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Abstract

A parametric study of the Breit-Rosenthal correction between 199Hg and
other isotopes was done for the states 6s6p 3P1 and 3P2 with the parame-
ter δ〈r2n〉 (difference in mean squared radius of nuclear charge distribution)
in the range [−1 fm2, 1 fm2]. The electronic wave functions were calculated
with the multi-configuration Dirac-Hartree-Fock method using the General
Relativistic Atomic Structure Package 2018 where a two-parameter Fermi
model was used for the nuclear charge distribution. A linear fit Cδ〈rn〉 was
made with the results. The factor C was found to differ by approximately
1 % when a large expansion of configurations was used compared with the
minimal expansion. The value of the nuclear skin thickness was found to
have very little impact on C. C was found to be −0.1113 % fm−2 for 3P1 and
−0.1164 % fm−2 for 3P2.
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Unit System

The system of units used in this report is the Hartree atomic units. In this
system the following quantities are defined to be unity:

Electron mass me

Elementary charge e
Reduced Planck constant h̄
Inverse Coulomb constant 4πε0

Distances on the nuclear scale are measured in femtometer(fm).
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Chapter 1

Introduction

The nuclear magnetic moment of nuclei with short lifetimes can be found from
spectroscopic measurements of the electronic hyperfine structure when these
are compared to those obtained for a more stable reference nucleus for which
the magnetic moment is known. The calculations involved are associated with
the so-called hyperfine anomaly which introduces some uncertainty. Parts of
the uncertainty can be removed if the Breit-Rosenthal correction due to the
finite nuclear charge distribution is calculated. The project presented in this
report concerns a parametric study of the Breit-Rosenthal corrections for the
states 6s6p 3P1 and 3P2 between 199Hg and other isotopes. The aim of the
project was to estimate the contribution from the Breit-Rosenthal correction
to the hyperfine anomaly between unstable isotopes of Hg and the reference
isotope 199Hg.

Chapters 2 to 4 concern theoretical considerations of the concepts and
methods used in the project. Chapter 5 concerns computations of the elec-
tronic wave functions in the reference isotope 199Hg with use of the General
Relativistic Atomic Structure Package 2018. The experimentally measured
values of the hyperfine structure constants for the states 6s6p 3P1 and 3P2

were used in the determination of the wave functions. Chapter 6 concerns
the parametric study where the method developed for 199Hg was used to cal-
culate the wave functions with different nuclear radii to model the difference
between isotopes. Conclusions based on the results of the study are presented
in chapter 7.
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Chapter 2

Nuclear Magnetic Dipole
Moment

An atomic nucleus possesses a magnetic dipole moment from the spin of the
protons and neutrons, and the orbital angular momentum of the protons.

In classical electromagnetism, the magnetic dipole moment ~µ of a system
consisting of a particle with charge q and mass m moving relative to a specific
axis is related to its angular momentum ~l by

~µ =
q

2m
~l = γ~l, (2.1)

where γ ≡ q
2m

is the gyromagnetic ratio for the classical system. An example
of such a system is presented in Figure 2.1.

In the quantum mechanical description, the nucleus is described by a state
vector |ψn〉. For a free nucleus the total angular momentum is conserved and
the nuclear state can be described in terms of stationary eigenstates |Iπ,MI〉
[4, p. 67] of the square of the nuclear angular momentum operator ~̂I2 with
eigenvalue I(I+1) and the nuclear angular momentum projection operator Îz
with eigenvalue MI , where I ∈ {0, 1/2, 1, . . .} and MI ∈ {−I,−I + 1, . . . , I}.
The angular momentum eigenstates have parity π = ±1.

The nuclear magnetic moment is described by a sum over the magnetic
moment operators for the nucleons. The connection between a nucleonic
angular momentum and the resulting magnetic moment is analogous to the
classical system in that they are proportional but with a so-called g-factor
multiplied with the classical gyromagnetic ratio to account for anomalies.
The nuclear magnetic moment operator becomes [4, p. 75]

10



q

~µ

Figure 2.1: Schematic of a particle with charge q moving in a circular motion.
According to classical electromagnetism, the system possesses a magnetic
dipole moment ~µ = q~l/2m, where ~l is the angular momentum of the particle
w.r.t. the axis through the center of the circle, normal to the plane of motion,
and m is the mass of the particle.

~̂µ =
A∑
i=1

gliµN
~̂li + gsiµN ~̂si. (2.2)

The summation is over the A nucleons where the orbital g-factors gli are 1
for protons and 0 for neutrons, and the spin g-factors gsi are approximately

5.5856 for free protons and −3.8263 for free neutrons [4, p. 66]. ~̂li and ~̂si are
the orbital angular momentum and spin operators for nucleon i. µN is the
nuclear magneton which is a dimensionless quantity with a value of approx-
imately 2.7231 · 10−4 in the Hartree atomic unit system and is analogous to
the classical gyromagnetic ratio in equation 2.1 for the proton.

The magnetic moment µI of a nucleus that is described by a state with
angular momentum quantum number I is the largest expectation value of
the projection of the magnetic moment operator along a specific z-axis and
is defined as [4, p. 75]

µI = 〈I,MI = I|µ̂z|I,MI = I〉 = gIµNI, (2.3)

which also defines the nuclear g-factor gI .
In the ground state, pairs of protons and pairs of neutrons tend to align

with opposite angular momenta. Even numbers of nucleons of the same type
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therefore give net contributions of 0 to the magnetic moment. The nuclear
magnetic moment can then be assumed to result from the unpaired proton
and/or neutron in nuclei where the magnetic moment is non-zero. Theo-
retical models such as the Schmidt model can be used to make predictions
of the factor gI [18]. However, the theoretically predicted values may not
be sufficiently accurate for all types of applications where the value of the
nuclear magnetic moment is needed. Accurate measurements of the nuclear
magnetic moment is then necessary to provide this information.

Different techniques exist for measuring the nuclear magnetic moment.
The conventional and most precise techniques like nuclear magnetic reso-
nance require some minimum lifetime of the nuclei for the measurements to
be carried out [24, pp. 12–28]. Some unstable nuclei have too short lifetimes
for these techniques to be used. The nuclear magnetic moment of these un-
stable nuclei can however be inferred by studying the energy spectrum of
the electronic system surrounding the nucleus with the use of spectroscopic
measurements.

The interactions between the electrons and electromagnetic multipole mo-
ments of the nucleus cause the atomic energy spectrum to differ somewhat
from that predicted using a point charge model for the nucleus. These correc-
tional interactions are small compared to the point charge Coulomb interac-
tions and they cause relatively small splittings of the energy levels obtained
in the point charge model. The energy corrections are typically less than
10 µeV [10, p. 17] which gives a factor of 10−5 compared to the typical en-
ergies with the point charge which are in the range of eV. The structure of
energy levels resulting from the interactions between the electrons and the
higher order electromagnetic multipole moments of the nucleus is known as
the hyperfine structure (hfs).
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Chapter 3

Hyperfine Structure

3.1 Electric Interaction

The electric interaction energy between an atomic nucleus and the surround-
ing electrons can in a semi-classical picture be described in terms of the
Hamiltonian operator

ĤE = −
N∑
i=1

Z∑
j=1

1

|~rj − ~ri|

= −
N∑
i=1

Z∑
j=1

∞∑
l=0

rl<
rl+1
>

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj)

= −
N∑
i=1

Z∑
j=1

[ 1

ri
+
( 1

rj
− 1

ri

)
Θ(rj − ri)

+
∞∑
l=1

rl<
rl+1
>

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj)

]
= −

N∑
i=1

Z

ri
+ Ĥ ′E, (3.1)

where the Laplace expansion in terms of the spherical harmonics Y m
l (θ, φ)

[8, p. 48] has been used for the inverse distance |~rj − ~ri|−1 between electron
i and proton j. r< and r> are the lesser and greater of the values ri = |~ri|
and rj = |~rj|. The sum is over the N electrons and Z protons of the atomic
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system. Θ(x) is the Heaviside step function. In the last line the Hamiltonian
has been separated into the point nucleus Coulomb potential, also known as
the electric monopole term, and a correction term Ĥ ′E. Since the correction
term is small compared to the monopole term, the energy corrections can
be approximated using first order perturbation theory where the zero-order
states are obtained as eigenstates of the Hamiltonian describing the atomic
system with a point charge nucleus. If |ψn〉 and |ψe〉 are the zero-order nuclear
and electronic states, respectively, the zero-order state of the atomic system
can be constructed as a direct product of the nuclear and electronic states
since the zero-order Hamiltonian is a sum of operators operating on either
the nuclear or the electronic subspaces. The first order energy correction
then becomes

〈ψe|〈ψn|Ĥ ′E|ψn〉|ψe〉 =−
N∑
i=1

Z∑
j=1

〈ψe|〈ψn|
[( 1

rj
− 1

ri

)
Θ(rj − ri) (3.2)

+
∞∑
l=1

rl<
rl+1
>

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj)

]
|ψn〉|ψe〉.

The first term in the correction operator Ĥ ′E is the monopole shift opera-
tor that results from the deviation of the potential energy from the monopole
term when electron i is closer to the atomic center than proton j. The energy
correction from the monopole shift can be estimated to first order as follows.

14



−
N∑
i=1

Z∑
j=1

〈ψe|〈ψn|
( 1

rj
− 1

ri

)
Θ(rj − ri)|ψn〉|ψe〉

=
N∑
i=1

Z∑
j=1

∫
d~ri

∫
d~rj
( 1

ri
− 1

rj

)
Θ(rj − ri)|ψi(~ri)|2|ψj(~rj)|2

≈
N∑
i=1

|ψi(0)|2
Z∑
j=1

∫
d~rjρj(~rj)

∫
d~ri
( 1

ri
− 1

rj

)
Θ(rj − ri)

= 4π
N∑
i=1

|ψi(0)|2
Z∑
j=1

∫
d~rjρj(~rj)

∫ rj

0

dri
(
ri −

r2i
rj

)
=

2π

3

N∑
i=1

|ψi(0)|2
Z∑
j=1

∫
d~rjρj(~rj)r

2
j

=
2π

3

N∑
i=1

|ψi(0)|2
∫
d~rr2

Z∑
j=1

ρj(~r)

=
2πZ〈r2n〉

3

N∑
i=1

|ψi(0)|2. (3.3)

Here |ψi(~ri)|2 is the absolute square of the part of the electronic state in
the space belonging to electron i and similarly with |ψj(~rj)|2 = ρj(~rj) for
the protons. 〈r2n〉 is the expectation value of the square of the radius of the
nuclear charge distribution, also known as the mean squared radius. The
approximation in line 3 can be done since the electronic wave functions are
nearly constant over the typical nuclear distances [6, p. 157]. It is seen from
this result that the monopole shift mostly affects electronic wave functions
that have a non-zero value at the atomic origin and that the energy correction
is proportional to the mean squared radius of the nuclear charge distribution.

3.1.1 Isotope Shift

An electronic energy level transition ν differs somewhat between different
isotopes. The difference δν1,2 between isotopes 1 and 2 is known as the
isotope shift and can be separated into a shift due to the difference in mass,
known as the mass shift (MS) and a shift due to the difference in charge
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distribution, known as the field shift (FS). The expression for the isotope
shift becomes [12]

δν1,2 = ν2 − ν1 = δνFS1,2 + δνMS
1,2 . (3.4)

For the investigations of the variation in the hfs among the isotopes only the
FS is relevant and the MS will not be discussed further.

To first order, the energy correction from the finite charge distribution is
proportional to the mean squared radius, as shown in equation 3.3. The first
order approximation to the FS is therefore proportional to the difference in
mean squared radius δ〈r2n〉1,2 between the isotopes. The significance of cor-
rections from higher order radial moments increases with the nuclear size
and can reach up to 10 % of the FS for the heaviest elements [12]. Deviation
from the first order approximation can be accounted for using a linear fit
kFδ〈r2n〉1,2, where the dimensionless factor k can be determined experimen-

tally and F = 2πZ∆ρe(0)/3. ∆ρe(0) =
∑N

i=1 ∆|ψi(0)| is the difference in the
electron charge density at the nuclear center between the states associated
with the electronic transition.

3.1.2 Higher Order Electric Interactions

The terms in the sum over l in Equation 3.2 are energy corrections from
interactions between the electrons and the higher order electric multipole
moments of the nucleus. When the nuclear state is an eigenstate |α; Iπ,MI〉
of the total angular momentum and parity operators, which is the case for
the ground state, the terms 〈α; Iπ,MI |Y m

l (θj, φj)|α; Iπ,MI〉 are 0 for odd l
since they are integrals over the unit sphere of functions of odd parity. Here,
α represents additional specifications for the nuclear state.

The typical distances from the atomic origin to the electrons are much
larger than those to the nucleons. The typical values of the factors rlj/r

l+1
i

therefore decrease rapidly as l increases. The term with l = 2 will then
be the dominant higher order correction. This term is associated with the
so-called electric quadrupole moment of the nucleus and is usually the only
higher order electric interaction that is considered in the study of the hfs.
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3.2 Magnetic Interaction

The magnetic interaction between the electrons and the nucleus can be de-
scribed in terms of the magnetic moment of the nucleons in the presence of
the magnetic flux density generated by the orbital motion and spin of the
electrons.

The magnetic flux density generated by the orbital motion can be ob-
tained in a semi-classical approach where the Biot-Savart law is used. The
current density operator of electron i is −δ3(~r−~ri)~̂pi, where ~̂pi is the momen-
tum operator. The resulting magnetic flux density at the position of nucleon
j due to the orbital motion of electron i is then

~̂Bl
ij = −µ0

4π

(~ri − ~rj)× ~̂pi
|~ri − ~rj|3

= −µ0

4π

~rij × ~̂pi
|~ri − ~rj|3

, (3.5)

where µ0 is the vacuum susceptibility and ~rij ≡ ~ri − ~rj.
The magnetic flux density at the position of nucleon j resulting from the

spin of electron i is given by the expression for the magnetic flux density
from a magnetic point dipole where the anomalous g-factor gs = 2.0023 . . .
can be used. The expression becomes [11]

~̂Bs
ij = −µ0

4π
gsµB

(3~̂rij(~̂rij · ~si)− ~si
|~ri − ~rj|3

+
8π

3
~̂siδ

3(~ri − ~rj)
)
, (3.6)

where ~̂rij is the unit vector in the direction of ~ri−~rj. µB is the Bohr magneton
which is dimensionless with the value 1/2 in the Hartree atomic unit system.

The energy associated with the magnetic interactions are described by
the Hamiltonian operator

ĤM =
N∑
i=1

A∑
j=1

−~̂µj · ( ~̂Bl
ij + ~̂Bs

ij)

=
N∑
i=1

A∑
j=1

µ0

4π
~̂µj ·

(~rij × ~̂pi + gsµB[3~̂rij(~̂rij · ~si)− ~si]
|~ri − ~rj|3

+
8πgsµB

3
~̂siδ

3(~ri − ~rj)
)
, (3.7)
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where ~̂µj is the magnetic moment operator for nucleon j from equation 2.2.
The factor |~ri − ~rj|−3 can be expressed as

1

|~ri − ~rj|3
= −~ri

r2i
· ∇i

1

|~ri − ~rj|
= − 1

ri
∂ri

1

|~ri − ~rj|
(3.8)

which, similarly to the case with the electric interaction, can be expressed
with the Laplace expansion as

−∂ri
ri

1

|~ri − ~rj|
= −∂ri

ri

∞∑
l=0

rl<
rl+1
>

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj)

≈ −∂ri
ri

∞∑
l=0

rlj

rl+1
i

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj)

=
∞∑
l=0

(l + 1)
rlj

rl+3
i

l∑
m=−l

Y m∗
l (θi, φi)Y

m
l (θj, φj). (3.9)

Here the approximation in line number 2 is based on the fact that the dis-
tances from the atomic center to the electrons mostly are larger than those
to the nucleons.

The terms with odd l in the first order energy correction from the mag-
netic interaction 〈ψe|〈ψn|ĤM |ψn〉|ψe〉 almost vanish due to parity of the nu-
clear state (the nuclear position vector ~rj in the numerator in equation 3.7
can give relatively small, non-vanishing contributions). The terms with even
l correspond to the interactions between the electrons and the odd magnetic
multipole moments since the magnetic moment and magnetic flux density
are (axial)vector-like quantities. Since the contributions from the different
magnetic multipole moments decrease rapidly with increasing values of l, the
term with l = 0 is usually the only term that is considered. This term is
associated with the magnetic dipole moment of the nucleus µI from equa-
tion 2.3 and can therefore be useful to obtain information about this quantity
experimentally.

3.2.1 Magnetic Point Dipole Approximation

The term ~rij × ~̂pi = ~̂li − ~rj × ~̂pi can be approximated by ~̂li in the first order

energy correction from the magnetic interactions since ~rj × ~̂pi for the most

18



part is significantly smaller than ~̂li while it also cancels out during integration
over the nuclear coordinates for a nuclear parity state. Similarly, the term
~rij(~rij · ~̂si) can be approximated with ~̂ri(~̂ri · ~̂si) where ~̂ri is the radial unit
vector for electron i (however, there will be terms squared in the nucleon
coordinates that do not vanish under integration of the nuclear coordinates).

Since the electronic wave functions are approximately constant over the
nuclear coordinates, the factor δ3(~ri − ~rj) in the so-called contact term can
be approximated with δ3(~ri). Using these approximations along with the
magnetic dipole term (l = 0) in the Laplace expansion, the resulting approx-
imate Hamiltonian describes a system where the nucleus is modeled with a
magnetic point dipole at the center and is given by

Ĥp.d. = −~̂µ · ~̂B (3.10)

=
µ0

4π
~̂µ ·

N∑
i=1

[ ~̂li
r3i

+
gsµB[3~̂ri(~̂ri · ~̂si)− ~̂si]

r3i
+

8πgsµB
3

~̂siδ
3(~ri)

]
,

where ~̂µ is the nuclear magnetic moment operator from equation 2.2 and ~̂B
is the operator for the magnetic flux density at the center of the nucleus
from the electrons. A simplified schematic of the point dipole interaction is
presented in Figure 3.1.

3.2.2 Magnetic Hyperfine Structure Constant

The magnetic dipole hyperfine interaction can be parameterized with the
magnetic hyperfine structure constant A [10, p. 18] as

Ĥhfs = A~̂I · ~̂J, (3.11)

where ~̂I and ~̂J are the total angular momentum operators for the nuclear
and electronic systems, respectively.

The total angular momentum operator for the atomic system is ~̂F =

~̂I + ~̂J . In a free atomic system the total angular momentum is conserved.
The system can then be described in terms of stationary eigenstates of the

operators ~̂F 2 and F̂z with the corresponding eigenvalues F (F + 1) with F ∈
{|I−J |, |I−J |+ 1, . . . , I+J} and MF ∈ {−F,−F + 1, . . . , F}, respectively.
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~µ

~s
~p

~r

Figure 3.1: Schematic of the magnetic interaction between the magnetic
moment of the nucleus, ~µ, and the spin ~s and motion with momentum ~p
of an electron. The light blue area represents the electron cloud and the
dark blue dot represents a point in the electron cloud at position ~r. The red
dot in the center represents the nucleus. Proportions in the sketch are not
accurate. The vectors are symbolic as the quantities ~µ, ~s and ~l = ~r×~p follow
the Heisenberg uncertainty principle.

These states can be expanded in terms of direct products of the angular
momentum eigenstates of the nuclear and electronic subsystems with the
Clebsch-Gordan (CG) expansion

|αJI;F,MF 〉 =
∑
MI

∑
MJ

CF,MF

MI ,MJ
|αn; I,MI〉|αe; J,MJ〉, (3.12)

where αn, αe and α represent the sets of additional quantum numbers de-
scribing the nuclear, electronic and total states, respectively. The factors
CF,MF

MI ,MJ
are known as the Clebsch-Gordan coefficients [8, p. 55]. The total

states are then also eigenstates of the operators ~̂I2 and ~̂J2 with eigenvalues
I(I + 1) and J(J + 1), respectively.

The operator ~̂F 2 can be expressed as

~̂F 2 = (~̂I+ ~̂J)2 = (~̂I2 + ~̂J2 + 2~̂I · ~̂J) = [I(I+ 1) +J(J + 1)] + 2~̂I · ~̂J = F (F + 1),
(3.13)

so that the operator Ĥhfs in equation 3.11 can be expressed as
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Figure 3.2: Energy level diagram for the hyperfine structure of 6s6p 3P2 in
199Hg from the magnetic dipole interaction.

A

2
(F (F + 1)− I(I + 1)− J(J + 1)) (3.14)

when operating on the total states.
The energy difference between two states with quantum numbers F and

F − 1 then becomes

∆EF,F−1 =
A

2
[F (F + 1)− (F − 1)F ] = AF, (3.15)

which determines how an energy level in the unperturbed system is split into
2 min(I, J) energy levels in the first order perturbation.

As an example, the hfs constant for the electronic state 6s6p 3P2 in 199Hg
has been experimentally measured to be 9066.6236(20) MHz [19]. This cor-
responds to an energy of approximately 37.5 µeV. The ground state of the
nucleus has angular momentum I = 1/2. With J = 2, the possible values of
F are 3/2 and 5/2. The energy level splitting corresponding to these two F
states are shown in Figure 3.2 where the middle line represents the energy
level of 6s6p 3P2 in the unperturbed system which has been set to 0 as a
reference energy in the diagram.

If F = MF = I + J , the only possible term in the CG expansion is
|αn; I, I〉|αe; J, J〉. If the electronic states and the nuclear magnetic mo-
ment are known, the hfs constant for the point dipole approximation can be
calculated by
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Ap.d. =
〈αe; J, J |〈αn; I, I|Ĥp.d.|αn; I, I〉|αe; J, J〉

IJ

=
µI
I

〈αe; J, J |B̂z|αe; J, J〉
J

= gIµN
〈αe; J, J |B̂z|αe; J, J〉

J
, (3.16)

where the definitions of the nuclear magnetic moment µI and nuclear g-factor
gI in equation 2.3 have been used and B̂z is the z component of the operator

~̂B in equation 3.10.

3.3 Hyperfine Anomaly

When considering a nuclear model with a point magnetic dipole moment,
the deviation of the hfs constant for a finite charge distribution from that
of a point charge is caused by deviations in the electronic wave functions
and is parameterized with the Breit-Rosenthal (BR) correction εBR [23, p.
2] defined by

Ap.d. = Ap(1 + εBR), (3.17)

where Ap is the hfs constant with a point charge nucleus.
Due to the finite distribution of the nuclear magnetic moment, the hfs

constant deviates from that of the point-dipole approximation. This devia-
tion is parameterized with the Bohr-Weisskopf (BW) correction εBW [23, p.
2] defined by

A = Ap.d.(1 + εBW ). (3.18)

The ratio between the hfs constants for the same electron configuration
in two different isotopes then becomes [23, p. 3]

A(1)

A(2)
=
g
(1)
I (1 + ε

(1)
BR)(1 + ε

(1)
BW )

g
(2)
I (1 + ε

(2)
BR)(1 + ε

(2)
BW )

≈ g
(1)
I

g
(2)
I

(1 + ε
(1)
BR − ε

(2)
BR + ε

(1)
BW − ε

(2)
BW )

=
g
(1)
I

g
(2)
I

(1 +1 ∆2
BR +1 ∆2

BW ) =
g
(1)
I

g
(2)
I

(1 +1 ∆2), (3.19)
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199∆195[%] −0.1470(9), [23, p. 14]
199∆197[%] −0.0778(7), [23, p. 14]
199∆201[%] −0.1467(6), [23, p. 14]

Table 3.1: Hyperfine anomaly between some isotopes of Hg with the elec-
tronic state 6s6p 3P1.

where the approximation can be done since the corrections are relatively
small. This defines the BR and BW contributions 1∆2

BR and 1∆2
BW to the

hyperfine anomaly 1∆2 between isotopes 1 and 2. The ratio with a reference
isotope is used since uncertainties in calculations of Ap.d. cancel [23, p. 2].
The value of the magnetic moment of an unstable nucleus can then be ob-
tained from that of a more stable isotope for which the magnetic moment
is known if the hyperfine anomaly is known. If the hyperfine anomaly is
not known, this would introduce an uncertainty for the calculation of the
unknown magnetic moment. Examples of the hyperfine anomalies between
199Hg and three different isotopes are shown in Table 3.1. The hyperfine
anomaly is typically on the order of 1 % or less, but can reach up to 10 % in
some cases [23].

The BR contribution can in principle be calculated with ab initio methods
using experimental data of the structure of the nuclear charge distribution.
Calculation of the BW contribution is often not possible due to the lack of
knowledge of the distribution of nuclear magnetization [23].

For most isotopes, the BR effect is considered to be negligible compared to
the BW effect. But for nuclei that are very similar the BR effect will dominate
[23]. In these cases the calculation of the BR effect could significantly reduce
the uncertainty associated with the hyperfine anomaly.

3.4 Computation of the Breit-Rosenthal Ef-

fect

The significance of the BR effect can be studied with computational ab ini-
tio methods such as the multi-configuration Dirac-Hartree-Fock (MCDHF)
method. By variation of the nuclear charge distribution for the potential
energy of the electrons, the corresponding variation in the calculated hfs
constant can be found for a point dipole approximation, as in equation 3.16.

23



The variation in nuclear charge distribution mostly affects only the s1/2
and p1/2 electrons since they are the only ones with a non-zero probability
density at the nuclear center, which is required for the nuclear charge dis-
tribution to perturb the states in a first order approximation as shown in
equation 3.3.

A calculation similar to the one for the monopole shift can be done to
estimate how the hfs constant will change when the nuclear charge distribu-
tion is varied. The first order corrections to the zero-order electronic state
|ψα〉 due to the monopole shift operator Ĥmps = (1/ri − 1/rj)Θ(rj − ri) is
given by

|ψα〉(1) =
∑
β 6=α

〈ψβ|Ĥmps|ψα〉
Eα − Eβ

|ψβ〉 ≈
∑
β 6=α

2πZ〈r2n〉
∑N

i=1 ψ
∗
β,i(0)ψα,i(0)

3(Eα − Eβ)
|ψβ〉

= 〈r2n〉
∑
β 6=α

cα,β|ψβ〉, (3.20)

where the summation index β represents zero-order electronic states for which
the matrix elements 〈ψβ|Ĥmps|ψα〉 are non-zero and that are different from
|ψα〉. Since the monopole shift is relatively small, the BR correction from
equation 3.18 can be approximated by

εBR =
Ap.d.
Ap
− 1

≈ 1

Ap
(〈ψα|+ 〈r2n〉

∑
β

c∗α,β〈ψβ|)
µI
I

~̂B

J
(|ψα〉+ 〈r2n〉

∑
β

cα,β|ψβ〉)− 1

≈ 1 +
〈r2n〉µI
IJAp

∑
β

(c∗α,β〈ψβ| ~̂B|ψα〉+ cα,β〈ψα| ~̂B|ψβ〉)− 1

=
〈r2n〉µI
IJAp

∑
β

2 Re(cα,β〈ψα| ~̂B|ψβ〉), (3.21)

where the restriction on the summation index β is the same as in equa-
tion 3.20.

It is then expected that the variation in the hfs constant is approximately
proportional to the variation in the mean squared radius of the nuclear charge
distribution. The BR effect is therefore expected to be nearly proportional
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to the difference in the mean squared radius of the charge distributions for
the two isotopes, similarly to the case for the isotope shift in section 3.1.1.
A linear fit on the form Cδ〈r2n〉 can therefore be used to approximate the BR
effect where the constant C can be determined with the MCDHF method for
different charge distributions.

25



Chapter 4

Multi-Configuration
Dirac-Hartree-Fock Method

The software package General Relativistic Atomic Structure Package 2018
(GRASP2018)[7] contains applications for calculations of electronic wave
functions in atomic systems with the MCDHF method as well as calcula-
tions of different atomic properties such as the hfs constant.

4.1 Relativistic Atomic Physics

The Dirac-Coulomb (DC) Hamiltonian operator is used to describe the atomic
system in which the Dirac Hamiltonian gives the kinetic and rest energies of
the electrons while the potential energy is accounted for in a semi-classical
manner with the attractive Coulomb potential between the electrons and a
static, spherically symmetric nuclear charge distribution, and the repulsive
Coulomb potential between the electrons. For a system of N electrons the
DC Hamiltonian takes the form

ĤDC =
N∑
i=1

[c~αi · ~̂pi + (β − I4)ic2 + V̂n(ri)] +
N∑
i=1

∑
j>i

1

rij
.

Here αki and βi are the 4×4 Dirac matrices
[

0 σk
σk 0

]
i
and

[
I2 0
0 −I2

]
i
operating on

the subspace of electron i. ~̂pi is the momentum operator for electron i. V̂n(ri)
is the potential from a spherically symmetric nuclear charge distribution,
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where ri is the distance from the nuclear center to electron i. rij = |~ri−~rj| is
the distance between electrons i and j. c is the speed of light. The rest energy
for each electron has been subtracted from the original Dirac Hamiltonian.

An approximation to the DC Hamiltonian can be made by assuming that
the potential energy from the interactions between the electrons can be ap-
proximated with a spherically symmetric potential that for each electron is
the average of the potential in the presence of the other electrons. This is
known as the central field (CF) approximation and the approximate Hamil-
tonian becomes

ĤCF =
N∑
i=1

c~αi · ~̂pi + (β − I4)ic2 + V̂i(ri).

The CF Hamiltonian is a sum over operators where each term acts on the
subspace of one electron only. Therefore the eigenvalue equation

ĤCF |ψ〉 = E|ψ〉

has solutions that can be constructed as direct products of solutions to the
one electron eigenvalue equations

[c~αi · ~̂pi + (β − I4)ic2 + V̂i(ri)]|ψi〉 = Ei|ψi〉 (4.1)

with eigenvalues E =
∑N

i=1Ei since

ĤCF |ψ1〉 . . . |ψN〉 =
N∑
i=1

Ei|ψ1〉 . . . |ψN〉 = E|ψ1〉 . . . |ψN〉.

Using spherical coordinates, the kinetic energy term c~α·~̂p can be expressed
as [20, p. 136]

c~α · ~̂p = −icσr(∂r +
K̂ + 1

r
),

where σr = ~σ · ~er and ~er is the radial unit vector. The eigenfunctions of the

operator K̂ = −(1 + ~σ · ~̂l) are the spherical spinors χmκ with corresponding

27



eigenvalues κ. The spherical spinors are coupled direct products of Pauli
spinors and spherical harmonics. They are therefore also eigenfunctions of the

squared angular momentum operators ~̂j2, ~̂l2, ~̂s2 and the projection operator

ĵz where ~̂j = ~̂l + ~̂s. The corresponding eigenvalues are j(j + 1), l(l + 1),
s(s + 1) and m where j ∈ {1/2, 3/2, . . .}, l ∈ {0, 1, . . .}, s = 1/2 and m ∈
{−j,−j + 1, . . . , j}. Since ~̂σ · ~̂l = 2~̂l · ~̂s the eigenvalues κ are given by

κ = −(1 + j(j + 1)− l(l + 1)− 3

4
) = −j(j + 1) + l(l + 1)− 1

4

=

{
−(j + 1

2
) for j = l + 1

2

(j + 1
2
) for j = l − 1

2

. (4.2)

Both the operators K̂ and ĵz are Hermitian and so the spherical spinors
must satisfy the orthonormality condition 〈χmκ |χm

′

κ′ 〉 = δκ,κ′δm,m′ for proper
normalization factors.

Using the properties of the spherical spinors and that σr|χmκ 〉 = −|χm−κ〉
[20, p. 135], the one-electron wave functions on the form

ψm
nκ(ri, θi, φi) = [

Pnκ(ri)

ri
χmκ (θi, φi),

Qnκ(ri)

ri
χm−κ(θi, φi)]

T (4.3)

will solve equation 4.1 if the radial factors solve the resulting pair of radial
equations

V̂i(ri)Pnκ(ri)− c(∂ri −
κ

ri
)Qnκ(ri) = EnκPnκ(ri) (4.3a)

c(∂ri +
κ

ri
)Pnκ(ri) + (V̂i(ri)− 2c2)Qnκ(ri) = EnκQnκ(ri) (4.3b)

since the spherical spinors factor out. The functions Pnκ(ri) and Qnκ(ri) are
known as the large and small components, respectively, since in the non-
relativistic limit Qnκ(ri)/Pnκ(ri) ≈ p/2c, where p is the momentum of the
electron.

In the case where the interactions between the electrons are neglected,
the pair of equations reduces to the one for the hydrogen-like ion for which
the possible radial functions for each value of κ are labeled by the principal
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quantum number n. In the CF approximation the potential function can be
viewed as a hydrogenlike potential with a screening parameter that varies
along the radial axis and the solutions can be viewed as hydrogenic solutions
that are scaled along the radial axis according to the screening and so the
same labeling of the possible solutions can be used where the radial functions
have the same number of nodes as in the hydrogenic case.

Each energy level Enκ is (2j + 1)-fold degenerate due to the possible val-
ues of the quantum number m. Each label {nκ} gives rise to a so-called
subshell that contains 2j+ 1 electron orbitals, one for each value of m. Since
the electrons within the same subshell have the same energy they are some-
times called equivalent electrons. The pair of angular momentum quantum
numbers j = l ± 1/2 gives rise to two distinct subshells in the relativistic
formulation which are combined to a single subshell labeled by the orbital
quantum number l in the non-relativistic formulation. The non-relativistic
notation for describing the electronic configuration of an atom is through the
quantum numbers n(i)l(i) for the subshells as well as the number of electrons
w(i) in the subshell and takes the form

n(1)l
w(1)

(1) n(2)l
w(2)

(2) . . . .

In the relativistic notation all the subshells with l 6= 0 are split up as

nlw
−

l−1/2nl
w+

l+1/2,

where w− and w+ are the number of electrons in the corresponding relativistic
subshells. For subshells with l = 0 the relativistic notation is nsw1/2.

For each subshell i the principal quantum number n(i) is labeled by a
positive integer and the orbital quantum number l(i) is labeled by the letters
s, p, d, . . .. For subshells with one electron the number w(i) = 1 is omitted.
All filled subshells are usually also omitted in the notation.

The electron configuration of an atomic system is often described with
the non-relativistic notation even if the relativistic theory is used. Which of
the relativistic subshells that are involved then depends on the total angular
momentum of the state.
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4.2 Configuration State Functions

The wave function for a system of electrons should be antisymmetric w.r.t.
the interchange of any two electron coordinates [8, p. 100]. A wave function
that solves the eigenvalue equation and is antisymmetric w.r.t. coordinate
interchanges can be constructed by the use of the antisymmetrization oper-
ator Â on the direct product of one-electron wave functions. This is given
by

φ(~x1, . . . , ~xN ;γ) = Â[ψ1(~x1) . . .ψN(~xN)]

=
1√
N !

∑
P∈SN

sgn(P )ψP (1)(~x1) . . .ψP (N)(~xN). (4.4)

Here SN is the set of possible permutations of N objects. P (i) is the index
at position i of the permutation P . sgn(P ) is the sign of the particular
permutation which is positive for even permutations and negative for odd
permutations from the original ordering with ascending indices 1, 2, . . . , N
in some chosen ordering convention for the one-electron wave functions. γ
represents the quantum numbers needed to describe each of the one-electron
wave functions. For the antisymmetric product function to be non-zero, all
the one-electron wave functions used must be distinct, so the Pauli exclusion
principle is fulfilled.

The total electronic system is not subjected to any external torque. Clas-
sically, this corresponds to the total angular momentum of the system be-
ing conserved. In the quantum mechanical picture, the wave function de-
scribing an electronic configuration state should be an eigenfunction of the

squared and projection total angular momentum operators ~̂J2 and Ĵz with
eigenvalues J(J + 1) and MJ , respectively, with J ∈ {0, 1/2, 1, . . .} and
MJ ∈ {−J,−J+1, . . . , J}. The so-called configuration state functions (CSF)
are constructed by angular momentum coupling of the antisymmetric wave
functions with the same sets of quantum numbers {nκ} through the CG-
expansion. The angular momenta of the electrons can be coupled successively
in the so-called jj -coupling scheme [8, p. 125] to give the CSFs

Φ(~x1, . . . , ~xN ;α, Jπ,MJ) =
∑

m1,...,mN

CJ,MJ
m1,...,mN

φ(~x1, . . . , ~xN ;γ(α;m1, . . . ,mN)),

(4.5)
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where the product of CG-coefficients have been abbreviated with the factor
CJ,MJ
m1,...,mN

. α represents the quantum numbers needed to describe the CSF in
addition to J and MJ , such as the principal and angular momentum quantum
numbers of the subshells, and the coupling scheme used. γ(α;m1, . . . ,mN)
represents the antisymmetrized direct product wave functions determined by
the quantum numbers contained in α and the particular set of magnetic
quantum numbers {m1, . . . ,mN}. π represents the parity of the CSF which
is given by the product of parity values of the constituent one-electron wave
functions and can have the values ±1. Since α contains information about
the one-electron wave functions, it also contains information about the total
parity. However, the parity is sometimes given explicitly in the notation since
this can be an important property to consider.

In many cases the different electronic subshells are considered as sepa-
rate systems for which temporary wave functions for each subshell are con-
structed. The wave function of the total system is then formed from the
temporary wave functions where only permutations of electron coordinates
between different subshells are allowed and where the resultant angular mo-
mentum of each subshell are coupled [6, p. 24]. The total angular momentum
of a filled subshell is always 0 and so it factors out of the coupling procedure
[8, p. 107]. Since many applications in atomic systems involve several filled
subshells, this method makes the coupling procedure relatively simple.

In the relativistic formulation, the spin and orbital angular momentum of
each electron are coupled intrinsically in the one-electron wave functions. The
total angular momenta j of each electron are then coupled together, known as
jj -coupling. In non-relativistic quantum mechanics, the spin properties are
added in a more ad hoc fashion where the wave functions are constructed from
direct products of solutions to the Schrödinger equation and Pauli spinors.
The spin and orbital angular momenta are then usually coupled separately
to total orbital angular momentum L and total spin S which in turn can
be coupled to total angular momentum J , known as LS-coupling. In non-
relativistic quantum mechanics the spin and orbital angular momenta do not
interact with each other intrinsically so both L and S are considered good
quantum numbers unless explicit coupling interactions are introduced.

It is customary to describe the possible angular momentum states associ-
ated with a given electron configuration in the so-called LS -notation (2S+1)LJ
where only J is a good quantum number in the relativistic formulation. The
angular momentum eigenstates with a given value of J can then generally
be a linear combination of states with equal value of J but with different
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values of L and S. The term (2S+1)LJ is then used to refer to the eigenstate
in which (2S+1)LJ is the dominant component.

The possible CSFs for an electronic system are orthonormal as long as
the one-electron wave functions are orthonormal since

〈α; Jπ,MJ |α′; J ′π
′
,M ′

J〉

=
∑

m1..mN
m′1..m

′
N

CJ,MJ
m1..mN

C
J ′,M ′J
m′1..m

′
N

1

N !

∑
PP ′

sgn(P )sgn(P ′)〈ψP (1)|ψP ′(1)〉..〈ψP (N)|ψP ′(N)〉

=
∑

m1..mN
m′1..m

′
N

CJ,MJ
m1..mN

C
J ′,M ′J
m′1..m

′
N

1

N !

∑
PP ′

sgn(P )sgn(P ′)δP,P ′δm1,m′1
..δmN ,m

′
N
δα,α′

=
∑

m1..mN

CJ,MJ
m1..mN

C
J ′,M ′J
m1..mN

1

N !
N !δα,α′ = δα,α′δJ,J ′δMJ ,M

′
J
. (4.6)

In the third line it has been used that the one-electron wave functions in each
inner product must be identical for the total product to be non-zero. In the
last line the orthonormality of the CG-coefficients has been used successively.

4.2.1 Example: 1s2p 3P1 in He

In the CF approximation, the state 1s2p 3P1 in He is a linear combination
of the relativistic configurations 1s1/22p1/2 and 1s1/22p3/2 with J = 1. The
coordinate system can be chosen so that MJ = J = 1. The parity is π = −1.

The CSF for 1s1/22p1/2 is constructed from the one-electron wave func-
tions ψm1

1,−1 and ψm2
2,1 , where the notation with n, κ and m from equation 4.3

is used. Antisymmetrization of the direct product functions becomes

φ(~x1, ~x2; 1s1/22p1/2,m1,m2) =
1√
2

[ψm1
1,−1(~x1)ψ

m2
2,1 (~x2)−ψm2

2,1 (~x1)ψ
m1
1,−1(~x2)],

(4.7)
where ~x1 and ~x2 are the coordinates of the two electrons. The labeling of the
electrons is in principle arbitrary, but the resulting functions will differ from
each other by a phase factor of −1. The corresponding CSF becomes
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Φ(~x1, ~x2; 1s1/22p1/2, 1
−1, 1)

=
1√
2

∑
m1,m2

C1,1
m1,m2

[ψm1
1,−1(~x1)ψ

m2
2,1 (~x2)−ψm2

2,1 (~x1)ψ
m1
1,−1(~x2)]

=
1√
2

[ψ
1/2
1,−1(~x1)ψ

1/2
2,1 (~x2)−ψ1/2

2,1 (~x1)ψ
1/2
1,−1(~x2)], (4.8)

since the only non-zero CG coefficient is C1,1
1/2,1/2 = 1.

Correspondingly, the CSF for the configuration 1s1/22p3/2 is constructed
from the one-electron functions ψm1

1,−1 and ψm2
2,−2 where the antisymmetrized

direct product is

φ(~x1, ~x2; 1s1/22p3/2,m1,m2) =
1√
2

[ψm1
1,−1(~x1)ψ

m2
2,−2(~x2)−ψm2

2,−2(~x1)ψ
m1
1,−1(~x2)].

(4.9)
The CSF then becomes

Φ(~x1, ~x2; 1s1/22p3/2, 1
−1, 1)

=
1√
2

∑
m1,m2

C1,1
m1,m2

[ψm1
1,−1(~x1)ψ

m2
2,−2(~x2)−ψm2

2,−2(~x1)ψ
m1
1,−1(~x2)]

= − 1

2
√

2
[ψ

1/2
1,−1(~x1)ψ

1/2
2,−2(~x2)−ψ

1/2
2,−2(~x1)ψ

1/2
1,−1(~x2)]

+

√
3

2
√

2
[ψ
−1/2
1,−1 (~x1)ψ

3/2
2,−2(~x2)−ψ

3/2
2,−2(~x1)ψ

−1/2
1,−1 (~x2)]. (4.10)

For this CSF there are two non-zero CG coefficients, C1,1
1/2,1/2 = −1/2 and

C1,1
−1/2,3/2 =

√
3/2.

4.3 Configuration Interaction

The CSFs can sometimes be good approximations to the eigenfunctions of
the DC Hamiltonian [6, p. 13]. However, better approximations can be made
by use of the method of configuration interaction (CI).

Since the distinct one-electron wave functions form a complete basis for
functions in the one-electron Hilbert space, the set of all CSFs that can be
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formed from these one-electron wave functions will form a basis for all pos-
sible functions in the Hilbert space for the entire electronic system that also
are antisymmetric w.r.t. interchanges of pairs of electron coordinates. Any
bound eigenstate of the DC Hamiltonian could then technically be expressed
as a linear combination of eigenstates of the CF Hamiltonian. Generally this
would require an infinite number of CSFs, but a good estimate can often be
formed with a finite number when the most significant CSFs are used.

When there is no external torque exerted on the electronic system the
eigenfunctions of the DC Hamiltonian must also be eigenfunctions of the
parity and total angular momentum operators. The set of CSFs in which
these eigenfunctions can be expanded can therefore be restricted to CSFs
with the same total angular momentum quantum numbers and parity.

Assuming that the difference between the DC and CF Hamiltonians is
relatively small compared with the atomic energies, an estimate for the con-
tributions from the various CSFs to a given configuration can be made using
first order perturbation theory with the perturbing operator [10, p. 13]

ĥ = ĤDC − ĤCF =
N∑
i=1

[
∑
j>i

1

rij
− V̂i(ri)]. (4.11)

The energy levels of the CSFs are (2J + 1)-fold degenerate but since
the CSF expansion is restricted to a single value of MJ the non-degenerate
method can be used. The first order correction to the CSF |α; Jπ,MJ〉 is
then

|α; Jπ,MJ〉(1) =
∑
β 6=α

|β; Jπ,MJ〉
〈β; Jπ,MJ |ĥ|α; Jπ,MJ〉

Eα − Eβ

, (4.12)

where the sum over β can be restricted to the CSFs that differ by maximally
two electron orbitals from |α; Jπ,MJ〉 since ĥ is a two-electron operator.
The denominator in these expansion coefficients indicates that the larger the
energy difference is between the CSF to be corrected and any other CSF
contributing to the correction, the smaller its contribution is expected to
be. Also the contribution from a particular CSF depends on the positional
correlation between the electrons. The numerator 〈β; Jπ,MJ |ĥ|α; Jπ,MJ〉
is a measure of the tendency for the CSFs to cause each other to deviate
energetically from the CF approximation.
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The approximations to the eigenfunctions of the DC Hamiltonian that
are formed from expansions of CSFs are known as atomic state functions
(ASF). With NCF being the number of CSFs included in the expansion, the
expression for the ASF becomes

Ψ(~x1, . . . , ~xN ; Jπ,MJ) =
NCF∑
i=1

ciΦ(~x1, . . . , ~xN ;αi, J
π,MJ), (4.13)

where the expansion coefficients ci can be determined from the energies as-
sociated with interactions between the CSFs.

4.4 The Variational Method

The energy functional E of a state |Ψ〉 is defined as [6, p. 14]

E ≡ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (4.14)

Under arbitrary infinitesimal changes |δΨ〉 to the state vector there will
generally be infinitesimal changes δE and δĤ to the energy functional and
Hamiltonian operator, respectively. These are related by

δE〈Ψ|Ψ〉+E(〈δΨ|Ψ〉+〈Ψ|δΨ〉) = 〈δΨ|Ĥ|Ψ〉+〈Ψ|Ĥ|δΨ〉+〈Ψ|δĤ|Ψ〉. (4.15)

Since 〈Ψ|Ψ〉 = 1 from normalization of the state vector and 〈Ψ|Ĥ|δΨ〉 =
〈δΨ|Ĥ|Ψ〉∗ from Hermicity of the Hamiltonian this can be expressed as

δE − 〈Ψ|δĤ|Ψ〉 = 2Re(〈δΨ|(Ĥ − E)|Ψ〉). (4.16)

If the Hamiltonian is stationary to first order under the changes in the
state vector, the condition δE = 0 implies

Ĥ|Ψ〉 = E|Ψ〉, (4.17)

which means that the state is an eigenstate of the Hamiltonian.
In order to keep the wave functions orthonormal, Lagrange multipliers

are introduced to enforce the constraints that the radial functions Ra ≡
[Pa, iQa]

T should be normalized and orthogonal to all other radial functions
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with the same quantum number κ, and that the expansion coefficients in the
ASF are such that the ASF remains normalized. This gives the variational
functional

F = E +
∑
a,b

δκa,κbλa,b〈Ra|Rb〉+ Λ
∑
i

|ci|2. (4.18)

The condition δF = 0 under variations in the radial functions and expansion
coefficients in a particular ASF is used to obtain the multi-configuration
Dirac-Hartree-Fock equations.

The energy functional for an ASF that is kept normalized can be expressed
as

EASF = 〈Ψ|ĤDC |Ψ〉 =
∑
k,n

ckcn〈Φ(αk)|ĤDC |Φ(αn)〉. (4.19)

4.4.1 Calculation of Radial Functions

The DC Hamiltonian can be expressed as a sum over one-electron operators
ĥi and two-electron operators ĥij. The matrix elements in equation 4.19 are
therefore composed of one-electron and two-electron matrix elements. The
one-electron elements take the form

〈ψma
a |ĥi|ψ

mb
b 〉 = δκa,κbδma,mb

(4.20)

×
∫ ∞
0

dri[Pa(ri),−iQa(ri)]

[
Vn(ri) ic(∂ri − κb/ri)

ic(∂ri + κb/ri) Vn(ri)− 2c2

]
[Pb(ri), iQb(ri)]

T

where the labels a and b refer to subshells in the CSFs Φ(αk) and Φ(αn)
respectively. The two-electron elements take the form
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〈ψma
a |〈ψ

mb
b |ĥij|ψ

md
d 〉|ψ

mc
c 〉 =

∫
d~rid~rj[Pa(ri)Pc(ri)Ω

ma†
κa (θi, φi)Ω

mc
κc (θi, φi)

+Qa(ri)Qc(ri)Ω
ma†
−κa(θi, φi)Ω

mc
−κc(θi, φi)][Pb(rj)Pd(rj)Ω

mb†
κb

(θj, φj)Ω
md
κd

(θj, φj)

+Qb(rj)Qd(rj)Ω
mb†
−κb(θj, φj)Ω

md
−κd(θj, φj)]

∞∑
l=0

rl<
rl+1
>

Pl(cosω)

=
∞∑
l=0

∫
dridrj

rl<
rl+1
>

[lf
ma,mc
mb,md

ac,bd Pa(ri)Pc(ri)Pb(rj)Pd(rj)

+lf
ma,mc
mb,md

ac,−bd Pa(ri)Pc(ri)Qb(rj)Qd(rj) +l f
ma,mc
mb,md

−ac,bdQa(ri)Qc(ri)Pb(rj)Pd(rj)

+lf
ma,mc
mb,md

−ac,−bdQa(ri)Qc(ri)Qb(rj)Qd(rj)], (4.21)

where the labels a and b refer to subshells in Φ(αk), and c and d to subshells
in Φ(αn). Here the Laplace expansion in terms of Legendre polynomials [6,
p. 30]

1

|~ri − ~rj|
=
∞∑
l=0

rl<
rl+1
>

Pl(cosω) (4.22)

has been used in order to separate the radial and angular integrals. r< and
r> are respectively the lesser and greater of ri = |~ri| and rj = |~rj|. ω is
the angle between ~ri and ~rj, and Pl(x) is the Legendre polynomial of degree
l. Since the angular parts of the one-electron wave functions are known to
be the spherical spinors, the angular integrals have been compressed into
prefactors which are constant through optimization of the radial functions.
Although the sum is over an infinite number of l-values, only a finite number
of them give non-zero prefactors since they ultimately can be decomposed
into integrals over products of three spherical harmonics. From the properties
of the spherical harmonics [8, p. 146], this puts a limit on l not to exceed
2 max(la, lb, lc, ld) where la is the orbital quantum number of orbital a etc.

Due to the inner products of all the other one-electron wave functions
which are multiplied with each of the one- and two-electron matrix elements,
only CSFs that differ by maximally two electron orbitals can have a non-zero
matrix element in equation 4.19.

Since the total energy functional is a linear combination of the one- and
two-electron matrix elements, the variation δF can be expressed as the lin-
ear combination of variations in these terms resulting from arbitrary small
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variations δPk and δQk for each subshell k included in the ASF. The con-
dition δF = 0 leads to a set of integro-differential equations for all pairs of
radial functions Pk and Qk given some initial estimates of the functions and
the ASF expansion coefficients. The radial functions should also satisfy the
boundary conditions

lim
r→0

Pk(r) = lim
r→∞

Pk(r) = lim
r→0

Qk(r) = lim
r→∞

Qk(r) = 0 (4.23)

Due to the configuration mixing, the matrix elements between different
CSFs introduce some degree of coupling between the radial equations for the
orbitals that are different between the CSFs. With the use of a numerical
scheme, the equations can be solved to get better approximations for the
radial functions if the initial estimates are sufficiently accurate.

4.4.2 Calculation of Expansion Coefficients

Assuming the CSFs to be known, and organizing the expansion coefficients in
a vector c and the matrix elements from equation 4.19 in a matrix H, varia-
tions δF resulting from arbitrary infinitesimal variations δc can be expressed
as

(δc)†Hc+ c†H(δc) + Λ((δc)†c+ c†(δc)) = 2Re(δc†(H + Λ)c).

The condition δF = 0 leads to the eigenvalue equation

Hc = −Λc (4.24)

for which the solutions c contain the sets of expansion coefficients for the
possible ASFs that can be constructed from the particular set of CSFs, with
corresponding ASF energy eigenvalues −Λ. The different ASFs can be seen
as corrections to the CSF which is the largest component in the ASF.

The radial functions and expansion coefficients are optimized in an itera-
tive procedure where the integro-differential equations for each set of radial
functions are solved with previous estimates of the functions themselves and
the expansion coefficients. With the newly obtained radial functions, equa-
tion 4.24 is solved to obtain new estimates for the expansion coefficients
before the process is repeated with the new radial functions and expansion
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coefficients as initial estimates. When the difference between the estimated
wave function and a true eigenfunction of the DC Hamiltonian is small, the
change in the Hamiltonian becomes small since it is stationary to first order
for the true eigenfunctions. The change of the radial functions will then also
be small. The procedure is repeated until the change in the wave function
from the previous estimate is less than a threshold tolerance. The solution
is then said to have reached self consistency.

More details on the theory used for the MCDHF method in GRASP2018
has been presented Dyall et al. [9].

4.4.3 Example: 1s2p 3P1 in He

Continuing the example with the state 1s2p 3P1, the ASF can in a first
approximation be formed with the minimal expansion with the CSFs
Φ(~x1, ~x2; 1s1/22p1/2, 1

−1, 1) and Φ(~x1, ~x2; 1s1/22p3/2, 1
−1) as

Ψ(~x1, ~x2; 1s2p3P1, 1
−1, 1) = (4.25)

c1s1/22p1/2Φ(~x1, ~x2; 1s1/22p1/2, 1
−1, 1) + c1s1/22p3/2Φ(~x1, ~x2; 1s1/22p3/2, 1

−1, 1).

The radial functions [P1,−1(r), iQ1,−1(r)]
T , [P2,1(r), iQ2,1(r)]

T and
[P2,−2(r), iQ2,−2(r)]

T need to be determined along with expansion coefficients
c1s1/22p1/2 and c1s1/22p3/2 . Typically the number of CSFs included is much
larger, but this example serves as an illustration of the method.

Using the MCDHF method with GRASP2018 the expansion coefficients
were found to be c1s1/22p1/2 = 0.8166 and c1s1/22p3/2 = −0.5773. The radial
functions are shown in Figure 4.1. The large component for the subshells
2p1/2 and 2p3/2 are nearly identical. This is expected since relativistic effects
are small in light elements and the two functions are identical in the non-
relativistic limit. The ratio between the amplitudes of the small and large
components are approximately 0.007 which is close to the expected ratio in
the non-relativistic limit Q(r)/P (r) ≈ Zα/2 = α ≈ 0.0073, where α is the
fine structure constant. A static point charge was used for the nucleus in the
calculations.
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Figure 4.1: Large (left) and small (right) components of the radial functions
for the subshells 1s1/2, 2p1/2 and 2p3/2 for the state 1s2p 3P1 in He. The
dotted lines are the initial estimates with the Thomas-Fermi approximation.
The horizontal axis shows the square root of the radial distance which is
measured in Bohr radii a0.

4.5 Additional Corrections

Using fixed radial functions, the configuration interaction method can be
used with the addition of further corrections to the Hamiltonian. The leading
correction to the semi-classical Coulomb potential from the electron-electron
interaction is the transverse photon correction [16, p. 34]

ĤT = −
N∑
i=1

∑
j>i

[αi ·αj
cos(ωijrij/c)

rij
+ (αi · ∇j)(αj · ∇j)

cos(ωijrij/c)− 1)

ω2
ijrij/c

2
],

(4.26)
where ωij is the frequency of the photon in the interaction between electrons i
and j. In GRASP2018 this frequency is assumed to be given by the difference
in orbital energies of the electrons [16, p. 35]. For multiply occupied orbitals
and so-called virtual orbitals, this assumption may be too imprecise and a
scale factor is often multiplied with the frequency. The scale factor is often
set to 10−6[16, p. 35]. With scaled frequencies this is also known as the Breit
correction.

Corrections arising from quantum electrodynamics (QED) such as vac-
uum polarization and self energy can also be included. Vacuum polarization
gives a correction to the Coulomb interactions due to polarization of virtual
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electron-positron pairs. Self energy is the correction to the energy of each
electron arising from interactions between the electron and virtual photons.
In GRASP2018 the self energy is calculated with screened hydrogenic wave
functions, which is only considered to be appropriate for the so-called spec-
troscopic orbitals [16, p. 35]. More on the theory behind these kinds of
corrections has been presented by Schwerdtfeger et al. [22].
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Chapter 5

Computations on 199Hg

The spectroscopic states 3P1 and 3P2 of the electron configuration 6s6p are
suitable for studying the BR effect in Hg. The stable isotope 199Hg was chosen
as a reference isotope for which values for the root-mean-square (rms) radius
of the nuclear charge distribution has been obtained from experiments [12].
The nuclear angular momentum and magnetic moment were obtained from
the IAEA Nuclear Data Section [14]. The hfs constants for the states 3P1

and 3P2 have been obtained experimentally from spectroscopic measurements
[25],[19].

5.1 Nuclear Model

The finite charge distribution of the nucleus can be modeled in different
ways with different degrees of complexity. One of the simplest models is a
sphere with a homogeneous charge distribution. A model that has been used
extensively is the two parameter Fermi distribution [5, p. 27] in equation 5.1
for which the homogeneous sphere is a limiting case when the parameter a
approaches 0. Experiments with scattering of electrons has shown that nuclei
do not have sharp edges [4, p. 87]. The Fermi distribution has the advantage
over the homogeneous sphere that a discontinuous edge of the nucleus can be
avoided. Other distribution functions can be used as well such as the modified
Gaussian distribution [4, p. 91] or the three parameter Fermi distribution [4,
p. 90]. The latter can be used to account for depressions or elevations of the
charge distribution along the radial axis.

The use of a spherically symmetric charge distribution simplifies calcu-
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Figure 5.1: Fermi distribution with halfway radius c and skin thickness t for
the nuclear model of 199Hg.

lations of the electronic wave functions. Deformations of the nucleus can
be accounted for by perturbative corrections using an electric quadrupole
moment as in equation 3.2 if needed.

GRASP2018 allows for a two parameter Fermi distribution to be used to
approximate the nuclear charge distribution which is given by the expression
[5, p. 28]

ρ(r) =
ρF

1 + exp{(r − c)/a}
. (5.1)

The parameter c is the distance at which the value of the radial distribution
has been reduced to 50 % of the value at the nuclear center. The parameter a
is related to the so-called skin thickness t by t = a · 4 ln 3. The skin thickness
is the radial distance over which the value of the radial distribution reduces
from 90 % to 10 % of that at the nuclear center. The value of ρF is determined
by the integral of the charge density over the entire space being equal to the
nuclear charge Z, which gives ρF = (3Z/4πc2)(1 + π2a2/c2)−1 [5, p. 28].
Figure 5.1 shows the normalized Fermi distribution ρ(r)/ρF for the nuclear
model as defined by the values in Table 5.1.

For the computations on 199Hg, the default skin thickness provided by
GRASP2018 was used while the experimental value of the nuclear rms radius
was provided to the program manually for it to calculate the corresponding
value of the parameter c.
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rrms t I µI
fm fm h̄ µN

5.4474(31), [12] 2.3, [1] 1/2, [14] 0.5058855(9), [14]

Table 5.1: Values used to define the nuclear model for 199Hg. rrms is the rms
nuclear charge radius, t is the nuclear skin thickness, I is the nuclear angular
momentum and µI is the nuclear magnetic moment.

A3P1
A3P2

MHz MHz
14752.37(1), [25] 9066.6236(20), [19]

Table 5.2: Experimental values of the hyperfine constant for the states 6s6p
3P1 and 3P2 in 199Hg.

Further, the nucleus is modeled with a magnetic point dipole moment
at the center for a perturbative calculation of the hfs constant where the
zero-order wave function w.r.t. the hfs is obtained with the Fermi charge
distribution.

The values used to define the nuclear model of the isotope 199Hg are pre-
sented in Table 5.1. The experimentally measured values of the hfs constants
for the states 3P1 and 3P2 are shown in Table 5.2.

According to Poisson’s equation, the electric interaction between the
Fermi nucleus, or a spherically symmetric charge distribution generally, and
an electron is described by the potential [5, p. 10]

Vn(r) = −4π
[1
r

∫ r

0

dr′r′2ρ(r′) +

∫ ∞
r

dr′r′ρ(r′)
]
. (5.2)

5.2 Computation of Wave Functions

The process of calculating the wave function with GRASP2018 is divided
into several steps. The first step is to define the CSF expansion for the ASF.
The angular coefficients corresponding to the prefactors in equation 4.21 are
then computed and stored for the subsequent self-consistent field (scf) cal-
culations with the MCDHF method. Initial estimates of the radial functions
are generated based on some simpler and less precise approximation such as
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screened hydrogenic functions or Thomas-Fermi (TF) functions, which have
the same qualitative characteristics as the functions that are sought for, such
as the number of of nodes.

The solution is considered to be converged if the change between each
iteration is smaller than a threshold. In GRASP2018 this change is based
on a weighted sum over changes in the radial functions included in the ASF.
A threshold parameter can be set for the program with which the weighted
sum over changes is compared. The default threshold of 10−8 was used for
the calculations in this project which is the same value as the one used for
the calculations on 201Hg [15].

After a solution to the scf calculations has been obtained, new ASF ex-
pansion coefficients are obtained with the transverse photon and QED cor-
rections.

5.3 Generating the CSF Expansion for the

ASF

The CSF expansions used for calculations of the electronic wave functions
with GRASP2018 are generated with rules for substitutions of electron or-
bitals in one or several reference configurations with orbitals corresponding
to excited electrons. The orbitals of the reference are called spectroscopic
orbitals while the other orbitals used are called virtual orbitals. Virtual or-
bitals are sometimes referred to as correlation orbitals as they are used to
capture energy deviations related to positional correlation between the elec-
trons. The virtual orbitals, along with the subset of spectroscopic orbitals
with which substitutions are made, are referred to as the active set (AS).

Sets of CSFs are often systematized by the amount of substitutions used
to generate them from the reference, and further into whether the substitu-
tions are made from valence orbitals or orbitals in closed subshells, called
core orbitals.

The CSFs formed by single or double substitutions should capture the
most significant parts of the ASF. The use of more than two substitutions
would result in CSFs that have Hamiltonian matrix elements of zero with
the CSF from which they were generated since the Hamiltonian operator
consists of one- and two-electron operators. In that sense the CSFs other
than those generated with single or double substitutions belong to higher
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order corrections.

5.3.1 Single Substitutions

Since the point dipole hfs operator is a sum over one-electron operators, the
CSFs generated by single substitutions are expected to capture a relatively
large part of the hfs energy levels in a first approximation [6, p. 171]. Single
substitutions from the electron core represent polarization of the originally
closed subshells. The closed subshells produce zero net magnetic field at the
nucleus, but when the subshells are polarized, the net magnetic field could
become non-zero. Since the magnetic interaction between the nucleus and
each electron are stronger with smaller distances, the core electrons could
have a relatively large effect on the hfs value under polarization [6, p. 171].
This is especially the case for s1/2 and p1/2 subshells which have non-zero
densities at the nucleus. Spin dependent polarization of these subshells can
induce a difference in densities between spin directions which in turn results
in contributions from the contact term in the hfs Hamiltonian [6, p. 171].

5.3.2 Double Substitutions

The CSFs generated from double substitutions are systematized into those
generated from valence-valence (vv), core-valence (cv) and core-core (cc) sub-
stitutions and represent different correlation effects that are important for
calculations of atomic properties [16, p. 42].

vv substitutions include those where both substitutions are made from
valence orbitals. The energy differences between the valence orbitals and ex-
cited orbitals are relatively low and one might expect these substitutions to
be important for improvement of the approximated wave function as this re-
sults in small denominators in the coefficients from the first order estimation
in equation 4.12.

cv substitutions include those where one substitution is made from a
core orbital and one from a valence orbital. These are also important for
polarization of the core [6, p. 114] and cv substitutions from subshells deep
in the core are important for calculations of the hfs constant [16, p. 42].

The cc substitutions include those where both substitutions are from core
orbitals. If many core orbitals are open for cc substitutions the number of
CSFs can increase dramatically.
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5.4 Radial Grid

The radial functions are represented numerically by values on a radial grid.
In GRASP2018 the distance from the atomic center to grid point number I
is given by

RI = RNT [exp{(I − 1)H} − 1], I = 1, 2, 3, . . . ,NNNP , (5.3)

where RNT = 2.0 · 10−6 and H = 5.0 · 10−2 by default. The smaller values
RNT = 1.0 · 10−6 and H = 1.0 · 10−2 have been recommended for Hg in the
older version of the program, GRASP2K [21]. In GRASP2018 the default
value of RNT is further divided by the atomic number Z [7]. Adopting the
recommended values for Hg and the scale with Z gives the values RNT =
1.25 · 10−8 and H = 1.0 · 10−2, which were used for the following calculations.
NNNP = 590 is the default number of radial grid points which was adjusted
to 2990 in order to fit all the radial functions used on the grid.

The exponential form of the distances is due to the radial functions hav-
ing shorter wavelengths closer to the nucleus because of the higher kinetic
energies. Higher densities of grid points are then useful to make good rep-
resentations of the functions [6, p. 58]. The relatively high density of grid
points near the nucleus also ensures that the shape of the radial charge distri-
bution is probed thoroughly. Figure 5.2 shows that the radial grid captures
the shape of the Fermi distribution used for the model of the nucleus in 199Hg.

A finite difference scheme is used to approximate the MCDHF equations
and to solve them on the numerical grid.

5.5 Obtaining Spectroscopic Orbitals

It is often difficult to obtain convergence while optimizing all radial func-
tions simultaneously, especially when the system consists of a high number
of electrons. Usually the spectroscopic orbitals are optimized with a small
number of reference CSFs and are kept frozen during optimization of the
virtual orbitals as the set of CSFs is expanded. In calculations on similar
systems such as the states 6s6p 3P1 in 201Hg [15], and 5d96s2 2D3/2 and 2D5/2

in 197Au [17], the minimal expansions have been used for the reference and
the virtual orbitals have been added and optimized in layers. A layer of vir-
tual orbitals, referred to as a virtual layer, is a set of virtual orbitals which
contains no more than one orbital with the same quantum number κ. As
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Figure 5.2: Normalized Fermi distribution calculated at radial grid points
close to the nucleus.

the radial functions of each new layer are optimized, all previously obtained
functions are kept frozen. A method similar to the one used for calculations
in 6s6p 3P1 in 201Hg [15] was used for calculations on the states 6s6p 3P1 and
6s6p 3P2 in 199Hg for this project.

The minimal expansion for the state 3P1 included the CSFs corresponding
to the relativistic configurations

6s1/26p1/2

6s1/26p3/2.

For the state 3P2 the minimal expansion included only the CSF corre-
sponding to the the relativistic configuration

6s1/26p3/2.

All calculations were done separately for the two states. The radial func-
tions for the spectroscopic orbitals were optimized simultaneously under the
scf procedure with the minimal expansions. For the state 3P2 this is techni-
cally not an MCDHF calculation but rather a Dirac-Hartree-Fock calculation
since there is no configuration interaction. The initial estimates for the spec-
troscopic orbitals were obtained with the TF approximation.
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5.6 Obtaining Virtual Orbitals

The virtual orbitals were added in layers by extending the CSF expansion
to include CSFs generated by substitutions from a subset of the orbitals in
the reference with orbitals in the new virtual layer. scf calculations were
done where all new radial functions were optimized simultaneously while all
previously optimized functions were kept frozen. Initial estimates for all new
functions were obtained with the TF approximation.

The CSF expansions were in each case generated by all single as well
as double vv and cv substitutions from the core subshells 5spd and valence
subshells 6sp (6p1/2 and 6p3/2 for 3P1, and 6p3/2 for 3P2) up to all new and
previously obtained orbitals.

The program generates all CSFs with the same parity and total angular
momentum as the reference within a set of rules specified by the user. Some
of the generated CSFs may not be interacting with the reference by how the
angular momenta are coupled and can be removed without much loss of pre-
cision [16, p. 42]. All CSFs not interacting with the reference CSFs through
the DC Hamiltonian were therefore removed before the scf calculations were
done.

After the scf calculations for each new virtual layer, a relativistic config-
uration interaction (RCI) was done where the transverse photon interaction
from equation 4.26, vacuum polarization and self energy corrections were
included. The scale factor for the transverse photon interaction was set to
10−6. Self energy corrections were included for orbitals with principal quan-
tum numbers n ≤ 6. The CSF expansion was regenerated for the RCI where
the Dirac-Coulomb-Breit operator was used for removal of non-interacting
CSFs, leaving a somewhat higher number of CSFs in the resulting expansion
than the DC Hamiltonian did. The hfs constant was calculated after each
RCI. The addition of the 4th virtual layer changed the calculated value by
approximately 0.6 % and 0.5 % for the states 3P1 and 3P2, respectively, so no
further layers were added. The compositions of the 4 virtual layers and the
change in the value of the hfs constant from the preceding calculation can be
viewed in Table 5.3.

For 3P2 the 1st virtual layer included both 6p1/2 and 7p1/2 which is an
exception to the definition given for a virtual layer. The reason for this is
that the 6p1/2 orbital was not included in the reference.
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Virtual layer Orbitals δA/A(3P1)[%] δA/A(3P2)[%]
1st 7s 7p 6d 5f 5g (6p1/2) 24 12
2nd 8s 8p 7d 6f 6g 6h 3.6 2.4
3rd 9s 9p 8d 7f 7g 7h 3.4 3.2
4th 10s 10p 9d 8f 8g 8h −0.55 −0.50

Table 5.3: Orbitals included in the different virtual layers. The parentheses
around orbital 6p1/2 indicates that it was included only for the 3P2 state.
δA/A is the relative change in the hyperfine structure constant from the
preceding calculation.

5.7 Obtaining the ASF

5.7.1 Single and Core-Valence Substitutions

The subshells lower in the core were opened for single and cv substitutions
to the 4 virtual layers. The subshells were opened one by one in the order
4s . . . 4f and then 3s . . . 3d. RCI and calculation of the hfs constant were
performed after each new subshell had been opened.

The maximum number of orbitals in the AS that a CSF can be con-
structed from is limited by the program to 20. The maximum number of
open relativistic core subshells is therefore 17 under the cv substitutions. In
order to be able to study the effect of core subshells with n < 3, the 3d
subshells were reclosed as the 2s and 1s subshells were opened for substitu-
tions. The 2s and 1s subshells were reclosed for a calculation where the 2p
subshells were opened. The changes in the calculated hfs constant relative
to the preceding calculation as each subshell was opened are presented in
Table 5.4.

When cc substitutions are to be included, the maximum number of open
subshells is 16 due to the aforementioned limitation. The lowest contributing
subshells w.r.t. the hfs constant were the 2p, 3d and 3p subshells for both
states. These subshells were therefore closed for substitutions in the further
calculations. The contributions from each of these subshells were on the
order of 0.1 % or less.

The significance of the different virtual orbitals were estimated by cal-
culating the hfs constant for sets of CSFs generated by single, vv and cv
substitutions from the subshells 1s2s3s4spdf5spd6sp to different subsets of
the virtual orbitals. The smallest subset consisted of the virtual orbitals with
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Subshell 4s 4p 4d 4f 3s
δA/A[%] (3P1) 1.2 0.34 0.37 2.0 0.43
δA/A[%] (3P2) 1.4 0.19 0.34 1.7 0.48

Subshell 3p 3d 2s 2p 1s
δA/A[%] (3P1) 0.13 0.040 0.29 0.085 0.24
δA/A[%] (3P2) 0.044 0.041 0.32 0.025 0.27

Table 5.4: Relative change from the preceding calculation in the value of the
hyperfine structure constant as the core subshells were opened for single, vv
and cv substitutions.

Virtual orbitals n = 5, 6 7s 7p 7d 7f 7g 7h 8s 8p
δA/A[%](3P1) 9.7 5.6 11 1.4 0.42 0.45 0.13 0.71 1.3
δA/A[%](3P2) −0.68 6.6 8.2 1.0 0.29 0.36 0.10 0.42 0.81

Virtual orbitals 8d 8f 8g 8h 9s 9p 9d 10s 10p
δA/A[%](3P1) 0.31 0.14 0.20 0.15 2.6 0.80 −0.0077 −0.052 0.022
δA/A[%](3P2) 0.22 0.10 0.16 0.12 3.1 0.37 0.14 0.11 0.00021

Table 5.5: Relative change in the hyperfine structure constant A from the
preceding calculation as the virtual orbitals were included in the order n =
5, 6, 7s . . . 7h etc. with single, vv and cv substitutions.

n = 5 and n = 6. The set was extended by allowing substitutions up to one
new orbital symmetry at a time in the order 7s . . . 7h, 8s . . . 8h, 9s . . . 9d, 10s
and finally 10p. The relative changes from from the preceding calculations
are presented in Table 5.5.

The 10p orbitals were omitted from the AS in the further calculations
for 3P2 due to the very low contribution. Contributions from virtual or-
bitals not included are expected to be small from the trend of decreasing
contributions with increasing principal and orbital quantum numbers. The
resulting approximations then became the expansions generated by single, vv
and cv substitutions from the subshells 1s2s3s4spdf5spd6sp to the virtual
orbitals 5fg6(p1/2)dfgh7spdfgh8spdfgh9spd10s(p), which contained 65 443
and 62 211 CSFs for the states 3P1 and 3P2, respectively.
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Virtual orbitals n = 5, 6 7s 7p 7d 7f 7g 7h 8s
δA/A[%](3P1) −8.7 −1.4 −1.5 −1.3 −0.42 −0.39 −0.18 −0.18
δA/A[%](3P2) −4.3 −1.4 −0.94 −1.02 −0.30 −0.27 −0.12 −0.17

Virtual orbitals 8p 8d 8f 8g 8h 9s 9p 9d
δA/A[%](3P1) −0.72 −0.25−0.080−0.033 −0.22 0.014 −0.16 −0.089
δA/A[%](3P2) −0.50 −0.20−0.086−0.022 −0.15 0.00049 −0.13 −0.086

Table 5.6: Relative changes in the hyperfine constant A from the preceding
calculation as the virtual orbitals were included in the order n = 5, 6, 7s . . . 7h
etc. for cc substiutions from 5spd.

5.7.2 Core-Core Substitutions

The CSF expansions from the approximations with single, vv and cv sub-
stitutions were extended further with cc substitutions. Double substitutions
were first allowed from the core subshells 5spd to the AS where virtual or-
bitals with n = 5 and n = 6 were included. Virtual orbitals were then
included in the order 7s . . . 7h then 8s . . . 8h etc. The relative changes from
the preceding calculations are presented in Table 5.6.

The CSFs generated by cc substitutions from 5spd to 9spd8fgh were
kept for 3P1, and those from 5spd to 8s9sp8fgh were kept for 3P2 along
with the final expansions with the single, vv and cv approximations as the
CSF expansion was extended further by including cc substitutions from the
subshells 4spdf5spd. The 9s virtual orbital was dropped for the state 3P2

due to the low contribution. All CSFs generated up to this point were kept
as the expansion was extended further using cc substitutions from lower core
subshells.

The number of CSFs grows rapidly with inclusion of cc substitutions from
4spdf5spd and so only the virtual orbitals in the 1st virtual layer, as defined
in Table 5.3, were included in the first calculation. This reduced the value of
the hfs constant by approximately 0.27 % for 3P1 and 0.21 % for 3P2. When
also including the 3s subshell in the expansion the value was reduced further
by approximately 0.0014 % for 3P1 and increased by approximately 0.0021 %
for 3P2. cc substitutions from 3s, or any of the lower subshells, were therefore
not included for the further extension of the expansion.

Orbitals of the 2nd virtual layer were included in the order 8sp7d6fgh
and the hfs constant was calculated between each inclusion. The results are
presented in Table 5.7.
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Virtual orbitals 1st layer 8s 8p 7d 6f 6g 6h
δA/A[%](3P1) −0.27 −0.11 −0.11 −0.26 −0.71 −0.23 −0.012
δA/A[%](3P2) −0.21 −0.11 −0.070 −0.18 −0.51 −0.15 −0.010

Table 5.7: Relative changes in the hyperfine constant A from the preceding
calculation as the virtual orbitals were included in the order 1st virtual layer,
8s, 8p, . . ., 6h. for cc substiutions from 4spdf5spd.
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Figure 5.3: Calculated values of the hyperfine constant A with increasing
CSF expansions. The red lines show the experimental values ±1 %.

At this point the contributions from the CSFs not included in the ex-
pansion were considered to be less than a percent. The graphs in Figure 5.3
show the calculated values of the hfs constant as the set of CSFs was ex-
tended for each of the states. It can be seen that the use of single, vv and
cv substitutions resulted in an overshooting of the hfs value while the use
of cc substitutions relaxed this overshooting. The graphs show similarities
with the one obtained for 201Hg by Bieroń et al. [15] except for it being
reflected around the horizontal axis due to the gyromagnetic ratio of 201Hg
having opposite sign. For the state 3P2 the value converges within 1 % of
the experimental value. For 3P1 the value seems to converge, but toward a
value that is approximately 6 % lower than the experimental value. The final
expansions consisted of 395 461 CSFs for 3P1 and 359 985 CSFs for 3P2.
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Chapter 6

Paramteric Study of the
Breit-Rosenthal Effect between
199Hg and other isotopes

6.1 Variation in the Mean Squared Radius

The chart of nuclei from IAEA [13] lists the isotopes from 171Hg to 216Hg.
Extrapolation of the data over nuclear radii [12] gives estimated differences in
the mean squared radius of approximately±1 fm2 from 199Hg to the lower and
upper extremes in the chart of nuclei for Hg. This range in mean squared
radius was used in the parametric study for estimation of the factor C in
the linear fit Cδ〈r2n〉 for the approximation of the BR effect as described in
section 3.4.

Using the final CSF expansions obtained for 199Hg in the previous chapter,
all radial functions and expansion coefficients were recalculated for the ASFs
for both states with values of the nuclear mean squared radius at increments
of 0.2 fm2 in both directions from that used for 199Hg. The nuclear skin
thickness was kept constant. The results are presented in Table 6.1 and
Figure 6.1. Results from the corresponding calculations with the minimal
CSF expansions are presented in Table 6.2 and Figure 6.2.

The proportionality constant C from the linear fit Cδ〈r2n〉 is found by
linear regression with a so-called no-intercept model where the intercept with
the vertical axis is forced through the origin. With the data points obtained
in each of the cases the expression for the constant C becomes [3]
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δ〈r2n〉[fm2] −1 −0.8 −0.6 −0.4 −0.2
δA/A0[%] (3P1) 0.1126 0.089 89 0.067 26 0.044 73 0.022 31
δA/A0[%] (3P2) 0.1146 0.090 21 0.065 90 0.053 62 0.024 90

δ〈r2n〉[fm2] 0.2 0.4 0.6 0.8 1
δA/A0[%] (3P1) −0.022 21 −0.044 32 −0.066 33 −0.088 24 −0.1101
δA/A0[%] (3P2) −0.029 46 −0.046 71 −0.070 35 −0.093 91 −0.1173

Table 6.1: Relative change in the hyperfine structure constant δA/A0 with
variation in the mean squared radius of the nuclear charge distribution δ〈r2n〉
from the reference nucleus with hyperfine structure constant A0 in the elec-
tronic states 3P1 and 3P2 with the largest expansions.
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Figure 6.1: Relative change in the hyperfine structure constant δA/A0 with
variation in the mean squared radius of the nuclear charge distribution δ〈r2n〉
from the reference nucleus with hyperfine structure constant A0 in the elec-
tronic states 3P1 and 3P2 with the largest expansions. The blue line represents
the linear fit Cδ〈r2n〉.
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δ〈r2n〉[fm2] −1 −0.8 −0.6 −0.4 −0.2
δA/A0[%] (3P1) 0.1119 0.089 30 0.066 81 0.044 44 0.022 16
δA/A0[%] (3P2) 0.1210 0.096 56 0.072 25 0.048 05 0.023 97

δ〈r2n〉[fm2] 0.2 0.4 0.6 0.8 1
δA/A0[%] (3P1) −0.022 07 −0.044 03 −0.065 89 −0.087 66 −0.1093
δA/A0[%] (3P2) −0.023 83 −0.047 61 −0.071 25 −0.094 79 −0.1182

Table 6.2: Relative change in the hyperfine structure constant δA/A0 with
variation in the mean squared radius of the nuclear charge distribution δ〈r2n〉
from the reference nucleus with hyperfine structure constant A0 in the elec-
tronic states 3P1 and 3P2 with the minimal expansions.
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Figure 6.2: Relative change in the hyperfine structure constant δA/A0 with
variation in the mean squared radius of the nuclear charge distribution δ〈r2n〉
from the reference nucleus with hyperfine structure constant A0 in the elec-
tronic states 3P1 and 3P2 with the minimal expansions. The blue line repre-
sents the linear fit Cδ〈r2n〉.
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State Largest Minimal
C[% fm−2] R2

0 C[% fm−2] R2
0

3P1 −0.1113 0.9999 −0.1106 0.9999
3P2 −0.1164 0.9980 −0.1196 0.9999

Table 6.3: The proportionality constant C in the linear fit C〈r2n〉 for the BR
effect along with the corresponding coefficients of correlationR, up to 4 digits,
for the states 3P1 and 3P2 with both the largest and minimal expansions.

C =

∑
i xiyi∑
i x

2
i

, (6.1)

where xi represent the values of δ〈r2n〉 and yi represent the values of δA/A0

at the respective data points.
The coefficient of determination for the no-intercept model, R2

0 (distin-
guished from the R2 for the model with interception term), is given by [3]
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∑
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2
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i y
2
i

, (6.2)

where ŷi is the value predicted by the no-intercept model at xi. The coefficient
of determination is a measure of how well the linear fit approximates the data
points. It takes values in the range [0, 1]. The closer the value is to 1, the
better the fit approximates the data which in turn is interpreted as a measure
on how well Cδ〈r2n〉 represents the BR effect.

6.2 Variation in Nuclear Skin Thickness

Variation in the nuclear skin thickness with the mean squared radius kept
constant corresponds to variations in the higher radial moments of the nu-
clear charge distribution. Calculations of the hfs constant for such variations
indicate how much the higher order radial moments contribute to the BR
effect and to which degree the linear fit could be expected to be valid for the
different isotopes.

The two parameter Fermi charge distribution has been fitted to scattering
data [5, pp. 31–36]. It was found that the skin thickness was approximately
constant for nuclei with mass number A > 16 with a standard deviation of
0.1 fm.
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Figure 6.3: Relative change in the calculated hyperfine constant for the state
3P2 with changes in skin thickness δt from the reference model (t = 2.3 fm).
The mean squared radius was kept constant.

For the state 3P2, new series of calculations on the hfs constant were made
where the values 2.1 fm, 2.2 fm, 2.4 fm and 2.5 fm were used for the nuclear
skin thickness. These values correspond to using 1 and 2 standard deviations
from the previously mentioned results above and below the standard value
2.3 fm used by GRASP2018. This range was considered to be a conservative
estimate of how much the nuclear skin thickness could be expected to differ
from the standard value for the isotopes of Hg. For each of the values of
the nuclear skin thickness, calculations were done with δ〈r2n〉 in the range
[−1fm2, 1fm2] in increments of 0.25 fm2.

The variation in the calculated hfs constant for different skin thickness,
where the mean squared radius was kept constant and equal to the one used
for the reference model, can be seen in Figure 6.3. The variation in the hfs
constant for different values of the mean squared radius for each of the values
used for the skin thickness can be seen in Figure 6.4. The corresponding
values of the proportionality constant C in the linear fit and the coefficient
of determination R2

0 can be seen in Table 6.4.
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Figure 6.4: Relative change in the hyperfine structure constant δA/A0 with
variation in the mean squared radius of the nuclear charge distribution δ〈r2n〉
from the reference nucleus with hyperfine structure constant A0 in the elec-
tronic 3P2 with the largest expansion. In the order from upper left to lower
right plot (horizontally) the values of skin thickness were 2.1 fm, 2.2 fm, 2.4 fm
and 2.5 fm. The blue line represents the linear fit Cδ〈r2n〉.
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δt[fm] C[% fm−2] R2
0

−0.2 −0.1166 0.9985
−0.1 −0.1167 0.9985

0 −0.1164 0.9980
0.1 −0.1157 0.9983
0.2 −0.1158 0.9982

Table 6.4: Calculated proportionality constant C in the linear fit Cδ〈r2n〉 and
corresponding coefficients of determination R2

0 for different skin thickness
deviations δt from the reference model (t = 2.3 fm).

6.3 Discussion

6.3.1 Variation in Mean Squared Radius

The calculated values of the constant C can be compared with the results
in Tl [2] where the corresponding value of the factor C can be estimated
with the average of the results that is presented for the relativistic states 7s
and 6p1/2. This gives C(Tl) ≈ −0.09 % fm−2. The values obtained for Hg is
close to the value for Tl which was calculated with more advanced methods,
indicating that the results are reasonable.

For each of the electronic states, the calculated proportionality constant
C using the minimal expansion was quite similar to that calculated with
the largest expansion. The largest difference was for 3P2 where the value
increased (absolute value decreased) by approximately 2.7 % from the min-
imal to the largest expansion. For 3P1 the value decreased (absolute value
increased) by approximately 0.67 %. This indicates that large CSF expan-
sions and the associated large computational efforts may not be necessary
for calculation of the BR effect unless even higher precision is needed.

For the minimal expansions the only orbitals contributing to the mag-
netic hyperfine interaction are the valence orbitals since all other subshells
are closed which give net contributions of 0 to the interaction energy. The
largest expansions include CSFs with open core subshells which contribute to
the hyperfine interaction, which was described with core polarization under
sections 5.3.1 and 5.3.2. The BR effect is expected to mostly depend on the
s1/2 and p1/2 orbitals since these are the only ones with non-zero probability
densities at the nuclear center which is required for the first order corrections
to the BR correction in equation 3.21. The small difference in C between
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the minimal and largest expansion indicates that the BR effect is mostly un-
affected by the principal quantum number n for the s1/2 and p1/2 subshells
that contribute to the hyperfine interaction.

The BR effect between 199Hg and other relatively stable isotopes, pre-
dicted with the obtained values of the constant C, can be compared with
known hyperfine anomalies to see the significance of the BR effect. The iso-
topes 197Hg and 195Hg have angular momentum I = 1/2, similar to 199Hg.
From the table over experimentally obtained nuclear rms radii [12], the
differences in mean squared radius become δ〈r2n〉197,199 ≈ −0.0675 fm2 and
δ〈r2n〉195,199 ≈ −0.140 fm2, respectively. The hyperfine anomalies are known
for the state 6s6p 3P1 between 199Hg and these isotopes [23]. The values
are 197∆199 = 0.0778(7) % and 195∆199 = 0.1470(9) %. With the value C
obtained with the largest expansion for 3P1 (Table 6.3) the BR corrections
are approximately 0.007 51 % and 0.0156 % respectively. The BR effect is
therefore expected to make up around 10 % of the hyperfine anomaly for
these cases. The uncertainty in the ratio of the nuclear gyromagnetic ratios
associated with the hyperfine anomaly can then be reduced by around 10 %
for similar cases.

The differences in mean squared radius from 199Hg are however expected
to be significantly larger for unstable isotopes (largest on the neutron-rich
side). For isotopes with the same angular momentum I and similar values
of the magnetic moment µI , and with larger differences in the mean squared
radius, the BR effect can be expected to make up even more of the hyperfine
anomaly.

As an example with Eu, the hyperfine anomaly between 151Eu and 145Eu
and between 151Eu and 147Eu are relatively small, −0.08(15) % and−0.12(17) %,
respectively [23]. The differences in mean squared radius are δ〈r2n〉151,145 =
0.8606 fm2 and δ〈r2n〉151,147 = 0.5867 fm2 [12]. Considering the BR effect with
the factor C on the order of −0.5 % fm−2 for Eu indicates that the contri-
bution to the total hyperfine anomaly is higher than 10 %. Note that the
angular momenta are the same and that the magnetic moments are almost
the same for these isotopes which is why the BW effect is small.

6.3.2 Variation in Skin Thickness

The results in Figure 6.3 were obtained with a conservative estimate on
how much the nuclear skin thickness could be suspected to differ from the
standard value 2.3 fm. The largest deviation in the calculated value of the
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hfs constant was approximately 0.012 % where the value of the skin thickness
was 0.2 fm larger than the reference value. This difference in the hfs constant
is on the order of 10 % of the BR effect when δ〈r2n〉 is about ±1 fm2. At these
ranges the precision of the calculated BR effect can at least be expected to
be within 10 %.

The calculated values of the proportionality constant C in the linear fit
Cδ〈r2n〉 with different values of the skin thickness are very similar. The
smallest value (largest absolute value) is approximately 0.88 % smaller than
the largest (smallest absolute value).

These results indicate that the value of the skin thickness does not have
much impact on the BR effect as long as the skin thickness is very similar for
the isotopes. However, if the skin thickness differs between the isotopes, this
could have a higher impact on the hfs constant and thus reduce the accuracy
of the linear fit for the BR effect. If the variation in skin thickness is smaller
than 0.1 fm the impact is expected to be less than 5 % of the BR effect when
the difference in mean squared radius is about ±1 fm2.
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Chapter 7

Conclusion

The Breit-Rosenthal effect between 199Hg and different isotopes has been cal-
culated in a parametric study where the difference in the mean squared ra-
dius of a two-parameter Fermi nucleus was varied and the hyperfine structure
constant was calculated numerically for the states 3P1 and 3P2 in the config-
uration 6s6p. The electronic wave functions were calculated with the multi-
configuration Dirac-Hartree-Fock method. Calculations were done with the
General Relativistic Atomic Structure Package 2018.

A linear fit on the form Cδ〈r2n〉 was assumed and the factor C was cal-
culated from the results of the parametric study. The difference in the value
of C between the minimal configuration expansion and an expansion with
∼ 400000 configurations was found to be on the order of 1 % indicating that
a large expansion may not be needed for calculations of the Breit-Rosenthal
effect. Differences in the Fermi model skin thickness was found to have a
smaller impact on the hyperfine structure constant. With the largest expan-
sions the values for the constant C for the range δ〈r2n〉 ∈ [−1fm2, 1fm2] were
found to be −0.1113 % fm−2 for 3P1 and −0.1164 % fm−2 for 3P2.

With these results the Breit-Rosenthal effect is estimated to make up
around 10 % of the hyperfine anomalies 199∆197 and 199∆195 for Hg. For
isotopes with larger differences in mean squared radius of the charge distri-
bution, while the angular momenta and magnetic moments are similar, it
is expected that the Breit-Rosenthal effect could contribute even more than
10 % to the hyperfine anomaly.
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