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Abstract

The y-pyrone Fusolanone B (28), previously isolated by fungi, has shown potential use as an
antibiotic. In this project retrosynthesis inspired by biosynthesis of polyketides has been
carried out, and two different reaction pathways for synthesizing Fusolanone B were
investigated and adjusted. Due to the chirality of the target compound, Evans auxiliares
were used in combination with aldol reactions, followed up by Barton-McCombie
deoxygenation. The deoxygenation turned out to be problematic for the second reaction
pathway, where the olefin was destroyed. Attempts to avoid the problem were made, but
unsuccessfully.
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1. Introduction

Polyketides in fungi®

Many bioactive secondary metabolites are polyketides. In fungi aromatic polyketides are
produced by non-reducing iterative polyketide synthetase (PKS).2 Polyketide synthetase is an
multidomain enzyme that facilitates a catalysed claisen condensation to produce a wide
range of different polyketides. PKS consists of three main domain, the B-ketosynthase (KS),
the acyl-transferase (AT) and the acyl-carrier proteinn (ACP). KS catalyze the condensation of
acyl-CoA via Claisen condensation, AT delivers the correct substrate to to the enzyme and
ACP facilitates movement of substrate and products between active sites (figure 1).

Gp.. PO-1 L5

Il
Translocation Transacylation
(entry)

CoA

Figure 1.1.3: The basic cyclus of polyketide synthetase. Figure from Lowry et al. under CC license.

Beyond the three main domains, other domains can aid in further modification. Ketone can
be reduced to hydroxyl by B-ketoreductae (KR), hydroxyl can be reduced to enoyl by
dehydrogenase (DH), enoyl can be reduced to alkyl by enoyl reductase (ER). Thioesterase
(TE) releases the product with water, and Claisen cyclase (CYC) release the product by an
intramolecular reaction, which often leads to an aromatic compound.



Fusolanone®

Seven compounds were isolated from the fungi Fusarium solani and tested for antimicrobal
activity. From these compounds, Fusalonone B (Figure 1.2) showed the highest activity with
MIC value 6.25 pg/mL on Vibrio parahaemolytic.

Figure 1.2:

In this project, Fusolanone B will be attempted synthesized, and if succeeded, tested for
antibacterial activity.

Biomimetic (polyketide) Cyclication®

Cyclization of polyketides can be done biologically in fungi. A chemical approach to the
cyclization of 3.5-diketoesters is described by Onda et al. The proposed mechanism is shown
in Figure 1.3.

OH

MeO—- H DBU

(0]
FSO3Me
CH,Cl, »
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Figure 1.3: proposed cyclization mechanism of 3,5-diketoester, followed by methylation.

Hoover-Stahl oxidation mechanism

Jessica Hoover and Shannon Stahl reported a highly selective oxidation of primary alcohol
with good yield.® The oxidation uses TEMPO as oxidizing agent, catalyzed by copper(l) with
bpy as ligand and NMI as base. The proposed mechanism for the oxidation is shown in figure
1.4.
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Oxazolidinone as stereodirecting group

Bioactive compounds often have chiral senters, which can be an extra challenge when
synthesizing a compound. A way to solve this is sterically hindering the unwanted reaction
site. One way of doing this is adding a oxazolidinone with a bulky group to your compound,
to block the unwanted enantiomer to be synthetized.

2. Retrosynthesis

Scheme 2.1: Retrosynthesis from Fusolanone B (28)

Scheme 2.1 shows retrosynthesis from fusolanone B 28. Similar products have been
synthesized by cyclization of 3,5 diketoesters (26), followed by an methylation of the cyclic
compound (27).° 26 can be made by an aldol reaction between 24 and an enolate of methyl
acetoacetate to yield 25, which in turn can be oxidized to 26.

P Mg 1 g
4
— [—\WE +/’\Té

Scheme 2.2: alternative a

Compound 10 has both an olefin and two chiral senters. Based on similar compounds, 10 can
be synthesized by a wittig reaction 2-(Triphenylphosphoranylidene)propionaldehyde and the
aldehyde 8.2 The aldehyd 8 has two chiral senters, where a chiral oxazolidinone can be used
to hinder the synthesis of the unwanted enantiomer.



Scheme 2.3: alternative b

A different approach is to not do a wittig reaction, by choosing a different starting
compound.

3. Results and discussion

Oxidation of primary alcohol®

[Cu(MeCN),JOTH,
J\/ bpy, NMI, TEMPO H\/
HO _——
0, CHsCN |
1 47% O 2
Scheme 3.1:

2S-methylbutanal 2 was obtained by oxidizing 2S-methylbutanol with TEMPO as oxidizing
agent with a copper catalyst. The procedure was first described by Jessica Hoover and
Shannon Stahl, where good yield and selectivity had been reported for primary alcohols.
Despite nmr analysis of the reaction mixture indicating full conversion of the alcohol to
aldehyde, the yield was at first very low. This was due to the high volatility of the product.
This was resolved by not evaporating all of the solvent (DCM) from the sample. The yield
obtained was 47% in DCM.



Aldol reaction
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Scheme 3.2:

(S)-4-benzyl-3-((2S,3R,4S)-3-hydroxy-2,4-dimethylhexanoyl)oxazolidin-2-one 4 (4.52 g, 14.2
mmol) was obtained by an aaldol condensation between the enolate of 3 (3.897 g, 16.7
mmol) and the aldehyde 2 (1.72 g, 20 mmol) in 85% yield.

Barton McCombie

Ph Ph
3 TCDI 1,75 eqy. \
O/——\ DCE reflux /__\
~77% > O_N
b i S
o)
o 4 0] (; \(

N
!
Scheme 3.3:

compound 5 (2.25 g, 5.23 mmol) was obtained from the alcohol 4 (2.17 g, 6.8 mmol) and
TCDI (1.75 eqv.) in 77 % yield.

Deoxygenation

Ph Ph
N TTMSS, AIBN, \
Toluen,reflux, N
/ \ 30 min. /[ \
OYN s 80% > O\[rN
O 0
@] 2 \( e} o)
6

N
!
Scheme 3.4:

The thioester 5 (1.6 g, 3.73 mmol) was reduced to 6 (0.9 g, 2.97 mmol) at 80 % yield, by
radical initiated deoxygenation, where AIBN was used as the initiator and trimethylsilylsilan
as the reducing agent.
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Scheme 3.5

6 (1.1 g, 3.6 mmol) reduced by LiAlH,4 to yield the alcohol 7 (0.3 g, 2.3 mmol, 64%) as a colorless oil.
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Scheme 3.6: Reaction pathway for synthesizing Fusolanone B, based on the experimental
results obtained. The red compounds was not obtained, and therefore is uncertain.



Alternative reaction pathway

Aldol reaction

}‘ EtsN, Piv-Cl, LiCl, S‘
i+ Mo~ TS Qw
\‘O( J 75% T oy
1 12 © 13
Scheme 3.7:

(4S)-3-((E)-1-hydroxy-2-methylpent-2-en-1-yl)-4-isopropyloxazolidin-2-one 12 was obtained
in 75% yield.

(S)-3-((12,3E)-1-((tert-butyldimethylsilyl)oxy)-2-methylpenta-1,3-dien-1-yl)-4-
isopropyloxazolidin-2-one (14)

S NaHMDS, TBSCI, S
~\ — THF, -78 C \ VY
Oo. N » O N-—/
j( 91% \[(
o  OH OTBS
o}
13 14

Scheme 3.8

Adding TBS to the alcohol gave 14 in very good yield of 91%.

(S)-3-((4R,5S,6S,E)-5-hydroxy-2,4,6-trimethyloct-2-enoyl)-4-isopropyloxazolidin-2-one
(15)

S TiCl4 DCM, S
\ Y4 -78 C [\
o N—/ * T 0 OLN
\‘r | 60 % Y
o)
o 14OTBS o , o 15

Scheme 3.9:

The product 15 was obtained in 60 % yield. The reaction was very slow (16h), and had to
proceed under -78 °C to avoid significant amount of byproducts. The product was a clear oil.
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Scheme 3.10:

The conditions for thioesterification of 4 to give 77% of 5 was applied to 15. unfortunately,
14 did not react with the 1.1’- thiocarbonyldiimidazole.

CS,, Mel, AIBN,
NaHMDS "BuSnH
, M O N_ I
?f THE ?f : Toluene (ZZ/
O 18 O

Reflux
O 45 HO -78°C

S

~N
Scheme 3.11.Reaction for attempted deoxygenation of 15.

An alternate Barton-Mccombie reaction was carried out to give 18 in low yield. The crude
had a yellow impurity that was hard to purify, and might explain the low yield. After
purification, deoxygenation with AIBN was carried out with AIBN and n-BuSnH. NMR samples
of the fractions after purification indicated that the olefin in 18 (and 15) had been broken.
This is substantiated by Carey and Sundberg (p. 966).°

DIBAL-H, THF,
/—‘\ -78 C
0 —X—

g
o)
Scheme 3.12: Reaction conditions for attempted cleavage of oxazolidinone.

To avoid using a radical reaction while the oxazolidinone group was still atached, removal of
the oxazolidinone-group by DIBAL-H was attempted. Compound 15 did not react with DIBAL-
H, which is believed to be due to steric hinderance.

LiAlH, THF,
0ocC

Scheme 3.13: Reaction condition for reduction of 15.



The much less hindered LiAlH4 was attempted as a substitute for DIBAL-H. The reaction gave
the diol 21 in 65 % yield. Impurities of the oxazolidinone 11 was not separated from 21 even
at fraction 50. The next reaction was carried out with these impurities.

[Cu(MeCN),]OT,
bpy, NMI, TEMPO
—_—

0, CH3CN

Scheme 3.14: Reaction condition for selective oxidation of 21.

Hoover-Stahl oxidation was used to selectively oxidize the primary alcohol of the diol 21 to
yield 22. The starting material had impurities of the oxazolidinone 11, but it was successfully
separated from the product without interference in the reaction.

TCDI, DCE,

reflux

R PR

(0]
O 23 \(
7
Q\/N
Scheme 3.15:

The original Barton-McCombie with TCDI was applied on 22 under the same conditions
applied to the secondary alcohol 4. 23 was obtained in 45% yield. The formation of 23
indicates that steric hinderence might be the problem for reacting 15 with TCDI, where the
reaction did not occur.

Attempted deoxygenation

TTMSS, AIBN,
Toluen, reflux —
X ’ \
9] 23 (0] 24

N
W
N
Scheme 3.16: Reaction conditions for attempted deoxygenation of 23.

Deoxygenation of the thioester 23 under the same conditions used on 5 was attempted.
NMR analysis after purification did not show sign of the olefin.

Due to the failed deoxygenation of both 18 and 23, a different approach need to be made to
obtain 10. The successfull reactions, and the remaining steps to synthesize Fusolanone B is
shown in sheme 3.17.

10
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Scheme 3.17: Reaction pathway for synthesizing Fusolanone B (28), base experimental data obtained. The
compounds in red was not obtained.
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4. Spectroscopy

(S)-2-methylbutanol
Table 1 shows assigned *H NMR shifts for (S)-2-methylbutanol (figure 1)

5

HO\/!\/4

1 3

Figure 4.1: (S)-2-methylbutanol with numbering of carbons

Table 1: 'H NMR shifts for (S)-2-methylbutanol

Carbon no. 6 H (ppm) M [Hz] Integral
1 3.44 m - 2
2 1.13 m - 1
3 1.49 m - 2
4 0.90 t 7.4 3
5 0.90 d 6.7 3

(S)-2-methylbutanal

Table 2 shows assigned *H NMR shifts for (S)-2-methylbutanal (figure 2)

Figure 4.2: (S)-2-methylbutanal with numbered carbons

Table 2: Assigned shift for (S)-2-methylbutanal

Carbon no. 6 H (ppm) M [Hz] Integral
1 9.61 d 1.9 1
2 2.27 dsex 1.8,6.9 1
3 1.74 sep 7.1 1
3 1.42 sep 7.1 1
4 1.08 d 7.0 3
5 0.94 t 7.5 3

Compared to the spectra of (S)-2-methylbutanol, (S)-2-methylbutanal shows no sign of the
sign of the multipled with integral 2 at 3.44, but instead has peak at 9.61 with integral 1. This
indicates an oxidation to an aldehyde.

12



(S)-4-isopropyloxazolidin-2-one

5

N

~
~

23
O. NH

1

0]

Figure 4.3

Table 3: NMR shift of compound 11.

Carbon no. 6 H (ppm) M [Hz] integral
1 - - - -

2 4.42,4.08 t, dd 8.7, - 2

3 3.60 m - 1

4 1.70 m 6.7 1

5 0.91 2xd 6.7,6.7 3+3

N 7.15 s, broad - 1

(4S)-3-((E)-1-hydroxy-2-methylpent-2-en-1-yl)-4-isopropyloxazolidin-2-one

Table 4 shows assigned 'H NMR shifts for (4S)-3-((E)-1-hydroxy-2-methylpent-2-en-1-yl)-4-

isopropyloxazolidin-2-one (figure x)

1

S
o N
T o
0]
Figur 4.43
Table 4: nmr shift of compound 12

Carbon no. 6 H (ppm) M [Hz] Integral
1 - - - -
2 - - - 0
3 6.09 t 7.3 1
4 2.22 qv 7.5 2
5 1.07 t 7.5 3
6 1.91 S - 3
7 - - - -
8 4.33,4.18 t, dd 8.8,5.3,8.8 1+1
9 4,53 m 1
10 2.38 m 1
11 0.93 t 6.5 6

13




(S)-3-((1Z,3E)-1-((tert-butyldimethylsilyl)oxy)-2-methylpenta-1,3-dien-1-yl)-4-
isopropyloxazolidin-2-one

Chemical shift for compound 13 (figure 4.5) is shown in table 5.

14

AE
R 6
11/__\12\92\/4\5
O\WN 1 7
© /\s.i'O
7 )ng
Figure 4.5
Table 5: NMR shift of compound 13.
Carbon no. 6 H (ppm) M [Hz] Integral
1 - - - -
2 - - - -
3 6.23 d 15.4 1
4 5.65 dg 15.4,6.6 1
5 1.80 m 3
6 1.80 m 3
7 0.2 6
8 - - - -
9 1.00 s - 9
10 - - - -
11 4.0-4.4 2
12 4.0-4.4 1
13 1.97 m - 1
14 0.95 d 6.9 6

Compared to 13, 14 does not have a gvintet at 2.22 ppm, but a doublet of quartet at 5.65. it
also shows a doublet at 6.23 ppm with integral 1, while 13 shows a triplet. The low shift at
0.2 indicates the silyl.

(S)-3-((4R,5S,6S,E)-5-hydroxy-2,4,6-trimethyloct-2-enoyl)-4-isopropyloxazolidin-2-one
For this compound (figur 6, 15) H, 13C, COSY, HMBC and HSQC was carried out to determine shift for
both proton and carbon. Table 6 show the assigned shifts, and figure 4.6 shows the carbon
numbering of the compound analysed.

14



(S)-3-((4R,5S,6S,E)-5-hydroxy-2,4,6-trimethyloct-2-enoyl)-4-isopropyloxazolidin-2-one
Chemical shift for compound 15 (figure 4.6) is shown in table 6.

Figur 4.6: carbon numbering of compound 15

Table 6: NMR shift of compound 15

Carbon no. A H (ppm) M [Hz] Integral 13C
1 - - - - 172
2 - - - - 132
3 5.71 dd 1.3,10.3 1 143
4 2.66 38
5 3.21 dt 2.0,8.9 1 77
6 1.47 m 1 36
7 1.30,1.42 m 2 27
8 0.86 m 3

9 0.86 m 3

10 0.86 m 3

11 1.86 d 1.3 3

12 - - - - 155
13 4.26,4.10 2 63
14 4.49 1 58
15 2.27 1 28
16 0.86 6

For the proton shifts at 0.9 and the belonging carbon shifts could not be assigned precisely
due to the closeness of the shifts.

(4R,5S,6S,E)-2,4,6-trimethyloct-2-ene-1,5-diol
The assigned shifts of the diol 21 (figure 4.7) is shown in table 7.

Figure 4.7:

15



Table 7: NMR shift of compound 21

Carbon no. 6 H (ppm) M [Hz] Integral
1 2.99 S - 2
2 - - - —
3 5.30 d 9.9 1
4 2.56 m - 1
5 3.24 dd 3.22,8.16 1
6 1.51 m - 1
7 1.43,1.30 m, m - 2
8 0.9 - - 3*
9 0.9 - - 3*
10 0.9 - - 3*
11 1.68 s - 3

*impurities of oxazolidinone 11 is corrected for.

(4R,5S,6S,E)-5-hydroxy-2,4,6-trimethyloct-2-enal
Table 8 shows assigned H shifts for compound 22 (Figure 4.8).

Figure 4.8:
Table 8: NMR shift of compound 22

Carbon no. 6 H (ppm) M [Hz] integral
1 9.43 s - 1

2 - - - -

3 6.54 d(d) 9.8,(1.2) 1

4 2.91 m - 1

5 3.46 broad - 1

6 1.51 m - 1

7 1.44,1.26 m - 1+1
8 0.92 7.4 3

9 0.93 d 6.7 3

10 1.07 d 6.9 3

11 1.79 s(d) -, (1.2) 3

The difference between the shifts of 22 and that of 21 is the singlet at 9.43 ppm at 22 and
the singlet at 2.99 ppm with integral 2 at 21, indicating successfull selective oxidation of
primary alcohol.
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0O-((3S,4S,5R,E)-3,5,7-trimethyl-8-oxooct-6-en-4-yl) 1H-imidazole-1-carbothioate

NMR shift of compound 23 (Figure 4.9) is shown in table 9.

Figure 4.9

Table 9: NMR shift of compound 23

Carbon no. 6 H (ppm) M [Hz] integral
1 9.39 s - 1

2 - - - -

3 6.45 d(d) 10.2, (1.4) 1

4 3.33 m - 1

5 5.84 dd 43,75 1

6 1.92 m - 1

7 1.47,1.27 m, m - 1+1
8 0.98 t 7.4 3

9 1.08 d 6.8 3

10 1.19 d 6.8 3

11 1.75 s(d) (1.3) 3

12 - - - -

13 8.31 s - 1

14 7.59 s - 1

15 7.06 s - 1
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5. Experimental

Oxidation of 2(S)-methylbutanol

The procedure is based on copper-catalysed oxidation reported by Jessica Hoover and
Shannon Stahl.®

[Cu(MeCN),]OTH,
J\/ bpy, NMI, TEMPO H\/
HO ——
0, CH3CN |
1 47% o 2
2(S)-methylbutanol (1, 4.6 g) was dissolved in CH3sCN, and added [Cu(MeCN)4]OTf (5 mol% in
CH3CN), bpy (5 mol% in CH3CN), TEMPO (5 mol% in CH3sCN) and NMI (10 mol% in CH3CN). A
balloon with O, was connected to the stirred reaction mixture, and the mixture was left
stirring for 24 hours. When NMR showed no sign of alcohol, the reaction was evoporated
and purified on a silica column, using DCM. Because of the volatile nature of the product, all
of the DCM was not attempted to be removed. Product 2 was obtained dissolved in DCM

(2.11 g, 47% yield). H NMR (400 MHz, CDCl3) & = 9.65 (1H, s), 2.06 (1H, m), 1.52 (1H, m),
1.21 (1H, m), 0.84 (3H, d), 0.72 (3H, t).

(S)-4-benzyl-3-((2S,3R,4S)-3-hydroxy-2,4-dimethylhexanoyl)oxazolidin-2-one (4)
This procedure follows

Ph Ph
\ \
N Bu,BOTf, DIPEA, R
H\/ e CH,Cl, 0 C I\
| Y o L b
0O 2 0 o}
03 O 4
Scheme 5.1

The acylated oxazolidinone 3 ( 3.90 g, 16 mmol) was dissolved in CH2Cl,, in a dry flask under
N; at 0 °C. 1M dibutylboron triflate in CH.Cl, (1.2 eqv.) was added dropwise, followed by
slow addition of DIPEA (1.3 eqv.). The solution was cooled to -78 °C, and 2(S)-methylbutanal
2 (1.1 eqv) was added. The solution was stirred for 30 minutes, before it was warmed to 0 °C
and stirred for an additional 60 minutes. The reaction was quenched by addition of
phosphate buffer and methanol, and stirred for an additional hour. The mixture was
concentrated in vacuo, and the resulting slurry was extracted with Et>0 (3 x 25 mL), washed
with Na2COy(aq), brine, dried over MgS04 and concentrated in vacuo. Purification on silica
column (20 % EtOAc/Pentan) to give the product 4 as a colorless oil (4.52 g, 85%). 'H NMR
(400 MHz, CDCl3) & = 7.3 (5H, m), 4.72 (1H, m), 4.22 (2H, m), 4.01 (1H, m), 3.71 (1H, dd), 3.28
(1H, dd), 2.81 (1H, dd), 1.51 (2H, m), 1.29 (3H, d), 1.15 (1H, m), 1.01 (3H, d), 0.93 (3H, t). 13C
NMR(400 MHz, CDCls3) 6 =178, 163, 136, 129, 129, 128, 75, 66, 55, 40, 38, 37, 25, 15, 11, 11.
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0O-((2S,3R,4S)-1-((S)-4-benzyl-2-oxooxazolidin-3-yl)-2,4-dimethyl-1-oxohexan-3-yl) 1H-
imidazole-1-carbothioate
Barton mccombie deoxygenation??

Ph

TCDI 1,75 eqv. }
/——\ Té\é\/ DCE, reflux /__(
77 /o OYN s
o 2 %
!
Scheme 5.2

The alcohol 4 (2.17 g, 6.8 mmol) and 1,1’-thiocarbonyldiimidazole (TCDI) (1.75 eqv.) was
dissolved in 1,2-dichloroethane and heated under reflux for 5 hours. The solvent was
evaporated and the crude was dissolved in CH,Cl,, washed with 5 % w/v tartaric acid, H20
and saturated NaHCOs, dried over MgSQ4, and evaporated. Purification by silica column (20
% EtOAc/pentan) to give 5 as a yellow oil (2.25 g, 5.23 mmol, 77% yield). *H NMR (400 MHz,
CDCl3) & = 8.38 (1H, s), 7.64 (1H, s), 7.31 (5H, m), 7.09 (1H, s), 6.09 (1H, t), 4.54 (1H, m), 4.42
(1H, m), 4.22 (2H, m), 3.27 (1H, dd), 2.79 (1H, dd), 1.94 (1H, m), 1.63 (1H, m), 1.34 (4H, d +
m), 1.00 (6H, m). ). $3C NMR(400 MHz, CDCl5) 6§ =173, 153, 135, 131, 129, 129, 127, 87, 66,
56, 40, 38, 37, 25, 15, 11, 11.

(S)-4-benzyl-3-((2S,4S)-2,4-dimethylhexanoyl)oxazolidin-2-one
Radical deoxygenation'!

Ph Ph
N TTMSS, AIBN, \
Toluen,reflux, N
! \ 30 min. /o
(0] N P 0 N
S 80%
T b oy b
0] 5 o) O
6

N
!
Scheme 5.3

The carbothioate 5 (1.6 g) was dissolved in toluene, and AIBN (0.3 eqv.) and
tris(trimethylsilyl)silane (1.2 eqv.) were added. The mixture was slowly heated, and refluxed
for 30 min under N,. After cooling, the mixture was added NaHCOj3(aq) (20 % w/w) and
extracted with EtOAc (3 x 20 mL). The combined organic phases were dried over MgSQg,
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consentrated in vacuo and purafied by silica column (EtOAc/pentan). Purification resulted in
6 (0.9 g) as a colorless oil 80 % yield. *H NMR (400 MHz, CDCl3) 6§ = 7.29 (5H, m), 4.69 (1H, m),
4.18 (2H, m), 3.90 (1H, m), 3.28 (1H, dd), 2.79 (1H, dd), 1.89 (1H, m), 1.36 (2H, m), 1.24 (3H,
d), 1.17 (2H, m), 0.90 (6H, m). 13C NMR(400 MHz, CDCls) & = 177, 153, 135, 129, 129, 127, 66,
55, 40, 38, 35, 32, 29, 19, 18, 11.

Removal of oxazolidinone group by reduction

LiAlH, THF,

oc 1h.
HO\)\)\/ * H\/'\/
60% 7 A 8

Scheme 5.4

The oxazolidinone 6 dissolved in dry THF was added LiAlH4 slowly, at O °C. After 45 minutes,
the reaction was quenched by addition of methanol, and the reaction was allowed to stir for
30 minutes, before water and NaOH (1M) was added slowly. The mixture was extracted with
EtOAc (3x), washed with NaHCOs, dried over MgS0a, concentrated in vacuo and purified by
silica column (EtOAc/Pentan). Purification resulted in both the alcohol 7, and the aldehyde 8
(60 % total). 'H NMR (400 MHz, CDCl3) 6 = 3.46 (2H, m), 1.72 (1H, m), 1.35 (3H, m), 1.10 (1H,
m), 0.95 (10H, m). 3C NMR(400 MHz, CDCls) § = 69, 41, 34, 32, 30, 20, 18, 17.

Hoover-Stahl oxidation

[Cu(MeCN),]OTH,
bpy, NMI, TEMPO

—
HO\)\)\/ O, CH3CN H\S)\/
7 O
Scheme 5.5
The alcohol 7 was dissolved in CH3CN, and added [Cu(MeCN)4]OTf (5 mol% in CH3CN), bpy (5
mol% in CH3CN), TEMPO (5 mol% in CH3CN) and NMI (10 mol% in CH3CN). A balloon with O,
was connected to the stirred reaction mixture, and the mixture was left stirring for 24 hours.

When NMR showed no sign of alcohol, the reaction was evoporated and purified on a silica
column, using DCM. NMR indicated aldehyde, but further purification is needed.
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Alternative path

Aldol*?
R EtsN, Piv-Cl, LiCl, R
A 0
\[O( d 75% i "
0
1 12 13

A stirred solution of (E)-methyl-2-pentenoic acid 12 (2.79 g, 24.4 mmol) in THF (110 mL) was
added triethylamine (9 mL) and cooled to -78 °C. Trimethylacetyl acetyl chloride (3.1 mL)
was then added slowly over 10 minutes, before the mixture was allowed to warm to room
temperature and stirred for 60 minutes. The mixture was added LiCl (1.234 g) and (S)—4-
isopropyloxazolidin-2-one 11 (2.62 g, 20 mmol mmol). After TLC indicated no starting
material (3 days), the reaction was quenched with 1:1 water:sat.NH4Cl solution. The layers
were separated, and the aqueous layer was extracted with Et;0. The combined organic
phases were washed with brine, dried over MgSOQ,, filtered and consentrated in vacuo.
Purified by silica column (20% EtOAc in pentan) to result in (4S)-3-((E)-1-hydroxy-2-
methylpent-2-en-1-yl)-4-isopropyloxazolidin-2-one 13 (3.8 g, 75%). *H NMR (400 MHz, CDCls)
6=6.09 (1H,t,J =7.3 Hz), 4.53 (1H, m), 4.33 (1H, m), 4.18 (1H, m), 2.38 (1H, m), 2.22 (2H,
qv,J =7.5Hz),1.91(3H, s), 1.07 (3H, t, ) = 7.5 Hz), 0.93 (6H, t, ) = 6.5 Hz. 13C NMR (400 MHz,
CDCl3) 6 =172, 154, 141, 130, 63, 58, 28, 22, 18, 15, 13, 13.

TBS
S NaHMDS, TBSCI, >“
I\ THF, -78 C [\ Vi
o._N » o __N—7
i . 91%
) o OTBS
13 14

(4S)-3-((E)-1-hydroxy-2-methylpent-2-en-1-yl)-4-isopropyloxazolidin-2-one 13 (3.7 g, 16.44
mmol) in THF (150 mL) at -78 C was added NaHMDS (25 mmol) slowly, before the solution
was stirred for 135 minutes at -78 C. TBSCI (xx g, xx mmol) in THF (xx mL) was added slowly
and the mixture was stirred for addition 120 minutes at -78 C, before it was quenched with
NH4Cl, and warmed to room temperature. Layers were separated and aqueous layer was
extracted with EtOAc, before it was washed with brine, dried over MgSQy, filtered, and
consentrated in vacuo. Purification by silica column (20 %EtOAc in pentan) to yield 14 (5, 06
g, 91%) as a colorles oil). 'H NMR (400 MHz, CDCl5) 6 = 6.23 (1H, d, J = 15.4 Hz), 5.65 (1H, dq,
J=15.4, 6.6 Hz), 4.34 (1H, m), 4.15 (1H, t), 4.01 (1H, m), 1.97 (1H, m), 1.80 (6H, m), 1.00 (9H,
s), 0.95 (6H, d, J = 6.9 Hz), 0.2 (6H). [a]p 2° =-7.89 (CHCl3, ¢ = 2.0)
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Mukaiyama aldol*3

S TiCl,, DCM,

\ Y -78 C [\
%
| : bl
WO( OTBS (0] 2 o)
14

The aldehyde 2 (xx g, xx mmol, 2 eqv.) in CH,Cl, (xx mL) was cooled to -78 C, before TiCl (xx g,
xx mmol) and the silyl N,0-acetal 14 (xx g, xx mmol) were added. The reaction was stirred for
16 hours before it was quenched with tartaric acid (aq), and saturated NaHCO3(aq). The
mixture was allowed to warm to r.t. while stirring, before extracting with EtOAc. The organic
layers were washed with brine, dried over MgS0, filtered and consentrated in vacuo.
Purification by silica column (20 % EtOAc in pentan) to yield 15 as a colorless oil (60 %). H
NMR (400 MHz, CDCls) & = 5.7 (1H, dd, J = 10.3, 1.3 Hz), 4.51 (1H, m), 4.45 (1H, m) 4.10 (1H,
m), 3.21 (1H, dt, J = 8.9, 2.0), 2.66 (1H, m), 1.86 (3H, d, J = 1.3 Hz), 1.47 (1H, m), 1.42 (1H, m),
1.30 (1H, m), 0.86 (15H, m). 3C NMR(400 MHz, CDCls) 6 = 172, 155, 143, 131, 77, 63, 58, 37,
36, 28, 27, 18, 16, 15, 14, 12, 12. IR: 3526, 2962, 2933, 2875, 1766, 1683, 1205. [a]p ° =+ 3.3
(CHCl3, ¢ = 2.0)

McCombie
}‘ TCDI, DCE, B‘
[\ reflux [\ 1
(o) X ? o. N o

¥ To, r

N
"

The alcohol 4 and 1,1’-thiocarbonyldiimidazole (TCDI) (1.75 eqv.) was dissolved in 1,2-
dichloroethane and heated under reflux for 5 hours. The solvent was evaporated and the
crude was dissolved in CH,Cl,, washed with 5 % w/v tartaric acid, H,O and saturated
NaHCOs3, dried over MgSQ4, and evaporated. Purification by silica column (20 %
EtOAc/pentan) indicated that no reacted had occured.

Alternate McCombie deoxygenation!*

CS,, Mel, AIBN,
NaHMDS, n BuSnH g
N N
Toluene ?]/
Y THF >// o

Reflux
O 45 HO -78°C

S\

The secondary alcohol 15 (3 mmol) in anhydrous THF (15 mL) was cooled to -78 C, and
stirred for 30 min. CS; (60 mmol) was added, and the solution was stirred for another 30
minutes, before Mel (90 mmol) was added and the solution was stirred for another 15
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minutes. The reaction was quenched with H,O before it was allowed to warm to room
temperature. Extracted by EtOAc, before the organic phases was washed with brine, dried
over MgS0y, filtered and consentrated in vacuo. Purification by silica column (10% EtOAc in
pentan) to give 18 (low yield). *H NMR (400 MHz, CDCls) 6 =

Compound 18, BusSnH and AIBN was mixed together and stirred unter reflux at 120 C for 1
h. The reaction was quenched by addition of H,0, extracted with EtOAc, washed with brine,
dried over MgSQy, filtered and consentrated in vacuo. Purification by silica column (EtOAc
gradient in pentane) did not give the expected compound.

Reduction by DIBAL-H ¥

DIBAL-H, THF,
-78 C

The secondary alcohol 15(0.3 g) in THF (15 mL) was cooled to -78 C, and added DIBAL-H (1,2
mL, 1M) under inert athmosphere. The reaction was stirred for 2 hours, but no sign of any
reaction was indicated by nmr.

Removal of oxazolidinone??

LiAlH, THF,
0cC

Same procedure as Scheme 5.4. diol 21 in 65% yield.

1H NMR (400 MHz, CDCl3) & = 5.30 (1H, d, J = 9.9 Hz), 3.24 (1H, dd, J = 8.2, 3.2 Hz), 2.99 (2H,
s), 2.56 (1H, m), 1.68 (3H, s), 1.51 (1H, m), 1.43 (1H, m), 1.30 (1H, m), 0.9 (9H). 13C NMR (400
MHz, CDCls) & = 137, 129, 78, 68, 36, 36, 27, 17, 14, 12, 12.

Selective oxidation of primary alcohol®

[Cu(MeCN),]OTH,
bpy, NMI, TEMPO

0, CH3CN

The diol 21 was dissolved in CH3CN, and added [Cu(MeCN)4]OTf (5 mol% in CH3CN), bpy (5
mol% in CH3CN), TEMPO (5 mol% in CH3zCN) and NMI (10 mol% in CHsCN). A balloon with O3
was connected to the stirred reaction mixture, and the mixture was left stirring for 24 hours.
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When NMR showed no sign of alcohol, the reaction was evoporated and purified on a silica
column, using DCM. The purification resulted in the aldehyde 22. 'H NMR (400 MHz, CDCls) 6
=9.43 (1H's), 6.54 (1H, dd, ) = 9.8, 1.2 Hz), 3.46 (1H, b), 2.91 (1H, m), 1.79 (3H, d, J = 1.2),
1.51 (1H, m), 1.44 (1H, m), 1.26 (1H, m), 1.07 (3H, d, J = 6.9 Hz), 0.92 (6H,d +t,1 = 6.7, 7.4
Hz). 13C NMR (400 MHz, CDCl3) § = 195, 157, 139, 78, 37, 37, 26,17, 13, 12, 9.

McCombie'®

TCDI, DCE,
reflux

N

A
The alcohol 22 and 1,1’-thiocarbonyldiimidazole (TCDI) (1.75 eqv.) was dissolved in 1,2-
dichloroethane and heated under reflux for 5 hours. The solvent was evaporated and the
crude was dissolved in CH,Cl,, washed with 5 % w/v tartaric acid, H,0 and saturated
NaHCOs3, dried over MgS04, and evaporated. Purification by silica column (20 %
EtOAc/pentan) to give 23 (xx%). 'H NMR (400 MHz, CDCls) 6 = 9.39 (1H, s), 8.31 (1H, s), 7.59
(1H, s), 7.06 (1H, s), 6.45 (1H, dd, J = 10.2, 1.4 Hz), 5.84 (1H, dd, J = 7.5, 4.3 Hz), 3.33 (1H, m),
1.92 (1H, m), 1.75(3H, d, J =1.3 Hz), 1.47 (1H, m) 1.27 (1H, m), 1.19 (3H, d, ) = 6.8 Hz), 1.08
(3H, d, ) =6.8 Hz), 0.98 (3H, t, ) = 7.4 Hz). 13C NMR(400 MHz, CDCl3) 6 = 195, 185, 153, 140,
131, 118, 89, 37, 36, 26,17, 14, 12, 9.

Deoxygenation

TTMSS, AIBN,
Toluen, reflux —

X > \
e} 23 (0] 24

N
A

Same conditions that was carried out on 5, but did not yield the expected compound (24).
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6. Spectra

Spectra of compound 13
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Figure 6.2: 3C nmr of 13
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Spectra of compound 14
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Elemental Composition Report Page 1

Single Mass Analysis
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Figure 6.11: MS analysis of compound 15.
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Figure 6.13: 13C NMR spectra of compound 18
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Spectra of compound 21
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Figure 6.14: 'H spectra of compound 21.
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Figure 6.15: 13C NMR spectra of compound 21.
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Spectra of compound 22
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Spectra of compound 23
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Figure 6.18: 'H NMR spectra of compound 23.
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Figure 6.20: 'H NMR spectra of compound 1.



Spectra of compound 2
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Spectra of compound 4
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Figure 6.22: 'H NMR spectra of compound 4.
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Spectra of compound 5
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Spectra of compound 6
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Figure 6.28: *H NMR spectra of compound 6.
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Spectra of compound 7
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Figure 6.31: 'H NMR spectra of compound 7.
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Spectra of compound 8
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Figure 6.33: *H NMR spectra of compound 8.
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Spectra of compound 11
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Figure 6.35: 'H NMR spectra of compound 11.
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