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Abstract

Nanothermodynamic theories and ideas are applied to a porous medium using

Monte Carlo simulations with molecular dynamics based on grand canonical en-

semble. Initially the theory is tested against a slit pore, thereafter expanded upon

to be used with a porous membrane where the solid particles are defined by a

Face-Centered Cubic Lattice. Ensembles of FCC unit cells are constructed, follow-

ing Grand Canonical ensemble properties, i.e controlled temperature, volume,

surface area and chemical potential. For the slit pore, Integral and differential

properties at small system scale as introduced by Hill, is looked into. Simulations

are carried out with either varying chemical potential or varying height, keeping

other properties constant in the case of slit pore. This lets us study the effects

of chemical potential and volume on slit pores according to nanothermodynamic

description of the slit pore. Regardless of the pathway chosen to describe specific

properties, the results seem to be similar, suggesting the nanothermodynamic de-

scription is consistent. After testing the theory against the slit pore, we expand

upon it to find an alternate route to describe the integral pressure of single-phase

fluid in porous membrane. We test the new method controlling for temperature,

volume and chemical potential, and study how well the integral pressure is de-

scribed. After evaluating the yielded results, the alternate route described in this

paper seem to give satisfactory results when compared against values from other

work.
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Sammendrag

Nanotermodynamiske teorier og ideer blir her brukt på små systemer, spesifikt et

porøsmedium, ved hjelp av Monte Carlo simulasjoner med Molekylær Dynamikk

basert på "Grand Canonical Ensemble". Til å begynne med tester vi teorien mot

spaltepore, deretter ekspanderer vi teorien og ligninene til å passe til bruk med

porøsmembran. Det porøse mediumet som blir brukt her består solide partikler

satt sammen som en "Face-Centered Cubic lattice". Flere tilfeller av FCC enhetscel-

lene blir her konstruert i forhold til "Grand Canonical Ensemble" egenskaper, altså

at temperatur, volum, overflate, areal og kjemiskpotensial blir kontrollert. For

tilfellet hvor vi studerer spalteporet, ser vi på integral og differensial egenskaper

av småsystemer, som beskrevet av Hill. For spalteporet er simulasjoner med var-

ierende høyder og kjemiskpotensial kjørt, og resten av egenskapene ble holdt kon-

stant. Dette lot oss studere hvordan kjemiskpotensiale og høyde påvirker småsystemer

i forhold til nanotermodynamiske beskrivelser, ihvertfall for spalteporer. Vi så at

vi kom til lignende resultater uavhengig av hvilken metode vi valgte å studere

egenskapene. Dette viser til at det nanotermodynamiske beskrivelsen er konsist-

ent. Deretter videreførte vi teorien til å passe med porøs medium. Vi ville beskrive

integraltrykket til enfaset væske i porøs medium, ved å bruke en ny metode. Så

testet vi den nye metoden ved å kontrollere for temperatur, volum og kjemiskpo-

tensial. Deretter studerte vi hvor godt integraltrykket kan beskrives av metoden.

Til slutt evaluerte vi resultatene, og det viser seg at den alternative eller nye met-

oden som blir beskrevet her gir tilfredstilende resultater når det sjekkes opp mot

verdier fra andres arbeid.
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Chapter 1

Introduction

The change in thermodynamic properties as one moves towards a small system

is well known [1], but not used by many. Leaving an underused opportunity for

further work. Efforts have been made to thermodynamics to work with systems

of this scale as well [2]. There are several small systems one could consider. A

slit pore, for instance a fluid phase confined between two solid phases, is a sys-

tem we worked on for preliminary work. Further work was then conducted on

a system made up of fluid in porous medium, the porous medium being a single

FCC unit cell. Applying the work so far related to nanothermodynamics on such

a system could yield valuable insights such as how well the nanothermodynamic

description works, or understanding studying flow at nano-scale to be able to use

acquired knowledge on up-scaling to Darcy´s scale.

Slit pores are in themselves important models that could represent important

real life applications. Examples of such could be thin-films for instance in fuel

cells and batteries. Better understanding of such systems could be beneficial in

our quest to advancing related technologies. Nanothermodynamics can help with

providing such systems the thermodynamic description that could help research

in those fields. After showing that the nanothermodynamic description of slit pore

is viable the way we set it up, further work is then focused towards the FCC porous

medium.

The thermodynamic description of transport processes in porous medium poses

several challenges as described in literature [3–8]. Using the nanothermodynamic

framework as described in literature [2], we try to describe the pressure of im-

miscible fluids in porous medium. This is especially interesting because there cur-

1
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rently is no consensus regarding the definition, measurement or calculation of

such [3]. One can use microscopic pressure tensor, but this is ill-defined and the

problem is enhanced in heterogeneous systems with interfaces between solids and

fluid [3]. For the FCC unit cell we use here as the porous medium, we have curved

surfaces of solid particles as well as fluid confinement. Making it difficult to apply

accepted methods for calculation of microscopic pressure tensor, and in turn the

pressure gradient that could act on fluid flow.

The main goal here is to use the nanothermodynamic framework as described

in literature [2] to possibly find an alternative method, and preferable a less prob-

lematic one as described earlier, to describe the pressure in heterogeneous small

systems. By doing this, provide further data and insight into previous work. The

work here is related to paper published by Galteland et al. [3], however trying to

solve the issue using a new method. We describe the integral pressure as a function

of chemical potential. The work seem to indicate that the method yields results

that are consistent with observations from prior work and was tested against ref-

erence values provided by a fellow Master student who was also doing related

work.



Chapter 2

Theory

One of the main features of thermodynamics is its ability to describe the conver-

sion of energy. Two processes that can be described as transfer of energy is work

and heat. And they’re both connected to each other. When work is done by a ther-

modynamic system, it loses heat. Under the first law, when work is done on the

system, it gains heat. A real life example of this that many could relate to is using

a bicycle pump, trying to pump, one would be able to experience heat generating.

Together, the work and heat transferred into or out of the system represents

the change in its total energy, also commonly referred to as internal energy. This

idea is so fundamental, that the first law of thermodynamics is that the internal

energy is equal to the change in work plus the change in heat. As illustrated in

the following equation:

∆U =Q−W. (2.1)

∆U in equation (2.1) denotes the change in the internal energy of a system, Q

denotes the quantity of energy supplied to the system as heat, and W denotes the

amount of work done by the system on surroundings.

The equation 2.1 can be formulated to describe internal energy based on tem-

perature, pressure, entropy and volume [9]:

dU = T dS − pdV. (2.2)

Equation (2.2) shows an equivalent equation to equation (2.1) however here

measurable change in internal energy, U , is given in terms of entropy, S, and

volume, V .

3
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In a closed system one could think transfer of work, due to change in volume,

and heat to be the only relevant factors affecting the internal energy of a system.

This is however not how it is realistically. A system would be subject to several

more factors from its environment, and the variables in the system itself tend also

to be more complex.

Gibbs extended the equation discussed so far with the term µ j , which stands

for chemical potential of component j in a mixture of n components. Thus the

introduction of µ j is as a measure of the change in the internal energy due to the

change in the amount N j of component j, as all other quantities are kept constant.

Gibbs´ equation is thus given in equation (2.3):

dU = T dS − pdV +
∑n

j=1µ jdN j . (2.3)

The chemical energy is essentially energy that can be absorbed or released

due to change of the number of particles of interest.

Thermodynamics so far seem fine from a macroscopic level. However, when

one moves from a macroscopic number down to a few molecules, the normal ther-

modynamic relations cease to apply [2]. A systematic theory was already proposed

in 1960s to deal with issues arising from the problem previously mentioned, that

normal thermodynamic relations cease to apply at systems too small [1].

Here we delve deeper into this proposed systematic theory, calling it nano-

thermodynamics, by applying it to a single-phase fluid in a slit pore, and then

to a porous medium with FCC structure. We do this by using grand canonical

Monte Carlo and molecular dynamics. The slit pore system itself will consist of

solid walls, with varying variables consistent with grand canonical ensemble (see

section 2.2). The porous medium will consist of solid walls defining a single FCC

unit cell.

See figure (2.1) for an illustration of a slit pore. The blue area in this figure is

essentially the area of the simulation box, example of such a simulation box can

be seen in figure (4.1).
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Figure 2.1: Diagram of a slit pore. The diagram highlight some of the ensemble

values that are considered in this work; Chemical potential µ, Temperature T ,

surface area Ω, height h.

2.1 Nanothermodynamics

As suggested in the introduction, energy conversion cannot be described without

the laws of thermodynamics. However, while classical thermodynamics is useful

for describing systems with a large number of particles [2], it is less so for a system

of small number of particles. One can perhaps differentiate [2] a large system

from a small one by defining as follows: A system can be considered large, in

the thermodynamic sense, when the thermodynamic variables U , S, and N are

proportional to the volume of the system. Thus, it follows that the total energy

of two large systems combined into one system is then equal to the sum of the

energy of the initial two systems separate. The system is extensive. Meanwhile,

a system is to be considered small, in the thermodynmaic sense, when the total

energy of two small systems combined is not equal to the sum of the energy of
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the two separate small systems.

The variables in equations (2.2) and (2.3) are extensive, in other words; pro-

portional to the volume of the system. The internal energy U is an Euler homogen-

eous function of degree one of S, V , and N j . Leading to the equation(2.3) being

a total differential in the variables.

Small systems, we see, have non-extensive variables. There will be a substan-

tial contribution to U , S, and N , proportional to the surface area (∼ V 2/3), as a

system becomes smaller [2]. There are also contributions proportional to V 1/3 and

constant contributions, if the surface tension depends on the surface curvature,

or if the surface has edges and nooks.

Hill proposed a procedure that enabled one to take advantage of the system-

atic structure of thermodynamics while also being able to describe the energy

conversion under small system conditions [1]. Hill did this by introducing an en-

semble of replicas of small systems, rather than looking at one small system. By

doing this, one could use normal thermodynamic relations for the ensemble, and

then compute the average properties of the small systems in the ensemble. Thus,

leading to the following equation, also referred to as Hill-Gibbs equation [2]:

dUt = T dSt − pdVt +
∑n

j=1µ jdN j,t + εdN . (2.4)

The subscript t in equation (2.4) indicates that it is an ensemble property, i.e

the total value of the whole ensemble of replicas. Number of replicas N was in-

troduced to equation (2.3). ε, denotes the replica energy or subdivision potential,

which is the energy associated with the increase in the total internal energy when

one replica is added to an ensemble. All while keeping the total entropy St , total

volume Vt and the total amounts N j,t constant. This can be different for a different

set of controlled variables. The properties of the ensemble becomes Euler homo-

geneous of degree one in the number of replica, and it remains extensive, when

these conditions are met. So, by construction, the ensemble variables Ut , St , Nt ,

N are Euler homogeneous functions of first order. From equation (2.4) one can

formulate the following equation for the total differential of Ut :

dUt = T dSt − pdVt +µ · dNt + εdN . (2.5)

We can further define the temperature T , pressure p, chemical potential µ and
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subdivision potential ε from the partial derivatives of Ut :
�

∂ Ut
∂ St

�

Vt ,Nt ,N
= T,

�

∂ Ut
∂ Vt

�

St ,Nt ,N
= −p,

�

∂ Ut
∂Nt

�

St ,Vt ,N
= µ,

�

∂ Ut
∂N

�

St ,Vt Nt
= ε.

(2.6)

By integrating the differential at equation (2.5) for total internal energy Ut by

holding constant the temperature T , pressure p, chemical potential µ and subdi-

vision potential ε, we get a revised Euler equation:

Ut = TSt − pVt +µ ·Nt + εN . (2.7)

Differentiating equation (2.7) and using equation (2.5) and averaging it over

the number of replicas by dividing it by N , we get the equation we refer to as

Hill-Gibbs-Duhem equation:

dε= −SdT + V dp−N · dµ. (2.8)

2.2 Representative Elementary Volume

Representative Elementary Volume (REV) is a central element in the derivation of

the equations of transport on the macro-scale is the definition of a representative

elementary volume (REV) [3]. The size of the REV should be large compared

to the pore size and small compared to size of the porous medium, and contain

a statistically representative collection of pores. In essence REV is the smallest

volume over which a measurement can be made that will yield a representative

value for the whole [1]. REV is essential in a macro-scale description. Rev makes

it possible to obtain thermodynamic variables on the macro scale. Galteland et al.

[3] discusses how constant macro-scale pressure in equilibrium makes it possible

to obtain the integral pressure in the solid, and the surface tension of the liquid-

solid contacts in REV.

2.3 Grand Canonical Ensemble

The environment variables we will consider to keep constant or vary in order to

study the differences in their contribution to system effects will be T, V and µ. The
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possible exchanges with the environment when considering such a system would

be its internal energy U and particles N j . The environmental variables V, T, µ and

the shape are used as variables to define the grand canonical ensemble (GC).

Since Vt is an ensemble property that means the total volume of all the N
replicas in the ensemble, it follows that Vt = NV . Inserting this into equation

(2.5) we get for GC:

dUt = T dSt − pN dV +µ · dNt + (ε− pV )dN
= T dSt − pN dV +µ · dNt + X dN .

(2.9)

Note from equation (2.9) that the replica energy X for GC is:

X (T, V,µ) = ε− pV. (2.10)

Which is also equal to the specific internal energy of the ensemble of replicas:

X (T, V,µ) =
�

∂ Ut
∂N

�

St ,VNt
. (2.11)

In other words, at constant St , V , Nt , and shape, the replica energy stands for

the reversible work needed to add one replica of the small system to the ensemble.

This also means that, considering how the ensemble properties are kept constant

when adding a replica, these values need to be redistributed over the replicas.

Meanwhile the total volume Vt increases.

For the GC ensemble replica energy X as −bpV , as denoted by Hill [1]. This is

because replica energy for GC is a quantity that can be associated with work. In

classical thermodynamics, work can normally done by extending volume. Work

here can also be done when the number of replicas increases. As this operation is

additive, Hill introduced the term "Integral pressure", or p-hat, for bp [1]. It thus

becomes custom to call bp as the integral pressure, and p the differential pressure

henceforth. We thus define the following from equation (2.11):

bp(T, V,µ)≡ −X (T, V,µ) = −
�

∂ Ut
∂N

�

St ,VNt
. (2.12)

Integrating the differential given in equation (2.9) by holding temperature T ,

volume V and chemical potential µ, we get the following:

Ut(T, V,µ,N ) = TSt(T, V,µ,N )
+µ ·Nt(T, V,µ,N )− bp(T, V,µ)VN .

(2.13)



Chapter 2: Theory 9

For the small systems or replicas, the average values for internal energy U ,

entropy S and particles N j of type j, are related to the ensemble values as follows:

Ut(T, V,µ,N ) ≡NU(T, V,µ),

St(T, V,µ,N ) =NS(T, V,µ),

N j,t(T, V,µ,N ) ≡NN j(T, V,µ).

(2.14)

The entropy S is determined by the probability distribution over N and U ,

these would be the same for each replica in the ensemble.

By combining variables in equation (2.14) to equation (2.10) and introducing

them to equation (2.13), we get the following:

X (T, V,µ) = −bp(T, V,µ)V

= U(T, V,µ)− TS(T, V,µ)−µ ·N(T, V,µ).
(2.15)

From equation (2.15) one can observe that internal energy U for GC is not an

Euler homogeneous function of degree one in entropy S, volume V and particles

N. A replica or small system will only follow classical thermodynamics if differ-

ential pressure and integral pressure is the same, bp = p. The difference between

differential pressure p and integral pressure bp multiplied by the volume V gives

us the subdivision potential ε:

(p− bp)V = ε. (2.16)

By the definition, mentioned earlier for small vs large system, it follows that

a system is small when bp 6= p. A factor that contributes to this difference between

integral pressure bp and differential pressure p is surface energy [10]. Inserting

variables from equation (2.14) into equation (2.9), combining equation (2.15),

we get the Gibbs relation for a replica, or the small system:

dU = T dS − pdV +µ · dN. (2.17)

Which leads us to the corresponding Hill-Gibbs-Duhem equation for GC:

d(bpV ) = SdT + pdV +N · dµ. (2.18)
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2.3.1 Nanothermodynamics and small systems

We will now begin by applying the nanothermodynamics we have discussed so far

to slit pores. We do this by considering an ensemble of N slit pore replicas, where

each pore is filled with a single-phase and -component fluid. The replicas do not

react with each other. Slit pore j in the ensemble consists of two parallel plane

walls with area Ω j with distance h j between the parallel walls. The walls being

plane, have no volume. The total volume Vt of the ensemble is then given by:

Vt =
∑N

j=1 h jΩ j . (2.19)

Also note that the total surface area is:

2Ωt = 2
∑N

j=1Ω j . (2.20)

Note that the "2" in equation (2.20) arises from the fact that in a slit pore the

total surface consists of two fluid-solid surfaces of equal area.

The total differential of the internal energy Ut for such an ensemble consisting

of slit pore replicas is:

dUt = T dSt − p⊥dVt + 2γdΩt +µdNt + εdN . (2.21)

We observe that equation (2.21) is similar to the Hill-Gibbs equation (2.4).

The partial derivatives of equation (2.21), in other words, the partial derivat-

ives of the internal energy gives us the temperature T , normal pressure p⊥, surface

tension γ and chemical potential µ:

�

∂ Ut
∂ St

�

Vt ,Ωt ,Nt ,N
= T,

�

∂ Ut
∂ Vt

�

St ,Ωt ,Nt ,N
= −p⊥,

�

∂ Ut
∂Ωt

�

St ,Vt ,Nt ,N
= 2γ,

�

∂ Ut
∂Nt

�

St ,Vt ,Ωt ,N
= µ.

(2.22)

We see that this is similar to the partial derivatives mentioned in equation

(2.6).

From the partial derivatives in equation 2.22, it follows that the volume is

changed by the change in distance between the surfaces: h j ≡ Vj/Ω j , when the

volume derivative is taken while keeping the total surface area constant. Also note

that the change in pore height and surface area is changed in such a way that the
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total volume is zero, when the surface derivative is taken keeping the volume

constant.

Maxwell relations

We saw that the internal energy of the ensemble or rather the total internal energy

is Euler homogeneous of the first order in the number of replicas, in our case slit

pores.

If we were to consider the average volume per slit pore V = Vt/N instead of

total volume Vt , and average surface area per slit pore 2Ω = 2Ωt/N instead of

total surface area 2Ωt , we could formulate an appropriate Hill-Gibbs equation for

this as follows:

d(VN ) =N dV + V dN ,

d(ΩN ) =N dΩ+ΩdN .
(2.23)

Combining equation (2.23) with equation (2.21) we get the following equa-

tion:

dUt = T dSt − p⊥N dV + 2γN dΩ+µdNt + (ε− p⊥V + 2γΩ)dN . (2.24)

Where ε− p⊥V + 2γΩ= X (T, V,Ω,µ)

From equation (2.24) we see that the total internal energy is:

Ut = TSt +µNt + XN . (2.25)

The average internal energy, entropy and number of particles per slit pore can

be seen from the following:

Ut = UN ,

St = SN ,

Nt = NN .

(2.26)

To get the internal energy per slit pore, we can introduce the average proper-

ties from equation (2.26) to equation (2.25), so that we obtain the following:

U = TS +µN + (ε− p⊥V + 2γΩ) = TS +µN + X . (2.27)
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Combining the average properties from equation(2.26) into equation (2.24)

and using equation (2.27), we get the following equation for the total differential

of the internal energy:

dU = T dS − p⊥dV + 2γdΩ+µdN . (2.28)

Differentiating the internal energy from equation (2.27), then using the total

differential of the internal energy from equation (2.28), we get the following equa-

tion for the total differential of the replica energy:

dX = −d(bp⊥V − 2bγΩ)

= −d(bpV )

= −SdT − p⊥dV + 2γdΩ− Ndµ.

(2.29)

The partial derivatives of replica energy from equation (2.29) will present us

the following relations:

�

∂ (bpV )
∂ T

�

V,Ω,µ
= −

�

∂ X
∂ T

�

V,Ω,µ = S,
�

∂ (bpV )
∂ V

�

T,Ω,µ
= −

�

∂ X
∂ V

�

T,Ω,µ = p⊥,
�

∂ (bpV )
∂Ω

�

T,V,µ
= −

�

∂ X
∂Ω

�

T,V,µ = −2γ,
�

∂ (bpV )
∂ µ

�

T,V,Ω
= −

�

∂ X
∂ µ

�

T,V,Ω
= N .

(2.30)

Pressure calculations

The slit pore design that is being worked with here, has a translational symmetry

in the y− and z−direction. The x−direction is normal to the solid surface. The

equilibrium mechanical pressure tensor in the slit pore is as follows [11]:

(x; h) = P⊥(h)x x + P‖(x; h)(y y + zz). (2.31)

In equation (2.31), x , y and z denotes the unit vectors in x-, y- and z-directions.

Where the normal pressure tensor component is equal to the x x-component. The

tangential pressure tensor component is the average of the y y- and zz-components,

as presented in the following set of equations:

P⊥(h) = Px x ,

P‖(x , h) = 1
2(Py y + Pzz).

(2.32)



Chapter 2: Theory 13

Mechanical equilibrium requires that the tangential pressure is only depend-

ent on the x-coordinate, while the normal pressure is independent of all spatial co-

ordinates. Since the normal mechanical pressure and the area are constant every-

where, one can formulate the thermodynamic integral normal pressure as follows:

bp⊥(h)≡
1
h

∫ h
0 P⊥(h)x = P⊥(h). (2.33)

Equation(2.33), the integral normal pressure is be expressed in terms of the

volume integral of the normal mechanical pressure divided by the volume. The

simplification works because the normal mechanical pressure and the area are

constant everywhere.

The integral surface tension is defined as the integral of the normal pressure

tensor minus the tangential pressure tensor components as follows [11]:

bγ≡ 1
2

∫ h
0 (P⊥(h)− P‖(x; h))d x . (2.34)

The factor 1/2 in equation (2.34) stems from there being two fluid-solid sur-

faces in the slit pore. Combining equations (2.29)(2.33)(2.34) one can get to the

following equation for integral pressure:

bp(h) = 1
h

∫ h
0 P‖(x; h)d x . (2.35)

For integral pressure calculations as a function of chemical potential µ one

can derive from equation (2.29) the following:

∫

bpV
(bpV )0

d(bpV ) =
∫ µ

µ0
Ndµ. (2.36)

By setting bp0V = 0, we get the following:

bp(µ) =
∫ µ

µ0
ρdµ. (2.37)

Equation(2.37) is the new method we will be using to calculate the integral

pressure. In the next section we will expand upon it to be expressed in terms of

volume of REV V REV .

2.3.2 Pressure calculation for Porous medium

For this work we focus on the case of a porous medium. The porous medium will

be a complex face-centered cubic lattice of solid particles. As with the slit pore the
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calculations will be in accordance with the grand canonical ensemble. Expanding

on the work by Gatleland et al [3]. The thermodynamic control variables temper-

ature T , porous medium geometry such as lattice constant a and particle radius r,

and chemical potential can be varied systematically. The Maxwell relations men-

tioned in section (2.3.1) was tested for the slit pore and provided promising results

that will be discussed later on in this paper. This could be applied to the porous

medium as well, focusing on studying the pressure inside the porous medium.

With the slit pore case, we introduced the pressure normal to the pore and the

height difference between the walls. However for the porous medium, we have

no simple geometry. We keep the term pV in the Euler equation. We also do not

introduce the surface area as a variable.

We can use equation(2.13) for the porous medium, in this case an FCC lattice

unit cell which is set as the REV:

Ut = TSt + N f ,tµ f + Nr,tµr − bpVN . (2.38)

We write the Hill-Gibbs-Duhem equation (2.18) for the REV:

d(bpV REV ) = SdT + pdV REV + N f dµ f + Nr dµr . (2.39)

Here the volume of the REV V REV is that of the unit cell. When temperature

T and volume of REV V REV is constant, equation(2.39) reduces to:

dbp =
N f

V REV
dµ f +

Nr

V REV
dµr = ρ f dµ f +ρr dµr . (2.40)

We observe that two of the variables in equation(2.40) can be varied freely.

The third variable follows when two are given. The situation here differs as we

have the variable bp to deal with in comparison to bulk fluid, where we could

compute the activity of the solvent once the activity of the solute is known. A

change in the fluid chemical potential in the reservoir next to FCC unit cell will

change the chemical potential µ of the solid particles in the porous medium.

Following the way we control the system, We postulate the following relation:

N f

V REV
dµ f +

Nr

V REV
dµr =

N f

Vf
dµ f . (2.41)

It also shows that dbp is given by:

dbp =
N f

Vf
dµ f =

ρ f

φ
dµ f . (2.42)
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The system is in equilibrium, when the density of the fluids is the same as it

is inside the FCC unit cell. We have equation(2.37) from earlier. Expanding the

density term in terms of number of fluid particles N f and fluid volume Vf , we get:

bp(µ) =
∫

N f

Vf
dµ. (2.43)

After applying equation(2.43) to the slit pore, and studying how well it de-

scribes the integral pressure bp, we now try to expand upon it to apply it to the

FCC unit cell by defining the unit cell as REV.

From equation(2.41), we get the following:

Nr dµr = N f (
V REV

Vf
− 1)dµ f . (2.44)

and the following:

ρr dµr = ρ f

1−φ

φ
dµ f . (2.45)

Combining equations(2.41, 2.44 and 2.43) we get the following equation:

bp(µ) =
∫

N f

V REV
+

N f (
V REV−Vr

Vf
)

V REV
dµ. (2.46)

Expressing the equation in terms of REV enables macro-scale description of

the porous medium as disussed by Galteland et al [3].

Scaling Law

One way of studying pressure inside the porous medium is to use the microscopic

pressure tensor [3, 7, 12]. When studying the integral pressure with the newly

defined equation(2.46), we will use the pressure measurement provided by the

pressure tensor as reference to compare our results against. In order to do this we

can use scaling law.

At constant temperature T and chemical potential µ, we have the following:

d(bpV REV ) = pdV REV . (2.47)

Rearranging it gives us:

p =
d(bpV REV

dV REV
= bp+ V REV

dbp

dV REV
. (2.48)
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We can then obtain a scaling law by computing the relation in equation(2.48)

and plotting it vs the characteristic length or lattice constant a:

p− bp = V REV
dbp

dV REV
=

ε

V REV
= C
ΩREV

V REV
. (2.49)

Where and ε is the subdivision potential and ΩREV is the surface of the FCC

unit cell. Resulting in the ratio
ΩREV

V REV
= 6/a for a cubic unit cell.

Entropy Density of Confined Fluid

When the sizes of the FCC unit cell is constant, in other words the volume of the

REV V REV , and chemical potential µ is constant, equation(2.39) reduces to:

d(bpV REV ) = SdT. (2.50)

Equation(2.50) relates the variation in integral pressure bp to the entropy dens-

ity by:

d(bp) =
S

V REV
dT. (2.51)

Here S refers to the entropy of the unit cell.
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Methods

Molecular dynamic simulations of the slit pore and porous medium were carried

out using the software LAMMPS [13]. The experiment was set up to use grand ca-

nonical Monte Carlo with molecular dynamics simulation using the Nosé-Hoover

thermostat. This provided us with experiments with constant chemical potential

µ, temperature T , volume V and surface area Ω.

3.1 Lennard-Jones spline

The Lennard-Jones (LJ) potential (VLJ) is a model capable of describing many real

systems. It is simple and particularly well suited for noble gases [14] or van der

Waals systems in general. It is defined as follows:

VLJ = 4ε
�

�

σ
r

�12 −
�

σ
r

�6�
. (3.1)

In equation (3.1), the parameter ε describes the strength of the interaction

andσ defines a length scale. The 1
r12 term describes Pauli repulsion at short ranges

caused by overlapping electron orbitals. The 1
r6 term describes the attractive long-

range, van der Waals, force. σ is defined as r = σ when VLJ = 0 (it actually passes

through zero).

When used in computer simulations, the inter-molecular potential is trun-

cated. The truncation typically happens at a distance of 2-5-5 molecular diameters.

Although this truncation has little effect on the system@s structure, to fully rep-

resent Lennard-Jones system´s thermodynamic properties, the contributions from

17
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the long-range tail must be included via tail corrections [14]. Properties such as

surface tension and shift in potential, are sensitive to truncation. So one must take

care in specifying how the potential is truncated and corrected.

Lennard-Jones spline (LJ/s) potential is an alternative to LJ potential. The

LJ/s potential is a LJ potential truncated in such a way that it avoids the need

for further specification. It eliminates the risk of ambiguity in how the potential

is used in simulations. It essentially has the same structural features as the LJ

potential model, but with different thermodynamic properties as the potential is

of shorter range [14]. The pair potential of LJ/s is given by [14]:

VLJ/s =



















4ε
�

�σ

r

�12
−
�σ

r

�6�

for r < rs,

a(r − rc)2 + b(r − rc)3 for rs < r < rc ,

0 for r > rc .

(3.2)

Compared to equation (3.1, equation (3.2) has some additional parameters.

The parameter rs is the distance given by the LJ potential´s inflection point. Para-

meters a, b, and rc are defined so that the potential and its derivatives are con-

tinuous at rs and rc .

The short range of the LJ/s model leads to simulation times that are twice as

fast in the liquid state in comparison with LJ model truncated at 2.5σ [14].

We use reduced units to work with simulations using LJ/s, this enables us to

run simulations and get results that can be interpreted for other elements. See

table(3.1) for a list of the reduced units we use.

3.2 Grand Canonical Monte Carlo

The principle idea of importance sampling is to use Monte Carlo procedure to

generate random walk in regions of phase space with an important contribution

to an ensemble average[15]. However, for my work we will be using a hybrid

version of grand canonical Monte Carlo that only handles insertion and removal

of particles, and not the displacement of particles. A basic equation for Monte

Carlo simulations in the grand canonical ensemble is [15]:

NµV T (sN ; N)∝ ex p(βµN)V N
∧3N N !

ex p[−βU(sN )]. (3.3)
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When it comes to grand canonical Monte Carlo simulation, we have to sample

the distribution for instance using the equation (3.3). The following are the ac-

ceptable trial moves:

1. Displacement of particles: A particle is selected at random and given a new

conformation. An example in the case of atoms could be random displace-

ment. A displacement of particles is accepted with the following probability

[15]:

acc(s→ s′) = min(1, ex p{−β[U(s ′N )− U(sN )]}). (3.4)

Note that my work does not use this as it is a hybrid of grand canonical

Monte Carlo and molecular dynamics. The simulation does not do displace-

ment the way we set it up.

2. Insertion and removal of particles: A particle is created or inserted at a ran-

dom position. Or the particle is randomly selected to be removed [15].

The creation of a particle is accepted with the following probability [15]:

acc(N → N + 1) = min
h

1, V
∧3(N+1)

ex p{β[µ− U(N + 1) + U(N)]}
i

.
(3.5)

The removal of a particle is accepted with the following probability [15]:

acc(N → N − 1) = min
h

1,
∧3 N

V ex p{−β[µ|U(N1) + U(N)]}
i

. (3.6)

3.3 Molecular Dynamics

Molecular dynamics is a technique used for computing equilibrium and transport

properties of many-body system [15]. Many-body systems here refers to many-

body system where the nuclear motion of the constituent particles obeys the laws

of classical mechanics. We could therefore call it classical many-body system. This

provides us with an excellent approximation for a wide range of materials. We

need not worry about quantum effects unless we are to consider factors such as

translational or rotational motion of light atoms or molecules such as: He, H2,D2

or vibrational frequency ν such that hν > kB T [15].

Molecular dynamics (MD) simulations is a way to conduct experimental work.

The process by which one conducts simulation via MD is in many ways similar to
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how real experiments work. We prepare a sample by selecting a model system

consisting of N particles and solve Newton´s equations of motion for this sys-

tem until the properties of the system no longer changes with time, i.e the sys-

tem has reached equilibrium. When equilibrium has been reached, we perform

measurements of our particular interest. Even the potential sources of error is

in many ways similar between computer based MD experiments and real exper-

iments. Some examples are errors such as samples not being prepared correctly,

too short of measurement, system undergo irreversible change during experiment,

or not measuring what we intended to measure [15].

We need to be able to express an observable quantity in terms of functions of

the positions and momenta of the particles in the system, to be able to measure

this observable quantity [15].

3.3.1 MD at Constant Temperature

MD simulations for this work were carried out at constant temperature. From

a statistical mechanical perspective, we can impose a temperature on a system

by bringing it into thermal contact with a large heat bath. Providing conditions

under which the probability of finding the system at a given energy state is given

by Boltzmann distribution [15].

We have a simple relation between the imposed temperature T and the kin-

etic or translational energy per particle [15]. When considering MD simulations,

the condition of constant temperature is not equivalent to the condition that the

kinetic energy per particle is constant. This is understandable when one considers

the relative variance of the kinetic energy per particle in a canonical ensemble.

Constraining kinetic energy to be always equal to its average leads to the variance

vanishing by construction. In a canonical ensemble of finite system, the instant-

aneous kinetic temperature fluctuates [15]. We would in fact not be simulating

the true constant-temperature ensemble if we were to keep the average kinetic

energy per particle rigorously constant [15].

We use the Nosé-Hoover thermostat to achieve isothermal molecular dynamics

simulation. This MD scheme allows one to perform deterministic MD at constant

temperature. The Nosé-Hoover thermostat is based on the use of extended Lag-

rangian. Extended Lagrangian is a Lagrangian that contains additional, artificial

coordinates and velocities [15].
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3.4 The Slit Pore

To simulate the slit pore, a simulation box was configured, and the fluid inside the

slit pore was configured to be Lennard-Jones/spline particles. The grand canonical

Monte Carlo simulation would then take care of particle creation and the removal

of these particles in the system. The walls of the slit pore were not made up of

particles. These were essentially only meant to confine the particles, and have

attractive and repulsive forces on the fluid particles. In other words, there would

not be any heat transfer between the walls themselves or between the walls and

particles. There would also be no attractive or repulsive forces between the walls,

i.e no wall-wall interaction.

Working with Lennard-Jones particles, it becomes convenient to use dimen-

sionless units or reduced units, here refered to as Lennard-Jones units. Description

of these units can be found in table (3.1)[11].

Table 3.1: The reduced units are denoted with an asterisk in superscript. The

variables are reduced using the molecular diameter of the fluid σ, potential well

depth ε, fluid particle mass m and Boltzmann constant kB

Description Definition 3

Energy E∗ = E/ε

Entropy S∗ = S/kB

Temperature T ∗ = T kB/ε

Distance x∗ = x/σ

Pressure p∗ = pσ3/ε

Chemical Potential µ∗ = µ/ε

Two sets of experiments were run and then processed with LAMMPS and in-

house software to calculate the local mechanical pressure tensor.

3.4.1 Constant height, varying chemical potential

For this set of experiments, the slit pore was configured to have a constant tem-

perature of 2 in reduced units using the Nosé-Hoover thermostat. The simulation

box would have lengths of 50 in z- and y-direction. Height of 4, i.e x-direction
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of the simulation box. The variable to be studied with these experiments was the

chemical potential µ. So, while keeping all the earlier mentioned variables con-

stant, multiple experiments were run with varying chemical potential µ. Varying

from -10 to 10.

3.4.2 Varying height, constant chemical potential

Unlike the previous experiment set, here we wished to study the system under

varying height, and thus effectively volume. The slit pore was configured to have a

constant temperature of 2 using the Nosé-Hoover thermostat. While the chemical

potential µ in experiment set 1 varied, here the chemical potential was held con-

stant at µ= 0 The simulation box would have lengths of 50 in z- and y-direction,

while the height, x-direction, would vary from 0.5 to 10.

3.5 Porous Medium

Once the simulations with slit pores were dealt with, and a better understanding

of the nanothermodynamic framework was developed, we delved into applying

the nanothermodynamic framework to a porous medium. The porous medium we

set up was a FCC lattice unit cell, an example is illustrated in figure(3.1). It would

have varying properties so that we could study it in different ways. As with the slit

pore, the wall were not made up of particles, but rather just a confinement for the

fluid particles that would be introduced to the system. The unit set is then defined

as the REV by choice. In the figures presented in this paper, the blue particles

will represent the solid particles of the FCC unit cell. The red particles will be

representing the fluid particles. Denoted r and f respectively as it has been done

in prior work by Galteland et al[3]. The units used here are also defined as they

were for the slit pore, found in table 3.1. The wish was to study how temperature

T , lattice constant a and thereby volume V , chemical potential µ would affect the

system. Also comparisons between bulk and porous medium were conducted.

From figure(3.1) we see the property d illustrated. This is the distance between

the closest solid particles. From previous work [3], it has been observed that for

d greater than 11σ, σ being the diameter of the fluid particles, one could ignore

contribution from disjoining pressure. So for the series of simulations run, we

choose lattice constants a that can show this. i.e ensembles where d is slightly
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above 11σ and down, but above 4σ.

Figure 3.1: Diagram and visualization of the FCC unit cell. The red particles being

the fluid particles, and the blue particles being the solid particles. Software used

for rendering this figure is OVITO [16]

3.5.1 Lattice constant a = 45, r = 10σ

We set the lattice constant to a = 45 and radius of the solid particles to r = 10σ.

This ensures that d is larger than 11, or more specifically d = 11.820. Simula-

tions were run for FCC unit cell, and Bulk. Simulations were also done across

temperatures T = 1.0, 1.5,2.0

3.5.2 Lattice constant a = 20, 25, 30. r = 5σ

To be able to compare with previous work and reference values from others work-

ing related topic, we ran simulations using solid particle radius 5σ. The chosen

lattice constants are a = 20, 25,30. The corresponding values of d are: d =

4.142,7.678, 11.213 calculated using the following equation:

d =

p
2a2 − 4r

2
. (3.7)
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Results and Discussion

First I will present the results from the slit pore simulations. The aim being to see

how well the nanothermodynamic description of the integral pressure fits with

results gained from simulations. I then expand upon the new equation 2.37 to ap-

ply it to a porous medium, by factoring in REV. Results from simulations regarding

the porous medium is presented after the slit pore section.

25
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4.1 Slit Pore

The results are illustrated in figures 4.1 to 4.10. I will discuss the results in the

order that they appear.

More than 100 simulations were run in order to collect the necessary data for

this work. Figure (4.1) illustrates a rendition of such a simulation.

Figure 4.1: Visualization of the fluid

particles in a slit pore of height =

4σ (x-direction), chemical potential

µ∗ = 0, temperature T ∗ = 2. The

solid lines illustrate the simulation

box. Software used for rendering is

OVITO [16].

The red balls in figure (4.1) represent the particles in the fluid phase. The solid

lines represents a box that simulates a slit pore. Note that the height is defined in

the x-direction, leaving y- and z-direction with large lengths. This implies that the

change in volume to the system stems from the change in height alone, as there

is no change in surface area of the walls.
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Figure 4.2: Illustrates the normal mechanical pressure for a slit pore with height

= 4σ (x-direction), chemical potential µ∗ = 0, temperature T ∗ = 2. Note that the

scale on y-axis shows huge variation for small numbers. The graph shows how

the normal mechanical pressure varies along the x-direction.

In figure (4.2) one can observe how the normal mechanical pressure varies

along the x-direction of a simulated slit pore or simulation box. In all of the simu-

lations the temperature was set to T ∗ = 2.0. While in this particular example the

height was set to h= 4.0σ and chemical potential to µ∗ = 0
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Figure 4.3: Illustrates the fluid number density ρ as a function of x-direction for

a slit pore with height= 4σ (x-direction), chemical potential µ∗ = 0, temperature

T ∗ = 2. The graph shows how the density ρ varies along the x-direction.

Figure (4.3) shows the fluid number density data collected from the same ex-

ample as those in figure (4.1) and figure (4.2). The three tops suggest the particles

organizing in layers and keeps a certain distance from the walls at x = 0 and

x = 4.
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Figure 4.4: Illustrates the fluid number density ρ as a function of chemical po-

tential µ for a slit pore with height = 4σ, temperature T ∗ = 2. The graph shows

density profile of slit pores with varying chemical potential, keeping other prop-

erties constant.

Several simulations were run with varying chemical potential, while keeping

other parameters constant. This allowed the study of how the nanothermody-

namic description of a slit pore changes with varying chemical potential µ. Figure

(4.4) presents a change in density as a function of chemical potential µ. It can be

observed that the density goes towards zero as one goes lower than µ= −10 and

the density plateaus at a certain point, at which point one simply can not insert

more particles into the defined system. Also, there is the case of the fluid particle

eventually changing phase.
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Figure 4.5: Illustrates the normal mechanical pressureρ as a function of chemical

potential µ for a slit pore with height= 4σ, temperature T ∗ = 2. The graph shows

normal mechanical pressure profile of slit pores with varying chemical potential,

keeping other properties constant.

Also normal mechanical pressure data was collected from the simulations run

with varying chemical potential µ. It was observed that the normal mechanical

pressure goes to zero as chemical potential gets smaller. It also seemed like the

pressure had a tendency to taper off as the chemical potential started going above

10. This could indicate a change in conformation. As the particles start organizing

more, at some point the fluid would start changing phase. Thus, getting more

stable pressure despite higher chemical potential.

The second set of simulations held the chemical potential constant at µ = 0,

while the height h was varied.



Chapter 4: Results and Discussion 31

Figure 4.6: Illustrates the fluid number density ρ as a function of height for a

slit pore with chemical potential µ = 0, temperature T ∗ = 2. The graph shows

density profile of slit pores with varying slit pore height, keeping other properties,

including chemical potential, constant.

A density profile was created from data collected from the second set of sim-

ulations. This was the fluid number density defined as ρ = N/V .Figure (4.6)

presents this density profile. By studying it we see that up till a certain point, the

simulation was not able to insert particles into the system, thus the density till

that point remains zero. The density then start plateauing as height increases.
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Figure 4.7: Illustrates normal pressure P⊥ as a function of height for slit pores

with chemical potential µ = 0, temperature T ∗ = 2. The graph shows normal

pressure profile of slit pores with varying slit pore height, keeping other proper-

ties, including chemical potential, constant.

I used equation (2.33) to present the data in figure (4.7). Where the nor-

mal pressure as a function height h is computed as the normal mechanical pres-

sure component. The tops and minimums suggest a change in arrangement of the

particles with varying height. In the beginning the box is so small the particles

are likely more densely packed, as the height increases more efficient conforma-

tions are allowed, perhaps by allowing more layers of particles. Then the pressure

builds up again till the height has increased enough to allow yet another more

efficient conformation. This seems to continue till it at one point does not change

significantly with increasing height.
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Figure 4.8: Illustrates integral pressure bp as a function of height for slit pores with

chemical potential µ = 0, temperature T ∗ = 2. The graph shows integral pres-

sure profile of slit pores with varying slit pore height, keeping other properties,

including chemical potential, constant.

From equation (2.33) we also get that bp(h) = 1
h

∫ h
0 P⊥dh. I used this to eval-

uate the integral pressure as a function of slit pore height h. This can be seen in

figure (4.8).
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Figure 4.9: Compares integral pressure bp as a function of height for slit pores

with chemical potential µ = 0, temperature T ∗ = 2. The graph shows integral

pressure profile obtained through normal pressure P⊥(blue) and tangential pres-

sure P‖(red).

From equation (2.35) we also have that bp(h) =



P‖
�

. Using this I compared the

results of integral pressure as a funciton of height h calculated from normal mech-

anical pressure tensor with the results of integral pressure from tangential pres-

sure. The graph where these two have been plotted can be found in figure (4.9).

It can be observed that the results are matching, suggesting that the nanother-

modynamic description of the integral pressure as a function of height matches

regardless of pathway one takes to find it.



Chapter 4: Results and Discussion 35

Figure 4.10: Compares integral pressure bp as a function of chemical potential

µ for slit pores with height = 4, temperature T ∗ = 2. The graph shows integral

pressure profile obtained from density ρ(blue) and tangential pressure P‖(red).

The integral pressure as a function of chemical potential was evaluated by

using equation (2.37). The results then got plotted against integral pressure as a

function of chemical potential, based on the tangential pressure. To do this one can

derive an equation from equation (2.35) to consider it as a function of chemical

potential rather than height. Figure (4.10) present the comparison of these two

plots. One can observe that the nanothermodynamic description of the integral

pressure of slit pores as function of chemical potential µ yields similar results by

studying the figure(4.11), whether it is evaluated via the density or the tangential

pressure. Especially for chemical potential µ values below 10.

It is essentially shown that bp = −X
V =

1
h

∫

P‖d x .
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Figure 4.11: Shows the difference between the integral pressure values obtained

from density ρ and tangential pressure P‖ for the values show in figure(4.10)

.
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4.2 Porous Medium

4.2.1 lattice constant a = 45

Figure 4.12: Diagram and visualization of the FCC unit cell. The red particles

being the fluid particles, and the blue particles being the solid particles. The rain-

bow colored particles being organized in shells around a specific solid particle

with increasing distance. Software used for rendering was made in-house
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Figure 4.13: Diagram and visualization of the FCC unit cell. The blue particles

being the solid particles. The rainbow colored particles being organized in shells

around a specific solid particle with increasing distance. Software used for ren-

dering was made in-house
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Figure 4.14: Figure showing the fluid density from one particle to the next. Se

figure(4.12) to visualize how the density was computed. For FCC unit cell with

lattice constant a = 45. At equilibrium when chemical potential µ = −3. For

different temperatures.
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Figure 4.15: Fluid density as a function of time. lattice constant a = 45. Chemical

potential µ= −3. Comparison between FCC unit cell(blue) and Bulk(red) of same

unit volume. Temperature T = 1.0

Figure 4.16: Fluid density as a function of time. lattice constant a = 45. Chemical

potential µ= −3. Comparison between FCC unit cell(blue) and Bulk(red) of same

unit volume. Temperature T = 1.5
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Figure 4.17: Fluid density as a function of time. lattice constant a = 45. Chemical

potential µ= −3. Comparison between FCC unit cell(blue) and Bulk(red) of same

unit volume. Temperature T = 2.0

Figure 4.18: Fluid density as a function of time. lattice constant a = 45. Chemical

potential µ= −3. Comparison between different temperatures T = 1.0,1.5, 2.0.
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Figure 4.19: Ratio between Bulk and FCC unit cell with lattice constant a = 45.

As a function of Chemical potentialµ. For different temperatures T = 1.0,1.5, 2.0.

Figure 4.20: Comparison of Fluid Number density N as a function of chemical

potential µ for FCC unit cell vs Bulk. At temperature T = 1.0
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Figure 4.21: Comparison of Fluid Number density N as a function of chemical

potential µ for FCC unit cell vs Bulk. At temperature T = 2.0

Figure 4.22: Fluid number density N as a function of chemical potential µ for

FCC lattice unit cell with a = 45 at different temperatures T = 1.0, 1.5,2.0
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Figure 4.23: Comparison of Integral pressure bp as a function of chemical poten-

tial µ for FCC unit cell(orange) with lattice constant a = 45 and Bulk(blue). At

temperature T = 1.0

Figure 4.24: Comparison of Integral pressure bp as a function of chemical poten-

tial µ for FCC unit cell(orange) with lattice constant a = 45 and Bulk(blue). At

temperature T = 2.0
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Figure 4.25: Integral pressure bp as a function of chemical potential µ for FCC

unit cell with lattice constant a = 45 at different temperatures T = 1.0, 1.5,2.0
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4.2.2 Lattice constant a = 20, 25, 30. r = 5σ

Figure 4.26: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 20 and temperature t = 1.0
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Figure 4.27: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 20 and temperature t = 1.5
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Figure 4.28: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 20 and temperature t = 2.0
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Figure 4.29: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 25 and temperature t = 1.0
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Figure 4.30: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 25 and temperature t = 1.5
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Figure 4.31: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 25 and temperature t = 2.0
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Figure 4.32: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 30 and temperature t = 1.0
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Figure 4.33: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 30 and temperature t = 1.5



54 Varughese. K.: Studying pressure inside a nano-porous

Figure 4.34: Integral pressure bp computed using the new method, equation(2.46)

and Trace of pressure tensor. For a = 30 and temperature t = 2.0

Figure 4.35: Using the scaling Law to compare the integral values
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Figure 4.36: Graphing integral pressure bp against temperature T . For constant

lattice constant a = 20 and constant chemical potential µ= −4

Figure 4.37: Getting the relevant µ values using the reference density values.
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Figure 4.38: Checking the computed values against reference values. µ values of

interest read from figure(4.37)
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4.2.3 Discussion of Porous Medium Results

Lattice constant a = 45

Figure(4.14) shows us the density of the fluid particles in relation to its distance

from a solid particle. This gives us a better understanding on how the Lennard-

Jones potential is affecting the system. We see that there is lower density when the

density is studied for a location closer to the solid particle, indicating that there is

repelling force between the solid particles and the fluid particles. We also see that

the density gets lower again when go far enough away from the solid particle.

To understand this we can look at figures(4.12 and 4.13). The front-facing face-

centered solid particle is the one we are measuring the density of the fluid particles

around. By studying the density of the fluid particles in each shell with varying

distance from the solid particle, we get the relative density of the fluid particles

around the solid particle. Now to understand the dip in the density observed when

moving away from the solid particle, as seen in figure(4.14), we notice that as the

shells get further away from the solid particle we are studying, they are getting

closer to other solid particles. The interaction between these solid and the fluid

particles are going to be repelling as well, and thus we see the decline in the fluid

density.

As observed previously, there is a repelling fore between the solid particles and

fluid particles. Looking at figures(4.15 to 4.16) we see that the fluid density meas-

ured as a function of time, the density is consistently slightly lower for the FCC

unit cell as compared to Bulk. Looking at figure(4.18) we see how the fluid density

varies for the FCC unit cell for different temperatures. The units are all reduced

units as described in table(3.1). Figures(4.20 to 4.21) illustrates the same, how-

ever as a function of chemical potential µ. The fluid density is consistently more

for the Bulk compared the the FCC unit cell of same size, although the difference

is less visible from the graphs. See figure(4.19) the difference more clearly. We see

that the ratio between the Bulk and the FCC unit cell of the same size is mostly

above 1, indicating that the fluid density in the Bulk system is slightly above that

of the FCC unit cell. Figure(4.22) shows the difference in the fluid density differ-

ent temperatures. We observe that the fluid density for the FCC unit cell increases

with increasing temperature.

Our equation(2.46) gives the integral pressure as a function of chemical po-

tential µ. We expanded upon the equation(2.37) to take into account the more
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complex structure of the system. We did this by introducing V REV . Further, we

mentioned how the distance between the closest solid particles d were previously

seen to affect the observed results. When a = 45 for the FCC unit cell, and the

radius of the solid particles r = 10σ, d is greater than 11σ. Figures(4.23 to 4.24)

shows the results from using the new method or equation(2.46) we formulated in

the theory. Notice how in the case of the Bulk system, the equation()2.46 reduces

back to equation(2.37) as Vf = V REV . We see from the figures that the integ-

ral pressure bp nearly identical in both the Bulk and the FCC unit cell. The slight

variation can be explained by the slight variation we observed in the density we

discussed earlier. The result is as expected, given that d is greater than 11σ we

were not expecting contributions from disjoining pressure. From figure(4.25) we

observe that the integral pressure bp increases with temperature, this is consistent

with the theory.

Lattice constant a = 20,25, 30. r = 5σ

Figures(4.26 to 4.34) shows the results of integral pressure bp calculation of FCC

unit cells with solid particle radius r = 5σ for varying lattice constants and

temperatures. The integral pressure was computed using both the new equa-

tion(2.46) and Trace of pressure tensor. We observe a trend where the the dif-

ference between the two increases with lower lattice constants, and higher tem-

peratures. We use the scaling law discussed in the theory to look further into this.

Figure(4.35) graphs the difference between the earlier mentioned pressure meas-

urements against 6/a. We see that for lattice constant above a = 30, i.e below 0.2

in x−direction. The values seem to scale linearly. But once a is below 30, it acts

differently. This is likely due to contributions from disjoining pressure.

Figure(4.36) helps us consider the entropy density of confined fluid as dis-

cussed in theory. Looking at equation(2.51) we see that the slope of the graph

gives us the entropy density. As one would expect from theory, the entropy dens-

ity seems to increase with increasing temperature.

A fellow Master student provided with specific values from their system, where

they were calculating the integral pressure in a different manner. These values

can be seen in table(4.1). The values were for a porous medium system just like

the one use in this paper, with FCC structure. The lattice constant a = 20, solid

particle radius r = 5σ, temperature T = 2.0. In figure(4.37) we can read of the

appropriate chemical potential values for the given densities in table(4.1). Then
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in figure(4.38) we read of the integral pressure values for the chemical potential

values we read off from figure(4.37). The values correspond with the reference

values we were given with a percent error of 4.32% where the values deviates the

most.

Table 4.1: Reference values for porous medium with FCC structure where lattice

constant a = 20 and temperature T = 2.0 in reduced units. Values provided by

Mina Sørensen Bratvold, and was collected from work done for her own Masters

project.

Density Integral Pressure

0.094 0.20

0.183 0.41

0.438 1.41

0.504 1.88





Chapter 5

Conclusion

The essential goal was to formulate a new method for describing the integral

pressure of single-phase fluid in porous medium. We first applied the theory to slit

pore and got satisfactory results. Then expanded upon it to formulate an equation

for FCC unit cell.

From the work described in this paper, we have formulated a new way to

compute the pressure in a nano-porous medium. We compute the integral pressure

via chemical potential µ as formulated in equation(2.46). We have seen that this

method works for slit pores as well. The results for the slit pores were calculated

with a simpler equation(2.37). But the expanded version takes into account REV,

thus facilitating for more complex structures such as the porous medium.

The work done here supports prior observations regarding the disjoining pres-

sure being a factor for FCC lattices where the shortest distance between solid

particles were shorter than d = 11σ, or rather that one could ignore it for d

greater than 11σ.

We compared our results against reference values and saw that they corres-

ponded well, within a percentage error of 4.3%.

The work was caried out by using molecular dynamics simulations of a single-

phase fluid in a pore described as face-centered lattice of spherical grains in a

pore. The tool was crucial for being able to test out the assumptions made in the

theory.
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Appendix A

Additional Material

A.1 Example LAMMPS input file

variable mu equal -3.000000

variable a equal 20.000000

variable T equal 2.0

variable d equal 4.0/$a^3.0

variable L equal 1

variable s22 equal 10.0

variable R22 equal ${s22}-1.0

variable s12 equal (1.0+${s22})/2.0

variable R12 equal ${R22}/2.0

lattice fcc $d

region box block 0 $L 0 $L 0 $L

create_box 2 box

create_atoms 2 box

pair_style lj/spline

pair_coeff 1 1 1.0 1.0 1.0 0.0

pair_coeff 1 2 1.0 ${s12} 1.0 ${R12}

pair_coeff 2 2 1.0 ${s22} 1.0 ${R22}

mass * 1
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variable type atom type==1

dump dump all custom 100 dump.out id type x y z

group mdatoms dynamic all var type

compute T mdatoms temp

compute pe all pe

compute ke mdatoms ke

compute_modify T dynamic/dof yes

compute_modify pe dynamic yes

compute_modify ke dynamic/dof yes

variable N equal count(mdatoms)

compute peratom mdatoms stress/atom T

compute p all reduce sum c_peratom[1] c_peratom[2] c_peratom[3]

variable press equal -(c_p[1]+c_p[2]+c_p[3])/(3*vol)

variable density equal count(mdatoms)/vol

variable r equal 5.0

variable vols equal (((4/3)*PI*(v_r*v_r*v_r)))

variable volu equal vol-(v_vols*4)

variable pressu equal -(c_p[1]+c_p[2]+c_p[3])/(3*v_volu)

variable densityu equal count(mdatoms)/v_volu

fix nvt mdatoms nvt temp $T $T 0.002

fix_modify nvt temp T

fix gcmc mdatoms gcmc 100 100 0 1 23624 $T ${mu} 0 full_energy

thermo_style custom step c_T c_pe c_ke v_N pxx pyy pzz v_densityu v_pressu v_density v_press

thermo 100

timestep 0.002

run 600000

write_restart cont.restart


