and b standing for “red,” “green,” and “blue”,
respectively),

qf =

qf,rqf,g
qf,b

 . (2.5)

This object transforms in the fundamental representation 3 of the gauge group (and the
antiquarks transform in the anti-fundamental representation 3̄ of the gauge group). Gluons
on the other hand, transform in the adjoint representation 8 of the gauge group, and
thereby also carry color charge.

In the present work, we focus on the dynamics of the lightest bound states of quarks
and gluons, called pions. The starting point of our current theoretical understanding of
pions is the (approximate) global symmetries of QCD, which we proceed to discuss in the
following.

Accidental, global symmetries of QCD

The six quarks are commonly divided into three light flavors up, down, and strange (u, t
and s), and three heavy flavors charm, bottom, and top (c, b and t),mu = 0.005GeV

md = 0.009GeV
ms = 0.175GeV

� 1GeV <

mc = (1.15− 1.35)GeV
mb = (4.0− 4.4)GeV

mt = 174GeV

 . (2.6)

Here the scale of 1 GeV is associated with the masses of the lightest hadrons containing light
quarks [53]. If the six quark masses had been equal, then the QCD Lagrangian in Eq.(2.1)
would have been manifestly SU(6)-flavor symmetric. However, since the mass difference
between the two categories of quarks is large > 1GeV we only expect an approximate
symmetry to hold between the three, or to a larger extent, the two lightest quark flavors.
We are only interested in hadron physics at energies below ∼ 1GeV in the current work,
and we will proceed to approximate the full QCD Lagrangian by its light-flavor version,
i.e., ignore the effects of the three heavy quark flavors.4

If we use the approximation mu = md = ms 6= 0, then we obtain a manifestly U(3)-
flavor symmetric theory. The smallness of the quark masses are commonly used to extend
the approximation to the following,

mu = md = ms = 0, (2.7)

which is referred to as the chiral limit. We will see that this approximation gives rise to
a larger flavor-symmetry group than U(3). However, to understand why these approxi-
mations are justifiable in the first place we first have to introduce the concept of QCD
scale.

If we had computed the QCD β function and solved the renormalization group equation
for the running coupling gs, we would have seen that it becomes infinite at some finite
value of the MS parameter Λ. This value is referred to as the QCD scale ΛQCD[54]. More
specifically, the QCD analogue of the fine structure constant to one loop reads[49],

αs(Λ) =
2π

b0 log
(

Λ
ΛQCD

) , (2.8)

where b0 = 11− 2
3Nf , Nf is the number of flavors in the theory, and Λ is the energy scale

that the coupling is evaluated at. Since b0 > 0 the coupling becomes weaker at higher
4When we eventually get to the effective theory, we will learn that the effects of (virtual) heavier quarks

are included in the theory’s low-energy constants, which are again determined from experiments.
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energies, which is the phenomenon known as asymptotic freedom. The value of ΛQCD

quoted in the literature varies due to differences in the approximation schemes used to
calculate αs(Λ), but it is typically of order ΛQCD ∼ 0.2GeV[49, 54, 55].

To summarize, the QCD scale ΛQCD is introduced through quantum corrections and
supplants the dimensionless coupling constant in the theory.5 Thus, the theory gains a
dimensionful quantity, which allows us to discuss the smallness of QCD parameters in a
meaningful way.

The masses of the up and down quarks are much smaller than the QCD scale ΛQCD.
Consequently, the approximation mu = md = 0 is clearly justified. The strange-quark
mass is also (somewhat) smaller than the QCD scale. It is sometimes useful (though
less justified) to treat the strange quark as massless[54] and employ the approximation
in Eq.(2.8). In the present work we ignore the strange quark, and employ the so called
two-flavor chiral limit mu,md → 0 as the starting point for our discussion of QCD at low
energies. The two-flavor chiral Lagrangian follows directly from Eq.(2.1), and reads

LQCD0 =
∑
f=u,d

q̄f
(
i /D
)
qf −

1

4
F aµνF

aµν . (2.9)

The following discussion and equations generalize straightforwardly to the three flavor
case.

The full global symmetry group of two-flavor QCD in the chiral limit can be made
manifest in the Lagrangian in Eq.(2.9) by projecting the Dirac field variables q onto their
chiral components (Weyl field variables). The projection operators are defined as follows,

PR ≡
1 + γ5

2
, (2.10)

PL ≡
1− γ5

2
, (2.11)

PR + PL = 1, (2.12)

with subscripts R and L standing for right and left, respectively. The relation between
the Dirac field q and its right and left-handed field components qR and qL can now be
written as,

qR = PRq, qL = PLq, q̄R = q̄PL, q̄L = q̄PR. (2.13)

We use the relations in Eqs.(2.10)-(2.13) to write,

q̄γµq = q̄(PR + PL)γ
µ(PR + PL)q = q̄Rγ

µqR + q̄Lγ
µqL, (2.14)

where the last equality is obtained by using {γ5, γµ} = 0 and (γ5)2 = 0. The equation
above shows that the matter sector of the chiral QCD Lagrangian can be decoupled into
a sum of left-handed quarks coupled to left-handed quarks, and a sum of right-handed
quarks coupled to right-handed quarks;

LQCD0 =
∑
f=u,d

q̄R,f
(
i /D
)
qR,f + q̄L,f

(
i /D
)
qL,f −

1

4
F aµνF

aµν . (2.15)

This Lagrangian is manifestly invariant under the following transformations,(
uR
dR

)
→ R

(
uR
dR

)
= exp

(
−iθR − i

3∑
a=1

τa

2
θRa

)
, (2.16)

(
uL
dL

)
→ L

(
uL
dL

)
= exp

(
−iθL − i

3∑
a=1

τa

2
θLa

)
, (2.17)

5The process in which a dimensionless constant such as gs is replaced by a dimensionful one, such as
ΛQCD, is called dimensional transmutation.
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CHAPTER 2. SYMMETRY BREAKING AND EFFECTIVE THEORIES

due to the flavor independence of the covariant derivative. Here R and L denote unitary
2× 2 matrices, τa denotes the a’th Pauli matrix acting in flavor space, and the thetas are
transformation parameters. In the the three-flavor case one replaces the Pauli matrices
with Gell-Mann matrices.

The invariance of LQCD0 under Eqs.(2.16)-(2.17) imply that the classical theory admits
global U(2) × U(2) = SU(2)R × SU(2)L × U(1)R × U(1)L symmetry transformations.
Consequently, Noether’s theorem[56] gives rise to (3 + 1) × 2 = 8 (classically) conserved
currents,

Lµ,a = q̄Lγ
µ τ

a

2
qL, Lµ = q̄Lγ

µqL, (2.18)

Rµ,a = q̄Rγ
µ τ

a

2
qR, Rµ = q̄Rγ

µqR, (2.19)

where Lµ,a and Rµ,a denote left and right-handed SU(2) currents, and Lµ and Rµ denote
left and right-handed U(1) currents, respectively. It is common, and useful, to construct
the following linear combinations of left and right-handed currents,

V µ,a = Rµ,a + Lµ,a = q̄γµ
τa

2
q, V µ = Rµ + Lµ = q̄γµq, (2.20)

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
τa

2
q, Aµ = Rµ − Lµ = q̄γµγ5q, (2.21)

where the combinations in the first line and the second line transform as vector densities
and axial-vector densities under Parity transformations, respectively.

It turns out that the path-integral measure Dq̄Dq is not invariant under axial U(1)
symmetry transformations[57, 58]. Consequently, the singlet axial current Aµ in Eq.(2.21)
is only conserved at the classical level and broken upon quantization. The symmetry group
at the quantum level is therefore reduced to G ≡ SU(2)V × SU(2)A × U(1)V . It is worth
pointing out that the remaining U(1) charge conserves quark number Nq − Nq̄ = 1

3NB,
which is equivalent to conservation of Baryon number NB.

We now proceed to include a quark-mass matrix with equal non-zero diagonal entries
mu = md 6= 0. This approximation is commonly referred to as the isospin limit. Non-zero
quark masses give rise to a new term in the Lagrangian,

LM = −q̄Mq = −(q̄LMqR + q̄RMqL), (2.22)

which mixes left and right-handed fields. The mass term transforms under
SU(2)R × SU(2)L transformations as follows,

−q̄i,LMijqj,R + (L↔ R) −→ −
(
ULik
)†
URjl q̄k,LMijql,R + (L↔ R), (2.23)

where (UL, UR) ∈ SU(2)L × SU(2)R. We observe that the mass term is only invariant
under transformations where the SU(2)L parameters are set equal to the SU(2)R param-
eters. This set of transformations is exactly equal to the set of elements in SU(2)V , which
elucidate why SU(2)V is referred to as the isospin symmetry group.

Finally, if we set mu 6= md, then the remaining symmetry group breaks explicitly
as follows, SU(2)V × U(1)V → U(1)I3 × U(1)V = U(1)u × U(1)d, where I3 denotes the
diagonal SU(2) generator. The conservation of baryon number is a consequence of the fact
that individual flavor currents ūγµu and d̄γµd are always conserved in strong interactions,
because of the diagonality of the quark mass matrix, and the flavor independence of the
strong coupling. The conserved U(1)I3 symmetry will be of great importance to us later
when we proceed to consider QCD at nonzero isospin density.
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U(2)V × SU(2)A → U(2)V

So far, we have specified that the conserved U(1)V symmetry classifies hadrons by their
baryon numbers. However, we have not addressed how the remaining (approximate)
SU(2)V × SU(2)A symmetry is realized in nature. The latter is very important to our
current understanding of QCD and is discussed in the following.

It is a well known experimental fact that the two lightest baryons, the proton and the
neutron, form a 2 representation of SU(2)V , and that the three lightest mesons, i.e. the
pions, form a 3 representation of SU(2)V .6 However, there is no evidence (that the author
is aware of) for a classification that distinguishes right- and left-handed components of spin-
one-half hadrons. These observations can only be reconciled with the U(2)V × SU(2)A
symmetry of the underlying Lagrangian if the axial generators are spontaneously broken
[54]. This is in fact believed to be the case,7 and the three pions (which have odd parity)
are identified as the corresponding pseudo-Goldstone bosons.

To spontaneously break a non-supersymmetric symmetry, we need an operator trans-
forming non-trivially under it to acquire a nonzero vacuum expectation value (vev). To
respect the Lorentz, the SU(3)-color and the isospin symmetries, the operator has to be a
Lorentz scalar, a color singlet, and invariant under SU(2)V , respectively. These conditions
can only be satisfied by a composite operator. The simplest candidate is q̄q. Indeed, the
QCD vacuum is expected to contain a condensate of quark-antiquark pairs,8

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0. (2.24)

The formation of this condensate is analogous[17] to the appearance of a condensate of
electron pairs in the ground state of a metal in BCS theory[26, 49].

It is easily seen that Eq.(2.24) transforms non-trivially when R 6= L, while it is left
unchanged by flavor-locked transformations R = L, and therefore does the job of breaking
the axial generators. Since the quark fields have a mass dimension of 3/2, it is expected
that the condensate scale as 〈0|q̄q|0〉 ∼ Λ3

QCD, since ΛQCD is the only energy scale in
massless QCD.

2.2 EFTs with spontaneously broken symmetries

In the first chapter, we stated that QCD has become widely accepted as the fundamental
gauge theory of the strong interaction. Despite this, we still lack an ab-initio description of
the low-energy dynamics of the theory and therefore have to utilize effective descriptions.
Current algebra methods[61, 62] played an important role in the theoretical understanding
of low-energy hadron physics[63–65] already in the early 1960s. The central idea was
that even without exact knowledge about the Lagrangian of the underlying theory, it
remains possible to make physical predictions purely based on symmetry properties of
Greens functions. Nowadays, effective field theories (EFTs) have become the state-of-the-
art tool for analyzing theories containing several widely separated energy or momentum
scales. The most famous EFT describing the low-energy dynamics of the lightest hadrons
is χPT, whose degrees of freedom (DoF) are the Goldstone fields associated with the

6Historically, the quark model was motivated by observations that groups of particles, more specifi-
cally the lightest mesons, were related to each other in a way that matched the representation theory of
SU(3)[59], (where the pions formed an SU(2) subgroup).

7Actually, there is a theorem [60] that states that the QCD ground state (in vacuum) is invariant under
SU(2)V × U(1)V in the chiral limit, which implies that the spectrum of physical states in QCD with
massless quarks can be organized according to irreducible representations of SU(2)V × U(1)V .

8Although this has not been derived from first principles yet, there are compelling theoretical and
phenomenological arguments that the QCD vacuum breaks the chiral symmetry.

15



CHAPTER 2. SYMMETRY BREAKING AND EFFECTIVE THEORIES

spontaneously broken axial generators. The framework of χPT has allowed us to extend
and systematically explore corrections to results from the current-algebra days[53].

In the following, we briefly present some basic properties of EFTs, focusing on the
conceptuals. We do this to set the stage for a more technical discussion in section 2.3, and
to provide a reader unfamiliar with EFTs and χPT a gentle overview of the underlying
philosophy. The informed reader may skim through this part, or skip it altogether. The
interested reader is referred to Refs.[66–71] and references therein for further introductory
literature about EFTs.

Interlude: The philosophy of effective field theories

Many theoretical physicists share a common dream about a theory of everything, which
unifies all the fundamental interactions and provides an understanding of all observed phe-
nomena in terms of some fundamental dynamics among the basic constituents of nature.
However, even with such a marvelous theory at hand, quantitative analysis at the most
elementary level will still be of little use for a comprehensive description of nature at all
physical scales[66]. A less dramatic example is provided by the interplay between quantum
electrodynamics (QED) and chemistry. Although the laws of chemistry have their origin in
the electromagnetic interaction, it does not seem very appropriate to describe phenomena
in chemistry quantitatively in terms of the fundamental QED interactions among quarks
and leptons. The point is that to obtain a simple description of some physical phenomena,
one has to isolate the most relevant elements from the rest. The first and most important
step is to choose variables that capture the physics that is most relevant to the problem
of interest.

In terms of more technical jargon, some theories involve widely separated energy scales,
which allows us to study low-energy dynamics without detailed knowledge about the dy-
namics occurring at higher energy scales. The fundamental idea is to identify parameters
that are very large (or small) compared to the relevant energy scale and send them to in-
finity (or zero)[66]. An effective field theory is a tool that describes the low-energy physics
in terms of the relevant degrees of freedom at that energy scale.

A procedure for coming up with EFTs is through so-called matching calculations[71].
One starts at a high energy scale, where the physics is described by a set of heavy fields
Φ with mass M and a set of light particle fields φ. The Lagrangian then takes the general
form,

LH(Φ, φ) + L(φ), (2.25)

where L(φ) contains all the terms that are independent of the heavy fields, and LH(Φ, φ)
is everything else. For energy scales Λ > M , the evolution of the theory from one energy
scale to another is described by the renormalization group (RG). However, once Λ goes
below the mass of the heavy fields M , one changes the effective theory to a new theory
without the heavy fields in it. This is what distinguishes effective theories from Wilso-
nian renormalization, where the theory is left untouched. In the EFT-approach a tower
of operators constructed with the light fields δL(φ) is put in by hand to construct the
Lagrangian for the new EFT, which takes the form,

L(φ) + δL(φ). (2.26)

The matching between the high-energy theory and the low-energy theory at the scale
Λ =M determines the coefficients of the new field interactions, which encode the dynamics
of the heavy fields Φ. The coefficients in L(φ) are different in the two theories[66], and the
new coefficients are also found from matching conditions. Once the matching has been
performed, one may evolve to lower energy scales by using the RG equations of the new
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EFT Eq.(2.26), until a new particle threshold is reached. Then we have to match to a
new EFT without the heavy mode(s), and the procedure repeats itself.

One way to classify EFTs is related to the status of their coupling constants[69]. In the
case of low-energy QCD, the matching cannot be performed perturbatively. This is the
general case for EFTs where the transition to the new theory occurs via a phase transition
due to spontaneous symmetry breaking[69]. This means that we cannot use the matching
procedure outlined above to create a low-energy effective field theory for hadronic QCD.

Why chiral perturbation theory works

Luckily for us, it is possible to construct predictive low-energy effective field theories for
nonperturbative theories as well. Historically, the starting point for χPT as an effective
field theory for QCD at very low energies was the assumption that Goldstone bosons from
the spontaneously broken chiral symmetry are the appropriate degrees of freedom, and
what Weinberg refers to as a folk theorem[21, 72]:

Theorem 1. If one writes down the most general Lagrangian possible, including all terms
consistent with the assumed symmetry principles, and then calculates matrix elements
with this Lagrangian to any given order of perturbation theory, the result will simply be the
most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster
decomposition, and the assumed symmetry properties.

The proof of the theorem relies on Lorentz invariance, the absence of anomalies, and
that the Ward identities satisfied by the Green functions of the symmetry currents are
equivalent to the invariance of the generating functional under local transformations[53,
73, 74]. If the Ward identities contain anomalies (in our case there is the axial U(1)
anomaly), they show up as a modification of the generating functional, which can be
incorporated through so-called Wess-Zumino-Witten (WZW) terms[75, 76].

In the case of χPT, there is an infinite number of terms that satisfy Weinberg’s theo-
rem, and therefore an infinite number of couplings in the theory. If the theory is going to
be of phenomenological usefulness, then there must be a way to systematize and limit the
number of couplings that are present. Making Weinberg’s theorem useful for phenomeno-
logical applications requires two tools[21, 53]:

• A scheme to organize the terms in the effective Lagrangian.

• A systematic method to access the importance of diagrams generated by the inter-
action terms of the effective Lagrangian when computing physical processes.

In χPT, the terms in the Lagrangian are organized by a derivative expansion, or
equivalently by powers of momentum. The momentum of pions on shell p2 = m2

π is of the
same order as the mass. m2

π is proportional to the sum of the quarks masses mu+md and
it is therefore convenient to count mu and md as O(p2)[77]. The terms with the lowest
powers of momentum will be most important in the low-energy EFT.

Weinberg’s power-counting scheme[21] analyzes the behavior of a given diagram under
a linear rescaling of all the external momenta, pi → tpi, and a quadratic rescaling of
the light quark masses, mq → t2mq (which is equivalent to a linear rescaling of the GB
masses). The chiral dimension D of a given diagram with amplitudeM(pi,mq) is defined
by M(tpi, t

2mq) = tDM(pi,mq)[53]. D is a measure for the importance of diagrams, where
diagrams with lower chiral dimensions are more important. Simple dimensional analysis,
similar to the methods used in standard QFT textbooks[49, 78] to determine superficial
degree of divergence, can be employed to obtain D for any given diagram[53, 77]. The
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result is,

D = 2 + 2NL +

∞∑
n=1

N2n(2n− 2). (2.27)

Here NL denotes the number of independent loops, and N2n denotes the number of vertices
originating from terms with chiral dimension 2n.

Weinberg’s framework is sufficient to construct a Lagrangian that is of phenomenolog-
ical usefulness at low energies. We have so far been very vague about what exactly we
mean by ”low energies”. In the following, we make this notion more explicit by discussing
perturbative convergence in χPT.

The chiral symmetry breaking scale ΛCSB is the dimensional parameter that charac-
terizes the convergence of the momentum power expansion[79, 80]. A ”naive” dimen-
sional analysis of loop diagrams suggests that this scale is given by ΛCSB ≈ 4πfπ. Here
fπ ≈ 93MeV denotes the pion-decay constant in the chiral limit, and the factor of 4π
originates from the calculation of integrals in four-dimensional Minkowski space[80]. An
alternative dimensional scale is provided by the lightest excitations that are not included
in the theory as explicit degrees of freedom. Those are the lightest hadrons that are
not Goldstone bosons for three-flavor χPT, and the lightest hadrons containing a strange
quark for two-flavor χPT. The exchange of such a hadron yield a propagator on the form
(k2 −M2)−1 ≈ −M−2(1 + k2

M2 + ...), where M denotes the mass of the excitation. This
converges when

∣∣k2∣∣ < M2, which provides a mass scale that is consistent with 4πfπ[53]. If
we assume reasonable coefficients, the momentum expansion leads to the expectation that
χPT converges for center-of-mass (CoM) energies sufficiently below the ρ-meson mass for
three-flavor, and the Kaon mass for two-flavor χPT. This approximation is of course very
primitive, and its validity highly dependent on the process under consideration. However,
there is no doubt that an expansion in p/ΛCSB will converge sufficiently fast at sufficiently
low energies, which makes χPT tremendously efficient at very low energies.

2.3 The chiral Lagrangian

In this section, we outline the technical principles that are used to construct the two-flavor
χPT Lagrangian. Our treatment will follow that in Ref.[53], and the reader is referred to
Refs.[22, 81] for details.

We will first state how Ward identities are related to the invariance of the generating
functional under local gauge transformations, and use this to derive the χPT Lagrangian
to leading order. We will then explain how to derive the χPT Lagrangian to order O(p4),
and present the most relevant parts of the result.

In section 2.1, we learned that the two-flavor QCD Lagrangian is invariant under
G = SU(2)L × SU(2)R × U(1)V and we wrote down the corresponding Noether currents.
Following the procedure of Gasser and Leutwyler [22], we extend the massless two-flavor
QCD Lagrangian in Eq.(2.1) by introducing couplings of the four vector currents, the
three axial-vector currents and the scalar and pseudoscalar quark densities to external
complex-valued fields vµ(x), vc, aµ(x), p and s[53],

L = L0QCD + Lext = L0QCD + q̄γµ(v
µ + vc + γ5aµ)q − q̄(s− iγ5p)q. (2.28)

The external fields are Hermitian and color-neutral 2× 2 matrices,

vµ =

3∑
i=1

τ i

2
vµi , aµ =

3∑
i=1

τ i

2
aµi , vc = 1vc, p =

3∑
i=0

τ ipi, s =

3∑
i=0

τ isi. (2.29)
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The ordinary massive two-flavor QCD Lagrangian is obtained by setting vµ(x) = vc =
aµ(x) = p = 0 and s0 = diag(mu,md).

It is convenient to introduce the generating functional W (vµ, vc, a
µ, p, s) at this point,

which is defined as,

exp[iW (vµ, vc, a
µ, p, s)] = exp[iW{f}] = 〈0|T exp

[
i

∫
d4xL

]
|0〉 = 〈0|T exp [iS]|0〉 .

(2.30)

Here T denotes the time ordering operator, f is the collection of external fields, and L
is the Lagrangian given in Eq.(2.28). The rationale behind this is that, in the absence
of anomalies, the chiral Ward identities obeyed by the Greens functions are equivalent to
the invariance of the generating functional under gauge transformations of the external
fields[74],

W [f ]→W [R(g)f ] =W [f ]. (2.31)

Here g is a gauge transformation,

g :M4 → SU(2)V × SU(2)A, (2.32)

whereM4 denotes four-dimensional Minkowski space and R denotes the representation of
the symmetry generators. In the present case R is just the fundamental representation of
G, as we can see from Eq.(2.29).

We have so far ignored the anomalous terms entering the Ward identities, which spoil
the gauge invariance of the generating functional. If we take them into account, then the
generating functional undergoes the following change under infinitesimal chiral transfor-
mations[74],

δW{f} = −
∫
d4xTr{β(x)Ω[f ]}, (2.33)

where Ω[f ] is a local function of order O(p4), and β(x) is an infinitesimal transformation,

β :M4 → SU(2)A. (2.34)

The point is that anomalies do not spoil the symmetry of the theory with respect to gauge
transformations of the external fields. Instead, they modify the transformation law of the
generating functional by replacing the condition in (2.31) by the condition in (2.33), which
is equally strong[74].

In the low energy effective theory of QCD we have to construct a sequence of generating
functionals,

W
(2)
eff (v

µ, vc, a
µ, p, s) +W

(4)
eff (v

µ, vc, a
µ, p, s) + ..., (2.35)

which characterizes the true generating functional WQCD(v
µ, vc, a

µ, p, s) of the full the-
ory[74]. This means that the global symmetries of the effective theory have to be gauged,
and that couplings to the same external fields v, a, p, s as in QCD have to be introduced.
But before we proceed to outline the explicit construction of these generating functionals,
we need to know how the Goldstone bosons are realized in the chiral effective theory.

Realization of the Goldstone bosons

The χPT Lagrangian is commonly written in terms of a nonlinear realization of the sym-
metry group G = SU(Nf )R × SU(Nf )L[82, 83], with Nf equal to two or three. In this
section, we outline how this realization is constructed and justified.
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We have seen that although the Lagrangian is invariant under G, the ground state
only remains invariant under the subgroup H = SU(Nf )V , giving rise to n = nG − nH9

Goldstone bosons. Each of the Goldstone modes are described by an independent field
variable πi, which is a continuous real function on M4. We collect these field variables in
a vector Π, and define the following vector space[53];

M1 ≡ {Π :M4 → Rn}, (2.36)

The idea is to find a map φ that uniquely associates with each pair (g,Π) ∈ G ×M1 an
element in M1 such that,

φ(e,Π) = Π, ∀Π ∈M1, (2.37)
φ(g1, φ(g2,Π)) = φ(g1g2,Π), ∀g1, g2 ∈ G ∀Π ∈M1. (2.38)

The map φ defines an operation of G on M1, but it is in general not a representation
because we do not require linearity φ(g, λΠ) 6= λφ(g,Π). φ is used to establish a relation-
ship between the GB fields and the quotient space G/H, which allows us to discuss the
transformation properties of the Goldstone bosons under G. In order to give a qualitative
description of this relationship we need the following remarks and terminology;

• The quotient G/H is the set of all left cosets {gH|g ∈ G} of H in G.10 Elements of
the quotient are sets of group elements, and these sets are completely disjoint.

• We will let Π = 0 denote the ”origin” of M1, which loosely speaking can be thought
of as the ground state (GS) in the normal phase of the effective theory. Since the GS
is invariant under the subgroup H, we require that φ(h, 0) = 0 for every h ∈ H.11

It follows from the group-homomorphism property in Eq.(2.38) that φ maps the origin
onto the same element in Rn for all elements of a coset, i.e

φ(gh, 0) = φ(g, 0) (2.39)

for any g ∈ G and all h ∈ H. We can now prove that the mapping of the origin is injective
with respect to the cosets; Let g, g′ ∈ G where g′ /∈ gH, and assume that φ(g, 0) = φ(g′, 0),
then

0 = φ(e, 0) = φ(g−1, φ(g, 0)) = φ(g−1g′, 0). (2.40)

The first equality follows from Eq.(2.37), the second equality is obtained by using the
homomorphism property, and the last equality follows from the assumption φ(g, 0) =
φ(g′, 0) and homomorphism. Thus, we have showed that 0 = φ(g−1g′, 0), which implies
g′g−1 ∈ H in contradiction to the assumption. Hence the mapping φ can be inverted on
the image φ(g, 0), so φ is injective with respect to the left cosets. This means that there is
an isomorphism between G/H and the Goldstone boson fields M1, so they are isomorphic.

The isomorphism between the GB fields and the quotient G/H is no lucky coincidence,
but guaranteed by the isomorphism theorems12 of abstract algebra. Specifically, the image
of G under a homomorphism φ is isomorphic to G/kerφ, where ker denotes the kernel of
φ. Hence by requiring the kernel to be identical to the subgroup H, we make the image
φ(g, 0) isomorphic to the quotient G/H.

9Here nG and nH denotes the number of group generators in G and H respectively.
10This definition assumes that H is a normal subgroup of G
11In more technical terms this means that H is the little group of Π = 0.
12Also known as Noether’s isomorphism theorems.
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2.3. THE CHIRAL LAGRANGIAN

Now that we have established the isomorphism, we may discuss the transformation
properties of the GB fields under an element g ∈ G. To each vector of Goldstone fields
Π there is a unique coset g̃H, g̃ ∈ G, such that φ(g̃H, 0) = Π. Let f ≡ g̃h ∈ g̃H be a
representative of this coset, and apply the mapping φ(g) to Π;

φ(g,Π) = φ(g, φ(f, 0)) = φ(gf, 0) = φ(f ′, 0) ≡ Π′, f ′ ∈ g(g̃H). (2.41)

Hence we obtain the transformed field Π′ from Π by multiplying the coset representing
Π by g, which gives the coset representing Π′. This procedure uniquely determines how
the Goldstone bosons transforms up to an appropriate choice of variables parametrizing
G/H[53].

While the considerations above are quite general we now make the discussion more
spesific to QCD by explicitly considering G = {(L,R)|R ∈ SU(Nf )R, L ∈ SU(Nf )L} and
H = {(V, V )|V ∈ SU(Nf )V }, which is isomorphic to SU(Nf ). If we define g̃ = (L̃, R̃),
then we may uniquely characterize the left coset g̃H = {(L̃V, R̃V )|V ∈ SU(N)V } by the
matrix Σ = R̃L̃†[53, 84],

(L̃V, R̃V ) = (L̃V, R̃L̃†L̃V ) = (1, R̃L̃†)(L̃V, L̃V ), (2.42)

which implies that g̃H = (1, R̃L̃†)H. To obtain the transformation properties of the Π
vector isomorphic to Σ under g = (L,R) ∈ G, we multiply g into the left coset,

gg̃H = (L,RR̃L̃†)H = (1, R(R̃L̃†)L†), (2.43)

i.e

Σ→ R̃ΣL†. (2.44)

If we allow the cosets to also depend on x this relation extends into,

Σ(x)→ R̃Σ(x)L†. (2.45)

We now specialize to two flavors Nf = 2, where there are three Goldstone bosons
n = 3. Let H2 denote the set of all 2 × 2 traceless and Hermitian matrices, which under
addition of matrices defines a vector space. We define a second set[53],

M2 ≡ {π :M4 → H2}, (2.46)

where the entries in π are continous functions. Elements in M1 and M2 are related
accordingly;

π(x) =
3∑
i=1

τiπi(x) =

(
π3(x) π1(x)− iπ2(x)

π1(x) + iπ2(x) −π3(x)

)
≡
(
π0(x)

√
2π+√

2π− −π0(x)

)
, (2.47)

where πi(x) = 1
2 Tr[πτi]. Finally, let us define a set M3 as,

M3 = {Σ :M4 → SU(2)|Σ(x) = exp

[
i
π(x)

f

]
, π(x) ∈M2}, (2.48)

where f ≈ 93 MeV is a parameter in the theory. This entire construction ensures that the
homomorphic property is inherited from M1 down to M3;

φ : G×M3 →M3, (2.49)
φ[(L,R),Σ(x)] = RΣ(x)L†. (2.50)

Furthermore, φ defines an operation of G on M3:
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• RΣ(x)L† ∈M3,

• φ[(1,1),Σ(x)] = Σ(x),

• Let gi = (Li, Ri), then φ[g1, φ(g2,Σ(x))] = R1R2Σ(x)L
†
2L

†
1 = φ[g1g2,Σ(x)].

Since M3 is not a vector space under matrix addition, the map φ is called a nonlinear
realization.

Notice from Eq.(2.48) that the Goldstone bosons parametrizes the group manifold
SU(2), which is generalized to SU(Nf ) for QCD with Nf flavors. The group manifold is
isomorphic to G/H = SU(Nf )R × SU(Nf )L/SU(Nf )V . For this reason, the Goldstone
bosons in QCD are often referred to as coordinate functions on the G/H manifold, and
G/H is commonly referred to as the Goldstone manifold.13

The configuration that we referred to as ”the origin” is given by U0 = 1. The origin
remains invariant under the action of the subgroup SU(2)V , but not under the action of
SU(2)A,

φ[(V, V ), U0] = V V † = U0, (2.51)
φ[(A,A†), U0] = A†A† 6= U0. (2.52)

This is consistent with the transformation properties we expect from the ground state in
QCD, and we conclude that U0 is in fact the real ground state of the system.

Finally, by expanding Eq.(2.50) in the fields one may explore the transformation prop-
erties of Σ(x) under H, and its transformation properties under axial transformations
(A,A†). The well known result[82] is that the fields πi transforms as a triplet under H,
while they transform non-trivially under axial transformations.

Now that we know how to handle the degrees of freedom in the χPT Lagrangian
properly, we return to the explicit construction of the lowest order terms in the theory.
The following will serve as a handy reference when we need to determine the transformation
properties of external fields and sources later in this thesis.

Gauging the effective theory

In order to construct the sequence of effective generating functionals in Eq.(2.35), which
is invariant under the gauged symmetry group, we first need to introduce the covariant
derivative Dµ. The covariant derivative ensures that DµΣ(x) transforms in the same way
as Σ(x), see Eq.(2.45).

We start with the external vector and axial fields in Eqs.(2.28)-(2.29), which we use
to define new external fields raµ(x) and laµ(x) as follows,

vaµ ≡
1

2
(raµ + laµ), aaµ ≡

1

2
(raµ − laµ). (2.53)

Here raµ(x) and laµ(x) corresponds to Θa
R and Θa

L respectively, where

R = exp

[
i
τa

2
Θa
R

]
, L = exp

[
i
τa

2
Θa
L

]
. (2.54)

The transformation properties of the new field variables are obtained by requiring Eq.(2.35)
to be invariant under local SU(2)R × SU(2)L transformations,

rµ → RrµR
† + iR∂µR

†, (2.55)
lµ → LlµL

† + iL∂µL
†. (2.56)

13The quotient space G/H is generally not a manifold by construction, but because of the symmetry
and symmetry breaking patterns of QCD it ”accidentally” obtains the additional structure of a manifold.
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2.3. THE CHIRAL LAGRANGIAN

We write the covariant derivative in terms of the new field variables as,

DµΣ ≡ ∂µΣ− irµΣ+ iΣlµ → ∂µ(RΣL
†)− iRrµΣ(x)L† +R(∂µR

†)RΣ(x)L†

+ iRΣ(x)lµL
† −RΣ(x)(∂µL†) = R(∂µΣ− irµΣ+ iΣlµ)L

† = RDµΣL
†, (2.57)

where we have used that R(∂µR†) = ∂µ(RR
†) − (∂µR)R

† = −(∂µR)R†. We observe that
the construction of DµΣ in Eq.(2.57) transforms in the required way.

The field strength tensors associated with rµ and lµ reads,

fRµν = ∂µrν − ∂νrµ − i[rµ, rν ], (2.58)
fLµν = ∂µlν − ∂ν lµ − i[lµ, lν ], (2.59)
Tr
{
fRµν
}
= Tr

{
fLµν
}
= 0, (2.60)

and they transform as RfRµνR† and LfLµνL† under the gauged symmetry group, respectively.
Following the original work of Ref.[22] we introduce a new field χ, which is defined as,

χ ≡ 2B0(s+ ip). (2.61)

The constant B0 on the right hand side is related to the quark condensate through 3B0f
2 =

〈0|q̄q|0〉. Furthermore, in the isospin limit mu = md we have the Gell-Mann-Oakes-Renner
relations[85] relating B0 to the lightest quark masses and the pion mass as follows,

m2
π = 2B0mu. (2.62)

We will revisit these relations in part III of this thesis, where we discuss the quark and
pion condensates at finite isospin density.

We have now formally introduced all the building blocks that are used to construct
the chiral Lagrangian,14 namely Σ, DµΣ, rµ, lµ, fRµν , fLµν , χ and higher order (covariant)
derivatives of Σ and χ. These are counted as follows in Weinberg’s power-counting scheme;

Σ = O(p0), DµΣ = O(p), rµ = lµ = O(p), fRµν = fLµν = O(p2), χ = O(p2). (2.63)

Each additional covariant derivative operator Dµ contributes with an extra momentum
power p. The transformation properties of the building blocks, including the higher order
covariant derivative terms, under C (charge conjugation), P (parity transformations) and
the gauge group is nicely summarized in table 4.2 in Ref.[53].

One way to proceed with the construction of the chiral Lagrangian[81] in terms of
the building blocks in Eq.(2.63) is to consider operators A1, A2, ...that transform in the
same way as Σ under the gauge group. It is possible to form invariant terms by tracing15

products of the type AiA†
j ;

Tr
[
AiA

†
j

]
→ Tr

[
RAiL

†(RAjL
†)†
]
= Tr

[
AiA

†
j

]
. (2.64)

The generalization to higher products is obvious,

Tr
[
AiA

†
jAkA

†
l

]
, Tr

[
AiA

†
j

]
Tr
[
AkA

†
l

]
, ... (2.65)

The operators to order O(p2), which transform like R...L†, are constructed from the op-
erators in Eq.(2.63) and their covariant derivatives,

Σ, DµΣ, DµDνΣ, χ, fRµνΣ, ΣfLµν . (2.66)
14This is no longer true if we introduce chemical potentials.
15The trace is with respect to flavor indices of course.
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The invariant operators at order O(p0) and O(p) are constants, so the leading order (LO)
non-constant Lagrangian is order O(p2)[22]. The non-constant invariant operators at order
p2 are[53],

Tr
[
DµDνΣΣ

†
]
= −Tr

[
DµΣ(DνΣ)

†
]
= Tr

[
Σ(DνDµΣ)

†
]
,

Tr
[
χΣ†

]
, Tr

[
Σχ†

]
. (2.67)

Imposing Lorentz invariance leaves us with three terms,

Tr
[
DµΣ(D

µΣ)†
]
, Tr

[
χΣ† ± Σχ†

]
. (2.68)

The remaining symmetries to check are parity and charge invariance.16 Parity constraints
the sign in the second term in Eq.(2.68) to be positive. This leaves us with the most
general effective Lagrangian to order p2 that is consistent with Weinberg’s theorem[22],

L2 =
f2

4
Tr
[
DµΣ(D

µΣ)†
]
+
f2

4
Tr
[
χΣ† +Σχ†

]
. (2.69)

This Lagrangian contains two free parameters, f and B0. Notice that Eq.(2.69) is just
the non-linear sigma model coupled to external fields. The purpose of the multiplicative
constant f2

4 is to generate the standard form of the kinetic term and the mass term;
1
2∂µπa∂

µπa + 1
2m

2π2 in the expanded Lagrangian (m is introduced in the proceeding
paragraph).

For two-flavor QCD in the isospin limit and absence of external fields17we have that
χ = m2

π. This is easily verified by substituting Eq.(2.62) into the definition of χ. The
result is only correct to leading order in χPT, and χ is in general replaced by a new
parameter that is referred to as m. In this notation, which is the notation we will use in
this thesis, the leading-order Lagrangian reads,

L2 =
f2

4
Tr
[
DµΣ(D

µΣ)†
]
+
f2m2

4
Tr
[
Σ+ Σ†

]
. (2.70)

By following the procedure that we outlined above, one may also derive the χPT
Lagrangian to next-to-leading order. Thus, if the set of all locally invariant operators
to order O(p4) is obtained, and then reduced by throwing away all operators that are
either constant, inconsistent with Lorentz, P or C- invariance, or equivalent to another
operator in the set, one obtains L4.18 However, the result will contain some redundant
structures19 which can be eliminated to obtain the minimal number of independent terms.
The elimination is done by using the equations of motion associated with L2, and the
interested reader is referred to Refs.[81, 86–88] to see how it works. The interested reader
is also referred to the original work in Ref.[22] for the full Lagrangian at NLO.20 We will
only need a subset of the full two-flavor Lagrangian at NLO, which in the notation of

16It is sufficient to consider P and C, only, because the time inversal symmetry T is then automatically
incorporated by the CPT theorem.

17We saw earlier that this limit is obtained by setting vµ(x) = vc = aµ(x) = p = 0 and s = diag(mu,md)
where s reduces to s0 = diag(mu,mu) in the isospin limit.

18One must also include a coupling constant for each of the terms in the Lagrangian.
19This did not happen at leading order, and is a new phenomena once we go beyond the leading order.
20The original action Sext in Ref.[22] does not account for the axial anomaly. However, the Wess-Zumino-

Witten action Swzw[89] transforms exactly as Eq.(2.33), and therefore the difference Sext − Swzw yields a
gauge invariant action. We will from now on ignore Swzw as it does not enter any of the calculations in
this thesis.
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Ref.[90] reads,

L4 =
1

4
l1(Tr[DµΣ

†DµΣ])2 +
1

4
l2Tr[DµΣ

†DνΣ]Tr[D
µΣ†DνΣ]

+
1

16
(l3 + l4)m

4(Tr[Σ + Σ†])2 +
1

8
l4m

2Tr[DµΣ
†DµΣ]Tr[Σ + Σ†] + h1 tr

[
m4
]
. (2.71)

Here l1 − l4 denote bare low-energy couplings constants (LECs). The complete chiral
Lagrangian in Ref.[22] contains ten terms, with LECs l1− l7 and h1−h3.21 We will revisit
the low-energy couplings in chapter 3.

2.4 QCD and Chemical potentials

In this section, we discuss two-flavor QCD and χPT at nonzero chemical potentials. More
precisely, we review how the inclusion of chemical potentials affect the global symmetries
of QCD, and how sufficiently high values of the isospin chemical potential triggers the
formation of a pion condensate. We do not address QCD with three-flavors, which has a
richer structure of meson condensation than two-flavor QCD due to the additional strange
chemical potential. The interested reader is referred to Refs.[91, 92] for details about
meson condensation in three-flavor χPT.

Chemical potentials, symmetry breaking and the pion condensed phase

In the grand canonical ensemble, we need to introduce terms on the form µiQi in the
Hamiltonian H, where Qi denotes the conserved Noether charge,

Q =

∫
d3xJ0

i (x), (2.72)

associated with the conserved current Jµi (x). Thus, chemical potentials couple minimally
to the zeroth component of conserved currents and are therefore treated as zeroth com-
ponents of gauge fields. Consequently, by including one chemical potential for each of the
QCD flavors fi we have to modify the covariant derivative in Eq.(2.1) for QCD with N
flavors as follows,

Dµ = ∂µ + igsλaA
a
µ − iδµ0µ, (2.73)

where µ = diag(µf1 , µf2 , ...µfN ). When Nf = 2, we may write this matrix in terms of a
different basis (µB, µI) as shown below,

diag(µu, µd) =
µB
3

+ µI
τ3
2
. (2.74)

This definition ensures that µB is nonzero in baryonic matter, while it vanishes completely
when we only consider mesons. Consequently, µB drops completely out of the mesonic
chiral Lagrangian[93].

The three pions π0(uū, dd̄), π+(ud̄), and π−(dū) constitutes an isospin triplet with
third-components I3 = 0, I3 = 1

2 , and I3 = −1
2 , respectively. Neglecting all non-QCD ef-

fects and setting the isospin chemical potential to zero leads to a mass degeneracy between
the pions, i.e the three pions have equal mass mπ. However, the presence of a nonzero

21The terms proprtional to the hi’s, are so called contact terms. The definition of h1 in Eq.(2.71) is not
the same as that in Ref.[22]
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isospin chemical potential induces a Zeeman-like energy splitting;22

Eπ0 =
√
p2 +m2

π, (2.75)

Eπ− = µI +
√
p2 +m2

π, (2.76)

Eπ+ = −µI +
√
p2 +m2

π, (2.77)

where p denotes spatial momentum. Eqs.(2.76)-(2.77) suggest that one pion mode becomes
massless at |µI | = mπ, which is an indication of a spontaneously broken symmetry. In
order to consider the possibility of spontaneous symmetry breaking (SSB) we first need to
know how nonzero isospin affects the symmetries of QCD. Introducing the isospin chemical
potential in the Hamiltonian yields,

[H, τ3] = 0, [H, τ1] 6= 0, [H, τ2] 6= 0, (2.78)

since τ3 does not commute with the remaining two SU(2) generators. Hence, µI 6= 0
explicitly breaks SU(2)V × U(1)B → U(1)I3 × U(1)B = U(1)u × U(1)d ≡ N . This result
is also true when mu 6= md. The remaining symmetry group N generates independent
phase rotations of the two flavor fields. This residual symmetry is extremely important,
because it proves that SSB is possible, and that we can have a phase transition from a
normal phase with symmetry group N, to a superfluid phase with a reduced symmetry
group[91]. It turns out that U(1)I3 is in fact spontaneously broken[25] at high values of the
isospin chemical potential. Furthermore, the generator of electric charge Q ≡ 1

61 + 1
2τ3

23 is also broken in this phase as a direct consequence of the broken I3 generator. We
note that the spontaneously broken electric charge generator makes the system an electric
superconductor in the second phase.

The massless mode in Eq.(2.76)-(2.77) condenses to form a Bose-Einstein condensate
(BEC) for temperatures below the relevant critical temperature. We will only consider
non-negative values for the isospin potential µI ≥ 0 in this thesis, where the positively
charged pion π+ becomes massless at µI = mπ at vanishing temperature. The phase tran-
sition from the normal phase to the pion-condensed phase at zero temperature is second
order[44, 93]. This is not surprising due to the fact that the chiral condensate and the
meson condensate can coexist, because the condensation mechanisms are independent[91,
93].

The final question we address before we move on with renormalization is how finite
isospin chemical potential is incorporated into the effective framework. The isospin chem-
ical potential corresponds to the zeroth component of the gauge field vµi associated with
vector transformations generated by τ3, see Eq.(2.29) for details. Thus, gauge invariance
fixes the way µI is allowed to enter the chiral Lagrangian[25]. We have seen that the
external gauge field vµi enters the effective construction through the covariant derivative
in Eq.(2.57). We use the definition in Eq.(2.53) to write,

rµ = lµ =
τ3
2
µIδµ0, (2.79)

which we substitute into the expression for the covariant derivative in Eq.(2.57) to obtain,

DµΣ ≡ ∇µΣ = ∂µΣ− i
µIδ0µ
2

[τ3,Σ], (2.80)

DµΣ
† ≡ ∇µΣ† = ∂µΣ

† − iµIδ0µ
2

[τ3,Σ]
†. (2.81)

22The validity of the following relations can only be assumed to hold for sufficiently low µI , and in fact
they break down for µI > mπ.

23This equality follows from the Gell-Mann–Nishijima formula Q = I3 + 1
2
Y , where Q and Y are the

generators of electric charge and hypercharge respectively.
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The relevant terms in the chiral Lagrangian at next-to-leading order in vacuum given in
Eq.(2.71) are then modified to the following,

L4 =
1

4
l1(Tr[∇µΣ†∇µΣ])2 + 1

4
l2Tr[∇µΣ†∇νΣ]Tr[∇µΣ†∇νΣ]

+
1

16
(l3 + l4)(Tr[χ

†Σ+ Σ†χ])2 +
1

8
l4Tr[∇µΣ†∇µΣ]Tr[χ†Σ+ Σ†χ] + h1Tr

[
χ†χ

]
, (2.82)

at nonzero isospin chemical potential.
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Chapter 3

χPT at one loop

The main focus of this thesis is to compute quantum corrections to tree-level results
in χPT. To obtain well-defined and finite results for observables, we need to employ a
suitable renormalization scheme. In this chapter, we provide an overview of how the
renormalization procedure in two-flavor χPT is implemented at next-to-leading order. We
begin by reviewing dimensional regularization before we proceed to discuss renormalization
in χPT. We demonstrate the procedure by renormalizing m and f in the normal phase
to one loop.1 The interested reader is referred to the original work in Ref.[22] for details
about χPT to one loop, and Ref.[95] for renormalization of χPT to higher orders.

3.1 Dimensional Regularization

In this section, we briefly review the method of dimensional regularization (dimreg). A
standard textbook[49, 53, 55] way of introducing dimensional regularization is to discuss
Wick rotation, derive the surface area of the unit sphere in arbitrary dimensions, and
highlight some relations between Beta and Gamma functions. We will follow an alternative
route in the following, where we highlight some of the fundamental ideas and principles
underlying the regularization of well-behaved scalar integrals in the absence of infrared
divergences.

In dimensional regularization, the dimension of spacetime is analytically continued to
an arbitrary spacetime dimension d [96]. Dimreg preserves gauge invariance and many
dimension-independent symmetries, and it has become the most popular regularization
method for (non-supersymmetric) gauge theories. Notably, dimensional regularization
preserves translational invariance in momentum-space2 and thereby avoids the problem
with anomalies occurring in more primitive schemes which violate this symmetry. Dimen-
sional regularization also preserves chiral symmetries and has become the conventional
regularization scheme in the context of χPT.

A drawback with dimreg is its inability to handle dimensionally dependent quantities,
such as the γ5 matrix and the antisymmetric tensor εαβγδ, which can lead to complications
in theories where these quantities are necessary to prove Ward identities.

Mathematical tools

The principle of dimensional continuation is important to understand dimensional regu-
larization, and is expressed by the following theorem[97];

1The renormalization of m was also performed in Ref.[94].
2This is a consequence of the fact that dimensional continuation does not spoil the translational invari-

ance of the relevant integrals.
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Theorem 2. Let an analytic function g1(z) be defined in a region3 D1, and let D2 be
another region which has a certain subregion R, but only this one, in common with D1.
Then if a function g2(z) exists which is analytic in D2 and coincides with g1(z) in R,
there can only be one such function. We call g1(z) and g2(z) analytic continuations of
each other.

The theorem above states that g2(z) is unique, provided that R is not the empty set,
and implies that the representations of g1(z) and g2(z) are equal in R.

The Gamma function Γ(z) arises naturally in dimreg. There are many representations
of Γ(z) to be found in the literature, but only two appear suitable in the current context[98].
The first one is Euler’s representation,

ΓE(z) ≡
∫ ∞

0
tz−1e−tdt, Re(z) > 0. (3.1)

The second one is Weierstrass’s partial fraction series expansion,

ΓW (z) =
∞∑
n=0

(−1)n

n! (n+ z)
+

∫ ∞

1
tz−1e−tdt, (3.2)

which is analytic at all points in the complex plane, except from the negative integers.
ΓW (z) is in fact a unique analytic continuation of ΓE(z), because Re(z) > 0 is a subset of
its region of validity and ΓW (z) = ΓE(z) here.

Prescription

In this subsection we review how regularization of massive fields[98, 99] in a scalar field
theory is carried out in the MS (read: minimal subtraction) scheme.4 There is an algo-
rithmic procedure, due to Passarino and Veltman[100], the so-called Passarino Veltman
reduction, which successively reduces integrals that show up in amplitude calculations in
QFT into scalar integrals[101]. The following procedure is therefore readily generalized to
quantum field theories with more exotic fields.

Assume that the following four-dimensional integral

I(p) =

∫
d4k

(2π)4
J(k2, k · p), (3.3)

is ultravioletly divergent. We outline how to regularize this integral in dimreg through a
number of steps below[98] (where we work in Euclidean space, which is always possible by
Wick rotating);

• Define the inner product between vectors over a complex d-dimensional vector space.

• Parametrize all momentum-space propagators with the following transformation,

1

k2 +m2
=

∫ ∞

0
dαe−α(k

2+m2). (3.4)

• Change the integration measure from d4k
(2π)4

to Λ4−d ddk
(2π)d

, where d is a complex num-
ber and Λ is the renormalization scale which makes the dimension of the integral
independent of the spacetime-dimension d.

3A non-empty open subset of the complex plane.
4The ”minimal” in minimal subtraction refers to the fact that no additional finite factors are subtracted

in this scheme.
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3.1. DIMENSIONAL REGULARIZATION

• Use the following generalized Gaussian integral to integrate over momentum space,∫
Λ4−d ddk

(2π)d
e−xk

2+2k·b =
(π
x

) d
2 1

(2π)d
e

b2

x . (3.5)

The formula in Eq.(3.5) reduces to the standard Gaussian integral for integer values
of d. For complex values of d the right hand side has to be taken as the definition
of the integral to the left.

• The resulting amplitude is now well defined in a finite domain of the complex plane.5
The amplitude outside this domain has to be taken as the analytic continuation of
the amplitude inside the domain.

• Feynman parametrization[49, 102] can be employed to rewrite scalar loop integrals
into a form suitable for the outlined procedure. Integration over Feynman parameters
leads to Gamma functions in the domains where the integrals exist. The analytic
continuation defined in Eq.(3.5) can then be implemented by using the Weierstrass
representation of the Gamma function[98].

• Expand all d-dependent terms in Laurent series around d = 4, so I(p) takes the
form,

I(p) =
A

(d− 4)
+B +O(d− 4), (3.6)

where A and B are momentum dependent. Ultraviolet divergences now manifest
themselves as poles at d = 4.

• The divergent term in Eq.(3.6) has to be canceled by a counterterm. Once this is
achieved we take the limit d → 4, and I(p) can be analytically continued back to
Minkowski space.

We illustrate the outlined procedure by calculating the following standard integral,

I = Λ4−d
∫

ddk

(2π)d
1

k2 +m2
= Λ4−dm

d−2

(2π)d

∫
ddk

k2 + 1
. (3.7)

First, we have to rewrite the integral into Gaussian form, which we subsequently evaluate
using Eq.(3.5);

I = Λ4−dm
d−2

(2π)d

∫
ddk

∫ ∞

0
dαe−α(k

2+1) = Λ4−d md−2

(4π)d/2

∫ ∞

0
α− d

2 e−αdα

= Λ4−dm
d−2

(4π)
d
2

Γ

(
1− d

2

)
. (3.8)

The Gamma function in the second line of the equation above is understood to be in
the Weierstrass representation. Since ΓW (z) has isolated poles at z = 0, −1, −2, ..., the
integral I obtains isolated poles at d = 4, 6, 8, .... To analyze the behavior near d = 4 we
define d = 4− 2ε, and subsequently expand around d = 4 to obtain,

I = − m2

(4π)2
(4π)ε

(
Λ2

m2

)ε [
1

ε
+ 1− γ +O(ε)

]
, (3.9)

where γ denotes the Euler-Mascheroni constant γ ≈ 0.5772[49].
5We are currently ignoring the possibility of having infrared problems, where the domain may shrink

to the empty set.
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CHAPTER 3. χPT AT ONE LOOP

The renormalization scheme outlined above only absorbs the divergent part of the
loop integral. In this thesis we employ the MS (read: modified minimal subtraction)
scheme, which absorbs the divergent part of the loop integral plus a constant that always
arises as a part of the regularization. The MS scheme is implemented by rescaling the
renormalization scale as shown below,

Λ2 → Λ2

(
eγ

4π

)ε
. (3.10)

The integral in Eq.(3.9) reduces nicely to the following expression,

I = − m2

(4π)2

[
1

ε
+ 1 + log

Λ2

m2
+O(ε)

]
(3.11)

in the MS scheme.
The prescription discussed so far is sufficient to regularize integrals associated with

massive scalar fields6 in the absence of infrared divergences. There are techniques to
handle infrared divergences in consistent ways[96], but we will not discuss them here.
Instead, we briefly review some results for loop integrals with massless particles, which we
will make active use of later in this thesis.

If we had attempted to solve the integral associated with a massless scalar propagator
by following the prescription above,

I =

∫
ddk

(2π)d
1

k2
=

∫
ddk

(2π)d
p2 − 2p · k
k2(k2 − p2)

+

∫
ddk

(2π)d
k2

k2(k2 − p2)
, p2 6= 0, (3.12)

and naively added the two integrals on the right hand side, we would have obtained I = 0.
However, the regions where the two integrals on the right hand side of Eq.(3.12) are defined
does not overlap, so we cannot add their analytic continuations[98]. Leibrandt regularizes
massless loop integrals by extending the definition of the Gaussian integral in Eq.(3.5),
see Ref.[98] for details. In Ref.[103] the authors use Leibrandts extension to prove the so
called t’Hooft Veltman conjecture for massless particles, which states that∫

ddk

(2π)d
(k2)β−1 = 0, (3.13)

for β = 1, 2, ... and complex d, and β = 0 when d > 2.7 In particular, this implies that
Eq.(3.12) is zero in four dimensions, and that

∫
d4k
(2π)4

(k2)n = 0, n = −1, 0, 1, 2.... These
results will be used to simplify some of our calculations later on.

Loosely speaking, dimreg allows us to isolate the divergences appearing in loop inte-
grals. However, we have to lose the divergences completely in expressions for observables.
This is what renormalization does for us, as we will see in the following.

3.2 Renormalization in χPT
In chapter 2, we saw that the χPT Lagrangian contains an infinite number of terms and
that it is non-renormalizable in the conventional sense of the word. This means that
a calculation at some given order n in the power-counting scheme requires higher-order
terms to cancel the divergences that arise at order n. Consequently, one needs more and

6Here we assume that there are no emerging anomalies or appearance of Dirac matrices, which makes
things trickier.

7Eq.(3.12) is undefined in d = 2 dimensions, which is consistent with the fact that Goldstone bosons
are forbidden in d = 2 dimensions[104].
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3.2. RENORMALIZATION IN χPT

more couplings li as one goes to higher loop orders (or equivalently higher orders in the
power-counting scheme). If we use a regularization scheme that preserves the symmetries
of the Lagrangian, such as dimreg, then the counterterms have to be invariant under the
same symmetries as the Lagrangian. Since the full effective Lagrangian is constructed
to contain all terms compatible with the symmetries of the theory, the divergences can
always be canceled by renormalizing coupling constants in the Lagrangian appropriately.

If we calculate one-loop corrections using L2, then the divergences become order O(p4).
Since L4 contains all inequivalent terms permitted by the underlying symmetry principles,
it must be possible to absorb the one-loop divergences from L2 into the LECs l1 − l7 and
h1 − h3. In Ref.[22] Gasser and Leutwyler calculate the one-loop generating functional
and obtain the renormalized LECs that cancel the one loop divergences in the MS scheme.
They write the renormalized LECs on the following form,

li = lri + γiλ, hi = hri + γiλ, (3.14)

λ =
Λ−2ε

2(4π)2

[
−1

ε
− (4π − γ + 1)

]
, (3.15)

where lri denotes a renormalized coupling. In the MS scheme, the couplings take the
following form,

li = lri −
γiΛ

−2ε

2(4π)2

[
1

ε
+ 1

]
, (3.16)

hi = hri −
δiΛ

−2ε

2(4π)2

[
1

ε
+ 1

]
, (3.17)

where the numerical values for the coefficients γi read[22],

γ1 =
1

3
, γ2 =

2

3
, γ3 = −

1

2
, γ4 = 2, γ5 = −

1

6
, γ6 = −

1

3
, γ7 = 0, (3.18)

δ1 = 2, δ2 =
1

12
, δ3 = 0. (3.19)

We do not use the same operators as Ref.[22] in this thesis. We will call one of our coupling
constants h1, see Eq.(2.71), and it will not be the same LEC as the one in the equations
above. The constant that we will denote by h1 is not running, i.e δ1 = 0 and h1 = hr1.

The renormalized LECs, lri and hri , are running coupling constants that satisfy renor-
malization group (RG) equations.8 These are obtained by differentiating both sides of
Eq.(3.16) and Eq.(3.17), respectively, with respect to the renormalization scale Λ. Since
the bare couplings are independent of Λ we immediately obtain,

Λ
dlri
dΛ

= − γi
2(4π)2

, (3.20)

Λ
dhri
dΛ

= − δi
2(4π)2

. (3.21)

A set of low-energy constants l̄i and h̄i are defined via the solutions of the RG equations
as,

lri =
γi

2(4π)2

[
l̄i − log

Λ2

m2

]
, (3.22)

hri =
δi

2(4π)2

[
h̄i − log

Λ2

m2

]
. (3.23)

8For LECs with γi = 0 or δi = 0 the renormalized couplings simply equal the bare couplings, which are
scale independent. The equations (3.20-3.23) does not apply to such couplings.
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D33

D22

D11

D12

D21

Figure 3.1: Bare pion propagators in the {π1, π2, π3} basis. D11 denotes the bare 〈π1π1〉
propagator, D22 denotes the bare 〈π2π2〉 propagator, D33 denotes the bare 〈π3π3〉 propaga-
tor, D12 denotes the bare 〈π1π2〉 propagator and D21 denotes the bare 〈π2π1〉 propagator.

Numerical values for the low-energy constants l̄i and h̄i are obtained from phenomeno-
logical evaluations based on experimental data[22]. The only running LECs of relevance
in this thesis are lr1 − lr4, see Eq.(2.82). Numerical values for l̄1 − l̄4 were estimated by
Colangelo, Gasser and Leutwyler in Ref.[105], where they obtained,

l̄1 = −0.4± 0.6, l̄2 = 4.3± 0.1, (3.24)
l̄3 = 2.9± 2.4, l̄4 = 4.4± 0.2. (3.25)

3.3 Renormalizing the parameters of the Lagrangian

We are now in a position to renormalize the parameters of the Lagrangian m and f to one
loop. Next-to-leading order relations for m and f are necessary in consistent calculations
within χPT to next-to-leading order. Although these relations are well known in the
literature[22, 106] we include their derivations as a warm-up, and because the author was
unable to find a detailed derivation of the next-to-leading order correction to the tree-level
relation fπ = f in the χPT literature.

We use the parametrization in Eq.(2.48) to expand the leading-order Lagrangian in
Eq.(2.70) to quartic order in the pion fields and the next-to-leading order Lagrangian in
Eq.(2.71) to quadratic order in the pion fields. The terms in the result that are relevant
to the present calculation read,9

L =
1

2
∂µπa∂µπa −

m2

2
πaπa +

1

6f2
[∂µπaπa∂µπbπb − ∂µπa∂µπaπbπb] +

m2

24f2
(πaπa)

2

−m4(l3 + l4)
πaπa
f2

+
l4m

2

f2
∂µπa∂

µπa. (3.26)

We notice that there are no cubic interactions present in Eq.(3.26).

9The static contribution is omitted.
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4

Figure 3.2: Self-energy diagrams at next-to-leading order in the low-energy expansion.
The first three diagrams are one-loop corrections derived from L2, while the last diagram
is derived from L4.

3.3.1 Renormalizing m

The three pion masses are degenerate at zero external fields, so it is sufficient only to
consider π3, which is what we do in the following.

The physical pion mass mπ is determined by the location of the pole in the pion
propagator. We notice that the kinetic term and the mass term in Eq.(3.26) takes the
canonical form 1

2∂
µπa∂µπa − m2

2 πaπa. It follows that the renormalized pion propagators
can be written on the form shown below,

i

k2 −m2 − Σ(k2)
, (3.27)

at any given order in the momentum expansion. Here Σ(k2) denotes the renormalized
self energy at the given order in the expansion. The self energy at O(p2) is zero, so the
propagator has a simple pole at k2 = m2, which yields the leading-order relation m = mπ.

The remaining terms in Eq.(3.26) are used to determine the self-energy Σ(k2) to next-
to-leading order. The result can be represented diagrammatically as the sum of the four
Feynman diagrams in Fig.3.2, where the different lines are explained in the caption of
Fig.3.1.

The vertex factors in the loop diagrams are determined by the quartic terms in
Eq.(3.26). Explicitly, the Feynman rule for πa(p1)πb(p2)→ πc(p3)πd(p4) reads,

i

3f2
[δabδcd(s+m2 + 2(p1p2 + p3p4)) + δacδbd(t+m2 − 2(p1p3 + p2p4))

+ δadδbc(u+m2 − 2(p1p4 + p2p3))], (3.28)

where s = (p1+p2)
2 = (p3+p4)

2, t = (p1−p3)2 = (p4−p2)2, and u = (p1−p4)2 = (p2−p3)2
are the Mandelstam variables. The sum of the loop diagrams in Fig.3.2 is easily determined
from the Feynman rules in Eq.(3.28), and the result reads,

−iΣ(p2)loop =
1

2

i

3f2

∫
k

i(5m2 − 4p2 − 4k2)

k2 −m2
, (3.29)

where the factor of 1
2 originates from the symmetry of the loop diagrams. We use Eq.(3.13)

to rewrite the result as follows,

−iΣ(p2)loop = i
m2 − 4p2

6f2

∫
k

i

k2 −m2
. (3.30)
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We add the contribution from L4, which can be read directly from Eq.(3.26), to the
one-loop contribution in Eq.(3.30) and obtain the complete self energy to next-to-leading
order;

Σ(p2) =
4p2 −m2

6f2
m2

(4π)2

[
− 1

ε
− 1 + log

m2

µ2

]
− 2l4m

2p2

f2
+

2m4

f2
(l3 + l4). (3.31)

Eq.(3.31) can be rewritten as Σ(p2) = A+Bp2, where

A =
m4

f2

{
2(l3 + l4)−

1

6(4π)2

[
− 1

ε
− 1 + log

m2

µ2

]}
, (3.32)

B =
m2

f2

{
− 2l4 +

2m2

3(4π)2

[
− 1

ε
− 1 + log

m2

µ2

]}
. (3.33)

Notice that A = O(p4) and B = O(p2). The defining equation for the pion mass m2
π −

m2 − Σ(m2
π) = 0 can be written in terms of the new variables A and B as,

m2
π =

m2 +A

1−B
= (m2 +A)(1 +B +B2 + ...). (3.34)

Since our calculation is to next-to-leading order, we ignore terms of higher order (i.e.
NNLO and higher) to be self-consistent. This leads to the final result

m2
π = m2 +A+Bm2 = m2

(
1− m2

2f2(4π)2
l3

)
, (3.35)

which is in agreement with the original result in Ref.[22].

3.3.2 Renormalizing f

The pion decay constant fπ can be determined through the correlator of two axial cur-
rents[22, 23, 107], ∫

d4xeipx 〈0|TAaµAbν |0〉 = δab
pµpνf2π
p2 −m2

π

, (3.36)

or through the matrix element,〈
0
∣∣∣Aaµ∣∣∣πb(p)〉 = ipµδabfπ. (3.37)

We will use the latter to determine the next-to-leading order relation for f in the following.
The matrix element 〈0|Aaµ|πa(p)〉 (no summation over a intended) is the same for a = 1,
2, 3, so it is once again sufficient to only consider a = 3.

The axial current Aiµ couples minimally to the external field aiµ in the QCD La-
grangian in Eq.(2.28). The axial currents in the effective theory can therefore be obtained
by varying the χPT action Seff with respect to the external fields aiµ, which yields the
following relation,

Aiµ =
∂Leff
∂aiµ

∣∣∣
aµ=0

. (3.38)

The axial currents can also be obtained from Noether’s theorem[56] through the relations,

Laµ =
∂δLeff
∂(∂µΘL

a )
, Raµ =

∂δLeff
∂(∂µΘR

a )
, Aaµ = Raµ − Laµ, (3.39)
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Figure 3.3: The diagrams that contribute to
〈
0
∣∣A3µ

∣∣π3(pµ)〉 to next-to-leading order in
the low-energy expansion. The first diagram is the leading-order contribution, the next
two are one-loop corrections derived from L2, while the last diagram is derived from L4.

where δLeff denotes the change in the effective Lagrangian under the relevant infinitesimal
transformation. Either way, the contributions from L2 and L4 to A3µ reads,

A3µ
2 = −if

2

4
Tr
[
τ3{Σ, ∂µΣ†}

]
, (3.40)

A3µ
4 = −il4

m2f2

2
Tr
[
τ3{Σ, ∂µΣ†}

]
+ ..., (3.41)

respectively, where we have omitted the contributions from the terms proportional to l1
and l2 in Eq.(2.71), whose lowest order contributions are O(p6).10 Expanding the right
hand sides of the equations above in the pion fields we obtain,

A3µ
2 = −f∂µπ3 +

2

3f
(φaφa∂

µφ3 − φ3φa∂µφa) + ..., (3.42)

A3µ
4 = −l4

2m2

f
∂µπ3 + ..., (3.43)

where the omitted terms are of higher order in the fields.
The terms in Eq.(3.42) and (3.43) are represented diagrammatically by the Feynman

diagrams in Fig.3.3. We will denote the first diagram, the sum of the two following
diagrams and the last diagram by A1, A2, and A3, respectively.11 The relationship between
the diagrams in Fig3.3 and the matrix element of interest is obtained through the LSZ
reduction formula[108], see for example Ref.[49] for details. The LSZ formula leads to the
following defining equation for the pion decay constant[106],

ipµfπ =
√
Z(A1 +A2 +A3), (3.44)

where Z denotes the wave function renormalization, which is defined as the residue of the
propagator in Eq.(3.27);

Z =

(
1− ∂Σ

∂p2

)−1

. (3.45)

This implies that we can express Z as Z = 1+B +B2 + ..., which lets us write Eq.(3.44)
consistently to O(p4) as,

ipµfπ =

(
1 +

B

2

)
A1 +A2 +A3. (3.46)

10The only terms proportional to l1 or l2 in the current are of cubic and higher order in the fields. Such
terms give one loop and higher corrections to the matrix elements, i.e corrections of order O(p4+p2) = O(p6)
and higher.

11With this definition A1 = O(p2), while A2 and A3 are O(p4)
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Thus, to order O(p2) we obtain,〈
0
∣∣A3µ

∣∣π3(p)〉 = 〈
0
∣∣−f∂µπ3∣∣π3(p)〉 = ipµf. (3.47)

By comparing Eq.(3.37) with Eq.(3.47) we recover the tree-level result f = fπ.
The next-to-leading order contributions to the matrix element read,

B

2
A1 = −ipµf

[
l4
m2

f2
+

m2

3f2(4π)2

(
1

ε
+ 1 + log

Λ2

m2

)]
, (3.48)

A2 = ipµf

[
4m2

3f2(4π)2

(
1

ε
+ 1 + log

Λ2

m2

)]
, (3.49)

A3 = ipµf

[
2l4

m2

f2

]
. (3.50)

When we add Eqs.(3.48)-(3.50) together, all the divergences and scale dependent terms
cancel out nicely in the sum. Finally, by combining Eqs.(3.46)-(3.50) we obtain,

fπ = f

[
1 +

m2

f2(4π)2
l̄4 +O

(
m4

f4

)]
, (3.51)

which is consistent with the original result in Ref.[22]. By squaring the result we obtain
an expression that is more convenient for later use,

f2π = f2
[
1 +

2m2

f2(4π)2
l̄4 +O

(
m4

f4

)]
. (3.52)
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Part II

Quasi-particle masses in the
pion-condensed phase





Chapter 4

χPT in the pion-condensed phase

In this part of the thesis, we discuss how to calculate the quasi-particle masses to next-
to-leading order in the pion-condensed phase. The discussion requires knowledge about
relevant terms in the Lagrangian and the tree-level dispersion relations. To make this thesis
as self-contained as possible, we use this chapter to review some results of χPT at finite
isospin, which will be useful later. We start by reviewing the ground state configuration
in the pion-condensed phase and express the Lagrangian in terms of pion fields. Tree-level
relations for the medium-dependent pion masses and pion-decay constants are obtained,
and the renormalized free energy to next-to-leading order is derived. The leading-order
terms in the Lagrangian up to quadratic order in the fields, as well as the renormalized
free energy, are also found in Ref.[94]. Details about the derivation of the Lagrangian are
found in Appendix B.

In Ref.[94] we reviewed how to obtain the ground state configuration (GS) at finite val-
ues of the isospin chemical potential, and how to describe fluctuations around the ground
state configuration in the two phases. Our starting point was the following completely gen-
eral parametrization Σα of the Goldstone-manifold SU(2)R×SU(2)L/SU(2)V ∼ SU(2)A,

Σα = eiαπ̂iτi = cosα+ iπ̂iτi sinα, (4.1)
π̂iπ̂i = 1. (4.2)

The parameters π̂i and α are determined by minimizing the static Hamiltonian Hstatic[28],
which to leading order reads,

Hstatic =
f2µ2I
8

Tr
(
τ3Στ3Σ

† − 1
)
− m2f2

4
Tr[Σ + Σ†]. (4.3)

Substituting the representation in Eq.(4.1) into Hstatic yields,

Hstatic = −
f2µ2I
2

(π̂1π̂1 + π̂2π̂2) sin
2 α−m2f2 cosα, (4.4)

which is minimized when π̂3 = 0. Minimizing the static energy with respect to α yields
the well-known results,

α = 0, mπ < µI , cosα =
m2
π

µ2I
, mπ ≥ µI . (4.5)

We recover the standard ansatz for the ground state in Refs.[25, 109]1 by substituting the

1The expression in the references can be obtained by defining a new variable π as follows; π̂1 ≡ cosπ
and π̂2 ≡ sinπ.
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expressions for α in Eq.(4.5) into Eq.(4.1);

Σα = 1, µI < mπ, (4.6)

Σα = cosα+ i(π̂1τ1 + π̂2τ2) sinα, cosα =
m2
π

µ2I
, µI ≥ mπ. (4.7)

Notice that the ground-state energy in Eq.(4.4) is degenerate with respect to π̂1 and
π̂2. More precisely, there is a residual O(2) symmetry between π̂1 and π̂2. The subgroup
of continuous transformations SO(2) is exactly equal to U(1)I3 ,2 which signals that the
symmetry generated by I3 is spontaneously broken when µI ≥ m. The ground state for
µI > mπ is a pion (electromagnetic) superconductor[110] with one Goldstone mode, as
noted in chapter 2.

Following Ref.[44] we set π̂1 = 1 and π̂2 = 0 in the parametrization of the ground state
in Eq.(4.4). This choice was also employed in Ref.[94], where we showed that the following
expression represents a consistent parametrization of fluctuations around the GS[28, 44],

Σ = Aα(UΣ0U)Aα. (4.8)

The quantities on the right hand side of Eq.(4.8) are defined as follows,

Aα = cos
α

2
+ iτ1 sin

α

2
, (4.9)

Σ0 = 1, (4.10)

U = exp

(
i
πaτa
2f

)
. (4.11)

The parametrization in Eq.(4.8) rotates the (broken) SU(2)A generators appropriately
as the ground state is tilted with the angle α. In Appendix B, we use this parametrization
to derive the terms in the χPT Lagrangian that are needed in the calculations of the
quasi-particle masses.

4.1 Tree-level analysis
The leading-order Lagrangian in χPT at non-zero isospin chemical potential reads,

L2 =
f2

4
Tr
[
∇µΣ†∇µΣ

]
+
f2m2

4
Tr
[
Σ+ Σ†

]
. (4.12)

At the end of chapter 2 we showed that the covariant derivatives are given by,

∇µΣ = ∂µΣ− i[vµ,Σ], (4.13)
∇µΣ† = ∂µΣ

† − i[vµ,Σ†], (4.14)

where vµ = δµ0µI
τ3
2 .

We use the parameterization in Eq.(4.8) to derive the leading-order Lagrangian in
terms of the pion fields πa (see Appendix B for technical details). The result can be
written as,

L2 = Lstatic2 + Llinear2 + Lquadratic2 + Lcubic2 + Lquartic2 + ... (4.15)

where,

Lstatic2 = f2m2 cosα+
1

2
f2µ2I sin

2 α, (4.16)

2The well known isomorphism between the two groups U(1) and SO(2) is eiθ →
(
cos θ − sin θ
sin θ cos θ

)
.
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Llinear2 = f(−m2 sinα+ µ2I cosα sinα)π1 + fµI sinα∂0π2, (4.17)

Lquadratic2 =
1

2
∂µπa∂µπa + µI cosα(π1∂0π2 − π2∂0π1)−

1

2
[m2 cosα− µ2I cos(2α)]π21

− 1

2
[m2 cosα− µ2I cos2 α]π22 −

1

2
[m2 cosα+ µ2I sin

2 α]π23, (4.18)

Lcubic2 =
(m2 − 4µ2I cosα) sinα

6f
π1πaπa −

µI sinα

f
[π21∂0π2 + π23∂0π2], (4.19)

Lquartic2 =
1

24f2
πaπa[(m

2 cosα− 4µ2I cos 2α)π
2
1 + (m2 cosα− 4µ2I cos

2 α)π22

+ (m2 cosα+ 4µ2I sin
2 α)π23]−

µI cosα

3f2
πaπa(π1∂0π2 − π2∂0π1)

+
1

6f2
[πaπb∂

µπa∂µπb − πaπa∂µπb∂µπb] . (4.20)

There are several things to notice about L2. The occurrence of ∂0 explicitly breaks
the Lorentz-boost invariance and leaves the frame in which particles are at rest with the
medium as the privileged frame. Spatial rotations and translations are left unaffected
because the considered medium is isotropic and homogeneous[91]. By taking the chemical
potential to zero, we recover full Lorentz invariance, as we should.

We notice that Lcubic2 vanishes in the normal phase, and must therefore also vanish at
the second-order phase transition between the vacuum- and the pion-condensed phase.3
In the limit α = µI = 0 we recover the well-known vacuum result for L2, see for example
Ref.[53] for details.

The inverse propagator in the πa basis can be read directly from Eq.(4.18). The result
is

D−1 =

(
D−1

12 0
0 P 2 −m2

3

)
, (4.21)

D−1
12 =

(
P 2 −m2

1 ip0m12

−ip0m12 P 2 −m2
2

)
, (4.22)

where P = (p0, p) denotes the four-momentum, and we have defined the mass parameters
as

m2
1 = m2 cosα− µ2I cos(2α), (4.23)

m2
2 = m2 cosα− µ2I cos2 α, (4.24)

m2
3 = m2 cosα+ µ2I sin

2 α, (4.25)
m12 = 2µI cosα. (4.26)

The dispersion relations for the mass eigenstates are found from the poles of the propaga-
tor, i.e by solving det

(
D−1

)
= 0 for p20. The results are,

E2
π± = p2 +

1

2

(
m2

1 +m2
2 +m2

12

±
√
4p2m2

12 + (m2
1 +m2

2 +m2
12)

2 − 4m2
1m

2
2

)
, (4.27)

E2
π0 = p2 +m2

3, (4.28)
3This observation is what makes the renormalization of self-energies at the phase transition point

µI = mπ much easier than in the bulk µI > mπ.
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where π0 is identical to π3, and π± are linear combinations of π1 and π2.4 π± are just the
usual charge eigenstates in the normal phase, but turn into complicated functions of π1
and π2 in the pion-condensed phase, as we will see later in chapter 6.5

Using Eqs.(4.21)-(4.22) we may finally write the full propagator in terms of the dis-
persion relations in Eq.(4.27) as,

D =

(
D12 0
0 (P 2 −m2

3)
−1

)
, (4.29)

D12 =
1

(p20 − E2
π+)(p

2
0 − E2

π−)

(
P 2 −m2

1 −ip0m12

ip0m12 P 2 −m2
2

)
. (4.30)

Masses

The tree-level (quasi-particle) masses are obtained by setting p = 0 in Eqs.(4.27)-(4.28),

m2
π± =

1

2

(
m2

1 +m2
2 +m2

12 ±
√
(m2

1 +m2
2 +m2

12)
2 − 4m2

1m
2
2

)
, (4.31)

m2
π0 = m2

3. (4.32)

The variables on the right hand sides of Eqs.(4.31)-(4.32) are evaluated at the leading-
order minimum of the free energy cosα = mπ

µI
. The results are displayed in Fig.4.1 as

functions of the normalized isospin chemical potential, for values 0 ≤ µI ≤ 2.5mπ.
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Figure 4.1: Tree-level masses normalized to the mass of the neutral pion in the vacuum,
as a function of the normalized isospin chemical potential.

We expect one of the charged branches to be the Goldstone boson associated with
the spontaneusly broken I3 generator. Since m2 vanishes in the pion-condensed phase,
Eq.(4.31) simplifies to

m2
π± =

1

2

[
m2

1 +m2
12 ± (m2

1 +m2
12)
]
. (4.33)

This equation verifies that one of the modes becomes massless at µI = mπ, as indicated
by the blue line in Fig.4.1.

4This implies that π0 is electrically neutral, while π+ and π− carry electric charge.
5Some authors use π± to denote the charge eigenstates and π̃± to denote the charged mass eigenstates.

However, since we are mainly concerned with mass eigenstates in this thesis we use the simpler notation
π± to denote the charged mass eigenstates.
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4.2. NEXT-TO-LEADING-ORDER ANALYSIS

Decay constants

The pion-decay constants at finite isospin chemical potential and temperature were first
studied by Loewe and Villavicencio in Ref.[29], where they focused on the normal phase
µI < mπ. However, to the best of our knowledge, there has not been published any
studies of the medium-dependent decay constants in the second phase yet. The pion-
decay constants in the BEC phase are one of the topics that are being addressed in our
ongoing study of χPT at finite isospin density. In this subsection, we present the tree-level
results.

By differentiating the effective Lagrangian with respect to the external field aiµ we
obtain,

Aiµ = −if
2

4
Tr
[
τi{Σ, ∂µΣ†}

]
+
f2

4
Tr
[
τi

(
Σ†vµΣ− ΣvµΣ

†
)]
. (4.34)

Substituting the parametrization in Eq.(4.8) into Eq.(4.34) and subsequently expand the
result to linear order in the pion fields lets us express the axial currents as follows,

A1µ = −f∂µπ1 + fµIδµ0 cosαπ2, (4.35)

A2µ = −f∂µ cosαπ2 − µIfδµ0
(
π1 cos 2α+

f sin 2α

2

)
, (4.36)

A3µ = −f∂µ cosαπ3. (4.37)

In the vacuum limit µI = α = 0 we recover the tree-level result Aiµ = −f∂µπi, as we
should.

It is easily seen from Eq.(4.4) that in the chiral limit m = 0 we obtain a ground state
that is characterized by α = π

2 . In this case {π1, π2, π3} become the mass eigenstates,
which can be verified by substituting α = π

2 into the dispersion relations in Eqs.(4.27)-
(4.28). Substituting Eqs.(4.35)-(4.37) into (3.37) we obtain the following leading-order
results for the chiral decay constants in the pion-condensed phase,

fπ1 = fπ, (4.38)
fπ2 = fπ3 = 0. (4.39)

The result fπ2 = 0 is consistent with π2 being the Goldstone boson, which cannot decay
(because it is massless). The neutral pion does not have any leptonic decays in this limit,6
while the result for π1 is the same as at vanishing chemical potential.

4.2 Next-to-leading-order analysis

We are going to need Lstatic4 , Llinear4 and Lquadratic4 to renormalize the free energy, the one-
point function and the self energies to one loop, respectively. In Appendix B we write the
next-to-leading order Lagrangian in terms of the pion fields, and the result is given below,

Lstatic4 = (l1 + l2)µ
4
I sin

4 α+ l4m
2µ2I cosα sin2 α+ (l3 + l4)m

4 cos2 α, (4.40)

Llinear4 =

[
4 (l1 + l2)

µ4I
f

sin3 α cosα+ l4
m2µ2I
f

(
2 sinα− 3 sin3 α

)
− (l3 + l4)

m4

f
sin 2α

]
π1

+

[
4 (l1 + l2)

µ3I
f

sin3 α+ l4
m2µI
f

sin 2α

]
∂0π2, (4.41)

6The matrix element
〈
0
∣∣A3µ

∣∣π3
〉

only controls weak decays of the neutral pion, and not the anomalous
process π0 → γγ
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Lquadratic4 = (l1 + l2)
2µ4I sin

2 α

f2
[
(1 + 2 cos(2α))π21 + cos2 απ22 − sin2 απ23

]
+ l1

4µ2I sin
2 α

f2
(∂0π2)

2 + l2
2µ2I sin

2 α

f2
(∂0π2)

2 + (l1 + l2)
4µ3I sinα sin(2α)

f2
[π1∂0π2 − π2∂0π1]

+ l1
2µ2I
f2

sin2 α(∂µπa)(∂
µπa) + l2

2µ2I
f2

sin2 α(∂0πa)
2 + l2

2µ2I
f2

sin2 α(∂µπ2)(∂
µπ2)

− (l3 + l4)
m4

f2
[
cos(2α)π21 + cos2 α(π22 + π23)

]
− l4

m2µI
f2

(cos2 α+ cos(2α))(π2∂0π1 − π1∂0π2)

+ l4
m2µ2I cosα

f2
[
(−5 + 9 cos(2α))π21 + (1 + 3 cos(2α))π22 − 6 sin2 απ23

]
+ l4

m2 cosα

f2
(∂µπa)(∂

µπa). (4.42)

Free energy at finite isospin

We have so far seen that the mass parameter m and the isospin chemical potential µI
have formal interpretations as external source fields. We are interested in various physical
quantities as functions of µI and it would be wonderful if there was a functional of the
external fields from which we could obtain the observables of interest. In chapter 2, we
saw that the generating functional W [{f}] is precisely what we are looking for. However,
obtaining W exactly would require us to solve the path integral altogether, which we are
not able to do (analytically at least). What we can do, is to find a perturbative extension
of the generating functional, starting with its functional integral definition.

Since W is the generator of all connected diagrams[49], a perturbative expansion
amounts to calculating loops. We are interested in χPT to next-to-leading order where the
partition function contains three different contributions: the tree-level contribution from
L2, the one-loop contribution from L2, and the tree-level contribution from L4. Therefore,
it is sufficient only to consider L2 as we expand W beyond the mean-field approximation.

In chapter 3, we saw that one-loop integrals in χPT are UV divergent. According
to Weinberg’s theorem, the divergences should be canceled exactly by terms in L4 by
renormalizing the LECs appropriately. Moreover, the values of the counterterms must be
independent of µI and m, and the constants γi must be identical in the two phases[111].

Finally, the generating functional of a scalar field theory is the same as minus one
times Helmholtz free energy Ω. We will use the terminology free energy from now on
when we refer to Ω, and reserve the term ”generating functional” for the QCD generating
functional given in Eq.(2.30). Once we have renormalized Ω, the thermodynamic functions
that measure bulk properties of matter can be obtained, as we will see examples of in Part
III.

Perturbative expansion

The fields πi are excitations around the (rotated) ground state configuration, so their
expectation values 〈πi〉 have to vanish. We can therefore use the following leading-order
mean-field approximation for the free energy,7

e−iΩ =

∫
Dπ exp

{
i

∫
d4xL2[πi = 0]

}
, (4.43)

7We use π to denote all three pions in the path-integral measure.
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which is equivalent to Ω0 = Hstatic. Minimizing the free energy with respect to α yields,

∂Ω0

∂α
= −m2 sinα+ µ2I cosα sinα = 0. (4.44)

Comparing Eqs.(4.17) and (4.44) we see that,

δL2
δπi

∣∣∣
π=0

= 0. (4.45)

We proceed to expand the fields in the path-integral action around π = 0,

e−iΩ =

∫
Dπ exp

{
i

∫
d4x (L2[πi = 0] + L4[πi = 0])

}
×

exp

{
i

∫
d4x

δL2
δπi

πi +
i

2

∫
d4x

δ2L2
δπiδπj

πiπj + ...

}
, (4.46)

All functional derivatives are evaluated at π = 0, and the omitted terms give higher order
corrections. The terms linear in πi vanishes by Eq.(4.45), which leaves us with a Gaussian
approximation of the path-integral. The Gaussian approximation is exactly solvable and
can be written as a functional determinant[49],

e−iΩ ≈
∫
Dπ exp

{
i

∫
d4x(L2[πi = 0] + L4[πi = 0]) +

i

2

∫
d4x

δ2L2
δπjδπi

πiπj

}
= exp

{
i

∫
d4x (L2[πi = 0] + L4[πi = 0])

}(
det

[
− δ2L2
δπiδπj

∣∣∣
π=0

])− 1
2

. (4.47)

Taking the logarithm of the equations above we obtain,

Ω = −
∫
d4x

(
Lstatic2 + Lstatic4

)
− i

2V T
log det

[
−δ

2Lquadratic2

δπiδπj

]
+ ..., (4.48)

where V and T denotes the spatial and temporal volumes that are integrated over in the
action, respectively.

Derivation

We will denote the three contributions to the free energy in Eq.(4.48) by Ω0, Ωstatic
1 and

Ωloop
1 , where,

Ω0 = −f2m2 cosα− 1

2
f2µ2I sin

2 α, (4.49)

Ωstatic
1 = −(l1 + l2)µ

4
I sin

4 α− l4m2µ2I cosα sin2 α− (l3 + l4)m
4 cos2 α, (4.50)

Ωloop
1 = − i

2V T
Tr log

[
−δ

2Lquadratic2

δπiδπj

]
. (4.51)

Here, we used the identity log det(A) = Tr log(A) to obtain Eq.(4.51). The trace is a sum
over discrete quantum numbers and an integral over continuous quantum numbers. In the
case of a scalar theory we do not have any discrete quantum numbers, and all we have to
do is integrate 〈x| − δ2Lquadratic

2
δπiδπj

|x〉 over spacetime[112], which yields,

log det
(
− δ2Lquadratic2

δπiδπj

)
= (V T )

∫
P

[
log
(
−P 2 +m2

3

)
+

log
(
−P 2 + (E2

π+ − p2)
)
+ log

(
−P 2 + (E2

π− − p2)
)]
. (4.52)
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The integral on the right hand side of the equation is over d = 4 − 2ε dimensions. To
obtain Eq.(4.52) we used the following well known relation,

Tr log
(
∂2 +m2

)
=

∫
d4x 〈x| log

(
∂2 +m2

)
|x〉 =

∫
d4x

∫
d4k

(2π)4
〈x| log

(
∂2 +m2

)
|k〉 〈k|x〉

=

∫
d4x

∫
d4k

(2π)4
log
(
−k2 +m2

)
〈x|k〉 〈k|x〉 = V T

∫
d4k

(2π)4
log
(
−k2 +m2

)
, (4.53)

where the second equality follows by inserting a complete set of plane waves.
The integrals in Eq.(4.52) can be written in a better way by first Wick rotating,∫

P
log
[
−P 2 +m2

]
= i

∫
p

∫
p0

log
[
p20 + (p2 +m2)

]
, (4.54)

where the integrals over p and p0 are evaluated in d = 3 − 2ε and d = 1 − 2ε dimensions
respectively, and then use the following trick,∫

p0

log
(
p20 +∆2

)
= − ∂

∂α

∫
p0

1

(p20 +∆2)

∣∣∣
α=0

= − ∂

∂α

[
1

(4π)
d
2

Γ(α− d
2)

Γ(α)

( 1

∆

)α− d
2

]∣∣∣
α=0

= ∆, (4.55)

where ∆ ≡
√
p2 +m2. The relations above lets us rewrite Eq.(4.51) as,

Ωloop
1 =

1

2

∫
p
Eπ0 +

1

2

∫
p
(Eπ+ + Eπ−) ≡ Ω1,π0 +Ω1,π+ +Ω1,π− . (4.56)

The contribution to Ωloop
1 from the neutral pion π0 can be determined analytically in

the MS scheme by using Eq.(E.14),

Ω1,π0 =
1

2

∫
p

√
p2 +m2

3 = −
m4

3

4(4π)2

[
1

ε
+

3

2
+

Λ2

m2

]
. (4.57)

The contribution from the charged pions are harder to obtain because of their complicated
dispersion relations. In order to isolate the ultraviolet divergent parts of Ω1,π+ +Ω1,π− we
expand the dispersion relations in powers of inverse momenta 1

p as,

Eπ+ + Eπ− = 2p+
2(m2

1 +m2
2) +m2

12

4p

− 8(m4
1 +m4

2) + 4(m2
1 +m2

2)m
2
12 +m4

12

64p3
+ ... (4.58)

where the remaining terms generate finite contributions to Ωloop
1 .

The ultraviolet behaviour of Eπ+ +Eπ− is the same as that of E1 +E2, where E1,2 =√
p2 +m2

1,2 +
1
4m

2
12 =

√
p2 + m̃2

1,2, m̃2
1 = m2

3 and m̃2
2 = m2 cosα. This observation lets

us write the contributions from the charged modes as,

Ω1,π+ +Ω1,π− = Ωdiv
1,π+ +Ωdiv

1,π− +Ωfin
1,π+ +Ωfin

1,π− , (4.59)

where

Ωdiv
1,π+ +Ωdiv

1,π− =
1

2

∫
p
(E1 + E2), (4.60)

Ωfin
1,π+ +Ωfin

1,π− =
1

2

∫
p
(Eπ+ + Eπ− − E1 − E2). (4.61)
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The subtraction integral in Eq.(4.61) is finite, and can be computed numerically. The
evaluation of the divergent integral in Eq.(4.60) can be carried out analytically in the MS
scheme, and we use Eq.(E.14) from Appendix E to obtain,

Ωdiv
1,π+ +Ωdiv

1,π− = − m̃4
1

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m̃2
1

]
− m̃4

2

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m̃2
1

]
. (4.62)

Using Eqs.(3.16)-(3.22), we find that the divergent and scale-dependent terms from
Ωstatic
1 are exactly cancelled by the divergent and scale dependent terms from Ωloop

1 in the
sum Ωstatic

1 +Ωloop
1 . Thus, Ωloop

1 +Ωstatic
1 is finite and scale independent.

Putting it all together we find that the renormalized free energy Ω = Ω0+Ωloop
1 +Ωstatic

1

to next-to-leading order reads,

Ω = −m2f2 cosα−
f2µ2I
2

sin2 α−
µ4I sin

4 α

4(4π2)

[
1 +

2

3
l̄1 +

4

3
l̄2 + 2 log

m2

m2
3

]
− m4 cos2 α

4(4π2)

[
3

2
− l̄3 + 4l̄4 + log

m2

m̃2
2

+ log
m2

m2
3

]
−
m2µ2I sin

2 α cosα

2(4π2)

[
1 + 2l̄4 + 2 log

m2

m2
3

]
+Ωfin

1,π+ +Ωfin
1,π− . (4.63)

In the limit α = 0 we recover the free energy in the normal phase µI < mπ,

Ω = −f2m2 − 3m4

4(4π)2

[
1

2
− 1

3
l̄3 +

4

3
l̄4

]
. (4.64)

Notice that the result does not depend on µI all the way up to the phase transition, which
is the Silver-Blaze property[44, 113].8

The defining equation for the ground state parameter α is obtained by minimizing the
vacuum energy, which at zero temperature is equal to Ω,

∂Ω

∂α
= 0. (4.65)

We will refer to this equation as the equation of motion (EoM) for Ω in the remainder of
this thesis.

In Fig.4.2 we display the solution to Eq.(4.65) as a function of the normalized isospin
chemical potential. The red curve shows the leading-order result, while the blue curve
shows the next-to-leading-order result. The difference between the curves is increasing
with higher isospin chemical potential. There is also a noticeable difference between the
curves in a domain very close to the phase transition.

8The name Silver-Blaze originates from an Arthur Conan Doyle story with the same name.
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NLO

LO

1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

μI mπ

α
g
s

Figure 4.2: The figure shows α that minimizes the effective potential as a function of
the normalized isospin chemical potential µI/mπ. The red curve shows the leading-order
result, while the blue dashed curve shows the next-to-leading-order result.
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Chapter 5

The neutral pion

The leading-order results for the quasi-particle masses have been known since the early
days of χPT at finite isospin density[92], which was almost 20 years ago. However, a
complete next-to-leading order calculation of the quasi-particle masses in the second phase
has not yet been carried out. A next-to-leading-order result for one of the two massive
quasi-particles would provide another opportunity to compare χPT beyond the leading
order in the pion-condensed phase with lattice calculations. In this chapter, we discuss
how to calculate the neutral-pion mass mπ0 to next-to-leading order in the pion-condensed
phase.

This chapter is structured as follows; In the first section we present the Feynman
diagrams contributing to the self-energy of the neutral pion. In the second section, we
discuss the technical aspects of the renormalization procedure. We proceed to derive an
approximation of the next-to-leading-order result, where we evaluate the loop integrals
at the leading-order minimum cosα = m2

π

µ2I
. This calculation is formally incorrect since

the loop-integrals should be evaluated at the next-to-leading-order minimum and not the
leading-order minimum. However, we have decided to include the calculation as an illus-
tration of the renormalization procedure. Relevant loop integrals are found in Appendix
E.

5.1 Self energy

The self energy −iΣ33 of the neutral pion π0 receives one-loop contributions from the cubic
and quartic terms in L2 and corrections from the quadratic terms in L4 at next-to-leading
order. The self energy is represented diagrammatically by the Feynman diagrams in Fig.5.1
shown below. Vertex factors must be evaluated at the tree-level minimum cosα = m2

π

µ2I
, in

order to work consistently to next-to-leading order[44].
We introduce the following notation to refer to diagrams in Fig.5.1 in a consistent way;

• The 4-vertex diagram with πi running in the loop is denoted as −iΣπi33(4π). The
diagram with a mixed loop propagator 〈π1π2〉 is denoted as −iΣπ1π233(4π).

• The 3-vertex diagram with πi in one branch and πj in the other branch is denoted
as −iΣπiπj33(3π). Mixed propagators are denoted in the same way as above.

• The sum of the tadpole diagrams is denoted as −iΣT
33.

• The renormalized diagrams are denoted with an additional ”R” in the subscript.
The sum of all of the renormalized diagrams is denoted as −iΣ33R.
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We use the newly defined notation to write the sum of the diagrams in Fig.5.1 as,

− iΣ33(P
2, p0) = −i

[
Σπ133(4π)(P

2, p0) + Σπ233(4π)(P
2, p0) + Σπ333(4π)(P

2, p0) + Σπ1π233(4π)(P
2, p0)

+Σπ1π333(3π)(P
2, p0) + Σ∂0π2π333(3π) (P

2, p0) + Σ
(∂0π2π1)π3
33(3π) (P 2, p0) + Σπ3π333(2π)(P

2, p0) + ΣT
33(P

2, p0)
]
,

(5.1)

where P = (p0, ~p) is the four-momentum of the external pion.

4

4

Figure 5.1: π3 self-energy diagrams at next-to-leading order. The first four diagrams are
one-loop corrections derived from Lquartic2 , the next three diagrams are one-loop corrections
derived from Lcubic2 , and the last diagram in the third line is derived from Lquadratic4 . The
remaining diagrams are referred to as tadpole diagrams, and are derived from Lcubic2 and
Lquadratic4 .

In Appendix C.1 we show that the one-point function Γ1 vanishes at next-to-leading
order, which implies that the tadpole diagrams in Fig.5.1 also vanishes to working order.

At next-to-leading order the inverse propagator D−1
33 in Eq.(4.21) receives a nonzero
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5.1. SELF ENERGY

contribution from the self energy;

D−1
33 = P 2 −m2

3 − Σ33R(P
2, p0). (5.2)

The defining equation for the renormalized neutral pion mass mπ0 follows immediately,

m2
π0 = m2

3 +Σ33R(~p = 0). (5.3)

The renormalized self energy Σ33R(P
2, p0) in Eq.(5.3) is evaluated at the tree-level value

for the neutral mass P 2 = p20 = m2
3.

The expressions for the one-point irreducible (1PI) self-energy diagrams shown in
Fig.5.1 are listed below.

4-vertex diagrams

Σπ133(4π) =

(
2m2

1

3f2
− m2

12

24f2
− p2

3f2

)
(−i)

∫
k

k2 −m2
2

(k20 − E2
π+)(k

2
0 − E2

π−)

− 1

3f2
(−i)

∫
k

k2(k2 −m2
2)

(k20 − E2
π+)(k

2
0 − E2

π−)
(5.4)

Σπ233(4π) =

(
m2

1

3f2
− m2

12

24f2
− p2

3f2

)
(−i)

∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)

− 1

3f2
(−i)

∫
k

k2(k2 −m2
1)

(k20 − E2
π+)(k

2
0 − E2

π−)
(5.5)

Σπ333(4π) =

(
m2

12

8f2
+

2m2
1

f2

)
(−i)

∫
k

1

k2 −m2
3

(5.6)

Σπ1π233(4π) =
2m2

12

3f2
(−i)

∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)
(5.7)

The 3-vertex diagrams

Σπ1π333(3π) = −
m2

1m
2
12

4f2
(−i)

∫
k

k2 −m2
2

(k20 − E2
π+)(k

2
0 − E2

π−)(q2 −m2
3)

(5.8)

Σ∂0π2π333(3π) = −4m2
1

f2
(−i)

∫
k

k20(k
2 −m2

1)

(k20 − E2
π+)(k

2
0 − E2

π−)(q2 −m2
3)

(5.9)

Σ
(∂0π2π1)π3
33(3π) =

2m2
1m

2
12

f2
(−i)

∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)(q2 −m2
3)

(5.10)

Counterterms

Σπ3π333(2π) = (l1 + l2)
4

f2
m4

1 + l4
3

4f2
m2

1m
2
12 + (l3 + l4)

1

8f2
m4

12

− l1
4

f2
m2

1p
2 − l4

1

2f
m2

12p
2 − l2

4

f2
m2

1p
2
0. (5.11)
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5.2 Renormalization
In order to renormalize the neutral pion mass we first have to isolate the divergent and
scale dependent terms in Σ33. This can be achieved by substituting the following series
expansion,

1

(k20 − E2
π+)(k

2
0 − E2

π−)
=

1

(k20 − E2
1)(k

2
0 − E2

2)
+

m2
12k

2
0

(k20 − E2
1)

2(k20 − E2
2)

2

+
m4

12k
4
0

(k20 − E2
1)

3(k20 − E2
2)

3
+ ... (5.12)

into the loop integrals on the right hand sides of Eqs.(5.4)-(5.5) and Eqs.(5.7)-(5.10).
The substitution generates a finite number of divergent integrals in Eqs.(5.4)-(5.5) and
Eqs.(5.7)-(5.10) that are rather straightforward to regularize using Feynman parameters.

We know that the sum of all divergent and scale-dependent terms in Σ33 has to van-
ish, since the one-loop generating functional is finite and scale independent[22]. In the
following, we discuss how to obtain the contribution that each of the diagrams in Fig.5.1
render to the renormalized self energy. We refer to the contribution from one diagram to
Σ33R as ”the renormalized diagram”.

The contribution from Eq.(5.6) to the renormalized self-energy is obtained by carry-
ing out a standard integral in dimensional regularization, and subsequently eliminate the
divergent and scale-dependent terms from the result. The renormalized self-energy contri-
butions associated with Eqs.(5.4)-(5.5) and Eqs.(5.7)-(5.10) can be obtained through the
following procedure: Pick one of the diagrams. Use Eq.(5.12) to expand the loop integral
that occurs in the expression for the diagram. Remove the divergent integrals that occur
in the series expansion of the loop integral from the expression of the diagram. Evalu-
ate the divergent integrals in the MS scheme, and add the finite and scale-independent
terms in the results back to the expression for the diagram to obtain the renormalized
diagram. Finally, sum all the renormalized diagrams to obtain the renormalized self en-
ergy. The result (i.e. the renormalized self energy) is a finite sum of divergent integrals,
which formally evaluate to a finite number, plus an additional finite contribution from the
regularization procedure and the counterterms in Eq.(5.11). The numerical values of the
renormalized self energies are obtained by evaluating the (finite valued) sums of divergent
integrals numerically.

Renormalizing Σ33 using cosα = m2
π

µ2
I

in the loop integrals

A good portion of the time spent on this thesis was devoted to calculating mπ0 to next-
to-leading order, with the incorrect assumption that we could use the tree-level relation
cosα = m2

π

µ2I
in the loop-integrals. The loop-integrals should be evaluated at the next-

to-leading order minimum for the calculation to be consistent.1 We have nevertheless
decided to include parts of the calculation in the following subsections for a couple of
reasons. Firstly, the calculation serves as an illustration of the preceding discussion on
how to renormalize the quasi-particle masses. Secondly, the result provides a non-trivial
check of the future calculation, where we are going to treat α as a free parameter when
we evaluate the loop integrals, as the result of the future calculation should reduce to the
result we obtain here in the limit cosα = m2

π

µ2I
.

In the subsection below, we present the divergent and scale-dependent terms associated
with the 1PI self-energy diagrams. We proceed to present the renormalized diagrams,

1The difference between the leading-order minimum (red line) and the next-to-leading order minimum
(blue line) can be studied in Fig.4.2.
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whose sum Σ33R is the (incorrect) next-to-leading order correction to the neutral medium-
dependent pion mass. Details about the (divergent) integrals that are carried out to obtain
the results below are found in Appendix E.

The divergent and scale dependent terms using cosα = m2
π

µ2
I

in the loop integrals

Σπ1div33(4π) =
1

(4πf)2

[
m2

1

3
− 5m4

12

96
− m2

1m
2
12

24
− p2

3

(
m2

1 +
m2

12

4

)](
1

ε
+ logΛ2

)
(5.13)

Σπ2div33(4π) =
1

(4πf)2

[
−5m4

12

96
− m2

12

12
p2
](

1

ε
+ logΛ2

)
(5.14)

Σπ3div33(4π) =
1

(4πf)2

[
m2

3

(
m2

12

8
+ 2m2

1

)](
1

ε
+ logΛ2

)
(5.15)

Σπ1π2div33(4π) =
1

(4πf)2

[
2m2

12

3

(
m4

1

4
+
m2

12

8

)](
1

ε
+ logΛ2

)
(5.16)

Σπ1π3div33(3π) =
1

(4πf)2

[
−m

2
1m

2
12

4

](
1

ε
+ logΛ2

)
(5.17)

Σ∂0π2π3div33(3π) =
1

(4πf)2

[
−4m2

1

(
m2

3

4
− p2

12
+
p20
3

+
m2

12

8

)](
1

ε
+ logΛ2

)
(5.18)

Σ
(∂0π2π1)π3div
33(3π) =

1

(4πf)2

[
m2

1m
2
12

2

](
1

ε
+ logΛ2

)
(5.19)

Σπ3π3div33(2π) =
1

(4πf)2

[
−2m4

1 (γ1 + γ2)−
3m2

1m
2
12

8
γ4 −

m4
12

16
(γ3 + γ4)

+2m2
1p

2γ1 +
m2

12p
2

4
γ4 + 2m2

1p
2
0γ2

](
1

ε
+ logΛ2

)
(5.20)

It is easy to verify that the sum of Eqs.(5.13)-(5.20) is zero.

Renormalized self energies using cosα = m2
π

µ2
I

in the loop integrals

The following is an overview of the renormalized self energies. They are obtained by
following the procedure that we outlined at the beginning of this section. The scale
dependence in Σπ3π333(2π) cancels the scale-dependence of the remaining self-energy diagrams.
We have, for simplicity, added the logm2 terms, which accompanies the log Λ2 terms in
Σπ3π333(2π), to the remaining renormalized self energies.
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Σπ133(4π)R =

(
m2

1

3f2
− m2

12

8f2

)
(−i)

[∫
k

k2

(k20 − E2
π+)(k

2
0 − E2

π−)
−
∫
k

1

(k2 −m2
1)

−
∫
k

m2
12k

2
0

(k2 −m2
1)

2k2

]
− 1

3f2
(−i)

[∫
k

k4

(k20 − E2
π+)(k

2
0 − E2

π−)

−
∫
k

k2

k2 −m2
1

−
∫
k

m2
12k

2
0

(k2 −m2
1)

2
−
∫
k

m4
12k

4
0

(k2 −m2
1)

3k2

]
− 1

(4πf)2

[
17

576
m4

12 +
1

4
m2

1m
2
12 +

(
7

96
m4

12 +
5

24
m2

1m
2
12

)
log

m2

m2
1

]
(5.21)

Σπ233(4π)R = −m
2
12

8f2
(−i)

[∫
k

(k2 −m2
1)

(k20 − E2
π+)(k

2
0 − E2

π−)
−
∫
k

1

k2
−
∫
k

m2
12k

2
0

(k2 −m2
1)k

4

]
− 1

3f2
(−i)

[∫
k

k2(k2 −m2
1)

(k20 − E2
π+)(k

2
0 − E2

π−)
−
∫
k
1−

∫
k

m2
12k

2
0

(k2 −m2
1)k

2
−
∫
k

m4
12k

4
0

(k2 −m2
1)

2k4

]
− 1

(4πf)2

[
47

576
m4

12 +
1

8
m2

1m
2
12 +

(
7

96
m4

12 +
1

12
m2

1m
2
12

)
log

m2

m2
1

]
(5.22)

Σπ333(4π)R =
1

(4πf)2

(
2m4

1 +
5

8
m2

1m
2
12 +

1

32
m4

12

)(
1 + log

m2

m2
3

)
(5.23)

Σπ1π233(4π)R =
2m2

12

3f2
(−i)

[∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)
−
∫
k

k20
(k2 −m2

1)(k
2)
−
∫
k

m2
12k

4
0

(k2 −m2
1)

2(k2)2

]
+

1

(4πf)2

[
m2

1m
2
12

6

(
3

2
+ log

m2

m2
1

)
+
m4

12

12

(
5

6
+ log

m2

m2
1

)]
(5.24)

Σπ1π333(3π)R = −m
2
1m

2
12

4f2
(−i)

[∫
k

k2

(k20 − E2
π+)(k

2
0 − E2

π−)(q2 −m2
3)
−
∫
k

1

(k2 −m2
1)(q

2 −m2
3)

− i

(4π)2

∫ 1

0
dxΘ(1− x)Θ(x) log

[
m2

1(1− x) +m2
3x

2
]
+ i

logm2

(4π)2

]
(5.25)

Σ∂0π2π333(3π)R = −4m2
1

f2
(−i)

[∫
k

k20(k
2 −m2

1)

(k20 − E2
π+)(k

2
0 − E2

π−)(q2 −m2
3)
−
∫
k

k20
k2(q2 −m2

3)

−
∫
k

m2
12k

4
0

k4(k2 −m2
1)(q

2 −m2
3)
− im2

12

2(4π)2

∫ 1

0
dx

∫ 1−x

0
dyΘ[1− x− y, x+ y]

(
3y

2
log∆

+
6yx2

∆
p20 −

2yx4

∆2
p40

)]
− 1

(4πf)2

[(
2m4

1

3
+
m2

1m
2
12

6

)(
5

3
+ log

m2

m2
3

)
+

4m2
1p

2
0

3

(
2

3
+ log

m2

m2
3

)
+
m2

1m
2
12

2
logm2

]
, where ∆ ≡ m2

3x
2 +m2

1y. (5.26)

Σ
(∂0π2π1)π3
33(3π)R =

2m2
1m

2
12

f2
(−i)

∫
k

[
k20

(k20 − E2
π+)(k

2
0 − E2

π−)(q2 −m2
3)
−
∫
k

k20
k2(k2 −m2

1)(q
2 −m2

3)

]
+

2m2
1m

2
12

(4π)2f2

[
logm2

4
− 1

2

∫ 1

0
dy

∫ 1−y

0
Θ[1− x− y, x+ y] log

(
m2

1x+m2
3y

2
)
dx

− p20
m2

1

∫ 1

0
x2 log

(
m2

1 −m2
1x+m2

3x
2

m2
3x

2

)
dx

]
(5.27)
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Σπ3π333(2π)R =
1

(4πf)2

[
m4

12

32
(1− l̄3) +

m2
1m

2
12

2

(
l̄4
2
− l̄1

3
− 1

6

)
+

4m4
1

3
(l̄2 − 1)− 4m2

1p
2
0

3
(l̄2 − 1)

]
(5.28)

ΣT
33R = 0, (5.29)

The integrals that occur in the equations above have been Wick rotated to Euclidean
space and evaluated numerically with adaptive quadratures. All of the renormalized self
energies converge steadily for increasingly larger integration boundaries.

In Fig.5.2, we display the result for mπ0 that we have obtained by using cosα = m2
π

µ2I
in the loop integrals. The blue dashed curve shows the next-to-leading-order result, while
the red curve shows the tree-level result. We observe that the difference between the
two curves is tiny. Finally, we emphasize that this plot does not represent the true χPT
result to next-to-leading order, and should not be used to compare χPT with lattice data
or effective-model results. However, it should provide a fair indication of the order of
magnitude of the next-to-leading-order correction to the neutral pion mass.
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Figure 5.2: The normalized neutral pion mass in the pion-condensed phase as a function
of the normalized isospin chemical potential. The red curve shows the leading-order result
and the blue dashed curve shows the next-to-leading-order result when the loop integrals
are evaluated at cosα = m2

π

µ2I
(which is inconsistent to next-to-leading order).
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Chapter 6

The charged quasi-particles

In this chapter, we will focus on the two electrically charged quasi-particle modes π±. It
is considerably more challenging to obtain the isospin-dependent masses of the charged
quasi-particles compared to the neutral pion, due to the mixing of the charge eigenstates
in the pion-condensed phase. In the first section, we start by taking a closer look at the
nature of this mixing. We proceed to show that the π+-mode remains massless to next-
to-leading order in the low-energy expansion and end the chapter with an outlook of how
to proceed with the renormalization of the remaining charged mode. Feynman diagrams,
algebraic expressions, and calculations that are relevant to our discussion are found in
Appendices C and D.

The inverse propagator in Eq.(4.22) is Hermitian, so there has to exist a unitary matrix
U such that U †D−1

12 U is diagonal.1 We find that it is useful to define a matrix A as,

A =

 i

(
−m2

1+m
2
2+

√
(m2

1−m2
2)

2+4m2
12k

2
0

)
2p0m12

1

−i 2p0m12

m2
1−m2

2+
√

(m2
1−m2

2)
2+4m2

12p
2
0

 , (6.1)

to help us write the matrix U as,

U =
A

|detA|
. (6.2)

The matrix U relates the mass-eigenstates to π1 and π2 as follows,(
π−

π+

)
= U

(
π2
π1

)
(6.3)

In the normal phase α = 0 we have m2
1 = m2

2, and the relation in Eq.(6.3) reduces to(
π−

π+

)
=

(
i√
2

1√
2

− i√
2

1√
2

)(
π2
π1

)
. (6.4)

Thus, we recover that the charged eigenstates are mass eigenstates in the normal phase,
as we should.

In the chiral limit α→ π
2 we see that the matrix element A22 vanishes, and by applying

L’Hôpital’s rule to A11 we obtain,(
π−

π+

)
=

(
0 1
−i 0

)(
π2
π1

)
, (6.5)

1More precisely, the vectors in U† are orthonormal eigenvectors of D−1
12 .
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The result in Eq.(6.5) is consistent with the discussion in chapter 4.1, where we argued
that {π1, π2, π3} becomes the mass eigenstate basis in the chiral limit.

Multiplying the matrix in Eq.(6.1) with the matrix in Eq.(6.4) gives the relationship
between the charge eigenstates and the mass eigenstates. As α 6= 0, we see that m2

1 6= m2
2,

which makes the mixing of charge eigenstates in the pion-condensed phase manifest. It is
interesting to see that the mixing angles are energy-dependent, which is a consequence of
the broken generators of Lorentz boosts.

The mixing of isospin eigenstates makes it quite challenging to obtain the self energies
of the charged quasi-particle modes in the pion-condensed phase. One possible approach
to determine the renormalized masses is to use the relation in Eq.(6.3) to rewrite the
Lagrangian in the mass-eigenstate basis, which makes the remaining calculation similar
to that of the neutral pion. Such a transformation will, however, make the interaction
terms much more complicated and most likely increase the number of diagrams that we
need to evaluate. A second approach is to calculate the self-energies Σ11, Σ22, and Σ12,
and determine the zeros of the inverse propagator in the {πi} basis. We will employ the
second approach in the following.

The inverse propagator to next-to-leading order reads,

D−1
12 =

(
P 2 −m2

1 − Σ11(P
2, p0) ip0m12 +Σ12(P

2, p0)
−ip0m12 +Σ21(P

2, p0) P 2 −m2
2 − Σ22(P

2, p0)

)
. (6.6)

Since the theory is invariant under time-reversal we expect one off-diagonal entry to be
the time reversed of the other off-diagonal entry in the matrix above. In other words, if
T is the time-reversal operator, then the following must be true,2

T
(
ip0m12 +Σ12

)
= −ip0m12 + T (Σ12) = −ip0m12 +Σ21

=⇒ Re(Σ12) = Re(Σ21), Im(Σ12) = −Im(Σ12). (6.7)

Since Σ12 is purely imaginary we may write the inverse propagator as,

D−1
12 =

(
P 2 −m2

1 − Σ11(P
2, p0) ip0m12 +Σ12(P

2, p0)
−ip0m12 − Σ12(P

2, p0) P 2 −m2
2 − Σ22(P

2, p0)

)
, (6.8)

which is a Hermitian 2× 2 matrix.
The charged quasi-particle masses are obtained by solving

detD−1
12 = 0, (6.9)

at vanishing spatial momentum, with the self energies evaluated at the tree-level masses
given in Eq.(4.33). The presence of Σ12(P

2, p0) makes the next-to-leading-order expres-
sions for the quasi-particle masses much more complicated than the tree-level results in
Eq.(4.31). However, the complicated solution to Eq.(6.9) simplifies considerably for the
π+ mode, as we will see in the following section.

6.1 Goldstone boson

In chapter 4, we derived the tree-level result m+
π = 0 for µI ≥ mπ. This result should hold

to all orders in the low-energy expansion to be consistent with Goldstone’s theorem. In
this section, we go beyond the leading order and show that the π+-mode remains massless
at next-to-leading order in the low-energy expansion.

2T acts on a complex number by complex conjugation, i.e if c ∈ C, then Tc = c∗. Since the operation
of complex conjugation is nonlinear T is referred to as an antilinear operator.
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We have explicitly checked that all diagrams that may contribute to the off-diagonal
entry Σ12 in the self-energy matrix vanishes at P 2 = p0 = 0. This property holds to
all orders in the momentum expansion, due to time-reversal symmetry. Vanishing off-
diagonal entries in the self-energy matrix puts Eq.(6.8) on the same form as Eq.(4.22),
which implies that we can write m2

π+ as follows,

m2
π+ =

1

2

(
m2

1 +Σ11(0) +m2
2 +Σ22(0) +m2

12

−
√[

m2
1 +Σ11(0) +m2

2 +Σ22(0) +m2
12

]2 − 4
[
m2

1 +Σ11(0)
] [
m2

2 +Σ22(0)
])
. (6.10)

We introduce the short-hand notation Σij(0, 0) ≡ Σij(0) in Eq.(6.10), and we will continue
to use this notation in the remainder of this thesis.

It is easily seen from Eq.(6.10) that m2
2 + Σ22(0) = 0 is a sufficient condition for the

mode to be massless. We show that this condition is satisfied in the BEC-phase µI ≥ mπ

in the following. The reader is referred to Appendices C.1 and C.2 for technical details.
Comparing Eq.(4.24) with Eq.(4.44) we see that,

m2
2 =

1

f2

(cosα
sinα

) ∂Ω0

∂α
. (6.11)

In Appendix C.2 we show by explicit calculation that,

Σ22(0) =
1

f2

(cosα
sinα

) ∂Ω1

∂α
+ ..., (6.12)

where Ω1 ≡ Ωloop
1 +Ωstatic

1 . The terms we have omitted in Eq.(6.12) can be written on the
following form,

C

f2
(µ2I cosα−m2)X, (6.13)

where µ2I cosα −m2 arise from vertex factors, X is a one-loop integral, and C is a non-
vanishing function of m, µI and α. This observation lets us write the sum of Eqs.(6.11)
and (6.12) as,

m2
2 +Σ22(0) =

1

f2

(cosα
sinα

) ∂Ω
∂α

+
C

f2
(µ2I cosα−m2)X. (6.14)

The first term on the right-hand-side of the equation above is always zero, due to the
condition in Eq.(4.65). The second term can clearly be written on the same form as
Eq.(C.13), which we argued only have non-vanishing NNLO contributions in the BEC
phase.3 Thus, to working order we obtain,

m2
2 +Σ22(0) = 0, µI ≥ mπ. (6.15)

The condition in Eq.(6.15) implies that Eq.(6.10) vanishes in the pion-condensed phase,
so the theory continues to respect Goldstone’s theorem at next-to-leading order in the
momentum expansion.

6.2 Outlook
The remaining quasi-particle is, without doubt, the toughest one of the three to handle
in the pion-condensed phase. The expression for m2

π− is expected to take a much more
3See Appendix C.1 for details.
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complicated form than Eq.(6.10), since we have no reason to believe that Σ12(m
2
1 +m2

12)
is zero. Therefore, it is not reasonable to believe that any of the self energies evaluated at
P 2 = p20 = m2

1+m
2
12 should be finite valued. Our only requirement is that the complicated

expression for mπ− becomes finite when the self energies are evaluated at the tree-level
mass. This condition provides a non-trivial check of our calculations. We have postponed
the renormalization of mπ− to next-to-leading order, due to the complexity of the task.
However, we will make some remarks on the remaining parts of this work.

In the previous section, we verified that Σ22(0) is finite, which indicates that our result
for the momentum-independent divergent terms is correct. Similarly, obtaining a finite
expression for Σ11(0) would strongly indicate that the momentum-independent divergent
part of Σ11 is likely to be correct. The remaining divergent contributions originate from
Σ12, and momentum-dependent terms in Σ11 and Σ22. These contributions can be checked
by the requirement that mπ− has to be finite valued when the self-energy diagrams are
evaluated at the tree-level mass. These observations provide a couple of consistency checks
that can become very useful as part of a troubleshooting procedure in future calculations.

Once the divergent terms have been taken care of, the rest of the calculation (i.e.
obtaining a numerical result) follows the procedure outlined at the beginning of section
5.2.
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Quark and pion condensates at
finite isospin and temperature





Chapter 7

Quark and pion condensates at
zero temperature

In this part of the thesis, which consists of chapters 7 and 8, we use two-flavor χPT
to next-to-leading order to calculate the chiral and pion condensates. In chapter 7, we
consider the zero-temperature limit and calculate the free energy, the chiral condensate,
and the pion condensate at finite (pseudoscalar) pionic source. We compare our results
for the chiral and pion condensates with recent (2 + 1)-flavor lattice QCD calculations
performed by Brandt, Endrodi, and Schmalzbauer in Ref.[27], and find that they are in
very good agreement. We also consider the condensates in the absence of a pionic source,
where there are no available lattice data to compare with. This limit is currently quite
challenging to perform on the lattice, and our results can be used to gauge the quality of
future LQCD calculations at vanishing pionic source.

In Ref.[27], Brandt et al. also generate the chiral and pion condensates at finite
temperature. Furthermore, they investigate the phase boundary between the normal
and pion-condensed phases, as well as the chiral crossover transition. Although low-
temperature[111] and low-density[114] approximations of the phase boundary between the
normal phase and the BEC phase have previously been obtained within the χPT frame-
work, there are no complete1 results within χPT at finite temperature to compare Brandt
et al.’s results with. In chapter 8, we fill this gap in the QCD literature by extending the
analysis in chapter 7 to finite temperature.

7.1 Preliminaries

We start this chapter by discussing how the chiral and pion condensates are generated
within full QCD and χPT, before we proceed to introduce the effective pionic-source-
dependent Lagrangian.

The pionic source

The formation of a pion-condensate is signaled by a nonzero expectation value of one of
the following operators,

q̄iγ5τiq ∼ (ūγ5d− d̄γ5u) ∼ π− − π+, i = 1, 2. (7.1)

We will, without loss of generality, use i = 1 in the following. The expectation value of
the operator in Eq.(7.1) at finite µI in the microscopic theory is obtained by varying the

1By complete results we mean results that are obtained without utilizing any additional assumptions
or approximations in the calculations.
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generating functional in Eq.(2.30) with respect to the external (source) field p1, and set
all external fields (except from s0 and vµ3 ) to zero.2 For this reason, p1 is usually referred
to as the pionic source and commonly denoted as j ≡ p1[47, 48, 111].

The expectation value of the pion operator π+ in the effective theory is generated by
differentiating the effective free energy with respect to the pionic source. We follow the
convention3 in Ref.[47], and write

〈π+〉 = 1

2

∂Ω

∂j
. (7.2)

The way j enters the effective theory is dictated by the symmetries of the chiral La-
grangian. In section 2.3 we showed how the field χ enters the effective Lagrangian at lead-
ing order in Eq.(2.69), and next-to-leading order in Eq.(2.82), by only invoking symmetry
arguments. The pseudoscalar pionic sourcefield p1 is encoded into the definition of the field
χ, as shown in Eq.(2.61). Thus, we obtain the j-dependent chiral Lagrangian to next-to-
leading order in the low-energy expansion by substituting χ = 2B0 [diag(mu,md) + iτ1j]
into Eqs.(2.69) and (2.82).

Our primary motivation for calculating the pion condensate is to study the phase
diagram to next-to-leading order in χPT, and to compare results with recent lattice sim-
ulations. In order to obtain the phase diagram at vanishing external fields and sources,
we need to take the limit j → 0 at the end of our calculations. It has been shown that
evaluating this limit does not lead to any problems within the effective theory[47].

The situation on the lattice is more complicated for several reasons. The LQCD
simulations are performed over a finite volume, where there can be no SSB.4 However,
the presence of jq̄iγ5τ1,2q in the (Euclidean) QCD Lagrangian explicitly breaks the U(1)I3
symmetry. Such a term is necessary for the SSB to happen on the lattice, and makes the
would-be-massless mode a massive pseudo-Goldstone boson. The physical limit j → 0 can
be obtained subsequently by extrapolation[27].

A nonzero pionic source is needed to stabilize the lattice algorithms, and the physical
limit j → 0 remains technically challenging to perform, see Ref.[27] for details. Conse-
quently, there is a lack of LQCD data for the most interesting case j = 0. Comparing χPT
results with LQCD data at finite j should nevertheless provide a good indication of the
level of agreement that we can expect between the effective theory and the microscopic
theory in the physically interesting limit j = 0.

Generating 〈q̄q〉

The quark condensate 〈q̄q〉 = 〈ūu〉+ 〈d̄d〉 in the microscopic theory is obtained by varying
the generating functional in Eq.(2.30) with respect to s0 = diag(mu,md),

〈q̄q〉 = −δW
δs0

. (7.3)

The quark condensate in the effective theory is obtained by differentiating the effective
free energy with respect to the quark masses. In the isospin limit mu = md ≡ mq, the up
and down quark condensates become equal 〈ūu〉 = 〈d̄d〉 = 1

2〈q̄q〉. Following Ref.[47], we
define 〈ψ̄ψ〉 to be equal to 1

2〈q̄q〉,

〈ψ̄ψ〉 ≡ 1

2

∂Ω

∂mq
. (7.4)

2Remember that the external fields s0 and vµ3 corresponds to the quark mass and the isospin chemical
potential, respectively.

3The convention we are referring to is the additional factor of 1
2
.

4At finite volume, the transition amplitude from one ground state to another does not necessarily vanish.
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7.2 Lagrangian
We derive the relevant terms in the χPT Lagrangian at finite isospin chemical potential
and finite (pseudoscalar) pionic source in terms of the pion fields in Appendices B.3 and
B.4. In the notation of Ref.[47], the result reads,

Lstatic2 = 2f2B0mj +
1

2
f2µ2I sin

2 α, (7.5)

Llinear2 = f
(
−2B0mj + µ2I sinα cosα

)
π1 + fµI sinα∂0π2, (7.6)

Lquadratic2 =
1

2
∂µπa∂

µπa +
1

2
m2
aπ

2
a + µI cosα (π1∂0π2 − π2∂0π1) , (7.7)

Lstatic4 = (l1 + l2)µ
4
I sin

4 α+ 2l4B0mjµ
2
I sin

2 α+ 4(l3 + l4)B
2
0m

2
j + 8h1B

2
0(m

2
j +m2

j ),

(7.8)

where the source-dependent masses are,

mj = mq cosα+ j sinα, (7.9)
mj = mq sinα− j cosα, (7.10)
m2

1 = 2B0mj − µ2I cos 2α, (7.11)
m2

2 = 2B0mj − µ2I cos2 α, (7.12)
m2

3 = 2B0mj + µ2I sin
2 α. (7.13)

The definition of m12 in Eq.(4.26) is unaltered by finite j. The inverse propagator and
dispersion relations at finite j are obtained by substituting Eqs.(7.11)-(7.13) into Eq.(4.21)
and (4.27)-(4.28), respectively.

7.3 Tree-level analysis
The leading-order contribution to the free energy Ω0 is given by −Lstatic2 ,

Ω0 = −2f2B0mj −
1

2
f2µ2I sin

2 α. (7.14)

Minimizing the free energy with respect to α yields,

∂Ω0

∂α
= 2B0mj − µ2I sinα cosα = 0. (7.15)

Comparing Eq.(7.6) with Eq.(7.15) we see that the linear Lagrangian vanishes at the
leading-order minimum of the free energy.

We use the free energy in Eq.(7.14) and the definitions in Eqs.(7.2) and (7.4) to obtain
the following tree-level results for the condensates[92],

〈ψ̄ψ〉treeµI ,0
= −f2B0 cosα = 〈ψ̄ψ〉tree0,0 cosα, (7.16)

〈π+〉treeµI ,0
= −f2B0 sinα = 〈ψ̄ψ〉tree0,0 sinα. (7.17)

Here 〈O〉µI ,T denotes the expectation value of the operator O at isospin chemical potential
µI and temperature T . The equations above suggest that α can be interpreted as an angle
that rotates the chiral condensate into a pion condensate. In particular,

〈ψ̄ψ〉2µI ,0 + 〈π
+〉2µI ,0 = 〈ψ̄ψ〉

2
0,0. (7.18)

This interpretation of α does not seem to be very fundamental as it is lost at next-to-
leading order in the effective theory[47], and it is not observed either on the lattice[27] or
in model-dependent calculations within the Nambu-Jona-Lasinio (NJL) model[115].
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To analyze the condensates beyond leading order, we first have to renormalize the free
energy in the presence of the pionic source j. In the following section, we renormalize
Ω to next-to-leading order, which is a straightforward generalization of the calculation in
section 4.2 that includes the effects of finite j.

7.4 Next-to-leading-order analysis
In this section, we calculate the free energy, the quark condensate, and the pion condensate
at finite (pseudoscalar) pionic source. We then proceed to introduce and discuss the
observables that we will plot in section 7.5.

Free energy at nonzero j

The static contribution Ωstatic
1 to the free energy at next-to-leading order is given by

−Lstatic4 ;

Ωstatic
1 = −(l1 + l2)µ

4
I sin

4 α− 2l4B0mjµ
2
I sin

2 α− 4(l3 + l4)B
2
0m

2
j − 8h1B

2
0(j

2 +m2
q).

(7.19)

The one-loop contribution from L2 to the free energy is given by the formula in
Eq.(4.51). Comparing Eq.(4.18) with Eq.(7.7) we see that the form of the quadratic
Lagrangian at leading order Lquadratic2 is the same for vanishing and finite pionic source.
To be specific, both Eq.(4.18) and Eq.(7.7) can be written as,

Lquadratic2 =
1

2
∂µπa∂

µπa +
1

2
m2
aπ

2
a + µI cosα (π1∂0π2 − π2∂0π1) , (7.20)

where the parameters ma are given by Eqs.(4.23)-(4.25) and Eqs.(7.11)-(7.13) for the two
cases, respectively. For this reason, the one-loop calculation of the free energy at finite j
can be performed by following the one-loop calculation in chapter 4.3 step by step.

The renormalized free energy at finite pionic source can be expressed on the following
form,

Ωloop
1 = Ω1,π0 +Ωdiv

1,π+ +Ωdiv
1,π− +Ωfin

1,π+ +Ωfin
1,π− , (7.21)

where the terms on the right-hand side of Eq.(7.21) can be written as,

Ω1,π0 +Ωdiv
1,π+ +Ωdiv

1,π− = − m̃4
1

2(4π)2

[
1

ε
+

3

2
+ log

Λ2

m̃2
1

]
− m̃4

2

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m̃2
2

]
,

(7.22)

Ωfin
1,π+ +Ωfin

1,π− =
1

2

∫
p
(Eπ+ + Eπ− − E1 − E2), (7.23)

where,

Ei =
√
p2 + m̃2

i , m̃2
1 = m2

3, m̃2
2 = 2B0mj . (7.24)

Using Eq.(3.16)-(3.23) we find that the sum Ωloop
1 +Ωstatic

1 is finite and scale independent,
and obtain the following expression for the renormalized free energy at next-to-leading
order in the effective theory[47],

Ωeff = −2f2B0mj −
1

2
f2µ2I sin

2 α− 1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

2B0mq

m̃2
2

+ 2 log
2B0mq

m2
3

]
B2

0m
2
j

− 1

(4π)2

[
1 + 2l̄4 + 2 log

2B0mq

m2
3

]
B0mjµ

2
I sin

2 α− 1

2(4π)2

[
1

2
+

1

3
l̄3 +

2

3
l̄2 + log

2B0mq

m2
3

]
− 8h1B

2
0(j

2 +m2
q) + Ωfin

1,π+ +Ωfin
1,π− . (7.25)
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In the limit of vanishing pionic source j = 0, Eq.(7.25) reduces to the result in Eq.(4.63),
plus the constant term proportional to h1 that we ignored in chapter 4. The h1-term in
Eq.(7.25) is independent of α and does not affect the ground state configuration Σα.

Having obtained the renormalized free energy in the presence of the external (pseu-
doscalar) pionic source j, we proceed to generate algebraic expressions for the pion and
quark condensates to next-to-leading order. We will employ the following definition,

h̄1 ≡ 2(4π)2h1, (7.26)

to express our results in a way that is suitable for comparison with previously obtained
results at µI = 0.

Pion condensate

The pion condensate to next-to-leading order in the low-energy expansion at finite (pseu-
doscalar) pionic source j and finite isospin chemical potential µI is obtained by differen-
tiating 1

2Ω with respect to j. The result reads,

〈π+〉µI ,0 = −f
2B0 sinα

{
1 +

1

(4π)2

[(
−l̄3 + 4l̄4 + log

2B0mq

m̃2
2

+ 2 log
2B0mq

m2
3

)
B0mj

f2

+

(
l̄4 + log

2B0mq

m2
3

)
µ2I sin

2 α

f2

]}
− 4

(4π)2
h̄1B

2
0j +

1

2

(
∂Ωfin

1,π+

∂j
+
∂Ωfin

1,π−

∂j

)
, (7.27)

where the last term on the right-hand side of Eq.(7.27) is given by,

∂Ωfin
1,π+

∂j
+
∂Ωfin

1,π−

∂j
=
B0 sinα

2

{∫
k

1

Eπ+

[
1 +

m2
12√

4k2m2
12 + (m2

1 +m2
2 +m2

12)
2 − 4m2

1m
2
2

]

+

∫
k

1

Eπ−

[
1− m2

12√
4k2m2

12 + (m2
1 +m2

2 +m2
12)

2 − 4m2
1m

2
2

]
−
∫
k

1√
p2 + m̃2

1

−
∫
k

1√
p2 + m̃2

2

}
. (7.28)

We observe from Eq.(7.27) and Eq.(7.28) that the pion condensate at vanishing tem-
perature 〈π+〉µI ,0 is proportional to sinα. Consequently, the right-hand side of Eq.(7.27)
reduces to zero in the sourceless normal phase α = j = 0, as it should.

Quark condensate

The quark condensate to next-to-leading order in the low-energy expansion at finite (pseu-
doscalar) pionic source j and finite isospin chemical potential µI is obtained by differen-
tiating 1

2Ω with respect to the continuum quark mass mq. The result reads,

〈ψ̄ψ〉µI ,0 = −f
2B0 cosα

{
1 +

1

(4π)2

[(
−l̄3 + 4l̄4 + log

2B0mq

m̃2
2

+ 2 log
2B0mq

m2
3

)
B0mj

f2

+

(
l̄4 + log

2B0mq

m2
3

)
µ2I sin

2 α

f2

]}
− 4

(4π)2
h̄1B

2
0mq +

1

2

(
∂Ωfin

1,π+

∂m
+
∂Ωfin

1,π−

∂m

)
, (7.29)
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where the last term on the right-hand side of Eq.(7.29) is given by,

∂Ωfin
1,π+

∂m
+
∂Ωfin

1,π−

∂m
=
B0 cosα

2

{∫
k

1

Eπ+

[
1 +

m2
12√

4k2m2
12 + (m2

1 +m2
2 +m2

12)
2 − 4m2

1m
2
2

]

+

∫
k

1

Eπ−

[
1− m2

12√
4k2m2

12 + (m2
1 +m2

2 +m2
12)

2 − 4m2
1m

2
2

]
−
∫
k

1√
p2 + m̃2

1

−
∫
k

1√
p2 + m̃2

2

}
. (7.30)

In the limit of vanishing pionic source and isospin chemical potential j = µI = 0,
Eq.(7.30) vanishes and Eq.(7.29) reduces to,

〈ψ̄ψ〉vacuum0,0 = −f2B0

[
1 +

B0mq

(4π)2
(
4l̄4 + 4h̄1 − l̄3

)]
= −f2B0

[
1 +

m2

2(4π)2
(
4l̄4 + 4h̄1 − l̄3

)]
.

(7.31)

We can compare our result in Eq.(7.31) with expressions obtained by Gasser and Leutwyler
in Ref.[22];

〈
ūu+ d̄d

〉GL

0,0
= −2f2B0

[
1 +

m2
π

2(4π)2
(
4h̄GL

1 − l̄3
)
+O(m4

π)

]
, (7.32)

which reduces to the following expression in the isospin limit,

〈
ψ̄ψ
〉GL

0,0
= −f2B0

[
1 +

m2
π

2(4π)2
(
4h̄GL

1 − l̄3
)
+O(m4

π)

]
. (7.33)

The subscript GL is there to remind us that Gasser and Leutwyler use a different set of
tensors and coupling constants in their Lagrangian. The coupling that they denote by h1
is running and has δGL

1 = 2, as shown in Eq.(3.19) in section 3.2. The coupling constant
that we denote by h1 can be expressed in terms of Gasser and Leutwylers couplings
as h1 = 1

2(h
GL
1 − l4). It follows from Eqs.(3.18)-(3.19) that δ1 = 1 − 1 = 0, which is

consistent with our calculation of the renormalized (scale-independent) free energy. Using
the definition in Eq.(7.26) we obtain the following relation,

h̄1 = h̄GL
1 − l̄4, (7.34)

which is a convenient relation for later purposes.
We notice that the presence of h1 in Eq.(7.27) and Eq.(7.29) spoils the tree-level

relation 〈π+〉µI ,0 cosα = 〈ψ̄ψ〉µI ,0 sinα. If we consider the physical limit j = 0, then the
tree-level relation is modified into

〈ψ̄ψ〉µI ,0 =
cosα

sinα
〈π+〉µI ,0 − 16h1B

2
0mq, (7.35)

at next-to-leading order.

Definitions and choice of parameters

The low-energy constant h̄GL
1 enters the full two-flavor χPT Lagrangian of Gasser and

Leutwyler[22] as a counterterm needed to renormalize the generating functional to one
loop. It does not multiply any of the terms that contain pion fields, so it is not directly
measurable and in that sense unphysical. As h̄GL

1 enters the (j-dependent) expectation
value of the pion and quark condensates at next-to-leading order, the results in Eqs.(7.27)
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and (7.29) depend on a quantity that is needed for technical reasons, but undeterminable
from χPT alone[116].

We notice that the h1 term in Eq.(7.29) is independent of both µI and j. Thus,
we may eliminate the constant from the quark sector by considering quark-condensate
deviations, rather than

〈
ψ̄ψ
〉
µI ,0

. As an example, we could choose the deviation of the
quark condensate

〈
ψ̄ψ
〉
µI ,0

relative to its vacuum-value
〈
ψ̄ψ
〉j=0

0,0
. This quantity would

measure the effects of finite j and finite µI , and be independent of the unphysical constant
h̄GL
1 .

The situation for the pion condensate is a little more intricate, due to the j dependence
of the h1 term in Eq.(7.27). Thus, we cannot subtract away the h1 dependence by consid-
ering pion-condensate deviations relative to the expectation value of π+ in the vacuum.
A possible resolution is to consider pion-condensate deviations relative to the source de-
pendent vacuum 〈π+〉j0,0, instead of 〈π+〉j=0

0,0 . Such an observable would be independent of
the unphysical constant h̄GL

1 , but it would also come with a setback, as it cannot measure
the effects of finite j. Another possible resolution is to just estimate a numerical value
for h̄GL

1 . Estimations of h̄GL
1 have previously been performed by utilizing effective models

[22], large Nc arguments [90] and constructing effective Lagrangians that include higher
resonance fields [117]. In Ref.[90] Gerber and Leutwyler consider the effect of ρ-meson
exchange to obtain h̄GL

1 = l̄3, which we will utilize as an indication of the magnitude of
h̄1 in the next section. It should be mentioned that it is problematic to assume saturation
of the unphysical constant h̄GL

1 by meson resonances. This is discussed nicely by Jamin
within the framework of three-flavor χPT in Ref.[116]. Due to the challenges associated
with determining the unphysical low-energy constant h̄GL

1 , we propose that in future com-
parisons of χPT with LQCD at finite density one could determine h̄GL

1 by fitting χPT to
LQCD data in the vacuum µi = 0.

On the lattice, the expectation value of the quark condensate 〈q̄q〉 is obtained by
differentiating the logarithm of the path-integral representation of the QCD partition
function Z with respect to the continuum quark mass mq. The partition function contains
ultraviolet divergences (in the lattice spacing) which is inherited by the quark condensate.5
The lattice-spacing divergences in the quark condensate can be eliminated by considering
quark condensate deviations relative to the value of the condensate at fixed values for µI
and j. The renormalized quantities that the authors in Ref.[27] consider in their LQCD
calculations, and that the authors in Ref.[47] adapt in their χPT analysis are,6

Σψ̄ψ = − 2mq

m2
πf

2
π

[〈
ψ̄ψ
〉
µI ,0
−
〈
ψ̄ψ
〉j=0

0,0

]
+ 1, (7.36)

Σπ = − 2mq

m2
πf

2
π

〈
π+
〉
µI ,0

. (7.37)

The normalization factors are set to 2mq

m2
πf

2
π

, to cancel multiplicative divergences on the
lattice. Since our main interest is to compare χPT beyond leading order in the pion-
condensed phase with LQCD calculations, we adapt the LQCD observables in Eqs.(7.36)
and (7.37) to study the quark and pion condensates in the following.

The definition in Eq.(7.36) is independent of h̄GL
1 and is therefore a perfectly fine

quantity from the χPT perspective. It ensures that Σψ̄ψ is equal to one in the source-
less vacuum, while the definition in Eq.(7.37) ensures that Σπ vanishes in the sourceless

5The condensates also have non-trivial renormalization constants, which are taken care of by mq in
Eqs.(7.36)-(7.36), see Ref.[27] and references therein for a more complete discussion of renormalization on
the lattice.

6Eqs.(7.36)-(7.37) carry an extra factor of 2 compared to Ref.[27], which is exactly compensated by the
difference of a factor of 1

2
each in our definitions of the quark and pion condensates. Our convention is

identical to that of Ref.[47].
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vacuum. Furthermore, Σψ̄ψ and Σπ satisfy the following tree-level relation,

Σ2
ψ̄ψ +Σ2

π = 1, (7.38)

for all values of j. The relation in Eq.(7.38) follows from Eq.(7.18) and is no longer satisfied
at next-to-leading order, as we will see in the plots presented in section 7.5.

There is a clear drawback with the definition of Σπ in Eq.(7.37), namely that it is
dependent on the unphysical low-energy constant h̄GL

1 . This forces us to choose a numerical
value for h̄GL

1 in the following. One possible approach to determine a value for h̄GL
1 is to fit

χPT and LQCD results for Σπ at very low values of the isospin chemical potential (or in
the vacuum), to facilitate for a fair comparison of χPT with LQCD at higher values of the
isospin chemical potential. This approach is not very suitable for our current investigation,
due to a limited set of lattice data that we have available at this time. We will therefore
employ the crude estimation h̄GL

1 = l̄3 as previously discussed, as well as h̄1 = 0. The latter
choice is motivated by the fact that we are not even confident about which sign h̄GL

1 has,
and that by setting h̄1 strictly to zero we see the effects of overlooking the uncertainties
associated with h̄GL

1 in the results.
We will use the following values and relations for the remaining parameters in the

numerical calculations of Eq.(7.36)-(7.37); The next-to-leading order relations for m2 =
2B0mq and f that we derived in chapter 3.3, the value for α that minimizes the free energy
to next-to-leading order, the values for the low-energy-constants l̄1 − l̄4 in Eq.(3.24), and
the following values for mπ and fπ,

mπ = 131± 3 MeV, fπ =
128± 3√

2
MeV. (7.39)

The values in Eq.(7.39) are identical to the ones used by Brandt et al. in their lattice
calculations in Ref.[27].

Uncertainties in the phenomenological parameters, i.e l̄1 − l̄4, mπ and fπ, carry into
uncertainties in m and f . To estimate the uncertainties in our calculations we define mmin,
fmin, mcen, fcen and mmax, fmax as the values of m and f obtained through Eqs.(3.35)
and (3.52) by using the minimum, central and maximum values of the phenomenological
parameters , respectively[44]. The results are given below,

mcen = 132.4884 MeV, fcen = 84.9342 MeV, (7.40)
mmin = 128.2409 MeV, fmin = 83.2928 MeV, (7.41)
mmax = 136.9060 MeV, fmax = 86.5362 MeV. (7.42)

The continuum quark masses were not calculated in the lattice study in Ref.[27], so
we have to choose a value for mq. Following Ref.[47] we set mq = 3.47 MeV, which is
the average of the up and down continuum masses obtained by the Budapest-Marseille-
Wuppertal Collaboration in Ref.[118]. With this choice for mq, we obtain the following
values for B0;

Bmin
0 = 2369.70 MeV, Bcen

0 = 2529.28 MeV, Bmax
0 = 2700.76 MeV. (7.43)

We use a blue band obtained by varying m, f , B0 and l̄1-l̄4 in their respective uncer-
tainty ranges to illustrate how the uncertainties in Eqs.(3.24)-(3.25) and Eqs.(7.40)-(7.43)
affect the quantities that we are plotting.7

7The uncertainty in l̄3 carry into uncertainty in h̄1 in the calculations where we use h̄GL
1 = l̄3.
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7.5 Results

In this section, we start by analyzing how the nature of the phase transition between the
normal phase and the BEC phase is affected by finite j. We proceed to compare our
results for the condensates at finite j with lattice data provided by Brandt et al.[27]. We
use the insights that we gain from the finite j sector to discuss our results at vanishing
pionic source where there are no lattice data to compare with.

7.5.1 Finite pionic source

Firstly, we wish to emphasize that to perform a fair comparison between LQCD and χPT
calculations, we need to use the exact same values for all parameters. However, this is not
possible as continuum quark masses were not calculated in the LQCD study. We also want
to emphasize that there is a significant uncertainty associated with the numerical value
of the unphysical low-energy constant h̄GL

1 . The comparison performed here is therefore
only meant to be suggestive.

The presence of an external pionic source explicitly breaks the U(1)I3 symmetry, as
we have already discussed. This implies that there is no sharp phase transition between
the normal phase and the BEC phase when j 6= 0.8 The transition is instead a smooth
crossover occurring over a range of values for µI , where the pion condensate changes
significantly, as we will see examples of in Figs.7.2-7.7.

The qualitative difference between having a finite pionic source and not having a pionic
source is nicely captured by the panels in Fig.7.1, which display αgs as a function of µI
at different values of j. In the leftmost panel, we show αgs(µI) in the absence of a pionic
source. We observe a sudden change in the curve at µI = mπ, which signals a second-order
phase transition.9 In the rightmost panel we show αgs for j = 0.00517054mπ, which varies
smoothly as a function of µI . In the lower panel, we show αgs for j = 0.0129263mπ,
which also varies smoothly as a function of µI . We observe that the slope of the curve
in the lower panel is significantly flatter in a neighborhood around µI = mπ compared to
the slope of the curve in the panel to the right. This is a reflection of the fact that the
magnitude of the symmetry-breaking parameter j is larger in the former compared to the
latter.

Before we proceed to present numerical results for pion and chiral condensate devia-
tions, we want to remind the reader about what type of behavior we expect to observe at
high isospin densities, and briefly discuss the underlying physics. The magnitude of the
pion condensate is naturally expected to be much larger at high isospin densities than at
low isospin densities because it is the order parameter for the transition to the BEC phase.
The magnitude of the chiral condensate, on the other hand, is expected to be smaller in
the high-density regime compared to the low-density regime. It is a well-established fact,
due to asymptotic freedom, that the system enters a BCS state of weakly bound Cooper
pairs at asymptotic isospin densities. Furthermore, the transition from the BEC state to
the BCS state is believed to be an analytic crossover[25] because the two states break
the same symmetries. The conjectured analytic crossover suggests that the magnitude of〈
ψ̄ψ
〉

should be small at very high isospin densities, and we expect this to be reflected in
the high-density regime of our results.

8By sharp we mean that the phase transition occurs at a specific point.
9We have already seen that αgs = 0 in the normal phase, and that an abrupt change in αgs causes the

pion condensate (which is the BEC order parameter) to change abruptly.
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(a) The figure shows αgs as a function of normal-
ized isospin chemical potential in the absence of
external pionic sources.
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(b) The figure shows αgs as a function of
normalized isospin chemical potential for j =
0.00517054mπ and h1 = 0.
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(c) The figure shows αgs as a function of
normalized isospin chemical potential for j =
0.0129263mπ and h1 = 0.

Figure 7.1: The figures show the angle αgs that minimizes the free energy Ω as a function
of normalized isospin chemical potential for different values for the external pionic source
j. The red curves are the LO results, while the blue curves are the NLO results.
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Pion condensate at j = 0.00517054mπ

In Fig.7.2, we display the normalized pion condensate at j = 0.00517054mπ, which is
the smallest value of the pionic source for which lattice QCD data are available at zero
temperature. The red curve is the leading-order result, the blue dashed curve is the next-
to-leading-order result obtained by using h1 = 0, the blue band was explained at the end
of the previous section, and the black dots are lattice results.

Firstly, we notice that the magnitude of the normalized pion condensate exceeds one
at isospin chemical potential higher than ∼ 1.5mπ both on the lattice and in χPT to
next-to-leading order. Thus, the tree-level relation in Eq.(7.38) is broken by quantum
effects, as we mentioned earlier. We observe that the next-to-leading-order result is a
significant improvement of the tree-level result in the same region µI > 1.5mπ. While the
magnitude of the lattice QCD deviation increases more rapidly than the magnitude of the
next-to-leading order χPT result for µI > mπ, they show similar qualitative behavior for
all values of the isospin chemical potential. The leading-order, next-to-leading order, and
lattice results are in excellent agreement when µI < mπ.
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Figure 7.2: Normalized pion condensate Σπ+ as a function of normalized isospin chemical
potential at zero temperature, h1 = 0 and j = 0.00517054mπ. See text for details.

In Fig.7.3, we show the normalized pion condensate at j = 0.00517054mπ, where we
have used Gerber and Leutwyler’s relation h̄GL

1 = l̄3. The result is in good agreement with
Fig.7.2 and the lattice data.

We observe that the central values of the next-to-leading-order result for the normal-
ized pion condensate in Fig.7.3 is shifted slightly towards lower values compared to the
corresponding curve in Fig.7.2. This is due to h̄cen1 = l̄cen3 − l̄cen4 < 0, and illustrates the
impact that the choice of h̄1 has on our results. More spesifically, the following term,

4

(4π)2
h̄1B

2
0j (7.44)

in Eq.(7.27) causes a constant shift in results obtained with nonzero values for h̄1, com-
pared to the result where h̄1 = 0. The size of the shift depends on the magnitude and sign
of h̄1 as well as the magnitude of the (pseudoscalar) pionic source j.

Finally, we observe that the blue band in Fig.7.3 is wider than the corresponding
band in Fig.7.2, due to the uncertainties in l̄3 and l̄4 that translate into uncertainties in
h̄1 = l̄3 − l̄4.
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Figure 7.3: Normalized pion condensate Σπ+ as a function of normalized isospin chemical
potential at zero temperature, h̄GL

1 = l̄3 and j = 0.00517054mπ. See text for details.

Chiral condensate at j = 0.00517054mπ

In Fig.7.4, we show the normalized quark condensate deviation for j = 0.00517054mπ.
The leading-order, next-to-leading order, and lattice results are in excellent agreement
for values of the isospin chemical potential up to ∼ mπ. The leading-order result is in
very good agreement with LQCD data beyond this point, while the next-to-leading-order
result is in slightly less good agreement with LQCD. The difference between LQCD and
χPT to next-to-leading order in Fig.7.4 is comparable to the difference we observe in
Fig.7.2, while this is certainly not the case for the differences between the LQCD and
the leading-order χPT results. This indicates that while the differences in the condensate
deviations between χPT at NLO and LQCD are significant when µI > mπ, they show
similar qualitative behavior, but with χPT at next-to-leading order consistently under or
overshooting compared to LQCD results.
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Figure 7.4: Normalized quark condensate deviation Σψ̄ψ as a function of normalized
isospin chemical potential at zero temperature and j = 0.00517054mπ. See text for details.
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Pion condensate at j = 0.0129263mπ

In Fig.7.5, we display the normalized pion condensate with h1 = 0 at j = 0.0129263mπ.
The difference between the leading-order result and the lattice result becomes significant
for smaller values of µI than what we observe in Fig.7.2. The agreement between the
next-to-leading-order result and the lattice result is very similar to what we observe in
Fig.7.2. We also notice that the relation in Eq.(7.38) is broken by the blue curve and the
lattice data in Fig.7.5.
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Figure 7.5: Normalized pion condensate Σπ+ as a function of normalized isospin chemical
potential at zero temperature, h1 = 0 and j = 0.0129263mπ. See text for details.
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Figure 7.6: Normalized pion condensate Σπ+ as a function of normalized isospin chemical
potential at zero temperature, h̄GL

1 = l̄3 and j = 0.0129263mπ. See text for details.

In Fig.7.6 we show the normalized pion condensate deviation at j = 0.0129263mπ,
where we use the relation h̄GL

1 = l̄3. We observe that the shift in the blue curve in Fig.7.6
relative to the blue curve in Fig.7.5 is larger than the shift between the blue curves in
Fig.7.2 and Fig.7.3. We also observe that the blue band in Fig.7.6 is wider than the
blue band in Fig.7.3. These observations are direct consequences of the fact that a larger
value of j amplifies the effects that h1 has on the pion condensate, and that the results in
Figs.7.5 and 7.6 are generated at a larger value of j than the results in Figs.7.2 and 7.3.

77



CHAPTER 7. QUARK AND PION CONDENSATES AT ZERO TEMPERATURE

Chiral condensate at j = 0.0129263mπ

In Fig.7.7, we show the normalized quark condensate deviation for j = 0.0129263mπ. We
observe that the lattice result is in noticeably better agreement with χPT to next-to-
leading order compared to χPT at leading-order when the isospin chemical potential is
smaller than ∼ mπ. Beyond this point, the agreements between the leading order, the
next-to-leading order, and the lattice results resemble what we observe in Fig.7.4.
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Figure 7.7: Normalized quark condensate deviation Σψ̄ψ as a function of normalized
isospin chemical potential at zero temperature and j = 0.0129263mπ. See text for details.

The agreements on the normalized condensate deviations at finite j between χPT and
lattice QCD are excellent at low values of the isospin chemical potential. By increasing the
isospin chemical potential to higher values, we find a gradually worse agreement between
LQCD and χPT. This is consistent with the fact that χPT is a low-energy effective field
theory with systematic corrections whose magnitude increase with µI .

The improvements in the normalized pion condensates as we go from leading order
to next-to-leading order in χPT are highly significant. The asymptotic behavior of the
next-to-leading-order results are entirely different from the asymptotic behavior of the
leading-order results and clearly violate the tree-level relation in Eq.(7.38). Furthermore,
the results for Σπ+ at high values of µI show a reasonable qualitative agreement between
LQCD and χPT to next-to-leading order, with the magnitude of the next-to-leading-order
result being significantly lower than the magnitude of the LQCD result.

We observe that the agreement on the normalized chiral condensate deviations between
χPT and LQCD is barely improved at next-to-leading order for low values of the isospin
chemical potential. It is, however, a little unexpected that the leading-order result is in
slightly better agreement with LQCD for higher values of µI . Nevertheless, based on the
inconsistencies in the agreement between LQCD and χPT at leading order for normalized
chiral and pion condensate deviations, one may suspect this to be a coincidence. The
agreement between LQCD and χPT at next-to-leading order is still quite consistent over
the set of normalized chiral and pion condensate deviations that we have considered,
which signals a more stable performance as we include more systematic corrections. This
is consistent with what we expect from an EFT.

7.5.2 Vanishing pionic source

In Fig.7.8, we show the normalized pion condensate in the absence of external pionic
sources. We find that the normalized pion condensate to next-to-leading order is signifi-
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cantly larger than the tree-level result for µI > 1.5mπ. We also find that the leading-order
result asymptotes to one, while the magnitude of the next-to-leading-order result increases
steadily and breaks the tree-level relation in Eq.(7.38).
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Figure 7.8: Normalized pion condensate Σπ+ as a function of normalized isospin chemical
potential at zero temperature and vanishing (pseudoscalar) pionic source. See text for
details.

In Fig.7.9, we show the normalized chiral condensate deviation in the absence of ex-
ternal pionic sources. We find that the magnitude of the next-to-leading-order result
is larger than the the tree-level result when µI > 1.5mπ. The difference between the
leading-order and the next-to-leading-order result for Σψ̄ψ is, however, much smaller than
the corresponding difference in the result for Σπ+ .
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Figure 7.9: Normalized quark condensate deviation Σψ̄ψ as a function of normalized
isospin chemical potential at zero temperature and vanishing (pseudoscalar) pionic source.
See text for details.

The difference between the next-to-leading-order and leading-order results at vanishing
pionic source closely resembles differences that we find at finite j. If we use LQCD data
from Ref.[27] as a benchmark, then we should expect the next-to-leading-order corrections
to provide a significant improvement to the leading-order result for Σπ+ . By extrapolating
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from the difference between LQCD and χPT at j = 0.00517054mπ and j = 0.0129263mπ,
we expect the magnitudes of Σπ+ and Σψ̄ψ at higher values of the isospin chemical potential
to be somewhat lower and higher, respectively, than future LQCD results.

The results presented here can be used to gauge the quality of future LQCD calculations
of the pion and chiral condensates at vanishing pionic source. However, we emphasize that
it is not possible to perform a fully quantitative comparison between χPT and currently
available LQCD data or lattice calculations in the future without access to the continuum
quark-mass values on the lattice. We also emphasize that the results we obtain for Σπ+

depend on the unphysical low-energy constant h̄GL
1 , whose numerical value has not been

estimated very accurately in our study. Future studies may resolve this issue by either
redefining Σπ+ to subtract 〈π+〉 evaluated at j 6= µI = 0, or by fitting χPT with LQCD
lattice data in the (source-dependent) vacuum.
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Chapter 8

Quark and pion condensates at
finite temperature

In this chapter, we extend the analysis from the previous chapter by including finite-
temperature effects. We start by calculating the finite-temperature contribution to the
free energy, which we subsequently use to derive Splittorff et al.’s low-temperature Lan-
dau functional[111], and their analytical low-temperature approximation of the phase-
transition curve between the normal and pion-condensed phases. We then confront Split-
torff’s low-temperature approximation with a numerical calculation of the phase-transition
curve using the complete expression for the free energy to next-to-leading order in χPT.
We also compare our numerical calculation with Brandt et al.’s LQCD results in Ref.[27]
and SU(2) NJL-model results obtained by He, Jin, and Zhuang in Ref.[36].

We proceed to generate the pion and chiral condensates from the free energy and
analyze their temperature dependence. This leads to an interesting observation of how
high temperatures give rise to a new type of behavior in the density evolution1 of the
ground-state configuration in the pion-condensed phase. We end our discussion with a
short remark on χPT’s ability to predict the chiral crossover at low values of the isospin
chemical potential.

The following section reviews basic elements of thermal field theory (TFT) and (non-
topological) phase transitions. We have included it as a preparation for the calculations
that follow in the next sections, and for the sake completeness. The informed reader may
skim through this section, or skip it altogether.

8.1 TFT basics
Extending the framework of quantum field theory to include finite-temperature effects is
necessary in many areas of research. Relevant examples include the interior of compact
stars, and the (µB, T ) phase diagram of QCD, which finds applications in areas ranging
from heavy-ion collisions[119] to the early universe.

There are two well-established frameworks for finite temperature field theory, the
imaginary-time formalism, and the real-time formalism. Both of the frameworks have
advantages and disadvantages, which make them useful in different types of applications.
One main difference between the two is that only the real-time formalism can describe
out-of-equilibrium processes.

The main disadvantage with the real-time formalism is related to the technical aspect
of the framework, which makes it cumbersome to work with. The imaginary-time formal-
ism, on the other hand, naturally connects the partition function in statistical mechanics

1By density evolution, we mean how the ground state evolves as a function of µI while we keep all other
parameters fixed.
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to the path integral in quantum field theory. Many of the perturbative and numerical
evaluation techniques in QFT extend nicely into the imaginary-time framework, making
most calculations simpler to perform than in the real-time formalism. We will stick to the
imaginary-time formalism in this thesis. An introduction to the real-time formalism can
be found in Ref.[120], and more information about the imaginary-time formalism can be
found in standard textbooks about TFT, like Refs.[121, 122].

Statistical field theory

We begin by recalling some basic notions from statistical field theory. The fundamental
object in equilibrium statistical mechanics is the density matrix ρ̂, which in the grand
canonical ensemble2 is given by,

ρ̂ = exp
[
−β(Ĥ − µiN̂i)

]
. (8.1)

Here β denotes the inverse temperature, Ĥ is the Hamilton operator, and µi denotes the
chemical potential that couple to the i’th (conserved) number operator N̂i. The density
matrix can be used to calculate the thermal average of any observable O,

〈Ô〉 = Tr Ôρ̂

ρ̂
. (8.2)

From the denisty matrix we also obtain the grand canonical partition function[121],

Z = Z(V, T, {µi}) = Tr ρ̂ =
∑
i

〈φi|ρ̂|φi〉 , (8.3)

where the sum is over all eigenstates |φi〉 of the field operator φ̂.3 The grand canoni-
cal partition function is the single most important function in thermodynamics, and all
thermodynamic properties of the theory can be derived from it.

We will proceed to show how the partition function is connected to the path integral
in QFT. We will for concreteness only discuss four-dimensional bosonic theories, but the
discussion generalizes straightforwardly to different numbers of dimensions. For notational
convenience, we stop writing hats on operators and denote H−µiNi by H in the following.

Imaginary-time formalism

In the path-integral formulation of QFT one writes the transition amplitude for going
from an initial state |φ0〉 at time t0 to a final state |φf 〉 at time tf as,

〈φf |e−iHtf |φ0〉 = N
∫
DπDφ exp

[
i

∫ tf

0
dt

∫
d3xπ̇φ−H

]
. (8.4)

Here π̇ denotes the conjugate momentum of the field φ andN is a (divergent) normalization
factor that drops out of all calculations of physical quantities. The integrals

∫
Dπ and∫

Dφ denote the sum over all conjugate momenta and all field configurations respecting
the initial and final condition, respectively.

Wick rotating to the Euclidean metric (τ, ~x) = (it, ~x), 4and identifying it1 ≡ β 5 lets
us rewrite the transition amplitude in Eq.(8.4) as,

〈φf |e−βH|φ0〉 = N
∫
DπDφ exp

[∫ β

0
dτ

∫
d3xiπ̇φ−H

]
. (8.5)

2The grand canonical ensemble is the natural ensemble to use in relativistic theories, where particles
can be created and annihilated.

3The field φi (with no hat) is the eigenvalue corresponding to the state |φi〉; φ̂ |φi〉 = φi |φi〉.
4The new time variable τ = it explains why the formalism is called imaginary time.
5Here we effectively replace time with temperature.
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The expression on the left-hand side is remarkably similar to the right-hand side of
Eq.(8.3). By restricting the initial state and the final state in Eq.(8.5) to be equal
|φ0〉 = |φf 〉 ≡ |φa〉, and summing over all states |φa〉 we obtain,

Z =
∑
φi

〈φi|e−βH|φi〉 = N
∫
Dπ
∫
periodic

Dφ exp
[∫ β

0
dτ

∫
d3xiπ̇φ−H

]
. (8.6)

The integration over conjugate momenta is unrestricted as before, while the integration
over the field variable

∫
periodicDφ includes all paths in field-configuration space that respect

the periodic condition |φf 〉 = |φ0〉.
If the Hamiltonian is at most quadratic in the conjugate momentum, which is usually

the case, then the integral
∫
Dπ can be performed analytically by completing the square.

Replacing π with φ takes us from the Hamiltonian to the Lagrangian description, where
the partition function reads,

Z = N ′
∫
periodic

Dφ exp
[∫ β

0
dτ

∫
d3xL

]
, (8.7)

where N ′ is a new temperature-dependent normalization constant.
To see what restrictions the periodic boundary conditions puts on the field-operator φ

we consider the thermal two-point Greens function,

G(τ ′, τ, x′, x) =
Tr{T [e−βHφ(τ ′, x′)φ(τ, x)]}

Z
, (8.8)

where T denotes the imaginary-time ordering operator,

T [e−βHφ(τ ′, x′)φ(τ, x)] = φ(τ ′, x′)φ(τ, x)Θ(τ ′ − τ) + φ(τ, x)φ(τ ′, x′)Θ(τ − τ ′). (8.9)

Using the Heisenberg equation for the field operator,

φ(τ + δτ, x) = eiHδtφ(τ, x)e−iHδt = eHδτφ(τ, x)e−iHδτ , (8.10)

and the cyclic property of the trace, we obtain,

G(τ ′, τ, x′, x) = G(τ ′ + β, τ, x′, x). (8.11)

The relation in Eq.(8.11) imposes the following periodicity condition on the field operator,

φ(τ + β, x) = φ(τ, x). (8.12)

The periodicity in Eq.(8.12) admits us to perform a Fourier expansion in the field,

φ(τ, x) =
1

β

∞∑
n=−∞

φn(x)e
iωnτ , (8.13)

where

ωn =
2πn

β
, n ∈ Z, (8.14)

are the so called bosonic Matsubara frequencies. The full Fourier representation of φ(x)
is obtained by transforming the spatial variables x in the usual way,

φ(τ, x) =
1

β

∞∑
n=−∞

∫
d3p

(2π)3
φn(~p)e

i(ωnτ+~p·~x). (8.15)
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Topologically speaking ”turning on” the temperature in the imaginary-time formalism
amounts to a compactification of the ”time dimension” from the real line to the unit circle:
R×R3 → S1 ×R3. From Eq.(8.13) we see that the compactification comes at the price
of an infinite tower of operators φn(x). Since φ is a scalar field with mass m it satisfies
the (Euclidean) Klein-Gordon (KG) equation,

(−∂0∂0 −∇2 +m2)φ2 = 0. (8.16)

By substituting Eq.(8.13) into Eq.(8.16) we obtain an infinite number of KG equations for
massive 3D fields,

∞∑
n=−∞

(−∇2 + ω2
n +m2)φn(x) = 0. (8.17)

Each Fourier mode φn can be therefore be interpreted formally as a scalar particle in
three-dimensional Euclidean space with mass m2

n = m2 + 4π2n2

β2 .6
Finally, we are going to need finite-temperature momentum integrals when we calcu-

late one-loop corrections to the free energy. The zero-temperature momentum integral in
dimensional regularization is modified into the following sum-integral at finite tempera-
ture, ∫

dd+1k

(2π)d+1
→ 1

β

∞∑
n=−∞

∫
ddk

(2π)d
≡
∑∫
K
. (8.18)

The short-hand notation on the right hand side is standard in the finite-temperature
literature, and will be used in the remainder of this thesis.

Phase transitions

In chapter 2.4, we mentioned that the one-dimensional phase diagram (µI , T ) = (µI , 0)
has a second-order phase-transition point at µI = mπ separating the normal phase from
the Bose-Einstein condensate. By turning on the temperature, we access the full two-
dimensional (µI , T ) phase diagram with possibly new phases that do not exist at zero
temperature. A natural question to ask is how the phases in the one-dimensional dia-
gram are extended into the two-dimensional phase diagram. Loosely speaking, it is also
unclear how ”the nature of” the transition is affected by thermal effects. These questions
can be addressed in a precise way in Landau’s theory for (non-topological) phase transi-
tions[123]. To set the stage for the upcoming calculations in the next section, we review
some important notions from the classical theory of phase transitions in the following.

Landau’s theory is based on two concepts, free energy, and symmetry. Landau realized
that a phase can be associated with a set of symmetries, and he defined a phase transition
as a change in that symmetry set. We have already seen that the normal phase is char-
acterized by U(1)B × U(1)I3 , while the U(1)I3 is broken in the BEC phase. Landau also
recognized that it is always possible to identify a so-called order parameter M , which is
zero in one of the phases and nonzero in the other phase. More specifically, when we con-
sider quantum theories, M becomes the expectation value of some operator. We will refer
to the phase where M is nonzero as the ordered or low-temperature phase and the other
phase as the unordered or high-temperature phase. A phase transition can, in most cases,
be classified according to the behavior of M at the critical temperature Tc separating the
two phases. If M as a function of temperature is discontinues at Tc we have a first-order
phase transition. A sketch of a first-order transition is shown in the panel to the left in

6Notice that the fields φn with n 6= 0 gain extra mass from momentum in the compactified dimension.
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Fig. 8.1, where we have plotted the free energy of a system as a function of M at different
temperatures. If M increases continuously from zero at Tc we have a second-order phase
transition, as shown in the panel to the right in Fig. 8.1.

It is also possible to have so-called crossover transitions. These are characterized
by a rapid change in thermodynamic variables as the system evolves from one phase
to another, with the two phases being indistinguishable in the crossover region. The
transition temperature is then called a pseudocritical temperature, which is not uniquely
defined but depends on the choice of the approximate order parameter. In fact, it is well
established that the chiral symmetry restoration takes place via a smooth crossover[124–
126], and recent LQCD simulations of the crossover can be found in Ref.[127].

Second order phase transitions

The pion condensate, i.e., the expectation value of the π+ operator, is the order parameter
for the phase transition between the normal phase and the BEC phase. While studying
the magnitude of the pion condensate as a function of µI and T numerically is rather
straightforward, it becomes a highly non-trivial task to analyze 〈π+〉 analytically. Analyt-
ical calculations and approximations of the phase-transition curve simplify significantly if
we identify the angle α as an effective order parameter[48, 111]. Recall that α is by no
means a fundamental quantity, but merely a parameter in the ansatz for the ground-state
configuration on the Goldstone manifold, see Eq.(4.8). It would, therefore, be incorrect to
acknowledge α as a true order parameter in Landau’s theory. However, we have already
seen that the phase transition leads to a rotation of the ground state away from the normal
configuration at zero temperature. The angle α simply parametrize the rotation7 of the
ground state on the SU(2) manifold. It is zero in the normal phase and nonzero in the
pion-condensed phase, which is similar to the behavior of the real order parameter. We
will show in a later section that the interpretation of α as an effective order parameter
remains valid at finite temperature.

The authors of Refs.[48, 111] obtained the first results for the phase-transition curve
in the (µI , T )-plane within χPT, by using α as the expansion parameter in a Landau
functional. The validity of their approach is by no means obvious. For example, the
coefficients of a Landau functional (see the paragraphs below for details) in the true order
parameter 〈π+〉 may be quite different from the coefficients of a Landau functional in α,
depending on the details of the relationship between 〈π+〉 and α. Treating α as a proper
order parameter may, therefore, lead to incorrect conclusions about the order of the phase-
transition curve. While keeping this in mind, we follow the original work in Refs.[48, 111]
in the following, and derive their low-temperature approximation for the phase-transition
curve. For the sake of completeness, we begin by summarizing some elementary facts
about Landau functionals and some useful results from the χPT literature. We proceed
to consider the zero-temperature limit first.

In chapters 4 and 7 we obtained the following tree-level results,

α = 0, µI < mπ, (8.19)

cosα =
mπ

µI
, µI ≥ mπ, (8.20)

〈π+〉treeµI ,0
= −f2B0 sinα. (8.21)

We see from Eqs.(8.19) and (8.20) that α changes continuously from zero to nonzero at
the phase-transition point mπ = µI . It follows that the order parameter in Eq.(8.21) also

7Rotation is perhaps not the best expression to use here, as α can change discontinuously as we have
already seen in the chiral limit.
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changes continuously from zero to nonzero at mπ = µI , which signals that the phase transi-
tion is second order. In order to go beyond tree-level we need to consider the renormalized
free energy Ω.

The free energy can be well approximated by the first few terms in a Taylor expansion
in α close to the transition point, since α is expected to be small here. Realizing that the
terms in Lstatic2 , Lquadratic2 and Lstatic4 are invariant under α → −α lets us write the free
energy expansion on the following form,8

Ω = Ω(α = 0) + c2α
2 + c4α

4 + ... (8.22)

Here the coefficients ci are real-valued functions of µI , m and f . The Taylor expansion
of the free energy in Eq.(8.22) is often referred to as a Landau- or Ginzburg-Landau
functional.

The phase-transition is located at the point where c2 vanishes, and the transition is
first or second-order depending on whether c4 is negative or positive at the transition,
respectively. The relevance of c4’s sign near the phase transition can be appreciated at a
qualitative level by studying Fig. 8.1, where c4 < 0 is identified with the behavior in the
panel to the left, and c4 > 0 is identified with the behavior in the panel to the right.
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(a) A sketch of the free energy as a function of
the order parameter M at different temperatures
for a first-order phase transition. Notice that the
minimum is degenerate at the critical temper-
ature, where the finite value for M wins when
T < Tc and M = 0 wins when T > Tc.
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(b) A sketch of the free energy as a function of
the order parameter M at different temperatures
for a second-order phase transition. The value of
M that minimizes the free energy changes contin-
uously from a finite value on the low-temperature
side to zero on the high-temperature side of the
phase transition.

Figure 8.1: The figures show qualitative sketches of the nature of first and second-order
phase transitions. The plot to the left illustrates a first-order phase transition, and the
figure to the right illustrates a second-order phase transition.

In Ref.[44] Adhikari and Andersen derive the Landau functional for the free energy
given in Eq.(4.63) using α as the effective order parameter. They find that c2 vanishes at
µI = mπ and that c4(µI = mπ) > 0. This result is identical to what we find at tree-level.
If we include finite-temperature effects into the expression for the free energy, then c2 and
c4 become temperature dependent. We can then extend the analysis into the (µI , T ) plane,
and calculate a phase-transition curve µcI(T ). Here we may encounter the possibility of
having a point where c4 and c2 are both zero. This is referred to as a tricritical point[128,
129], and signals that a second order phase transition is turning into a first order phase
transition (or vice versa).

As a final remark, we mention that thermal fluctuations due to the presence of a heat
bath are expected to weaken the magnitude of the condensate 〈π+〉, and therefore drive

8We are assuming throughout this thesis that the medium is isotropic, so α is the same in all parts of
space. If this is not the case, then the expansion needs to take the energy costs of having α varying into
consideration.
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the phase transition towards higher values of µI as we increase the temperature.

8.2 Free energy at nonzero temperature
The renormalized free energy in Eq.(7.25) is the sum of three contributions; the leading-
order contribution to the static energy Ω0, the next-to-leading order contribution to the
static energy Ωstatic

1 , and the one-loop contribution Ωloop
1 . Only the latter involves an

explicit momentum integration. The temperature dependence of Ω is therefore encoded
into Ωloop

1 . We now proceed to calculate the thermal sum-integrals in Ωloop
1 .

A key integral

The starting point for the one-loop calculation at zero temperature is,9

Ωloop
1 =

1

2

∫
K
log
(
k20 + E2

π0

)
+

1

2

∫
K
log
(
k20 + E2

π+

)
+

1

2

∫
K
log
(
k20 + E2

π−
)
, (8.23)

which extends to,

Ωloop
1 =

1

2

∑∫
K
log
(
ω2
n + E2

π0

)
+

1

2

∑∫
K
log
(
ω2
n + E2

π+

)
+

1

2

∑∫
K
log
(
ω2
n + E2

π−
)
, (8.24)

at finite temperature T 6= 0. The Matsubara sum

v(E) ≡
∞∑

n=−∞
log
(
ω2
n + E2

)
, (8.25)

that appears in the sum-integral

J(T,E) ≡
∑∫
K
log
(
ω2
n + E2

)
, (8.26)

can be evaluated by using the following trick[130]; Differentiate v(E) with respect to E,

∂v

∂E
=
β

π

∞∑
n=−∞

(
βE
2π

)
n2 +

(
βE
2π

)2 , (8.27)

and use the following identity,
∞∑

n=−∞

y

n2 + y2
= π coth(πy), (8.28)

to obtain,
∂v

∂E
= β

[
1 +

2

eβE − 1

]
, (8.29)

v(E) = β

[
E +

2

β
log
(
1− e−βE

)]
+ ... (8.30)

The omitted terms do not depend on E and will be ignored in the following.
The evaluation of the Matsubara sum in Eq.(8.25) reduces the sum-integral J(T,E)

to a regular integral over three-momenta,

J(T,E) = J0(E) + JT (T,E) =

∫
k
E + 2T

∫
k
log
(
1− e−βE

)
, (8.31)

where we have separated J(T,E) into a temperature-independent part J0(E) and a temperature-
dependent part JT (T,E). If we take E to be one of the dispersion relations in Eq.(4.27)-
(4.28), then the integrand in the temperature-dependent part JT (T,E) becomes exponen-
tially damped, which implies that the d3k-integral in JT (T,E) is finite.

9This follows from Eq.(4.51) in combination with Wick rotating (4.52).
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The renormalized free energy

It follows from the analysis on the previous page that we can write the one-loop contribu-
tion to the free energy at finite temperature as,

Ωloop
1 =

1

2

∫
k
Eπ0 +

1

2

∫
k
Eπ+ +

1

2

∫
k
Eπ− +

1

β

∫
k
log
(
1− e−βEπ0

)
+

1

β

∫
k
log
(
1− e−βEπ+

)
+

1

β

∫
k
log
(
1− e−βEπ−

)
≡ Ω1,π0 +Ω1,π+ +Ω1,π− +ΩT1,π0 +ΩT1,π+ +ΩT1,π− . (8.32)

The divergences in Ωloop
1 are still cancelled by the counterterms in Ωstatic

1 , since the
temperature-dependent contributions to the free energy are finite valued. In conclusion,
we may write the renormalized free energy at finite temperature as,

Ω = Ω(T = 0) + ΩT1,π0 +ΩT1,π+ +ΩT1,π− ≡ ΩT=0 +ΩT . (8.33)

Neither of the integrals ΩT1,π0 , ΩT1,π+ and ΩT1,π− can be expressed in terms of elementary
functions[131], but they can be evaluated numerically without much difficulty.

8.2.1 Expansion in α

The way we represent the thermal contribution to the free energy in Eq.(8.32) is perfectly
fine for numerical analysis, and we will employ it as our starting point when we proceed
to analyze the chiral and pion condensates at finite temperature. However, the expression
for ΩT in Eq.(8.32) is not a particularly suitable starting point for an analytical expansion
of the free energy in α. We will therefore return to Eq.(8.24) and proceed to derive an
analytical approximation of the Landau functional in α, by employing techniques presented
in Ref.[48]. It is worth noting that this approach requires α to be treated as an independent
variable and not as a function of m, f , µI , and T [111].

Neutral pion contribution

In Appendix C.3, we show that the neutral-pion contribution Ω1,π0 +ΩT1,π0 can be written
as,

Ω1,π0 +ΩT1,π0 = −1

2

∑
n∈Z

∫ ∞

0

dte−tm
2
3

(4π)
d
2 t

d
2
+1
e−

n2

4T2t . (8.34)

The temperature-independent part Ω1,π0 is given by the n = 0 term in Eq.(8.34), which
agrees with what we found in Eq.(4.57). The temperature-dependent part ΩT1,π0 is given
by the remaining terms, and in Appendix C.3 we show that it can be represented by an
infinite sum of modified Bessel functions K2,10

ΩT1,π0 = −1

2

16m2
3T

2

(4π)2

∞∑
n=1

K2

(
m3n
T

)
n2

. (8.35)

The temperature-dependent contribution ΩT1,π0 is finite valued, as we have already
discussed, but it is not known analytically. However, we may use the following asymptotic
series for modified Bessel functions Kv(z)[132],

Kv(z) =

√
π

2z
e−z

(
1 +

4v2 − 1

8z
+

(4v2 − 1)(4v2 − 9)

2! (8z)2
+O(z−3)...

)
, |argz| < 3π

2
,

(8.36)
10The same result is obtained if we substitute k → Tx into 1

β

∫
k
log

(
1− e−βE

π0
)
, then expand the

logarithm in powers of the exponential and finally integrate the expansion term by term[121, 131]. However,
this method is not suitable for ΩT

1,π+ +ΩT
1,π− , which is why we have adapted the approach in Ref.[48].
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to obtain an analytical low-temperature approximation of Eq.(8.35). Thus, in the limit
where T � mπ, µI we obtain the following approximation of ΩT1,π0 ,

ΩT1,π0 = −1

2

T
5
2

√
2

(m3

π

) 3
2
e−

m3
T

[
1 +

15

8

T

m3

( ∞∑
n=1

1

n3

)
+O

(
T 2

m2
3

)]
. (8.37)

Remaining contribution

The remaining one-loop contribution to the free energy can be written as,

Ω1,π± +ΩT1,π± =
1

2

∑∫
K
log
[
(K2 +m2

1)(K
2 +m2

2) + k20m
2
12

]
. (8.38)

The prescription we used to separate Ω1,π0 from ΩT1,π0 is no longer directly applicable here,
since the argument of the log on the right hand side of Eq.(8.38) cannot be written on
the standard form log

(
p2 +m2

)
. In chapter 6 we saw that the mixing of electric-charge

eigenstates in the pion-condensed phase manifested itself through the nonzero value of
m2

1 −m2
2. It is the same quantity that prevents us from expressing the argument of the

log in Eq.(8.38) on the standard Klein-Gordon form in the pion-condensed phase, as we
can see from the equation below,

Ω1,π± +ΩT1,π± =
1

2

∑∫
K
log

{[
K2 +

1

2

(
m2

1 +m2
2

)]2
+ k20m

2
12 −

1

4

(
m2

1 −m2
2

)2}
=

1

2

∑∫
K
log

{[(
k0 +

i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]

×

[(
k0 −

i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]
− 1

4
(m2

1 −m2
2)

2

}
(8.39)

Expanding in −1
4(m

2
1 −m2

2)
2 is effectively the same as expanding in α4, since (m2

1 −
m2

2)
2 = µ4I sin

4 α ∼ α4. We use this observation to write,

Ω1,π± +ΩT1,π± =
1

2

∑∫
K
log

{[(
k0 +

i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]

×

[(
k0 −

i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]}
− 1

8
(m2

1 −m2
2)

2∑∫
K 1[(

k0 +
i
2m12

)2
+ p2 + 1

2

(
m2

1 +m2
2 +

1
2m

2
12

)] [(
k0 − i

2m12

)2
+ p2 + 1

2

(
m2

1 +m2
2 +

1
2m

2
12

)]


+O(α8). (8.40)

In Appendix C.3 we show that the temperature-dependent part of the first term in
Eq.(8.40) can be written as,

I(T ) ≡ 1

2

∑∫
K
log

{[(
k0 +

i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]
×[(

k0 −
i

2
m12

)2

+ p2 +
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)]}
= −b

2T 2

π2

∞∑
n=1

K2

(
bn
T

)
n2

cosh
(an
T

)
,

(8.41)
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where we have ignored temperature-independent terms, and defined new constants a and
b as,

a ≡ 1

2
m12 = µI cosα, b ≡

√
1

2

(
m2

1 +m2
2 +

1

2
m2

12

)
=

√
m2
π cosα+

1

2
µ2I sin

2 α.

(8.42)

The temperature-dependent part of the second integral in Eq.(8.40) is finite and can
be rewritten as[48],

∑∫
K

 1[
(k0 + ia)2 + p2 + b2

]
×
[
(k0 − ia)2 + p2 + b2

]
 =

1

8

∑∫
K

1

k20

(
1

a

∂

∂a
+

1

b

∂

∂b

)
log
{[

(k0 + ia)2 + ~k2 + b2
] [

(k0 − ia)2 + ~k2 + b2
]}

=

− b2T 2

4π2

∞∑
n=1

1

(2πnT )2

(
1

a

∂

∂a
+

1

b

∂

∂b

)
b2
K2

(
bn
T

)
n2

cosh
(an
T

)
=

1

16π4T

∞∑
n=1

1

n3
b

a

[
a cosh

(an
T

)
K1

(
bn

T

)
− b sinh

(an
T

)
K2

(
bn

T

)]
. (8.43)

We made use of Eq.(8.41) to obtain the second equality, and the following relation for
modified Bessel functions,

∂Kn(x)

∂x
= −Kn−1(x)−

nKn(x)

x
. (8.44)

to obtain the final equality in Eq.(8.43).
By combining Eqs.(8.40)-(8.43) we find that the temperature-dependent contribution

to the free energy from the charged pion modes can be written as,

ΩT1,π+ +ΩT1,π− = −b
2T 2

π2

∞∑
n=1

K2

(
bn
T

)
n2

cosh
(an
T

)
−

µ4Iα
4

128π4T

∞∑
n=1

1

n3
b

a

[
a cosh

(an
T

)
K1

(
bn

T

)
− b sinh

(an
T

)
K2

(
bn

T

)]
+O(α8). (8.45)

We obtain the full temperature-dependence of the free energy ΩT in the region of the
phase-plane where α � 1 and T � mπ by adding Eq.(8.35) and Eq.(8.45). The result
reads,

ΩT1,π0 +ΩT1,π+ +ΩT1,π− = −1
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In Ref.[44] the temperature-independent part of the renormalized free energy is ex-
panded in α up to O(α4). Using Eq.(8.36) and Eq.(8.46) we may now do a similar expan-
sion of the temperature-dependent part of Ω, and thereby extend the zero-temperature
analysis from Ref.[44] into the (µI , T )-plane. This is precisely what we proceed to do in
the following.
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8.3 Landau functional
Our assumptions so far are that the effective order parameter is small α� 1 and that the
critical temperature is low T � mπ. To proceed with a consistent analytical expansion
of Eq.(8.46), we first have to probe the low-temperature behavior of the theory. More
specifically, we have to choose between one of the following approximations, |b− a| �
T � mπ and T � |b− a| � mπ. If neither of the approximations are justifiable in the
relevant part of the phase plane, then we have to restrict our analysis to smaller subsets
of the phase plane until one of the approximations can be justified.

It is useful to see the leading-order expansion of a and b in powers of α to get a clearer
overview of our alternatives,

a = µI −
µI
2
α2 +

µI
24
α4 + ..., (8.47)

b = mπ +
mπ

4

(
µ2I −m2

π

m2
π

)
α2 − mπ

48

(
4µ2I −m2

π

m2
π

)
α4 + .... (8.48)

Adding the two equations above we find that |b− a| = µI−mπ+O(α2). Thus, |b− a| effec-
tively measures the difference in isospin chemical potential relative to the zero-temperature
transition point µI = mπ, when α � 1. The two possible approximations are therefore
equivalent to assuming that the phase-transition line is very steep |b− a| � T , or very
flat T � |b− a|. LQCD simulations[27], various effective model results[36, 133, 134] and
previously obtained χPT[48, 114] results all suggest that the phase-transition curve is very
steep in the region where T � mπ. We will therefore consider the limit |b− a| � T � mπ

in the following.
The preceding assumptions justify the following approximation,
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b
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2

. (8.49)

When T � b we may safely use the asymptotic expansion of K2 given in Eq.(8.36).
Combining the asymptotic expansion of K2 with the approximation in Eq.(8.49) we obtain,
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and
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The polylogarithm functions in the last lines of Eqs.(8.50) and (8.51) are defined by their
series expansions,

Lin(z) ≡
∞∑
k=1

zk

kn
. (8.52)
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Comparing Eqs.(8.35),(8.46) and (8.50)-(8.51) we see that the neutral contribution ΩTπ0 to
the Landau functional is exponentially suppressed compared to ΩT1,π+ +ΩT1,π− , and it can
therefore be safely neglected in the following.

We can use the following series expansion of the polylogarithmic function Lin
2
(z)

around z = 1,11
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)
+ ζ
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2

)
, z ∈ R, (8.53)

to expand the polylogarithmic functions Lin
2
(exp

{
−
(
b−a
T

)}
) occurring in Eqs.(8.50) and

(8.51) in powers of (b−a)
T .

Eqs.(8.47)-(8.53) contain all the information we need to obtain an analytical expres-
sion for the temperature-dependent part of the effective Landau functional in Eq.(8.46).
Since we disregard terms of order O(α6) we may substitute a = µI and b = m into
Eq.(8.51),12 and approximate the polylogarithmic functions Lin

2
(z) occuring in Eq.(8.51)

by the leading-order term ζ
(
n
2

)
in Eq.(8.53).

In Appendix C.4 we expand Eq.(8.50) to fourth order in α and obtain,
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Adding Eqs.(8.51) and (8.54) we finally obtain the temperature-dependent contribution
to the effective Landau functional,13

ΩT ≈ −
1

2

√
m3
πT

5

2π3
ζ

(
5

2

)
+
µI
4

√
m3
πT

3

2π3
ζ

(
3

2

)
α2 −

µ2I
16

√
m3
πT

2π3

[
ζ

(
1

2

)
− ζ

(
3

2

)]
α4

+
3µ3I
512

√
mπT

2π7
ζ

(
9

2

)
α4 +O

(
α6
)
. (8.55)

We can now combine Eq.(8.55) with the temperature-independent contribution ΩT=0

obtained by Adhikari and Andersen in Ref.[44] to write down the full Landau functional,

Ω = c0 + c2α
2 + c4α

4 +O(α6), (8.56)

11Here ζ(x) denotes the Riemann-Zeta function, which is ≥ 1 for x ≥ 1.
12Which is equivalent to evaluating a and b at α = 0.
13Using mT � m(m−µI) to see that the first term in the parentheses in Eq.(8.51) is much smaller than

the second, and that 3T (5m− µI) ≈ 12Tm.
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whose coefficients c2 and c4 are given below,
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The next-to-leading order relations in Eq.(3.35) and Eq.(3.52) lets us rewrite c2 as,

c2 =
1

2
f2π(m

2
π − µ2I) +

µI
4

√
m3
πT
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2π3
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(
3
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, (8.59)

which manifests the zero-temperature phase-transition at µI = mπ.
We proceed to solve c2(µI) = 0 for the isospin chemical potential and obtain,

µcI(T ) ≈ mπ +
1

4f2π

√
m3
πT

3

2π3
ζ

(
3

2

)
, (8.60)

which is in agreement with the result obtained by Splittorff et al. in Ref.[48]. Thus, the
analytical approximation suggests that the transition curve µcI(T ) should scale as T

3
2 for

(µI −mπ)� T � mπ.
The analytical approximation of the phase-transition curve in Eq.(8.60) is displayed by

the black dashed line in Fig.8.2. The solid blue line in the figure shows the phase-transition
curve obtained by He et al. in Ref.[36], where they use a mean-field flavor SU(2) NJL
model. The green shaded area marked with ”LQCD” shows the phase-transition curve
obtained on the lattice by Brandt et al. in Ref.[27]. The green bar separates the BEC
phase from the normal phase at low temperatures and the BEC phase from QGP phase at
high temperatures, as indicated in the figure. The phase-transition curve obtained on the
lattice is almost vertical for temperatures up to ∼ 150 MeV, and then suddenly flattens
out to make the curve attain a scythe-like shape. We observe that the mean-field NJL
phase-transition curve is in quite good agreement with LQCD data up to T ≈ 100 MeV,
and then starts to display a more pronounced temperature dependence.

The T
3
2 behavior of the low-temperature approximation is in quite good agreement

with the NJL model result at very low temperatures. It is, however, not in very good
agreement with the LQCD result in any part of the phase-plane. We pay no attention to
the high-temperature behavior of the black curve, as the low-temperature approximation
is doomed to fail long before we even get close to the deconfinement crossover.

We have included a plot of the assumptions underlying the analytical χPT calculation
in Fig.8.3, to gain a deeper insight into the region of validity for the result in Eq.(8.60).
The red curve shows the normalized critical temperature T

mπ
as a function of normalized

isospin chemical potential, the blue curve shows µI−mπ

T as a function of normalized isospin
chemical potential, and the horizontal black curve y = 0.1 is a suggestive cutoff for the
validity of the assumptions. We observe that (µI −mπ) � T is a reasonable assumption
when the isospin chemical potential is smaller than µI ≈ 1.04mπ. The assumption that
T � mπ is, however, only seen to be somewhat satisfied when µI < 1.01mπ. The latter
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Figure 8.2: Isospin-temperature phase diagram for hadronic matter. The green shaded
area marked with LQCD shows the second-order phase-transition curve obtained in (2+1)-
flavor LQCD simulations by Brandt et al[27]. The solid blue line shows the mean-field
flavor SU(2) NJL-model result for the second-order phase-transition curve obtained in
Ref.[36] by He et al. The black dashed line shows the analytical low-temperature χPT
result in Eq.(8.60), see the text for more details. The shaded blue area is the chiral
crossover transition, connecting (0 MeV, 160 MeV) to the triple point (orange dot with
error bars) at approximately (140(10) MeV, 151(7) MeV). The chiral and BEC transitions
coincide beyond this point[27]. The shaded red area indicates a probable deconfinement
phase transition reported by Brandt et al, where they use the Polyakov loop as their
measure for deconfinement. The interested reader is referred to Refs.[27] and [91] for
further details about the phase diagram and the different curves. The figure is taken from
Ref.[91] with the author’s permission.
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T mπ

( μI -mπ ) T

Threshold
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0.3

0.4
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Figure 8.3: The figure shows the assumptions that we used to derive the analytical result
for the phase-transition curve in Eq.(8.60). The red curve shows the normalized critical
temperature T

mπ
as a function of normalized isospin chemical potential, and the blue curve

shows µI−mπ

T as a function of normalized isospin chemical potential. The black dashed
line provides a suggestive cutoff for the region of validity for the assumptions, see the text
for details.

observation implies that the analytical approximation in Eq.(8.60) can only be justified
for temperatures below 20 MeV.

Finally, inspired by Splittorf et al. we address the possibility of having a tricritical
point, (µtriI , T tri), which satisfies c2(µtriI , T tri) = c4(µ

tri
I , T

tri) = 0. Since µcI scales as T
3
2 ,

while the terms in the last line of Eq.(8.58) only scale as
√
T , we can perform a suggestive

low-temperature estimation of the hypothetical tricritcal point by substituting µI = mπ

into Eq.(8.58). Ignoring the second term in the last line of (8.58), which is small compared
to the first term, we obtain the following estimation,

T tri ≈ 2π3

ζ
(
1
2

)
− ζ

(
3
2

) [2f2m2

m4
π

+
1

3(4π)2
(
−3− 8l̄1 − 16l̄2 + 4l̄3 + 24l̄4

)]2
mπ ∼ mπ.

(8.61)

The result in Eq.(8.61) suggests that if a tricritical point exists, then it should be
located in a region of the phase-plane where the assumptions that we used to derive the
analytical approximation are no longer valid. This conclusion is in agreement with LQCD
data, which show no sign of a tricritical point.

8.4 Quark and Pion condensates
We will now return our focus to the full expression for the free energy given in Eq.(8.32)
and use it to generate the expressions for the pion condensate and the quark condensate
at finite temperature. We proceed to discuss the numerical approach that we employ to
determine the BEC-transition curve and whether the interpretation of α as an effective
order parameter is justifiable at finite temperature.
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Pion condensate

The pion condensate at finite temperature can be decomposed into a sum of the temperature-
independent contribution given in Eq.(7.27), and the temperature-dependent contribution
〈π+〉T given by,

〈π+〉T =
1

2

∂ΩT
∂j

. (8.62)

It follows from Eqs.(8.32)-(8.33) and Eq.(8.62) that the temperature-dependence of the
pion condensate can be written on the following form,
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where nB(x) denotes the Bose-Einstein factor,

nB(x) ≡
1

eβx − 1
. (8.64)

By first substituting the source-dependent masses given in Eqs.(7.11)-(7.13) into the ex-
pressions for the dispersion relations in Eqs.(4.27)-(4.28), and then differentiate the source-
dependent dispersion relations with respect to j, we obtain,
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The final expression for the temperature-dependent contribution to the pion conden-
sate is obtained by substituting Eqs.(8.65)-(8.66) into Eq.(8.63). It follows that the pion
condensate at finite temperature can be written as,
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2
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, (8.67)

where the expression for 〈π+〉µI ,0 is given in Eq.(7.27).
The onset of pion condensation at finite temperature is characterized by the order

parameter in Eq.(8.67), whose magnitude changes from zero to nonzero at the onset. We
observe that a sudden change in 〈π+〉µI ,T can only be induced by a sudden change in
α, as long as µI and T are smoothly varying variables. We also notice that 〈π+〉µI ,T
vanishes when α = 0, while it is nonzero when α is nonzero. These observations justify
the employment of α as an effective order parameter at finite temperature.

The parameter α is determined by minimizing the renormalized free energy Ω given in
Eq.(8.33). The discussion in the preceding paragraph suggests that a change in αgs from
zero to a finite value, where αgs is defined by,

∂Ω

∂α

∣∣∣
αgs

= 0, (8.68)

signals a transition from the normal phase to the BEC phase. Our numerical result for
the transition curve is obtained by iterating over a range of values for T and µI for which
we solve Eq.(8.68) and subsequently check whether the solution is zero or nonzero. More
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specifically, we iterate over a list of values of T , and for each value of T we iterate over
an ordered list of values of µI where the first element is smaller than or equal to the zero-
temperature critical isospin chemical potential. The pair (µI , T ) is acknowledged as a
point on the phase-transition curve if the associated solution αgs is larger than a threshold
value. The order of the phase-transition at (µI , T ) is determined by checking whether
αgs changes continuously or discontinuously from zero to a finite value as we increase the
magnitude of the isospin chemical potential from µI − ε to µI + ε, where ε � µI . The
results are discussed in section 8.5.

Quark condensate

Similar to the pion condensate, the quark condensate may also be decomposed into a sum
of a temperature-independent contribution and a temperature-dependent contribution,
where the latter is given by,
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Differentiating the source-dependent dispersion relations with respect to mq, we obtain,
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It follows from Eqs.(8.69)-(8.71) that the next-to-leading order result for the chiral con-
densate at finite temperature and isospin chemical potential can be written as,
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where the expression for 〈ψ̄ψ〉µI ,0 is given in Eq.(7.29).
By comparing Eq.(8.67) with Eq.(8.72) we notice that the temperature dependent con-

tributions to the chiral condensate and the pion condensate satisfy the tree-level relation,〈
π+
〉
T
cosα =

〈
ψ̄ψ
〉
T
sinα. (8.73)

This allows us to extend the zero-temperature NLO relation in Eq.(7.35) to a finite-
temperature NLO relation on the same form,

〈ψ̄ψ〉µI ,T =
cosα

sinα
〈π+〉µI ,T − 16h1B

2
0mu. (8.74)

We observe that the magnitude of h1 in Eq.(8.74) parametrizes how bad the tree-level
relation

sinα〈ψ̄ψ〉µI ,T = cosα〈π+〉µI ,T (8.75)

is broken at next-to-leading order.
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8.5 Results: BEC transition and condensates

In this section, we present numerical results for the phase-transition curve µcI(T ) separating
the normal phase from the BEC phase. We obtain the phase-transition curve by studying
the behavior of the ansatz-parameter α, as discussed in the previous section. We compare
our results with the analytical low-temperature approximation in Eq.(8.60), and with the
NJL-model and LQCD results displayed in Fig.8.2.

In Fig.8.4 we plot data (red dots) from the full numerical calculation within χPT to
next-to-leading order, along with the analytical approximation in Eq.(8.60). The results
are in very good agreement when T ≤ 15 MeV, while there is clear tension for temperatures
higher than 20 MeV. This observation is consistent with our previous discussion concerning
the validity of the underlying assumptions of Eq.(8.60), where we concluded that the
analytical approximation only remains somewhat justifiable for temperatures lower than
20 MeV.

Numerical

Analytical

1.000 1.005 1.010 1.015 1.020
0

5

10

15

20

25

30

μI mπ

T
(M
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Figure 8.4: The figure shows the second-order phase-transition curve separating the
normal phase from the BEC phase at low temperatures. The black dashed line is the
analytical approximation derived from the effective Landau functional in section 8.3. The
red dots are data from the numerical calculation of full χPT to next-to-leading order.

To arrange for a fair visual comparison between our numerical calculation and the
results displayed in Fig.8.2, we plot our numerical data along with the analytical approx-
imation in Fig.8.5, while using a layout that is very similar to the layout in Fig.8.2. The
red dashed curve shows the numerical result, where we have used central values for the
phenomenological parameters. The black dashed line displayed in Figs.8.2 and 8.5 are
identical.

While the red and black curves in Fig.8.5 are indistinguishable at very low tempera-
tures, we observe a much more prominent deflection in the red curve compared to the black
curve at higher temperatures. This behavior is strikingly different from the NJL-model
and LQCD results displayed in Fig.8.2. The deflection in the red curve looks somewhat
similar to the deflection in the NJL-model result, with the deflection in the latter starting
at T ≈ 100 MeV, and the deflection in the former starting at T ≈ 20 MeV. Apart from
this, there does not seem to be any resemblance between our result and the established
NJL-model and LQCD results for the phase-transition curve.
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Figure 8.5: The figure shows the phase-transition curve separating the BEC phase from
the normal phase at low temperatures and the BEC phase from the QGP phase at high
temperatures. The black curve shows the analytical low-temperature approximation ob-
tained by Splittorff et al. in Ref.[111]. The red curve shows the numerical result for full
χPT to next-to-leading order. The layout of the figure is similar to the layout of Fig.8.2,
see the text for further details.
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Order of the phase-transition

Previously, we argued that the order of the phase transition can be determined by employ-
ing the solution to Eq.(8.68) αgs as an effective order parameter. We consider the region
of the phase plane displayed in Fig.8.5 and find that αgs changes continuously from zero
to nonzero as we cross the critical line, i.e., the red line in Fig.8.5. This behavior in αgs

signals that the phase-transition from the normal phase to the BEC phase is of second
order. Our findings are in agreement with the lattice study of Brandt et al., which unlike
Splittorff et al., do not obtain a tricritical point where the phase transition changes from
second to first order.

In Fig.8.6, we plot αgs as a function of the normalized isospin chemical potential while
keeping the temperature fixed. We observe that although the curves evolve very differently
at small isospin densities, they all seem to asymptote towards the same ground-state
configuration at high values of µI . We also observe a discontinuity in αgs when T = 100
MeV (the green curve) and T = 120 MeV (the black curve) occurring inside the pion-
condensed phase, which signals a discontinuous change in the ground-state configuration
on the Goldstone manifold. The discontinuities in α propagate into the expressions for
the pion condensate and the chiral condensate, which consequently become discontinuous
at the same points in the pion-condensed phase.

T=0 MeV

T=60 MeV

T=100 MeV

T=120 MeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

μI mπ

α
g
s

Figure 8.6: The figure shows αgs as a function of the normalized isospin chemical poten-
tial at fixed values for the temperature. The red line, the blue line, the green line and the
black line shows αgs(µI) for T = 0 MeV, T = 60 MeV, T = 100 MeV, and T = 120 MeV,
respectively.

To obtain a better understanding of this phenomenon, we plot the free energy as a
function of α at T = 120 MeV and with two different values for the normalized isospin
chemical potential in Fig.8.7. The magnitude of µI in the left frame is slightly smaller
than the isospin chemical potential µdI , for which we observe a discontinuity in the black
curve in Fig.8.6. Meanwhile, the magnitude of µI in the right frame is larger than µdI .

We observe that there is a competition between two local minima in the free energy,
which are indicated by red dots in Fig.8.7. The minimum to the left has evolved continu-
ously from being located at α = 0 in the normal phase to its current location on the α-axis
in the pion-condensed phase. Increasing the isospin chemical potential causes another lo-
cal minimum to appear, which is separated from the first one by a local maximum. When
the magnitude of the isospin chemical potential reaches µdI the new minimum becomes
the global minimum, leading to a discontinuity in αgs. This evolution is illustrated by
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(a) The red dot to the left indicates the global
minimum of the free energy as a function of α,
while the red dot to the right indicates a local
minimum.
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(b) The red dot to the left indicates a local min-
imum in the free energy as a function of α, while
the red dot to the right indicates a global mini-
mum.

Figure 8.7: The two panels display the free energy as a function of α at T = 120 MeV
and µI = 1.82mπ (left) and µI = 1.9mπ (right). The red dots indicate local minima in
the free energy.

the two panels in Fig. 8.7. The order of the phase transition is left unaffected since the
discontinuity in αgs occurs while the minimum to the left is located at a finite value for α.

We have checked that cranking up the temperature eventually causes the local mini-
mum to the right to become global while the local minimum to the left is still located at
α = 0, which makes the phase transition of first order. However, we do not discuss this
any further because it does not occur in a region of the phase plane where the validity of
χPT is expected to be reasonable.

8.5.1 Pion and quark condensates

In this section, we present results from our numerical calculations of Σψ̄ψ and Σπ+ at
finite temperature and vanishing pionic source. The temperature-dependent contributions
to the condensate deviations, Σψ̄ψ and Σπ+ , become increasingly oscillatory at higher
temperatures. We have not been able to handle the oscillations entirely, which is evident
in the plots. The issue is most significant in regions of the phase-plane where αgs vanishes.
The results for Σπ+ are therefore less affected than the results for Σψ̄ψ, since the magnitude
of 〈π+〉 is damped by a factor of sinα. We will direct the following discussion towards the
most stable regions of the phase plane, particularly when we discuss the results for Σψ̄ψ.

Quark-condensate deviation

In Fig.8.8, we plot Σψ̄ψ as a function of normalized isospin chemical potential while keeping
the temperature fixed. The values of T associated with the different curves are displayed in
the figure. We notice that the magnitude of Σψ̄ψ decreases as we crank up the temperature
in the vacuum µI = 0. This is consistent with the general expectation about a chiral
crossover transition at high temperatures, where the magnitude of

〈
ψ̄ψ
〉

is very small
(and vanish entirely in the chiral limit mu → 0).

We observe that the magnitude of Σψ̄ψ increases as we crank up the temperature in
the high-density regime in Fig.8.8. Generally speaking, one would expect that thermal
fluctuations should have the opposite effect on the magnitude of the chiral condensate,
i.e., make it smaller. It is unclear why this is not the case here.

Even though the temperature dependence of Σψ̄ψ in the high-density regime is un-
expected, we observe that the differences between the curves in Fig.8.8 decrease as we
go to very high values for the isospin chemical potential. This observation suggests that
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Figure 8.8: The figure shows Σψ̄ψ as a function of the normalized isospin chemical
potential at fixed values of the temperature. The red line, the blue line, the green line and
the black line shows αgs(µI) for T = 0 MeV, T = 60 MeV, T = 100 MeV, and T = 120
MeV, respectively.

finite-temperature effects become less important in the asymptotic (isospin) behavior of
Σψ̄ψ.

Pion-condensate deviation

In Fig.8.9, we plot Σπ+ as a function of the normalized isospin chemical potential while
keeping the temperature fixed. The result for T = 100 MeV suffers from the same numeri-
cal problem as the T = 100 MeV result for Σψ̄ψ in Fig.8.8, which cause the abrupt changes
in the green curves around µI ≈ 1.47mπ. Apart from this, we see that the numerical
results for Σπ+ are quite well behaved.
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T=100 MeV

T=120 MeV
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Figure 8.9: The figure shows Σπ+ as a function of the normalized isospin chemical
potential at fixed values of the temperature. The red line, the blue line, the green line
and the black line show αgs(µI) for T = 0 MeV, T = 60 MeV, T = 100 MeV, and T = 120
MeV, respectively.

The discontinuity in the ground state configuration αgs is recognized very clearly in
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the result for Σπ+ at T = 120 MeV (the black curve in Fig.8.9), which has a discontinuity
at the same location as the black curve in Fig.8.6. It is harder to recognize the impact
that the discontinuity in αgs at T = 100 MeV has on the result for Σπ+ at T = 100 MeV,
due to the numerical problem.

We observe that thermal fluctuations weaken the strength of the pion condensate
throughout the region of consideration in Fig.8.9. We also observe that the magnitude
of the pion condensate is increasing steadily as a function of µI at high isospin densities.
Finite-temperature effects are still quite significant in this region, and we observe a nearly
10% difference between the red curve and the black curve at µI = 3mπ.

A final remark on the chiral crossover

In Fig.8.8, we see that χPT at finite temperature and small isospin chemical potential,
µI � mπ, predicts the strength of the chiral condensate to become weaker as we crank up
the temperature. This observation motivated us to look for signs of the chiral crossover
in the regime where µI � mπ.

The pseudo-critical temperature Tpc depends on the criteria that we use to detect the
crossover transition. There are several different criteria that we may use, see for example
Ref.[127] for a discussion, which may yield different results for Tpc, but all reduce to the
same unique result in the chiral limit. Inspired by Brandt et al.’s choice, we decided to
use ∂2TΣψ̄ψ = 0 as our criterion. Our calculations of ∂2TΣψ̄ψ as a function of temperature
displayed a rather constant behavior at high temperatures, showing no sign of a crossover.

Over 30 years ago, Gerber and Leutwyler[90] used finite temperature χPT to estimate
the pseudo-critical temperature in the absence of chemical potentials, by performing a
low-temperature expansion of the chiral condensate to three loops. To obtain numerical
results they had to set a numerical value for hGL

1 , which they estimated in two different
ways; by using model arguments (see for example Appendix B in Ref.[22]), and by using
large Nc arguments, see Ref.[90] for details. They obtained a pseudo-critical temperature
Tc ≈ 190 MeV for nonzero quark masses to three loops, and a one-loop result that was
much higher. We performed the same analysis with our result for

〈
ψ̄ψ
〉

in Eq.(8.72) and
found that even changing the sign of hGL

1 and varying it over a large range of values,
leads to results well above 200 MeV. These observations indicate that two-flavor χPT is
unsuitable, at least to one loop, in the regime where the chiral crossover takes place.
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Chapter 9

Conclusions and outlook

9.1 Summary

In this thesis, we have studied the chiral condensate and the pion condensate at finite
isospin chemical potential within two-flavor chiral perturbation theory. We worked to
next-to-leading order in the low-energy expansion and investigated the cases of zero and
nonzero pionic source at vanishing temperature, and vanishing pionic source at finite
temperature. We also studied the phase-transition curve between the normal phase and
the BEC phase. Furthermore, we have discussed how to renormalize the quasi-particle
masses in the pion-condensed phase to one loop and considered the neutral mode and the
Goldstone mode in detail.

Quasi-particle masses

We identified all contributions to the self-energy of the neutral pion π0 in the pion-
condensed phase. We presented the expressions for the diagrams and discussed how to
isolate the divergent contributions from the loop integrals. We also obtained the Feynman
diagrams contributing to the self energy of the (rotated) π+ field and showed that it is a
massless Goldstone boson in the pion-condensed phase.

Condensates at zero temperature

We calculated the ground-state parameter α, the chiral condensate, and the pion conden-
sate at nonzero values for the pionic source at zero temperature. We used our results to
perform a qualitative comparison with recent (2+1)-flavor lattice QCD simulations and
found that the agreement becomes significantly better when we include next-to-leading or-
der corrections. Our results show that the rotation relation between the chiral condensate
and the pion-condensate in the pion-condensed phase is broken at next-to-leading order.

We also performed a calculation of the chiral and pion condensates at vanishing pionic
source. The results can gauge the accuracy of future LQCD simulations at vanishing
pionic source, a calculation that is currently challenging to perform.

Condensates at finite temperature

We extended the analysis of the free energy, the chiral condensate, and the pion condensate
to include finite-temperature effects. We performed calculations of the condensates while
keeping the temperature fixed, and analyzed the temperature dependence of the chiral and
the pion condensates. A complete analysis of the chiral condensate was not performed due
to difficulties with the numerical evaluations. We found that the χPT results are much
more sensitive to temperature fluctuations than the lattice results.
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As we increased the temperature, we found a new type of behavior in the density evo-
lution of the ground-state configuration. Instead of rotating smoothly on the Goldstone
manifold in the pion-condensed phase, the evolution of the ground-state configuration
changes discontinuously at some value for the isospin chemical potential at high temper-
atures. We showed that this behavior originates from the competition between two local
minima in the free energy at high temperatures.

The BEC transition

We calculated the phase-transition curve between the normal and the BEC phases numer-
ically by treating the ansatz-parameter α as an effective order parameter. We found that
thermal fluctuations have a significant impact on the phase-transition curve. Our result
is in good agreement with Splittorff et al.’s analytical low-temperature approximation in
Ref.[48] for temperatures below 20 MeV. However, it is in very poor agreement with the
SU(2) NJL-model result of He et al. presented in Ref.[36], the (2 + 1)-flavor lattice QCD
result of Brandt et al. presented in Ref.[27], the χM model result of Folkestad et al. pre-
sented in Ref.[133], and the Polyakov-loop quark-meson model result of Adhikari et al.
presented in Ref.[134]. All of the abovementioned studies find that the phase transition is
quite insensitive to thermal fluctuations for temperatures up to 100-160 MeV. Thus, finite-
temperature χPT at next-to-leading order predicts a very different phase-transition curve
between the normal and the BEC phases in the low-temperature regime, as well as the
high-temperature regime, compared to LQCD, NJL-model, χM-model, and Polyakov-loop
quark-meson model results.

9.2 Conclusion
We find that the rotated π+ field is massless when µI ≥ mπ at vanishing temperature,
which provides a non-trivial check of the consistency of χPT in the pion-condensed phase
beyond leading order. We obtain the chiral and pion condensates at finite pionic source and
vanishing temperature in χPT to next-to-leading order, which are in good agreement with
available lattice data. We also obtain the chiral and the pion condensates at vanishing
pionic source and zero temperature, which can be used to gauge the quality of future
LQCD calculations.

We find the agreement between LQCD and χPT at next-to-leading order to be sig-
nificantly worse at finite temperature compraed to zero temperature. Our results for the
phase-transition curve and the pion condensate disagree qualitatively with lattice results.
The result for the phase-transition curve is also in poor agreement with effective model
results.

9.3 Outlook
There are several ways to improve, continue, and extend the work presented in this thesis.
In the following, we summarize some possibilities.

Possible improvements

There are several ways to improve the work presented in this thesis. One step would
be to improve the numerical calculations of the chiral condensate at finite temperature.
Another step would be to calculate the neutral pion mass in the pion-condensed phase
using the correct value for α in the loop integrals. This would open up the possibility
for a new quantitative comparison between LQCD and χPT beyond leading order in the
pion-condensed phase.
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Calculate the phase-transition curve using the Goldstone boson

One may calculate the thermal π+ mass in the normal phase and use it to identify the
phase-transition curve separating the normal and the BEC phases. The condition mπ+ = 0
should provide a curve in the (µI , T )-phase plane which coincides with the BEC-transition
curve obtained in this thesis. Solving mπ+ = 0 for µI would therefore provide a non-trivial
check of our result. We have already obtained the relevant diagrams and expressions for
the self-energy of π+, which are presented in Appendix D. The remaining steps are to
calculate the thermal mass corrections from the loop propagators and implement the
result numerically.

Calculations in the normal phase are considerably easier to perform than calculations
in the pion-condensed phase, since α vanishes in the former phase. For this reason, we
only propose to perform the analysis in the normal phase even though we should obtain
the same result by performing the analysis in the pion-condensed phase, as long as the
phase transition remains second order.

Include an external axial vector field

In Ref.[42] Brandt et al. calculate an axial vector condensate σA = 1
2(ūγ0γ5d + d̄γ0γ5u)

on the lattice. By including the external axial vector field a0 in the χPT Lagrangian,
see Eq.(2.28), we may generate the axial vector condensate at finite isospin density and
compare results with the lattice. The tree-level calculation has been performed by Brauner
et al. in Ref.[135], but next-to-leading order corrections have not been considered yet.
We may also do this calculation for three-flavor χPT, which opens the possibility for a
new comparison between two-flavor χPT, three-flavor χPT and lattice QCD in the pion-
condensed phase.

To perform a fair comparison between two-flavor and three-flavor χPT we may consider
the large-ms limit,1 where three-flavor results should reduce to two-flavor results with
modified LECs. The large-ms limit allows us to use three-flavor LECs in the two-flavor
result and thereby avoid an unfair comparison due to the difference in precision and
uncertainty of two-flavor and three-flavor LECs. This procedure was first employed by
Adhikari et al. in Ref.[45] to fairly compare pressure, isospin density and energy density
results between two-flavor χPT, three-flavor χPT and LQCD.

1Here ms denotes the strange-quark mass.
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Appendix A

Conventions

• We use the Einstein summation convention, where repeated indices are summed over
unless otherwise stated.

• We employ natural units, where the reduced Planck constant h̄, the Boltzmann
constant kB and the speed of light c are all set to unity, h̄ = kB = c = 1.

• We choose the Minkowski metric signature gµν =diag(1,−1,−1,−1).

• We write n-momentum integrals1 in the MS scheme in d = n−2ε dimensions at zero
temperature as, ∫

k
≡
(eγΛ2

4π

)ε ∫ ddk

(2π)d
. (A.1)

• We write sum-integrals at finite temperature as,

1

β

∞∑
n=−∞

∫
k
≡
∑∫
K
. (A.2)

1n is set to four when we integrate over four-momentum and it is set to three when we integrate over
spatial momentum.
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Appendix B

Derivations of L2 and L4

In this Appendix we expand the χPT Lagrangian at nonzero isospin chemical potential in
the pion-fields πi.

We will be using the following parametrization of fluctuations around the ground state
on the Goldstone manifold,

Σ = Aα(UΣ0U)Aα, (B.1)

where,

Aα = cos
α

2
+ iτ1 sin

α

2
, (B.2)

Σ0 = 1, (B.3)

U = exp

(
i
πaτa
2f

)
. (B.4)

In the calculations that follow we make frequent use of the following trace relations,

Tr(τaτb) = 2δab,

Tr(τaτbτc) = 2iεabc,

Tr(τaτbτcτd) = 2(δabδcd − δacδbd + δadδbc),

Tr(τaτbτcτdτe) = 2i[εcdeδab + εabx(δxcδde − δxdδce + δxeδcd)],

which are easily derived from the (anti)commutation relations below,[τa
2
,
τb
2

]
= iεabc

τc
2
,{τa

2
,
τb
2

}
=

1

2
δab.

B.1 The LO Lagrangian
In this section we expand the LO Lagrangian to quartic order in the pion fields. The
LO Lagrangian was expanded to quadratic order in the pion fields in Ref.[Project thesis],
and the following derivation of the non-interaction terms is based on that work. The
derivation of the interaction terms at leading order, and the next-to-leading order terms
are not based on previous work.

The χPT Lagrangian at finite isospin chemical potential to order p2 reads,

L2 =
f2

4
Tr
[
∇µΣ†∇µΣ

]
+
f2m2

4
Tr
[
Σ+ Σ†

]
, (B.5)
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where the covariant derivatives are defined as,

∇µΣ = ∂µΣ− i[vµ,Σ], (B.6)
∇µΣ† = ∂µΣ

† − i[vµ,Σ†], (B.7)

where vµ = δµ0µI
τ3
2 .

Non-interaction terms

We begin by expanding Eq.(B.1) to quadratic order in the pion fields,

Σ =
(
cos

α

2
+ iτ1 sin

α

2

)(
1 +

i

f
πaτa −

1

2f2
πaτaπbτb + ...

)(
cos

α

2
+ iτ1 sin

α

2

)
, (B.8)

which gives,

Σ = cosα+ i sinατ1 +
iπa
f

cos2
α

2
τa −

iπa
f

sin2
α

2
(2δa1τ1 − τa)−

πa
f

sinαδa1

− πaπa
2f2

cos2
α

2
+
πaπa
2f2

sin2
α

2
− iπaπa

2f2
sinατ1. (B.9)

The static term in the leading-order Lagrangian is easily obtained from Eq.(B.9), and
reads,

f2m2

4
Tr
(
Σ+ Σ†

)
= f2m2 cosα−m2f sinαπ1 −

m2

2
cosα(π21 + π22 + π23). (B.10)

The kinetic term ∇µΣ†∇µΣ can be expanded as,

∇µΣ†∇µΣ = ∂µΣ†∂µΣ− i{(∂µΣ†)[vµ,Σ]− h.c}+ [vµ,Σ]†[vµ,Σ], (B.11)

where h.c denotes the Hermitian conjugate. We observe from Eq.(B.11) that it will be
easy to obtain the expression for ∇µΣ†∇µΣ once we have the appropriate expressions for
∂µΣ and [vµ,Σ].1 We use this observation in the following.

Differentiating Eq.(B.9) with respect to xµ yields,

∂µΣ =
i∂µπa
f

[
cos2

α

2
τa − sin2

α

2
(2δa1τ1 − τa) + i sinαδa1

]
+
∂µ(πaπa)

2f2

[
− cos2

α

2
+ sin2

α

2
− i sinατ1

]
, (B.12)

where the first line is linear in the pion fields and the second line is quadratic in the pion
fields. Using Eq.(B.12) we obtain,

f2

4
Tr
(
∂µΣ†∂µΣ

)
=

1

2
∂µπa∂µπa. (B.13)

This is just the canonical kinetic term that we obtain in the limit of vanishing isospin
chemical potential µI = 0.

It follows from Eq.(B.9) that [vµ,Σ] can be expanded as,

[vµ,Σ] = −δµ0µI sinατ2 + δµ0
µI
f

cos2
α

2
(π2τ1 − π1τ2)

+ 2δµ0
µIπ1
f

sin2
α

2
τ2 − iδµ0

µIπaπa
2f2

sinατ2 + ... (B.14)

1We will refer to these constituents as the building blocks.
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We use this expansion to obtain,

Tr{[vµ,Σ]†[vµ,Σ]} =
2

f2
µ2I cos(2α)π

2
1 +

2

f2
µ2I cos

2 απ22 −
2

f2
µ2I sin

2 απ23

+ 2µ2I sin
2 α+

4µ2I
f

cosα sinαπ1. (B.15)

By combining the expansions in Eq.(B.12) and Eq.(B.14) we obtain,

− iTr{(∂µΣ†)[vµ,Σ]− h.c} = 4

f
µI sinα∂0π2 +

4

f2
µI cosα(π1∂0π2 − π2∂0π1). (B.16)

Finally, by combining Eqs.(B.11), (B.13), (B.15) and (B.16) we obtain the leading-order
kinetic term to quadratic order in the pion fields,

f2

4
Tr
[
∇µΣ†∇µΣ

]
=

1

2
∂µπa∂µπa + fµI sinα∂0π2 + µI cosα(π1∂0π2 − π2∂0π1)

+
1

2
µ2I cos(2α)π

2
1 +

1

2
µ2I cos

2 απ22 −
1

2
µ2I sin

2 απ23 +
1

2
f2µ2I sin

2 α+ fµ2I cosα sinαπ1.

(B.17)

The terms in the leading-order Lagrangian L2 can be written on the conventional form
L2 = Lstatic2 + Llinear2 + Lquadratic2 + ... By adding Eq.(B.10) and Eq.(B.17) we obtain,

Lstatic2 = f2m2 cosα+
1

2
f2µ2I sin

2 α, (B.18)

Llinear2 = f(−m2 sinα+ µ2I cosα sinα)π1 + fµI sinα∂0π2, (B.19)

Lquadratic2 =
1

2
∂µπa∂µπa + µI cosα(π1∂0π2 − π2∂0π1)−

1

2
(m2 cosα− µ2I cos 2α)π21

− 1

2
(m2 cosα− µ2I cos2 α)π22 −

1

2
(m2 cosα+ µ2I sin

2 α)π23. (B.20)

Interaction terms

To obtain the cubic and quartic interaction terms from the leading-order Lagrangian, we
first need to expand Eq.(B.8) to quartic order in the pion fields. The relevant contribution
from Eq.(B.8) reads,(

cos
α

2
+ iτ1 sin

α

2

)(
− i

6f3
πaπbπcτaτbτc +

1

24f4
πaπbπcπdτaτbτcτd

)(
cos

α

2
+ iτ1 sin

α

2

)
,

which is equivalent to,

− i cosα

6f3
πaπaπbτb +

cosα

24f4
πaπaπbπb +

sinα

6f3
πaπaπ1 +

i sinα

24f4
πaπaπbπb. (B.21)

This expansion leads to the following contribution from the static part of the Lagrangian,

f2m2

4
Tr
(
Σ+ Σ†

)cubic
=
m2 sinα

6f
π1πaπa, (B.22)

f2m2

4
Tr
(
Σ+ Σ†

)quartic
=
m2 cosα

24f2
πaπaπbπb. (B.23)
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In order to obtain the contribution from the kinetic part of the Lagrangian, we have
to expand ∂µΣ and [vµ,Σ] to cubic and to quartic order in the pion fields, respectively.
The result can be written as,

∂µΣ
cubic =

1

6f3
∂µ(πaπaπc) (−i cosατc + sinαδ1c) , (B.24)

[vµ,Σ]
cubic = −iδµ0

µI
12f3

cosαπaπaπc[τ3, τc], (B.25)

[vµ,Σ]
quartic = iδµ0

µI
24f4

sinαπaπaπbπbτ2. (B.26)

By combining the expressions above with the expressions in Eq.(B.12) and Eq.(B.14), we
obtain the following equalities,

Tr{∂µΣ†∂µΣ}cubic = 0, (B.27)

Tr{∂µΣ†∂µΣ}quartic =
2

3f4
[πaπb∂

µπa∂µπb − πaπa∂µπb∂µπb] , (B.28)

−iTr{(∂µΣ†)[vµ,Σ]− h.c}cubic = −4µI sinα

f3
(
π21∂0π2 + π23∂0π2

)
, (B.29)

−iTr{(∂µΣ†)[vµ,Σ]− h.c}quartic = −4µI cosα

3f4
πaπa (π1∂0π2 − π2∂0π1) , (B.30)

Tr{[vµ,Σ]†[vµ,Σ]}cubic = −
8µ2I
3f3

sinα cosαπ1πaπa (B.31)

Tr{[vµ,Σ]†[vµ,Σ]}quartic = −
2µ2I
3f4

πaπa
(
π21 cos(2α) + cos2 απ22 − sin2 απ23

)
.

(B.32)

We combine the equations above with Eq.(B.11) to obtain the kinetic part of the La-
grangian, which we add to Eqs.(B.22)-(B.23), to obtain the final result for Lcubic2 and
Lquartic2 , which reads,

Lcubic2 =
(m2 − 4µ2I cosα) sinα

6f
π1πaπa −

µI sinα

f
[π21∂0π2 + π23∂0π2], (B.33)

Lquartic2 =
1

24f2
πaπa[(m

2 cosα− 4µ2I cos 2α)π
2
1 + (m2 cosα− 4µ2I cos

2 α)π22

+ (m2 cosα+ 4µ2I sin
2 α)π23]−

µI cosα

3f2
πaπa(π1∂0π2 − π2∂0π1)

+
1

6f2
[πaπb∂

µπa∂µπb − πaπa∂µπb∂µπb] . (B.34)

B.2 The NLO Lagrangian
In this section we expand the order-p4 Lagrangian to quadratic order in the pion fields.
If we ignore the WZW terms, then the two-flavor Lagrangian at order-p4 consists of ten
terms [22], with bare coupling constants l1 − l7 and h1 − h3. The terms that are relevant
to us in this thesis, can be written as follows,

L4 =
1

4
l1(Tr[∇µΣ†∇µΣ])2 + 1

4
l2Tr[∇µΣ†∇νΣ]Tr[∇µΣ†∇νΣ]

+
1

16
(l3 + l4)m

4(Tr[Σ + Σ†])2 +
1

8
l4m

2Tr[∇µΣ†∇µΣ]Tr[Σ + Σ†] + h1Tr
[
m4
]
, (B.35)

where we have used the notation in Ref.[90]. Here h1 is a contact term which in the present
context only contributes to the vacuum energy.
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The relevant terms in L4 are obtained by appropriate combinations of Tr[Σ + Σ†],
Tr[∇µΣ†∇µΣ] and Tr[∇µΣ†∇νΣ]. The first two expressions are given up to quadratic
order in Eq.(B.10) and Eq.(B.17), respectively. The last expression is obtained from the
following set of equations,

Tr[∇µΣ†∇νΣ] = Tr[∂µΣ
†∂νΣ]− iTr

[
∂µΣ[vν ,Σ

†] + [vµ,Σ
†]∂νΣ

]
+Tr{[vµ,Σ]†[vν ,Σ]}, (B.36)

Tr[∂µΣ
†∂νΣ] =

2

f2
∂µπa∂νπa, (B.37)

− iTr
[
∂µΣ[vν ,Σ

†] + [vµ,Σ
†]∂νΣ

†
]
=

2δν0
f

µI sinα∂µπ2

+
2δν0
f2

µI cosα(π1∂µπ2 − π2∂µπ1) + µ↔ ν, (B.38)

Tr{[vµ,Σ]†[vν ,Σ]} = δµ0δν0

( 2

f2
µ2I cos(2α)π

2
1 +

2

f2
µ2I cos

2 απ22

− 2

f2
µ2I sin

2 απ23 + 2µ2I sin
2 α+

4µ2I
f

cosα sinαπ1

)
. (B.39)

The static terms in the NLO Lagrangian Lstatic4 are obtained by substituting the static
parts of Tr

[
∇µΣ†∇µΣ

]
and Tr

(
Σ+ Σ†) into Eq.(B.35),

Lstatic4 = (l1 + l2)µ
4
I sin

4 α+ l4m
2µ2I cosα sin2 α+ (l3 + l4)m

4 cos2 α+ 2h1m
4. (B.40)

By substituting Eq.(B.10), (B.17), and (B.37)-(B.39) appropriately into Eq.(B.35) we
obtain the relevant linear and quadratic terms at next-to-leading order,2

Llinear4 =

[
4 (l1 + l2)

µ4I
f

sin3 α cosα+ l4
m2µ2I
f

(
2 sinα− 3 sin2 α

)
− (l3 + l4)

m4

f
sin 2α

]
π1

+

[
4 (l1 + l2)

µ3I
f

sin3 α+ l4
m2µI
f

sin 2α

]
∂0π2, (B.41)

and

Lquadratic4 = (l1 + l2)
2µ4I sin

2 α

f2
[
(1 + 2 cos(2α))π21 + cos2 απ22 − sin2 απ23

]
+ l1

4µ2I sin
2 α

f2
(∂0π2)

2 + l2
2µ2I sin

2 α

f2
(∂0π2)

2 + (l1 + l2)
4µ3I sinα sin(2α)

f2
[π1∂0π2 − π2∂0π1]

+ l1
2µ2I
f2

sin2 α(∂µπa)(∂
µπa) + l2

2µ2I
f2

sin2 α(∂0πa)
2 + l2

2µ2I
f2

sin2 α(∂µπ2)(∂
µπ2)

− (l3 + l4)
m4

f2
[
cos(2α)π21 + cos2 α(π22 + π23)

]
− l4

m2µI
f2

(cos2 α+ cos(2α))(π2∂0π1 − π1∂0π2)

+ l4
m2µ2I cosα

f2
[
(−5 + 9 cos(2α))π21 + (1 + 3 cos(2α))π22 − 6 sin2 απ23

]
+ l4

m2 cosα

f2
(∂µπa)(∂

µπa). (B.42)

2We have used partial integration, and Stokes’s theorem to write the terms on this particular form.
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B.3 The LO Lagrangian at finite pionic source
In this section we expand the leading-order Lagrangian at finite pionic source j to quadratic
order in the pion fields. The inclusion of the pionic source modifies Eq.(B.5) to,

L2 =
f2

4
Tr
[
∇µΣ†∇µΣ

]
+
f2

4
Tr
[
χ†Σ+ Σ†χ

]
, (B.43)

where χ = 2B0mq+2iB0jτ1 and the covariant derivative is the same as in Eq.(B.6). Using
2B0mq = m2 we rewrite the Lagrangian to

L2 = L02 − iB0j
f2

2
Tr
[
τ1Σ− Σ†τ1

]
, (B.44)

where L02 denotes the leading-order Lagrangian at zero pionic sources given in Eq.(B.5).
Using Eq.(B.8) and (anti)commutation relations between Pauli matrices we rewrite the
second term in Eq.(B.44) as,

−iB0j
f2

2
Tr
[
τ1Σ− Σ†τ1

]
= 2B0j

(
f2 sinα+ f cosαπ1 −

1

2
sinαπaπa

)
. (B.45)

Combining Eq.(B.44) and Eq.(B.45) with Eqs.(B.18)-(B.20) we obtain,

Lstatic2 = 2B0f
2(mq cosα+ j sinα) +

1

2
f2µ2I sin

2 α, (B.46)

Llinear2 = f(µ2I cosα sinα+ 2B0j cosα− 2B0mq sinα)π1 + fµI sinα∂0π2, (B.47)

Lquadratic2 =
1

2
∂µπa∂µπa + µI cosα(π1∂0π2 − π2∂0π1)−

1

2

(
−µ2I cos 2α

+2B0mq cosα+ 2B0j sinα)π
2
1 −

1

2

(
−µ2I cos2 α+ 2B0mq cosα+ 2B0j sinα

)
π22

− 1

2

(
µ2I sin

2 α+ 2B0mq cosα+ 2B0j sinα
)
π23. (B.48)

B.4 Lstatic
4 at finite pionic source

Since we are only interested in the static part of the Lagrangian at next-to-leading order
we start by performing the following substitution,

m2Tr
[
Σ+ Σ†

]
→ 8B0(mq cosα+ j sinα), (B.49)

into Eq.(B.35). Running through the arguments that led to Eq.(B.40) yields the following
result for the static Lagrangian at next-to-leading order at finite pionic source,

Lstatic4 = (l1 + l2)µ
4
I sin

4 α+ 2l4B0µ
2
I sin

2 α (mq cosα+ j sinα)

+ 4 (l3 + l4)B
2
0 (mq cosα+ j sinα)2 + 8h1B

2
0(m

2
q + j2). (B.50)
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Appendix C

Additional Derivations

C.1 Renormalizing the one-point function

In this section we renormalize the π1 one-point function Γ1 to next-to-leading order. We
will be denoting the O(p2+2n) contribution to the one-point function by Γ1

n.
The tree-level contribution to the one-point function is obtained from Eq.(4.16), and

reads,

Γ1
0 = if(−m2 sinα+ µ2I cosα sinα). (C.1)

Minimizing the leading-order free energy Ω0, given by Eq.(4.49), with respect to α gives,

∂Ω0

∂α
= m2 sinα− µ2I cosα sinα = 0. (C.2)

Comparing Eq.(C.1) with Eq.(C.2), we obtain,

Γ1
0 = −

i

f

∂Ω0

∂α
, (C.3)

so the one-point function vanishes at tree level.
The next-to-leading order contributions to the one-point function are obtained from

Eqs.(4.19) and (4.41), and are represented diagrammatically in Fig.C.1. We denote the
sum of the diagrams in the figure by Γ1

1.

4

Figure C.1: Diagrams contributing to the one-point function at next-to-leading order.
The first four diagrams are one-loop corrections derived from Lquartic2 , and the last diagram
is derived from Llinear4 .
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The sum of the diagrams (written in the order that they appear in Fig.C.1) reads,

Γ1
1 =

(4µ2I cosα−m2) sinα

6f

[
3

∫
k

k2 −m2
2

(k20 − E2
π+)(k

2
0 − E2

π−)
+

∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)

+

∫
k

1

k2 −m2
3

]
− 2m12µI sinα

f

∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)
+
i

f

[
4 (l1 + l2)µ

4
I sin

3 α cosα

+ l4m
2µ2I

(
2 sinα− 3 sin3 α

)
− (l3 + l4)m

4 sin 2α]. (C.4)

We notice from Eq.(C.1) and Eq.(C.4) that the one-point function Γ1 = Γ1
1 + Γ1

0 is pro-
portional to sinα, and therefore vanishes in the normal phase. We now proceed to show
that the one-point function also vanishes in the BEC phase.

The next-to-leading order contribution to the free energy, Ω1, can be written as,

Ω1 = Ωloop
1 +Ωstatic

1 =
1

2
(−i)

∫
k
log
(
−k2 +m2

3

)
+

1

2
(−i)

∫
k
log
[(
−k2 +m2

1

) (
−k2 +m2

2

)
−k20m2

12

]
− (l1 + l2)µ

4
I sin

4 α− l4m2µ2I cosα sin2 α− (l3 + l4)m
4 cos2 α. (C.5)

Comparing Eqs.(C.4) and (C.5) it is easy to see that the contribution to the one-point
function arising from Llinear4 can be written as,

Γ1
linear = −

i

f

∂Ωstatic
1

∂α
. (C.6)

We can rewrite the one-loop diagrams in Eq.(C.4) as,

(4µ2I cosα−m2) sinα

2f

∫
k

k2 −m2
2

(k20 − E2
π+)(k

2
0 − E2

π−)
=

1

2f

∫
k

(k2 −m2
2)
∂m2

1
∂α

(k20 − E2
π+)(k

2
0 − E2

π−)
, (C.7)

(4µ2I cosα−m2) sinα

6f

∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)
=

1

2f

∫
k

(k2 −m2
1)
∂m2

2
∂α

(k20 − E2
π+)(k

2
0 − E2

π−)

− sinα

3f
(µ2I cosα−m2)

∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)
, (C.8)

(4µ2I cosα−m2) sinα

6f

∫
k

1

k2 −m2
3

=
1

2f2

∫
k

∂m2
3

∂α

k2 −m2
3

− sinα

3f
(µ2I cosα−m2)

∫
k

1

k2 −m2
3

,

(C.9)

− 2m12µI sinα

f

∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)
=

1

2f

∫
k

k20
∂m2

12
∂α

(k20 − E2
π+)(k

2
0 − E2

π−)
. (C.10)

By comparing the expressions above with the expression for Ωloop
1 in Eq.(C.5), we find that

the sum of Eqs.(C.7)-(C.10), which we denote by Γ1
loop, can be written on the following

form,

Γ1
loop = − i

f

∂Ωloop
1

∂α
− sinα

3f
(µ2I cosα−m2)

[∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)
+

∫
k

1

k2 −m2
3

]
.

(C.11)

Adding Eqs.(C.3), (C.6) and (C.11) we obtain,

Γ1 = − i
f

∂Ω

∂α
− sinα

3f
(µ2I cosα−m2)

[∫
k

k2 −m2
1

(k20 − E2
π+)(k

2
0 − E2

π−)
+

∫
k

1

k2 −m2
3

]
, (C.12)

where Ω denotes the free-energy to next-to-leading order.
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C.2. Σ22(0) IN THE BEC PHASE

We have so far overlooked the fact that we have to evaluate vertex factors in one-loop
diagrams at the tree-level minimum cosα = m2

µ2I
, in order to work consistently to next-

to-leading order[44]. This means that one-loop contributions that can be written on the
following form,

∼ (µ2I cosα−m2)X, (C.13)

where the (µ2I cosα −m2)-factor arises from vertices, and X is a one-loop integral, only
have non-vanishing NNLO contributions in the pion-condensed phase. Thus, to working
order Eq.(C.12) reduces to the following in the BEC phase,

Γ1 = − i
f

∂Ω

∂α
= 0, (C.14)

where the last equality is the EoM for Ω.
The tadpole diagrams contributing to the quasi-particle masses mπ0 , mπ+ and mπ−

are proportional to the one-point function Γ1. Since we just showed that Γ1 vanishes to
working order, we conclude that the tadpole diagrams vanish as well.

C.2 Σ22(0) in the BEC phase
In this section we evaluate Σ22 at p2 = p0 = 0. The three diagrams in the third line of
Fig.[D.2], whose expressions are given by Eqs.(D.21)-(D.23), vanishes in this limit. The
sum of the remaining diagrams can be organized into the following form,

Σ22(0) = −
1

3f2
(−i)

∫
k

(k2 −m2
1)(k

2 −m2
2)−m2

12k
2
0

(k20 − E2
π+)(k

2
0 − E2

π−)

−
(m2 − µ2I cosα) cosα

3f2
(−i)

∫
k

k2 −m2
2

(k20 − E2
π+)(k

2
0 − E2

π−)
+

(−i)
∫
k

1

(k20 − E2
π+)(k

2
0 − E2

π−)

[
2k2

3f2
(m2 cosα− 4µ2I cos

2 α) +
m2

12

f2
k20

−
(
m2

1

2f2
+
m2

2

6f2

)(
m2 cosα− 4µ2I cos

2 α
)
−

(m2 − 4µ2I cosα)
2 sin2 α

(3f)2

]
+Σπ322(4π)(0) + Σπ2π222(2π)(0), (C.15)

where,

Σπ322(4π)(0) = −
1

6f2
(m2 cosα+ 2µ2I cos

2 α)(−i)
∫
k

1

k2 −m2
3

, (C.16)

Σπ2π222(2π)(0) = −4(l1 + l2)
µ4I sin

2 α cos2 α

f2
− l4

m2µ2I cosα

2f2
(1 + 3 cos 2α)

+ 2(l3 + l4)
m4 cos2 α

f2
. (C.17)

The integrand in the first line of Eq.(C.15) is one, so that integral vanishes in dimen-
sional regularization. The term in the second line of Eq.(C.15) is zero at next-to-leading
order, as we discussed in the paragraph leading to Eq.(C.13) in Appendix C.1. Comparing
Eq.(C.17) to the expression for the static part of the free energy at next-to-leading order
in Eq.(4.50), it is easy to see that,

Σπ2π222(2π)(0) =
1

f2
cosα

sinα

∂Ωstatic
1

∂α
(C.18)
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The remaing terms in Eq.(C.15) can be rewritten as follows,

2(m2 cosα− 4µ2I cos
2 α)

3f2
(−i)

∫
k

k2

(k20 − E2
π+)(k

2
0 − E2

π−)
= − 1

2f2

(cosα
sinα

)
(−i)

[
∫
k

k2
(
∂m2

1
∂α +

∂m2
2

∂α

)
(k20 − E2

π+)(k
2
0 − E2

π−)

− cosα

3f2
(m2 − µ2I cosα)(−i)

∫
k

k2

(k20 − E2
π+)(k

2
0 − E2

π−)
,

(C.19)

m2
12

f2
(−i)

∫
k

k20
(k20 − E2

π+)(k
2
0 − E2

π−)
= − 1

2f2

(cosα
sinα

)
(−i)

∫
k

k20
∂m2

12
∂α

(k20 − E2
π+)(k

2
0 − E2

π−)
,

(C.20)

−
[(

m2
1

2f2
+
m2

2

6f2

)(
m2 cosα− 4µ2I cos

2 α
)
+

(m2 − 4µ2I cosα)
2 sin2 α

(3f)2

]
(−i)∫

k

1

(k20 − E2
π+)(k

2
0 − E2

π−)
=

(−i)
2f2

∫
k

1

(k20 − E2
π+)(k

2
0 − E2

π−)

{[
m2

2

∂m2
1

∂α
+m2

1

∂m2
2

∂α

](cosα
sinα

)
+
2

3
(µ2I cosα−m2)

[(
µ2I cosα−m2

)(
cosα− 1

3

)
− 2µ2I cosα

]}
, (C.21)

− 1

6f2
(m2 cosα+ 2µ2I cos

2 α)(−i)
∫
k

1

k2 −m2
3

= − 1

2f2

(cosα
sinα

)
(−i)

∫
k

∂m2
3

∂α

(k20 − E2
π+)(k

2
0 − E2

π−)

+
2 cosα

3f2
(
µ2I cosα−m2

)
(−i)

∫
k

1

k2 −m2
3

. (C.22)

Adding Eqs.(C.18)-(C.22), and comparing the right-hand sides of Eqs.(C.19)-(C.22) to
∂Ωloop

1
∂α , we obtain,

Σ22(0) =
1

f2

(cosα
sinα

) ∂Ω1

∂α
+ ... (C.23)

where the omitted terms can be written on the same form as Eq.(C.13), and therefore
vanishes at NLO. Thus, to working order it is correct to write,

Σ22(0) =
1

f2

(cosα
sinα

) ∂Ω1

∂α
. (C.24)

C.3 Manipulation of sum-integrals

The author was not able to find a full derivation of how to get from Eq.(8.33) to Eq.(8.34)
in the literature, and has therefore included one here. We will, for the sake of generality,
perform the derivation at a finite spatial volume V = LxLyLz. Evaluating the infinite-
volume limit of the result will lead us to Eq.(8.34).

The sum-integral that we wish to evaluate, which we will denote by Π(m), reduces to
the following sum,

Π(m) =
1

βV

∑
l∈Z

log
(
k2 +m2

)
, (C.25)
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at finite volume. The finite volume and temperature-momentum k = (k0, ki) is given by
k0 =

2πl0
β and ki =

2πli
Li

.
The logarithm on right hand side of Eq.(C.25) can be expressed as,

ln
(
k2 +m2

)
= − ∂

∂α

1

(k2 +m2)α

∣∣∣
α=0

. (C.26)

We will need the Poisson sum formula in the following,∑
k′∈Z

g(k′) =
∑
n′∈Z
F{g(k)} =

∑
n′∈Z

∫
ddxg(x)e−2πixn′

, (C.27)

where F{g(k)} denotes the Fourier transform of the function g(k). The sums are four
dimensional, where n′ and k′ denotes n′ = (n′0, n

′
1, n

′
2, n

′
3) and k′ = (k′0, k

′
1, k

′
2, k

′
3), re-

spectively, with n′i, k
′
i ∈ Z. By choosing a new set of variables n = (βn′0, Lin

′
i) and

k = (
2πk′0
β ,

2πk′i
Li

), we may rewrite Eq.(C.27) as

1

βV

∑
k

f(k) =
∑
n

∫
ddx

(2π)d
f(x)e−ixn =

∑
n

∫
x
f(x)e−ixn, (C.28)

where f(x) = g
(
βx0
2π ,

Lixi
2π

)
. Notice that the sums are now over ”frequencies” and not Z.

By combining Eqs.(C.25), (C.26) and (C.28) we obtain,

Π(m) = − ∂

∂α

∑
n

∫
k

e−ikn

(k2 +m2)α

∣∣∣
α=0

. (C.29)

We rewrite the denominator as

1

(k2 +m2)α
=

1

Γ(α)

∫ ∞

0
dttα−1e−t(k

2+m2), (C.30)

so the momentum integral becomes Gaussian,

Π(m) = − ∂

∂α

∑
n

∫ ∞

0
dt

∫
k

tα−1

Γ(α)
e−t(k−

in
2t

)2−n2

4t
−tm2

. (C.31)

Evaluating the momentum integral, and the derivative with respect to α, using

lim
α→0

{
− ∂

∂α

tα − 1

Γ(α)

}
= −1

t
, (C.32)

we obtain,

Π(m) = −
∑
n

∫ ∞

0

e−tm
2

(4π)
d
2 t

d
2
+1
e−

n2

4t dt, (C.33)

which is the finite-volume result. Taking the infinite-volume limit V →∞ we obtain,

Π(m) =
∑∫
K
log
(
ω2
n +

~k2 +m2
)
= −

∑
n0

∫ ∞

0

dte−tm
2

(4π)
d
2 t

d
2
+1
e−

n2
0

4t

= −
∑
n∈Z

∫ ∞

0

dte−tm
2

(4π)
d
2 t

d
2
+1
e−

n2

4T2t . (C.34)
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We denote the temperature-independent part of Π arising from the n = 0 term in
Eq.(C.34) by Π0, and the remaining temperature-dependent part by ΠT . Integrating over
t in the temperature-independent part Π0 yields,

Π0(m) = −
∫ ∞

0

dte−tm
2

(4π)
d
2 t

d
2
+1

= −
Γ
(
−d

2

)
m2

(4π)
d
2

, (C.35)

which is equivalent to what we found in Eq.(4.57) in four dimensions. Comparing the
temperature-dependent part,

ΠT (m) = −2
∞∑
n=1

∫ ∞

0

dte−tm
2

(4π)
d
2 t

d
2
+1
e−

n2

4T2t , (C.36)

to the following integral representation of the modified Bessel function Kv(z),

Kv(z) =
1

2

(
1

2
z

)v ∫ ∞

0

dt

tv+1
e−t−

z2

4t , (C.37)

we obtain,

ΠT (m) =
22+

d
2

(4π)
d
2

(m2)d/4
∞∑
n=1

(
T 2

n2

) d
4

K d
2

(mn
T

)
. (C.38)

If we specialize to d = 4 dimensions, then the temperature-dependence of Π becomes,

ΠT (m) = −16m2T 2

(4π)2

∞∑
n=1

K2

(
mn
T

)
n2

. (C.39)

A small twist

The procedure above can be generalized quite easily to sums on the following form,

Π± =
1

βV

∑
k

log[(k0 ± ia)2 + kiki + b2], (C.40)

where a and b are independent of k. This leads to a result similar to Eq.(C.31), but with
the exponential replaced by,

exp

{
−t(ki −

ini
2t

)2 − n2i
4t
− ik0n0 − t(k0 ± ia)2 − tb2

}
. (C.41)

The integration over spatial momentum remains unaffected by this change, while the
integration over k0 produces a different result than the one in Eq.(C.33). If we substitute
k0 → k0 ∓ ia, then the exponential becomes,

exp

{
−t
(
k − in

2t

)2

− n2

4t
± n0a− tb2

}
. (C.42)

Comparing this expression to Eqs.(C.31) and (C.33), we find that,

Π± = −
∑
n

∫ ∞

0

e−tb
2
e±an0

(4π)
d
2 t

d
2
+1
e−

n2

4t dt, (C.43)
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In the expansion of the free energy in α we encounter sum-integrals, which take the
following form at finite volume,

Π =
∑
k

log[(k0 + ia)2 + kiki + b2][(k0 − ia)2 + kiki + b2]. (C.44)

Comparing Eq.(C.44) with Eq.(C.40) and Eq.(C.43) we see that,

Π = −2
∑
n

∫ ∞

0
cosh(an0)

e−tb
2
e−

n2

4t

(4π)
d
2 t

d
2
+1
dt. (C.45)

which in the infinite-volume limit V →∞ reduces to the following,

Π =
∑∫
K
log[(k0 + ia)2 + ~k2 + b2][(k0 − ia)2 + ~k2 + b2] =

− 2
∑
n∈Z

cosh
(an
T

)∫ ∞

0

e−tb
2
e−

n2

4T2t

(4π)
d
2 t

d
2
+1

dt. (C.46)

The t-dependence in the expression above is similar to the t-dependence in Eq.(C.34),
which implies that the temperature-dependent part can be written as,

ΠT =
22+

d
2

(4π)
d
2

(b2)d/4
∞∑
n=1

(
T 2

n2

) d
4

K d
2

(
bn

T

)
2 cosh

(an
T

)
. (C.47)

Specializing to d = 4 dimensions we finally get,

ΠT = −32b2T 2

(4π)2

∞∑
n=1

K2

(
bn
T

)
n2

cosh
(an
T

)
. (C.48)

C.4 Additional calculations
In this section we elaborate on how we get from Eq.(8.50) to Eq.(8.55), when we derive
the Landau functional in the text.

Using the expansions of a and b in α, see Eqs.(8.47)-(8.48) for details, we obtain,

b− a
T

= −µI −m
T

+
1

2T

[
µI +

m

2

(
µ2I −m2

m2

)]
α2 − 1

24T

[
m

2

(
4µ2I −m2

m2

)
− µI

]
α4

+O(α6) ≈ −µI −m
T

+
µI
2T

α2 − 1

48T

[
4µ2I −m2

m
− 2µI

]
α4 +O(α6). (C.49)

We notice that the coefficient in front of α2 is much bigger than the constant term, and
much bigger than the coefficient in front of α4.

It follows immediately from (8.48) that,

b
3
2 ≈ m

3
2

[
1 +

3

8

(
µ2I −m2

m2

)
α2 − 1
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(
4µ2I −m2

m2

)
α4

]
+O(α6). (C.50)

We notice that the coefficient in front of α2 is much smaller than m
3
2 , and also much

smaller than the coefficient in front of α2 in Eq.(C.49).
Using the expansion of the polylogarithm around z = 1, given in (8.53), we obtain the

following approximations,
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)
, (C.51)
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and,
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Li 7
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. (C.52)

By comparing the expansions above, in particular the magnitude of the different coef-
ficients, we conclude that,
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Appendix D

Charged mass eigenstates

In this appendix we present the Feynman diagrams that contribute to Σ11 and Σ22.

D.1 Σ11

− iΣ11(p
2, p0) = −i

[
Σπ111(4π)(p

2, p0) + Σπ211(4π)(p
2, p0) + Σπ311(4π)(p

2, p0) + Σπ1π211(4π)(p
2, p0)+

Σπ1π111(3π)(p
2, p0) + Σπ2π211(3π)(p

2, p0) + Σπ3π311(3π)(p
2, p0) + Σπ1π211(3π)(p

2, p0) + Σ
(π1π2)π1
11(3π) (p2, p0)+

Σ
(π1π2)π2
11(3π) (p2, p0) + Σ

(π1π2)(π2π1)
11(3π) (p2, p0) + Σ

(π1π2)(π1π2)
11(3π) (p2, p0) + Σπ1π111(2π)(p

2, p0)
]

(D.1)

4-vertex diagrams

Σπ111(4π) =
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2f2
(
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)
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∫
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Σπ211(4π) =
1
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2 α+ 2µ2I sin
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)
(−i)

∫
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Σπ311(4π) =
1

6f2
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m2 cosα− 2µ2I cos
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)
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∫
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1
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, (D.4)

Σπ1π211(4π) =
8µI cosα

3f2
m12(−i)

∫
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π+)(k
2
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, (D.5)

3-vertex diagrams
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2 sin2 α
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∫
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π+)(q
2
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(D.6)
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4

4

Figure D.1: π1 self-energy diagrams at O(p4). The first four diagrams are one-loop
corrections derived from Lquartic2 , the next eight diagrams are one-loop corrections derived
from Lcubic2 , and the last diagram in the fourth line is derived from Lquadratic4 . The tadpole
diagrams vanishes, since the one-point function is zero, as explained in Appendix C.1.
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Σπ2π211(3π) = −
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Counterterms
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D.2 Σ22

The expressions associated with the self-energy diagrams displayed in Fig.[D.2] are listed
below.

4

4

Figure D.2: π2 self-energy diagrams at O(p4). The first four diagrams are one-loop
corrections derived from Lquartic2 , the next five diagrams are one-loop corrections derived
from Lcubic2 , and the diagram in the fourth line is derived from Lquadratic4 . The tadpole
diagrams vanishes, since the one-point function is zero, as explained in Appendix C.1.
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4-vertex diagrams
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3-vertex diagrams
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Counterterms
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Appendix E

Integrals

In this Appendix we use dimensional regularization to evaluate a set of integrals that is
sufficient to determine the divergent part of Σ33. We begin by describing how the integrals
arise in the calculation of Σ33. We proceed to calculate a master integral in dimensional
regularization, which we make frequent use of in the derivations. We then present a set of
integrals that are sufficient to determine the divergent part of Σ33. Finally, we evaluate a
set of integrals that are sufficient to determine Σ33 in the limit where cosα = m2

π

µ2I
, which

we use in chapter 5.
In order to renormalize the quasi-particle masses we need to isolate the divergent parts

of the self-energy diagrams. The following series expansion is used to isolate the divergent
parts of the loop integrals,

1

(k20 − E2
π+)(k

2
0 − E2

π−)
=

1

(k20 − E2
1)(k

2
0 − E2

2)
+

m2
12k

2
0

(k20 − E2
1)

2(k20 − E2
2)

2

+
m4

12k
4
0

(k20 − E2
1)

3(k20 − E2
2)

3
+ ... (E.1)

It is rather straightforward to evaluate the integrals on the right-hand-side of the expansion
above by using Feynman parametrization. The price we have to pay is that the integrals
over the Feynman parameters can become highly non trivial.

We will make use of the following notation in this Appendix,

q ≡ p− k,

E1 ≡ ~k2 +m2
1,

E2 ≡ ~k2 +m2
2.

E.1 A master integral
In this section we evaluate the following Euclidean integral,∫

ddl

(2π)d
l2s

(l2 +∆)n
. (E.2)

This integral, along with the following replacements,1

lµlν ←→ l2

d
gµν , (E.3)

lµlν lρlσ ←→ (l2)2

d(d+ 2)
(gµνgρσ + gµρgνσ + gµσgνρ), (E.4)

1These replacements inside the integral are allowed by symmetry, and the formulas are easily verified
by contracting both sides with the metric tensor.
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will be sufficient to isolate the divergent parts of the integrals that follow in the next
section.

The integral in Eq.(E.2) with s = 0 or s = 1 is commonly used as an illustration of
how calculations in dimensional regularization work. The general case rely on the same
techniques, and we calculate it in the following.

The integral in Eq.(E.2) can be written as,∫
ddl

(2π)d
l2s

(l2 +∆)n
=

∫
dΩd
(2π)d

∫
dl
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, (E.5)

where Ωd denotes the surface area of a d-dimensional unit sphere,∫
Ωd =

2π
d
2

Γ
(
d
2

) . (E.6)

The second factor in Eq.(E.5) is,

∫
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(E.7)

where we performed the substitution x = ∆
l2+∆

in the second line. Using the definition of
the Beta function, ∫ 1

0
dxxα−1(1− x)β−1 = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
, (E.8)

we rewrite Eq.(E.7) as,
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(E.9)

The final result for the master integral is,

∫
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where we used that,

Γ(a+ b)

Γ(a)
=
a(a+ b− 1)!

a!
. (E.11)

Wick-rotating back to Minkowski space, we obtain the following result,
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or equivalently,
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(k2 −∆)n
=

(−1)n+si
(4π)

d
2

(
1

∆

)n−s− d
2 Γ
(
n− s− d

2

)
Γ
(
s+ d

2

)
Γ(n)Γ

(
d
2

) . (E.13)
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Combining Eq.(E.13) with Eqs.(E.3)-(E.4) we obtain some useful special cases,∫
ddk

(2π)d
1

(k2 −∆)n
=

(−1)ni
(4π)d/2

Γ(n− d
2)

Γ(n)

(
1

∆

)n− d
2

, (E.14)∫
ddk

(2π)d
kµkν

(k2 −∆)n
=

(−1)n−1i

(4π)d/2
gµν

2

Γ(n− d
2 − 1)

Γ(n)

(
1

∆

)n− d
2
−1

, (E.15)∫
ddk

(2π)d
kµkνkρkσ

(k2 −∆)n
=

(−1)ni
(4π)d/2

Γ(n− d
2 − 2)

Γ(n)

(
1

∆

)n− d
2
−2

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ).

(E.16)

E.2 Integrals in Σ33

In this section we present all the dimensionally regularized integrals that are needed to
renormalize the neutral-pion mass. We begin by presenting all the relevant integrals where
we treat α as a free parameter. We proceed to present the integrals that we used in the
calculation in chapter 5 where we fixed α by using the tree-level relation cosα = m2

π

µ2I
.2

4-vertex loop integrals∫
k

1

k2 −m2
1

=
im2

1

(4π)2

[
1

ε
+ 1 + log

Λ2

m2
1

]
, (E.17)

∫
k

k2

k2 −m2
1

=
im4

1

(4π)2

[
1

ε
+ 1 + log

Λ2

m2
1

]
, (E.18)

∫
k

k20
(k2 −m2

1)(k
2 −m2

2)
=

i

4(4π)2

[(
m2

1 +m2
2

)(1

ε
+

3

2

)
+

m4
1

m2
1 −m2

2

log
Λ2

m2
1

− m4
2

m2
1 −m2

2

log
Λ2

m2
2

]
, (E.19)

∫
k

k20
(k2 −m2

1)
2(k2 −m2

2)
=

i

4(4π)2

[
1

ε
+

1

2
+
m2

2(m
2
2 −m2

1)

(m2
1 −m2

2)
2

+
m2

1(m
2
1 − 2m2

2)

(m2
1 −m2

2)
2

log
Λ2

m2
1

+
m4

2

(m2
1 −m2

2)
2
log

Λ2

m2
2

]
, (E.20)

∫
k

k20k
2

(k2 −m2
1)

2(k2 −m2
2)

=
i

4(4π)2

[
(2m2

1 +m2
2)

(
1

ε
+

2

3

)
+

2m6
1

3(m2
1 −m2

2)
2

− 3m4
1m

2
2

2(m2
1 −m2

2)
2
+

5m6
2

6(m2
1 −m2

2)
2
+

2m6
1 − 3m4

1m
2
2

(m2
1 −m2

2)
2

log
Λ2

m2
1

+
m6

2

(m2
1 −m2

2)
2
log

Λ2

m2
2

]
, (E.21)

∫
k

k40
(k2 −m2

1)
2(k2 −m2

2)
2
=

i

8(4π)2

{
1

ε
+

1

6(m2
1 −m2

2)
3

[
5(m6

1 −m6
2)− 27m2

1m
2
2(m

2
1 −m2

2)

+6m4
1(m

2
1 − 3m2

2) log
Λ2

m2
1

− 6m4
2(m

2
2 − 3m2

1) log
Λ2

m2
2

]}
, (E.22)

2The tree-level relation for α should not be used in the loop integrals, as we have mentioned many times
already. However, we have decided to these integrals as well for the sake of completeness.
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∫
k

k40k
2

(k2 −m2
1)

3(k2 −m2
2)

2
=

3

8(4π)2

∫
dxdyδ(x+ y − 1)x2y

(
4

ε
− 1 + 4 log

Λ2

m2
1x+m2

2y

)
(E.23)

3-vertex loop integrals at p2 = m2
3

∫
k

1

(q2 −m2
3)(k

2 −m2
1)

=
i

(4π)2

[
1

ε
−
∫ 1

0
dxΘ(1− x)Θ(x) log

[
m2

1(1− x) +m2
3x

2
]]
,

(E.24)

∫
k

k20
(q2 −m2

3)(k
2 −m2

2)
=

i

2(4π)2

∫ [
(∆ + 2p20x

2)

(
1

ε
+ log

Λ2

∆

)
+∆

]
δ(x+ y − 1)dxdy,

(E.25)
where ∆ ≡ m2

3x
2 +m2

2y.

∫
k

k20
(q2 −m2

3)(k
2 −m2

1)(k
2 −m2

2)
=

i

2(4π)2

∫
δ(x+ y + z − 1)

[
1

ε
− 2p20x

2

∆

+ log
Λ2

∆

]
dxdydz, where ∆ ≡ m2

3x
2 +m2

1y +m2
2z. (E.26)

∫
k

k40
(q2 −m2

3)(k
2 −m2

1)(k
2 −m2

2)
2
=

i

(4π)2

∫
δ(x+ y + z − 1)z

[
3

4

(
1

ε
+ log

Λ2

∆

)
−3p20x

2

∆
+
p40x

4

∆2

]
dxdydz, where ∆ ≡ m2

3x
2 +m2

1y +m2
2z. (E.27)

4-vertex loop integrals at cosα = m2
π

µ2
I∫

k

k2 −m2
2

(k20 − E2
1)(k

2
0 − E2

2)
=

im2
1

(4π2)

[
1

ε
+ 1 + log

Λ2

m2
1

]
, (E.28)

∫
k

k20(k
2 −m2

2)

(k20 − E2
1)

2(k20 − E2
2)

2
=

i

4(4π)2

[
1

ε
+

1

2
+ log

Λ2

m2
1

]
, (E.29)

∫
k

k2(k2 −m2
2)

(k20 − E2
1)(k

2
0 − E2

2)
=

im4
1

(4π)2

[
1

ε
+ 1 + log

Λ2

m2
1

]
, (E.30)

∫
k

k20k
2(k2 −m2

2)

(k20 − E2
1)

2(k20 − E2
2)

2
=

im2
1

2(4π)2

[
1

ε
+ 1 + log

Λ2

m2
1

]
, (E.31)

∫
k

k40k
2(k2 −m2

2)

(k20 − E2
1)

3(k20 − E2
2)

3
=

i

8(4π)2

[
1

ε
+

1

3
+ log

Λ2

m2
1

]
, (E.32)
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∫
k

k2 −m2
1

(k20 − E2
1)(k

2
0 − E2

2)
= 0, (E.33)

∫
k

k20(k
2 −m2

1)

(k20 − E2
1)

2(k20 − E2
2)

2
=

i

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m2
1

]
, (E.34)

∫
k

k2(k2 −m2
1)

(k20 − E2
1)(k

2
0 − E2

2)
= 0, (E.35)

∫
k

k20k
2(k2 −m2

1)

(k20 − E2
1)

2(k20 − E2
2)

2
=

im2
1

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m2
1

]
, (E.36)

∫
k

k40k
2(k2 −m2

1)

(k20 − E2
1)

3(k20 − E2
2)

3
=

i

8(4π)2

[
1

ε
+

5

6
+ log

Λ2

m2
1

]
, (E.37)

∫
k

1

k2 −m2
3

=
im2

3

(4π)2

[
1

ε
+ 1 + log

Λ2

m2
3

]
(E.38)

∫
k

k20
(k20 − E2

1)(k
2
0 − E2

2)
=

im2
1

4(4π)2

[
1

ε
+

3

2
+ log

Λ2

m2
1

]
(E.39)

∫
k

k40
(k20 − E2

1)
2(k20 − E2

2)
2
=

i

8(4π)2

[
1

ε
+

5

6
+ log

Λ2

m2
1

]
(E.40)

3-vertex loop integrals when cosα = m2
π

µ2
I

and p2 = m2
3

∫
k

1

(q2 −m2
3)(k

2 −m2
1)

=
i

(4π)2

[
1

ε
−
∫ 1

0
dxΘ(1− x)Θ(x) log

[
m2

1(1− x) +m2
3x

2
]]

(E.41)

∫
k

k20
[q2 −m2

3]k
2
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i

(4π)2
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3

4
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1

ε
+
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3
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m2
3
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+
p20
3
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ε
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2

3
+ log

Λ2

m2
3
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∫
k

k40
(q2 −m2

3)(k
2 −m2

1)k
4
=

i

2(4π)2
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1

4ε

−
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0
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−3y

2
log

Λ2
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∆
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where ∆ ≡ m2
3x

2 +m2
1y.

∫
k

k20
k2(k2 −m2

1)(q
2 −m2

3)
=

i

(4π)2

[
1

4ε
− p20
m2

1

∫ 1

0
x2 log

(
m2
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3x
2

m2
3x

2
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+
1
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∫ 1

0
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]
(E.44)
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Appendix F

Code

In the following we provide the Mathematica routines used to minimize the free energy, ob-
tain the BEC transition curve and compute the chiral condensate and the pion condensate.
The code used for plotting is voluminous and not included.
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Masses

mj[a_, j_, m_] := (m) Cos[a] + j Sin[a];

mjbar[a_, j_, m_] := (m) Sin[a] - j Cos[a];

m1[a_, uI_, j_, m_, B_] := Sqrt[2 (B) mj[a, j, m] - uI^2 Cos[2 a]];

m2[a_, uI_, j_, m_, B_] := Sqrt[2 (B) mj[a, j, m] - uI^2 Cos[a]^2];

m3[a_, uI_, j_, m_, B_] := Sqrt[2 (B) mj[a, j, m] + uI^2 Sin[a]^2];

m12[a_, uI_] := 2 (uI) Cos[a];

m1b[a_, uI_, j_, m_, B_] := m3[a, uI, j, m, B];

m2b[a_, j_, m_, B_] := Sqrt2 B mj[a, j, m];

Spectrum

Ep[p_, a_, uI_, j_, m_, B_] :=

Sqrtp2 +
1

2
m1[a, uI, j, m, B]2 + m2[a, uI, j, m, B]2 + m12[a, uI]2 +

1

2
Sqrt4 p2 m12[a, uI]2 + m1[a, uI, j, m, B]2 + m2[a, uI, j, m, B]2 + m12[a, uI]2

2
-

4 m1[a, uI, j, m, B]2 m2[a, uI, j, m, B]2

Em[p_, a_, uI_, j_, m_, B_] := Sqrtp2 +

1

2
m1[a, uI, j, m, B]2 + m2[a, uI, j, m, B]2 + m12[a, uI]2 -

1

2
Sqrt4 p2 m12[a, uI]2 + m1[a, uI, j, m, B]2 + m2[a, uI, j, m, B]2 + m12[a, uI]2

2
-

4 m1[a, uI, j, m, B]2 m2[a, uI, j, m, B]2

E1[p_, a_, uI_, j_, m_, B_] := Sqrtp2 + m1b[a, uI, j, m, B]2

E2[p_, a_, uI_, j_, m_, B_] := Sqrtp2 + m2b[a, j, m, B]2

Printed by Wolfram Mathematica Student Edition
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Implementation of Free energy at zero temperature

Ftree

Vtreej[a_, uI_, j_, m_, B_] := -2 f^2 (B) mj[a, j, m] - 1  2 f^2 uI^2 Sin[a]^2

F1

VloopminusVfinj[a_, uI_, j_, m_, B_] :=

-1  4 Pi^2 3  2 - l3b + 4 l4b + Log2 B (m)  m2b[a, j, m, B]^2 +

2 Log2 B (m)  m3[a, uI, j, m, B]^2 B^2 mj[a, j, m]^2 -

1  4 Pi^2 1 + 2 l4b + 2 Log2 B (m)  m3[a, uI, j, m, B]^2

B mj[a, j, m] uI^2 Sin[a]^2 - 1  2 4 Pi^2

1  2 + 1  3 l1b + 2  3 l2b + Log2 B (m)  m3[a, uI, j, m, B]^2 uI^4 Sin[a]^4

Ffin
integrandj[p_, a_, uI_, j_, m_, B_] :=

1

2

4 π p2

2 π
3
Ep[p, a, uI, j, m, B] + Em[p, a, uI, j, m, B] -

E1[p, a, uI, j, m, B] + E2[p, a, uI, j, m, B];

Vfinj[a_, uI_, j_, m_, B_] := NIntegrate[integrandj[mp x, a, uI, j, m, B],

{x, 0, 400}, WorkingPrecision → 14, PrecisionGoal → 10, AccuracyGoal → 10];

Ftot

V1loopj[a_, uI_, j_, m_, B_] :=

Vtreej[a, uI, j, m, B] + VloopminusVfinj[a, uI, j, m, B] + Vfinj[a, uI, j, m, B];

Implementation of condensates at zero temperature

QuarkIntegrand[p_, a_, uI_, j_, m_, B_] :=

1

4

4 π p2

2 π
3
B Cos[a] 1  Ep[p, a, uI, j, m, B] 1 + m12[a, uI]^2 

Sqrt4 p^2 m12[a, uI]^2 + m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 +

m12[a, uI]^2^2 - 4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

1  Em[p, a, uI, j, m, B] 1 - m12[a, uI]^2  Sqrt4 p^2 m12[a, uI]^2 +

m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 + m12[a, uI]^2^2 -

4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 -

1  Sqrt[p^2 + m1b[a, uI, j, m, B]^2] - 1  Sqrt[p^2 + m2b[a, j, m, B]^2];

PionIntegrand[p_, a_, uI_, j_, m_, B_] :=

1

4

4 π p^2

2 π
3

B Sin[a] 1  Ep[p, a, uI, j, m, B] 1 + m12[a, uI]^2 

Sqrt4 p^2 m12[a, uI]^2 + m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 +

m12[a, uI]^2^2 - 4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

1  Em[p, a, uI, j, m, B] 1 - m12[a, uI]^2  Sqrt4 p^2 m12[a, uI]^2 +

m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 + m12[a, uI]^2^2 -

2     
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4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 -

1  Sqrt[p^2 + m1b[a, uI, j, m, B]^2] - 1  Sqrt[p^2 + m2b[a, j, m, B]^2];

quarkFin[a_, uI_, j_, m_, B_] := NIntegrate[QuarkIntegrand[x, a, uI, j, m, B],

{x, 0, 400 mp}, WorkingPrecision → 14, PrecisionGoal → 10, AccuracyGoal → 10];

pionFin[a_, uI_, j_, m_, B_] := NIntegrate[PionIntegrand[x, a, uI, j, m, B],

{x, 0, 400 mp}, WorkingPrecision → 14, PrecisionGoal → 10, AccuracyGoal → 10];

PCondminusPCondFin[a_, uI_, j_, m_, B_] :=

-f^2 (B) Sin[a] 1 + 1  4 Pi^2 -l3b + 4 l4b + Log2 B (m)  m2b[a, j, m, B]^2 +

2 Log2 B (m)  m3[a, uI, j, m, B]^2 B mj[a, j, m]  f^2 +

1  4 Pi^2 l4b + Log2 B (m)  m3[a, uI, j, m, B]^2 uI^2 Sin[a]^2  f^2;

QCondminusQCondFin[a_, uI_, j_, m_, B_] := -(B) Cos[a]

f^2 + 1  4 Pi^2 -l3b + 4 l4b + Log2 B (m)  m2b[a, j, m, B]^2 +

2 Log2 B (m)  m3[a, uI, j, m, B]^2 B mj[a, j, m] +

1  4 Pi^2 l4b + Log2 B (m)  m3[a, uI, j, m, B]^2 uI^2 Sin[a]^2;

Adjust j here

javg = 0;

FindMinimum for avg values and
build condensates at zero temperature

l1b = -0.4; l2b = 4.3; l3b = 2.9; l4b = 4.4;

mp = 131;

fp = 128  2 ;

m = 3.47;

f = 84.93420736769619;

mpn = 132.48844729503415;

B = (mpn)^2  2 m;

bLO = (mp)^2  2 m;

agslistLO = {};

agslist = {};

mulist = Table[x, {x, 0, 3.05 mp, 2}];

pionCondensateList = {};

quarkCondensateList = {};

pionCondensateListLO = {};

quarkCondensateListLO = {};

PrintProgressIndicatorDynamic
i

Length[mulist]
,

" ", Dynamic
i

Length[mulist]
// N

Fori = 1, i < Length[mulist] + 1, i++,

mu = mulist[[i]];

LOMin = a /. Last

    3

Printed by Wolfram Mathematica Student Edition
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FindMinimum-2 bLO mj[a, javg, m] - 1  2 mu^2 Sin[a]^2, a ≥ 0, a ≤
π

2
, {a};

sol = Table{a, Re[V1loopj[a, mu, javg, m, B]]}, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf = Interpolation[sol];

min = a /. LastFindMinimumsolf[a], a ≥ 0, a ≤
π

2
, {a};

PCondVal = -2 m  mp^2 fp^2

PCondminusPCondFin[min, mu, javg, m, B] + Re[pionFin[min, mu, javg, m, B]];

QCondVal = -2 m  mp^2 fp^2 QCondminusQCondFin[min, mu, javg, m, B] +

Re[quarkFin[min, mu, javg, m, B]] - QCondminusQCondFin[0, 0, 0, m, B] + 1;

AppendTo[agslist, {mu / mp, min}];

AppendTo[pionCondensateList, {mu / mp, PCondVal}];

AppendTo[quarkCondensateList, {mu / mp, QCondVal}];

AppendTopionCondensateListLO,

mu / mp, -2 m  mp^2 fp^2 -fp^2 bLO Sin[LOMin];

AppendToquarkCondensateListLO,

mu / mp, -2 m  mp^2 fp^2 -fp^2 bLO Cos[LOMin] + fp^2 bLO + 1;

AppendTo[agslistLO, {mu / mp, LOMin}]

(*Print[mu];*) // Quiet

FindMinimum for high values and
build condensates at zero temperature

l1b = -0.4 + 0.6; l2b = 4.3 + 0.1; l3b = 2.9 + 2.4; l4b = 4.4 + 0.2;

mpn = 136.9060408108898;

f = 86.53625497704442;

mp = 131 + 3;

fp = 128 + 3  2 ;

B = (mpn)^2  2 m; bLO = (mp)^2  2 m;

agslisthigh = {};

mulist = Table[x, {x, 0, 3.05 mp, 2}];

pionCondensateListhigh = {};

quarkCondensateListhigh = {};

PrintProgressIndicatorDynamic
i

Length[mulist]
,

" ", Dynamic
i

Length[mulist]
// N

Fori = 1, i < Length[mulist] + 1, i++,

mu = mulist[[i]];

sol = Table{a, Re[V1loopj[a, mu, javg, m, B]]}, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf = Interpolation[sol];

min = a /. LastFindMinimumsolf[a], a ≥ 0, a ≤
π

2
, {a};

PCondVal = -2 m  mp^2 fp^2

PCondminusPCondFin[min, mu, javg, m, B] + Re[pionFin[min, mu, javg, m, B]];

QCondVal = -2 m  mp^2 fp^2 QCondminusQCondFin[min, mu, javg, m, B] +

Re[quarkFin[min, mu, javg, m, B]] - QCondminusQCondFin[0, 0, 0, m, B] + 1;
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

AppendTo[agslisthigh, {mu / mp, min}];

AppendTo[pionCondensateListhigh, {mu / mp, PCondVal}];

AppendTo[quarkCondensateListhigh, {mu / mp, QCondVal}]

(*Print[mu];*) // Quiet

FindMinimum for lowvalues and
build condensates at zero temperature

l1b = -0.4 - 0.6; l2b = 4.3 - 0.1; l3b = 2.9 - 2.4; l4b = 4.4 - 0.2;

mpn = 128.24085879566127;

f = 83.29281307565242;

mp = 131 - 3;

fp = 128 - 3  2 ;

B = (mpn)^2  2 m;

bLO = (mp)^2  2 m;

agslistlow = {};

mulist = Table[x, {x, 0, 3.05 mp, 2}];

pionCondensateListlow = {};

quarkCondensateListlow = {};

PrintProgressIndicatorDynamic
i

Length[mulist]
,

" ", Dynamic
i

Length[mulist]
// N

Fori = 1, i < Length[mulist] + 1, i++,

mu = mulist[[i]];

sol = Table{a, Re[V1loopj[a, mu, javg, m, B]]}, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf = Interpolation[sol];

min = a /. LastFindMinimumsolf[a], a ≥ 0, a ≤
π

2
, {a};

PCondVal = -2 m  mp^2 fp^2

PCondminusPCondFin[min, mu, javg, m, B] + Re[pionFin[min, mu, javg, m, B]];

QCondVal = -2 m  mp^2 fp^2 QCondminusQCondFin[min, mu, javg, m, B] +

Re[quarkFin[min, mu, javg, m, B]] - QCondminusQCondFin[0, 0, 0, m, B] + 1;

AppendTo[agslistlow, {mu / mp, min}];

AppendTo[pionCondensateListlow, {mu / mp, PCondVal}];

AppendTo[quarkCondensateListlow, {mu / mp, QCondVal}]

(*Print[mu];*) // Quiet
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Finite temperature
nB[E_, T_] := 1  Exp[E / T] - 1

F_T

temperatureIntegrand[p_, a_, uI_, j_, m_, B_, T_] :=

4 π p2

2 π
3
T Log1 - Exp-E0[p, a, uI, j, m, B]  T + Log

1 - Exp-Ep[p, a, uI, j, m, B]  T + Log1 - Exp-Em[p, a, uI, j, m, B]  T;

VTemp[a_, uI_, j_, m_, B_, T_] :=

Re[NIntegrate[temperatureIntegrand[(x), a, uI, j, m, B, T], {x, 0, 100 mp},

WorkingPrecision → 20, PrecisionGoal → 20, AccuracyGoal → 20, MaxRecursion → 35]];

F_total

VtotjT[a_, uI_, j_, m_, B_, T_] := Re[Vtreej[a, uI, j, m, B] +

VloopminusVfinj[a, uI, j, m, B] + Vfinj[a, uI, j, m, B] + VTemp[a, uI, j, m, B, T]];

parameters
l1b = -0.4; l2b = 4.3; l3b = 2.9; l4b = 4.4;

mp = 131;

fp = 128  2 ;

m = 3.47;

f = 84.93420736769619;

mpn = 132.48844729503415;

B = (mpn)^2  2 m;

bLO = (mp)^2  2 m;

mp = 1; f = f  131;

fp = fp  131;
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Obtain bec transition curve
mulist = Table[x, {x, mp, 3 mp, 0.002 mp}];

temperaturelist = Table[x, {x, 8, 129, 4}];

becList = {{1, 0}};

threshold = 0.05;

PrintProgressIndicatorDynamic
t

Length[temperaturelist]
,

" ", Dynamic
t

Length[temperaturelist]
// N

PrintProgressIndicatorDynamic
i

Length[mulist]
, " ", Dynamic

i

Length[mulist]
// N

Fort = 1, t < Length[temperaturelist] + 1, t++,

T = temperaturelist[[t]];

Fori = 1, i < Length[mulist] + 1, i++,

mu = mulist[[i]];

sol =

Tablea, VtotjTa, mu, 0, m  131, B  131, T  131, a, 0,
π

5
,

1

100

π

5
 // Quiet;

solf = Interpolation[sol];

min = a /. LastFindMinimumsolf[a], a ≥ 0, a ≤
π

5
, {a, 0};

If[min > threshold, AppendTo[becList, {mu, (T)}]];

If[Length[becList] ⩵ t + 1, Break[]];

 // Quiet

Implementation of finite temperature condensates
QuarkIntegrandTemperature[p_, a_, uI_, j_, m_, B_, T_] :=

1

2

4 π p2

2 π
3
B Cos[a] nB[Ep[p, a, uI, j, m, B], T]  Ep[p, a, uI, j, m, B]

1 + m12[a, uI]^2  Sqrt4 p^2 m12[a, uI]^2 +

m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 + m12[a, uI]^2^2 -

4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

nB[Em[p, a, uI, j, m, B], T]  Em[p, a, uI, j, m, B] 1 - m12[a, uI]^2 

Sqrt4 p^2 m12[a, uI]^2 + m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 +

m12[a, uI]^2^2 - 4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

nB[E0[p, a, uI, j, m, B], T]  E0[p, a, uI, j, m, B];

PionIntegrandTemperature[p_, a_, uI_, j_, m_, B_, T_] :=

1

2

4 π p2

2 π
3
B Sin[a] nB[Ep[p, a, uI, j, m, B], T]  Ep[p, a, uI, j, m, B]

1 + m12[a, uI]^2  Sqrt4 p^2 m12[a, uI]^2 +

m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 + m12[a, uI]^2^2 -

4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

nB[Em[p, a, uI, j, m, B], T]  Em[p, a, uI, j, m, B] 1 - m12[a, uI]^2 

Sqrt4 p^2 m12[a, uI]^2 + m1[a, uI, j, m, B]^2 + m2[a, uI, j, m, B]^2 +

m12[a, uI]^2^2 - 4 m1[a, uI, j, m, B]^2 × m2[a, uI, j, m, B]^2 +

nB[E0[p, a, uI, j, m, B], T]  E0[p, a, uI, j, m, B];

    7

Printed by Wolfram Mathematica Student Edition

APPENDIX F. CODE

146



quarkFinTemp[a_, uI_, j_, m_, B_, T_] :=

NIntegrate[QuarkIntegrandTemperature[x, a, uI, j, m, B, T], {x, 0, 100 mp},

WorkingPrecision → 9, PrecisionGoal → 6, AccuracyGoal → 6, MaxRecursion → 4];

pionFinTemp[a_, uI_, j_, m_, B_, T_] :=

NIntegrate[PionIntegrandTemperature[x, a, uI, j, m, B, T], {x, 0, 100 mp},

WorkingPrecision → 10, PrecisionGoal → 10, AccuracyGoal → 10, MaxRecursion → 4];

PionCondT[a_, uI_, j_, m_, B_, T_] :=

Re[pionFinTemp[a, uI, j, m, B, T] + pionFin[a, uI, j, m, B]] +

PCondminusPCondFin[a, uI, j, m, B];

QuarkCondT[a_, uI_, j_, m_, B_, T_] :=

Re[quarkFinTemp[a, uI, j, m, B, T] + quarkFin[a, uI, j, m, B]] +

QCondminusQCondFin[a, uI, j, m, B];

PionCond0T[a_, uI_, j_, m_, B_] := Re[pionFin[a, uI, j, m, B]] +

PCondminusPCondFin[a, uI, j, m, B];

QuarkCond0T[a_, uI_, j_, m_, B_] := Re[quarkFin[a, uI, j, m, B]] +

QCondminusQCondFin[a, uI, j, m, B];

Generate condensates for 0, 60, 100, 120MeV
mp = 1;

mulist = Table[x, {x, mp, 3.06 mp, 0.01 mp}];

pionCondensateList0 = {};

quarkCondensateList0 = {};

pionCondensateList60 = {};

quarkCondensateList60 = {};

pionCondensateList100 = {};

quarkCondensateList100 = {};

pionCondensateList120 = {};

quarkCondensateList120 = {};

minlist0 = {};

minlist60 = {};

minlist100 = {};

minlist120 = {};

PrintProgressIndicatorDynamic
i

Length[mulist]
, " ", Dynamic

i

Length[mulist]
// N

Fori = 1, i < Length[mulist] + 1, i++,

mu = mulist[[i]];

sol0 = Tablea, Vtotja, mu, 0, m  131, B  131, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf0 = Interpolation[sol0];

min0 = a /. LastFindMinimumsolf0[a], a ≥ 0, a ≤
π

2
, {a, 0};

AppendTo[minlist0, {mu, min0}];

AppendTopionCondensateList0,

mu, -2 m  131  mp^2 fp^2 PionCond0Tmin0, mu, 0, m  131, B  131;

AppendToquarkCondensateList0,

mu, -2 m  131  mp^2 fp^2 QuarkCond0Tmin0, mu, 0, m  131, B  131 -

QCondminusQCondFin0, 0, 0, m  131, B  131 + 1;

sol60 =

8     
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Tablea, VtotjTa, mu, 0, m  131, B  131, 60  131, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf60 = Interpolation[sol60];

min60 = a /. LastFindMinimumsolf60[a], a ≥ 0, a ≤
π

2
, {a};

AppendTo[minlist60, {mu, min60}];

AppendTopionCondensateList60,

mu, -2 m  131  mp^2 fp^2 PionCondTmin60, mu, 0, m  131, B  131, 60  131;

AppendToquarkCondensateList60,

mu, -2 m  131  mp^2 fp^2 QuarkCondTmin60, mu, 0, m  131, B  131, 60  131 -

QCondminusQCondFin0, 0, 0, m  131, B  131 + 1;

sol120 =

Tablea, VtotjTa, mu, 0, m  131, B  131, 120  131, a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf120 = Interpolation[sol120];

min120first = a /. LastFindMinimumsolf120[a], a ≥ 0, a ≤
π

2
, {a, 0};

min120firstvalue = FindMinimumsolf120[a], a ≥ 0, a ≤
π

2
, {a, 0}[[1]];

min120second = a /. LastFindMinimumsolf120[a], a ≥ 0, a ≤
π

2
, {a, 1.5};

min120secondvalue = FindMinimumsolf120[a], a ≥ 0, a ≤
π

2
, {a, 1.5}[[1]];

min120 = If[min120secondvalue < min120firstvalue, min120second, min120first];

AppendTo[minlist120, {mu, min120}];

AppendTopionCondensateList120, mu,

-2 m  131  mp^2 fp^2 PionCondTmin120, mu, 0, m  131, B  131, 120  131;

AppendToquarkCondensateList120,

mu, -2 m  131  mp^2 fp^2 QuarkCondTmin120, mu, 0, m  131, B  131, 120  131 -

QCondminusQCondFin0, 0, 0, m  131, B  131 + 1;

sol100 = Tablea, VtotjTa, mu, 0, m  131, B  131, 100  131,

a, 0,
π

2
,

1

100

π

2
 // Quiet;

solf100 = Interpolation[sol100];

min100first = a /. LastFindMinimumsolf100[a], a ≥ 0, a ≤
π

2
, {a, 0};

min100firstvalue = FindMinimumsolf100[a], a ≥ 0, a ≤
π

2
, {a, 0}[[1]];

min100second = a /. LastFindMinimumsolf100[a], a ≥ 0, a ≤
π

2
, {a, 1.5};

min100secondvalue = FindMinimumsolf100[a], a ≥ 0, a ≤
π

2
, {a, 1.5}[[1]];

min100 = If[min100secondvalue < min100firstvalue, min100second, min100first];

AppendTo[minlist100, {mu, min100}];

AppendTopionCondensateList100, mu,

-2 m  131  mp^2 fp^2 PionCondTmin100, mu, 0, m  131, B  131, 100  131;

AppendToquarkCondensateList100,

mu, -2 m  131  mp^2 fp^2 QuarkCondTmin100, mu, 0, m  131, B  131, 100  131 -

QCondminusQCondFin0, 0, 0, m  131, B  131 + 1;

 //

Quiet
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