
D
ing N

an

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Ding Nan

Optimal Control of TES System by Using
Nonlinear Model Predictive Control

Master’s thesis in Chemical Process Technology

Supervisor: Johannes Jäschke (Associate Professor), Zawadi Ntengua

Mdoe (PhD Candidate)

June 2020

TKP4900 - Chemical Process Technology, Master’s Thesis

Optimal Control of TES
System by Using Nonlinear

Model Predictive Control

Ding Nan

Submission date: June 07.2020
Supervisor: Johannes Jäschke, Associate Professor IKP
Co-Supervisor: Zawadi Ntengua Mdoe, PhD Candidate IKP

Norwegian University of Science and Technology
Department of Chemical Engineering

Abstract

Industrial waste heat (WE) recovery process reuses heat energy that would otherwise be
expelled and wasted to ensure and enhance resource conservation, waste as well as costs
reduction. Under this circumstance, thermal energy storage (TES) system can be used
to store WE for meeting future peak energy demand. With the presence of TES tank,
the performance of simple thermal energy system has been significantly increased. In or-
der to realize considerable energy saving and cost reduction, one of the significant optimal
operation strategies, nonlinear model predictive control (NMPC) is implemented. The per-
formance and stability of NMPC depend strongly on the accuracy of the model which is
utilized in the optimization. However, in many practical application domains, uncertainty
like plant-model mismatch is present and severely effects its robustness. As a conventional
method, standard NMPC works well without considering uncertainty such as plant-model
mismatch. However, after taking into account uncertainty, standard NMPC offers few ro-
bustness against it, where energy supply and demand profile may vary considerably from
their predicted profiles. So as to significantly reject uncertainty, one of the robust version
of NMPCs, scenario-based multistage NPMC is implemented, where the evolution of un-
certainties is modeled as a propagating scenario tree along prediction horizon.

The numerical method for solving optimal control problem in this thesis is selected as di-
rect collocation method. Then NLP problem is defined in CasADi framework and solved
by IPOPT within the MATLAB programming environment. Simulation studies have been
carried out for three major and one minor cases, namely optimal control of a simple TES
system by standard NMPC with and without direct solar heating without plant-model mis-
match, optimal control of a simple TES system by multistage NMPC and optimal control
of a simple thermal energy system by standard NMPC without storage tank without plant-
model mismatch.

i

Preface

This master thesis is written for the course TKP4900 Chemical Process Technology,
Master’s Thesis at Norwegian University of Science and Technology (NTNU). The work
of this thesis was carried out during the Spring semester of 2020 at Process Systems Engi-
neering group of the Department of Chemical Engineering.

I would like to express my deepest gratitude towards my supervisor Associate Profes-
sor Johannes Jäschke, for giving me the valuable opportunity to work on this challenging
project and also for his excellent guidance and support during this process.

I am also extremely thankful to my co-supervisor PhD Candidate Zawadi Ntengua Mdoe
for his constant guidance and close assistance throughout the project, for being available to
me even while being away on paternity leave, for sharing knowledge and providing tech-
nical background on this work and for reviewing the thesis. It was quite inconvenient to
get frequent contact with each other during this serious corona-virus spreading period, but
sincerely thanks to him for providing me normal weekly online meeting and even more.
With his guidance, support and discussion, I became familiar with this quite new work
very soon. Thanks to his family and bless their newborn baby.

I would also like to thank other PhD candidates and my fellow master students at the Pro-
cess Systems Engineering Group. The open and sharing environment with you has helped
me get through this thesis. And my friends who are in Trondheim or not for supporting
me.

Finally, I would like to thank my parents for supporting, guiding and loving me. Since
my parents are not familiar with English, it is better for me to express my gratitude in
Mongolian.

ii

Declaration of Compliance

I declare that this is an independent work according to the exam regulations of the Nor-
wegian University of Science and Technology (NTNU).

Ding Nan
Trondheim, Norway
June 07, 2020

iii

iv

Table of Contents

Abstract i

Preface ii

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Structure of the thesis . 2

2 Thermal energy storage (TES) systems 5
2.1 Energy storage systems . 5
2.2 Thermal energy storage systems . 7

2.2.1 Introduction . 7
2.2.2 Basic thermodynamics of energy storage 8
2.2.3 Sensible TES system using water storage 10

2.3 Heat transfer modeling in heat exchangers 13
2.3.1 Brief introduction of heat exchanger 13
2.3.2 Heat transfer mechanisms . 15
2.3.3 Overall heat transfer coefficient, U 16
2.3.4 Logarithmic mean temperature difference – LMTD 17
2.3.5 Approximation of LMTD . 19

3 Optimal control problem and nonlinear model predictive control 21
3.1 Introduction to optimization problem . 21

3.1.1 Mathematical formulation . 22
3.1.2 Nonlinear programming problem 23

v

3.2 Optimal control problem . 23
3.2.1 Dynamic systems and optimization 23
3.2.2 Numerical methods for solving dynamic optimization problem . . 25
3.2.3 Sequential approach (direct single shooting) 26
3.2.4 Simultaneous approach . 26
3.2.5 Direct collocation method . 28
3.2.6 Nonlinear optimization . 31

3.3 Model predictive control . 33
3.3.1 MPC algorithm . 35
3.3.2 Nonlinear model predictive control 37
3.3.3 Multistage NMPC . 38

4 Implementation 43
4.1 Implementation of modeling . 43
4.2 Implementation of simulation . 45

4.2.1 Background information of CasADi 45

5 Modeling of thermal energy storage system 47
5.1 Model description and assumptions . 48
5.2 Process modeling . 49

5.2.1 Topology illustration . 49
5.2.2 Energy balances and Mass balances 50
5.2.3 Model equations . 55
5.2.4 Energy demand modeling . 58

6 Optimal control of TES system by iNMPC 61
6.1 Implementation details . 61
6.2 Standard NMPC on a simple TES system without direct solar heating . . 61

6.2.1 Optimization problem . 63
6.2.2 Results . 65

6.3 Standard NMPC on a simple TES system with direct solar heating 69
6.3.1 Optimization problem . 69
6.3.2 Results . 70

6.4 Multistage NMPC on a simple TES system with uncertainty 71
6.4.1 Modeling of the uncertainties 72
6.4.2 Optimization problem . 72
6.4.3 Results . 74
6.4.4 Standard NMPC on a simple TES system with uncertainty 76

7 Results and discussion 77
7.1 Storage vs. No storage . 78
7.2 Without direct solar heating vs. with direct solar heating 80
7.3 Multistage NMPC vs. standard NMPC 81

vi

8 Conclusion 85
8.1 Conclusion . 85
8.2 Further work . 86

Bibliography 87

Appendix A 91

Appendix B 91

Appendix C 92

Appendix D 93

Appendix E 94

Appendix F 95

Appendix G 96

Matlab code 99

vii

viii

List of Tables

2.1 Heat storage density per volume for different materials (S. Furbo (2015)) . 11
2.2 Values of n for different types of approximations 20

3.1 Basic MPC algorithm (Foss,B. and Heirung,T.A.N.(2013)) 36
3.2 Basic NMPC algorithm (Foss,B. and Heirung,T.A.N.(2013)) 38

5.1 Topology term explanations . 50
5.2 Model parameter explanations . 50
5.3 Temperature indications . 52

6.1 System model parameters . 62
6.2 Discrete realizations of p used in the simulation 72

ix

x

List of Figures

2.1 Classification of energy storage methods 7
2.2 Complete storage cycle of a TES system 8
2.3 Scheme of classification of different storage systems according to the stor-

age concept . 10
2.4 Stratified hot water tank . 12
2.5 Heat exchanger flow configurations (or arrangements): (a) counter (b) par-

allel (c) cross (d) hybrid: cross counter 13
2.6 Simple temperature profiles of heat exchangers 14
2.7 Counter-flow and parallel-flow heat exchangers 18
2.8 Counter-flow and parallel-flow heat exchangers: temperature distributions 18

3.1 Numerical methods for solving dynamic optimization problem 25
3.2 Sequential approach process (Johannes Jäschke (2019)) 27
3.3 Lagrange polynomial Lk,i(t) on the interval [tk, tk+1] (Moritz Diehl and

Sébastien Gros (2017)) . 29
3.4 Typical control hierarchy (Foss,B. and Heirung,T.A.N.(2013)) 34
3.5 Block diagram for model predictive control (Seborg et al. (2011)) 35
3.6 Illustration of the MPC principle (Seborg D.E.et al.(2011)) 37
3.7 Scenario tree representation of the evolution of the uncertainty for multi-

stage NMPC. (Lucia,S. and Engell,S. (2015)) 39
3.8 Scenario tree representation of the uncertainty evolution with robust hori-

zon for multistage NMPC (Lucia,S. and Engell,S. (2015)) 42

4.1 Process model classification . 43

5.1 Illustration of a simple thermal energy storage system 47
5.2 Topology of the system. The states, inputs and disturbances are shown in

red, black, and green respectively. The red lines represent the hot streams
and the blue ones cold streams. 49

5.3 Simple supply-demand mismatch profile used in TES system 58
5.4 Estimated energy net load values for 2020 from CAISO Burnett,M. (2016) 59

xi

5.5 Scaled hourly demand and hourly hypothetical solar supply 60

6.1 Simple supply-demand mismatch profile used in TES system 62
6.2 OCP result of one supply one demand TES system 66
6.3 OCP result of one supply one demand thermal energy system without stor-

age tank . 67
6.4 Comparison of Ttank with diverse Vtank 68
6.5 Comparison of Qdump and Qmarket with diverse Vtank 68
6.6 OCP result of one supply one demand TES system with direct solar heating 70
6.7 Uncertainty subspace and the possible M models for the scenario tree de-

noted as × . 73
6.8 Scenario tree of this case . 73
6.9 OCP result of one supply one demand TES system with uncertainty . . . 75

7.1 Simple supply-demand mismatch profile used in TES system 78
7.2 Results of the standard NMPC applied to the cases with and without TES

tank . 79
7.3 Results of the standard NMPC applied to the cases with and without ther-

mal direct solar heating to TES tank . 80
7.4 Results of the standard NMPC and multistage NMPC with consideration

of uncertainties . 82
7.5 Results of the standard NMPC including slack variables with considera-

tion of uncertainties . 83
7.6 Results of the standard NMPC including slack variables with considera-

tion of uncertainties (qL2, qR2 are inequality constraint) 83

8.1 Topology of a simple thermal energy system without thermal storage tank 97

xii

Abbreviations

AD Algorithmic Differentiation
CAS Computer Algebra System
CasADi Computer Algebra System for Automatic Differentiation
DAE Differential Algebraic Equation
ES Energy Storage
HEX-i i-th Heat Exchanger
HTF Heat Transfer Fluid
iNMPC A Certain Type of Nonlinear Model Predictive Control
IPOPT Interior Point Optimization
LMTD Logarithmic Mean Temperature Difference ∆Tlm
msNMPC Multistage Nonlinear Model Predictive Control
MIMO Multiple-Input-Multiple-Output
MPC Model predictive control
MTD Mean Temperature Difference ∆Tm
NMPC Nonlinear Model Predictive Control
ODE Ordinary Differential Equation
OCP Optimal Control Problem
PCMs Phase Change Materials
PDE Partial Differential Equations
sNMPC Standard Nonlinear Model Predictive Control
SQP Sequential Quadratic Programming
TES Thermal Energy Storage
WE Waste Heat
A Surface Area [m2]
cp Specific Heat Capacity [kJ/kgK]
P Energy Source Cost
Q Heat Flow Rate [kW]
q Volumetric Flow Rate [m3/s]
T Temperature [◦C]
U Overall heat transfer coefficient [kW/m2K]
V Volume [m3]
ρ Density [kg/m3]

xiii

xiv

Chapter 1
Introduction

Energy is needed for us, no matter in electrical or thermal energy form. But in the most
cases not where or when energy is available. For example, someone is listening music
while jogging outside, it is not possible to stand beside the socket or even carry with. In
order to solve this problem, battery is charged with electrical energy in advance or even
power bank is charged for later necessary use. These two examples are the most common
ways of electrical energy storage. Was it possible for people to drink cold beverage before
the invention of fridge or freezer? The answer is yes. At that time people cut and collect
ice from the lakes during the winter time and stored it in deep cellars, which is an example
of storing cold from the winter to the summer. Moreover, summer solar heat can also be
stored and then used in winter for the heating of buildings. These applications are the re-
flections of long-term thermal energy storage and renewable energy utilization. However,
if there is no energy storage medium, it is not possible to achieve the above-mentioned
applications. Therefore, it is necessary to apply energy storage to store energy, which are
especially waste heat from industrial processes, electricity from photo-voltaic panels and
etc, and then use these stored energy extensively.

Renewable energy like solar thermal energy, wind energy and photovoltaics is the emerg-
ing energy sources to substitute traditional fossil fuels. In some fields, the application and
technique of renewable energy are already mature. It is necessary to mention that this
substitution can be fulfilled by energy storage systems. The implementation of energy
storage system can lead to CO2 emission reduction and substantial energy conservation.
In addition, energy storage systems like thermal and electrical energy storage system are
able to more efficiently use renewable energy, which is intermittent, by matching the en-
ergy supply with the demand by storing energy during off-peak times and dispatch during
peak times. Thus, it is clear to know that energy storage technologies can resolve prob-
lems caused by the intermittent energy supply sources. The energy sources can come from
conventional industrial plant which is constant and also from the industry surplus energy
which is the waste heat.

In this thesis, the surplus heat is applied as the energy source to supply to a thermal energy

1

Chapter 1. Introduction

storage (TES) unit and then extracted to the demand side. The reusing of surplus industrial
heat can reduce the energy consumption, energy costs and increase energy efficiency. In
TES system, TES unit plays an important role to act as a buffer between the supply and
demand of surplus heat to further reduce the requirement of extra external peak-heating
energy. While after implementing TES unit in the energy system, it is crucial to take into
account its dynamic operation for example the storage process itself is transient. Thus, an
appropriate control strategy is critical. Taking into account the system will be complex,
nonlinear, dynamic and there will also be consideration for process operating constraints,
therefore it is better to select the advanced control methods for TES optimal control. These
advanced control methods often use optimization in order to handle the additional com-
plexity and constraints (Edgar TF et al. (2001)). There are a wide variety of control tech-
niques have been applied for advanced process control, among these techniques model
predictive control (MPC) is the spotlight, which uses system model to forecast the system
performance and then determine the control inputs which are the result from optimization
problem. Since the system model is nonlinear model, one of the MPC algorithm, NMPC
is then applied as the main core of the two different NMPC algorithm in this thesis.

However, in practice, the operation of TES system encounters various system uncertain-
ties. For example, the temperature fluctuation arises at the supply and demand side, which
causes influence on the efficient application of TES unit, daily varying commercial energy
price, which influences the operating costs, and so on. If these uncertainties are neglected
in the system, mismatch between the real plant and the derived model will occur and fur-
ther lead to constraint violations, sub-optimal and even infeasible solution. Thus, it will
cause the large energy cost to satisfy the consumer demands, and even lead to the high
CO2 emissions if the commercial energy purchased from energy market for peak-heating
is coming from the fossil fuel. In order to reject large disturbances arise in supply and
demand side along the control procedure, standard NMPC is modified to obtain robust
NMPC control strategy. In this thesis, scenario-based multistage NMPC is employed to
achieve robust operation against uncertainty. Because multistage NMPC is much less con-
servative than other robust MPC methods such as min-max MPC and tube-based NMPC
according to Campo,P.J.and Morari,M.(1987). Then in order to avoid the exponential in-
crease of problem size with the prediction horizon, robust horizon is taking to seize the
maximum information of uncertainty with fewer different scenarios.

In order to solve the optimal control problem of a simple thermal energy storage system,
one of the most common numerical method, direct collocation method is applied to convert
the continuous time dynamic problem into finite horizon dynamic optimization problem.

1.1 Structure of the thesis

The remainder of this thesis is structured as follows:

1. Chapter 2: The background information and theories of energy storage (ES) sys-
tems, thermal energy storage (TES) system, TES basic thermodynamics, water storge
TES system, heat exchanger and its heat transfer mechanisms, logarithmic mean
temperature difference (LMTD) and its important approximations are introduced in

2

1.1 Structure of the thesis

order to have a deep insight into the simple TES system which is the basic and major
framework of this thesis.

2. Chapter 3: The basic concepts of optimal control problem (OCP) and numerical
methods for solving this problem are introduced to solve the corresponding open
loop optimization problem of a simple TES system. In addition, several types of
model predictive control (MPC) algorithms are covered to achieve the optimal con-
trol purpose to reduce the cost caused by external commercial energy purchase and
further reduce the extra energy consumption and carbon emission .

3. Chapter 4: Different model types and methods as well as tools used in this thesis
both in modeling and simulation of a simple TES system are covered in this chapter.

4. Chapter 5: In order to correctly model the simple TES system, the model de-
scriptions and necessary assumptions are held in advance to derive dynamic sys-
tem model by using governing equations. In addition, energy demand modeling is
covered in this chapter to meet the different energy demand profiles in diverse case
studies.

5. Chapter 6: The modeling of a simple TES system is used in three main case studies
and one minor case study to study and explore the effects of different energy demand
profiles and performances of different NMPC algorithms on optimal controlling.
Two of the case studies considered here are about standard NMPC on non-plant-
model mismatch dynamic with and without direct solar heating; Multistage NMPC
with uncertainty consideration; And an extra minor case study to explore the effect
and benefit of using TES unit.

6. Chapter 7: Simulation result of each case and result comparisons are presented in
this chapter, as well as the discussions.

7. Chapter 8: Conclusions of this thesis work and recommendations for future im-
provements are stated in this chapter.

3

Chapter 1. Introduction

4

Chapter 2
Thermal energy storage (TES)
systems

The main objective of this chapter is to provide a comprehensive introduction on the basic
theories and concepts which closely related to thermal energy storage, since the work of
this thesis is based on the TES system and it constructs the main overall structure of the
system. As a method for storing heat or cold in its most primitive forms for future de-
mand, TES is typically cost-effective when compared to other storage technologies which
strongly rely on expensive and even exotic materials such as storage by battery. Then, the
heat transfer mechanism of heat exchanger is introduced, which is the essential part of the
energy balance of the system. Above all, before introducing TES, a brief introduction of
energy storage system is given in the first section of this chapter.

2.1 Energy storage systems
Energy storage (ES) systems are becoming an essential support for modern living and
it has a significant impact on modern technology. For simplicity, energy storage is the
capture of energy produced at one time and for the use at a later time. Particularly, energy
storage is very essential to the success of energy, which is intermittent, in satisfying the
demand. Thus, ES systems dedicate significantly to satisfying the energy requirements by
more efficient and environmentally benign energy in many utilization fields like heating
and cooling of the building etc.

The application of ES systems leads to significant benefits in practice according to Dinçer,
I. and Rosen, M.A.(2010):

• Decreased energy costs.

• Decreased energy consumption.

• Ameliorated indoor air quality.

5

Chapter 2. Thermal energy storage (TES) systems

• Increased operational flexibility.

• Decreased initial and maintenance costs.

Moreover, there are also some further advantages of ES systems which had been pointed
out by Dinçer, I.(1997)):

• Decreased equipment size.

• More efficient and effective equipment utilization.

• Promoting more efficient energy use and fuel substitution, which leads to increased
conservation of fossil fuels.

• Decreased CO2 and some other pollutant emissions.

Energy demand is always seasonal, weekly and even daily varying in the sectors like com-
mercial, industrial, residential and so on. In many cases, energy demand is satisfied by
synergistically operated energy-conversion systems. However, in meeting energy demand
purpose, meeting peak-hour energy demand is the most troublesome and costly to supply.
In general, peak-demand is always met by conventional fossil fuels, which are relatively
expensive and scarce. Thus, the utilization of ES system is an alternative way for sup-
plying peak energy demand. Nevertheless, the price of fossil fuels have been fallen to
the bottom in this abnormal covid-19 crisis period, and it seems like the cost of these are
much lower than novel and eco-friendly energy production but the goal of building more
sustainable ecosystem cannot be terminated by this unusual phenomena. There are given
some details of ES system applications:

• The energy source of ES system usually comes from relatively cheap base-load elec-
tricity, wind and run-of-river hydro, industrial process high-temperature waste heat
and sunny-day solar energy etc.

• Theses energy sources are stored in ES system for the future peak energy demand
such as during nighttime or cloudy days.

• The application of ES system can increase the capacity factor of corresponding de-
vices and also increase its economic value.

However, when the energy stored is no more adequate to meet the peak energy demand, an
external exterior energy have to be purchased as emergency measure to fulfill the demand.
Therefore, it is necessary to comprehend the energy demand trend in advance to make
better decisions for the energy supply profile and ensure the energy stored in ES system
is sufficient to satisfy energy demand as much as possible. This comprehension requires
the forecasting of energy demand. But in practice, the forecasting can not be guaranteed
to equal to the actual demand trend, since it is always varying.

For energy technologies, storage is an important aspect, and various ES techniques have
been developed or are under development now. The categories of these techniques which
are used to store energy is shown in Figure 2.1.

Each method has its own corresponding applied fields and pros and cons, but the concrete

6

2.2 Thermal energy storage systems

Figure 2.1: Classification of energy storage methods

introductions are not being mentioned in this thesis. The detailed information of each
method can be found in Dinçer, I. and Rosen, M.A.(2010). In this thesis, thermal energy
storage method is selected as the energy storage method to establish the system and achieve
optimal control objective.

2.2 Thermal energy storage systems

2.2.1 Introduction
Thermal energy storage systems, which generally involves an interim storage medium, are
temporarily storing energy like heat or cold for the later use. Thus, TES is also known
as heat or cold storage (Mehling, H. and Cabeza, L.F. (2008)). It is very easy to find
out some examples related to the utilization of TES. For example, solar thermal energy
is stored during the daytime for the overnight use. Before the fridge was invented, lake
and river ice were collected during the winter and stored in the deep cellar for space or
beverage cooling in the summer time. Nowadays, the main use of TES systems is to offset
the mismatch between energy supply and demand in commercial, industrial and daily-life
utility parts, since the rapid growth of energy demand and also its seasonal, weekly and
even daily variations. Hence, TES systems are needed to satisfy the future peak-demand
when the extra energy sources besides surplus energy are coming from renewable energy,
which is intermittent, and energy supply rate is small compared with the instantaneous high
demand during the peak-demand period. TES is being promoted, since it can decrease the
energy consumption and can further reduce the use of traditional fossil fuels. Therefore
TES has a vital meaning to energy conservation. According to Mehling, H. and Cabeza,
L.F. (2008), TES systems have following potential advantages:

• Better economics: reduced investment and operational costs.

• Better efficiency: energy is used more efficiently.

• Environmental friendly: less pollution to the environment and less CO2 emissions.

7

Chapter 2. Thermal energy storage (TES) systems

• Better system performance and reliability.

In TES systems, surplus energy is supplied to a storage system for the later necessary use.
The complete storage cycle of TES system is shown in Figure 2.2, which involves at least
three steps: charging, storing, and discharging. In practical applications, it is possible for
some of the steps take place simultaneously, and each step can arise more than once in
each storage cycle (Gil,A. and Medrano,M. et al.(2011)).

Figure 2.2: Complete storage cycle of a TES system

2.2.2 Basic thermodynamics of energy storage
Thermal energy storage systems can be classified into three storage types by the mecha-
nism employed for the storing: sensible heat storage, latent heat storag, thermo-chemical
storage. The concrete definitions and explanations of these three types are given below.

• Sensible heat storage: Energy is stored by changing the temperature of the stor-
age material or medium, without changing its phase. In general, water, rocks or
ground is used as the storage material in sensible storage system, with water being
the cheapest option and has good thermal capacity (ρcp). The effectiveness of stor-
age material mainly depends on its specific heat. Main advantages of sensible heat
storage are cost-effective and without the risks associated with the use of toxic ma-
terials according to Sarbu, I. and Sebarchievici, C. (2018). Furthermore, it is simple
and has good heat transfer performance. The amount of energy stored in a storage

8

2.2 Thermal energy storage systems

material can be expressed as:

Q = mcp∆T = ρcpV∆T (2.1)

Where, Q is the amount of heat stored in the storage material, m is the mass of stor-
age material, cp is the specific heat of storage material, ∆T is temperature change, V
is the volume of storage material, and ρ is the density of the storage material. Thus,
the amount of energy introduced to the storage system is proportional to m, cp and
∆T . As the most common method for heat and cold storage, a typical sensible TES
system consists of a storage material, a storage tank, and inlet–outlet devices. For
storage tank, it must has the ability to keep the storage material and prevent the loss
of thermal energy to the surrounding. Thermal gradient is also required to transfer
heat to and from the sensible TES system.

• Latent heat storage: Energy is stored by changing the phase of storage material
with no change in temperature. The transition of phase change materials (PCMs)
is commonly from solid to liquid or from liquid to vapour, in which process energy
is released or absorbed. Compared with sensible heat storage system, the main
drawbacks of laten heat storage system is the higher investment costs, and higher
risks due to leaks of stability and erosion of material encapsulating PCMs according
to Sarbu, I. and Sebarchievici, C. (2018). However, higher energy density than
sensible heat storage implies smaller storage size. The amount of energy stored in
the storage material can be expressed as:

Q = m∆h (2.2)

Where, Q is the amount of heat stored in the storage material, m is the mass of
storage material, ∆h is phase change enthalpy, which is also known as melting
enthalpy or heat of fusion. The best known and mostly used PCM is water, which
has a representative example - cold storage.

• Thermo-chemical thermal storage: Reversible endothermic/exothermic reactions
are used to store and release thermal energy in thermo-chemical thermal storage pro-
cess. During the charging process, heat is injected to conduct endothermic chemical
reaction. The chemical products can be used to store thermal energy and restore
until discharging is required by exothermic reverse reaction. According to M. Orosz
and R. Dickes (2017), due to the large change of enthalpy in chemical reactions,
thermo-chemical storage has the highest energy density among the other different
storage technologies. However, high costs and technical complexity are obstacles to
commercial utilization.

Recently, Cabeza, L.F. (2015) classified the storage concept as active and passive stor-
age system. The concept of each storage system is given as below, and the scheme of
classification is illustrated in Figure 2.3.

• Active storage system: Heat transferred into the storage material by the forced
convection heat flow. Active storage systems can be direct system, in which heat
transfer fluid (HTF) is also the storage medium, or indirect system, in which storage
medium is other medium instead of HTF.

9

Chapter 2. Thermal energy storage (TES) systems

• Passive storage system: Dual-medium storage system, where HTF passes through
the storage only for charging and discharging a solid material.

Figure 2.3: Scheme of classification of different storage systems according to the storage concept

2.2.3 Sensible TES system using water storage
The heat storage of sensible TES systems achieved by increasing or reducing the temper-
ature of the storage material, which can be water, concrete, brick, air, etc. According to
Mehling, H. and Cabeza, L.F. (2008), each material has its own pros and cons, but the stor-
age material is selected according to its heat capacity and the available space for storage.
Hence, in order to achieve high heat storage density per volume, high thermal capacity
(ρcp) is the primary choice for heat storage material selection. Table 2.1 gives specific
heat and heat content per volume of some representative heat storage materials.

As shown in Table 2.1, water has the highest specific heat and heat content per volume,
which implies that water has the highest heat storage density in both per weight and per
volume compared with other typical heat storage materials. Moreover, water is inexpen-
sive, safe, nontoxic, easy available and easy to handle. As a suitable heat storage material,
water is also easy to store in the temperature interval from its freezing point to its boiling
point (0− 100◦C). Thus, water is the most common material used in sensible heat storage
system and hot water tank is the best known thermal energy storage technologies.

Nowadays, the water storage tanks are made of steel, stainless steel or concrete or wa-
tertight materials which are used to envelope the water volume. During the heat storage
process, tank material or water volume envelope material while equipment inside the stor-
age tank will be heated to the same temperature. In order to reduce the heat loss of storage

10

2.2 Thermal energy storage systems

Material Specific heat (kJ/(kgK)) Heat content per volume (MJ/(m3K))
Water 4.2 4.2
Oil 2.0 1.7
Ice 2.0 1.8
Paraffin 2.9 2.6
Wood 1.8 0.9
Concrete 0.8 2.1
Brick 0.8 1.2
Glass 0.8 2.2
Steel 0.5 3.6
Magnetite 0.8 4.1
Copper 0.4 3.5
Gold 0.1 2.5

Table 2.1: Heat storage density per volume for different materials (S. Furbo (2015))

tank, insulation materials with low heat conductivity are used to insulate storage tank. The
storage performance of hot water tank influenced by these thermal characteristics accord-
ing to S. Furbo (2015): heat storage capacity, heat loss, heat exchange capacity rates
to the hot water storage, heat exchange capacity rates from the hot water storage and
temperature stratification.

• Heat storage capacity: It can determine the heat content of hot water storage when
temperature interval is from T1 to T2.

Heat content = heat storage capacity × (T2 − T1) (2.3)

• Heat loss: Heat loss have to be small to ensure better performance of energy system
with hot water storage. It can be guaranteed by adopting good insulation materials.

• Heat exchange capacity rates to the hot water storage: During the charging pe-
riod, it must be set high to keep the efficiency of energy system heating the heat
storage is not decreased fairly owing to the increased temperature of heat transfer
fluid.

• Heat exchange capacity rates from the hot water storage: During the discharging
period, it must also be set high in order to get rid of high heat power sufficiently from
the storage tank when high temperature is required in the demand side.

• Temperature or thermal stratification: Large thermal stratification in both charg-
ing and discharging period can increase the efficiency of energy system with hot
water storage. Moreover, it is necessary to maintain temperature stratification dur-
ing periods without charge and discharge. The temperature stratification of water is
the result of water temperature difference which causes the layers that act as barriers
to prevent water mixing. Warm water moves to the top of the tank due to its low
density, and cold water vice versa. In order to improve the temperature stratification,

11

Chapter 2. Thermal energy storage (TES) systems

water tank can be designed as thin and tall. Moreover, inlet and outlet sites can be
installed in a manner which shown in Figure 2.4 to avoid mixing by the uniform
flows.

Figure 2.4: Stratified hot water tank

Hence, the efficiency of hot water tank can be further improved by guaranteeing optimal
tank thermal stratification and more effective insulation tank material. These abovemen-
tioned thermal characteristics are highly influenced by the material properties like density,
kinematic viscosity, thermal conductivity and specific heat of water.

• Water density: It is decreased as the water temperature increases. As a result,
hot water with low density rise upwards and cold water with high density move
downwards, which is strong thermal stratification with large temperature difference
in storage tank.

• Water kinematic viscosity: It is decreased as the water temperature increases. This
leads to easy water movement in the storage tank.

• Water thermal conductivity: It is increased as the water temperature increases.
Thus, the temperature differences will be equalized more quickly than the tempera-
ture is low in storage tank.

• Water specific heat: In the temperature interval from 0 ◦C to 100◦C, specific heat
capacity of water is nearly constant.

TES has a number of different technologies, which with their own specific performances,
applications, and costs. Since, sensible heat storage using hot water tank is rather inex-
pensive due to its simple tank structure, simple equipment to charge and discharge and
available cheap storage medium, in this thesis it is adopted as the storage method for a
simple thermal energy storage system.

12

2.3 Heat transfer modeling in heat exchangers

2.3 Heat transfer modeling in heat exchangers

2.3.1 Brief introduction of heat exchanger
Heat exchanger is a device built for efficient heat transfer from one medium to another,
whether the media are separated by a wall so that they never mix, or they are in direct
contact (Maurice I. Stewart, Jr. (2014)). Heat exchanger has wide specific applications
from upstream to downstream and from space heating to chemical processing.

The categorization of heat exchangers can be taken into two approaches. The first is to
consider the flow configuration within the heat exchanger, while the second is classified
by the equipment constructions. Since, the heat exchanger construction design is not the
main topic and study of this thesis, so only the flow configurations will be considered and
discussed. There are four basic flow configurations. The graphical illustrition of these four
flow configurations are shown in Figure 2.5.

Classification of heat exchangers by flow configuration:

Figure 2.5: Heat exchanger flow configurations (or arrangements): (a) counter (b) parallel (c) cross
(d) hybrid: cross counter

• Counter Flow: In counter-flow heat exchanger, two fluids flow parallel to each
other but enter at opposite ends, flow in opposite directions and leave at opposite
ends. This type of flow arrangement allows the largest change in temperature of
both fluids and is therefore most efficient.

• Parallel flow: In parallel-flow or co-current flow heat exchanger, two fluids flow

13

Chapter 2. Thermal energy storage (TES) systems

parallel to each other and enter at the same ends, flow in the same directions and
leave at the same ends. This is less efficient than counter-current (counter) flow but
does provide more uniform wall temperatures.

• Cross flow: In cross-flow heat exchanger, two fluids flow perpendicular to each
other.

• Hybrids flow: In industrial heat exchangers, the hybrid of above mentioned flow
types are often used, such as cross-counter flow and multi-pass flow.

The design of heat exchanger is not the main topic of this thesis, but it is necessary to
understand which type of the simplest heat exchanger, like counter- and co-current heat
exchanger, is good enough in the practical applications. The temperature profiles, Figure
2.6 indicate the main disadvantages and advantages two types of the simplest heat ex-
changers.

Parallel-flow heat exchanger:

Figure 2.6: Simple temperature profiles of heat exchangers

• Disadvantages: The large temperature difference at the end, such as ∆T1, can cause
large thermal stress, which is a stress created by any change in temperature, like
temperature gradients, thermal expansion or contraction and thermal shocks, to a
material. Eventually, it leads to material failure, such as fracture and cracking etc.
Then if the purpose is to raise the temperature of the cold fluid, the distinct disad-
vantage is the exit temperature of cold fluid can never exceed the lowest temperature
of hot fluid.

• Advantages: If it is required to get nearly the same temperatures at the exit, parallel-
flow heat exchanger is advantageous.

Counter-flow heat exchanger:

• Advantages: The temperature differences between two fluids are more uniform, it
can reduce the thermal stresses and also can lead to more uniform heat transfer

14

2.3 Heat transfer modeling in heat exchangers

rate along the heat exchanger. The exit temperature of cold fluid can exceed the
temperature of hot fluid, and even can approach the inlet temperature of hot fluid.

Since the one of the purpose of this thesis is to increase the temperature of thermal storage
tank and store as much as thermal energy in it, and then discharge stored energy to meet
the requirement of the demand. Therefore, according to the discussed pros and cons,
counter-flow heat exchanger will be suitable to achieve this goal.

2.3.2 Heat transfer mechanisms
Due to the temperature difference between the fluids flowing oppositely with each other
inside the heat exchanger, sensible heat is successfully transferred from the hot side to the
cold side. Heat is mainly transferred inside the heat exchanger by one or several of the
following mechanisms (Maurice I. Stewart, Jr. (2014)).

• Conduction: The transfer of heat from one molecule to an adjacent molecule while
the particles remain in fixed positions relative to each other. It is the principal heat
transfer mechanism in solids and slowly flowing or even stagnant fluids. The for-
mulation can be expressed as:

q = k
A

L
∆T (2.4)

• Convection: The transfer of heat by the physical movement of molecules from place
to place. It is the principal heat transfer mechanism in fluids. The formulation can
be expressed as:

q = hA∆T (2.5)

• Radiation: The heat waves emitted from a hot body are absorbed, reflected, or
transmitted through a colder body. For fluid-fluid heat exchangers, the temperatures
are not hot enough to let radiation become a main mechanism. The formulation can
be expressed as:

q = σA∆T 4 (2.6)

Where, q is heat transfer rate or heat flow rate, A is heat transfer area or flow rate
area, ∆T is temperature difference, k is thermal conductivity, h is film coefficient
or heat transfer coefficient, L is heat conducted distance, σ is Stefan-Boltzmann
constant.

If heat is being transferred through different layers from hot side to cold side in heat
exchanger, two following conclusions can be obtained according to Maurice I. Stewart, Jr.
(2014):

• Heat transfer rate (q) is equal through all layers.

q1 = q2 = q3 = ... = qn (2.7)

15

Chapter 2. Thermal energy storage (TES) systems

• Heat transfer rate equals temperature difference divided by total thermal resistance.

q =
∆T∑
R

(2.8)

Where, R is the thermal resistance of each layer. For conduction and convection it
can be expressed as follows respectively.

R =
L

kA
(2.9a)

R =
1

hA
(2.9b)

On the whole, heat transfer mechanisms like conduction or convention or the combination
of these two are mostly applied in the facilities. Therefore, the heat transfer completed in
heat exchangers can be commonly seen as the result of these three procedures:

• Convective procedure:

– Heat transferred from hot fluid to the tube of heat exchanger.
– Heat transferred from heat exchanger tube to the cold fluid.

• Conductive procedure:

– Heat transferred through the wall of tube from hot side to cold.

2.3.3 Overall heat transfer coefficient, U
According to above-mentioned introductions, it is easy to know that the driving force
which leads heat transfer between two fluids inside the heat exchanger is the temperature
difference. If define

∑
R in equation (2.8) as 1

UA , this can result into:

q = UA∆T (2.10)

Where, q is the total heat transfer rate between the hot and cold fluids, U is overall heat
transfer coefficient, A is heat transfer area or flow rate area, ∆T is temperature difference
between the hot and cold fluids, which can be expressed as:

∆T = Th − Tc (2.11)

Where, the subscripts h and c represent hot fluid and cold fluid respectively. Thus, ac-
cording to redefinition of

∑
R, the definition of overall heat transfer coefficient can be

expressed in formula form as:

U =
1

A
∑
R

(2.12)

Therefore, overall heat transfer coefficient, U , for a heat exchanger is the sum of thermal
resistances per unit area. The determination of overall heat transfer coefficient is important
and also uncertain for heat exchanger. Since, the derivation of specific logarithmic mean
temperature difference (LMTD), which is discussed in the next subsection, uses constant
U assumption, so the quantity of U in this thesis is seen as constant throughout the heat
exchanger.

16

2.3 Heat transfer modeling in heat exchangers

2.3.4 Logarithmic mean temperature difference – LMTD
As mentioned above, equation (2.10) is the fundamental formulation used in heat transfer
calculations. However, the temperature of process fluids will change as it flows through the
heat exchanger. Hence, the temperature difference between the hot and cold fluids, ∆T ,
will also continuously vary with location, especially when the flow pattern is in counter-
flow arrangement. So, it is necessary to work with mean temperature difference (MTD) in
total heat transfer rate equation as a form like:

q = UA∆Tm (2.13)

Where, ∆Tm is appropriate mean temperature difference. Hence, equation (2.13) can be
used to perform a heat exchanger analysis. However, before directly applying equation
(2.13), the specific form of ∆Tm must be established and determined.

According to Bergman,T.L et al.(2011), the specific form of ∆Tm can be found by apply-
ing an energy balance to differential elements in the hot and cold fluids. Those elements are
length, dx, and heat transfer area, dA, respectively. After applying necessary assumptions
and derivation steps, the determined form of appropriate mean temperature difference is
logarithmic mean temperature difference (LMTD). The assumptions used in the derivation
of LMTD are listed below:

• The overall heat transfer coefficient, U , is constant throughout heat exchanger.

• Heat exchanger is insulated from the surrounding. Hence, the only heat transfer
approach is from hot fluid to cold.

• Axial direction or x-coordinate in Figure 2.5 is convection dominated, so heat trans-
ferred by conduction through the tube wall can be neglected.

• Potential and kinetic energy changes are negligible.

• Specific heat capacities of fluids are constant.

Hence the concrete form of equation (2.13) follows that:

q = UA∆Tlm (2.14)

Where,

∆Tlm =
∆T2 −∆T1

ln(∆T2/∆T1)
=

∆T1 −∆T2

ln(∆T1/∆T2)
(2.15)

Where, endpoint temperature difference ∆T1 is the largest terminal temperature differ-
ence and ∆T2 is smallest terminal temperature difference. Equation (2.15) works for both
parallel-flow and counter-flow heat exchangers. Due to the hot and cold fluid temperature
distributions associated with parallel-flow and counter-flow heat exchangers are different,
so the endpoint temperature differences, ∆T1 and ∆T2, are also not alike. Hence, it leads
to two diverse sub-forms of ∆Tlm in equation (2.15). The graphic illustrations of both two

17

Chapter 2. Thermal energy storage (TES) systems

Figure 2.7: Counter-flow and parallel-flow heat exchangers

Figure 2.8: Counter-flow and parallel-flow heat exchangers: temperature distributions

flow patterns and temperature distributions are shown in Figure 2.7 and Figure 2.8.

Therefore, according to Figure 2.8, the endpoint temperature differences, ∆T1 and ∆T2

for both two flow patterns can be expressed as follows. Also have to note that, the out-
let temperature of cold fluid, Tc,o can exceed the outlet temperature of hot fluid, Th,o in
counter-flow arrangement, but it can not appear for parallel-flow arrangement.

Counter-flows:

∆T1 = Th,i − Tc,o (2.16a)
∆T2 = Th,o − Tc,i (2.16b)

Parallel-flows:

∆T1 = Th,i − Tc,i (2.17a)
∆T2 = Th,o − Tc,o (2.17b)

The larger the LMTD, the more heat is transferred. In addition, when inlet and outlet
temperatures are the same, the LMTD for counter-flow is larger than that for parallel-flow.
Thus, when the same rate of heat is transferred with the same value of overall heat transfer
coefficient, U , the requirement of heat transfer area A for counter-flow is smaller than that
for parallel-flow (Bergman,T.L et al.(2011)). It means that, with the constant U , in order

18

2.3 Heat transfer modeling in heat exchangers

to achieve more heat transfer, the optimal operation is to take counter-flow arrangement to
use less heat transfer area, A, to further decrease the construction cost of heat exchanger.

According to Maurice I. Stewart, Jr. (2014), the relation between MTD and LMTD is:

MTD = F (LMTD) (2.18)

Where, F is the correction factor for heat exchanger geometry. For example, for pipe-in
pipe and counter-flow heat exchanger, F = 1.0, which means for these two types of heat
exchangers MTD equals the calculated LMTD.

2.3.5 Approximation of LMTD
The logarithmic mean temperature difference (LMTD) has significant meaning to the both
theoretical and practical aspects of the heat exchangers from design to modelling and con-
trol. However, according to Zavala-Rı́o et al.(2005), LMTD has caused inconveniences in
several applications such as chemcial engineering programs.

W.R.Paterson (1984) pointed out that in practice, adopting starting values as the equality
of stream temperatures for iterative equation solving procedures, can reduce the definition
of the logarithmic mean temperature difference into indeterminate form of the logarithmic
mean. Furthermore, the problems of inconveniences are caused this indeterminate form
which is given in equation (2.19).

∆Tlm = ∆T1 = ∆T2 (2.19)

However, the derivatives of ∆Tlm w.r.t ∆T1 and ∆T2, which are needed in the Newton
iterative solution of the equations, has value at the limit when ∆T1=∆T2, but they are not
defined at that limit. Hence, it means that the practical applications of heat exchangers
which using the LMTD as driving force (fluid mean temperature difference) may suffer
from inconveniences. Moreover, indeterminate form is a result of the incomplete model
derivation. As a well-defined replacement expression, a new mean has been developed as
an approximation to the logarithmic mean by W.R.Paterson (1984), in order to overcome
the difficulties caused by indeterminate form of the logarithmic mean, which is shown in
equation (2.20).

∆Tnm =
2

3
∆Tgm +

1

3
∆Tam ≈ ∆Tlm (2.20)

Where, ∆Tgm is geometric mean, and ∆Tam is arithmetic mean. And sometimes they
are preferred to be used to approximate the mean temperature difference along the heat
exchanger.

∆Tgm =
√

∆T1∆T2 (2.21a)

∆Tam =
∆T1 + ∆T2

2
(2.21b)

By approximating ∆Tlm over an acceptable range of ∆T1 and ∆T2, Underwood, A.J.V
(1970) and Chen J. (1987) obtained modifications of the approximation with well-defined

19

Chapter 2. Thermal energy storage (TES) systems

replacement expressions.

Underwood approximation:

∆T
1
3
um =

1

2
(∆T

1
3

1 + ∆T
1
3

2) (2.22)

Chen approximation:

∆T 0.3275
cm =

1

2
(∆T 0.3275

1 + ∆T 0.3275
2) (2.23)

As shown in equation (2.22) and (2.23), these two new means have the same form and
are a polynomial of endpoint temperature differences of heat exchanger, ∆T1 and ∆T2.
According to Chen J. (1987), Underwood approximation gives not only a very simple
solution, but also a superior results comparing with results of original LMTD. Moreover, as
a slight modification of Underwood approximation, Chen approximation is almost exactly
the same as the results of original LMTD. Hence, these two approximated means are both
suitable to be applied in this thesis.

For the sake of simplicity, the general form of equation (2.22) and (2.23) is expressed as:

∆Tnm =
1

2
(∆Tn1 + ∆Tn2) (2.24a)

∆Tm =

[
1

2
(∆Tn1 + ∆Tn2)

] 1
n

(2.24b)

The values of n for different types of approximations are summarised in Table 2.2.

n Mean approximation ∆Tm
1 Arithmetic mean ∆Tam
1/3 Underwood mean ∆Tum
0.3275 Chen mean ∆Tcm

Table 2.2: Values of n for different types of approximations

20

Chapter 3
Optimal control problem and
nonlinear model predictive control

The main objective of this chapter is to introduce the basic concept of optimal control
problem (OCP), nonlinear model predictive control (NMPC) and the numerical method
which is used to solve OCP. For NMPC, its standard and robust form are both introduced
to meet the problems of this thesis.

3.1 Introduction to optimization problem

In chemical engineering applications, especially in the process systems engineering, opti-
mization has an extensive utilization. Optimization is an important tool in decision science
and in the analysis of physical systems (Nocedal,J. and Wright,S.J.(2006)). In order to take
advantage of this tool, an objective must be identified which is the performance reflection
of the system under certain studies. For example, this objective could be the profit of a
company which needs to be maximized or energy consumption of industry which needs to
be minimized. The goal of optimization problem is to find out the values of the variables
or unknowns to maximize or minimize objective, where the objective is determined by
variables or unknowns which are known as the system characteristics. Regularly, these
variables or unknowns are constrained to some certain bounds. Thus, a typical optimiza-
tion problem involves three main elements: objective function, decision variables and
constraints. The concrete explanation of each element is given in the list below.

• Objective function: Scalar function which is used to describe the function’s prop-
erty that needed to be optimized. Optimization can be minimization or maximization
problem.

• Decision variables: Can be real numbers, integers or binary variables, or function
spaces like a vector whose values can be changed until find an optimal solution x*.

21

Chapter 3. Optimal control problem and nonlinear model predictive control

• Constraints: Bounds on functions of the decision variables, which means decision
variables must satisfy, and can define which solutions are feasible after optimization.
Constraints normally have two types, which are equality constraints and inequality
constraints respectively.

The identification process of these three elements of optimization problem is known as
modeling. It is important to note that the preciseness of model is quite significant to the
optimization problem.

3.1.1 Mathematical formulation

According to the above-mentioned introduction, optimization is the minimization or max-
imization process of the objective function subject to constraints on its variables. After
converting these descriptions into mathematical formulation, the optimization problem
can be written as:

min
x∈Rn

f(x)

s.t. gi(x) = 0, i ∈ E
hj(x) ≤ 0, j ∈ I
xmin ≤ x ≤ xmax

(3.1)

Where, f(x) is objective function and optimization problem above is stated as minimiza-
tion problem. x are decision variables which are constrained by lower bounds xmin and
upper bounds xmax. gi(x) is the set of equality constraints, hi(x) is the set of inequality
constraints, E and I are sets of indices for equality and inequality constraints, respectively.
Note that E and I are disjoined and distinct from each other, ie. E

⋂
I = ∅. Furthermore,

E and I can also determine the feasible set or feasible region, which is the subset of Rn.

Once the model of optimization problem has been formulated, a specific optimization al-
gorithm have to be used to solve this problem and find out the solutions. After getting the
solutions, it is necessary for operator to check whether this set of variables is the appro-
priate solution or not. This mathematical expressions are known as optimality conditions,
where there is a condition namely Karush- Kuhn-Tucker (KKT) conditions, which are used
to check the first order necessary conditions of optimization problem are satisfied or not.
The detailed discussions can be found from Nocedal,J. and Wright,S.J.(2006) and Foss,B.
and Heirung,T.A.N.(2013). What should the operator do if the optimality conditions are
not satisfied? If the satisfaction of optimality conditions are failed, techniques like sensi-
tivity analysis can be applied to improve the model.

The classification of optimization problem depends on properties like linearity and con-
vexity of the objective function and constraints, and also the size of the decision variables
in the optimization problem. According to Biegler L.T.(2010), nonlinear programming
problem (NLP) plays an important role in process system engineering applications. Thus,
NLP is briefly introduced in the next subsection and the definitions of rest of the problems
are available in Nocedal,J. and Wright,S.J.(2006).

22

3.2 Optimal control problem

3.1.2 Nonlinear programming problem

Nonlinear programming problem (NLP) is an optimization problem where the objective
function or the constraints are defined by nonlinear functions. The general form of NLP
is the variant of optimization problem (3.1), where functions are just nonlinear functions.
NLP can be solved by active set SQP (sequential quadratic programming) methods or the
interior-point methods, which are the most prospective methods. The specific details of
SQP method can be found in Nocedal,J. and Wright,S.J.(2006), and it is not involved in
this thesis. The method implemented in this thesis is focused on interior-point methods,
which solve NLP problem by employing Newtons method to a sequence of modified KKT
conditions. In addition, the objective of interior-point method is to approximately formu-
late the inequality constrained problem as an equality constrained problem where New-
tons method can be used. Interior-point methods can be implemented by several software
packages, in which IPOPT is applied in this thesis to solve NLP problem (A. Wächter and
L.T.Biegler (2006)).

3.2 Optimal control problem
Optimal control problem (OCP) is also known as dynamic optimization problem. The
purpose of OCP is to optimize an objective function with respect to some constraints, in
which dynamic system model is included, by finding out optimal control inputs u. Thus,
the dynamic system can be optimally controlled by a suitable choice of control inputs u
and the process of finding the optimal control inputs requires numerical methods which
will be discussed in following sections. However, it is necessary to briefly introduce what
is dynamic system in the next subsection.

3.2.1 Dynamic systems and optimization

As a time dependent system, the processes of dynamic system are evolving in time and
it can be characterized by the states x that allow operators to forecast system’s future
behavior. Dynamic system and its mathematical model have numerous variants, and two of
the important classes are continuous time and discrete time systems, which are introduced
below. The rest types of dynamic systems are available in Moritz Diehl and Sébastien
Gros (2017).

The main characteristic of dynamic system is time-evolving, but the time has two different
variants, which finally lead to the difference between continuous and discrete time system.

• Continuous time systems: The time is physical time, which are an interval of real
numbers, [0, T]. Time and the states can be expressed as t ∈ R and x(t) respectively.
The system is described in a form of differential equations, dxn

dt = f(x1...xn). It
can be transformed into discrete time systems. The work in this thesis is exclusively
concerned with continuous time systems.

• Discrete time systems: The time only takes values on a predefined time grid, which
are assumed as integers. The states can be expressed as xk, which means state at

23

Chapter 3. Optimal control problem and nonlinear model predictive control

time point k. After the time variable is discretised, the differential system equations
are replaced by difference equations, which can be expressed as ∆x

∆t .

There are many different ways to model dynamic systems. For example, they can be mod-
eled by ordinary differential equations (ODEs) or differential algebraic equations (DAEs),
which are used to describe the evolution of finite dimensional continuous-state-spaces sys-
tems in continuous time. By contrast, infinite dimensional continuous-state-spaces sys-
tems in continuous time is described by partial differential equations (PDE).

The optimization of dynamic systems can also be performed by different optimization
methods like quasi dynamic optimization and dynamic optimization.

• Quasi dynamic optimization: Reoptimize frequently on a static model, when the
system is slowly varying or is mostly under steady state, to optimize a dynamic
system.

• Dynamic optimization: Optimize on a dynamic model when time varying dynam-
ics play a major role.

The optimization section in this thesis will be focused on dynamic optimization or optimal
control problem (OCP). Hence, the general form of dynamic optimization problem can be
written as follows:

min
x,z,u

φ(x(tf))

s.t. ẋ = f(x(t), z(t), u(t), t, p)
0 = g(x(t), z(t), u(t), t, p)

xl ≤ x(t) ≤ xu
zl ≤ z(t) ≤ zu
ul ≤ u(t) ≤ uu
pl ≤ p(t) ≤ pu

xt0 = x0

(3.2)

Where, x, z, u represent differential variables, algebraic variables, control inputs respec-
tively, which are going to be optimized. x0 is the given initial state value, t is time, tf is
final time, p is time independent parameters. f and g are differential equations and alge-
braic equations, respectively, which are additional set of equality constraints and represent
the phenomena arises in the system. The remaining inequality constraints are variable
bounds. As mentioned in the preceding subsection, the dynamic optimization problem
(3.2) becomes NLP problem when the objective function or constraint functions are non-
linear. The objective of this dynamic optimization problem is to minimize objective φ() in
a specified time interval [t0, tf].

The formulating process of nonlinear optimal control problem (3.2) is straightforward,
however, the difficulty is concentrated in problem solving. For example, analytic solution
of linear optimal control problem can be computed by solving Riccati differential equa-
tion. But NLP generally do not have analytic solution. Thus, it is essential to seek after
numerical methods used for solving NLP to find out the numerical solutions.

24

3.2 Optimal control problem

3.2.2 Numerical methods for solving dynamic optimization problem

The exact (analytic) solution of dynamic optimization problem is difficult to find out be-
cause this type of problem contains the dynamics of the system , which is usually described
by Ordinary Differential Equations (ODEs) or Differential Algebraic Equations (DAEs),
and the computation of control inputs at each sampling time within a given time inter-
val and then finally leads to the solution of an infinite-dimensional optimization problem.
Therefore it is necessary to enforce numerical methods to approximate the solution of the
problem. There are two realms of numerical methods which are used to solve dynamic
optimization problems: indirect method and direct method.

Figure 3.1: Numerical methods for solving dynamic optimization problem

As illustrated in Figure 3.1, the relations between the methods are easy to be known.
Where,

1. Indirect method or variational approach obtains a solution numerically by for-
mulating the optimality conditions - the first order necessary condition, that are
obtained from Pontryagin’s Maximum Principle (Pontryagin VG et al. (1962)) and
then discretize. Indirect method can be divided into two main groups: indirect single
shooting and indirect multiple shooting. As an optimize-then-discretize approach,
the optimality conditions of OCP in indirect method are considered before the con-
trol trajectory is parameterized.

25

Chapter 3. Optimal control problem and nonlinear model predictive control

2. Direct method or direct optimal control method can convert a continuous opti-
mal control problem into a discrete nonlinear programming problem (NLP) by dis-
cretizing the system dynamics and the control inputs and then NLP will be solved
numerically. The reason of discretising continuous dynamic is integrals or differ-
ential equations cannot be directly processed by NLP solver. Direct method can be
generally divided into two categories: sequential approach or sequential NLP strat-
egy and simultaneous approach or simultaneous NLP strategy. After applying one
of the direct methods, dynamic optimization problem can be directly solved by NLP
solver in terms of control inputs and state variables. As a discretize-then-optimize
approach, the control trajectory is parameterized, which is the converse approach of
indirect method.

3.2.3 Sequential approach (direct single shooting)

• Discretization: Only the control inputs u are discretized. Hence, only the control
inputs are decision variables for the optimizer, w = [u0, u1, u2...uN−1]>. After
the discretization, control inputs are denoted by piece-wise constants or piece-wise
polynomials.

• Process: Give initial guesses of control inputs and a set of control parameters or
get these by implementing real-time optimization. Then the system is integrated by
DAE solver (integrator) at each iteration to get states, xt = f(w, x0, t). In opti-
mizer (NLP solver), system’s DAE models are replaced by its gradient information
with respect to the control inputs. Note that, gradient information contains either
the direct or adjoint sensitivity equations. After evaluating the error in the variable’s
boundary conditions, optimizer (NLP solver) is executed to get a new guess of con-
trol inputs. The iteration of solving NLP for a control trajectory and solving DEA
with new guess from optimization is kept until the boundary condition is satisfied.
The graphic illustration is shown in Figure 3.2.

• Large integration time step t causes high non-linearity. It can be avoided by imple-
menting quite small t. When the problem is only stable or linear, the direct single
shooting approach becomes robust. t is also the check point, and constraints on
states are enforced at check point t.

• The construction of sequential method is relatively easy and straightforward. How-
ever, if the solved problem has large-scale system, the implementation of sequential
method leads to repeated numerical integration with the DAE solver and this pro-
cess is time-consuming. In addition, it has also been reported to have difficulties of
handling stiff or unstable systems (J.T.Betts (2010)).

3.2.4 Simultaneous approach

• Discretization: Complete discretization of the states and control inputs. Hence,
decision variables for optimizer are w = [u0, u1, u2, ..., uN−1, x0, x1, x2, ..., xN]>

26

3.2 Optimal control problem

Figure 3.2: Sequential approach process (Johannes Jäschke (2019))

• Compared with direct single shooting method, the computationally expensive nu-
merical integration of the differential DEAs can be avoided according to O.von Stryk
(1992).

• Two main subapproaches: Direct multiple shooting and direct collocation.

Direct multiple shooting:

• To reduce infinite dimensional optimization problem into a finite dimensional op-
timization problem by partitioning the whole time domain [t0, tf] into finite time
elements, [t0, t1], [t1, t2], ..., [tN−1, tf]. Thus, shooting is no more on the whole
time domain.

• Integrate DAEs model at each time interval [tk, tk+1] to obtain states, xk = f(xk, uk).

• In order to ensure the continuity of states between two consecutive time intervals
along the integration process, shooting gap xk+1− f(xk, uk) = 0∀ k ∈ 1, 2, ..., N)
is given as equality constraints to the NLP.

• Can handle unstable and nonlinear optimization problems. Thus, the numerical un-
stability of single shooting method can be reduced by implementing direct multiple
shooting method.

• Finite time element index k is also the sample time, and constraints on states are
enforced at sample times.

Direct collocation:

• Also known as direct transcription. The complete discretization is implemented by
adopting collocation on finite elements which leading to large-scale but sparse NLP.

27

Chapter 3. Optimal control problem and nonlinear model predictive control

• Unlike the shooting methods, the integration of direct collocation is done inside the
optimizer, so that system’s DAEs model is solved as constraint in the NLP. There-
fore, direct collocation is a fully simultaneous approach, which means the integra-
tion of DAEs and the dynamic optimization problem are performed together in the
NLP solver.

• Control inputs u(t) is piecewise-constant, which means that u(t) is constant in each
collocation time interval [tk, tk+1].

The concrete introduction of direct collocation method is given in the next subsection.

3.2.5 Direct collocation method
In this thesis, the numerical method for solving dynamic optimization problem is focused
on direct collocation method, where transcription and collocation are used interchange-
ably.

Introduction

1. As a variant of Runge–Kutta methods (RK methods), the solution of the differential
state x(t) is approximated by using a Kth order polynomial p(θk, t) on the colloca-
tion time interval [tk, tk+1] ⊆ [t0, tf].

2. The interpolation polynomials p(θk, t), which is the parametrized state trajectory
used in orthogonal collocation, is usually constructed as Lagrange polynomials.
Within the each collocation time interval [tk, tk+1], K number of interpolation
points can be selected, and the differential states xt is approximated by using La-
grange interpolation polynomials.

p(θk, t) =

K∑
i=0

θk,iLk,i(t) (3.3)

Where, Lk,i(t) are Lagrange interpolation polynomials and which is expressed as:

Lk,i(t) =

K∏
j=0,j 6=i

t− tk,j
tk,i − tk,j

∈ R (3.4)

Where, θ is polynomial coefficient, k implies time step , j implies collocation points,
i is collocation time index and K is the order of interpolation polynomial and it
determines the number of collocation points taken inside the time interval.

3. One of the property of Lk,i(t) can be observed from the Figure 3.3, which is:

Lk,i(tk,j) =

{
1 if i = j

0 if i 6= j

Furthermore, it indicates the interpolation polynomial p(θk, t) passes through the

28

3.2 Optimal control problem

Figure 3.3: Lagrange polynomial Lk,i(t) on the interval [tk, tk+1] (Moritz Diehl and Sébastien
Gros (2017))

interpolation points θk,j .

p(θk, tk,j) = θk,j (3.5)

An additional property of Lagrange polynomial Lk,i(t) is orthogonal.

tk+1∫
tk

Lk,i(t)Lk,j(t) dt = 0, i 6= j (3.6)

4. The integration of the system dynamics ODE ẋ = F (x, t) = 0 over the collocation
time interval [tk, tk+1] can be performed by solving the collocation equations:

c(θk, tk,i, xk) =

θk,0 − xk

ṗk(tk,1, θk)− F(θk,1, tk,i)
.
.
.

ṗk(tk,K , θk)− F(θk,K , tk,i)

 = 0 (3.7)

If the collocation equations (3.7) are satisfied, the interpolation polynomial p(θk, t)
can accurately capture the the state trajectory over the collocation time interval. And
the end state x(tk+1) can be accurately approximated by p(θk, tk+1).

5. In order to satisfy c(θk, tk,i, xk) = 0, two constraints for collocation equations
also have to be satisfied. First of all, at collocation time tk = tk,0, the interpolation
polynomial p(θk, tk) = xk, where xk is the given initial value of the state at time tk.
Then according to the property in equation (3.5), this relation can be simplified as

29

Chapter 3. Optimal control problem and nonlinear model predictive control

θk,0 = xk. Secondly, p(θk, tk,i) have to meet the system dynamic on the remaining
collocation times from tk,1 to tk,K .

ṗ(θk, tk,i) = F(p(θk, tk,i),uktk,i) (3.8)

Where, p(θk, tk,i) in equation (3.8) can be expressed as θk,i according to equation
(3.5). Thus, equation (3.8) can be simplified as:

ṗ(θk, tk,i) = F(θk,i,uk, tk,i) (3.9)

Equation (3.9) is the system dynamic model after implementing direct collocation
method.

Selection of the collocation times tk,i

1. The sufficient selection of collocation times or collocation points can lead to high
orders integration.

2. If the order of polynomial ẋ=F(x,u,t) is up to (2K−1) or mathematically< (2K−
1), the integration will be exact by using Gauss-Radau collocation points, which
includes the end point of the collocation interval as collocation point. Hence the
integration order of Gauss-Radau is (2K−1) and it is best suited for DAEs system.

3. If the order of polynomial ẋ=F(x,u,t) is up to (2K) or mathematically < (2K),
the integration will be exact by using Gauss-Legendre collocation points. Hence
the integration order of Gauss-Legendre is (2K) and it is best suited for stiff ODEs
system.

4. Note that, an extra point tk,0 is added into the collocation points tk,1,...,tk,K , in
order to enforce the initial value constraint θk,0 = xk or continuity in collocation
equations.

5. The interval length of each collocation point have to be scaled by the length of
collocation time interval h = tk+1 − tk. Moreover, when collocation time interval
is too long, the approximation of interpolation polynomial will be not good.

Error and Stability

1. Like many other collocation methods, the Gauss-Legendre methods are A-stable,
which can be used to can handle stiff equations. According to Biegler L.T.(2010),
in the presence of very fast dynamics, larger time steps h = tk+1 − tk can be used
to predict steady state and slow dynamics accurately. According to Sébastien Gros
(2016), it can handle eigenvalues at∞.

2. Gauss-Radau collocation methods are L-stable, which is the special case of the A-
stability. And can often be used for stiff equations.

30

3.2 Optimal control problem

3. Integration error: on collocation time interval as h = tk+1− tk, the integration error
depends on the order K of the interpolation polynomial. For Gauss-Legendre is
O(h2K) and for Gauss-Radau is O(h2K−1). Have to note that the integration error
only appears at the end-state of the integrator, but not at the intermediate points
(Biegler L.T.(2010)).

4. The accuracy of direct collocation method can be increased by adopting following
two methods.

• Increase the order K of interpolation polynomial.

• Decrease the size of the collocation time intervals [tk, tk+1].

However, according to Moritz Diehl and Sébastien Gros (2017), the result of NLP
becomes worse as K increases beyond relatively small orders. Thus it is better to
select K up to 4.

3.2.6 Nonlinear optimization
After implementing direct collocation method, a dynamic optimization problem is trans-
formed into a NLP problem, which have to be solved by one of the nonlinear optimization
algorithms. Before seeking en efficient NLP solver, a generic NLP formulation is given
as:

min
w

φ(w)

s.t. g(w) =

θ0,0 − x̄0

p(θ0, t1)− θ1,0

F(θ0,i,u0)−
∑K
j=0 θ0,jL̇0,j(t0,i)

.

.

.
p(θk, tk+1)− θk+1,0

F(θk,i,uk)−
∑K
j=0 θk,jL̇k,j(tk,i)

.

.

.

= 0
(3.10)

Where, decision variables are:

w = [θ0,0, ..., θ0,K , u0, ..., θN−1,0, ..., θN−1,K , uN−1]> (3.11)

With k = 0, 1, ..., N − 1. The dimension of w in NLP is N(nx(K + 1) + nu). Where, N
represents the number of discrete time elements. nx and nu represent the number of states
and control inputs respectively. Then for equality constraint g(w) = 0, the meaning of
each equality constraint is:

• θ0,0− x̄0 = 0 is fixed initial value. Where, x̄0 is the given initial condition and θ0,0

is interpolated state approximation.

31

Chapter 3. Optimal control problem and nonlinear model predictive control

• p(θk, tk+1)−θk+1,0 is continuity constraint required across the interval boundaries,
which is similar with shooting gap in multiple shooting method.

• F(θ0,i,u0) −
∑K
j=0 θ0,jL̇0,j(t0,i) is integration constraints for k = 0, and the rest

are remaining integration constraints for k = 1, ..., N − 1. Have to note that the
integration of the system dynamics over collocation time interval is performed by
solving collocation equations as discussed in section 3.2.5. Hence these can also be
seen as collocation equation conditions except from continuity constraint and can
also enforce continuity constraint directly within the collocation equations.

• The high integration order of collocations holds only at the the main time grid tk, be-
cause interpolations at finer time grids tk,i causes a poor numerical accuracy.(Moritz
Diehl and Sébastien Gros (2017))

Definition and Properties of DAEs

If a system of equations with the following form, F (ẋ, x, t)=0 and the jacobian matrix,
αF
αẋ , is singular, then this form of equations is called as differential algebraic equations

(DAEs). Where singular matrix is a square matrix which is non-invertible. Furthermore, if
and only if a matrix has a determinant of 0, then this matrix is a singular matrix. Then the
fully-implicit form of DAEs, F (ẋ, x, t)=0, can be transformed into a semi-explicit form as
expressed in equation (3.12):

ẋ = F(x, z,u) (differential equation) (3.12a)
0 = G(x, z,u) (algebraic equation) (3.12b)

Where, x is differential variables, z is algebraic variables which derivatives do not appear
in the DAEs , u are input variables respectively. In semi-explicit DAEs, differential and
algebraic equations have their own specific functions:

• Differential equations: Describe the dynamic behavior of the system, such as mass
and energy balances.

• Algebraic equations: By describing conservation laws of mass, energy etc, bal-
ances of mass, energy, mole, etc and also the constraints of the dynamic process to
ensure physical and thermodynamic relations.

Therefore DAEs are extensively applied in large system which consists of many sub-
systems, due to the aims of above-mentioned two separate subequations. Furthermore,
the system described by DAEs is easier to develop, maintain and modify. The DAE-

32

3.3 Model predictive control

constrained NLP solved by direct collocation method can be expressed as:

min
w

φ(w)

s.t. g(w) =

θ0,0 − x̄0

p(θ0, t1)− θ1,0

F
(
α
αtx(θk, tk,0), (θk,0), (zk,0),uk

)
.
.
.

p(θk, tk+1)− θk+1,0

F
(
α
αtx(θk, tk,K), (θk,i), (zk,K),uk

)
.
.
.

= 0
(3.13)

Where, decision variables w are:

w = [..., θk,0, θk,1, zk,1, ..., θk,K , zk,K ,uK , ...]
> (3.14)

With, k = 0, 1, ..., N − 1.

Hence, for system dynamic described by DAEs, the interpolation polynomial used in or-
thogonal collocation can be expressed for both differential and algebraic states.

Interpolation polynomials:

x(θk, t) =

K∑
i=0

θk,iLk,i(t) (3.15a)

z(zk, t) =

K∑
i=1

zk,iLk,i(t) (3.15b)

Where, have to notice that for algebraic state interpolation polynomial i starts from 1,
that is because algebraic states z appear only in the dynamic constraint and it leads to the
difference of degree of freedom for two states. The degree of freedom for per differential
state is K + 1 and per algebraic state is K. However, algebraic state z does not actually
integrated during interpolation process in the collocation equations.

3.3 Model predictive control
Due to the effectiveness in respecting constraints and multiple-input-multiple-output sys-
tems, the application of model predictive control (MPC) has had great success in chem-
ical processes optimization and control field. MPC , which was initially proposed by
Richalet,J. et al. (1978) and Cutler,C.R. and Ramaker,B.L. (1980), calculates a sequence

33

Chapter 3. Optimal control problem and nonlinear model predictive control

of optimal control inputs at every sampling time of the controller by solving an optimiza-
tion problem which minimizes a pre-defined cost function over a finite prediction horizon
subject to input and state constraints. Hence the basic concept of MPC can also be briefly
descried as using a dynamic model to predict system behavior, and then optimize the pre-
diction to get the best decision. As a kind of closed-loop optimal control strategy, the
advantage of MPC is that MPC couples open loop optimization with feedback control.
The main idea and strategies of MPC are discussed in the following sections.

Figure 3.4: Typical control hierarchy (Foss,B. and Heirung,T.A.N.(2013))

MPC and control hierarchy

The typical control system is constructed according to the control hierarchy given in Figure
3.4.

• Process: Often known as the controlled system which provides realtime data to the
regulatory control layer through sensors, transmitters, analyzers and actuators.

• Regulatory control layer: Conventional controllers such as PID controllers are
applied to control properties like flow rate, pressure and temperature etc. Set points
for those properties are required in regulatory control layer, which are provided by
advanced control layer.

• Advanced control layer: MPC is implemented in advanced control layer to opti-
mally control a process through regulatory control layer. The measurements yt are
passed from the lower control layer, at the same time set points and constraints are
supplied from scheduling and optimization layer. After MPC implementation, the
computed control inputs ut which are the outputs from MPC will be used as set
points for regulatory control layer for low level control.

34

3.3 Model predictive control

• Scheduling and optimization: Optimization problem supplies set points and con-
straints which will be adopted in the advanced control layer.

3.3.1 MPC algorithm
At first, the block diagram of a model predictive control system is given in Figure 3.5.

Figure 3.5: Block diagram for model predictive control (Seborg et al. (2011))

1. Model, which is dynamic model described by ODEs or DAEs, is used to predict
the current values of the output variables. Models are also the central of the MPC,
because the optimal control move ∆u depends on the initial state of the dynamic
system and the most likely initial state is determined by using the past record of
measurements. According to J.B.Rawlings et al. (2018), the state estimation prob-
lem in MPC is to examine the record of past data, and reconcile these measurements
with the model to determine the most likely value of the state at the current time.

2. Residuals, which is the differences between the actual outputs (Process outputs, y)
and predicted outputs (Model outputs,ŷ) of the previous step, is sent to the Predic-
tion block as the feedback signal along the prediction horizon. Hence the feedback
information, which is necessary to control an uncertain system, enters the control
loop.

3. The MPC calculations, which is consist of Set-point calculations and Control cal-
culations, depends on current measurements and predictions of the outputs. Note
that, the boundaries of inputs and outputs can be included in any of these two cal-
culations. The MPC calculation procedures at each sampling time can be explained
by calcualtions at the most current sampling time k.

• First, the set points or targets, which later used in control calculations, are
calculated by solving an economic optimization problem (steady-state optimi-
sation) at upper layer. In addition, the calculation of set points are performed
at each sampling time when the control calculations are executed.

35

Chapter 3. Optimal control problem and nonlinear model predictive control

• Then, M number of control moves ∆u(k), ...,∆u(k+M−1) are generated by
control calculations of MPC, where the current control moves ∆uk andM −1
future control moves are incorporated. And only the first control move is im-
plemented to the plant. As shown in Figure 3.6, the control moves are usu-
ally considered as piece-wise constant. Note that, the control trajectory after
the control horizon M are kept constant in order to reduce the computational
complexity of the resulting optimization problems.

• As the calculation of control moves, P number of predicted outputs ŷ(k), ..., ŷ(k+P)

optimally reaches the set points.

4. Moreover, Set-point calculations and Control calculations are cooperated in MPC
calculation and it is the unique characteristic of MPC.

5. Why is a M−step control moves calculated if only the first control move is imple-
mented? (Seborg D.E.et al.(2011))

• This strategy is called receding horizon approach and it is executed in order
to avoid the adverse effect of unmeasured disturbances which is caused by
multistep, like P−step predictions and M−step control moves are based on
the old information.

• Therefore, the advantage of adopting receding horizon approach is that new
information in the form of the most recent measurement y(k) is used imme-
diately instead of being ignored for the next M sampling times by moving
the prediction horizon P one sampling time forward at every new round of
calculation.

Therefore, the basic principle of MPC can be summarised as the following principle given
by D.Q.Mayne and J.B.Rawlings et al. (2000). As a form of control, the current control
action of MPC is obtained by solving a finite horizon open loop optimal control problem at
each sampling instant by using the current state of the plant or process as the initial state.
The optimization yields an optimal control sequence and the first control in this sequence
is applied to the plant. The illustration of the MPC principle is shown in Figure 3.6 and
the basic MPC algorithm can be expressed as given in Table 3.1.

Algorithm State feedback MPC procedure
for t = 0, 1, 2, ... do

Get the current state xt.
Solve a dynamic optimization problem on the prediction horizon from t
to t+N with xt as the initial condition.
Apply the first control move ut form the solution above.

end for

Table 3.1: Basic MPC algorithm (Foss,B. and Heirung,T.A.N.(2013))

36

3.3 Model predictive control

Figure 3.6: Illustration of the MPC principle (Seborg D.E.et al.(2011))

3.3.2 Nonlinear model predictive control
Nonlinear model predictive control (NMPC) has been popular in many applications, es-
pecially when constraint satisfaction is critical (Zhou Joyce Yu and Biegler,L.T (2019)).
NMPC is an optimization method for the nonlinear system’s feedback control, which
means the system model xt+1 − f(xt, zt, ut) = 0 as a constraint in MPC is nonlinear.
Hence, it is also the main difference between linear MPC and NMPC. As a result, NLP
solver is needed instead of QP solver to solve nonlinear and nonconvex problem.

min
w

φ(w)

s.t. x0 − x̄0 = 0
xt+1 − f(xt, zt, ut) = 0

g(xt, zt, ut) = 0
h(xt, zt, ut) ≤ 0

r(xN) ≤ 0

(3.16)

Where, t = 0, ..., (N−1). Note that for direct collocation, collocation equations (3.7) on a
collocation time interval [tk, tk+1] would be included within the function g(xt, zt, ut) = 0
and the collocation node values in the variables zt. (Moritz Diehl and Sébastien Gros
(2017))

As the promising technique in the industry, the performance and stability of NMPC method
is strongly affected by the model quality used in the predictions, therefore it is sensitive
to uncertainties which generally caused by noise, unknown disturbances and plant-model
mismatch due to inaccurate modeling. Although standard MPC, which without taking into
consideration uncertainties, possesses an inherent robustness under some strong assump-

37

Chapter 3. Optimal control problem and nonlinear model predictive control

Algorithm Nonlinear MPC with state feedback
for t = 0, 1, 2, ... do

Get the current state xt.
Solve a dynamic optimization problem (3.16) on the prediction horizon from t
to t+N with xt as the initial condition.
Apply the first control move ut form the solution above.

end for

Table 3.2: Basic NMPC algorithm (Foss,B. and Heirung,T.A.N.(2013))

tions by Grimm,G. et al. (2004), it is still not sufficient for general nonlinear constrained
systems. Consequently, the robustification of MPC is necessary in the reality to solve
above-mentioned issues. Over the development of last few decades, several MPC con-
troller robustification approaches have been fulfilled, which are given in following list.

1. Min-Max MPC: As the first effort of MPC robustification, min-max MPC (Campo,P.J.and
Morari,M.(1987)) uses ideas of robust optimization to obtain a sequence of control
inputs that minimizes the cost of the worst-case realization of the uncertainty mean-
while satisfying the constraints for all the cases of the uncertainty. However, the re-
sult obtained by implementing min-max MPC may be excessively conservative and
may lead to infeasible optimization problems due to the inconsideration of futural
new information. This problem has been solved by taking into account the feedback
into the optimization problem, which is known as feedback min-max MPC (J.H.Lee
and Z.H.Yu (1997)). Meanwhile the resulting problem has infinite dimension and
which leads to the difficulty to solve.

2. Tube-based MPC methods: As an alternative to min-max method, the application
of tube-based MPC was conducted in both linear systems (D.Q. Mayne and M.M.
Seron et al. (2005)) and nonlinear systems (D.Q. Mayne and E.C. Kerrigan (2007)).
Tube-based MPC solves the nominal control problem, and in addition it contains an
ancillary controller which ensures the evolution of the real uncertain system stays in
a tube that is centered around the nominal solution. In order to develop stability and
recursive feasibility guarantees, the cross section of the tube is selected as positive
invariant set according to Lucia,S. and Engell,S. (2013).

3. Multistage NMPC: Also known as scenario-based robust NMPC. As a robust NMPC
approach, multistage NMPC is able to provide the best possible solution for the ro-
bust NMPC problem by computing the optimal closed loop feedback policy over a
finite prediction horizon under the assumption that scenario tree can perfectly model
the uncertainties. The specific details discussed in the following section.

3.3.3 Multistage NMPC
The design of multistage NMPC is based on describing (modeling) the evolution of the
uncertainty by a discrete scenario tree, where the uncertainty is resolved subsequently

38

3.3 Model predictive control

at each node and the control inputs are separated into stages according to Sergio Lucia et
al.(2015). In other words,M different models (scenarios) where each model has a different
value for the uncertain parameter to show how the uncertainty influences state evolution
over prediction horizon. Furthermore, in multistage NMPC the modeling of uncertainty
by a tree of discrete scenarios requires that scenario tree can perfectly model uncertainty.

Figure 3.7: Scenario tree representation of the evolution of the uncertainty for multistage NMPC.
(Lucia,S. and Engell,S. (2015))

The scenario tree that is used in multistage NMPC shown in Figure 3.7 describes the
uncertainty evolution. The scenario tree develops toward future by branching from node
to node.

• Each node in the discrete scenario tree represents an unknown uncertain event which
affects the system besides the applied control input. x0 is root node which can be
also seem as the initial condition of state.

• Each branch from the root node to every leaf node is called a scenario. Each branch-
ing at a node represents the effect of an unknown uncertain influence (disturbance
and model error) together with the chosen control input. (Lucia,S. and Engell,S.
(2013))

• Under perfect estimation assumption or full state measurement, the structure of sce-
nario tree can represent how future control inputs depends on the previous values of

39

Chapter 3. Optimal control problem and nonlinear model predictive control

the uncertainty. Thus, future control inputs can act as recourse variables to eliminate
the effect of the future uncertainties.

• At each node of the scenario tree, a decision or control input is computed based
on the information up to that time with taking into consideration clearly the uncer-
tainty’s future evolution as well as the future decisions or recourse variables on these
branches.

• Multistage NMPC is a closed-loop robust NMPC approach. Note that, if the un-
certainty is not known at one sampling time, it will remain unknown at the next
sampling time. Thus, new scenario tree will have to be solved at the next sampling
time.

The discrete-time formulation for an uncertain nonlinear system scenario tree can be writ-
ten as:

xjk+1 = f(x
p(j)
k , ujk, d

r(j)
k) (3.17)

Where, k is the stage, j is the position of node and r is the realization of uncertainty in
the scenario tree. Hence the position of each node can be expressed as (j, k) and it also
can be simplified as I . Each state xjk+1 ∈ Rnx depends on the the values of the previous

stage, like parent state xp(j)k ∈ Rnx , the control input ujk ∈ Rnu and the corresponding
uncertainty dr(j)k ∈ Rnd . For the sake of simplicity, it is convenient to assume the tree
has the same number of branches at all nodes. The scenario from root node x0 to the leaf
nodes can be denoted by S as expressed in equation (3.18).

S = {x0, x
1
1, x

2
1..., x

N
NP
, u1

1, u
2
1, ..., u

N
NP
} (3.18)

Where, N is the number of scenarios or leaf nodes ∀i = 1, ..., N . NP is the length of
prediction horizon. Hence, all states (nodes) and control inputs in the scenario tree can be
written respectively as:

X = {x0, x
1
1, x

2
1..., x

N
NP
} (3.19a)

U = {u1
1, u

2
1, ..., u

N
NP
} (3.19b)

Therefore, the optimization problem resulting from multistage NMPC can be written as:

min
xj
k,u

j
k

S∑
j=1

ωj

N∑
i=1

Ji(xk,j , uk,j) (3.20a)

subject to:

x0,j = xinit (3.20b)

xk+1,j = f
(
xk,j , uk,j , pj

)
(3.20c)

g
(
xjk+1, u

j
k)
)
≤ 0 (3.20d)

uk,j = uk,l if xk,j = xk,l (3.20e)

40

3.3 Model predictive control

Where, Ji is the cost function of each scenario on the scenario tree, which is weighted
by ωi denotes the probability of each scenario Si. Equation (3.20b) is the initial condition
constraint, where xinit is the vector of starting points for the states. Equation (3.20c) is the
model of nonlinear dynamic system. Equation (3.20d) is the constraints on control inputs
and states. Equation (3.20e) is called as non-anticipativity constraints, which indicate that
decisions or control inputs based on the same parent state xp(j)k or information have to
be equal to correctly model the real-time decision problem. This is because uncertainties
can be realised after applying the control inputs. In other words, before the control inputs
or decisions are taken at one node, the future branching of the scenario tree at a node
is unanticipatable. Furthermore, the multistage NMPC converts into the standard NMPC
when the number of scenarios is S = 1.

As a summary, what multistage scenario based NMPC doing is at each sampling time, the
uncertain parameters can take any discrete value from the subset of M different models.
Then different control input profiles are designed for all scenarios. Thus, by doing this
procedure new information will be available in the future and the decision variables can
offset the effect of the uncertainty.

Selection of scenarios

Selection of scenarios will build the scenario tree. The scenario tree is often generated
using finite realizations of the uncertainty sampled from an uncertainty set or a probability
distribution function.

Thus the first step to formulate a scenario-based multistage NMPC is to chose the discrete
realizations of the uncertainty from the uncertainty set, which can be denoted as P . Then,
a combination of maximum, minimum and nominal values of the different uncertain pa-
rameters are selected as the scenarios to assure the robust constraint satisfaction for any
realization of the uncertainty from the uncertainty set P . At the end, a scenario tree as
shown in Figure 3.7 is generated by these M amounts of discrete realizations of the uncer-
tain parameters which are sampled from the uncertainty set.

However, this approach, which is similar to random sampling methods, ignores the corre-
lations between uncertain parameters.

Robust horizon of the problem

According to Lucia,S. and Engell,S. (2013), the main drawback of multistage NMPC is
that the size of the NLP that has to be solved at each time step grows exponentially with
the prediction horizon, with the number of uncertainties and with the levels of the un-
certainty considered in the design of the scenario tree. Robust horizon can be taken to
avoid this phenomenon, where to limit the branching of the scenario tree only up to certain
stages. This simple strategy to deal with the growth of the tree with the prediction horizon
is known as robust horizon, which states that after exceeding this new limited prediction
horizon, the uncertainty is assumed to be constant until the end of the prediction horizon.
The main idea of this simplification is coming from the receding horizon nature of NMPC,
since the control inputs will be recomputed at the next sampling time, accurate modeling

41

Chapter 3. Optimal control problem and nonlinear model predictive control

of far future is not important anymore. Thus, the example of multistage NMPC with robust
horizon is given in Figure 3.8. Where prediction horizon NP = 4, robust horizon NR = 2
and the total number of scenarios S = MNR .

Figure 3.8: Scenario tree representation of the uncertainty evolution with robust horizon for multi-
stage NMPC (Lucia,S. and Engell,S. (2015))

Direct collocation in multistage NMPC

Since the discrete scenario tree requires time-discrete model of the system, direct collo-
cation method is selected to discretize both the states and control inputs and set them as
optimization variables in the resulting nonlinear programming problem (NLP). The spe-
cific details of direct collocation method has been discussed in Chapter 3.2.5. The purpose
of this subsection is to fit the direct collocation method into multistage NMPC. Since each
control interval is divided into finite elements, the state trajectory can be parametrized
using Lagrange polynomials:

xjk,γ(t) =

K∑
i=0

xjk,γ,iLi(t) (3.21)

Where, xjk,γ(t) are the state variables at position (j, k) of the scenario tree when time is t
for the finite element. xjk,γ,iLi(t) are the state variables at stage k for the finite element γ
at the collocation point i.

42

Chapter 4
Implementation

4.1 Implementation of modeling
In order to reduce the requirement for real experimentation, and further promote the
achievement of cost, risk and time reduction, model is chosen to be used. Therefore,
any chemical or physical process in practical can be described by a model of its own pro-
cess. A good model is required to contain information, which is enable to predict the
results when process operating conditions have been changed. Depending on the certain
task, process model can be classified as shown in Figure 4.1. Since the model used in this
process is mathematical model, the introduction here is focused in this type of model as
well.

Figure 4.1: Process model classification

43

Chapter 4. Implementation

1. Mathematical models: As specified in Figure 4.1, mathematical model involves
two different sub-types, which are knowledge-based mechanistic model or data-
based black box model.

• Mechanistic models: Also known as white box model, is derived from the well
defined process which is governed by physics and chemistry. Hence a set of
differential equations, which is based on conservation laws, can be adopted
to describe its dynamic behavior. Furthermore, the structures of mechanis-
tic models are distinct due to the different systems. Where lumped parame-
ter model is described by a set of ODEs, while distributed parameter model
requires partial differential equations. Notwithstanding, with certain assump-
tions distributed systems can be approximated by a set of ODEs. Both these
two models can be further described by linear or nonlinear descriptions. How-
ever, when the information about the process is vague or the process is too
complicated, the resulting model equations will be too difficult to solve. In
this situation, black box model may be established to use.

• Black box models: It is a lumped model with parameter model, which de-
scribes the functional relationships between system inputs and outputs. These
functional parameters have no physical significance and may potentially result
unreasonable consequences, thus it is the disadvantage of black box model
compared to mechanistic model. Moreover, when the system is MIMO sys-
tem, the modelling with black box pattern needs huge data in order to lead to
reliable predictions.

• Hybrid models: The combination of mechanistic models with black box model
is known as hybrid model or grey box model. The detailed implementation
have already been fulfilled in specialization project Ding,N. (2019).

2. Qualitative models: The concrete introduction of this model type can be found
from J. Hendler et al. (2010) and not introduced in this thesis.

3. Statistical models: The process is described in statistical terms and system dynam-
ics are not captured in statistical models, but it plays an important role in assisting
in higher-level decision making, process monitoring, data analysis and statistical
process control according to Peng Zhang (2010). Where probabilistic model com-
bines random variables and probability distributions into the model of an event or
phenomenon and then provide likelihood of these variables which taking on certain
values. For correlation models, by measuring the variations of any two variables to
quantify the extent of similarity and further build correlation models.

In this thesis, modeling of the simple thermal energy storage system is based on the con-
servation laws. Thus, it is mechanistic mathematical model and its specific derivations are
discussed in Chapter 5.

44

4.2 Implementation of simulation

4.2 Implementation of simulation
Once obtaining the system model, which is a set of DAEs in this thesis, simulations for
specific control scenarios can be implemented. There are numerous simulation tools for
various purposes and applications, for instantce MATLAB, LabVIEW, SIMULINK and
ModelSim have been mostly applied. In this thesis, the simulation will be perfomred
in MATLAB (R2019b), which is an integrated technical computing environment that in-
volves numerical computation, advanced graphics and visualization, and a high-level pro-
gramming language. Furthermore, CasADi, which is an open-source software package,
is used to improve computational performance and convenient code implementation in
MATLAB environment.

4.2.1 Background information of CasADi
CasADi is developed as a tool for algorithmic differentiation (AD) using a syntax similar to
a computer-algebra system (CAS), and it is also the origin of its name (Joel A.E.Andersson
et al.(2018)).

OCP can be efficiently solved by the direct method. In this thesis, the direct collocation
method is selected as the numerical method for solving OCP with Gauss-Radau collo-
cation method and the 3rd order (K = 3) interpolation polynomials. By implementing
direct method, OCP is converted into a nonlinear programming problem (NLP). CasADi
has many open-source and commercial NLP solver plugins, and they all have their own
corresponding application fields. In this thesis NLP solver IPOPT, which is the abbrevia-
tion of Interior Point OPTimizer pronounced I-P-Opt, is used as the NLP solver. IPOPT
implements a primal-dual interior point method, and the specific details can be found in
A. Wächter and L.T.Biegler (2006).

According to Joel A.E.Andersson et al.(2018), the core of CasADi is symbolic frame-
work, and it allows users to construct expressions and use these to define automatically
differentiable functions. Therefore, NLP can be expressed in a highly symbolic expres-
sion and meanwhile with the help from ODE or DAE integrators it can be expressed as
graph representation as scalar expression or matrix expression type in the background. As
a tool, which is executing algorithmic differentiation, CasADi can efficiently and automat-
ically calculate derivative information of functions to any order. Consequently, necessary
first-order and second-order derivative information can be acquired for NLP solver and
derivative calculation errors can be efficiently avoided.

By writing dynamic system model codes in MATLAB environment for the determined
sampling time and with function ode15s which used in optimizer to get optimal inputs
to simulate real plant and further present the mismatch of plant and model. This function
is a solver applied to solve stiff differential equations and DAEs by using variable order
method. So, ode15s is implemented inside NLP solver to find out optimal inputs.

Therefore, the resulting iNMPC in this thesis is implemented in MATLAB by using CasADi
algorithmic differentiation tool, and IPOPT solver is used to solve the resulting nonlinear
programming problem. The optimal control problem of this thesis are then classified into
three main cases and one minor case to achieve the objective of minimizing commercial

45

Chapter 4. Implementation

energy cost. Where, standard NMPC is implemented for cases with and without storage
tank with no presence of uncertainty, and with storage tank with direct solar heating. Mul-
tistage NMPC is implemented for case with the presence of uncertainty. Furthermore, in
order to study the robustness of multistage NMPC, the standard NMPC also implemented
with consideration of uncertainty to make comparison.

46

Chapter 5
Modeling of thermal energy storage
system

The main purpose of this chapter is to derive the model equations of the simple thermal
energy storage system. In this thesis, a simple two-plant thermal energy storage system is
considered. The illustration of this simple system is shown in Figure 5.1.

Figure 5.1: Illustration of a simple thermal energy storage system

This thermal energy storage system is consist of two plants which are heat supplier and
heat consumer. Heat supplier can be various industrial plants which provide surplus (ex-
cess) heat to heat up the tank. On the other hand, the heat consumer (heat sink) can be
commercial building, district heating unit and also industrial plants, which extracts energy
from the TES tank to satisfy their energy demands. The thermal energy storage (TES) tank
works as a buffer between these two plants to promote the energy exchange and it is con-

47

Chapter 5. Modeling of thermal energy storage system

sidered as a hot water tank. The interaction of tank with two plants is fulfilled by two heats
exchangers. Local heating source can be inexpensive energy source like solar energy, and
TES tank can also be directly heated up by cheap local heating source. Expensive com-
mercial energy will be purchased when the energy stored in the TES tank is not sufficient
to fulfill the requirements on the consumer side. In practice, the cost of commercial energy
is much more expensive than the local heating source energy, hence the objective of this
thesis is to minimize the cost of purchased commercial energy.

In order to derive the system model, mass and energy conservation laws are used with
some necessary assumptions to the system. As a result, the numerical case studies are
performed under the obtained mathematical model in this thesis.

5.1 Model description and assumptions
In order to model the two-plant thermal energy storage system correctly, some necessary
assumptions have to be held, which are considered as follows:

1. Consider the heat source and sink as reservoirs, which are infinitely large sources of
extensive quantity with constant intensive properties. So, this implies that the tem-
perature of the source and sink streams, which is an intensive property not depending
on the system size or the amount of material in the system, are only depending on
the source and sink plants.

2. Consider two heat exchangers as devices with two chambers (lumps) which repre-
sent the hot side and the cold side respectively. Consider the temperature of both
chambers throughout their volumes are the same.

3. Assume the supplier and consumer plant are close enough to each other so that the
heat losses caused along the pipes due to time delays can be neglected. Moreover,
assume heat exchangers are insulated from its surroundings and such that no heat
losses from two heat exchangers to the surrounding environment.

4. Assume heat exchanger overall heat transfer coefficient ,Uhex, is constant.

5. Assume two heat exchangers have the same dimensions and parameters, which
means they are identical in the system.

6. The thermal stratification is not considered in this thesis. Assume the tank is uni-
formly mixed throughout its volume so that the temperature inside the tank is iden-
tical with the tank outlet temperature. Assume holdup of the tank is perfectly con-
trolled and constant at Vtank.

7. Assume the heat storage fluid is incompressible and has a constant heat capacity cp.
Then, the storage fluid has the physical properties of water, since thermal energy
storage material is selected as water.

8. Assume the temperature range of storage fluid is below the boiling temperature of
water, 100◦C. Therefore, TES can further be assumed as an unpressurized tank.

48

5.2 Process modeling

9. The energy flow is from the source side to the sink side conventionally.

In the following sections, the procedure of deriving system’s mathematical model based
on the forenamed assumptions are presented step by step.

5.2 Process modeling
Before deriving the system model, it is better to convert the abstract system illustration
into more detailed type to deeply understand what is going on this TES system. Thus, the
topology is illustrated in the following subsection for better understating.

5.2.1 Topology illustration
The illustration of simple TES system with one supplier and one consumer, along with
TES tank is given by a topology in Figure 5.2 and the specific explanations of each part
and model parameters are given in Table 5.1 and 5.2 . The supplier is the source of energy,
which can supply excess thermal energy to the TES tank. The consumer is a heat sink,
which extracts thermal energy from the TES tank to satisfy the energy demands. Because
of the presence of two heat exchangers, the heat can be exchanged with hot water as stor-
age material between the supplier and consumer and also TES tank.

In practice, in order to deal with the possibly happened sharp fluctuations in heat demand
at the consumer side, purchasing extra commercial energy from market is one of the com-
mon method to compensate the mismatch caused by insufficient energy supply from the
TES tank. However, these commercial energy is expensive and may further increase the
emissions of greenhouse gases.

Figure 5.2: Topology of the system. The states, inputs and disturbances are shown in red, black,
and green respectively. The red lines represent the hot streams and the blue ones cold streams.

49

Chapter 5. Modeling of thermal energy storage system

Term Explanation
1 Energy supply: Sources
2 Energy demand: Sinks
L Local heating source
E Environment
Tank Thermal energy storage tank
HEX-1 Heat exchanger 1
HEX-2 Heat exchanger 2
L1,L2 Hot side of HEX-1,2
R1,R2 Cold side of HEX-1,2

Table 5.1: Topology term explanations

Term Explanation
Vhex Heat exchanger volume
Ahex Heat exchanger heat transfer area
Uhex Heat exchanger heat transfer coefficient
Vtank Tank volume
Atank Tank surface area
Utank Tank heat loss coefficient
ρ Storage fluid density
cp Storage fluid specific heat capacity
Qmarket Purchased commercial energy source
Qdump Dumped surplus heat
Qsolar Direct solar heat
Qloss Tank lost heat
Pm Commercial heating cost
Pt Direct solar heating cast
Pu Quadratic penalty cost

Table 5.2: Model parameter explanations

5.2.2 Energy balances and Mass balances

The general energy conservation law or also called as the first law of thermal dynamics
and mass conservation law are used to derive the system’s model. First of all, the overall

50

5.2 Process modeling

description of dynamic balance can be expressed as:

Change Inventory︸ ︷︷ ︸
accumulated in the system

= In−Out︸ ︷︷ ︸
through the system’s boundary

+Generated− Loss︸ ︷︷ ︸
internally in the system

(5.1)

Mathematically, the general balance equation per unit time is expressed as:

dB

dt
= Bin −Bout +Bgenerated −Bloss (5.2a)

Thus, general energy balance law can be expressed as: rate of energy accumulation = rate
of energy in by convection - rate of energy out by convection + net rate of heat addition
to the system from the surroundings + net rate of work performed on the system by the
surroundings . Mathematically, it can be expessed as:

dU

dt
= Hin −Hout +Q+W − pex

dV

dt
(5.3a)

Since no additional work added to the thermal energy storage system,W can be neglected.
Furthermore, −pex dVdt which is the work supplied to the system when its volume changes
can also be neglected. After assuming constant pressure and constant volume, H = U +
PV , which can lead equation (5.3a) to become:

dH

dt
= Hin −Hout +Q (5.4)

Then, conservation of mass can also be expressed as following the expression of general
dynamic balance: rate of mass accumulation = rate of mass in - rate of mass out. Mathe-
matically, it can be expressed as follows:

dm

dt
= win − wout (5.5)

By introducing the density, equation (5.5) becomes:

dρV

dt
= ρinqin − ρoutqout (5.6)

In this thesis, the main focus is on modeling of the dynamics of heat exchange between the
TES tank, and one supplier and also one consumer plant. Therefore, it includes the energy
balances over the heat exchangers and over the TES tank. The dynamic of whole system
can be derived by applying enthalpy balances over the components of system shown in
Figure 5.2.

Reservoirs:

Since the heat source and heat sink have been assumed as reservoirs in assumption 1, the
temperatures of these two reservoirs, T1 and T2, are considered as given. So they are in-
dependent of the system’s dynamic, for example the change of system’s size can not affect
these two variables. Then the energy balance of heat source and heat sink can be derived

51

Chapter 5. Modeling of thermal energy storage system

according to equation (5.4).

Source and sink

T1 = constant,
dH1

dt
= 0 (5.7a)

T2 = constant,
dH2

dt
= 0 (5.7b)

Lumps:

1. Flow simplification: Before deriving the corresponding model equations for each
sub-part of the thermal energy storage system, the simplifications of flow streams
are necessary. During the whole operation period, the heat exchanger 1 and 2 are
always filled with fluid, so the volumes of the heat exchangers are always constant.
Thus, dVhex

dt = 0. Thence, the volumetric inlet and outlet flows of heat exchanger 1
and 2 are equal. Then, the volume of the storage tank is also fully filled and perfectly
controlled during the entire operation period. So, the flow in and out of the TES tank
are also identical. Thus, the simplifications of flows can be expressed as shown in
equation (5.8), which are already marked out in Figure 5.2.

q1|L1 = qL1|1 = qL1 (5.8a)
q2|R2 = qR2|2 = qR2 (5.8b)

qR1|tank = qtank|R1 = qR1 (5.8c)
qL2|tank = qtank|L2 = qL2 (5.8d)

2. Temperature indications: As shown in Figure 5.2, temperatures in this simple
system is indicated in Table 5.3. According to the assumptions of the system, the
temperatures exiting HEX-1, HEX-2 and TES tank are considered to be same as
those inside the their corresponding volumes.

Term Explanation
T1 Supplier side inlet temperature
T2 Consumer side inlet temperature
TL1 HEX-1 hot side temperature
TR1 HEX-1 cold side temperature
Ttank TES tank temperature
TL2 HEX-2 hot side temperature
TR2 HEX-2 cold side temperature
Tsurr Ambient temperature

Table 5.3: Temperature indications

52

5.2 Process modeling

3. Heat exchanger 1: The temperature difference of two chambers is the driving force
for heat exchangers. Further, the fluid for heat exchange is considered as hot water.
By applying the mass balance equation (5.6) across the heat exchanger 1 gives the
mass balance as:

dρVhex
dt

= ρinq1|L1 − ρoutqL1|1 (5.9a)

dVhex
dt

= q1|L1 − qL1|1 (5.9b)

dVhex
dt

= qL1 − qL1 = 0 (5.9c)

Inside the heat exchanger, energy is transferred from the hot side (L1) to the cold
side (R1). The energy balance equation for this phenomena can be expressed as:

dHL1

dt
=
∑

Hin −
∑

Hout +Qnet −Ws (5.10)

As already assumed, heat exchangers are insulated from its surroundings, so there is
no heat loss from heat exchangers to the environment, Qloss,HEX−i = 0. Therefore
the only heat exchange in heat exchanger is between the hot and cold fluids. Then
equation (5.10) becomes:

d(ρcpVhexTL1)

dt
= ρincpinqL1T1 − ρoutcpoutqL1|1TL1 −QL1|R1 (5.11a)

ρcpVhex
dTL1

dt
= ρcpqL1(T1 − TL1)−QL1|R1 (5.11b)

Where,QL1|R1 implies energy transfer happened among heat exchanger’s two cham-
bers. After rearranging equation (5.11b), the final form can be obtained.

Energy balance equation for L1 :

dTL1

dt
=

1

Vhex

{
qL1(T1 − TL1)−

QL1|R1

ρcp

}
(5.12)

As following the same procedures done in L1, the energy balance equation for the
cold side, R1 can also be obtained.

Energy balance equation for R1 :

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

QL1|R1

ρcp

}
(5.13)

4. Heat exchanger 2: Since the design parameters of both heat exchangers are the
same, so the derivations of energy balance equations for heat exchanger 2 follow the
same procedures done in heat exchanger 1. In addition, the results are similar except

53

Chapter 5. Modeling of thermal energy storage system

from different variables.

Energy balance equation for L2 :

dTL2

dt
=

1

Vhex

{
qL2(Ttank − TL2)−

QL2|R2

ρcp

}
(5.14)

Energy balance equation for R2 :

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

QL2|R2

ρcp

}
(5.15)

5. Heat transferred from hot side to cold side in heat exchanger: As discussed in
Chapter 2.3: Heat transfer modeling in heat exchangers, the heat transfer model
from hot fluid to cold fluid can be expressed as following equation (2.13) as:

Q = UhexAhex∆Tm (5.16)

Where, subscript hex implies heat exchanger and (UA)hex implies the heat-transfer
conductance of the heat exchangers.

Mean temperature difference, its specific form logarithmic mean temperature differ-
ence and approximations of LMTD have been already clearly discussed in Chapter
2.3. Chen J. (1987) shows that both Underwood approximation and Chen approx-
imation are performing quite close to the results of original LMTD. In this thesis,
Underwood approximation will be used as the approximation of LMTD. Hence,
heat transfer from hot fluid to cold fluid in two heat exchangers can be expressed
respectively as:

QL1|R1 = UhexAhex∆Tm,1 (5.17a)
QL2|R2 = UhexAhex∆Tm,2 (5.17b)

Following the endpoint temperature differences of current-flow heat exchanger which
is given in equation (2.16), temperature differences ∆Tm,1 and ∆Tm,2 in equation
(5.17) become:

∆Tm,1 =

[
1

2

(
(T1 − TR1)n + (TL1 − Ttank)n

)] 1
n

, n =
1

3
(5.18a)

∆Tm,2 =

[
1

2

(
(Ttank − TR2)n + (TL2 − T2)n

)] 1
n

, n =
1

3
(5.18b)

6. Storage tank: By applying the mass balance equation (5.6) across the storage tank
gives the mass balance as:

d(ρVtank)

dt
= (ρqR1|Tank + ρqL2|tank)− (ρqTank|R1 + ρqTank|L2) = 0 (5.19a)

d(ρVtank)

dt
= (ρqR1 + ρqL2)− (ρqR1 + ρqL2) = 0 (5.19b)

54

5.2 Process modeling

The energy balance equation for storage tank can be expressed as:

dHtank

dt
=
∑

Hin −
∑

Hout +Qnet −Ws (5.20)

Where, enthalpies can be expressed as:∑
Hin = ρcp(qR1TR1 + qL2TL2) (5.21a)∑

Hout = ρcp(qR1Ttank + qL2Ttank) (5.21b)

And the net heat flow, Qnet:

Qnet = QD|tank −Qtank|E (5.22a)
QD|tank = Qtank, Qtank|E = Qloss (5.22b)

Hence, the energy balance equation for storage tank becomes:

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Qtank −Qloss
ρcp

}
(5.23)

5.2.3 Model equations
The model equations of two plants thermal energy storage system are a set of ordinary dif-
ferential equations (ODEs). For the sake of simplicity and for the easy checking purpose,
this set of ODEs is expressed in equation (5.24).

dTL1

dt
=

1

Vhex

{
qL1(T1 − TL1)− UhexAhex

ρcp
∆Tm,1

}
(5.24a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex
ρcp

∆Tm,1

}
(5.24b)

dTL2

dt
=

1

Vhex

{
qL2(Ttank − TL2)− UhexAhex

ρcp
∆Tm,2

}
(5.24c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex
ρcp

∆Tm,2

}
(5.24d)

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Qtank −Qloss
ρcp

}
(5.24e)

Where,

Qloss = (UA)tank(Ttank − Tsurr) (5.25a)

∆Tm,1 =

[
1

2

(
(T1 − TR1)n + (TL1 − Ttank)n

)] 1
n

, n =
1

3
(5.25b)

∆Tm,2 =

[
1

2

(
(Ttank − TR2)n + (TL2 − T2)n

)] 1
n

, n =
1

3
(5.25c)

55

Chapter 5. Modeling of thermal energy storage system

Where, (UA)tank is the heat-loss conductance of the tank. According to the model equa-
tion (5.24), the two plant thermal energy storage system’s model has five distinct states
(X) which are the exit temperatures from the chambers of heat exchangers and the tank.
Inputs (u) are flow rates on either sides of the heat exchanger and with the local heat sup-
ply, market heat supply and dumped heat. Disturbances (d) are inlet temperatures of the
two plants and the ambient temperature.

• States (X):
X = [TL1 TR1 TL2 TR2 Ttank]> (5.26)

• Inputs (u):

u = [qL1 qR1 qL2 qR2 Qsolar Qmarket Qdump]
> (5.27)

• Disturbances (d):
d = [T1 T2 Tsurr]

> (5.28)

Then, the remaining variables are model parameters like design and physical parameters,
which are independent of time during the system’s whole process but dependent of storage
material and heat exchanger material properties, the definition is already given in Table 5.2.
After defining the states, control inputs and disturbances, the system model formulation
can also be obtained, which is given in equation (5.30).

• Model parameters:

P = [Vhex Vtank Uhex Ahex Atank Utank ρwater cpwater n] (5.29)

• System’s model:
ẋ = F(x,u,d) (5.30)

As shown in model ordinary differential equations (5.24), the Underwood’s approxima-
tions of LMTD ∆Tm,1 and ∆Tm,2, which shown in equation (5.25b) and (5.25c), are ex-
ponential equations with n = 1

3 . Have to mention that the derivatives of root expressions
are rational, which means the states of model would be en element of fractional denomi-
nator. Therefore, when calculating gradients by using CasADi at each time step with state
values approaching zero, rational derivatives would cause singularity issues which let the
derivatives explode to∞ and further become non-defined. In order to avoid model equa-
tions having exponential or root expression terms, it is necessary to convert ODEs form
into DAEs form, which the latter can eliminate the derivatives of algebraic equations.

DAEs system’s model

The aforementioned issues can be solved by defining new algebraic states z as:

z = [a b c d] (5.31)

56

5.2 Process modeling

Where, let algebraic states be as:

a = (T1 − TR1)n (5.32a)
b = (TL1 − Ttank)n (5.32b)
c = (Ttank − TR2)n (5.32c)
d = (TL2 − T2)n (5.32d)

Moreover, equation (5.32) can be written in the general form of algebraic equations as
0=G(x,z,u,d) as in equation (5.33).

0 = a
1
n − (T1 − TR1) (5.33a)

0 = b
1
n − (TL1 − Ttank) (5.33b)

0 = c
1
n − (Ttank − TR2) (5.33c)

0 = d
1
n − (TL2 − T2) (5.33d)

Therefore, equation (5.25b) and (5.25c) can be written as:

∆Tnm,1 =
1

2
(a+ b), n =

1

3
(5.34a)

∆Tnm,2 =
1

2
(c+ d), n =

1

3
(5.34b)

After combining differential equations (5.24) and algebraic equations (5.33), the former
ODEs model becomes a differential algebraic equations (DAEs) model as expressed in
equation (5.35):

ẋ = F(x, z,u,d) (5.35a)
0 = G(x, z,u,d) (5.35b)

Where, x is differential states, z is algebraic states , u and d are inputs and disturbances
respectively. Moreover, the explicit form of ẋ can be expressed as:

ẋ = [
TL1

dt

TR1

dt

TL2

dt

TR2

dt

Ttank
dt

]> (5.36)

Thus, the model described by DAEs has total 9 states instead of only 5 differential states
like the former ODEs model. As a result, DEAs model makes optimal control problem
(OCP) and nonlinear programming (NLP) larger, which is somewhat slower to be solved
compared with ODEs model. However, DEAs model has its own corresponding advan-
tages which makes it better to be used prior to ODEs. For example, after taking DAEs
model, the relevant NLP problem can be resolved from any possible initial state condi-
tions. Furthermore, the optimal solution convergence is significantly increased when the
gradient information of NLP can not be obtained by CasADi.

57

Chapter 5. Modeling of thermal energy storage system

5.2.4 Energy demand modeling

In order to simulate thermal energy storage optimal control problem in this thesis, an en-
ergy demand prediction model is necessarily needed. Hence, the prediction of energy
demand requires a fine historical energy demand data, and it is also depends on the factors
like year’s season and day’s time.

One of the energy demand used in this thesis is a simple assumed changeable energy de-
mand profile, which is shown in Figure 5.3. It is easy to recognise that the expected hourly
energy demand, Qdemand, varies with the time period, which is 1500 kW at the first 12
hours and increases to 3500 kW for the rest of the day. Meanwhile the expected hourly
supply, Qsupply, always keeps constant at 2500 kW . Since this simple assumed energy
demand profile is not realistic in practice, one of the practical energy demand profile is
also modeled and implemented in this thesis.

Figure 5.3: Simple supply-demand mismatch profile used in TES system

In practice, the intermittent renewable energy sources, primarily wind and solar energy can
be used as the supplementary energy source besides conventional plants generated power
or its waste energy to meet the supply-demand mismatch caused by the peak demand re-
quirement. For example, solar energy is available during the daytime, thus solar power
generation also occurs at this period, and conventional energy plant doesn’t need to gener-
ate as much power as during the nighttime. Therefore, for energy demand consideration,
the net load, which is the subtraction of solar generation from the total electric demand,
drops during the midday. As aforementioned, it is caused by the large power input pro-
vided from solar resources. Thus the terminology ”duck curve” is originated from this
intermittent property of renewable energy, which is high available at the midsection and
low at the right and left. The California ”duck curve”, which is the estimated net load
values for 2020, is shown in Figure 5.4.

58

5.2 Process modeling

Figure 5.4: Estimated energy net load values for 2020 from CAISO Burnett,M. (2016)

In addition, the estimated energy net load is scaled down to study the requirement for
commercial energy source from market when solar generation is no longer available dur-
ing the nighttime. Scaling down of the net hourly demand data is fulfilled by implementing
min-max normalization, which is one of the most common ways to normalize data. The
normalization is done by converting the minimum vale of hourly demand data into 0, the
maximum value into 100, and every other value into a number between 0 and 100. Then
the normalized data set is re-scaled into the final data set, which has the range [1000,9000].
The formulation of min-max normalization is expressed as:

Min-max normalization:

Qd,n,i =
Qd,i −Qd,min

Qd,max −Qd,min
× 100 (5.37a)

Qd,rs,i = 1000 +Qd,n,i × 0.01× 8000 (5.37b)

Where, Qd,i is the i-th hourly demand data. Qd,min and Qd,max is minimum and maxi-
mum value of hourly demand data respectively. Qd,n,i is the i-th normalized data within
the range [0,100]. Qd,rs,i is the i-th re-scaled data within the range [1000,9000].

A hypothetical solar thermal energy supply profile is also assumed to directly heat the
TES unit which is strictly following the practical solar energy availability of a certain
sunny day in 2020. Thus, the expected energy demand based on California ”duck curve”
and expected direct solar heating profile is shown in Figure 5.5. Have to note that, under
this profile, direct solar heating is just a supplementary energy source and the main supply
energy is still coming from the industrial waste heat, where Qsupply = 2500 kW .

59

Chapter 5. Modeling of thermal energy storage system

Figure 5.5: Scaled hourly demand and hourly hypothetical solar supply

60

Chapter 6
Optimal control of TES system by
iNMPC

In this chapter, the optimal control objective of thermal energy storage system is fulfilled
by implementing standard NMPC without considering uncertainties and multistage NMPC
with considering uncertainties. The results are given in each case by figures and discus-
sions for comparing thermal energy system with and without storage tank, with and with-
out uncertainties.

6.1 Implementation details
The parameters will be used in the simulation of a simple thermal energy storage system
are given in the Table 6.1, which arranged by specific areas for the sake of the simplicity.

6.2 Standard NMPC on a simple TES system without di-
rect solar heating

In order to optimally control the simple thermal energy storage system with one supplier,
one consumer and one TES tank, a simple assumed supply-demand mismatch scenario is
adopted (Figure 6.1) and the concrete details are already discussed in Chapter 5.2.4 . In
this thesis, in order to achieve hourly control action of the finite-dimensional NLP prob-
lem within one certain day, prediction horizon is selected as NP = 24 h. Thus, NLP is
formulated by implementing 24 finite elements.

A standard NMPC is applied to adjust the the flow of qR2 as shown in Figure 5.2 which
is the demand-side stream flowing into the cold side of heat exchanger R2. Moreover,
supply-side inflow qL1, storage outlet flows qR1 and qL2 are kept constant and assigned

61

Chapter 6. Optimal control of TES system by iNMPC

Term Explanation Value Unit
Uhex Overall heat loss coefficient 0.5 [KW/m2K]
Ahex Heat transfer area 300 [m2]
Vhex HEX volume 0.5 [m3]
Utank Overall heat loss coefficient 5×10−4 [Kw/m2K]
Atank Surface area 100 [m2]
Vtank Storage tank volume 1000 [m3]
ρ Density 1000 [kg/m3]
cp Specific heat capacity 4.186 [kJ/kgK]
T1 Supply stream temperature 95 [◦C]
T2 Demand stream temperature 20 [◦C]
Tsur Surrounding temperature 15 [◦C]
Pm Peak heating source cost 10−3 ...
Pt Direct tank heating cost 5× 10−6 ...

Table 6.1: System model parameters

Figure 6.1: Simple supply-demand mismatch profile used in TES system

values as 50 L/s. The direct heating Qtank or Qsolar is neglected here. Therefore, within
inputs u just qR2, Qmarket and Qdump have to be manipulated. When energy demand ex-
ceeds energy supply, there will be a necessary need to purchase extra commercial energy
from the market. Hence, the optimal control objective of thermal energy storage system
is to minimize the use of expensive peak heating sources and further minimize the cost
caused by this expensive commercial energy.

62

6.2 Standard NMPC on a simple TES system without direct solar heating

6.2.1 Optimization problem

The objective function of this optimization purpose can be formulated as:

min
x,u

φ(x,u) = PmQmarket (6.1)

In order to avoid ill-conditioned singular control problems, the additional term can be
added to the original linear objective (6.1), which is a quadratic cost with a penalty param-
eter Pu � 1 and known as regularization term. The purpose of adding regularisation term
is to penalize the other two control inputs. Thus, the optimization problem becomes:

min
x,u

φ(x,u) = PmQmarket + Pu(q2
R2 +Q2

dump) (6.2)

In order to fulfill this optimization purpose, constraints which may relate to physical lim-
itations on certain variables, considerations of safety and some performances have to be
identified. The identification of system constraints is completed in these two categories,
equality and inequality constraint.

1. Equality constraints: These are hard constraints that the system has to strictly
satisfy for optimal and stable operation.

• System model: In this TES system, DAEs system model is en equality con-
straint, and this equality constraint can not be violated in the optimization
process. If it is violated, the stability of system will be broken and become
unstable. The fully-implicit form of system model can be expressed as:

F(ẋ,x, z,u,d) = 0 (6.3)

• Consumer demand satisfaction: In practice, the energy required at the demand-
side is not constant and the variations of demand depend on factors like time
and season. Hence, the energy demand profile has to be specified at the con-
crete time. So as to achieve the satisfaction for energy from the consumer, this
can be considered as the sum of enthalpy gain of demand stream across the
heat exchanger and additional peak hour energy from the market.

Qdemand = Qmarket + ρcpqR2(TR2 − T2) (6.4)

Where, Qmarket is the commercial energy purchased from the market to be
used as peak heating source.

• Supply side satisfaction: On the return stream after exiting the heat ex-
changer, it is necessary to dump heat in order to decrease the return tempera-
ture to a demanded level, which is denoted as Qdump. Therefore, the supply
side satisfaction can be expressed as:

Qsupply = Qdump + ρcpqL1(T1 − TL1) (6.5)

63

Chapter 6. Optimal control of TES system by iNMPC

• Variable limitations: As above-mentioned control input conditions, the rest
of them expect from qR2, Qmarket and Qdump are kept constant.

qL1

qR1

qL2

Qtank

 =

50
50
50
0

 (6.6)

Therefore, the equality constraint can be formulated as:

ceq =

F(ẋ,x, z,u,d)
Qdemand −Qmarket − ρcpqR2(TR2 − T2)
Qsupply −Qdump − ρcpqL1(T1 − TL1)

qL1 − 50
qR1 − 50
qL2 − 50
Qtank

= 0 (6.7)

2. Inequality constraints:

• State bounds: According to assumption 9 in section 5.1, the temperature of
TES tank is upper bounded as 100 ◦C in order to avoid boiling. Then it is
lower bounded as 30 ◦C so as to prevent bacterial growth inside the tank. The
rest of temperatures can also be bounded as following the above-mentioned
way, but the lower bounds of them are set as 0 ◦C.

0
0
0
0
30

 ≤

TL1

TR1

TL2

TR2

Ttank

 ≤

100
100
100
100
100

 (6.8)

• Input bounds: For volumetric flow rates, they have to be constrained within
their physical limits which are valve opening from 0% to 100%. And it is
necessary to avoid bounding flow rates so low in order to prevent fast fouling
of heat exchangers. Since manipulated variables have saturation limits, so it is
not expected to obtain optimality when inputs exceed their saturation. In this
thesis, the volumetric flow rate of qR2 is manipulated in the range from 0 to
50 L/s.

0 ≤ qR2 ≤ 50 (6.9)

By adjusting qR2, how much heat can be extracted from the TES tank can be
determined. Furthermore, Qmarket and Qdump are bound from 0 to positive
infinity. [

0
0

]
≤
[
Qmarket
Qdump

]
≤
[

+∞
+∞

]
(6.10)

64

6.2 Standard NMPC on a simple TES system without direct solar heating

Therefore, the inequality constraint can be formulated as:

0
0
0
0
30
0
0
0

≤

TL1

TR1

TL2

TR2

Ttank
qR2

Qmarlet
Qdump

≤

100
100
100
100
100
50

+∞
+∞

(6.11)

Finally, the dynamic optimization problem of this case can be described as minimizing the
objective function (6.1), which subject to the system dynamics represented by the model
equations (5.24) -(5.25) and the operating constraints (6.7) and (6.11). The complete for-
mulation of the dynamic optimization problem is given in Appendix C (8.2). In addition,
in order to study the effect of storage tank, thermal energy system without a storage tank
is also implemented in this thesis. The topology illustration, system description and opti-
mization problem of thermal energy system without storage tank are given in Appendix F
(8.2).

6.2.2 Results
In this thesis, the assumed expectation is to charge the TES tank during the first 12 hours
and completely discharge during the rest of the day. However, there is uncertainty about
qR2, Qdump and Qmarket to achieve this expected goal. Hence, the TES tank is initially
assumed under optimal steady state, and by solving the steady state optimization problem
the initial values of states and inputs can be obtained. The initial states obtained from
steady state optimization will be used as current states to trigger the standard NMPC pro-
cedure. After implementing standard NMPC, the optimal control problem (OPC) results
are given in Figure 6.2.

1. Period of Qdemand < Qsupply:

• It is the charging period for TES tank. Its temperature, Ttank rises until con-
sumer demand excesses the supply.

• As the presence of TES unit (TES tank), surplus thermal energy can be stored
in the storage tank when energy demand is low. However, TES storage capac-
ity decreases with more and more energy is stored which leads to reduction
of energy transfer from supply side to TES unit and the increase of surplus
heat dumping. The highest Qdump occurs at when TES unit is fully charged.
Although Qdump increases, it is still much lower than thermal energy grid
without storage tank, because most of the surplus energy transferred can be
stored in the tank and reallocated. The surplus heat dumping profile of thermal
energy system without energy storage tank is shown in Figure 6.3.

65

Chapter 6. Optimal control of TES system by iNMPC

Figure 6.2: OCP result of one supply one demand TES system

• qR2 is manipulated by standard NMPC to keep low value to fulfill and ensure
low consumer demand.

• The energy stored in TES tank is sufficient to meet energy demand in this pe-
riod. Thus, there is no need to purchase extra commercial energy from energy
market.

2. Period of Qdemand > Qsupply:

• Consumer demand suddenly increases at 12th hour, which leads to the dis-
charge of TES unit and storage tank starts to cool down. The discharging rate
of TES tank is higher than its charging rate. Qdump also decreases as the
cooling down of TES tank.

• Control input qR2 is manipulated by the standard NMPC controller, and its
variation is also the reflection of Qdemand variation. After the future sud-
den increase of Qdemand is detected by the controller, qR2 is manipulated to
increase to satisfy the increased result of Qdemand until the TES tank is com-
pletely nearly discharged. Before the TES tank is completely discharged, qR2

increases gradually with a step-wise mode, as the decreasing Ttank. When
TES tank is completely discharged, there is no more energy transferred from
heat exchanger hot side to cold side. Thus, qR2 is decreased but not equal to
0, since Qdemand is stil exist. In general, the purpose of qR2 is to satisfy peak
energy demand and try as much as possible to fill out the mismatch by using
stored TES energy to avoid purchasing commercial energy.

66

6.2 Standard NMPC on a simple TES system without direct solar heating

• The complete discharge of TES tank occurs at 19th hour when the Ttank de-
creases to an equilibrium temperature which equals to initial TES temperature
before charging.

• Although the complete discharge happens at 19th hour, stored TES energy is
no more able to satisfy consumer demand at 18th hour. This is the reason why
qR2 sharply decreased at this moment. Since, the remaining stored TES en-
ergy no longer can satisfy the consumer demand, standard NMPC takes action
to increase purchased commercial energy Qmarket to fill out the mismatch.
When TES tank is completely discharged, a step increase in Qmarket is taken
to match the mismatch caused by the consumed last remaining stored TES
energy.

• The TES system purchases commercial energy Qmarket only for the last 6
hours when the stored TES energy is not sufficient to fulfill the consumer de-
mand. The amount of purchasedQmarket is also lower than the thermal energy
system without storage tank. The result of the latter case is given in Figure 6.3.

Figure 6.3: OCP result of one supply one demand thermal energy system without storage tank

In order to study the effects on storage charging and discharging rate, the multiple standard
NMPC simulations with diverse storage sizes such as 500m3, 1000m3 and 1500m3 are
taken. The results of Ttank with three different Vtank are shown in Figure 6.4 and Figure
6.5.
By analysing the results shown in these two figures:

67

Chapter 6. Optimal control of TES system by iNMPC

Figure 6.4: Comparison of Ttank with diverse Vtank

Figure 6.5: Comparison of Qdump and Qmarket with diverse Vtank

1. TES storage volume, Vtank indeed has effect on tank temperature profile and dis-

68

6.3 Standard NMPC on a simple TES system with direct solar heating

charging rate.

2. Under sufficient supply, smaller Vtank results in higher Ttank and faster charging
rate.

3. Under peak energy demand, smaller Vtank also results in faster discharging rate.

4. Larger Vtank provides larger storage capacity and thus less heat is dumped during
the low demand period. Furthermore, since the discharging rate of larger Vtank is
slower compared with smaller Vtank, the TES can transfer heat to the consumer for
longer period. Thus the period of commercial energy demanding is short for large
Vtank.

5. Since the design of thermal energy storage tank is not the topic of this thesis, there
is no consideration for comparison of most economic case under different tank vol-
umes with tank construction cost. However, it can be expected that the tank cost will
play a significant role under large storage volume, when the design optimization is
performed.

6.3 Standard NMPC on a simple TES system with direct
solar heating

Since the cost of solar energy is quite cheap and the enforcing of renewable energy is
the trend for protecting ecosystem, in this case solar energy is used as a complementary
heating source for TES system during the available period to reduce the requirement of
expensive commercial energy. In this case the direct solar heating source is denoted as
Qtank and it can also be interchangeably expressed as Qsolar, since the Qtank is coming
from direct solar heating. The energy demand profile follows the re-scaled California
“duck curve” which is shown in Figure 5.5.

6.3.1 Optimization problem
Therefore, the cost function which has to be minimized in this case has an additional term
of direct solar heating cost PtQtank.

min
x,u

φ(x,u) = PmQmarket + PtQtank (6.12)

The standard NMPC is enforced to control not only qR2, Qmarket and Qdump, but also
Qtank. Thus, the control input of this case is u = [qR2, Qmarket, Qdump, Qtank]. Since,
there is an additional degree of freedom, the input constraints have been changed, which
is shown in equation (6.13). The state constraints are still identical with which used in the
case one in equation (6.8).

0
0
0
0

 ≤

qR2

Qmarket
Qdump
Qtank

 ≤

50
+∞
+∞

Qsolar,k

 (6.13)

69

Chapter 6. Optimal control of TES system by iNMPC

Where, Qsolar,k is the predicted hypothetical solar energy supply given in Figure 5.5. The
entire form of dynamic optimization problem of this case is given in Appendix D (8.2).
The initial values of states are obtained by executing steady-state optimization problem,
and these initial values are used as the starting points of standard NMPC. After imple-
menting simulation of this simple case with direct solar heating, the following results are
obtained as shown below.

Figure 6.6: OCP result of one supply one demand TES system with direct solar heating

6.3.2 Results

By analysing the result given in Figure 6.6, it is easy to know that the result is varying with
respect to the supplied direct solar source availability:

1. Ttank is constant during the first 7 hours and the solar source availability is quite
low in this period. Thus, a gap arises between the total energy demand and the total
energy supplied into the TES tank. In order to cater this gap, commercial energy is
purchased from the energy market at the beginning.

2. Ttank starts to rise rapidly, when the hourly demand decreases and it is no more
high as which during the nighttime and solar source availability increases with the
daytime. Since, the cost of solar energy is much lower than that of commercial

70

6.4 Multistage NMPC on a simple TES system with uncertainty

energy (Pt � Pm), TES tank stores solar energy which is then used for the night-
time’s peak-heating demand. Moreover, the total energy supply has exceeded the
total energy demand, so there is no need to purchase commercial market energy.

3. Ttank reaches its maximum value at 17th hour. Then TES tank starts to discharge
to fulfill the increasing demand requirement. When the peak demand period comes,
commercial energy is purchased again to meet the demand. However, the total re-
quirement of commercial energy after 20th hour is less than that before the daytime.

4. Qdump = 0 at the beginning, since the total energy supply cannot fulfill the total
energy demand. However, it starts to increase along the daytime to ensure much
cheaper solar energy can be stored as much as possible in TES tank. Because the
surplus energy supply Qsupply is set as constant and supplied into the tank during
the entire day. Then it decreases during the night peak demand period.

Since standard NMPC recomputes dynamic optimization problem at every time step along
the prediction horizon NP = 24h, the future peak demand period can be anticipated by
controller and take necessary actions to fulfill the upcoming peak demand.

6.4 Multistage NMPC on a simple TES system with un-
certainty

In practice, the execution of standard NMPC does not take into consideration the uncer-
tainty at the optimization level. For example, the uncertainty in the heat supply and de-
mand profile, which may be caused by unperdicted variations in each of the profiles, will
lead to problems like plant–model mismatch, operating or safety constraints violation and
infeasible optimization problem. In this thesis and especially in reality, the uncertainty in
heat supply and demand profile with expected corresponding profiles may cause problems
like consumer demand mismatch, and further lead to extra energy purchasing or unneces-
sary energy wasting. Moreover, it also can cause unstable operation and even safety issues.

In this thesis, the uncertainty of TES system may be caused by:

1. Inaccurate modeling or approximated modeling, which leads to plant-model mis-
match.

2. Unknown disturbances which interfere supply and demand temperature T1 and T2,
ambient temperature Tsur, and also supply stream flow rate qL1.

3. The actual supply-demand profile is deviated from the profile implemented in the
NMPC control process.

4. The changes in design parameters which for example caused by the fouling of heat
exchanger leads to the change in overall heat transfer coefficient.

71

Chapter 6. Optimal control of TES system by iNMPC

6.4.1 Modeling of the uncertainties
Therefore, in this case a scenario-based multistage NMPC which uses a discrete sce-
nario tree to formulate the future propagation of the uncertainty in the prediction horizon
NP = 24 h is implemented. Before implementation it is necessary to model the uncer-
tainties to set up the scenario tree, which can represent how the uncertainty in this case
influences the propagation of states over the prediction horizon and the optimization prob-
lem is solved over the entire scenario tree.

As discussed in Chapter 5.2, the uncertainty in this case is considered in the form of dis-
turbances in supply inlet temperature T1, demand inlet temperature T2 and ambient tem-
perature Tsur. Before implementing multistage NMPC, it is important to mention that all
the states of the TES system can be exactly measured. In this case, only the uncertainty in
the supply side and demand side inlet temperatures are taken into account, (p = [T1, T2]),
since the ambient temperature can be measured. Let P denote the uncertainty set to which
the uncertain parameter is known to belong. In this case, the uncertainty in Ti ∈ Pi to
be considered equally distributed within T1 ∈ [90, 100] and T2 ∈ [15, 25]. Therefore,
the unsertainty set P = P1 × P2 is given as box uncertainty set. Then M = 9 discrete
uncertainty realizations are considered that corresponds to the combination of maximum,
minimum and nominal values of supply and demand inlet temperature to cover the com-
plete uncertainty space. The uncertain parameter realization is given in Table 6.2.

Nominal value Min nominal max [◦C]
T1 95 90 95 100 [◦C]
T2 20 15 20 25 [◦C]

Table 6.2: Discrete realizations of p used in the simulation

Moreover, the range of each actual inlet temperature is identical with corresponding un-
certainty set range Pi. Thus, it can be expressed as:

T1, actual ∈ [90, 100] T2, actual ∈ [15, 25] (6.14)

The dynamic scenario selection is done by implementing conventional BOX method which
plotting the two parameters against each other and it is built as scenpara() in MATLAB
and automatically returns the scenarios. The illustration of uncertainty space is shown in
Figure 6.7. Scenario tree, which has S = MNR = 9 total scenarios, with NR = 1 robust
horizon and M = 9 models is illustrated in Figure 6.8.

6.4.2 Optimization problem
The optimization problem solved for ith scenario and jth time step can then be stated as:

min
xi,j,ui,j

φ(x,u) = Pm(Qmarket)i,j + Pt(Qtank)i,j + Pu
(
(qL2)2

i,j + (qR2)2
i,j

)
(6.15)

72

6.4 Multistage NMPC on a simple TES system with uncertainty

Figure 6.7: Uncertainty subspace and the possible M models for the scenario tree denoted as ×

Figure 6.8: Scenario tree of this case

Where,

• ith scenario: i ∈ {1, ...,M}, jth time step: j ∈ {0, ..., N − 1}.

• Dynamic system model and state boundaries are identical with a simple TES system

73

Chapter 6. Optimal control of TES system by iNMPC

without direct solar heating .

• Control input is u = [qL2, qR2, Qtank, Qmarket] and bounds are given in below.
0
0
0
0

 ≤

qL2

qR2

Qtank
Qmarket

 ≤

50
50
10

+∞

 (6.16)

Where, direct solar heating sourceQtank is set as a certain small number, in this case
is 10kW , to ensure there is a possibility to purchase commercial energy Qmarket
since the main core of this thesis is to minimize its cost, when the energy stored in
the TES unit is not sufficient to meet the peak demand.

• Pu(q2
L2 + q2

R2) is the additional regularization term added to the linear objective
PmQMarket+PtQtank to avoid ill-conditioned singular control problems. Pu � 1
is the quadratic cost which penalizes the two other sets of control variables.

• In order to avoid the the resulting large optimization problem, robust horizon is
taken in this case and which is set as NR = 1 and NR � NP . Thus, this problem
has total S = MNR = 91 discrete scenarios in the scenario tree, which is already
given in Figure 6.8.

Note that each node in the scenario tree contains all the states and control inputs in the
model x = [TL1, TR1, TL2, TR2, Ttank] and u = [qL2, qR2, Qtank, Qmarket]. The com-
plete form of optimal control problem of scenario-based multistage NMPC is given in
Appendix E (8.2).

In order to compare the performance of standard NMPC and multistage NMPC when tak-
ing into account plant-model mismatch, the actual values of T1 and T2 are considered as
T1,actual = 99◦C and T2,actual = 18◦C for the plant, while the NLP optimizer or con-
troller is still programmed for expected mean temperatures T1 = 95◦C and T2 = 20◦C.

6.4.3 Results
The simulation result of a simple TES system with consideration of uncertainties, p =
[T1, T2] is illustrated in Figure 6.9. Note that, the supply-demand profile used in this case
is the simple assumed supply-demand profile, which is given in Figure 5.3.

By analysing the result, it is easy to know that:

1. Period of Qdemand < Qsupply:

• This period is the charging period, the surplus energy from the industrial waste
heat is stored in the storage tank until 12h.

• Since energy stored in the storage tank is sufficient to meet the current low
demand, control inputs qL2 and qR2 are manipulated within their operational
bounds [0, 50l/s] to ensure energy can successfully transferred to the demand
side.

74

6.4 Multistage NMPC on a simple TES system with uncertainty

Figure 6.9: OCP result of one supply one demand TES system with uncertainty

• Therefore, there is no need to purchase extra commercial energyQmarket from
energy market.

2. Period of Qdemand > Qsupply:

• This period is the discharging period, the energy stored in the storage tank have
to be extracted to meet the suddenly increased energy demand at 12h.

• The sudden increase of Qdemand can be detected by the controller, then in
order to satisfy this peak demand control input qL2 is fully opened to ensure
energy stored in the storage tank can be promptly transferred to the demand
side.

• Before the energy stored in the storage tank is completely discharged, extra
commercial energy Qdemand is purchased from the energy market to fill out
the supply-demand mismatch since available Qtank is quite low and controller
can anticipate the total energy stored in the TES tank is not sufficient to meet
the demand.

75

Chapter 6. Optimal control of TES system by iNMPC

6.4.4 Standard NMPC on a simple TES system with uncertainty
In order to compare the performance of scenario-based multistage NMPC with standard
NMPC with the consideration of uncertainties, the optimal control problem solved by mul-
tistage NMPC is completed again by using standard NMPC.

As the presence of uncertainties along the whole prediction horizon, NP = 24h and if the
disturbances are very large, the state constraint limit may be violated for all feasible con-
trol inputs especially for Ttank, and no feasible point may exist and the standard NMPC
would easily run into infeasible problems. This is an unacceptable situation. In order
to avoid this phenomena, the state constraints (bounds) have to be soften by using slack
variables (Foss,B. and Heirung,T.A.N.(2013)). After implementing slack variables, the
optimization problem solved by standard NMPC becomes:

min
x,u

φ(x,u) = PmQmarket + PtQtank + Pu
(
q2
L2 + q2

R2

)
+ ρ>ε (6.17)

Where, ε is the positive slack variable, ρ is the tuning parameter (penalty) and the exact
value of the penalty depends on the problem, but in general it selected as very large. Thus
in this sub-case, it is assigned as ρ = 106. The complete form of optimal control problem
of this sub-case is given in Appendix F (8.2).

ε ∈ Rnx ≥ 0, ρ ∈ Rnx ≥ 0 (6.18)

The result comparison of using standard NMPC and multistage NMPC is given in next
chapter.

76

Chapter 7
Results and discussion

In this thesis, the infinite-dimensional problems are converted into finite-dimensional NLP
problems by implementing direct collocation method where the third-order Radau collo-
cation (K = 3) is applied to approximate the state equations. The states, control inputs
and the uncertain parameters (which is only considered in case three) are all discretized
into finite elements. However, these discretized control inputs and uncertain parameters
are piece-wise constant in each finite element. The detailed information of the collocation-
based discretization method has been discussed in Chapter 3 already, for more informa-
tion Chapter 10 of Biegler,L.T. (2010) is recommend.

In this thesis, prediction horizon is chosen as NP = 24h. The finite-dimensional NLP
problem is formulated by adopting 24 finite elements. The purpose is to take the control
action every one hour within one single day T = 24h. In addition, for multistage NMPC,
which takes into account uncertainty, the evolution of uncertain parameters is also every
one hour. The scenario of uncertainty is selected by using the conventional BOX scenario
selection method, which is based on three different discrete realizations of the uncertainty
for each uncertain parameter of two uncertainties for every stage of the multistage NMPC
problem. In order to reduce the computational expense, robust horizon of NR = 1 is as-
sumed, which finally gives 9 total scenarios in the multistage NMPC problem.

In order to study the effect of thermal energy storage tank in the simple thermal energy
storage system, standard NMPC is implemented to compare the effect caused by TES tank,
where in this two cases with and without storage tank no uncertainty is considered. All
parameters and supply demand profile are identical in this two cases except from the sys-
tem itself and its corresponding dynamic model. Supply demand profile used in this two
cases is a common assumed mismatched profile. TES system with direct solar heating is
also considered to make the case closer to the reality condition, since the solar supply is
intermittent. The demand profile used in this case is the re-scaled California ”duck curve”
from CAISO (Burnett,M. (2016)) with assumed solar energy supply based on real solar
availability tendency of a random day of year 2020. After taking into account uncertainty,
the performance of standard NMPC and multistage NMPC is compared by using actual

77

Chapter 7. Results and discussion

values of uncertainties, T1 and T2 in the the plant simulation, for both the standard and
multistage NMPC methods.

The application of iNMPC strategies are only considered for dynamic operation of TES
and not for edge-cases such as TES is empty at the beginning. Moreover, initial condi-
tions in this thesis are not given directly. Thus, the steady-state optimization problems are
solved to find out the initial conditions for each case.

The NLP problem in this thesis is modeled by using MATLAB (version R2019b). IPOPT
is used as the NLP solver, which uses interior-point algorithms to solve the NLP problems.

7.1 Storage vs. No storage

Since the case with TES storage tank is one of the main studied case of this thesis, the
specific result discussions have already been discussed in Chapter 6.2. Before comparing
the results, it is necessary to introduce the system and the system’s model of thermal en-
ergy system without TES tank. These necessary information is given and able to find in
Appendix G (8.2). The case without storage tank uses a single heat exchanger to directly
couple the supply and demand plant, the illustration which is given in Figure 8.1. The
results of a standard NMPC formulation applied to both cases—with and without storage
tank under the same supply-demand profile (Figure 7.1) are shown in Figure 7.2. In addi-
tion, there is no plant–model mismatch is considered in these two cases.

Figure 7.1: Simple supply-demand mismatch profile used in TES system

78

7.1 Storage vs. No storage

Figure 7.2: Results of the standard NMPC applied to the cases with and without TES tank

In the case with no storage:

• When the energy demand is lower than the energy supply, the surplus heat is dumped
and when the energy demand is higher than the supply, the extra heat is required to
be purchased for peak-heating subject to the operating constraints.

• The amount of dumped heat and purchased commercial energy is equal to the dif-
ference between supply and demand profile, which is 1000kW .

• Since the supply energy rate qL1 is set as constant, (qL1 = 50 [l/s]) and overall heat
transfer rate through the heat exchanger is determined by qL1, the rate of demand
side qR1 is impossible to exceed qL1. Until 12h, qR1 is constant due to the demand
can be easily satisfied by supply. After 12h, qR1 increased rapidly to take the action
to fulfill demand requirement.

Comparison:

• The application of TES tank significantly decreases the amount of dumped heat
when the demand is low. These surplus heat is used to charge up the TES tank,
which is then used for peak-demand period. This is apparent from tank temperature
variation result Ttank as shown in Figure 7.2, Ttank rises during off-peak periods
and falls when the demand exceeds the supply.

79

Chapter 7. Results and discussion

• Only after the energy charged inside the TES tank is completely discharged, the
expensive peak-heating commercial market energy will be purchased to use. Thus,
the dependence on commercial market energy is much lower for the simple thermal
energy system with storage tank.

• Overall, TES tank leads to significant reduction in the dumped heat and peak-heating
requirements.

Therefore, applying TES storage tank is a good method for meeting peak-demand, since
it has the storing capability to significantly reduce Qdump and Qmarket. However, the
maintenance and the construction of TES tank may cause partially cost.

7.2 Without direct solar heating vs. with direct solar heat-
ing

Since the increasing interest and application requirements of renewable energy, and also
in order to study the case relevant to real energy supply condition in one day period, direct
solar heating is added to the case with TES storage tank under standard NMPC control
algorithm. The only two differences between these two cases are TES tank is directly
heated by solar energy and the energy demand and assumed solar supply profile, which
is already given in Chapter 5.2.4 in Figure 5.5. Note that, the surplus energy supply,
Qsupply, is still applied in this case with direct solar heating and which is also constant
(Qsupply = 2000[kW]) in the 24 hours. The results of these two cases are shown in the
following Figure 7.3.

Figure 7.3: Results of the standard NMPC applied to the cases with and without thermal direct solar
heating to TES tank

The specific discussions of two case’s results have been already discussed in Chapter 6.2

80

7.3 Multistage NMPC vs. standard NMPC

and Chapter 6.3. Thus, the remainder is to make comparison between the results of these
two cases.

Comparison:

• As the presence of direct solar heating energy source Qtank or Qsolar, the require-
ment of Qmarket follows the real availability of the solar energy. Qmarket is highly
needed at the nighttime when solar energy is unavailable. Therefore, the result of
power variation is the reflection of intermittent property of solar energy.

• In addition, the required amount of Qmarket is much higher than that is without
direct solar heating, which makes sense since the re-scaled California duck curve is
still much higher than the assumed demand in Figure 7.1.

• At the nighttime, the demand is higher than the total supply, thus Qmarket is pur-
chased to meet the demand requirement. The result of this part is the same as that of
case without direct solar heating after 20h. When the day is coming, Ttank increases
rapidly where its gradient increases with the availability of solar energy. Before the
night is coming again, TES tank stores solar energy so much as possible for the fu-
ture peak-heating use. This reflects that with the solar energy supply, the variation
of Ttank is closer to the reality.

• It is clear to recognise from the upper right result of Ttank, the stored solar energy in
TES tank is still available at 24h and it can be expected that the solar energy stored
in TES tank today can supply energy to the demand side for the nighttime of next
day. Thus, stored solar energy is able to reduce the requirement of Qmarket before
tomorrow’s daytime in practice.

• The variation of Qdump is following the intermittent property of solar energy and it
can also be seen as the direct result of Ttank variation. Since the total energy supply
exceeds energy demand during the daytime, TES tank needs to dump some amount
of heat to satisfy the operation constraints.

7.3 Multistage NMPC vs. standard NMPC
The results of the standard NMPC and multistage NMPC applied to the TES system are
compared in this section. In both controllers, the TES tank temperature , Ttank, are lim-
ited below 70◦C. The results of standard NMPC without additional slack variables and
multistage NMPC are shown in Figure 7.4.

Comparison:

• Much more commercial energy Qmarket is purchased in multistage NMPC. Thus,
it leads to higher peak-heating cost than the standard NMPC. This phenomena can
be seen as robustness cost required by multistage NMPC. For standard NMPC, the

81

Chapter 7. Results and discussion

Figure 7.4: Results of the standard NMPC and multistage NMPC with consideration of uncertainties

surplus heat stored in the TES tank is available for meeting the peak demand due to
the actual supply is higher than the expected supply. Therefore, there is no need to
purchase commercial energy from the market in standard NMPC.

• The redefined upper constraint of Ttank is not violated in multistage NMPC. This
result can be seen as the proof of high conservativeness of multistage NMPC, which
respects the constraint of tank temperature to keep it lower than 70◦C. By contrast,
it is violated in standard NMPC closely during 10h to 15h, since the violation is to
ensure the economic objective of the system.

However, if the upper bound of Ttank is chosen as lower than 65.72◦C, the optimal control
problem solved by using standard NMPC would not converge to a feasible solution. Thus,
in order to avoid this phenomena, slack variables are introduced to soften the constraints
and the concept is already discussed in Chapter 6.4.4. The result of introducing slack
variables for optimization problem of the standard NMPC is shown in Figure 7.5. Note
that, in order to avoid the conflict arises in control inputs optimal control procedure, one
of the manipulated flow rates is set as constant.

According to the demand satisfaction constraint which is given in equation (7.1), it is
apparent to know that, the meeting of demand satisfaction constraint is directly fulfilled
by optimal control of qR2. In addition, the control action of qL2 also effects the heat
transfer from hot side of HEX-2 to the cold and further effect TR2. Thus, the strict control
of qL2 may let demand satisfaction constraint under two control regimes and finally leads

82

7.3 Multistage NMPC vs. standard NMPC

Figure 7.5: Results of the standard NMPC including slack variables with consideration of uncer-
tainties

Figure 7.6: Results of the standard NMPC including slack variables with consideration of uncer-
tainties (qL2, qR2 are inequality constraint)

to the conflicts between qL2 and qR2 which is shown in Figure 7.6. Therefore, in order to
avoid this phenomena, only qR2 is set as inequality constraint and this decision is made

83

Chapter 7. Results and discussion

after taking various trials in variable bounds and parameters.

Qdemand = Qmarket + ρcpqR2(TR2 − T2) (7.1)

Although the robustness provided by multistage NMPC results a much higher peak heat-
ing cost, it is still the better choice than standard NMPC, which is not robust and violates
constraint during a period of operation. However, if there are no considerations of uncer-
tainties and operational constraint in the system, the standard NMPC would be a better
choice to control a simple TES system.

84

Chapter 8
Conclusion

8.1 Conclusion

In this thesis, the application of standard NMPC and scenario-based multistage NMPC
strategy was investigated for a simple thermal energy storage system with a hot water TES
tank. The case studies performed a system with one supplier, one consumer of surplus heat
and the heat is stored and exchanged through the TES tank. The optimal control problem
was formulated for three main and one minor cases and solved by using direct collocation
method in CasADi framework within MATLAB programming environment. The nonlin-
ear dynamic model in this thesis, which was formulated as a semi-explicit DAE system,
was derived for heat exchanger outlet temperatures and TES tank outlet temperatures by
applying energy balances over the different system components.

By comparing cases with and without TES tank, it is apparent to know that as the presence
of a TES tank, the system becomes much more cost-effective. The size of a TES tank also
effects the performance and the cost of the thermal energy storage system which directly
reflected by discharge rate, energy storage capability and stored energy temperature Ttank.
In practice, the intermittent renewable energy like solar thermal energy is available dur-
ing some period and vise versa. Thus, adding additional eco-friendly and cost-effective
energy source to the thermal energy storage system would considerably reduce the need
for commercial energy when have to meet the peak demand. Uncertainty is the challenge
to accurately control the TES system. Therefore, the uncertainties arise in the supply and
demand side temperatures were effectively handled by using scenario-based multistage
NMPC controller, which provides robustness and the better choice for rejecting distur-
bances than the standard NMPC. Therefore, the simulations conducted in this thesis were
to study the effect of utilising TES tank, the performance of system with direct solar heat-
ing and the different NMPC controller performances toward the presence of uncertainties.
The result of each case was demonstrated the above-mentioned conclusions were correct.

Consequently, the optimal control objectives to minimize the cost caused by extra commer-
cial energy for peak-heating of a simple thermal energy storage system with one supplier,

85

Chapter 8. Conclusion

one consumer and one TES tank with and without the presence of uncertainty by using
iNMPC were successfully achieved in this thesis.

8.2 Further work
For scenario-based multistage NMPC, the improvements are considered in following sec-
tions:

1. The selection of scenarios have the potential to be improved. In this thesis, the selec-
tion of scenarios were done by implementing basic and conventional BOX method,
which ignores the correlations between uncertain parameters. In the future work,
more advanced scenario selection method, such as data-driven scenario selection
can be chosen to implement.

2. Other uncertain parameters could also be the choice to develop robust NMPC. The
system model could be reformulated to include supply and demand and further con-
sidering these two parameters as uncertainties.

3. The problem solved by multistage NMPC increases exponentially along the propa-
gation of scenario tree and it increases the challenge of solving the control problem
online. The resultant delayed availability of control actions might contribute to sys-
tem instability or sub-optimal control performance according to R. Findeisen and
F.Allgöwer.(2004). Therefore, in order to solve this nontrivial delays of multistage
NMPC, advanced-step multistage NMPC could be proposed.

86

Bibliography

Biegler L.T.(2010), . Nonlinear programming: Concepts, algorithms, and applications to
chemical processes , https://doi.org/10.1137/1.9780898719383.

Biegler,L.T. (2010), . Nonlinear programming: Concepts, algorithms, and applications to
chemical processes. SIAM: Philadelphia, PA, USA 10.

Burnett,M. (2016), . Energy storage and the california ”duck curve”.
Submitted as coursework for PH240, Stanford University, Fall 2015 ,
http://large.stanford.edu/courses/2015/ph240/burnett2/.

Cutler,C.R. and Ramaker,B.L. (1980), . Dynamic matrix control - a computer control
algorithm. Joint Automatic Control Conference Preprints Paper WP5-B, San Francisco.

D.Q.Mayne and J.B.Rawlings et al. (2000), . Constrained model predictive control:
Stability and optimality. Automatica 36, 789–814, https://doi.org/10.1016/S0005–
1098(99)00214–9.

Edgar TF et al. (2001), . Optimization of chemical processes. SIAM: Philadelphia, PA,
USA , New York, NY: McGraw–Hill.

Grimm,G. et al. (2004), . Examples when nonlinear model predictive control is nonrobust.
Automatica 40, 1729–1738, https://doi.org/10.1016/j.automatica.2004.04.014.

J.H.Lee and Z.H.Yu (1997), . Worst-case formulations of model predictive
control for systems with bounded parameters. Automatica 33, 763– 781,
https://doi.org/10.1016/S0005–1098(96)00255–5.

Lucia,S. and Engell,S. (2013), . Robust nonlinear model predictive control of a
batch bioreactor using multi-stage stochastic programming. IEEE 33, 763– 781,
10.23919/ECC.2013.6669521,.

Lucia,S. and Engell,S. (2015), . Potential and limitations of multi-stage
nonlinear model predictive control. IFAC-PapersOnLine 48, 1015–1020 ,
https://doi.org/10.1016/j.ifacol.2015.09.101,.

87

Richalet,J. et al. (1978), . Model predictive heuristic control. Application to industrial
processes. Automatica 14, 413–428.

Sébastien Gros (2016), . Numerical optimal control lecture 6: Direct collocation, NTNU
PhD course. lecture slide .

A. Wächter and L.T.Biegler (2006), . On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical programming
106, 25–57.

Bergman,T.L et al.(2011), . Heat exchangers, in: Fundamentals of Heat and Mass Transfer,
7th Edition.

Cabeza, L.F. (2015), . Introduction to thermal energy storage (TES) systems,
in: Advances in Thermal Energy Storage Systems Methods and Applications,
https://doi.org/10.1016/C2013-0-16453-7.

Campo,P.J.and Morari,M.(1987), . Robust model predictive control. In Proceedings of the
1987 American Control Conference, Minneapolis, MN, USA , 1021–1026.

Chen J. (1987), . Comments on improvements on a replacement for the logarithmic
mean. Chemical Engineering Science 42, 2488–2489, https://doi.org/10.1016/0009–
2509(87)80128–8.

Dinçer, I. and Rosen, M.A.(2010), . Energy storage systems. Thermal energy storage.
System and applications, 2nd edition .

Dinçer, I.(1997)), . Heat transfer in food cooling applications. Taylor Francis, Washington,
DC .

Ding,N. (2019), . Hybrid modeling with machine learning and first principles models, in:
TKP4580 - Specialization Project, Process Systems Engineering. NTNU.

D.Q. Mayne and E.C. Kerrigan (2007), . Tube-based robust nonlinear model predictive
control. In Proc. of the 7th IFAC Symposium on Nonlinear Control Systems , 110–115.

D.Q. Mayne and M.M. Seron et al. (2005), . Robust model predictive control of con-
strained linear systems with bounded disturbances. Automatica 41, 219–224.

Foss,B. and Heirung,T.A.N.(2013), . Optimization, in: Merging optimization and control.
Lecture Notes.

Gil,A. and Medrano,M. et al.(2011), . State of the art on high temperature thermal energy
storage for power generation. part 1 – concepts, materials and modellization. Renewable
and Sustainable Energy Reviews .

J. Hendler et al. (2010), . Foundations of artificial intelligence, handbook of knowledge
representation .

J.B.Rawlings et al. (2018), . Getting started with model predictive control, in: Model
Predictive Control: Theory, Computation, and Design 2nd Edition.

88

Joel A.E.Andersson et al.(2018), . Casadi – a software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation 11, 1015–1020 ,
10.1007/s12532–018–0139–4,.

Johannes Jäschke (2019), . Dynamic optimization for mpc, orthogonal collocation on
finite elements, in: TKP4555 Process system engineering, specialization course,MPC.

J.T.Betts (2010), . Practical methods for optimal control and estimation using nonlinear
programming 19, Siam,https://doi.org/10.1137/1.9780898718577.

M. Orosz and R. Dickes (2017), . Solar thermal powered organic rankine cycles,
in: Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications,
https://doi.org/10.1016/C2014-0-04239-6.

Maurice I. Stewart, Jr. (2014), . Heat transfer theory, in: Surface Produc-
tion Operations, Volume 2: Design of Gas-Handling Systems and Facilities,
https://doi.org/10.1016/C2009-0-64501-3.

Mehling, H. and Cabeza, L.F. (2008), . Solid-liquid phase change materials, in: Heat
and cold storage with PCM, An up to date introduction into basics and applications,
https://doi.org/10.1007/978-3-540-68557-9.

Moritz Diehl and Sébastien Gros (2017), . Numerical simulation, orthogonal collocation,
in: Numerical Optimal Control (preliminary and incomplete draft).

Nocedal,J. and Wright,S.J.(2006), . Theory of constrained optimization, in: Numerical
optimization Second Edition.

O.von Stryk (1992), . Numerical solution of optimal control problems by direct colloca-
tion, in: Optimal Control. Calculus of Variations, Optimal Control Theory and Numeri-
cal Methods.

Peng Zhang (2010), . Advanced industrial control technology. Elsevier Inc .

Pontryagin VG et al. (1962), . The mathematical theory of optimal processes .

R. Findeisen and F.Allgöwer.(2004), . Computational delay in nonlinear model predictive
control. IFAC Proc 37, 427–432.

S. Furbo (2015), . Using water for heat storage in thermal energy storage (TES) sys-
tems, in: Advances in Thermal Energy Storage Systems Methods and Applications,
https://doi.org/10.1533/9781782420965.1.31.

Sarbu, I. and Sebarchievici, C. (2018), . A comprehensive review of thermal energy stor-
age. Sustainability 10, https://doi.org/10.3390/su10010191.

Seborg D.E.et al.(2011), . Model predictive control, in: Process Dynamics and Control.
3rd Edition.

Underwood, A.J.V (1970), . Simple formula to calculate mean temperature difference.
Chemical Engineering 77.

89

W.R.Paterson (1984), . A replacement for the logarithmic mean. Chemical Engineering
Science 39, 1635–1636.

Zavala-Rı́o et al.(2005), . An analytical study of the logarithmic mean temperature differ-
ence. Revista Mexicana de Ingenier´ıa Qu´ımica 4, 201–212.

Zhou Joyce Yu and Biegler,L.T (2019), . Advanced-step multistage nonlinear model pre-
dictive control: Robustness and stability. Journal of Process Control 84, 192–206.
https://doi.org/10.1016/j.jprocont.2019.10.006.

90

Appendix A

ODEs System Model:

dTL1

dt
=

1

Vhex

{
qL1(T1 − TL1)− UhexAhex

ρcp
∆Tm,1

}
(8.1a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex
ρcp

∆Tm,1

}
(8.1b)

dTL2

dt
=

1

Vhex

{
qL2(Ttank − TL2)− UhexAhex

ρcp
∆Tm,2

}
(8.1c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex
ρcp

∆Tm,2

}
(8.1d)

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Qtank −Qloss
ρcp

}
(8.1e)

Where,

Qloss = (UA)tank(Ttank − Tsurr) (8.2a)

∆Tm,1 =

[
1

2

(
(T1 − TR1)n + (TL1 − Ttank)n

)] 1
n

, n =
1

3
(8.2b)

∆Tm,2 =

[
1

2

(
(Ttank − TR2)n + (TL2 − T2)n

)] 1
n

, n =
1

3
(8.2c)

Appendix B

91

DAEs System Model:
dTL1

dt
=

1

Vhex

{
qL1(T1 − TL1)− UhexAhex

ρcp
∆Tm,1

}
(8.3a)

dTR1

dt
=

1

Vhex

{
qR1(Ttank − TR1) +

UhexAhex
ρcp

∆Tm,1

}
(8.3b)

dTL2

dt
=

1

Vhex

{
qL2(Ttank − TL2)− UhexAhex

ρcp
∆Tm,2

}
(8.3c)

dTR2

dt
=

1

Vhex

{
qR2(T2 − TR2) +

UhexAhex
ρcp

∆Tm,2

}
(8.3d)

dTtank
dt

=
1

Vtank

{
qR1(TR1 − Ttank) + qL2(TL2 − Ttank) +

Qtank −Qloss
ρcp

}
(8.3e)

0 = a
1
n − (T1 − TR1) (8.4a)

0 = b
1
n − (TL1 − Ttank) (8.4b)

0 = c
1
n − (Ttank − TR2) (8.4c)

0 = d
1
n − (TL2 − T2) (8.4d)

Where,

Qloss = (UA)tank(Ttank − Tsurr) (8.5a)

∆Tnm,1 =
1

2
(a+ b), n =

1

3
(8.5b)

∆Tnm,2 =
1

2
(c+ d), n =

1

3
(8.5c)

Appendix C

Dynamic optimization problem for the TES system without direct solar heating:

min
x,u

φ(x,u) = PmQmarket (8.6a)

subject to:

x0 = xinit (8.6b)
DAEs system model (8.6c)

Operating constraints—states (8.6d)
Operating constraints—inputs (8.6e)

Demand satisfaction constraint (8.6f)
Supply satisfaction constraint (8.6g)

92

Where,

Operating constraints—states:
0
0
0
0
30

 ≤

TL1

TR1

TL2

TR2

Ttank

 ≤

100
100
100
100
100

 (8.7)

Operating constraints—inputs: 0
0
0

 ≤
 qR2

Qmarket
Qdump

 ≤
 50

+∞
+∞

 (8.8)

Demand satisfaction constraint:

Qdemand −Qmarket − ρcpqR2(TR2 − T2) = 0 (8.9)

Supply satisfaction constraint:

Qsupply −Qdump − ρcpqL1(T1 − TL1) = 0 (8.10)

Appendix D

Dynamic optimization problem for the TES system with direct solar heating:

min
x,u

φ(x,u) = PmQmarket + PtQtank (8.11a)

subject to:

x0 = xinit (8.11b)
DAEs system model (8.11c)

Operating constraints—states (8.11d)
Operating constraints—inputs (8.11e)

Demand satisfaction constraint (8.11f)
Supply satisfaction constraint (8.11g)

93

Where,

Operating constraints—states:
0
0
0
0
30

 ≤

TL1

TR1

TL2

TR2

Ttank

 ≤

100
100
100
100
100

 (8.12)

Operating constraints—inputs:
0
0
0
0

 ≤

qR2

Qmarket
Qdump
Qtank

 ≤

50
+∞
+∞

Qsolar,k

 (8.13)

Demand satisfaction constraint:

Qdemand −Qmarket − ρcpqR2(TR2 − T2) = 0 (8.14)

Supply satisfaction constraint:

Qsupply −Qdump − ρcpqL1(T1 − TL1) = 0 (8.15)

Appendix E

Dynamic optimization problem for the TES system with plant-model mismatch, msN-
MPC:

min
xi,j,ui,j

φ(x,u) = Pm(Qmarket)i,j + Pt(Qtank)i,j + Pu
(
(qL2)2

i,j + (qR2)2
i,j

)
(8.16a)

subject to:

x0 = xinit (8.16b)
DAEs system model (8.16c)

Operating constraints—states (8.16d)
Operating constraints—inputs (8.16e)

Demand satisfaction constraint (8.16f)
Non-anticipativity constraint (8.16g)

94

Where,

Scenario and time step index:

i ∈ {1, ...,M}; j ∈ {0, ..., N − 1} (8.17)

Operating constraints—states:
0
0
0
0
30

 ≤

TL1

TR1

TL2

TR2

Ttank

 ≤

100
100
100
100
70

 (8.18)

Operating constraints—inputs:
0
0
0
0

 ≤

qL2

qR2

Qtank
Qmarket

 ≤

50
50
10

+∞

 (8.19)

Demand satisfaction constraint:

Qdemand −Qmarket − ρcpqR2(TR2 − T2) = 0 (8.20)

Non-anticipativity constraint:

uj,i = uj,l if xj,i = xj,l (8.21)

Appendix F

Dynamic optimization problem for the TES system with plant-model mismatch, sN-
MPC with slack variables:

min
x,u

φ(x,u) = PmQmarket + PtQtank + Pu
(
q2
L2 + q2

R2

)
+ ρ>ε (8.22a)

subject to:

x0 = xinit (8.22b)
DAEs system model (8.22c)

Operating constraints—states (8.22d)
Operating constraints—inputs (8.22e)

Demand satisfaction constraint (8.22f)

95

Where,

Operating constraints—states:
0− ε
0− ε
0− ε
0− ε
30− ε

 ≤

TL1

TR1

TL2

TR2

Ttank

 ≤

100 + ε
100 + ε
100 + ε
100 + ε
70 + ε

 (8.23)

Operating constraints—inputs:
0
0
0
0

 ≤

qL2

qR2

Qtank
Qmarket

 ≤

50
50
10

+∞

 (8.24)

Demand satisfaction constraint:

Qdemand −Qmarket − ρcpqR2(TR2 − T2) = 0 (8.25)

Appendix G

Thermal energy system without storage tank:

DAEs system mode

dTL1

dt
=

1

Vhex

{
qL1(T1 − TL1)− UhexAhex

ρcp
∆Tm

}
(8.26a)

dTR1

dt
=

1

Vhex

{
qR1(T2 − TR1) +

UhexAhex
ρcp

∆Tm

}
(8.26b)

0 = a
1
n − (T1 − TR1) (8.26c)

0 = b
1
n − (TL1 − T2) (8.26d)

Where,

∆Tnm =
1

2
(a+ b), n =

1

3
(8.27)

96

Figure 8.1: Topology of a simple thermal energy system without thermal storage tank

Variables classification

• Differential states x:
x = [TL1, TR1] (8.28)

• Algebraic states z:

z = [a, b] = [(T1 − TR1)n, (TL1 − T2)n] (8.29)

• Inputs u:
u = [qL1, qR1, Qmarket, Qdump] (8.30)

• Disturbances d:
d = [T1, T2, Tsurr] (8.31)

Dynamic optimization problem for the thermal energy system without storage tank

min
x,u

φ(x,u) = PmQmarket (8.32a)

subject to:

x0 = xinit (8.32b)
DAEs system model (8.32c)

Operating constraints—states (8.32d)
Operating constraints—inputs (8.32e)

Demand satisfaction constraint (8.32f)
Supply satisfaction constraint (8.32g)

Where,

97

Operating constraints—states:[
0
0

]
≤
[
TL1

TR1

]
≤
[

100
100

]
(8.33)

Operating constraints—inputs: 0
0
0

 ≤
 qR1

Qmarket
Qdump

 ≤
 50

+∞
+∞

 (8.34)

Where, qL1 = 50 [l/s], which is set as constant in the whole process.

Demand satisfaction constraint:

Qdemand −Qmarket − ρcpqR1(TR1 − T2) = 0 (8.35)

Supply satisfaction constraint:

Qsupply −Qdump − ρcpqL1(T1 − TL1) = 0 (8.36)

98

Matlab code

Case one: Standard NMPC on simple TES with storage tank

Listing 8.1: Simple TES system model

function dxdt = twoPlantModelChen(˜,x,p)
%% Description of the states:
T_L1 = x(1);
T_R1 = x(2);
T_L2 = x(3);
T_R2 = x(4);
T_tank = x(5);
%% Description of parameters
q_L1 = p(1);
q_R1 = p(2);
q_L2 = p(3);
q_R2 = p(4);
Q = p(5);
T1 = p(6);
T2 = p(7);
V_hex = p(8);
V_tank = p(9);
U_hex = p(10);
A_hex = p(11);
rho = p(12);
cp = p(13);
h_s = p(14);
A_tank = p(15);
T_s = p(16);
n = p(17);

%% ODEs
dxdt = zeros(5,1);

dxdt = [(1/V_hex)*(q_L1*(T1-x(1))-sign(T1-x(5))*(U_hex*A_hex*0.5ˆ(1/n)/...
(rho*cp))*((abs(T1-x(2)))ˆn+(abs(x(1)-x(5)))ˆn)ˆ(1/n));

(1/V_hex)*(q_R1*(x(5)-x(2))+sign(T1-x(5))*(U_hex*A_hex*0.5ˆ(1/n)/...
(rho*cp))*((abs(T1-x(2)))ˆn+(abs(x(1)-x(5)))ˆn)ˆ(1/n));

(1/V_hex)*(q_L2*(x(5)-x(3))-sign(x(5)-T2)*(U_hex*A_hex*0.5ˆ(1/n)/...
(rho*cp))*((abs(x(3)-T2))ˆn+(abs(x(5)-x(4)))ˆn)ˆ(1/n));

(1/V_hex)*(q_R2*(T2-x(4))+sign(x(5)-T2)*(U_hex*A_hex*0.5ˆ(1/n)/...
(rho*cp))*((abs(x(3)-T2))ˆn+(abs(x(5)-x(4)))ˆn)ˆ(1/n));

(1/V_tank)*(q_R1*(x(2)-x(5)) + q_L2*(x(3)-x(5)) + (Q-h_s*A_tank*...
(x(5)-T_s))/(rho*cp))];

99

end

Listing 8.2: TES parameters

%% Parameters_TES.m file
% Defenition of all constant parameters used in TES
%% TES Parameters
V_tank =1000; %Storage tank volume [mˆ3]
A_tank =100; %Tank heat loss area [mˆ2]
h_s = 5e-4; %Tank heat loss coefficient [kW/mˆ2K]
%% HEX Parameters
V_hex = 0.5; %Heat exchanger volume (shell or tube side) [mˆ3]
A_hex = 300; %HEX heat transfer area [mˆ2]
U_hex = 0.5; %Overall heat transfer coefficient [kW/mˆ2K]
%% Storage fluid parameters
rho= 1000; %Density [kg/mˆ3]
cp = 4.186; %Specific heat capacity of fluid [kJ/kgK]
%% Common Parameters
n = 1/3;
T1 = 95; %Supply side intet temperature [C]
T2 = 20; %Consumer side intet temperature [C]
T_s = 15; %Ambient temperature [C]
Pm = 1e-3; %Commercial energy cost
% Pt = 5e--6; %Direct solar heating cost
Pu = 50e-6; %Regularization weight
%% Energy supply and demand profile
Qdemand = 5000;
Qsupply = 2500;
%% NLP solver parameters
tol = 10e-8; % Desired convergence tolerance (relative)
maxiter = 5000;
%% Declaration of constant inputs
q_L1=0.05; % [mˆ3/s]
q_R1=0.05;
q_L2=0.05;
Q_tank=0;
%% Other combined terms
h_dot = (U_hex*A_hex)/(rho*cp);
h_t_dot = (h_s*A_tank)/(rho*cp);

Listing 8.3: Steady state optimization

addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Run model parameters
run Parameters_TES.m
%% Declare model variables
% Diffential states
x1 = SX.sym('x1'); % T_L1
x2 = SX.sym('x2'); % T_R1
x3 = SX.sym('x3'); % T_L2
x4 = SX.sym('x4'); % T_R2
x5 = SX.sym('x5'); % T_tank

100

x = [x1; x2; x3; x4; x5];
% Algebraic states
x6 = SX.sym('x5'); % a=(T1-x2)ˆn
x7 = SX.sym('x5'); % b=(x1-x5)ˆn
x8 = SX.sym('x5'); % c=(x3-T2)ˆn
x9 = SX.sym('x5'); % d=(x5-x4)ˆn
z = [x6; x7; x8; x9]; % z=[a,b,c,d]
% Control inputs
u1 = SX.sym('u1'); % qR2
u2 = SX.sym('u2'); % Q_Market
u3 = SX.sym('u3'); % Q_Dump
u = [u1; u2; u3];
%% Model equations (DEAs)

xdot = [(1/V_hex)*(q_L1*(T1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_L2*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_hex)*(u1*(T2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_tank)*(q_R1*(x2-x5) + q_L2*(x3-x5) - h_t_dot*(x5-T_s));

T1-x2-x6ˆ(1/n);

x1-x5-x7ˆ(1/n);

x3-T2-x8ˆ(1/n);

x5-x4-x9ˆ(1/n)];

diff = xdot(1:5);
alg = xdot(6:9);

%% Lower and upper bounds of x,z,u
% LB Differential states
x1_lb = 0;
x2_lb = 0;
x3_lb = 0;
x4_lb = 0;
x5_lb = 30;
% LB Algebraic states
x6_lb = -Inf;
x7_lb = -Inf;
x8_lb = -Inf;
x9_lb = -Inf;
% LB Control inputs
u1_lb=0;
u2_lb=0;
u3_lb=0;
% LB Vertical concatenation
xlb = vertcat(x1_lb,x2_lb,x3_lb,x4_lb,x5_lb);
zlb = vertcat(x6_lb,x7_lb,x8_lb,x9_lb);
ulb = vertcat(u1_lb,u2_lb,u3_lb);
% UB Differential states
x1_ub = 100;

101

x2_ub = 100;
x3_ub = 100;
x4_ub = 100;
x5_ub = 100;
% UB Algebraic states
x6_ub = +Inf;
x7_ub = +Inf;
x8_ub = +Inf;
x9_ub = +Inf;
% UB Control inputs
u1_ub = 0.05; % [mˆ3/s]
u2_ub = +Inf;
u3_ub = +Inf;
% UB Vertical concatenation
xub = vertcat(x1_ub,x2_ub,x3_ub,x4_ub,x5_ub);
zub = vertcat(x6_ub,x7_ub,x8_ub,x9_ub);
uub = vertcat(u1_ub,u2_ub,u3_ub);
%% Declare two satisfaction equality constraint as symbolic variables
C1 = Qdemand - u2 - u1*rho*cp*(x4-T2);
C2 = Qsupply - u3 -q_L1*rho*cp*(T1-x1);
C1_lb = 0;
C1_ub = 0;
C2_lb = 0;
C2_ub = 0;

%% Initial guess
% Differential states
x10 = 90;
x20 = 80;
x30 = 60;
x40 = 50;
x50 = 70;
% Algebraic states
x60 = 1;
x70 = 1;
x80 = 1;
x90 = 1;
X0=[x10; x20; x30; x40; x50];
Z0=[x60; x70; x80; x90];

% Control inputs
u10 = 0.02;
u20 = 1500;
u30 = 200;
U0 = [u10; u20; u30];
%% Steady-state optimization
% Preparing symbolic variables
w = {};
% Preparing numeric variables and bounds
w0 = [];
lbw = [];
ubw = [];
% Preparing symbolic constraints
g = {};
% Preparing numeric bounds
lbg = [];
ubg = [];

102

% Declaring them symbolic
w = {w{:},x,z,u};
lbw = [lbw;xlb;zlb;ulb];
ubw = [ubw;xub;zub;uub];
w0 = [w0;X0;Z0;U0];

% Add the system model as constraints
g = {g{:},vertcat(diff,alg),C1,C2};
lbg = [lbg;zeros(9,1);C1_lb;C2_lb]; % Steady-state optimisation, dx/dt=0
ubg = [ubg;zeros(9,1);C1_ub;C2_ub];
% Cost function
% Adding additional regularisation term!!!
L = Pm*u2 + Pu*(u1ˆ2+u3ˆ2);
% Economic objective
J = L;
nlp = struct('x',vertcat(w{:}),'f',J,'g',vertcat(g{:}));
solver = nlpsol('solver','ipopt',nlp); % NLP solver IPOPT
sol = solver('x0',w0,'lbx',lbw,'ubx',ubw,'lbg',lbg,'ubg',ubg);
%% Extracting solutions
w_opt_SS = full(sol .x);
x_init=w_opt_SS(1:5);
z_init=w_opt_SS(6:9);
u_init=w_opt_SS(10:end);

Listing 8.4: Standard NMPC

clear;
clc;
close all;
addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% TES parameters
run Parameters_TES.m
%% Energy supply and demand profile
Q_demand = [1500*ones(12,1); 3500*ones(12,1)];
Q_supply = 2500*ones(24,1);
%% Degree of interpolating polynomial
d = 3; % Gauss-Radua
%% Get collocation points
tau_root = [0 collocation_points(d, 'radau')];
%% Coefficients of the collocation equation
C = zeros(d+1,d+1);
% Coefficients of the continuity equation
D = zeros(d+1, 1);
% Coefficients of the quadrature function
B = zeros(d+1, 1);

%% Construct polynomial basis
for j=1:d+1
% Construct Lagrange polynomials to get the polynomial basis
% at the collocation point
coeff = 1;
for r=1:d+1

if r ˜= j
coeff = conv(coeff, [1, -tau_root(r)]);
coeff = coeff / (tau_root(j)-tau_root(r));

103

end
end

% Evaluate the polynomial at the final time to get the
% coefficients of the continuity equation
D(j) = polyval(coeff, 1.0);
% Evaluate the time derivative of the polynomial at all collocation
% points to get the coefficients of the continuity equation
pder = polyder(coeff);

for r=1:d+1
C(j,r) = polyval(pder, tau_root(r));

end
% Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function
pint = polyint(coeff);
B(j) = polyval(pint, 1.0);

end
%% Time horizon
T = 24*60*60; % Prediction horizon:24h
ndiff = 5; % Number of differential states, x
nalg = 4; % Number of algebraic states, z
nu = 3; % Number of control inputs, u
nx = nalg + ndiff; % Total number of states
%% Bounds of algebraic states, z
zub = Inf*ones(nalg,1);
zlb = -Inf*ones(nalg,1);
%% Run RTO to get ssopt results
run RTO.m
x_0 = x_init;
%% Declare model variables
% Differential states
x1 = SX.sym('x1'); % T_L1
x2 = SX.sym('x2'); % T_R1
x3 = SX.sym('x3'); % T_L2
x4 = SX.sym('x4'); % T_R2
x5 = SX.sym('x5'); % T_tank
x = [x1; x2; x3; x4; x5];
% Algebraic states
x6 = SX.sym('x6'); % a=(T1-x2)ˆn
x7 = SX.sym('x7'); % b=(x1-x5)ˆn
x8 = SX.sym('x8'); % c=(x3-T2)ˆn
x9 = SX.sym('x9'); % d=(x5-x4)ˆn
z = [x6; x7; x8; x9];
% Control inputs
u1 = SX.sym('u1'); % q_R2
u2 = SX.sym('u2'); % Q_Market
u3 = SX.sym('u3'); % Q_dump
u = [u1; u2; u3];
%% Model equations (DEAs)

xdot = [(1/V_hex)*(q_L1*(T1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_L2*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_hex)*(u1*(T2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

104

(1/V_tank)*(q_R1*(x2-x5) + q_L2*(x3-x5) - h_t_dot*(x5-T_s));

T1-x2-x6ˆ(1/n);

x1-x5-x7ˆ(1/n);

x3-T2-x8ˆ(1/n);

x5-x4-x9ˆ(1/n)];

%% Objective term
L = Pm*u2 + Pu*(u1ˆ2+u3ˆ2);
%% Continuous time dynamics
f = Function('f', {x, z, u}, {xdot, L});
%% Control discretization
N = 24; % number of control intervals, 24 hours
M = 24; % number of MPC loops, reoptimizing times
h = T/N;
period = N;
%% Variable counting
NXD = N*ndiff*(d+1); %Total Number of differential state variables
NXA = N*nalg*d; %Total Number of algebraic state variables
NU = N*nu; %Total Number of input variables
NXF = ndiff; %Total Number of end point variables
NV = NXD + NXA + NU + NXF; %Total number of NLP variables
%% Prepare output variables
x_opt = zeros(ndiff,M);
u_opt = zeros(nu,M);
i_infeasible = zeros(M,1);
solver_return = {};
w_stored = zeros(NV,1);
%% Predicted Demand
Q_demand = [Q_demand; Q_demand];
Q_supply = [Q_supply; Q_supply];
%% MPC loop
for i=1:M

if i==1
% Start with an empty NLP
w={};
w0 = [];
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];
% Initial conditions
% Differential states
Xk = MX.sym('X0', ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; x_init];
ubw = [ubw; x_init];
w0 = [w0; x_init];
% Formulate the NLP
for k=0:N-1

% New NLP variable for the control

105

Uk = MX.sym(['U_' num2str(k)], nu);
w = [w(:)', {Uk}];
lbw = [lbw; ulb];
ubw = [ubw; uub];
w0 = [w0; u_init];
% State at collocation points
Xkj = cell(1,d);
Zkj = cell(1,d);
for j=1:d
% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);
w = [w(:)', Xkj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];
% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);
w = [w(:)', Zkj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];
w0 = [w0; z_init];

end
% Loop over collocation points
Xk_end = D(1)*Xk;

for j=1:d
% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = tol*ones(nalg,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xkj{r};
end
% Append collocation equations
[fj, qj] = f(Xkj{j}, Zkj{j}, Uk);
g = [g(:)', {h*fj - [xp;zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];
% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Differential states
Xk = MX.sym(['X_' num2str(k+1)], ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];
% Add inequality constraint
g = [g(:)', {Uk(2) + Uk(1)*rho*cp*(Xk(4)-T2)}];
lbg = [lbg; Q_demand((i-1)+k+1)];
ubg = [ubg; Q_demand((i-1)+k+1)];

g = [g(:)', {Uk(3) + q_L1*rho*cp*(T1-Xk(1))}];
lbg = [lbg; Q_supply(i)];
ubg = [ubg; Q_supply(i)];

106

% Add equality constraint
g = [g(:)', {Xk_end-Xk}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

end

else
% Start with an empty NLP
w={};
w0 = w_stored;
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];
% Apply the first control from the previous solution
w0(1:ndiff+nu) = [x_init; u_init];

% "Lift" initial conditions
% Differential states
Xk = MX.sym('X0', ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; w0(1:ndiff)];
ubw = [ubw; w0(1:ndiff)];
% Formulate the NLP
for k=0:N-1

% New NLP variable for the control
Uk = MX.sym(['U_' num2str(k)],nu);
w = [w(:)', {Uk}];
lbw = [lbw; ulb];
ubw = [ubw; uub];
% State at collocation points
Xkj = {};
Zkj = {};
for j=1:d

% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);
w = [w(:)', Xkj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];
% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);
w = [w(:)', Zkj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];

end

% Loop over collocation points
Xk_end = D(1)*Xk;
for j=1:d

% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = tol*ones(nalg,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xkj{r};

107

end

% Append collocation equations
[fj, qj] = f(Xkj{j},Zkj{j},Uk);
g = [g(:)', {h*fj - [xp;zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Only for differential states
Xk = MX.sym(['X_' num2str(k+1)], ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; xlb];
ubw = [ubw; xub];

% Add inequality constraint
g = [g(:)', {Uk(2) + Uk(1)*rho*cp*(Xk(4)-T2)}];
lbg = [lbg; Q_demand((i-1)+k+1)];
ubg = [ubg; Q_demand((i-1)+k+1)];
g = [g(:)', {Uk(3) + q_L1*rho*cp*(T1-Xk(1))}];
lbg = [lbg; Q_supply(i)];
ubg = [ubg; Q_supply(i)];
% Add equality constraint (only differential states)
g = [g(:)', {Xk_end-Xk}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

end
end
%% Create an NLP solver
opts = struct;
opts.ipopt.max_iter = maxiter;
opts.ipopt.print_level = 3;
opts.print_time = 1;
opts.ipopt.tol = tol;
opts.ipopt.acceptable_tol =100*tol; % Optimality convergence tolerance

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
solver = nlpsol('solver', 'ipopt', prob, opts);
%% Solve the NLP
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

if solver.stats.success == 0
error('Error: Optimal Solution Not Found')

end

i_infeasible(i) = solver.stats.success;
solver_return{i} = solver.stats.return_status;
w_opt = full(sol.x);

%% Store the open loop solution
w_stored = [w_opt((ndiff+nu)+d*nx+1:end); ...
w_opt(end+1-((ndiff+nu)+d*nx):end)];

108

%% Simulator
x0 = x_init;
tspan = [0 3600];
p = [q_L1; q_R1; q_L2; w_opt(ndiff+1:ndiff+nu-2); ...
Q_tank; T1; T2; V_hex; V_tank; U_hex; A_hex; rho;...
cp; h_s; A_tank; T_s; n];

options = odeset('RelTol', 1e-8,'Stats','off','OutputFcn', @odeplot);
[t,x] = ode15s(@(t,x) twoPlantModelChen(t,x,p), tspan, x0, options);
u_opt(:,i) = w_opt(ndiff+1:ndiff+nu);
u_init = w_opt(ndiff+1:ndiff+nu);
x_m = x(end,:);
x_opt(:,i) = x_m;
x_init = x_m';
x_init(5)
u_init
i
end
%% Adding additional regularisation term!!!
Cost = Pm*u_opt(2,:) + Pu*(u_opt(1,:).ˆ2+u_opt(3,:).ˆ2);
Cost = [Cost, NaN];

%% Store data
storageNMPC = struct('Demand',Q_demand,'OptimalStates',...
x_opt,'OptimalInputs',u_opt,'Measurement',...
x_opt,'Cost',Cost);
%% Plot results
T = T/3600;
tgrid = linspace(0, T, N+1);
clf;

x_opt = [x_0, x_opt];

%% Plot optimal controls
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',15,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',15,...
'DefaultLineLineWidth',1.5,...
'DefaultLineMarkerSize',7.75,...
'DefaultStairLineWidth',1.5);
set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');
set(gcf,'color','white');
figure(1)
subplot(311)
plot(tgrid, x_opt(5,:), 'k-')
ylabel('T_{tank} [$ˆ{\circ}$C]','Interpreter','latex')
hold off
grid on
xlim([0 24])
ylim([64 76])

subplot(312)
stairs(tgrid, [u_opt(1,:)*1e3, nan], 'b-')
ylabel('q_{R2} [ℓ/s]','Interpreter','latex')
grid on

109

xlim([0 24])
ylim([5 35])

subplot(313)
stairs(tgrid, [u_opt(3,:), nan], 'color','#77AC30')
hold on
stairs(tgrid, [u_opt(2,:), nan], 'r-')
hold off
xlabel('time [hr]','Interpreter','latex')
ylabel('Power [kW]','Interpreter','latex')
legend('Q_{dump}','Q_{market}','Interpreter','latex')
grid on
xlim([0 24])
ylim([0 1100])

Case two: Standard NMPC on simple TES without storage tank

Listing 8.5: Non-storage system model

function dxdt = twoPlantModelDirect(˜,x,p)
%% Description of the states
T_L1 = x(1);
T_R1 = x(2);
%% Assignment of inputs and disturbances
% Input variables u
q_L1 = p(1);
q_R1 = p(2);
% Distubances d
T1 = p(3);
T2 = p(4);
% Design and physical parameters
V_hex = p(5);
U_hex = p(6);
A_hex = p(7);
rho = p(8);
cp = p(9);
n = p(10);
%% ODEs
dxdt = [(1/V_hex)*(q_L1*(T1-T_L1) - (U_hex*A_hex/(rho*cp))*...

(0.5*((abs(T1 - T_R1))ˆn + (abs(T_L1 - T2))ˆn))ˆ(1/n));

(1/V_hex)*(q_R1*(T2-T_R1) + (U_hex*A_hex/(rho*cp))*...
(0.5*((abs(T1 - T_R1))ˆn + (abs(T_L1 - T2))ˆn))ˆ(1/n))];

end

Listing 8.6: Non-storage parameters

%% Parameters_TES.m file
% Defenition of all constant parameters used in TES
%% HEX Parameters
V_hex = 0.5; %Heat exchanger volume (shell or tube side) [mˆ3]
A_hex = 300; %HEX heat transfer area [mˆ2]
U_hex = 0.5; %Overall heat transfer coefficient [kW/mˆ2K]
%% Storage fluid parameters

110

rho= 1000; %Density [kg/mˆ3]
cp = 4.186; %Specific heat capacity of fluid [kJ/kgK]
%% Common Parameters
n = 1/3;
T1 = 95; %Supply side intet temperature [C]
T2 = 20; %Consumer side intet temperature [C]
T_s = 15; %Ambient temperature [C]
Pm = 1e-3; %Commercial energy cost
% Pt = 5e-6; %Direct solar heating cost
Pu = 50e-6; %Regularization weight
%% Energy supply and demand profile
Qdemand = 6000;
Qsupply = 6000;
%% NLP solver parameters
tol = 10e-8; % Desired convergence tolerance (relative)
maxiter = 5000;
%% Declaration of constant inputs
q_L1=0.05; % [mˆ3/s]
Q_tank=0;
h_dot = (U_hex*A_hex)/(rho*cp);

Listing 8.7: Non-storage steady state optimization

addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Model parameters
run Parameters_NoStorage.m
%% Declare model variables
% Diffential states
x1 = SX.sym('x1'); % T_L1
x2 = SX.sym('x2'); % T_R2
x = [x1; x2];
% Algebraic states
x3 = SX.sym('x3');
x4 = SX.sym('x4');
z = [x3; x4];
% Control inputs
u1 = SX.sym('u1'); %q_R2
u2 = SX.sym('u2'); %Q_Market
u3 = SX.sym('u3'); %Q_dump
u = [u1; u2; u3];
%% Model equations (DEAs)

xdot = [(1/V_hex)*(q_L1*(T1-x1) - (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

(1/V_hex)*(u1*(T2-x2) + (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

T1 - x2 - x3ˆ(1/n);

x1 - T2 - x4ˆ(1/n)];

diff = xdot(1:2);
alg = xdot(3:4);

%% Lower and upper bounds of x,z,u
% LB Differential states

111

x1_lb = 0;
x2_lb = 0;
% LB Algebraic states
x3_lb = -Inf;
x4_lb = -Inf;
% LB Control inputs
u1_lb=0;
u2_lb=0;
u3_lb=0;
% LB Vertical concatenation
xlb = vertcat(x1_lb,x2_lb);
zlb = vertcat(x3_lb,x4_lb);
ulb = vertcat(u1_lb,u2_lb,u3_lb);
% UB Differential states
x1_ub = 100;
x2_ub = 100;
% UB Algebraic states
x3_ub = +Inf;
x4_ub = +Inf;
% UB Control inputs
u1_ub = 0.05; % [mˆ3/s]
u2_ub = +Inf;
u3_ub = +Inf;
% UB Vertical concatenation
xub = vertcat(x1_ub,x2_ub);
zub = vertcat(x3_ub,x4_ub);
uub = vertcat(u1_ub,u2_ub,u3_ub);
%% Declare two satisfaction equality constraint as symbolic variables
C1 = Qdemand - u2 - u1*rho*cp*(x2-T2);
C2 = Qsupply - u3 -q_L1*rho*cp*(T1-x1);
C1_lb = 0;
C1_ub = 0;
C2_lb = 0;
C2_ub = 0;
%% Initial guess
% Differential states 80 60 45 30 50
x10 = 60;
x20 = 30;
% Algebraic states
x30 = 1;
x40 = 1;
X0=[x10; x20];
Z0=[x30; x40];
% Control inputs
u10 = 0;
u20 = 0;
u30 = 0;
U0 = [u10; u20; u30];
%% Steady-state optimization
% preparing symbolic variables
w = {};
% preparing numeric variables and bounds
w0 = [];
lbw = [];
ubw = [];
% preparing symbolic constraints
g = {};

112

% preparing numeric bounds
lbg = [];
ubg = [];
% declaring them symbolic
w = {w{:},x,z,u};
lbw = [lbw;xlb;zlb;ulb];
ubw = [ubw;xub;zub;uub];
w0 = [w0;X0;Z0;U0];

% Add the system model as constraints
g = [g(:)',{vertcat(diff,alg)},{C1},{C2}];
lbg = [lbg;zeros(4,1);C1_lb;C2_lb]; % Steady-state optimisation, dx/dt=0
ubg = [ubg;zeros(4,1);C1_ub;C2_ub];

% Cost function
L = Pm*u2;
% Economic objective
J = L;
nlp = struct('x',vertcat(w{:}),'f',J,'g',vertcat(g{:}));
solver = nlpsol('solver','ipopt',nlp); % NLP solver IPOPT
sol = solver('x0',w0,'lbx',lbw,'ubx',ubw,'lbg',lbg,'ubg',ubg);

%% Extracting solutions
w_opt_SS = full(sol .x);
x_init=w_opt_SS(1:2);
z_init=w_opt_SS(3:4);
u_init=w_opt_SS(5:end);

Listing 8.8: Non-storage standard NMPC

clear;
clc;
close all;
addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Parameters
run Parameters_NoStorage.m
%% Demand supply profile
Q_demand = [1500*ones(12,1); 3500*ones(12,1)];
Q_supply = 2500*ones(24,1);
%% Degree of interpolating polynomial
d = 3;
% Get collocation points
tau_root = [0 collocation_points(d, 'radau')]; %can be 'legendre'
% Coefficients of the collocation equation
C = zeros(d+1,d+1);
% Coefficients of the continuity equation
D = zeros(d+1, 1);
% Coefficients of the quadrature function
B = zeros(d+1, 1);
%% Construct polynomial basis
for j=1:d+1
% Construct Lagrange polynomials to get the polynomial basis
% at the collocation point

coeff = 1;
for r=1:d+1

113

if r ˜= j
coeff = conv(coeff, [1, -tau_root(r)]);
coeff = coeff / (tau_root(j)-tau_root(r));

end
end

% Evaluate the polynomial at the final time to get the
% coefficients of the continuity equation

D(j) = polyval(coeff, 1.0);

% Evaluate the time derivative of the polynomial at all collocation
% points to get the coefficients of the continuity equation

pder = polyder(coeff);
for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));
end

% Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function

pint = polyint(coeff);

B(j) = polyval(pint, 1.0);
end
%% Time horizon
T = 24*60*60;
ndiff = 2; %Number of differential states
nalg = 2; %Number of algebraic states
nu = 3; %Number of controls
nx = nalg + ndiff; %Total number of states
zub = Inf*ones(nalg,1);
zlb = -Inf*ones(nalg,1);
%% SS-opt
run RTO.m
x_0 = x_init;
%% Declare model variables
x1 = SX.sym('x1'); % T_L1
x2 = SX.sym('x2'); % T_R2
x = [x1; x2];
x3 = SX.sym('x3'); % a
x4 = SX.sym('x4'); % b
z = [x3; x4];
u1 = SX.sym('u1'); %q_R2
u2 = SX.sym('u2'); %Q_Market
u3 = SX.sym('u3'); %Q_dump
u = [u1; u2; u3];
%% Model equations
xdot = [(1/V_hex)*(q_L1*(T1-x1) - (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

(1/V_hex)*(u1*(T2-x2) + (h_dot)*(0.5*(x3 + x4))ˆ(1/n));

T1 - x2 - x3ˆ(1/n);

x1 - T2 - x4ˆ(1/n)];
%% Objective term
L = Pm*u2;
%% Continuous time dynamics
f = Function('f', {x, z, u}, {xdot, L});
% Control discretization
N = 24; % number of control intervals

114

M = 24; % number of MPC loops
h = T/N;
period = N;
%% Prepare output variables
x_opt = zeros(ndiff,M);
u_opt = zeros(nu,M);
i_infeasible = zeros(M,1);
solver_return = {};
%% Predicted Demand
Q_demand = [Q_demand; Q_demand];
Q_supply = [Q_supply; Q_supply];
%% MPC loop
for i=1:M

% Start with an empty NLP
w={};
w0 = [];
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];

% "Lift" initial conditions
% Differential states
Xk = MX.sym('X0', ndiff);
w = {w{:}, Xk};
lbw = [lbw; x_init];
ubw = [ubw; x_init];
w0 = [w0; x_init];

% Algebraic states
Zk = MX.sym('Z0', nalg);
w = {w{:}, Zk};
lbw = [lbw; z_init];
ubw = [ubw; z_init];
w0 = [w0; z_init];
% Formulate the NLP
for k=0:N-1
% New NLP variable for the control

Uk = MX.sym(['U_' num2str(k)], nu);
w = {w{:}, Uk};
lbw = [lbw; ulb];
ubw = [ubw; uub];
w0 = [w0; u_init];

% State at collocation points
Xkj = {};

Zkj = {};
for j=1:d

% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)], ndiff);
w = {w{:}, Xkj{j}};
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];

115

% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)], nalg);
w = {w{:}, Zkj{j}};
lbw = [lbw; zlb];
ubw = [ubw; zub];
w0 = [w0; z_init];

end
% Loop over collocation points
Xk_end = D(1)*Xk;

for j=1:d
% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = zeros(nalg,1);

for r=1:d
xp = xp + C(r+1,j+1)*Xkj{r};

end

% Append collocation equations
[fj, qj] = f(Xkj{j}, Zkj{j}, Uk);
g = {g{:}, h*fj - [xp; zp]};
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;
end
% New NLP variable for state at end of interval
% Differential states
Xk = MX.sym(['X_' num2str(k+1)], ndiff);
w = {w{:}, Xk};
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];

% Add inequality constraint
g = {g{:}, Uk(2) + Uk(1)*rho*cp*(Xk(2)-T2)};
lbg = [lbg; Q_demand((i-1)+k+1)];
ubg = [ubg; Q_demand((i-1)+k+1)];

g = {g{:}, Uk(3) + q_L1*rho*cp*(T1-Xk(1))};
lbg = [lbg; Q_supply(i)];
ubg = [ubg; Q_supply(i)];

% Add equality constraint
g = {g{:}, Xk_end - Xk};
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

end

% Create an NLP solver
opts = struct;
opts.ipopt.max_iter = maxiter;%5000;
opts.ipopt.print_level = 5; %0,3
opts.print_time = 1; %0,1

116

opts.ipopt.tol = tol;
opts.ipopt.acceptable_tol = 100*tol; % optimality convergence tolerance

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
solver = nlpsol('solver', 'ipopt', prob, opts);
% Solve the NLP
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);
i_infeasible(i) = solver.stats.success;
solver_return{i} = solver.stats.return_status;
w_opt = full(sol.x);
if solver.stats.success == 0

error('Error: Optimal Solution Not Found')
end
% Simulator
x0 = x_init;
tspan = [0 3600];
p = [q_L1; w_opt(nx+1:nx+nu-2); T1; T2; V_hex; U_hex; A_hex; rho;...
cp; n];
options = odeset('RelTol',1e-5,'Stats','off','OutputFcn',@odeplot);
[t,x] = ode15s(@(t,x) twoPlantModelDirect(t,x,p),tspan,x0,options);
u_opt(:,i) = w_opt(nx+1:nx+nu);
u_init = w_opt(nx+1:nx+nu);
x_m = x(end,:);
x_opt(:,i) = x_m(1:ndiff);
x_init = transpose(x_m(1:ndiff));

x_init
u_init
i
end
Cost = Pm*u_opt(2,:);
Cost = [Cost, NaN];
% Store data
nostorageNMPC = struct('Demand',Q_demand,'OptimalStates',...
x_opt,'OptimalInputs',u_opt,'Measurement',...
x_opt,'Cost',Cost);

%% Plot results
T = T/3600;
tgrid = linspace(0, T, N+1);
clf;
x_opt = [x_0, x_opt];
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',15,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',15,...
'DefaultLineLineWidth',1.5,...
'DefaultLineMarkerSize',7.75,...
'DefaultStairLineWidth',1.5);
set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');
set(gcf,'color','white');
figure(1)
subplot(311)
plot(tgrid, x_opt(1,:), '-r')
hold on
plot(tgrid, x_opt(2,:), '-b')
% xlabel('time [hr]')

117

ylabel('T [\circC]','Interpreter','latex')
legend('$T_{1,o}$','$T_{2,o}$','Interpreter','latex')
hold off
xlim([0 24])
ylim([40 100])
grid on

subplot(312)
stairs(tgrid, [u_opt(1,:)*1e3, nan], '-b')
hold off
% xlabel('time [hr]')
ylabel('q_{2} [ℓ/s]', 'Interpreter','latex')
xlim([0 24])
ylim([0 10])
grid on

subplot(313)
stairs(tgrid, [u_opt(3,:), nan], '-g')
hold on
stairs(tgrid, [u_opt(2,:), nan], '-r')
hold off
xlabel('time [hr]','Interpreter','latex')
ylabel('Power [kW]','Interpreter','latex')
legend('Q_{dump}','Q_{M}','Interpreter','latex')
xlim([0 24])
ylim([0 1200])
grid on

Case three: Standard NMPC on simple TES with direct solar heating

Listing 8.9: Simple TES system model

function [xdot, alg, par, F_integrator, f, fk, ss_opt, dx1dot] = TESmdl(par)
import casadi.*
%% Declare model variables
% Differential states
T_L1 = MX.sym('T_L1');
T_R1 = MX.sym('T_R1');
T_L2 = MX.sym('T_L2');
T_R2 = MX.sym('T_R2');
T_tank = MX.sym('T_tank');
x = [T_L1; T_R1; T_L2; T_R2; T_tank];
% Algebraic states
z1 = MX.sym('z1');
z2 = MX.sym('z2');
z3 = MX.sym('z3');
z4 = MX.sym('z4');
z = [z1; z2; z3; z4];
% Inputs
q_R2 = MX.sym('q_R2');
Q_market = MX.sym('Q_market');
Q_dump = MX.sym('Q_dump');
Q_tank = MX.sym('Q_tank'); % Q_solar = Q_tank
u = [q_R2; Q_market; Q_dump; Q_tank];
% Disturbances
T1 = MX.sym('T1');

118

T2 = MX.sym('T2');
T_s = MX.sym('T_s');
Q_supply = MX.sym('Q_supply');
Q_demand = MX.sym('Q_demand');
d = vertcat(T1, T2, T_s, Q_supply, Q_demand);
%% Variable counting
par.nx = length(x);
par.nz = length(z);
par.nu = length(u);
par.nd = length(d);
%% Model equations
V_hex = par.V_hex;
V_tank = par.V_tank;
n = par.n;
q_L1 = par.q_L1;
q_R1 = par.q_R1;
q_L2 = par.q_L2;
h_dot = par.h_dot;
h_t_dot = par.h_t_dot;
rho = par.rho;
cp = par.cp;
T1 = par.T1;
T2 = par.T2;

xdot = [(1/V_hex)*(q_L1*(T1-T_L1) - h_dot*(0.5*(z1 + z2))ˆ(1/n));
(1/V_hex)*(q_R1*(T_tank-T_R1) + h_dot*(0.5*(z1 + z2))ˆ(1/n));
(1/V_hex)*(q_L2*(T_tank-T_L2) - h_dot*(0.5*(z3 + z4))ˆ(1/n));
(1/V_hex)*(q_R2*(T2-T_R2) + h_dot*(0.5*(z3 + z4))ˆ(1/n));
(1/V_tank)*(q_R1*(T_R1-T_tank) + q_L2*(T_L2-T_tank) + ...
(Q_tank/(rho*cp)-h_t_dot*(T_tank-T_s)))];

alg = [T1-T_R1-z1ˆ(1/n);
T_L1-T_tank-z2ˆ(1/n);
T_L2-T2-z3ˆ(1/n);
T_tank-T_R2-z4ˆ(1/n)];

%% Objective term
L = par.Pm*Q_market + par.Pt*Q_tank;
%% Continuous time dynamics
f = Function('f', {x, z, u, d}, {xdot, alg, L}, {'x','z','u','d'},...

{'xdot','alg','qj'});

dae = struct('x', x, 'z', z, 'p', vertcat(u, d), 'ode', xdot, 'alg',...
alg, 'quad', L);

opts = struct('t0', 0, 'tf', par.h);
% use collocation instead of IDAS (due to a linesearch backtracking error)
F_integrator = integrator('F', 'collocation', dae, opts);

% Conversion to discrete model
dx1 = [];

for i = 1:par.nx
dx1 = [dx1; x(i) + par.h*xdot(i)];

end

fk = Function('fk', {x, u, d}, {dx1});

119

dx1_x = jacobian(dx1, x);
dx1_u = jacobian(dx1, u);

dx1dot = Function('dx1dot', {x, u, d}, {dx1_x, dx1_u});

%% Solve steady state optimization problem
w = {};
w0 = [];
lbw = [];
ubw = [];
lbg = [];
ubg = [];
g = {};
w = [w(:)', {x}, {z}, {u}, {d}]; % Disturbances are constant!!!
lbw = [lbw; par.xlb; par.zlb; par.ulb; par.Q_tanklb; par.dist];
ubw = [ubw; par.xub; par.zub; par.uub; par.Q_tankub; par.dist];
w0 = [w0; par.x_init; par.z_init; par.u_init; par.dist];

J = L;

g = [g(:)', {xdot}, {alg}];
lbg = [lbg; zeros(size(xdot,1),1); zeros(size(alg,1),1)];
ubg = [ubg; zeros(size(xdot,1),1); zeros(size(alg,1),1)];

g = [g(:)', {u(2) + u(1)*par.rho*par.cp*(x(4)-d(2))-d(4)}];
lbg = [lbg; 0];
ubg = [ubg; 0];

g = [g(:)', {u(3) + par.q_L1*par.rho*par.cp*(d(1)-x(1))-d(5)}];
lbg = [lbg; 0];
ubg = [ubg; 0];

opts = struct;
opts.ipopt.max_iter = par.maxiter;
opts.ipopt.print_level = 0;
opts.print_time = 0;
opts.ipopt.tol = par.tol;
opts.ipopt.acceptable_tol = 100*par.tol;

ss_nlp = struct('x', vertcat(w{:}), 'f', J, 'g', vertcat(g{:}));
ss_solver = nlpsol('ss_solver', 'ipopt', ss_nlp, opts);

% Solve the NLP
sol_ss = ss_solver('x0', w0, 'lbx', lbw, 'ubx', ubw, 'lbg', lbg, 'ubg', ubg);
ss_opt = full(sol_ss.x);

end

Listing 8.10: Simple TES system parameters

function par = TES_Parameters()
%% Parameters (in l)
par.V_hex = 500; % Heat exchanger volume (shell or tube side)
par.V_tank = 1e+6; % Storage tank volume
par.U_hex = 0.5; % Overall heat transfer coefficient [kW/mˆ2K]

120

par.A_hex = 300; % Heat transfer area [mˆ2]
par.rho = 1; % Density [kg/mˆ3]
par.cp = 4.186; % Specific heat capacity of fluid [kJ/kgK]
par.h_s = 5e-4; % Heat loss coefficient [kW/mˆ2K]
par.n = 1/3; % Approximation index
par.A_tank = 100; % Tank heat loss area [mˆ2]
par.Pm = 1e-3;
par.Pt = 5e-6;
par.Pu = 50e-6;
par.Px = 5e-6;
par.Q_demand_0 = 2000;
par.tol = 1e-6;
par.maxiter=2e4;
par.std = 2.31;
%% Simulation parameters
par.T = 24*3600;
par.h = 3600;
par.nIter = par.T/par.h;
par.N = 24;
par.d = 3;
%% Disturbances (Boundary conditions)
par.T1 = 95; % Plant 1 temperature (source)[C]
par.T2 = 20; % Plant 2 temperature (sink)[C]
par.T_s = 15; % Ambient temperature [C]
%% Constant inputs
par.q_L1 = 50;
par.q_R1 = 50;
par.q_L2 = 50;
%% Bounds
% States UB
par.T_L1ub = 200;
par.T_R1ub = 200;
par.T_L2ub = 200;
par.T_R2ub = 200;
par.T_tankub = 200;
% Inputs UB
par.q_L1ub = 50;
par.q_R1ub = 50;
par.q_L2ub = 50;
par.q_R2ub = 50;
par.Q_tankub = 3000;
par.Qmub = +Inf; % Q_market
par.Qdub = +Inf; % Q_dump
% States LB
par.T_L1lb = 0;
par.T_R1lb = 0;
par.T_L2lb = 0;
par.T_R2lb = 0;
par.T_tanklb = 30;
% Inputs LB
par.q_L1lb = 0;
par.q_R1lb = 0;
par.q_L2lb = 0;
par.q_R2lb = 0;
par.Q_tanklb = 0;
par.Qmlb = 0;
par.Qdlb = 0;

121

% Bounds concatenation
par.xub = vertcat(par.T_L1ub, par.T_R1ub, par.T_L2ub, par.T_R2ub,...

par.T_tankub);
par.xlb = vertcat(par.T_L1lb, par.T_R1lb, par.T_L2lb, par.T_R2lb,...

par.T_tanklb);
par.uub = vertcat(par.q_R2ub, par.Qmub, par.Qdub);
par.ulb = vertcat(par.q_R2lb, par.Qmlb, par.Qdlb);
par.zub = +Inf*ones(4,1);
par.zlb = -Inf*ones(4,1);

%% Initial values
par.x_init = [80; 60; 40; 30; 55];
par.x_0 = par.x_init;
par.u_init = [0; 0; 0 ; 0];
par.u_n1 = par.u_init;
par.z_init = 3*ones(4,1);
par.h_dot = (par.U_hex*par.A_hex)/(par.rho*par.cp);
par.h_t_dot = (par.h_s*par.A_tank)/(par.rho*par.cp);

end

Listing 8.11: Simple TES system NLP problem

function [solver, par] = TES_createNLP(f, par, mpcloop, options)

import casadi.*
%% Construct polynomial basis
% Degree of interpolating polynomial
d = 3;
% Get collocation points
tau_root = [0 collocation_points(d, 'radau')]; %can be 'legendre'
% Coefficients of the collocation equation
C = zeros(d+1,d+1);
% Coefficients of the continuity equation
D = zeros(d+1, 1);
% Coefficients of the quadrature function
B = zeros(d+1, 1);
% Construct polynomial basis
for j=1:d+1

% Construct Lagrange polynomials to get the polynomial basis
% at the collocation point
coeff = 1;
for r=1:d+1

if r ˜= j
coeff = conv(coeff, [1, -tau_root(r)]);
coeff = coeff / (tau_root(j)-tau_root(r));

end
end
% Evaluate the polynomial at the final time to get the
% coefficients of the continuity equation
D(j) = polyval(coeff, 1.0);

% Evaluate the time derivative of the polynomial at all collocation
% points to get the coefficients of the continuity equation
pder = polyder(coeff);
for r=1:d+1

122

C(j,r) = polyval(pder, tau_root(r));
end

% Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function
pint = polyint(coeff);
B(j) = polyval(pint, 1.0);

end
%% Start with an empty NLP
w = {};
w0 = [];
lbw = [];
ubw = [];
J = 0;
g = {};
lbg = [];
ubg = [];

% States at stage k
Xk = MX.sym('X0', par.nx);
w = [w(:)', {Xk}];
lbw = [lbw; par.xlb];
ubw = [ubw; par.xub];
w0 = [w0; par.x_init];

% "Lift" initial conditions by setting initial value as a parameter
p = MX.sym('p', par.nx);

g = [g(:)', {Xk - p}];
lbg = [lbg; zeros(par.nx,1)];
ubg = [ubg; zeros(par.nx,1)];

% Formulate the NLP
for k = 0:par.N-1

% New NLP variable for the control
Uk = MX.sym(['U_' num2str(k)], par.nu);
w = [w(:)', {Uk}];
lbw = [lbw; par.ulb; 0];
ubw = [ubw; par.uub; par.Q_solar(mpcloop)];
w0 = [w0; par.u_init];

% State at collocation points
Xkj = cell(1,d);
Zkj = cell(1,d);

for j=1:d
% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)], par.nx);
w = [w(:)', Xkj(j)];
lbw = [lbw; par.xlb];
ubw = [ubw; par.xub];
w0 = [w0; par.x_init];

% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)], par.nz);
w = [w(:)', Zkj(j)];
lbw = [lbw; par.zlb];

123

ubw = [ubw; par.zub];
w0 = [w0; par.z_init];

end

% Loop over collocation points
Xk_end = D(1)*Xk;

for j=1:d
% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = par.tol*ones(par.nz,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xkj{r};
end

% Append collocation equations
[fxj, fzj, qj] = f(Xkj{j}, Zkj{j}, Uk, par.dist);
g = [g(:)', {par.h*[fxj; fzj] - [xp; zp]}];
lbg = [lbg; zeros(par.nx + par.nz,1)];
ubg = [ubg; zeros(par.nx + par.nz,1)];

% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};

% Add contribution to quadrature function
J = J + B(j+1)*qj*par.h;

end

% Add regularization terms to economic cost objective
switch options.reg_terms

case 'on'
Phi_reg = (Xk -par.xreg)'*par.Q_reg*(Xk -par.xreg);

case 'off'
Phi_reg = 0;

end

if k>0
switch options.control_penalty

case 'on'
Phi_control = (Uk - Uk_prev)'*par.R_delta*(Uk - Uk_prev);

case 'off'
Phi_control = 0;

end
else

Phi_control = 0;
end

J = J + Phi_reg + Phi_control;
Uk_prev = Uk;

% Add inequality constraint
g = [g(:)', {Uk(2) + Uk(1)*par.rho*par.cp*(Xk(4)-par.dist(2))}];
lbg = [lbg; par.Q_demand((mpcloop-1)+k+1)];
ubg = [ubg; par.Q_demand((mpcloop-1)+k+1)];

g = [g(:)', {Uk(3) + par.q_L1*par.rho*par.cp*(par.dist(1)-Xk(1))}];
lbg = [lbg; par.Q_supply(mpcloop)];

124

ubg = [ubg; par.Q_supply(mpcloop)];

% New NLP variable for state at end of interval
Xk = MX.sym(['X_' num2str(k+1)], par.nx);
w = [w(:)', {Xk}];
lbw = [lbw; par.xlb];
ubw = [ubw; par.xub];
w0 = [w0; par.x_init];

% Shooting gap constraint (continuity for differential states)
g = [g(:)', {Xk_end-Xk}];
lbg = [lbg; zeros(par.nx,1)];
ubg = [ubg; zeros(par.nx,1)];

end

% Add contribution of terminal constraint to objective
if k == par.N-1

switch options.termin_con
case 'on'

Vn = (Xk - par.x_final)'*par.P*(Xk - par.x_final);

% Add terminal constraints
g = [g(:)', {(Xk - par.x_final)'*(Xk - par.x_final)}];
lbg = [lbg; 0];
ubg = [ubg; par.Cf];

case 'off'
Vn = 0;

end
J = J + Vn;

end

par.w0 = w0;
par.lbw = lbw;
par.ubw = ubw;
par.lbg = lbg;
par.ubg = ubg;

% Create an NLP solver
opts = struct;
opts.ipopt.max_iter = par.maxiter;
opts.ipopt.print_level = 0;
opts.print_time = 0;
opts.ipopt.tol = par.tol;
opts.ipopt.acceptable_tol = 100*par.tol; % optimality convergence tolerance

prob = struct('f', J, 'x', vertcat(w{:}), 'p', p, 'g', vertcat(g{:}));
solver = nlpsol('solver', 'ipopt', prob, opts);

par.prob = prob;
par.d = d;
end

Listing 8.12: Simple TES system main simulator

clc;
clear;

125

close all;
addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Call TES parameters
par = TES_Parameters();
%% Surplus supply
Q_supply = 2500*ones(24,1);
%% Load California demand
filename = 'CarliforniaDailyPowerDemand.xlsx';
sheet = 1;
xlRange = 'D2:D25';
Q_demand = xlsread(filename,xlRange);
%% Load direct solar supply
filename_1 = 'SolarSupply.xlsx';
sheet_1 = 1;
xlRange_1 = 'E2:E25';
par.Q_solar = xlsread(filename_1,xlRange_1);
%% Predicted (Expected) Demand
par.Q_demand = [Q_demand; Q_demand];
par.Q_supply = [Q_supply; Q_supply];
%% Disturbances
par.dist = [par.T1;

par.T2;
par.T_s;
par.Q_supply(1);
par.Q_supply(1);];

%% Call TES model (steady state optimization)
[xdot, alg, par, F_integrator, f, fk, ss_opt, dx1dot] = TESmdl(par);

par.x_init = ss_opt(1:par.nx);
par.z_init = ss_opt(par.nx+1:par.nx+par.nz);
par.u_init = ss_opt(par.nx+par.nz+1:par.nx+par.nz+par.nu);

%% Variable counting
par.NXD = par.N*par.nx*(par.d+1); %TN of x
par.NXA = par.N*par.nz*par.d; %TN of z
par.NU = par.N*par.nu; %TN of u
par.NXF = par.nx; %TN of end point variables(diff. only)
par.NV = par.NXD + par.NXA + par.NU + par.NXF; %TN of NLP variables
%% Prepare output variables
x_actual = zeros(par.nIter+1, par.nx);
x_actual(1,:) = par.x_init;
u_opt = NaN(par.nIter+1, par.nu);
i_infeasible = zeros(par.nIter, 1);
solver_return = cell(par.nIter, 1);
w_stored = zeros(par.NV, 1);

options = struct('reg_terms', 'off', 'control_penalty', 'off', ...
'termin_con', 'off');

%% MPC loop
for mpcloop = 1:par.nIter

[solver, par] = TES_createNLP(f, par, mpcloop, options);

% Solve the NLP
if mpcloop ˜= 1

par.w0 = w_stored;

126

end

sol = solver('x0', par.w0, 'p', par.x_init, 'lbx', par.lbw, 'ubx', ...
par.ubw,'lbg', par.lbg, 'ubg', par.ubg);

if solver.stats.success == 0
error('Error: Optimal Solution Not Found')

else
disp('Success: Optimal Solution found.')

end

i_infeasible(mpcloop) = solver.stats.success;
solver_return{mpcloop} = solver.stats.return_status;
w_opt = full(sol.x);

% Store the open loop solution
w_stored = [w_opt((par.nx+par.nu)+par.d*(par.nx+par.nz)+1:end);...

w_opt(end+1-((par.nx+par.nu)+par.d*(par.nx+par.nz)):end)];

% Simulator
x_in = par.x_init; %x0
z_in = par.z_init; %z0
u_in = [w_opt(par.nx+1:par.nx+par.nu); par.dist(1:3); ...

par.Q_supply(mpcloop); par.Q_demand(mpcloop)];

fprintf('------- Sample %d ----- elapsedTime = %2.0f h----- \n', ...
mpcloop, mpcloop)

% ---------- Plant Simulator (offline) ----------------------------
xpred = F_integrator('x0', x_in,'p', u_in,'z0', z_in);
par.xf = full(xpred.xf); % without noise
par.zf = full(xpred.zf);
% ---

par.x_init = par.xf;
par.z_init = par.zf;

x_actual(mpcloop+1,:) = par.x_init;
u_opt(mpcloop,:) = u_in(1:par.nu);

fprintf('Expected Demand = %4.2f \t Actual Demand = %4.2f \n', ...
par.Q_demand(mpcloop), par.Q_demand(mpcloop))

fprintf('Optimal Inputs = %2.4f \t %4.2f \t %4.2f \n', u_in(1:par.nu))
fprintf('Predicted State = %3.2f \t %3.2f \t %3.2f \t %3.2f \t %3.2f\n',...
w_opt(par.nu+(par.d+1)*par.nx+par.d*par.nz+1:par.nu+(par.d+1)*par.nx...

+par.d*par.nz+par.nx))
fprintf('Actual State = %3.2f \t %3.2f \t %3.2f \t %3.2f \t %3.2f \n', ...

par.xf)

end

tgrid = linspace(0, par.T/3600, mpcloop + 1);
%% Plot the results
Plot_TES(par, x_actual, u_opt, tgrid)

127

Case four: Multistage NMPC on simple TES with plant-model mismatch

Listing 8.13: Scenario-based multistage NMPC

clear;
clc;
close all;
addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Model parameters
run Parameters_scendae.m
%% Demand profile
Q_demand = [1500*ones(12,1); 3500*ones(12,1)];
%% Actual temperatures
T1_actual = 99;
T2_actual = 18;
%% Uncertain parameter(s) (uncertainty space)
par1 = [90; 95; 100]; %T1
par2 = [15; 20; 25]; %T2
[scens, scen_count] = scenpara(par1,par2);
%% Collocation
% Degree of interpolating polynomial
d = 3;
% Get collocation points
tau_root = [0 collocation_points(d, 'legendre')];
% Coefficients of the collocation equation
C = zeros(d+1,d+1);
% Coefficients of the continuity equation
D = zeros(d+1, 1);
% Coefficients of the quadrature function
B = zeros(d+1, 1);
% Construct polynomial basis
for j=1:d+1
% Construct Lagrange polynomials to get the polynomial basis at
% the collocation point
coeff = 1;

for r=1:d+1
if r ˜= j

coeff = conv(coeff, [1, -tau_root(r)]); %convolution
coeff = coeff / (tau_root(j)-tau_root(r));

end
end

% Evaluate the polynomial at the final time to get the
% coefficients of the continuity equation
D(j) = polyval(coeff, 1.0);

% Evaluate the time derivative of the polynomial at all collocation
% points to get the coefficients of the continuity equation
pder = polyder(coeff);
for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));
end
% Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function
pint = polyint(coeff);
B(j) = polyval(pint, 1.0);

128

end

%% Time horizon
T = 24*60*60; %Prediction horizon time
ndiff = 5; %number of differential states
nalg = 4; %number of algebraic states
nu = 4; %number of controls
nx = nalg + ndiff; %total number of states
zub = Inf*ones(nalg,1);
zlb = -Inf*ones(nalg,1);
%% Run ssopt
run RTO.m
x_0 = x_init;
%% Declare model variables
x1 = SX.sym('x1');
x2 = SX.sym('x2');
x3 = SX.sym('x3');
x4 = SX.sym('x4');
x5 = SX.sym('x5');
x = [x1; x2; x3; x4; x5];
x6 = SX.sym('x6');
x7 = SX.sym('x7');
x8 = SX.sym('x8');
x9 = SX.sym('x9');
z = [x6; x7; x8; x9];
u1 = SX.sym('u1'); % q_L2
u2 = SX.sym('u2'); % q_R2
u3 = SX.sym('u3'); % Q_tank
u4 = SX.sym('u4'); % Q_demand
u = [u1; u2; u3; u4];
p1 = SX.sym('p1');
p2 = SX.sym('p2');
p = [p1; p2];
%% Model equations
xdot = [(1/V_hex)*(q_L1*(p1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(u1*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_hex)*(u2*(p2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_tank)*(q_R1*(x2-x5)+u1*(x3-x5)+(u3/(rho*cp)-h_t_dot*(x5-T_s)));

p1-x2-x6ˆ(1/n);

x1-x5-x7ˆ(1/n);

x3-p2-x8ˆ(1/n);

x5-x4-x9ˆ(1/n)];

%% Objective term
L = Pm*u4 + Pt*u3 + Pu*(u1ˆ2+ u2ˆ2);
%% Continuous time dynamics
f = Function('f', {x, z, u, p}, {xdot, L});
%% Control discretization

129

N = 24; % Number of control intervals, 24
M = 24; % Mpc loops
h = T/N;
Nr = 1; % Robust horizon of multi-stage NMPC
levels = scen_count;
S = levelsˆNr; % Total number of scenarios
period = N;
%% Predicted demand
Q_demand = [Q_demand; Q_demand];
%% Variable counting
NXD = N*ndiff*(d+1); %Total Number of differential state variables
NXA = N*nalg*d; %Total Number of algebraic state variables
NU = N*nu; %Total Number of input variables
NXF = ndiff; %Total Number of end point variables (diff. only)
NV = NXD + NXA + NU + NXF; %Total number of NLP variables

%% Prepare output variables
x_opt = zeros(M,ndiff);
u_opt = NaN(M+1,nu);
i_infeasible = zeros(M,1);
solver_return = cell(1,M);
w_stored = zeros(NV,1);
%% MPC loop
for ii=1:M

if ii == 1
% Start with an empty NLP
w={};
w0 = [];
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];

% "Lift" initial conditions
Xkl = MX.sym('X0', ndiff);
w = [w(:)', {Xkl}];
lbw = [lbw; x_init];
ubw = [ubw; x_init];
w0 = [w0; x_init];
% Formulate the NLP
% For each scenario in multi-stage NMPC
for l=1:S %S=9
% New NLP variable for the control
for k=0:N-1

Ukl = MX.sym(['U_' num2str(k) '_' num2str(l)], nu);
w = [w(:)', {Ukl}];
lbw = [lbw; ulb];
ubw = [ubw; uub];
w0 = [w0; u_init];

% State at collocation points
Xklj = cell(1,d);
Zklj = cell(1,d);

for j=1:d

130

%Differential states
Xklj{j} = MX.sym(['X_' num2str(k) '_' num2str(l) ...
'_' num2str(j)], ndiff);
w = [w(:)', Xklj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];
% Algebraic states
Zklj{j} = MX.sym(['Z_' num2str(k) '_' num2str(l) ...
'_' num2str(j)], nalg);
w = [w(:)', Zklj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];
w0 = [w0; z_init];

end
% Loop over collocation points
Xkl_end = D(1)*Xkl;
for j=1:d

% Expression for the state derivative at the
% collocation point
xp = C(1,j+1)*Xkl;
zp = zeros(nalg,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xklj{r};
end

% Append collocation equations
[fj, qj] = f(Xklj{j}, Zklj{j}, Ukl, scens{l}');
g = [g(:)', {h*fj - [xp; zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state

Xkl_end = Xkl_end + D(j+1)*Xklj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Differential states
Xkl = MX.sym(['X_' num2str(k+1) '_' num2str(l)], ndiff);
w = [w(:)', {Xkl}];
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];
% Add inequality constraint
g = [g(:)', {Ukl(4) + Ukl(2)*rho*cp*(Xkl(4)-scens{l}(2))}];
lbg = [lbg; Q_demand((ii-1)+k+1)];
ubg = [ubg; Q_demand((ii-1)+k+1)];

% Add equality constraint
g = [g(:)', {Xkl_end - Xkl}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

end
end
else

131

% Start with an empty NLP
w={};
w0 = w_stored;
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];
% Apply the first control from the previous solution
w0(1:ndiff+nu) = [x_init; u_init];

% "Lift" initial conditions
Xkl = MX.sym('X0', ndiff);
w = [w(:)', {Xkl}];
lbw = [lbw; w0(1:ndiff)];
ubw = [ubw; w0(1:ndiff)];

% Formulate the NLP
% For each scenario
for l=1:S
% New NLP variable for the control

for k=0:N-1
Ukl = MX.sym(['U_' num2str(k) '_' num2str(l)], nu);
w = [w(:)', {Ukl}];
lbw = [lbw; ulb];
ubw = [ubw; uub];

% State at collocation points
Xklj = cell(1,d);
Zklj = cell(1,d);

for j=1:d
%Differential states
Xklj{j} = MX.sym(['X_' num2str(k) '_' num2str(l)...

'_' num2str(j)], ndiff);
w = [w(:)', Xklj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];

% Algebraic states
Zklj{j} = MX.sym(['Z_' num2str(k) '_' num2str(l) ...
'_' num2str(j)], nalg);
w = [w(:)', Zklj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];

end

% Loop over collocation points
Xkl_end = D(1)*Xkl;
for j=1:d

% Expression for the state derivative at the
% collocation point
xp = C(1,j+1)*Xkl;
zp = zeros(nalg,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xklj{r};

132

end

% Append collocation equations
[fj, qj] = f(Xklj{j}, Zklj{j}, Ukl, scens{l}');
g = [g(:)', {h*fj - [xp; zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state
Xkl_end = Xkl_end + D(j+1)*Xklj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Differential states
Xkl = MX.sym(['X_' num2str(k+1) '_' num2str(l)], ndiff);
w = [w(:)', {Xkl}];
lbw = [lbw; xlb];
ubw = [ubw; xub];

% Add inequality constraint
g = [g(:)', {Ukl(4) + Ukl(2)*rho*cp*(Xkl(4)-scens{l}(2))}];
lbg = [lbg; Q_demand((ii-1)+k+1)];
ubg = [ubg; Q_demand((ii-1)+k+1)];
% Add equality constraint
g = [g(:)', {Xkl_end - Xkl}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

end
end
end
% Non-anticipativity constraints
U = w(2:2*d+2:end); % +2 is the start and end point for the state!!!
for n=1:S-1

g = [g(:)', {U{N*(n-1)+1} - U{1+N*n}}];
lbg = [lbg; -tol*zeros(nu,1)];
ubg = [ubg; tol*zeros(nu,1)];

end

%% Create an NLP solver
opts = struct;
opts.ipopt.max_iter = maxiter; %5000;
opts.print_time = 1; %0,1
opts.ipopt.tol = tol;
opts.ipopt.acceptable_tol =100*tol; % optimality convergence tolerance
prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
solver = nlpsol('solver', 'ipopt', prob, opts);

%% Solve the NLP
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);
if solver.stats.success == 0

error('Error: Optimal Solution Not Found')
end
i_infeasible(ii) = solver.stats.success;
solver_return{ii} = solver.stats.return_status;
w_opt = full(sol.x);
%% Store the open loop solution

133

w_stored = [w_opt((ndiff+nu)+d*nx+1:end); ...
w_opt(end+1-((ndiff+nu)+d*nx):end)];
z_init = w_stored((d-1)*ndiff+nu+1:ndiff+nu+nx);

%% Simulator (What actually happening in the plant!!!)
x0 = x_init;
u_init = w_opt(ndiff+1:ndiff+nu);
tsample = T/M;
tspan = [0 tsample];

par = [q_L1; q_R1; u_init(1:nu-1); T1_actual; T2_actual; ...
V_hex; V_tank; U_hex; A_hex; rho;...
cp; h_s; A_tank; T_s; n];
options = odeset('RelTol',1e-5,'Stats','off','OutputFcn',@odeplot);
[t,x] = ode15s(@(t,x) twoPlantModelChen(t,x,par), tspan, x0, options);

u_opt(ii,:) = w_opt(ndiff+1:ndiff+nu);
x_m = x(end,1:ndiff);
x_opt(ii,:) = x_m;
x_init = transpose(x_m);
x_init
u_init
ii
end

T = T/3600;
tgrid = linspace(0, T, N+1);
clf;

x_opt = [x_0'; x_opt];

%% Plot optimal controls
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',15,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',15,...
'DefaultLineLineWidth',1.5,...
'DefaultLineMarkerSize',7.75,...
'DefaultStairLineWidth',1.5);
set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');
set(gcf,'color','white');

figure(1)
subplot(311)
plot(tgrid, x_opt(:,5), 'k-')
ylabel('T_{tank} [$ˆ{\circ}$C]','Interpreter','latex')
hold off
grid on
xlim([0 24])
ylim([50 70])

subplot(312)
stairs(tgrid, u_opt(:,1)*1e3, 'r-')
hold on
stairs(tgrid, u_opt(:,2)*1e3, 'b-')
hold off
legend('q_{L2}','q_{R2}','Interpreter','latex')

134

ylabel('q_{i2} [ℓ/s]','Interpreter','latex')
grid on
xlim([0 24])
ylim([0 55])

subplot(313)
stairs(tgrid, u_opt(:,4), 'r-')
hold off
xlabel('time [hr]','Interpreter','latex')
ylabel('Power [kW]','Interpreter','latex')
legend('Q_{market}','Interpreter','latex')
grid on
xlim([0 24])
ylim([0 500])

Listing 8.14: Scenario selection

function [scens, scen_count] = scenpara(a1,a2)
%Box method for scenario selection and return the
%scenarios
%scenpara: creates combinations for uncertain
%parameter levels in scenarioMPC
scen_count = length(a1)*length(a2); %length(a1)=3
scens = {}; %scen_count is the area of scenario square

for i=1:length(a1)
for j=1:length(a2)

scens = [scens(:); {[a1(i), a2(j)]}];
end

end

end

Case four: Standard NMPC on simple TES with plant-model mismatch with slack
variables

Listing 8.15: Standard NMPC with slack variables

clear;
clc;
close all;
addpath('C:\Users\dingn\Desktop\Thesis\casadi-windows-matlabR2016a-v3.5.1')
import casadi.*
%% Model parameters
run Parameters_TES.m
%% Energy demand profile
Q_demand = [1500*ones(12,1); 3500*ones(12,1)];
%% Actual T1 and T2 for considering plant-model mismatch
T1_actual = 99;
T2_actual = 18;
%% Degree of interpolating polynomial
d = 3; % Gauss-Radua
%% Get collocation points
tau_root = [0 collocation_points(d, 'radau')];
%% Coefficients of the collocation equation

135

C = zeros(d+1,d+1);
% Coefficients of the continuity equation
D = zeros(d+1, 1);
% Coefficients of the quadrature function
B = zeros(d+1, 1);

%% Construct polynomial basis
for j=1:d+1
% Construct Lagrange polynomials to get the polynomial basis
% at the collocation point
coeff = 1;
for r=1:d+1

if r ˜= j
coeff = conv(coeff, [1, -tau_root(r)]);
coeff = coeff / (tau_root(j)-tau_root(r));

end
end

% Evaluate the polynomial at the final time to get the
% coefficients of the continuity equation
D(j) = polyval(coeff, 1.0);
% Evaluate the time derivative of the polynomial at all collocation
% points to get the coefficients of the continuity equation
pder = polyder(coeff);

for r=1:d+1
C(j,r) = polyval(pder, tau_root(r));

end
% Evaluate the integral of the polynomial to get the coefficients
% of the quadrature function
pint = polyint(coeff);
B(j) = polyval(pint, 1.0);

end
%% Time horizon
T = 24*60*60; % Prediction horizon is 24h
ndiff = 5; % Number of differential states, x
nalg = 4; % Number of algebraic states, z
nu = 4; % Number of control inputs, u
nx = nalg + ndiff; % Total number of states
zub = Inf*ones(nalg,1); % Algebraic states, z
zlb = -Inf*ones(nalg,1);

run RTO111.m
x_0 = x_init;
%% Declare model variables
% Diffential states
x1 = SX.sym('x1');
x2 = SX.sym('x2');
x3 = SX.sym('x3');
x4 = SX.sym('x4');
x5 = SX.sym('x5');
x = [x1; x2; x3; x4; x5];
% Algebraic states
x6 = SX.sym('x6');
x7 = SX.sym('x7');
x8 = SX.sym('x8');
x9 = SX.sym('x9');
z = [x6; x7; x8; x9];

136

% Control inputs
u1 = SX.sym('u1'); % q_L2
u2 = SX.sym('u2'); % q_R2
u3 = SX.sym('u3'); % Q_tank
u4 = SX.sym('u4'); % Q_market
u = [u1; u2; u3; u4];
%% Slack variable
s = SX.sym('s', ndiff);
s_init = ones(ndiff,1);
%% Model equations (DEAs)

xdot = [(1/V_hex)*(q_L1*(T1-x1) - h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(q_R1*(x5-x2) + h_dot*(0.5*(x6 + x7))ˆ(1/n));

(1/V_hex)*(u1*(x5-x3) - h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_hex)*(u2*(T2-x4) + h_dot*(0.5*(x8 + x9))ˆ(1/n));

(1/V_tank)*(q_R1*(x2-x5)+u1*(x3-x5)+(u3/(rho*cp)-h_t_dot*(x5-T_s)));

T1-x2-x6ˆ(1/n);

x1-x5-x7ˆ(1/n);

x3-T2-x8ˆ(1/n);

x5-x4-x9ˆ(1/n)];

%% Objective term
L = Pm*u4 + Pt*u3 + Pu*(u1ˆ2+u2ˆ2) + rho_s*sum(s);
%% Continuous time dynamics
f = Function('f', {x, z, u, s}, {xdot, L});
%% Control discretization
N = 24; % Number of control intervals, 24 hours
M = 24; % Number of MPC loops, reoptimizing times
h = T/N;
period = N;
%% Variable counting
NXD = N*ndiff*(d+1); %Total Number of differential state variables
NXA = N*nalg*d; %Total Number of algebraic state variables
NU = N*nu; %Total Number of input variables
NXF = ndiff; %Total Number of end point variables(diffonly)
NV = NXD + NXA + NU + NXF; %Total number of NLP variables
%% Prepare output variables
x_opt = zeros(ndiff,M);
u_opt = zeros(nu,M);
i_infeasible = zeros(M,1);
solver_return = {};
w_stored = zeros(NV,1);
%% Predicted Demand
Q_demand = [Q_demand; Q_demand];
%% MPC loop
for i=1:M

if i==1
% Start with an empty NLP
w={};

137

w0 = [];
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];

% "Lift" initial conditions
% Differential states
Xk = MX.sym('X0', ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; x_init];
ubw = [ubw; x_init];
w0 = [w0; x_init];

% Formulate the NLP
for k=0:N-1

% New NLP variable for the control
Uk = MX.sym(['U_' num2str(k)], nu);
w = [w(:)', {Uk}];
lbw = [lbw; ulb];
ubw = [ubw; uub];
w0 = [w0; u_init];

Sk = MX.sym(['S_' num2str(k)], ndiff);
w = [w(:)', {Sk}];
lbw = [lbw; zeros(ndiff,1)];
ubw = [ubw; inf(ndiff,1)]; % No upper bound!!!

% ubw = [ubw; 1*ones(ndiff,1)];
w0 = [w0; s_init];

% State at collocation points
Xkj = cell(1,d);
Zkj = cell(1,d);
for j=1:d
% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);
w = [w(:)', Xkj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];
w0 = [w0; x_init];

% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);
w = [w(:)', Zkj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];
w0 = [w0; z_init];

end
% Loop over collocation points
Xk_end = D(1)*Xk;

for j=1:d
% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = tol*ones(nalg,1);

138

for r=1:d
xp = xp + C(r+1,j+1)*Xkj{r};

end

% Append collocation equations
[fj, qj] = f(Xkj{j}, Zkj{j}, Uk, Sk);
g = [g(:)', {h*fj - [xp;zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Differential states
Xk = MX.sym(['X_' num2str(k+1)], ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; -Inf*ones(ndiff,1)];
ubw = [ubw; +Inf*ones(ndiff,1)];
w0 = [w0; x_init];

% Add inequality constraint
g = [g(:)', {Uk(4) + Uk(2)*rho*cp*(Xk(4)-T2)}];
lbg = [lbg; Q_demand((i-1)+k+1)];
ubg = [ubg; Q_demand((i-1)+k+1)];

% Add equality constraint
g = [g(:)', {Xk_end-Xk}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

g = [g(:)', {Xk-Sk}, {Xk+Sk}]; % Soft constraint
lbg = [lbg; -Inf.*ones(ndiff,1); xlb.*ones(ndiff,1)];
ubg = [ubg; xub.*ones(ndiff,1); +Inf.*ones(ndiff,1)];

end

else
% Start with an empty NLP
w={};
w0 = w_stored; %!!!
lbw = [];
ubw = [];
J = 0;
g={};
lbg = [];
ubg = [];
% Apply the first control from the previous solution
w0(1:ndiff+nu) = [x_init; u_init];

% "Lift" initial conditions
% Differential states
Xk = MX.sym('X0', ndiff);
w = [w(:)', {Xk}];
lbw = [lbw; w0(1:ndiff)];

139

ubw = [ubw; w0(1:ndiff)];

% Formulate the NLP
for k=0:N-1

% New NLP variable for the control
Uk = MX.sym(['U_' num2str(k)],nu);
w = [w(:)', {Uk}];
lbw = [lbw; ulb];
ubw = [ubw; uub];
Sk = MX.sym(['S_' num2str(k)], ndiff);
w = [w(:)', {Sk}];
lbw = [lbw; zeros(ndiff,1)];
ubw = [ubw; inf(ndiff,1)];

% State at collocation points
Xkj = {};
Zkj = {};
for j=1:d

% Differential states
Xkj{j} = MX.sym(['X_' num2str(k) '_' num2str(j)],ndiff);
w = [w(:)', Xkj(j)];
lbw = [lbw; xlb];
ubw = [ubw; xub];

% Algebraic states
Zkj{j} = MX.sym(['Z_' num2str(k) '_' num2str(j)],nalg);
w = [w(:)', Zkj(j)];
lbw = [lbw; zlb];
ubw = [ubw; zub];

end

% Loop over collocation points
Xk_end = D(1)*Xk;
for j=1:d

% Expression for the state derivative at the collocation point
xp = C(1,j+1)*Xk;
zp = tol*ones(nalg,1);
for r=1:d

xp = xp + C(r+1,j+1)*Xkj{r};
end

% Append collocation equations
[fj, qj] = f(Xkj{j}, Zkj{j}, Uk, Sk);
g = [g(:)', {h*fj - [xp;zp]}];
lbg = [lbg; zeros(nx,1)];
ubg = [ubg; zeros(nx,1)];

% Add contribution to the end state
Xk_end = Xk_end + D(j+1)*Xkj{j};
% Add contribution to quadrature function
J = J + B(j+1)*qj*h;

end
% New NLP variable for state at end of interval
% Only for differential states
Xk = MX.sym(['X_' num2str(k+1)], ndiff);
w = [w(:)', {Xk}];

% lbw = [lbw; xlb];

140

% ubw = [ubw; xub];
lbw = [lbw; -Inf*ones(ndiff,1)];
ubw = [ubw; +Inf*ones(ndiff,1)];

% Add inequality constraint
g = [g(:)', {Uk(4) + Uk(2)*rho*cp*(Xk(4)-T2)}];
lbg = [lbg; Q_demand((i-1)+k+1)];
ubg = [ubg; Q_demand((i-1)+k+1)];

% Add equality constraint (only differential states)
g = [g(:)', {Xk_end-Xk}];
lbg = [lbg; zeros(ndiff,1)];
ubg = [ubg; zeros(ndiff,1)];

g = [g(:)', {Xk-Sk}, {Xk+Sk}];
lbg = [lbg; -Inf.*ones(ndiff,1); xlb.*ones(ndiff,1)];
ubg = [ubg; xub.*ones(ndiff,1); +Inf.*ones(ndiff,1)];

end
end
%% Create an NLP solver
opts = struct;
opts.ipopt.max_iter = maxiter; %5000;
opts.ipopt.print_level = 3; %0,3
opts.print_time = 1; %0,1
opts.ipopt.tol = tol;
opts.ipopt.acceptable_tol =100*tol; % optimality convergence tolerance
% opts.ipopt.jacobian_approximation = 'finite-difference-values';
opts.ipopt.hessian_approximation = 'limited-memory';
% % opts.ipopt.limited_memory_update_type = 'bfgs';
% % % opts.ipopt.limited_memory_max_skipping= '1';
% % % opts.ipopt.limited_memory_special_for_resto = 'no';

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat(g{:}));
solver = nlpsol('solver', 'ipopt', prob, opts);
%% Solve the NLP
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);

if solver.stats.success == 0
error('Error: Optimal Solution Not Found')

end

i_infeasible(i) = solver.stats.success;
solver_return{i} = solver.stats.return_status;
w_opt = full(sol.x);

%% Store the open loop solution
w_stored = [w_opt((ndiff+nu)+d*nx+1:end); ...
w_opt(end+1-((ndiff+nu)+d*nx):end)];

%% Simulator
x0 = x_init;
tspan = [0 3600];

p = [q_L1; q_R1; w_opt(ndiff+1:ndiff+nu-1); ...
T1_actual; T2_actual; V_hex; V_tank; U_hex; A_hex; rho;...
cp; h_s; A_tank; T_s; n];

141

options = odeset('RelTol', 1e-8,'Stats','off','OutputFcn', @odeplot);
[t,x] = ode15s(@(t,x) twoPlantModelChen(t,x,p), tspan, x0, options);
u_opt(:,i) = w_opt(ndiff+1:ndiff+nu);
u_init = w_opt(ndiff+1:ndiff+nu);
x_m = x(end,:);
x_opt(:,i) = x_m;
x_init = x_m';
x_init(5)
u_init
i
end
%% Adding additional regularisation term!!!
Cost = Pm*u_opt(2,:) + Pu*(u_opt(1,:).ˆ2+u_opt(3,:).ˆ2) + rho_s*sum(s);
Cost = [Cost, NaN];

%% Store data
storageNMPC = struct('Demand',Q_demand,'OptimalStates',...
x_opt,'OptimalInputs',u_opt,'Measurement',...
x_opt,'Cost',Cost);
%% Plot results
T = T/3600;
tgrid = linspace(0, T, N+1);
clf;

x_opt = [x_0, x_opt];

%% Plot optimal controls
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',15,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',15,...
'DefaultLineLineWidth',1.5,...
'DefaultLineMarkerSize',7.75,...
'DefaultStairLineWidth',1.5);
set(findall(gcf,'Type','text'),'FontSize',15,'Interpreter','latex');
set(gcf,'color','white');
figure(1)

subplot(311)
plot(tgrid, x_opt(5,:), 'k-')
ylabel('T_{tank} [$ˆ{\circ}$C]','Interpreter','latex')
hold off
grid on
xlim([0 24])
ylim([55 76])

subplot(312)
stairs(tgrid, [u_opt(1,:)*1e3, nan], 'r-')
hold on
stairs(tgrid, [u_opt(2,:)*1e3, nan], 'b-')
hold off
ylabel('q_{i2} [ℓ/s]','Interpreter','latex')
legend('q_{L2}','q_{R2}','Interpreter','latex')
grid on
xlim([0 24])
ylim([0 52])

142

subplot(313)
stairs(tgrid, [u_opt(4,:), nan], 'r-')
xlabel('time [hr]','Interpreter','latex')
ylabel('Power [kW]','Interpreter','latex')
legend('Q_{market}','Interpreter','latex')
grid on
xlim([0 24])
ylim([0 1100])

143

D
ing N

an

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Ding Nan

Optimal Control of TES System by Using
Nonlinear Model Predictive Control

Master’s thesis in Chemical Process Technology

Supervisor: Johannes Jäschke (Associate Professor), Zawadi Ntengua

Mdoe (PhD Candidate)

June 2020

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Structure of the thesis

	Thermal energy storage (TES) systems
	Energy storage systems
	Thermal energy storage systems
	Introduction
	Basic thermodynamics of energy storage
	Sensible TES system using water storage

	Heat transfer modeling in heat exchangers
	Brief introduction of heat exchanger
	Heat transfer mechanisms
	Overall heat transfer coefficient, U
	Logarithmic mean temperature difference – LMTD
	Approximation of LMTD

	Optimal control problem and nonlinear model predictive control
	Introduction to optimization problem
	Mathematical formulation
	Nonlinear programming problem

	Optimal control problem
	Dynamic systems and optimization
	Numerical methods for solving dynamic optimization problem
	Sequential approach (direct single shooting)
	Simultaneous approach
	Direct collocation method
	Nonlinear optimization

	Model predictive control
	MPC algorithm
	Nonlinear model predictive control
	Multistage NMPC

	Implementation
	Implementation of modeling
	Implementation of simulation
	Background information of CasADi

	Modeling of thermal energy storage system
	Model description and assumptions
	Process modeling
	Topology illustration
	Energy balances and Mass balances
	Model equations
	Energy demand modeling

	Optimal control of TES system by iNMPC
	Implementation details
	Standard NMPC on a simple TES system without direct solar heating
	Optimization problem
	Results

	Standard NMPC on a simple TES system with direct solar heating
	Optimization problem
	Results

	Multistage NMPC on a simple TES system with uncertainty
	Modeling of the uncertainties
	Optimization problem
	Results
	Standard NMPC on a simple TES system with uncertainty

	Results and discussion
	Storage vs. No storage
	Without direct solar heating vs. with direct solar heating
	Multistage NMPC vs. standard NMPC

	Conclusion
	Conclusion
	Further work

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Matlab code

