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Abstract

In this project several methods for solving the correspondence problem and object detection in stereo
vision are compared and evaluated. In regards to the correspondence problem, the local correspond-
ence method Sum of Absolute Differences and the global method Semi-Global Method were tested
on real data. Stixel Tesselation and Euclidean Clustering were tested in regards to object detection.
This project was conducted as a part of the research project at NTNU called Autoferry, and provide
improved knowledge on the use of stereo vision on the autonomous ferry, milliAmpere.

Autonomous vehicles that move in a space shared with other vehicles depend on accurate and reliable
perception data. Detecting and estimating distance to objects far away is a difficult task. Lidar has
been the "go-to" sensor for high frequency 3D-perception in short to medium ranges. However, these
sensors can be expensive, have poor resolution and can be weather sensitive. Stereo cameras serve
many of the same purposes with higher resolution, but often poorer accuracy.

To address this, I tested and evaluated different stereo vision algorithms on real data from milli-
Ampere. The results from these tests has been compared against each other as well as against lidar
data to see which is best in terms of accuracy, detection and run time. The findings of this study show
that stereo vision can provide valuable information to autonomous vehicles at greater distances than
lidar, and that the accuracy is comparable to what the lidar provides. A stereo camera therefore seems
like a good sensor for use on milliAmpere. However, the run time of the methods presented are not
optimal, and future research should focus on reducing run time.
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Sammendrag

I denne avhandlingen evaluerers flere methoder for løsing av korrespondanseproblemet og objekt-
deteksjon ved bruk av stereokamera. For løsing av korrespondanseproblemet ble den lokale metoden
Sum of Absolute Differences og den globale metoden Semi-Global Method testet på virkelige data. Met-
oden Stixel Tesselasjon og Euclidisk Gruppering ble testet innen objektdeteksjon. Arbeidet ble gjort
som en del av forskningsprojectet Autoferry, hvor dette prosjektet undersøker mulighetene for bruk
av stereokamera på den autonome fergen, milliAmpere.

Autonome kjøretøy som beveger seg i et område delt med andre kjøretøy er avhengige av nøyak-
tig og robust oppfatning av omgivelsene. Deteksjon og estimering av distanse til objekter på lang
avstand er utfordring å få til. Over lengre tid har lidar har vært den vanligste sensoren for logging
av omgivelsedata i korte til medium lange avstander. Derimot, så kan lidar-sensorer være dyre, bli
sterkt påvirket av værforhold og ha dårlig oppløsning på store avstander. Et alternativ til lidar er
stereokamera. Et stereokamera dekker mange av de samme behovene som lidar, men med høyere
oppløsning. Ulempen med stereokamera har tradisjonelt sett vært dårligere nøyaktighet og krevende
med tanke på regnekraft.

I denne studien er de ulike metodene testet og evaluert gjennom eksperiementer gjort med den
autonome fergen, milliAmpere i de faktisk omgivelsene milliAmpere skal operere i. Metodene har
blitt sammenlignet med hverandre i tillegg til mot lidar-data. Funnene fra denne studien typer på
at stereokamera kan tilby informasjon om omgivielsene på en større rekkevidde enn lidar, med en
nøyaktighet som er sammenlignbar med lidar. Stereokamera kan derfor være en nyttig sensor ombord
på milliAmpere. Derimot var kjøretiden til de forskjellige objektdeteksjons metodene ikke optimal,
og videre arbeid bør fokusere på å redusere kjøretiden.
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Chapter 1

Introduction

1.1 Background

A crucial part of any autonomous vehicle is an accurate and reliable perception system. For an
autonomous system to move safely, it depends on systems providing information about its surround-
ings, that enable the autonomous system to make correct decisions regarding its movement to avoid
collisions. These systems also has to be able to detect objects of various size and range to plan tra-
jectories early, and behave predictable for other vehicles in its vicinity. As robots are now taking their
first steps out of factory floors and into the real world, these systems are becoming more important
than ever.

In order for a robot to sense the surroundings it needs to be equipped with various sensors. Radar
has the ability to detect objects at large distances, but its slow update frequency and poor accuracy
makes it less ideal for close encounters [1]. Lidar is accurate in perceiving depth at closer distances,
but it has poor resolution at long ranges and can be heavily affected by weather conditions, especially
rain. Stereo cameras have a denser resolution than lidar, but traditionally has lacked the same depth
accuracy. However, in recent years stereo vision has grown in popularity due to new and improved
algorithms and its affordability compared to the lidar. This thesis explores opportunities to imple-
ment stereo vision on a robot in the maritime environment.

An Unmanned Surface Vehicle (USV) is a vehicle operating on the sea-surface without on-board per-
sonnel. A sub-category of these vehicles is the Autonomous Surface Vehicle (ASV), which is a vehicle
able to operate without human interaction. There has been conducted some research on ASVs and
their applications [2] in recent years, but as autonomy is becoming more and more common in the
automotive industry, it is still a scarce feature in the maritime sector. Nonetheless, a suitable area for
ASVs can be in human transport at sea, namely ferries. According to [3] human error was a factor in
more than 70% of the accidents in the study. This makes room for a large leap in safety if the human
error can be eliminated with the use of autonomy.

This thesis is a part of the autoferry research project at NTNU. The main goal of the research project is
to "develop groundbreaking new concepts and methods which will enable the development of autonom-
ous passenger ferries for transport of people in urban water channels" [4]. The ferry, milliAmpere is
going to transport passengers between Ravnkloa and Vestre kanalhavn in the Trondheim canal. The
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passengers shall be able to call the ferry by the push of a button, and the rest is to be fully autonomous.

Earlier work done regarding stereo vision on the autoferry project includes Lina Theimann and Trine
Ødegårds master thesis [5] where they used a correlation based local method to obtain a disparity
map and a Convolutional Neural Network (CNN) for object detection. A specialization project done
by the same authors compared different local methods for solving the correspondence problem [6]
In my specialization project in TTK4551 during the autumn of 2020 [7] I tried to take this further by
comparing their finds with the more recent method called the Semi-Global Method (SGM) [8]. This
project showed that SGM could operate in real time and resulted in denser point cloud than local
methods, but at roughly the same accuracy regarding depth.

The aim of this thesis is to evaluate different stereo vision systems regarding object detection and
depth estimation in a way that contribute to a better understanding of how the different methods
work and what their strengths and weaknesses are. In addition to this the most suitable methods will
be chosen for use on milliAmpere. As there are many different methods and algorithms to choose for
the different stages in the process, this thesis tries to combine the finds by Olsen and Theimann in
[6] and my specialization project [7], and present a more complete system. This is done by testing
out systems in the working environment to help determine the performance of the system in real life
scenarios. The thesis addresses the following tasks:

• General design of a stereo vision system.

• Evaluation of matching methods.

• Evaluation of object detection methods.

• Implementation of a stereo vision system on milliAmpere.

• Evaluation of performance.

1.2 Thesis outline

The thesis is structured such that in chapter 2 relevant background theory will be presented. Then the
backbone of stereo vision, namely solving the correspondence problem will be presented in chapter
3, and evaluated in chapter 4. In chapter 5 different methods for generic object detection based on
stereo vision will be explained, followed by an evaluation of the methods with regards to their use in
this thesis. Chapter 6 explains the stereo system used in this thesis and the design choices that were
made. In chapter 7 and chapter 8 the experiments conducted and the following results, respectively.
Lastly a thorough discussion and conclusion is made in chapter 9 and chapter 10.



Chapter 2

Theory

In this chapter relevant theory for understanding a stereo vision system will be presented. How to
use a monocular camera as a sensor is fundamental and it will therefore be explained first. Epipolar
geometry is key in understanding why stereo vision systems differs from a setup with two unrelated
cameras, and has therefore a central part in this chapter. Finally, the theory behind stereo camera
calibration and accuracy in stereo vision systems will be described.

2.1 Camera as a Sensor

In general the camera conducts a mapping of the 3D world onto a 2D image [9, p. 153]. There
is a range of different methods for this type of mapping, but the simplest and most popular is the
pinhole camera model. The pinhole model is based on the observation that when a plane with a small
aperture is placed in front of a scene, the scene will be projected as an reversed image of the reality
on the other side of the plane. This phenomena can be observed in a dark room with a keyhole as
the aperture. An illustration of the can be seen in fig.2.1b.

(a) No barrier causes blurred image (b) Barrier with aperture

Figure 2.1: Illustration of the principle behind the pinhole camera model

In practice this is done by defining a plane with Zc = f , parallel to the camera coordinate system
(where f is the focal length of the camera, fig. 2.2). Points in the 3D world are observed by the
camera as a line between origin of the camera coordinate system and the 3D point. This line will
intersect the image plane, and the relationship between image- and world points can be described
by the means of similar triangles (fig. 2.2).

3
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Figure 2.2: Relation between camera- and image coordinates

(Xc , Yc , Zc)
T −→
�

f
x
z

, f
y
z

, f
�T

(2.1)

Homogeneous Coordinates

Homogeneous coordinates is a coordinate system for projective spaces. They allow us to express the
relation between 2D and 3D coordinates very elegantly by simplifying mathematical derivations [9,
p. 27]. For instance can several transformations such as translation, rotation, scale, affine, etc. be
expressed by matrices. Transformation between Euclidean and homogeneous space can be done as
described in eq. 2.2 and eq. 2.3 where p is Euclidean and p̃ is homogeneous.

p =

�
u
v

�
−→ p̃ =




u
v
1


 (2.2)

p̃ =




u
v
w


 −→ p =

�
u/w
v/w

�
(2.3)

Homogeneous coordinates are only defined up to scale.

p̃ = λp, λ �= 0 (2.4)

Another important property is that points infinitely far away in the 3D world can be expressed with
finite coordinates.

p̃in f ini te =




u
v
0


 (2.5)

By utilizing these properties a series of complex transformations can be described by a single trans-
formation matrix, created by a series of matrix multiplications.

p̃� = Ap̃, where A is a transformation matrix (2.6)
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From World to Image

To transform the data given by the camera system into usable information describing the real world
a transformation between coordinate systems is required. In a camera system there is often four dif-
ferent coordinate systems being used:

1. Xw - The world coordinate system describing 3D points with origin in an arbitrary location.

2. Xc - The camera coordinate system describing 3D points with origin in the camera center.

3. (x , y) - The image plane coordinate system describing 2D points on the image plane with ori-
gin in the center of the image plane.

4. p = (u, v) - The discretized image coordinate system describing 2D points in pixel units with
origin in the upper left corner of the image.

Figure 2.3: Illustration of coordinate systems

In most cases it is the transformation from world coordinates (Xw) to discretized image coordinates,
p, that is desirable, while the camera coordinate system and image coordinate system are just inter-
mediate steps required to complete the transformation. The first step in this process is to transform
a world point, Xw into a camera point, Xc . This is done by a rigid body transformation. In practice
this means rotating and translating Xw to coincide with Xc .




Xc
Yc
Zc
1


 =
�
R T
0 1

�



Xw
Yw
Zw
1


 (2.7)

After transforming Xw to Xc the point can be projected to the image plane. As the image plane has
coinciding X -and Y-axis with Xc and is only shifted along the Z-axis with the same value as the focal
length ( f ) this projection can be described as in eq. 2.8, where Z is a scaling factor also represented
as Z = 1

λ .
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Z




x
y
1


 =



f 0 0 0
0 f 0 0
0 0 1 0







Xc
Yc
Zc
1


 (2.8)

The transformation from image coordinates to discretized image coordinates is done by multiplying
the coordinates with the cameras intrinsic matrix (K) which transforms the point into pixel units and
shifts the origin to the top left corner. This matrix is obtained by camera calibration and is described
in detail in section 2.3. The complete transformation can be seen in eq.2.9 where Π is known as the
projective matrix.

λ




u
v
1


 =



fu fs u0
0 fv vo
0 0 1




� �� �
K




1 0 0 0
0 1 0 0
0 0 1 0




� �� �
Π

�
R T
0 1

�

� �� �
R|T




Xw
Yw
Zw
1


 (2.9)

λp̃ = KΠ[R|T]X̃w (2.10)

2.2 Epipolar Geometry

Epipolar geometry is the geometry between two views [9]. It describes the relative pose between
the cameras regardless of what scene is observed. Knowing this relationship between the cameras is
essential in stereo vision systems as it is this knowledge that allows for depth estimation in a single
stereo image. If a point Xw is viewed from two different views pl and pr an epipolar plane π is the
plane spanned between these three points. The straight line between the origin of the camera co-
ordinate systems is the baseline.

Figure 2.4: Epipolar plane spanned between camera origins and observed 3D
point

Source: Based on fig. 9.1 in [9]

The point of intersection between the baseline and the image plane is known as the epipole. Perhaps
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the most important feature in epipolar geometry is the epipolar line. This is line is the intersection of
the epipolar plane and the image plane. In other words; if Xw is observed in the left image view, the
same point has to be located along the epipolar line in the right image view, and vice versa.

(a) Epipolar line
Source: Based on fig.

9.1 in [9]

(b) Epipolar plane
Source: Based on fig.

9.2 in [9]

The algebraic representation of epipolar geometry is known as the Fundamental Matrix [9]. This
matrix has some useful properties listed below.

pT
r F pl = 0 for corresponding points pr , pl (2.11)

lr = F pl , ll = F T pr where l is an epipolar line (2.12)

F el = 0, F T er = 0 where e is an epipole (2.13)

The essential matrix is a specialised version of the fundamental matrix [9, p. 257] that can be obtained
if the camera intrinsics, K , is known.

p̂l = K−1pl (2.14)

= [R|t ]X (2.15)

In 2.2 is now expressed in normalized coordinates

E = [t ]xR = R[RT t ]x (2.16)

p̂T
r E p̂l = 0 (2.17)

E = K T
r F K l (2.18)

2.3 Stereo Calibration

In this section the theory and process of stereo camera calibration will be presented. A proper calib-
ration is needed to minimize the uncertaintly in the stereo measurements of a stereo system. As the
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stereo calibration consists of estimating two different sets of parameters, namely the intrinsic -and
the relative extrinsic parameters they will be presented accordingly.

Calibration Introduction

Many of the available tools such as Matlabs Camera Calibration App, and OpenCV’s calibration func-
tions are based on the same method, namely Zhangs Method. This is a method first presented by
Zhang in 2000 [10]. In this method a set of pictures of planar object with a known geometrical pat-
tern is captured. The most common pattern is a checkerboard pattern, where all the squares have
known dimensions. Either the camera or the checkerboard is then locked in place while the other is
changing position, and images are captured of the pattern from various distances and angles. A world
coordinate system with origin in the upper left corner of the checkerboard with the axis X, Y and Z
pointing right, down and inward, respectively. By doing this all the corners in the checkerboard has
known world coordinates. The same corners can easily be detected in an image and given a image
coordinate. As origin of the world coordinate system is on the checkerboard Z=0 for all the points
on the plane, and the relationship between image points and world coordinates can be described as
in eq. 2.19.

λ




u
v
1


 = K
�
R t
�



Xw
Yw
0
1


 (2.19)

Rewriting R in eq. 2.19 using ri to represent every column of the matrix to define a new matrix,
H ∈R3×3 known as the Homography matrix. 2D homography is a linear transformation of 2D points
from one plane to another [9, p.87]. The matrix H is defined up to a scale factor (λ) and has eight
degrees of freedom [11].

λ




u
v
1


 = K
�
r1 r2 t
�



X
Y
1


 = H




Xw
Yw
1


 (2.20)

λ




u
v
1


 =



h11 h12 h13
h21 h22 h23
h31 h32 h33






Xw
Yw
1


 (2.21)

The homogeneous set of equations in eq. 2.21 can be turned into inhomogenous equations by divid-
ing by the scalar term (λ = h31X + h32Y + h33).

u=
h11Xw + h12Yw + h13

h31Xw + h32Yw + h33
(2.22)

v =
h21Xw + h22Yw + h23

h31Xw + h32Yw + h33
(2.23)

Rewriting eq. 2.22 and eq. 2.23 into vector form we get:
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aT
u h = 0 (2.24)

aT
v h = 0 (2.25)

Combining this set of equations for every image pair and assembling them into one matrix. A, we
get

A=




aT
u1

aT
v1
...

aT
un

aT
vn




, 4≤ n (2.26)

A=




−Xw −Yw −1 0 0 0 u1Xw u1Yw u1
0 0 0 −Xw −Yw −1 v1Xw v1Yw v1
...

...
...

...
...

...
...

...
...

−Xw −Yw −1 0 0 0 unXw unYw un
0 0 0 −Xw −Yw −1 vnXw vnYw vn




, 4≤ n (2.27)

Ah = 0 (2.28)

As H has eight degrees of freedom at least four correspondences is necessary to solve the set of linear
equations. Using Singular Value Decomposition (SVD) the values of H can be extracted from the last
column of V in eq. 2.29.

A= UΣVT (2.29)

Intrinsic Parameters

From eq. 2.20 we know that H contains the information about both the intrinsics (K) and the ex-
trinsics (R, t ), this can also be seen in eq. 2.30. The next step is therefore to extract K from H . Only
the resulting equations will be presented here. For details the reader is reffered to the original paper
by Zhang [10].

H =
K
λH

�
R t
�

(2.30)

A new matrix B is defined up to a scale factor λB.

B = λB(K K T )−1 (2.31)



10 :

v0 =
B12B13 − B11B13

B11B22 − B2
12

(2.32)

λB = B33 −
B2

12 − v0(B12B13 − B11B23)

B11
(2.33)

fu =

�� λB

B11
(2.34)

fv =

��� λBB11

B11B22 − B2
12

(2.35)

fΘ =
B12α

2
xαy

λB
(2.36)

u0 =
s y0

αy
− B13α

2
x

λB
(2.37)

Extrinsic Parameters

As the intrinsic matrix, K , is constant for all the homographies in the calibration this can be used
to extract the extrinsic components R and t , which is the rotation and translation between the two
cameras. The first step is to rewrite eq. 2.31:

λK−1
�
h1 h2 h3
�
=
�
r1 r2 t
�

(2.38)

From eq. 2.38 we get three equations:

r1 = λK−1h1 (2.39)

r2 = λK−1h2 (2.40)

r3 = r1 × r2 (2.41)

t = λK−1h3 (2.42)

(2.43)

where

λ =
1

||K−1h1||
=

1
||K−1h2||

(2.44)

Resulting in the extrinsic matrix being constructed like:

�
R t
�
=
�
r1 r2 r3 t
�

(2.45)

However, due to noise in the data this procedure results in with a R that does not satisfy the prop-
erties of a rotation matrix [10]. To solve the reprojection error can be minimized using a solver for
nonlinear optimization problems, such as the Levenberg-Marquardt algorithm. More details about
this process can be found in Zhangs original paper [10].
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Distortion Coefficient Estimation

Lens distortion is when the shape of the lens or inaccuracies in the placement of the lens cause errors
in the image. These errors cause deformation of objects making the image not a real representation
of the real world[12, p. 58]. These deformation makes pixels in the image appear at the incorrect
place to what the pinhole camera model expects and therefore needs to be corrected.

The most prominent distortion is known as the radial distortion and cause straight lines to appear as
curved in the image. The distortion can be expressed as a non linear function. In eq.2.46 xd and yd
are the distorted image coordinates, r is the distance from the principal point (u0, v0) to x , y , and kn
for n ∈N are constants for each specific case.

�
xd
yd

�
=
�
1+ k1r2 + k2r4 + k3r6

��x − u0
y − v0

�
+

�
u0
v0

�
(2.46)

(a) No radial distortion (b) Positive radial distortion (c) Negative radial distortion

Figure 2.6: Radial distortion.
Source: OpenCV documentation1

The second form of distortion is the tangential distortion. This has a much smaller impact on the
image than the radial distortion, and is often ignored all together. This distortion happens when the
lens and the photo sensor are not completely parallel. This results in a compressing effect on the
image [13, p. 686].

�
xd
yd

�
=

�
2k4 (x − u0) (y − v0) + k5

�
r2 + 2 (x − u0)

2�
k4

�
r2 + 2 (y − v0)

2 + 2k5 (x − u0) (y − v0)

�
(2.47)

2.4 Uncertainty in Stereo Vision Systems

As the main drawback of using stereo vision compared to lidar, has been poor depth estimation it
is important to evaluate the accuracy in the estimations. The accuracy of depth estimation in stereo
vision systems depends on the geometric structure of the system [14]:

1. Interpixel distance, focal length, baseline, camera angle
2. The accuracy of these parameters
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The first point show that in order to achieve the best possible results the stereo vision setup regarding
cameras, lenses and stereo parameters has to be suitable for the desired operating range. The accur-
acy of these parameters is ensured by a calibration of the stereo camera, which is done to estimate
intrinsic- and extrinsic parameters. The error in depth is described in eq. 2.48 which is derived in
[13]. The depth error ΔZ depends on the depth Z , the mean of the reprojection error Δpx , focal
length fu and baseline B.

ΔZc =
Z2

cΔpx

f B
(2.48)

From eq.2.48 and in fig. 2.9 one can see that the error will be reduced by increasing the baseline.
However, increasing the baseline will reduce the amount of overlap, (fig.2.7) and therefore increasing
the minimum distance in front of the cameras where matching can occur.

(a) Small baseline (b) Large baseline (c) Large baseline + angled cameras

Figure 2.7: Baseline impact on overlapping field of view

Angling the cameras inward will increase the common field of view between the cameras and also
lower the uncertainty in the measurements, but at the cost of a lower angular resolution making it
harder to detect details in small objects. Fig. 2.9 and fig. 2.8 illustrates the changes in uncertainty.
This means that the baseline has to be chosen based on a compromise between the two which is
explained in chapter 6.
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(a) Small angle (b) Large angle

Figure 2.8: Uncertainty regions with different camera angles

(a) Small baseline (b) Large baseline

Figure 2.9: Uncertainty regions with different baselines

In fig 2.10 the error in depth estimations are shown with a varying baseline, and where all other
parameters in eq. 2.48 are fixed. Here it is clear that the error increases exponentially, and a large
baseline will have a significant impact on the accuracy at long ranges.
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Figure 2.10: Example of how varying baseline affects estimation error.
Fixed focal length (1230[px]) and disparity error (0.1[px])

The other physical parameter is the focal length, but as this is less practical to change and does not
have the same range to vary within it will not be discussed further.

The second point regarding the accuracy of the previous parameters is achieved via calibration.
Proper calibration is required as this sets the lower boundary of uncertainty in the measurements.
From the results in [14] it is clear that yaw and non parallel photo sensor and lens are the two most
important contributors to error in depth estimations. Then pitch, roll and radial distortion. This
means that a proper calibration of both intrinsic- and extrinsic parameters is vital. The reprojection
error is a measure of how well the calibration results are. This is a measure of the error between a
measured point and the reprojected point onto the same image plane given the extrinsic parameters
from the calibration. A large reprojection error indicates that the parameters provided by the calib-
ration does not fit well with the real world. The equation for reprojection error (eq. 2.49) can be
split into three steps.

• ||p�il − Pl(pi)||2 - The square of the absolute difference between a measured -and projected
point in the left image plane.

• ||p�ir−Pr(pi ,R, t )||2 - The square of the absolute difference between a measured -and projected
point in the right image plane given a rotation and translation.

• �ni=1 - Sum the error over all the points in an image pair.

ε=
n�

i=1

||p�il − Pl(pi)||2 + ||p�ir − Pr(pi ,R, t )||2 (2.49)
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Figure 2.11: Illustration of reprojection error

As the reprojection error is not constant for all the points in an image it is common to calculate
the mean, and use this value for the entire image. In fig. 2.12 the error in depth based on eq. 2.48
vary with rather small changes in mean reprojection error while the other parameters are fixed.
The examples are all within the accuracy of a single pixel so-called sub-pixel accuracy, but at longer
distances the error becomes significant.
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Figure 2.12: Example of how reprojection error affects estimation error.
Fixed focal length (1230[px]) and baseline (1.8[m])
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Sub-pixel Estimation

A problem regarding estimation in stereo vision systems is the disparity in pixel units has a physical
limitation in resolution. The minimum resolution of one pixel severely affects the accuracy of depth
estimations, especially for objects at large distances. The solution to overcome this limitation is sub-
pixel estimation. One of the methods presented in [15] is by fitting a parabola over the best match
and the nearest neighbors.

Figure 2.13: Parabola fit to disparity matches
Source:[15]

The parabola is defined as in eq. 2.50, and its local extrema by setting its differentiation equal to
zero as in eq. 2.51

y = ax2 + bx + c (2.50)

d y
d x
= 2x + b = 0 (2.51)

x =
−b
2a

(2.52)

The pixel values p0, p− and p+ in fig. 2.13 correspond to to the matching score of the best match,
the score at d-1 and at d+1 respectively. Applying the pixel positions to 2.50 results in:

y(−1) = p− = a− b+ c

y(0) = p0 = c

y(1) = p+ = a+ b+ c

Rewriting 2.51 we can solve for the local maximum using the pixel values.

x =
p− − p+

2(p− + p+)− 4p0
(2.53)
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Estimation of corresponding points with sub-pixel accuracy allows for a more precise disparity value
to be calculated. The new disparity estimate can now be expressed as in eq. 2.54.

dest = d + x (2.54)





Chapter 3

The Correspondence Problem

As described in section 2.2 a point in the world coordinate system can be estimated if seen from
two different image views with known relative geometry. Recognizing the same point in both image
views is known as the correspondence problem and is a key part of any stereo vision system. This
problem can be formalized with two constraints [16]:

1. Uniqueness - Each pixel only have one corresponding match
2. Continuity - A scene is composed by piecewise continuous surfaces

A stereo system can be divided into two cases: the simplified case and the general case. In the simplified
case the two cameras are aligned and identical, creating a simple representation of a system where
the epipolar lines are horizontal. This simplifies the search for correspondences as the matching pixel
is bound to be on the same image row in both images. However, in real life there is always some
differences between the cameras in the system. Either wanted by design such as angled cameras or
unwanted as there will always be some inaccuracy in the mechanical setup. This classifies as the
general case.

A system in the general case can be transformed into the simplified case by rectification. This is a
process where the rigid body transformation between the cameras, acquired by stereo calibration is
applied to the images and remapping them onto a common image plane. Details about this process
are described in section 2.3.

19
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(a) Simplified stereo setup (b) General stereo setup

Most stereo matching algorithms either require or benefit from having rectified images as input as
this lowers the computational complexity of the problem.

Figure 3.2: Image frames before and after rectification

3.1 Disparity Map

As a result of solving the correspondence problem the shift in pixel position between the two images
is obtained. This shift in pixel position is directly proportional to the distance to the objects in the
image. Features in the scene that are closer to the camera will change more than those that are
further away. By mapping the pixels and giving them a disparity value based on how much the pixel
changes between the two images a disparity map can be created. For two arbitrary pixels in a rectified
image pair, matched by solving the correspondence problem p̃l = (ul , vl , 1)T and p̃r = (ur , vr , 1)T

the disparity (d)is expressed in eq. 3.1.
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ul − ur = d (3.1)

By doing this for all the pixels in an image, a disparity map can be created. This is a new image
where all the pixels are described by p = (u, v, d)T . After obtaining the disparity map each pixel can
be transformed into actual depths by solving eq. 3.2, where f is focal length and B is the baseline.

Zc =
fU ∗ B

d
(3.2)

In order to establish a 3D point with origin in the camera center for every pixel in the disparity map
eq. 3.3 can be solved. In this case u0 and v0 are the principal points of the camera, and Tx is the
translation of the optical center between the left and right camera in the X-axis.

Q




u
v
d
1


 =




Xc
Yc
Zc
Wc


 , where Q =




1 0 0 −u0
0 1 0 −v0
0 0 0 fu
0 0 − 1

Tx

u0−u�0
Tx


 (3.3)

Over the years, as computing power has increased, more and more complex methods for solving
the correspondence problem has been presented. However, the methods are traditionally divided
into two groups; local and global[17]. As indicated by their names, the local methods only consider
the local area around a pixel, while the global approach takes the entire image into account when
calculating disparity for a pixel.

3.2 Local Methods - Correlation Based

Correlation based matching methods use an area or matrix around a given pixel to describe that
particular part of the image. This part of the image can then be searched for in in the matching
image in order to establish a match. Often the images are rectified and epipolar lines are used as
horizontal scan lines where one can slide the patch from the origin image along the scanline to search
for a matching patch. Once a matching area is found the disparity in pixel position can be extracted.

Figure 3.3: Illustration of patch sliding across scanline
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These methods result in a dense disparity maps and are generally computationally fast, but yield
poor results in certain settings. Listed below are common terms used in the different mathematical
equations describing the methods.

IL−Left stereo image

IR−Right stereo image

Wm−Matching window

d−disparity

I(u, v)−Pixel intensity

C(d)−Cost of matching with disparityd

Sum of Absolute Differences - SAD

The Sum of Absolute Differences approach is the most common stereo matching algorithm [18].
After locating an area of interest in the origin image, a patch around that area is saved and moved
along a search line on the matching image. For each pixel along the search line the sum of absolute
differences is calculated.

CSAD(d) =
�

(u,v)∈Wm

|IL(u, v)− IR(u− d, v)| (3.4)

In eq. 3.4 the absolute difference between two blocks is calculated. The disparity, d can be extracted
where the function output is lowest. There is a compromise between accuracy and execution time
in varying the size of the matching block. Increasing the size of the block makes the algorithm less
prone to errors, but increases execution time.

Sum of Squared Differences - SSD

The SSD matching method works by subtracting the values from the extracted patch pixel by pixel
along a search line. In theory the matching patch is found when the SSD returns zero, but in practice
the lowest return value is accepted [19].

CSSD(d) =
�

(u,v)∈Wm

[IL(u, v)− IR(u− d, v)]2 (3.5)

This simple principle yields a fast algorithm, but in turn, it fails at depth discontinuities as the whole
patch is considered to have the same disparity. For this reason the SSD-method is not suited for
images containing many or small objects.

Normalized Cross Correlation - NCC

NCC is both more complex and robust than SSD. As the values in NCC are normalized, the method
handles change in luminosity between cameras well [19]. In eq.3.6 Ī is the average pixel intensity
of the patch and is only calculated once for each matching operation.



Chapter 3: The Correspondence Problem 23

CNCC(d) =
�

(u,v)∈Wm

ÎL(u, v) ÎR(u− d, v) (3.6)

where, Î(u, v) =
I(u, v)− Ī
||I − Ī ||Wm

Because the NCC is more complex than the SSD, it is difficult to achieve run times that are low
enough for ream time operations. Further, the NCC is also prone to error at discontinuities as the
other methods.

Rank Transform

Rank Transform is a non-parametric algorithm, meaning it does not consider the value of the pixel
intensity itself, rather its relative value. By evaluating the pixels in a patch/block around the center
pixel the rank of that patch can be determined by simply the number of pixels with a lower value
[20] (Non parametric).

R(P) = ||P � ∈ N(P)|I(P �)< I(P)|| (3.7)

In practice this rank calculation can be described as in eq. 3.8

Rank(u, v) =
�

(i, j)(u,v)

L(i, j), L(i, j) =

�
0 : I(i, j)< I(u, v)
1 : otherwise

(3.8)

After the image has been rank transformed one of the methods presented earlier such as SAD can be
used on the transformed images.

CRT (d) =
�

(u,v)∈Wm

|RankL(u, v)− RankR(u− d, v)| (3.9)

Doing this achieves a lower run time as the rank transform lowers the complexity of the problem
[21].

Census Transform

Census Transform is also a non-parametric measure of local intensity [20] In this case the values
surrounding a pixel is set to 0 or 1 based on whether they are higher (0) or lower (1) than the
value of the center pixel. These values are then mapped into a bit string. This bit string can then be
compared with a bit string originating from the second stereo image using the Hamming distance
[20]. Minimizing the hamming distance is done to establish the correct match. This method is robust
when there is a high change in intensity in a few pixels.

Census(u, v) = Bitst r ing(i, j)∈Wm
(I(i, j)≥ I(u, v)) (3.10)

CC T (d) =
�

(u,v)∈Wm

Hamming(CensusL(u, v)− CensusR(u− d, v)) (3.11)
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3.3 Local Methods - Feature Based

A feature, or key point is an area in an image with a certain uniqueness that can be described and
stored. This uniqueness can be corners, edges, patches and other areas that is able to stand out in
the image.

A feature detector is the method that searches for these areas and stores the most prominent ones as
feature descriptors. There are several types of feature descriptors. Common for all of them is that they
are designed to be quite robust, meaning that during searching for a matching feature, a false positive
should seldom occur. Feature detection and matching is a key element in almost every computer
vision application and is often used in areas such as object recognition and structure from motion.

Scale Invariant Feature Transform - SIFT

Because good feature might be located at different scales in an image it is beneficial to search through
a range of scales when identifying a feature. This is the idea behind the method, SIFT, first presented
by David G. Lowe in [22] and has since then been the benchmark method regarding accuracy and
robustness in visual features in computer vision. The method consists of four stages:

Scale-space Extrema Detection

Detecting keypoints in an image that is invariant to scale is done by applying Gaussian blur to the
image with varying magnitude, then "stacking" the images on top of each other and search for ex-
treme points. This procedure is done for every level in a scale pyramid. This pyramid is created by
consecutively lowering the image width and length. Subsampling and smoothing the image pixels is
done to achieve a lower resolution.

Figure 3.4: Pyramid where each level has half the width and length as the previous level resulting in
a quarter of the pixels.

Source:[23, p. 132]

The scale-space of an image is defined in eq. 3.12. Where L(u, v,σ) is the scale-space, I(u,v) is the
input image, and G(u, v,σ) is the Gaussian blur, and * is the convolution operator.

L(u, v,σ) = G(u, v,σ) ∗ I(u, v) (3.12)

The difference-of-Gaussians (DoG), D(u, v,σ), is calculated by subtracting a scales-space image with
another where a constant, k, is separating them in scale.
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D(u, v,σ) = L(u, v, kσ)− L(u, v,σ) = (G(u, v, kσ)− G(u, v,σ)) ∗ I(u, v) (3.13)

Keypoints are found using DoG, then blurred with Gaussian blur of different magnitudes. Blurred
images are subtracted from each other and stacked on top of each other to enhance for extreme
points.

Accurate Keypoint Localization

At this time in the process both stable and unstable keypoints are detected. A quadratic model is fit
to the nearby points depending on location and scale. A second order Taylor expansion is used to
get a more accurate location and scale of the keypoints. SIFT then chooses the most stable keypoints
and discards the others.

Orientation Assignment

Each keypoint is assigned an orientation based on local image properties. Gradient direction and
magnitude are calculated for every keypoint. By giving the keypoint a fixed orientation the keypoints
becomes invariant to rotation which is needed as matching needs to occur even with rotated images.

Keypoint Descriptor

The descriptor is what describes a unique keypoint and it is therefore important that it is as unique
as possible. In SIFT an area of 16 × 16 pixels around the keypoint is divided into 16 subsections.
In each subsection eight directions are calculated yielding 16× 8= 128 elements in each descriptor
vector. The vector is then normalized to unit length to be more robust against illumination changes.

Figure 3.5: SIFT descriptor
Source: [22]

Speeded Up Robust Features - SURF

SURF is a feature extractor and feature descriptor created as a faster alternative to SIFT. Although
SURF is based on the same steps as SIFT the authors claim that it is several times faster, and more
robust than SIFT during several image transformations [24].

SURF uses box-filters to approximate the Laplacian of Gaussians. It is in this step SURF gains its
computational advantage against SIFT as filtering the image using a square and an integral image is
much faster than how SIFT does its filtering. Selecting point (p) and scale (σ), the determinant of
the Hessian is calculated. The Hessian is defined in eq. 3.14, where Luu, Luv and Lvv are convolutions
of the Gaussian second order derivative.
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H(u, v,σ) =

�
Luu(u, v,σ) Luv(u, v,σ)
Luv(u, v,σ) Lvv(u, v,σ)

�
(3.14)

(a) Prior to filtering (b) After Luv filtering (c) Prior to filtering (d) After Lvv filtering

Figure 3.6: SURF Box-Filtering
Source: [24]

The determinant of the Hessian (eq. 3.15) is used as a measure of changes in the local area around
a point. The parameter w is a balancing weight making the approximated Gaussian kernels equal to
the Gaussian kernels. The point is then chosen where the determinant is maximum.

det(Happrox = DuuDvv − (wDuv)
2) (3.15)

The SURF descriptor is based on the same properties as the SIFT descriptor but scaled down to be less
complex. Creating the descriptor consists of two steps, where firstly the orientation is determined
calculating the Haar-wavelet in both the u and v direction. This is required to make the descriptor
invariant to rotation. Once the orientation is determined, a square region aligned with the orientation
is created, and the descriptor is extracted from this region. Further information and details about
SURF is available in the original paper [24].

Oriented FAST and Rotated BRIEF - ORB

The ORB feature detector was developed by OpenCV as an unpatented alternative to the previous
mentioned SIFT and SURF [25]. As the name suggests, it is built using the FAST key point detector
and BRIEF descriptor. For more details about the underlying key point detector and descriptor the
reader is referred to their original papers, [26] and [27] respectively. Firstly ORB detectes FAST key
points in the image, then selects the best points by employing a Harris corner measure. Because
FAST do not calculate orientation the authors added a step where an intensity weighted centroid
of a corner is calculated, and a vector from the center of the corner to the centroid is calculated to
determine orientation. The moments of the image patch is calculated in eq. 3.16 and the centroid in
eq. 3.17.

mlr =
�
u,v

ul vr I(u, v) (3.16)

C =
�

m10

m00
,

m01

m00

�
(3.17)

The orientation of the vector from the center to the centroid is now a matter of trigonometry.

θ = atan2(m01, m10) (3.18)
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To handle variance in scale a pyramid scheme is used where FAST features filtered by Harris corners
is employed on all levels of the pyramid. ORB is popular in real-time and low power applications as
it is considered to be resistant to noise and it is more efficient than SIFT.

3.4 Global Methods

The global methods are based on optimization. Many methods are formulated using an energy-
minimization framework where the goal is to find a disparity map (D) that minimizes a global energy
function (eq.3.19) [23]. This means that the global methods tries to establish a disparity map for the
entire image all in once, wheas the local methods only considered small patches.

E(D) = ED(D) +λEs(D) (3.19)

In eq. 3.19 ED(D) is a measure of how well the disparity correspond with the input images. Es(D) is
a smoothness term which in practise penalizes disparity changes in neighbouring pixels. However,
as 2D optimization for eq. 3.19 can be NP-hard in some cases [23, p. 485] other approaches needs
to be considered to solve the problem within reasonable time.

Dynamic Programming - DP

In 1985 Otha and Kanade presented a method where a pair of rectified images could be matched
by first doing a series of 1D line optimizations called intra-scanline search [28]. The idea is that the
intensities along the scanline at the two images are mapped onto a 2D plane. From this map dynamic
programming can be utilized to find the shortest path from start to finish on both images. A node
(i,j) on the path represent a match between the images.

Figure 3.7: 2D intra-scanline
Source: [28]

Restructuring the optimization problem from 2D to n · 1D problems reduced the run time from ex-
ponential to linear, but now each scanline is independent of the others. If there is a vertical edge
across multiple scanlines the correspondences in one scanline should be strongly dependent on the
neighboring scanlines. To account for this dependency another scanline called the inter-scanline has
the task to localize vertical edges crossing multiple intra-scanlines. This is done by identifying the
minimum cost path between 3D nodes in a stack of 2D planes. A 3D node is formed when an edge is
on the same location across multiple 2D planes. This 3D optimal-path-finding method is conducted
using dynamic programming in the same way as for the 2D problem.

Graph Cuts - GC

GC is a method of solving the stereo matching problem that does not rely on epipolar constraints.
Rather it formalizes the problem as an optimization problem that can be solved using graph cuts.
G =< V, E > is a weighted graph with two end vertices called terminals. V is the set of vertices and
E is the edge set. A cut, C , is a set of edges that separates the terminals, where the cost of the cut,
|C| is the sum of the edge weights. The correspondence problem can be designed as a minimum cut
problem, meaning the task of finding the set of cuts with lowest cost.

The goal of solving the correspondence problem is to label every pixel in an image with a disparity
value. A cost function can be assigned to the labeling process, and the goal is to minimize this cost
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function. There are several different algorithms solving the problem in different ways, but common
in them all is that by designing the graph and edge weights carefully the minimization of the cost
function can be expressed as a min-cut problem [29].

The disadvantage of the GC approach is that it is slow. The average run time is roughly O(n1.2d1.3)
where n is the number of pixels in the image and d is the disparity range. This makes it unsuitable
for real time applications such as milliAmpere and will therefore not be explained in more detail. For
more information the reader is referred to Boykovs paper explaining two of the fist GC-algorithms
[30].

Semi-Global Method - SGM

The Semi-Global Method is trying to maintain the accuracy from global methods while still maintain-
ing the speed of the local methods. It performs pixelwise matching based on Mutual Information (M I)
and an approximation of a global smoothness constraint, and was first introduced by Hirschmuller
in 2005 [8]. The algorithm uses line optimization from multiple directions, and calculates the ag-
gregated cost to each pixel p with disparity d.

Pixelwise Cost Calculation

The matching cost is calculated for a pixel p in the left image Ilp and its correspondence in the right,
matching image, Irp based on the intensity of the first pixel. The matching cost calculation is based
on M I , which is defined by entropy (H). This is used as a measure of how much information the two
images have in common. The entropy is calculated from the probability distributions of intensities
of the right image [8].

M IIl ,Ir
= HIl

+ HIr
− HIl ,Ir

(3.20)

Calculation of the joined entropy HIl ,Ir
can be expressed by a sum of data terms (hIl

and hIr
) using

the Taylor expansion [31]. The probability distribution must only be calculated for corresponding
areas in order to ignore occlusions. The probability function is defined by eq.3.21 where T is an
operator returning 1 if the arguments is true and 0 otherwise.

PIl ,Ir
(u, v) =

1
n

�
p

T[(u, v) = (Ilp , Irp)] (3.21)

M IIl ,Ir
=
�

p

miIl ,Ir
(Il p, Irp) (3.22)

miIl ,Ir
(i, k) = hIl

(i) + hIr
(k)− hIl ,Ir

(i, k) (3.23)

Pixel wise cost calculation using M I determines the absolute minimum difference of intensity at the
pixel in the query image, pr , and at the pixel in the origin image, pl .

CM I (pl , d) = −miI1,I2
(I1pl

, I2pr
) with pr = pl + d (3.24)
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Aggregation of Cost

With pixel wise cost calculation incorrect matches commonly occur as a result of noise in the image.
This is due to the noise causing a lower cost than the correct match. To overcome this challenge ad-
ditional constraints regarding the area surrounding the pixel in question is added. These constraints
penalize changes is disparity in the neighborhood surrounding the pixel. Adding these cost terms
yields an energy function (eq. 3.25) that can be minimized to find the best disparity image Dp .

E(D) =
�
pl

C(pl , Dpl
) +
�

pr∈Npl

P1T[|Dpl
− Dpr
|= 1] +
�

pr∈Npl

P2T[|Dpl
− Dpr
|> 1] (3.25)

Equation (3.25) can be broken down into three parts explained better in table 5.1.

�
pl

C(pl , Dpl
) Pixel matching cost for the disparities D�

pr∈Npl
P1T[|Dpl

− Dpr
|= 1] Constant penalty for small changes in disparity�

pr∈Npl
P2T[|Dpl

− Dpr
|> 1] Larger constant penalty for larger changes in disparity

Table 3.1: Explanation of elements in energy function
Source: [7]

However, minimizing eq. 3.25 can be NP-hard [30], and thus too complex for a real time system. To
work around this SGM uses line optimization from multiple different directions (fig. 3.8) to approx-
imate a global smoothness constraint [8]. This leads to a new cost function (eq. 3.26) which is the
sum of all the paths to the pixel in question.

Figure 3.8: Aggregation of cost
Source: [8]

S(pl , d) =
�

r

Lr(pl , d) (3.26)

The amount of paths to the target pixel can be varied. Having many paths, for instance 16 will create
a more accurate disparity map than using eight. This increase in accuracy comes at the cost of an
increased computational complexity and should therefore be evaluated for each specific use.





Chapter 4

Evaluation of Matching Methods

One of the goals of the thesis is to evaluate matching methods. The evaluation that was conducted
as a combination of a literature study and physical experiments where the most promising methods
according to the literature were tested. A comparison study of local algorithms done in the fall of
2019 on the same equipment ([6]) will be the main source of evaluating local methods. The extens-
ive survey done in [32] and [29] are also central in this evaluation.

To evaluate what methods are better than others certain criteria for the given applications needs to
be established. These criteria is what I consider to be important for a stereo vision system on milli-
Ampere, and will differ from what is considered important on other systems.

• Dense disparity map - A dense disparity map provides a disparity value for all pixels in an im-
age. This naturally provides more information than a sparse disparity map where large areas
of the image has an undefined disparity value. A dense representation will give a more realistic
view of the world.

• Real time performance - As the system is to be used in applications such as collision avoidance
and tracking the system has to be able perform in real-time.

4.1 Local Methods - Feature Based

As the feature based methods only consider a small set of independent points in the image these
methods result in a sparse disparity map [33]. According to the results in [6] ORB was considered
a viable option regarding accuracy, but as the tests was conducted indoors at a distance of <10
meters the testing conditions were quite different than what milliAmpere is operating in. For a quick
comparison of the three most promising methods a small experiment was conducted to see if the
methods were able to find any features on a boat in the range 40-60 meters from milliAmpere.

From fig.4.1 and fig.4.2 it can be seen that using the ORB detector in this scenario would result in
the boat being undetected by the system. The SURF key point would likely be considered as noise if
it was matched between images at all. SIFT on the other hand was able to identify more key points.

31
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(a) ORB - 0 key points (b) SURF - 1 key point (c) SIFT - 19 key points

Figure 4.1: Keypoint detectors - 1

(a) ORB - 0 key points (b) SURF - 1 key point (c) SIFT - 19 key points

Figure 4.2: Keypoint detectors - 2

4.2 Local Methods - Correlation Based

Multiple of the correlation based matching methods could probably have been used. However, NCC is
eliminated from the process due to its computational complexity. SAD is known for being fast, fairly
accurate and easy to implement I chose to use this for further analysis. In an earlier comparison study
of local methods [5] SAD was also chosen to be the best option.

4.3 Global Methods

As the traditional global methods are known for having large computational complexity making
them unsuitable for real time applications even on small images. Especially the GC-methods, but
also algorithms based on DP. This leaves us with only the SGM alternative as a viable option from
this category. The SGM is also the newest of the lot, built specifically to be faster than the earlier
global methods.

4.4 SGM vs SAD

After comparing the different methods of solving the correspondence problem the correlation based
method, Sum of Absolute Differences and the global method, Semi-Global Method is chosen to be
evaluated in detail. There are two factor that will be considered in choosing the final matching
method:

• Disparity map - The quality of the disparity map regarding level of detail and overall informa-
tion
• Run time - As this is going to be used in an real time application the run time needs to be low

enough

Prior to generating the disparity maps, a series of stereo images was used to tune the parameters for
each method. This tuning process was done using a disparity tuner, which will be explained further
in chapter 6. The disparity maps presented here were generated using the parameters yielding the
best results in this tuning process.
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(a) Input image (b) Disparity map - SAD (c) Disparity map - SGM

Figure 4.3: Comparison of disparity maps - 1

(a) Input image (b) Disparity map - SAD (c) Disparity map - SGM

Figure 4.4: Comparison of disparity maps - 2

The run times for each disparity map was also timed. As the run time of the SGM method heavily
relies on how many directions is used two different variations of the SGM was tested. One with eight
directions and one with three.

SAD [ms] SGM 3-WAY [ms] SGM 8-WAY [ms]
54.18 125.55 443.16

Table 4.1: Run times for SAD and SGM

In table 4.1 it is clear that SAD is more than two times faster than SGM 3-WAY and eight times faster
than SGM 8-WAY. Knowing how huge the differences in run time is between the methods, a trade
off between accuracy and run time has to be made with regards to the specifications of the system.
Comparing the disparity maps presented below, there is an obvious difference in detail between the
SAD and SGM, and close to no difference between the two SGM variations.
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Figure 4.5: Input image - 1

Figure 4.6: Disparity map example - SAD - 1

Figure 4.7: Disparity map example - SGM 3WAY - 1
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Figure 4.8: Disparity map example - SGM 8WAY - 1

Figure 4.9: Input image - 2

Figure 4.10: Disparity map example - SAD - 2

Figure 4.11: Disparity map example - SGM 3WAY - 2
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Figure 4.12: Disparity map example - SGM 8WAY - 2

After analyzing both run times and details in the disparity map, the Semi-Global Method with three
directions further. The increase in in run time is worth the increase in detail in the disparity map. In
table 4.2 is a summary of the matching methods.

Method Local/global Feat./Corr. Disp.map
SAD Local Corr Dense
SSD Local Corr Dense
NCC Local Corr Dense
RT Local Corr Dense
CT Local Corr Dense

ORB Local Feat. Sparse
SURF Local Feat. Sparse
SIFT Local Feat. Sparse

OthaKanade Global - Dense
GC Global - Dense

SGM Global - Dense

Table 4.2: Summary of selected matching methods



Chapter 5

Object Detection using Stereo Vision

Object detection is an important component in all autonomy systems [34]. Autonomous vehicles are
often designed to traverse in dynamic environments, sharing a common space with other vehicles,
people and stationary objects. The vehicle therefore is dependent on reliable and accurate object
detection and depth estimation to plan safe and efficient trajectories and avoid collisions. For this
reason an object detection algorithm has to meet these four criteria [35]:

1. Compact - It needs to reduce the data volume to achieve real time execution.
2. Complete - The information of interest needs to be preserved.
3. Stable - Small changes in the input data needs to handled without large changes in the output

data.
4. Robust - Noise and outliers in the input data must have minimal impact on the output.

The traffic in the Trondheim canal consists of an array of surface vehicles, for instance the Munkhol-
men ferry, leisure boats, sailing boats, kayaks, SUP-paddlers and so on. Appearance based methods
with classification needs to be trained on huge data sets containing multiple variations of all possible
objects to be detected. The size and variations of the data set needed to train such an algorithm to
be accurate and reliable in the case of milliAmpere is to big to consider in this thesis. The lack of a
high quality data set might result in the detector missing or wrongly classifying objects which could
lead to a possible dangerous situation. For this reason only generic object detection algorithms will
be considered in this thesis.

In this chapter five of the most recent advances in object detection using stereo vision will be presen-
ted; Stixel Tesselation, Digital Elevation Map - DEM, Geometry Based Cluster, and Direct Planar Hypo-
thesis Testing - DPHT, and Euclidean Clustering. The first three are presented in a study by Berning
et. al [36]. This is a survey showing the most recent algorithms regarding stereo vision object detec-
tion able to operate in real time. Further, the more recently developed method, DPHT, presented by
Pinggera et. al [37] will also be described. This method differs from the traditional methods by not
being dependent on a disparity map, but rather directly using the image information. The last is a
combination of filtering, clustering and accumulation used by Olsen and Theimann in their master’s
thesis [6].

37
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5.1 The Ground Plane

Many obstacle detection approaches depend on a ground plane, a single planar surface that defines
the area the vehicle can move, and obstacles are characterized by being above this surface. Some of
the early methods include [38] and [39]. The main drawback of these methods is that the perform-
ance of the obstacle detection method heavily relies on the accuracy of this plane. When traversing
off-road terrain or other areas where such a plane does not fit well with the real world more soph-
isticated ground profile models needs to be used, or a completely different approach all together.

As most of the research in obstacle detection field has been focused on the automotive industry
alternative methods to the ground plane has been a huge focus, and has been the main reason
for methods such as [34] and [37]. However, as the operating environment for milliAmpere is the
Trondheim canal, the flat world assumption is much more viable.

5.2 Method 1 - Stixel Tesselation

One major contribution within object detection is the Stixel tesselation, first introduced by Badino et.
al in [35]. This algorithm was developed as a result of the Semi-Global Method that was described in
section 3.4, enabling accurate and dense disparity maps to be generated in real time. This algorithm
separates objects from the rest of the image and represents them as columns or stixels. Each stixel is
defined by its 3D position relative to the camera and stands vertically on the surface plane.

Probabalistic Occupancy Map

The stixel method is built upon the concept of a Probabalistic Occupancy Map. A definition of an
occupancy grid by Badino et. at [40] is:

"An occupancy grid M is a two-dimensional array or grid which models occupancy evidence of the envir-
onment. The 3D world is orthographically projected on a plane, parallel to the surface".

This concept was first introduced in [41] where the authors used a sonar mounted on a mobile ro-
bot to map the surroundings. This resulted in a a two-dimensional grid map labeling the grid cells
either free, occupied or empty based on the probability of there being an object at the location. Later
the concept was expanded to multiple dimensions enabling each cell to contain information such as
texture and color.

A simplified version of the problem is presented in eq. 5.1 where q is value of the grid cell, and mk
is the stereo measurements.

p(q|m1, ..., mk) (5.1)

To convert the stereo measurements into occupancy likelihoods we can follow the method presented
in [40]. A stereo measurement is defined as mk = (ul , vl , d)T , where ul and vl is the left image
coordinate and d is the disparity in pixels. mk is then a projection of the real world point Xw onto
the image plane. The notation fu and fv represents the focal length of the camera, u0 and v0 is the
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principal point, and B is the baseline of the stereo system.

mk = P(Xw )=
1
z




fu x
fv y
fuB


+



u0
v0
0


 (5.2)

Naturally the real world point is unknown and the inverse of eq. 5.2 is the triangulation equation
providing the real world information

Xw = P−1(mk) =
B
d



(u− u0)
(v − v0)

fu
fv

fu


 (5.3)

The measurement mk contains the real and unknown m̄k and a noise term ξ̄k which is assumed to
be a zero mean random process with probability density function Gm̄k

. Eq. 5.4 models the likelihood
of obtaining an error ξk given the fact that the real state is m̄k [40]. In eq. 5.4 Γ̄ k is the covariance
matrix of the measurement m̄k.

Gmk
(ξk) =

1
(2π)3/2|Γ̄ k|

ex p(−1
2
ξT

k Γ̄
−1
k ξk) (5.4)

The goal is to estimate the occupancy likelihood of each cell in the grid which can be described
by the function Li j(mk). This function describes the likelihood of occupancy on grid cell (i,j) given
measurement mk. Over time multiple measurements are given to the system and the likelihoods of
these measurements are added to the current likelihood.

D(i, j) =
m�

k=1

Li j(mk) (5.5)

There are three different representations of the occupancy grid map, and the calculation of Li j differs
in the three.

1. Cartesian Grid
In the Cartesian grid the world is mapped linearly to a grid of fixed dimensions giving a intuitive
representation.

Li j(mk) = Gmk(P(pi j −mk)) (5.6)

in eq. 5.6 the likelihood is the multivariate Gaussian distribution dependent on the differ-
ence between measurement and projection. This representation is however computationally
expensive as each measurement has a different likelihood. Updating every cell for every new
measurement can be avoided by only updating cells that are are changed significantly.

2. Column/Disparity Map
In this variation the height component (v) in mk = (u, v, d)T is ignored and each cell in the
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grid correspond to discretized values of (u, d). Each cell in the grid is therefore defined as
(i, j) = (ui j , di j). The likelihood function for cell (i,j) is shown in eq. 5.7.

Li j(mk) = Gmk((ui j − u, 0, di j − d)T ) (5.7)

3. Polar Occupancy Grid
In the polar occupancy grid, the grid is made up of discretized values of (u, Zw) where u is
the image column and Zw is the depth in 3D world coordinates. By doing this the grid main-
tains resolution to distant objects compared to a Column/Disparity map. This is due depth
varying inversely proportional to with disparity in stereo triangulation [40]. A cell in the polar
occupancy grid is defined as (i, j) = (ui j , zi j) yielding the likelihood function eq.5.8.

Li j(mk) = Gmk((ui j − u, 0, d �i j − d)T ), where d �i j =
fuB
zi j

(5.8)

(a) Cartesian (b) Column/Disparity (c) Polar

Figure 5.1: Variations of the occupancy grid
Source: [40]

Free Space and Height Segmentation

The Stixel Tesselation uses the disparity map generated by SGM to generate a stochastic polar occu-
pancy grid which is described in section 5.2. In this map the image column is used to represent the
angular part, and the disparity as the range part of the polar coordinate [35].

In order to detect obstacles they need to be separated from the area around the vehicle. This area
is called Free Space, and is defined as the area around a vehicle where movement without any col-
lision is guaranteed [40]. In other words, free space describes the area until the first obstacle in
every direction is met. This can be seen in the polar occupancy grid by starting at the bottom and
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moving upwards until an occupied cell is encountered. Doing this for every column will create a
line across the occupancy grid defining the free space. This line can also be found using Dynamic
Programming (DP) [40]. The DP-algorithm tries to find the optimal path across the occupancy grid
from left to right creating the same line as if every column was evaluated separately. The output
of the DP-algorithm is a set of vector coordinates (u, d̂u) representing the column of the image and
the disparity respectively. These coordinates can be triangulated into 2D world coordinates (Xu, Zu).
These 2D points along with the origin of the camera defines the free space in front of the camera
system.

Figure 5.2: Illustation of freespace

Now as the distance and direction to the objects have been established in 2D, height segmentation
can be conducted. As we now have the vector coordinates (u, d̂u), and the 2D position (Xu, Zu) of an
object the task is to find out the upper boundary of the object located at (Xu, Zu). To determine if a
pixel is a part of the foreground or the background its disparity is compared to the expected disparity
if there was no objects in the scene [35]. This is done by approximating a boolean membership of
either foreground or not not foreground with eq.5.9.

Mu,v(d) = 2(1−(
d−d̂u
ΔDu

)2) − 1 (5.9)

In eq. 5.10ΔDu is a parameter, d̂u is the disparity obtained from the free space calculation and fd(z)
is the expected disparity based on the baseline (B) and focal length ( fu).

ΔDu = d̂u − fd(Zu −ΔZu), where fd(z) =
B ∗ fu

z
(5.10)

A cost function based on the sum of the membership values is then created (eq.5.11). Because of the
large difference in disparity in the transition between the top of an object and the background, the
cost function yields a clear difference in membership in these areas.

C(u, v) =
i=v−1�

i=0

Mu,v(d(u, i))−
i=v�
i=vf

Mu,v(d(u, i)) (5.11)

Having calculated both the base and top on all the objects the extraction of stixels is simple. The
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parameters for base point (vB), and top point (vT ) along with a predefined width of each stixel span
a frame for each stixel. As the occupancy grid is build of discrete values it will have a finite resolution
which will affect the accuracy in depth. The disparities within the stixel frame produces by the SGM
earlier is stored in a histogram. By using this information more accurate depth information can be
obtained while simultaneously filter outliers and reduce noise [35]. Calculating depth for each stixel
is done by first calculating Zc as in eq.5.12 . Then calculating Xc as in eq.5.13, before calculating
the euclidean distance to the stixel. As the average disparity is calculated for the whole stixel, the
distance is only calculated in the cameras X/Z-plane.

Zc =
fuB
d

(5.12)

Xc =
x
fu
· Zc (5.13)

distance =
�

X 2
c + Z2

c (5.14)

Figure 5.3: Stixel distribution from scenario 7

5.3 Method 2 - Digital Elevation Map

A digital elevation map is a method of representing the 3D world using either 2D or 3D sensors
[36]. The map is then divided into DEM-cells resembling a Cartesian occupancy grid. This method
is usually used to map terrain, but Oniga and Nedevschi [42] presented a method of separating a
planar surface and detecting objects. By fitting a quadratic surface model using RANSAC the authors
could use the density in the 3D points to classify DEM-cells as either road, traffic isle or obstacle.

The first step in this process is then to obtain the surface model. When using a coordinate system
where (x,y,z) = (lateral, height, depth) an algebraic representation of the model can be shown as:

Y = −a · X − a� · x2 − b · Z − b� · Z2 − c (5.15)

Fitting the model to n 3D-points involves minimizing an error function S. The function is a sum of
squared errors where Yi is the height of the 3D point and Ȳi is the height of the surface model at
point (Xi , Zi). It is possible to minimize over the surface instead of just the Y-axis, but an increase is
accuracy will only be noticeable in very curved terrain, but the computational complexity increases
drastically [42].
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Figure 5.4: Flow chart of DEM algorithm
Source: [42]

S =
n�

i=1

(Yi − Ȳi) (5.16)

Inserting eq. 5.15 into eq. 5.16 results in eq. 5.17. Minimizing this function can be done by taking
the derivative with respect to the unknowns (a, a’, b, b’ and c). This results in a set of five linear
equations that can be solved with algebra.

S =
n�

i=1

(Yi + a · Xi + a� · X 2
i + b · Zi + b� · Z2

i + c)2 (5.17)

The DEM consists of a grid similar to the occupancy grid map with a predefined size for both the the
size of the map and size of each cell in the map. The 3D points calculated from the disparity map
will be located above a DEM-cell and only the highest point within each cell is stored. In addition to
this, two density maps are calculated for each cell, expected surface density map and average meas-
ured density map. The expected surface density map is a map describing the 3D density of a cell if
no obstacles are present. The number of actual 3D points provided by the disparity map is counted
and stored for each cell. As the density of obstacles vertical to the surface provides more 3D points
than the surface a comparison between the two maps is done to quickly distinguish between surface
and non-surface features.

As the density in both objects and surface decays with distance two criteria are used to classify a cell
as an object:

1. If the density is TH times higher than the estimated surface density where TH is a constant
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based on maximum allowed slop in surface.
2. If a cell is adjacent to a cell classified as obstacle and has density higher than TH

2 times the
estimated surface density.

Figure 5.5: Output of DEM algorithm
Source: [42]

The density of points in the expected surface density map decrease with increased distance from
the vehicle. From the experiments done in the original paper [42], the density was approximately
0.1 pts

cel l at 35m. Without knowledge about the ground surface, it is impossible to detect objects at a
longer distance. Fig. 5.5 illustrates how the different areas in the image are classified. It is also worth
noticing that the cars ahead in the image are not detected as they are out of the predefined range.
The detection range can be increased, but it is obvious in fig.5.5 that the accuracy of the surface
model decreases heavily at the end of the range.

5.4 Method 3 - Geometry-based Cluster

This is a rather generic category with multiple algorithms, but if a real time constraint is considered
one of the methods presented in [34] is a good option. In this method a set of conditions is applied on
a point pair (p1 and p2), and if these conditions are satisfied, both points are considered compatible
and are labeled as obstacle points.

1. Hγ < |v2 − v1|< Hmax (The difference in height is between a given interval)

2. |v2−v1|
|p2−p1| > cos(θγ) (The line joining the points creates an angle in the horizontal plane.)

To determine all obstacle points you can use a brute force approach which is testing all possible point
pairs, resulting in N2 tests for N points. A more efficient method is possible when realizing the two
conditions create a double truncated cone with p1 in the centre.

The double truncated cone can then be projected onto the image plane as a double truncated triangle
centered in pixel p. A simple detection algorithm is then presented as:
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Figure 5.6: Double truncated cone

1. For every pixel p determine a set Ip containing all the pixels in the truncated triangles.
2. Scan the set for pixels compatible with p. If such a pixel is found, classify p as obstacle. If not,

p is not an obstacle.

Further optimization can be done to avoid testing the same point pairs twice, but the concept re-
mains the same. The next task is to segment the different obstacle points into different objects.

In order to segment different clusters of points into objects we can express the points as an un-
directed graph. This graph is constructed by applying a property saying if p1 and p2 belong to the
same object, and p2 and p3 belong to the same object, all three points belong to the same object.
This means that an object can be defined as the maximal connected subgraph of the point graph [34].

To distinguish between objects the points classified as obstacle within a cone is labelled. If two or
more cones are sharing points, all points within the these cones are given the same label.
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(a) Points within cone labeled (b) Two sets of points with different labels overlapping

(c) All points relabeled to the first label (d) New label for new set of points

Figure 5.7: Segmentation process 3-D points classified as obstacle
Source: [34]

5.5 Method 4 - Direct Planar Hypothesis Testing

The method presented in [37] is a joint detection and localization algorithm. The method differs
from the ones presented above by not assuming a global free space plane. Instead it performs a
patch-wise binary classification of either free-space or obstacle. This is formulated as a statistical
hypothesis testing problem where free-space is represented by the null-hypothesis H f and obstacles
correspond to Ho. Each local plane is defined by a vector θ = (nx , nY , nZ , d)T where n is the normal
vector of the plane and d is the distance from origin. Each local plane is allowed to vary within
certain parameters φ f and φo which is illustrated in fig.5.8. The axis in fig.5.8 are parallel with the
camera coordinate system. By tuning these constrains the method can be optimized for the expected
terrain and obstacles to be detected.

Figure 5.8: Cones that visualize allowed deviations in local plane and obstacle
Source: [37]

The authors argue that a adding processing steps in the algorithm will cause loss in performance.
More specifically, they are aiming at the calculation of a disparity map. Where most other algorithms
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needs to have an accurate and often dense disparity map as an input to the algorithm this method
operates directly on the image data.

To evaluate if an image patch is free-space (H f ), or obstacle (Ho) a Generalized Likelihood Ratio
Test is performed. This test replaces the unknown parameters θi in every hypothesis Hi =H f ,o with
their Maximum Likelihood Estimates θ̂i . This test is performed instead of the likelihood ratio test as
it requires knowledge about the full probability function of the data model in the hypothesis.

L(I) = p(I; θ̂o,Ho)

p(I; θ̂ f ,H f )
> γ (5.18)

In eq. 5.5 I is a data vector from the stereo image pair, γ is the decision threshold and L(I) is
the likelihood ratio. The left and right image patch values, Il(p) and Ir(p) are considered as noisy
samples of the continuous image signal g at position p.

Il(p) = g(p) +αl(p) +η(p) (5.19)

Ir(W (p,θ )) = g(p) +αl(p) +η(p) (5.20)

The terms α(p) and η(p) in eq.5.19 and eq.5.5 represents the local intensity bias and noise respect-
ively. W (p,θ ) is the warp of coordinates from the left to the right image. This transformation is
described in detail in section 2.2.

H = K(R− 1
d

tnT )K−1 (5.21)

ln(p(I; θ̂i ,Hi)) =
�
p∈Ω

C1 − C2 ·ρ(Ir(W (p,θ ))− g(p)) (5.22)

θ̂i = arg min
θi

(−ln(p(I; θ̂i ,Hi))) s.t |φi |≤ φ̃i (5.23)

5.6 Method 5 - Euclidean Clustering

Euclidean clustering is not a object detection method by it self, but in the combination of a series of
filtering, accumulation and clustering relevant objects can be extracted from noisy point clouds. The
method was tested on milliAmpere by Olsen and Theimann in their master’s thesis [5].
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Cut-off Filtering

The first step is to reduce the amount of information to process by simply setting minimum and
maximum ranges in 3D space for points to be considered. This is done by applying a pass-through
or cut-off filter. These ranges can be set to exclude points that are obvious noise by being out of the
field of view of the cameras, or for instance at such heights and depths that are not relevant for the
application.

Statistical Outlier Removal

The next filter is based on the fact that areas of interest in a point cloud has a higher density than
areas with only noise. Assuming this density to be Gaussian the mean distance from one point to its
neighbors can be calculated. A limit of maximum mean distance for a point to its neighbors can then
be set, and all points with a higher mean distance will be removed. By doing this dense areas in a
point cloud will remain dense, and sparse areas will become even sparser.

(a) Original point cloud (b) Point cloud after cut-off filtering (c) Point cloud after SOR-filtering

Voxel Grid

The point cloud can now be down sampled to reduce computational complexity. This is done by
applying a Voxel Grid filter. This filter acts as the 3D space is filled with rectangular boxes and all
points within the box is approximated to their centroid point.

Accumulation

Accumulation is done to increase robustness. By combining point clouds from a number of consecut-
ive point clouds the result is a denser point cloud is areas of interest while the remaining noise stays
sparse. This also has the benefit of maintaining a good point cloud even if the input cloud should be
poor for a couple of instances.

Euclidean Clustering

In the final step the now filtered and accumulated point cloud can be clustered into single points
that are easier to track.
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(a) Point cloud after Voxel Grid down
sampling (b) Point cloud after accumulation (c) Point cloud after after clustering

5.7 Evaluation of Detection Methods

As one of goals of this thesis is to determine viable options regarding object detection using stereo
vision on milliAmpere it is important to evaluate the the methods presented against how well they
will fit for the intended use, namely medium to long range object detection and depth estimation in
an urban marine environment, and the criteria set in the beginning of this chapter.

The stixel method presented in section 5.2 is one of the methods that depend on the calculation of
free-space. As the sea level within the Trondheim canal is relatively flat, the Stixel method is well
suited for use on milliAmpere. However, how waves caused by other surface vehicles affect the sta-
bility and robustness in the free space calculation is unknown. The height segmentation used in the
stixel method, presented in section 5.2, only allows for one object per stixel. This means that if a taller
vehicle is present behind a lower one they will not be detected as two separate objects. There are
specializations of the stixel method that allows for this type of separation, that could be investigated
if the stixel method is to be used further in the development of milliAmpere, but will not presented
in this thesis as it is considered more of an optimization of a working method than proving a that a
method can work.

The DEM method presented in section 5.3, does not rely on a planar surface model, but the quadratic
model is more computationally expensive to obtain, and probably not necessary at flat sea level. As
only the highest point in each DEM-cell is stored, the accuracy of this method is determined on the
size of the DEM-cell. This technique will make the algorithm compact, but how complete it is depends
on the size of the cells. Making the DEM-cells too small will preserve more information, but result
in a considerable increase in computational time. Another disadvantage for the method is that as its
performance quickly decays with distance. As an important aspect of milliAmperes perception system
is to detect other vehicles at medium to long distances as quickly as possible, the DEM-method is not
considered a good alternative for milliAmpere.

The geometry based cluster method presented in section 5.4, is the oldest of the methods considered
in this study. The algorithm is quite simple but suffers from the same segmentation problem as the
stixel method where objects too close to each other will be considered as the same object. Possible
range is hard to evaluate, but no apparent restrictions can be seen. The computational complexity
is low, but the results presented in [34] shows some weaknesses regarding missed objects. In the
case of milliAmpere robust detection is crucial, and the geometry based cluster will there for not be
investigated any further.
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Direct Planar Hypothesis Testing is the newest, and perhaps the method that differs the most from
the previous ones. It does not rely on any assumptions of a ground plane nor a disparity map. The
results presented by Pinggera et. al [37] are impressive, with good detection and depth estimation
for long distances. However, few other resources than the original paper is available, and therefore
little information about how well the algorithm performs in other scenarios.

Euclidean clustering has been proven to work [5], but it has the disadvantage of losing accuracy and
being incomplete, as the many steps in the filtering and clustering process results in a single point
that can be located anywhere in the initial cluster of points generated by the target. This point may
also move within the target from frame to frame making it less consistent than other methods. This
method, as many of the other will perform poorer at longer ranges as at longer ranges the initial
point cloud will contain fewer points and therefore be more likely to be considered as noise by the
filtering process. Nonetheless, it has excellent properties regarding noise filtering. Combining this
with the accumulation results in what should be a very robust method.

Method Range Real time FG.ass
Stixel GOOD YES PLANAR
DEM POOR YES QUADRATIC

Geometry based GOOD YES PLANAR
PHT EXCELLENT YES NONE

Euclid.Cluster GOOD YES NONE

Table 5.1: Summary of selected OD method

After evaluating the five methods in regards to how well it translates to milliAmpere and fulfills
the four criteria, the stixel method, Euclidean cluster and DPHT appears to be a good alternatives.
With more available resources, the DPHT method could have been a viable option. But as only the
original paper is available on the matter, and the source code is not publicly available as it was de-
veloped in Daimler Research Lab, this method is not investigated any further. The stixel method is
well documented through a number of well documented experiments done by others. It offers real
time computation with a satisfying accuracy for distance estimation and detection. These properties
makes it suitable for use on milliAmpere, and will therefore be used further in the thesis.

The Euclidean cluster also seems as a good alternative due to its proved results on point clouds gen-
erated with the SAD-method [6], and using SGM should only improve on these results. Its robustness
also is an appealing factor as detection of surrounding vehicles is very important. This method was
therefore chosen alongside the stixel method to be tested on real data from milliAmpere.
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System Description

In this chapter the stereo system used in this thesis will be presented. This includes the different hard-
ware components such as cameras and lenses, choices made regarding mechanical set up, software
solutions and processing pipeline. The system is created for use on the autonomous ferry, milliAmpere
in the Trondheim canal for detection and estimation of objects in front of the ferry.

6.1 Hardware

The setup consist of two identical cameras and lenses. The cameras, Blackfly S GigE are well suited as
they have a global shutter sensor. This means that all pixels are activated simultaneously as opposed
to the more common rolling shutter sensor where pixels are activated sequentially. A global shutter
sensor is important in this application as information in an instant is to be compared to another
image in the same instant. With a a rolling shutter moving objects can be distorted or generally not
representing the real world in that given instant. Each camera is fitted with a fixed focal length lens
from Edmund Optics.

(a) Blackfly S GigE camera
Source: Blackfly S gigE documentation a

ahttps://www.flir.com/products/blackfly-s-gige/

(b) Edmund Optics lens
Source: Lens documentation a

ahttps://www.edmundoptics.com/p/85mm-c-series-
fixed-focal-length-lens/14947/

51
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Blackfly S GigE specifications
Frame rate 24
Resolution 2448x2048
Pixel size 3.45m

Readout method Global shutter
Communication GigE
Operating Temp. 0◦C − 50◦C

Table 6.1: Camera specifications

Edmund Optics C-series lens
Focal length 8.5mm

Type Fixed focal length

Table 6.2: Lens specifications

Camera Setup

As mentioned in section 2.4 the physical setup regarding baseline and camera angle affects the ac-
curacy, how close objects can be seen, and how wide the field of view of the complete system is. To
keep the complexity of the system as low as possible the two cameras are mounted on a aluminium
bar only shifted in the x-direction. To utilize the benefits from having a large baseline it was set
to 1.75 meters, as this is the largest practically possible on milliAmpere. However, having a large
baseline generates an area in front of the cameras where the images do not overlap. This distance
can be calculated using eq. 6.1 where B is the baseline, and θ is the horizontal field of view.

distance = tan
�

180−Θ
2

�
∗ B

2
(6.1)

According the the specifications Θ = 59.1◦ and with B = 1.75m the distance to where the images
start overlapping is 1.54m.

Figure 6.2: Point of intersection FoV

To increase the overlapping field of view and increase accuracy the cameras where angled slightly
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inwards. This also has the benefit of creating a fixation point. This is the point where the optical axis’
cross, and can help to separate objects at this distance. This fixation point can be calculated as in eq.
6.2 where WD is the working distance, B is baseline, and β is inward rotation around the Y-axis.

W D =
B
2
∗ tan (90◦ − β) (6.2)

Using the same baseline of 1.75m and rotation of 1◦ inward each, the fixation point is 51.56 meters
ahead of the cameras which is a suitable and desirable operating distance for the system.

Figure 6.3: Sensors mounted on milliAmpere

Communication

The cameras are connected to a Power over Ethernet (PoE) switch. Another ethernet cable is then con-
nected to a computer controlling the cameras. In stereo vision it is cruical that the images are taken
simultaneously such that the two images are looking at the scene at the exact same time. Because
of this the cameras are arranged in a master/slave-setup, where the left camera is the master and
the right camera is hardware triggered by the left camera with a synchronization cable between them.

Figure 6.4: Communication between units in the system
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6.2 Software

The main components of the software being used will be explained in this section to get a better
understanding of how it all is tied together. The milliAmpere ferry is run on the Ubuntu 16.04 LTS
operating system using Robot Operating System (ROS) Kinetic as its main control system.

ROS - Robot Operating System

ROS is an open-source framework with tools and libraries for developing software for robotics. It
was developed as an attempt to standardize and modularize robotic software as it quickly becomes
complex [43]. It has five philosophical goals

• Peer-to-peer
• Tool-based
• Multi-lingual
• Thin
• Free and Open-Source

A ROS system consists of many separate processes doing their designated tasks. These process are
connected in a peer-to-peer topology with processes dependent on each other connected directly.
This is done to avoid unnecessary traffic flow to and from central servers. Messages sent between
nodes in a ROS-network is of standardized small text files. This means that a number of programming
languages are supported, and languages can therefore be chosen based on personal preferences or
task suitability.

As software development in robotics quickly can become complex, code has a tendency to become en-
tangled in projects making reusability hard. ROS encourages development of drivers and algorithms
to be in standalone libraries that are independent of ROS. By placing all the complexity in libraries
outside of ROS makes it easier to follow the thin-ideology.

In this project the code for the specific methods are written as ROS-nodes. These nodes subscribes
and publishes ROS-messages to topics. By connecting the nodes together results in a flow of inform-
ation being processed on its way. This flow of information can be seen in the explanation of some of
the most central nodes in this project below.

Open Source Computer Vision Library - OpenCV

OpenCV is an open source software library focusing on computer vision and machine learning. The
library contains over 2500 algorithms covering both traditional and state-of-the-art computer vision
algorithms. It has interfaces for C++, Python, Jaca and MATLAB and supports Windows, Linux, An-
droid and MacOS. In this project OpenCV is used in numerous instances such as resizing, disparity
map generation, image visualization and camera calibration.

Point Cloud Library - PCL

PCL is a C++ library containing algorithms for manipulation of point clouds. This includes, filtering,
feature estimation, surface reconstruction, segmentation and more [44]. In this project it is heavily
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used in the Euclidean cluster method explained in section 5.6.

Camera Driver

The images are acquired using a camera driver that supports the our cameras provided in ROS 1.
Using this driver one can customize the image acquisition process by determining frame rate, colors,
shutter time etc. The driver then publishes two topics for each camera image_raw, and camera_info,
where all the calibration parameters are stored. Configuration for multiple camera setup in possible
making in possible to start multiple cameras at once.

Figure 6.5: Flowchart for camera driver

ee

Stereo Package

The next step in the image pipeline is to transform the raw images provided by the camera driver to
useful information. To do this the ROS-package, stereo_image_proc 2 is used. This package uses the
topics provided by the camera driver and publishes a new set of topics including rectified images,
disparity maps and point clouds. Functionality for generating disparity maps using both the SAD and
SGM method is supported. The point clouds are generated by applying eq. 3.3 to every pixel in the
disparity image.

Figure 6.6: Flowchart for stereo_image_proc

1http://wiki.ros.org/spinnaker_sdk_camera_driver
2http://wiki.ros.org/stereo_image_proc
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Stixel Package

As it is a goal to have the system being able to run in real time, and be integrated with milliAmpere,
it is built with ROS integration in every step of the process. The stixel package is a ROS package
written in c++, specifically for this project. Base code for the stixel implementation 3 was used, and
reworked to be ROS compatible, and suitable for this project.

Using topics from the stereo_image_proc package as input a separate package for resizing the im-
age topics to suitable dimensions was written. This works as an intermediate step before using them
in the stixel world package. In the resizing step a lot of the sky is removed from the images as this
does not provide any information but adds to the computational complexity. The images are resized
from (1224, 1024)px −→(1224,600)px.

Figure 6.7: Image before and after resizing

Figure 6.8: Complete flow chart for stixel implementation

Clustering Package

The clustering package is also a ROS package written for this project. it that uses the points2 topic
from the stereo_image_proc package as input. It transforms the point cloud from a ROS message
to a datatype recognized by the PCL library mentioned in section 6.2. The package then handles all
the filtering, accumulation and clustering explained in section 5.6. It publishes point clouds from all
the steps in the process for easier evaluation of each filter.

3https://github.com/gishi523/stixel-world
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Figure 6.9: Complete flow chart for Euclidean cluster implementation

Disparity Tuning

When creating the disparity map there are several parameters that needs to be tuned in order to
produce the best result. These factors can be the penalty terms P1 and P2 described in section 3.4
about SGM, the number of disparities, the size of the search window etc. To do this in real time
while the algorithms were running a ROS tool called rqt_reconfigure was used. When running
the ROS stereo package, stereo_image_proc, rqt_reconfigure has access to these variables. In this
environment all the parameters can be tuned and saved in .yaml files for use later.

Figure 6.10: Tuning parameters in rqt_reconfigure
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Experiments

In order to test the system on the hardware in the operating environment a series of experiments
were conducted. Different scenarios targeted to test different aspects with the system were designed.
An overview of the trajectories for all five scenarios can be seen in appendix B. The main goal of the
experiments was:

1. Evaluate the robustness of the object detection algorithm. Determining how well the algorithm
detects vehicles and other objects and how well the detection is kept in a dynamic environment

2. Evaluate the accuracy of the depth estimations. Comparing depth estimations with ground
truth data

3. Evaluate run time of the system

Figure 7.1: Havfruen and milliAmpere

7.1 Ground truth

A target boat Havfruen was used as a target for the system. It is a 7 meter long leisure boat rep-
resenting the average boat in the area. The experiments were designed to figure out how far away
the system is able to detect a boat of this size, and how well it performs in regards of maintaining
detection at different ranges, angles and speeds.

59
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The target boat was equipped with a Spatial Dual positioning system from Advanded Navigation.1

This is a GPS aided inertial navigation system that through fusing of a inertial measurement unit
(IMU), pressure sensor, and a dual antenna RTK GNSS receiver can provide accurate estimates re-
garding position, velocity, acceleration and orientation. Accurate positional estimates of the target
boat can be used as ground truth by comparing the distance between the target boat and milliAmpere
to the depth estimates provided by the stereo vision system.

(a) Dual antennas mounted on the roof of Havfruen
(b) Spatial Dual control unit

Source: Spatian Dual Documentation1

The distance between milliAmpere and Havfruen was calculated using this Haversine formula. This
formula calculated the shortest distance between two coordinates on earths surface modelling the
earth as a great circle. In the equations below, (eq.7.1) φ is latitude, ρ is longitude, and R is earths
radius.

a = sin2
�
Δφ

2

�
+ cosφ1 · cosφ2 · sin2

�
ρφ

2

�

c =2 · atan2(
�

a,
�
(1− a)
�

distance =R · c (7.1)

(7.2)

According to the documentation the Spatial Dual unit as a positional accuracy of 1.2m in the con-
figuration used during these experiments. However, an average lower positional error of 0.23m was
recorded during the experiments.

1https://www.advancednavigation.com/products/spatial-dual
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Figure 7.3: Positional Error in Ground Truth

As the shape of the boat is not spherical, the distance from the GNSS antenna to the sides of the boat
is not equal for all sides of the boat. The stereo vision camera calculates the distance to the surface
of an object, so this offset is taken into account for each scenario as a constant as the boat is mostly
seen from the same angle through out the scenario.

As the cameras and lidar detect the surface of the boat, and the antennas were placed in the middle
of the boat there will be a a constant offset between ground truth. This offset will vary regarding if
the boat is seen from the side, frond and rear. The data will be adjusted for each scenario accordingly.

MilliAmperes on board computer (OBC) measures its position via a GNSS-antenna which has its own
reference frame on milliAampere. As the stereo camera is temporarily mounted on milliAmpere it
has its own local reference frame located at the center for the left camera. In order to avoid a con-
stant error between the ground truth measurements and stereo measurements the measurements
from the stereo vision system needs to be translated to the GPS reference frame. The translation
vector, t GPS

c = [1.86, 0,−0.29] translates the coordinates systems to a common origin point. In this
thesis only distance is estimated and not orientation or position in a static world coordinate system.
Therefore rotating the camera frame to a NED-configuration is unnecessary.
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Figure 7.4: MilliAmpere during testing

Light Detection and Ranging - Lidar

As the main alternative sensor to a stereo system is a lidar, measurements from a lidar sensor has also
been included for comparison. The Lidar is an active sensor as it emits laser pulses and measures the
time it takes from the pulse being sent until it returns to the sensor. Using this principle for distance
measurements is done in several different sensors such as ultra sound and randar and is called Time
of Flight-sensors (TOF). For light emitting sensors the distance can be expresses as in eq. 7.3, where
c is the speed of light and Δt is the time of flight.

distance =
c ·Δt

2
(7.3)

The lidar mounted on milliAmpere is a VLP 16, and its most important specifications can be found
in table 7.1.

Figure 7.5: Velodyne VP16 Lidar
Source: VP16 documentation 2

Considering the center of the lidar to be the origin of a local coordinate system points can be de-
scribed in spherical coordinates where r is the radial distance,ψ is the azimuth, and η is the elevation
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Range 0-100m
Horizontal FoV 360◦

Vertical FoV 30◦

Accuracy ±3cm
RPM 300-1200

Resolution 0.1◦- 0.4◦

Table 7.1: Technical data for VPL 16

angle. These spherical coordinates can be transformed to Euclidean space by applying eq. 7.4.

Pl idar =




Xlidar
Ylidar
Zlidar


 =



r cos(η) sin(ψ)
r cos(η) cos(ψ)

r sin(η)


 (7.4)

Having obtained Pl idar, the distance to the point can be calculated using the euclidean distance, as
shown in eq.7.5.

Distancel idar =
�

X 2
l idar + Y 2

l idar + Z2
l idar (7.5)

The same Euclidean clustering method as described in section 5.6 is applied to the point cloud pro-
duced by the lidar. A separate ROS-node was crated for the lidar making it easy to run lidar and
stereo in parallel to compare results.

Figure 7.6: Flowchart of ROS-node for lidar

As for the stereo cameras a translation vector transforming the lidar reference frame into the GPS
reference frame is applied to the points before distance calculations are done. The vector t GPS

lidar =
[0, 0.93, 0] ensures that the two reference frames have coinciding origins.
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Results

Data collection was conducted both within the Trondheim canal and in the open sea just north of
the Trondheim canal. The results are based on five different scenarios representing different nor-
mal encounters with other boats for milliAmpere. An overview of these scenarios can be seen in
appendix-B. In fig. 8.1 the ground truth of the target boat is shown. This ground truth includes five
different scenarios testing different aspects of the system. In the scenarios the target boat will range
from 10 meter to several hundred meters.

(a) Ground truth data, open sea (b) Ground truth data, harbour

Figure 8.1: Overview of area covered during testing

8.1 Calibration Results

Prior to the data collection a stereo camera calibration was performed. Unfortunately when analyzing
the calibration results after the data collection it became obvious that the results were far from
optimal with a mean reprojection error (Δpx > 2). Although it is not optimal, it was considered
necessary to perform a new calibration after the equipment was transferred back to campus. This is
not optimal as calibration should generally be done prior to use, and at the cite where the system is
operating. Possible sources of error is that there might have been small changes in the camera setup
during transport. However, the camera rig was transported as one unit, and the lighting conditions
were similar to when the data collection was conducted.

65



66 :

Using a checkerboard and the MATLAB Stereo Camera Calibrator App multiple images were taken
at various ranges and angles. In fig. 8.2 and fig. 8.3 the detection of checkerboard and images after
rectification is shown.

Figure 8.2: Corners of checkerboard detected

Figure 8.3: Rectified image with horizontal epipolar lines

Figure 8.4: Checkerboard positions during calibration
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Figure 8.5: Mean reprojection error for every image

Extrinsic Parameters
Translation [mm] Rotation [deg]

X Y Z X Y Z
-1740.235 ± 0.114 -9.591 ± 0.028 87.338 ± 0.597 0.688 ± 0.001 5.712 ± 0.001 0.733 ± 0.001

Table 8.1: Extrinsic parameters from camera calibration

Intrinsic Parameters
Left Camera Right Camera

fu 1236.1239 ± 0.2641 1236.7399 ± 0.2676
fv 1235.4177 ± 0.2636 1236.9865 ± 0.2662
u0 620.1205 ± 0.6002 642.7828 ± 0.5872
v0 534.8395 ± 0.1968 530.3827 ± 0.1881

Rad.dist. -0.398 0.234 -0.113 -0.400 0.243 -0.131
Tan.dist. -0.0002 -0.0005 -0.0003 0.0005

Table 8.2: Intrinsic parameters from camera calibration
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Figure 8.6: Lower bound for depth error as a result of the calibration results

8.2 Distance Estimation

The main evaluation criteria of the system performance used in this thesis is distance estimation.
Meaning how well do the different methods estimate the distance to surrounding objects in the im-
age frame when encountered in different scenarios.

Scenario 1

In scenario 1 Havfruen starts close to milliAmpere, then drives away. The purpose of this scenario
was to get an understanding of how the system performs with little surrounding objects, how far the
methods are able to detect Havfruen, and how reliable the detection is at the different distances.

Figure 8.7: Illustration of scenario 1
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FPS 20
Image resolution 1224 × 1024
Color/grayscale grayscale

In fig. 8.8 the two stereo methods, the lidar method, and the ground truth is plotted. It shows a linear
increase in distance between milliAmpere and Havfruen. in fig.8.9 the error of the three methods
are shown, both in regards to the distance between milliAmpere and Havfuren, but also in regards
to the distance between them.
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Figure 8.8: Distance estimation for scenario 1
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(a) Error in regards to distance
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(b) Error in regards to time

Figure 8.9: Distance error - Scenario 1
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Scenario 2

In scenario 2 Havfruen is approaching milliAmpere from ahead. As the scenario is taken within the
canal there are a lot of surrounding buildings and boats that clutter the image compared to scenario
1. The purpose of this scenario is to see how well the different methods are in separating objects in
a cluttered scene and also estimate the distance to an approaching object.

Figure 8.10: Illustration of scenario 2

FPS 20
Image resolution 1224 × 1024
Color/grayscale grayscale
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Figure 8.11: Distance estimation for scenario 2
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(a) Error in regards to distance
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(b) Error in regards to time

Figure 8.12: Distance error - Scenario 2

Scenario 3

In scenario 3 milliAmpere is stationary and facing the ship tunnel. Havfruen exits the shiptunnel
before turning starboard and crossing infront of milliAmpere. The purpose of this scenario is to see
how well the methods detect and estimate the distance to an object emerging from a dark spot in the
images. In fig. 8.14 there is a large error in ground truth in the beginning. This is due to the ground
truth being obtained by GNSS, and the signal is lost while under the bridge. The error estimation in
fig. 8.15 also suffers from this error.

Figure 8.13: Illustration of scenario 3

FPS 20
Image resolution 1224 × 1024
Color/grayscale grayscale
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Figure 8.14: Distance estimation for scenario 3
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(a) Error in regards to distance
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(b) Error in regards to time

Figure 8.15: Distance error - Scenario 4

Scenario 4

In scenario 4 Havfruen overtakes milliAmpere on its starboard side. It continues in a straight line
before turning and heading straight towards milliAmpere. In this scenario the system is tested on
how it handles change in direction of a target.
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Figure 8.16: Illustration of scenario 4
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Figure 8.17: Distance estimation for scenario 4
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(a) Error in regards to distance
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(b) Error in regards to time

Figure 8.18: Distance error - Scenario 4
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Scenario 5

In scenario 5 Havfruen crosses in front of milliAmpere from right to left at a constant speed while
milliAmpere is stationary at Ravnkloa facing Vestre Kanalhavn.

Figure 8.19: Illustration of scenario 5

FPS 20
Image resolution 1224 × 1024
Color/grayscale grayscale
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Figure 8.20: Distance estimation for scenario 5
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(a) Error in regards to distance
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(b) Error in regards to time

Figure 8.21: Distance error - Scenario 5
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8.3 Detection Rate

In this section the results regarding detection will be presented. The results for all the scenarios
combined for each method will be presented first, then each scenario by it self. Comparison between
cluster methods and stixel will not represent the truth 100% as the accumulation step in the cluster-
ing methods use three consecutive inputs to determine a centroid point in a cluster this will lead to
a higher detection rate than without this step. The stixel method has no accumulation of knowledge
about the state in previous iterations.

The detection tables show the distance measurements in the leftmost column. To the right is the
number of iterations of output with failed detection, and the right most column shows the longest
sequence of consecutive missed detections. The plots show one column for each scenario with the
ratio of detections and missed detections.

Stixel Tesselation

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 9 0 1 1 1 0 0 0 0 4
20-40 223 22 6 0 0 2 1 1 0 7
40-60 292 37 15 7 5 1 0 0 0 5
60-80 98 12 5 2 1 1 1 2 0 7

80-100 46 7 4 6 3 2 0 1 1 12
>100 4 1 0 1 0 2 0 0 1 11

Table 8.3: Duration of intervals without detection for different distances in total for all scenarios
with the stixel method
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Figure 8.22: Detecton distribution for stixel method
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Euclidean Cluster

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 6 0 1 1 0 0 1 0 0 5
20-40 194 3 1 0 0 2 1 0 0 6
40-60 271 3 1 0 1 0 0 0 1 10
60-80 124 0 0 0 0 0 0 0 0 0

80-100 90 0 1 0 0 0 0 0 0 2
>100 7 1 0 0 1 0 0 0 0 4

Table 8.4: Duration of intervals without detection for different distances in total for all scenarios
with the Euclidean cluster method - Stereo Vision
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Figure 8.23: Detecton distribution for Euclidean cluster method - Stereo Vision

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 0 0 0 0 0 0 0 0 1 14
20-40 404 2 2 1 0 2 1 6 5 85
40-60 106 1 0 1 0 2 2 0 9 100
>60 59 0 0 0 0 1 2 0 5 162

Table 8.5: Duration of intervals without detection for different distances in total for all scenarios
with the Euclidean cluster method - Lidar
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Figure 8.24: Detecton distribution for Euclidean cluster method - Lidar

Scenario 1

(a) Successful detection (b) Failed detection

Figure 8.25: Examples of stixel detection in scenario 1

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 9 0 1 1 1 0 0 0 0 4
20-40 44 4 3 0 0 0 0 1 0 7
40-60 14 2 1 1 1 0 1 0 0 6
60-80 34 5 4 1 1 1 1 1 0 7
80-100 18 3 1 2 2 2 0 1 3 12
>100 4 1 0 1 0 2 0 0 1 11

Table 8.6: Duration of intervals without detection for different distances for scenario 1, Stixel
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Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 6 0 1 1 0 1 0 0 0 5
20-40 51 2 0 0 0 0 0 0 0 1
40-60 15 3 0 0 0 0 0 0 0 1
60-80 57 0 0 0 0 0 0 0 0 0
80-100 45 0 1 0 0 0 0 0 0 2
>100 7 1 0 0 1 0 0 0 0 4

Table 8.7: Duration of intervals without detection for different distances for scenario 1, Cluster
stereo

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
0-20 0 0 0 0 0 0 0 0 1 14
20-40 54 2 0 0 0 0 0 0 1 12
40-60 23 0 0 0 0 1 2 0 3 16
60-80 14 0 0 0 0 1 2 0 2 10
>80 45 0 0 0 0 0 0 0 1 162

Table 8.8: Duration of intervals without detection for different distances for scenario 1, Cluster lidar

Scenario 2

(a) Successful detection

(b) Failed detection

Figure 8.26: Examples of stixel detection in scenario 2
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Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 2 1 1 0 0 1 0 0 0 5
40-60 34 4 3 1 0 0 0 0 0 3
60-80 28 5 0 1 0 0 0 1 0 7
80-100 38 4 4 4 1 0 0 0 1 10

Table 8.9: Duration of intervals without detection for different distances for scenario 2, Stixel

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 8 0 0 0 0 2 0 0 0 5
40-60 41 0 0 0 0 0 0 0 0 0
60-80 44 0 0 0 0 0 0 0 0 0
80-100 45 0 0 0 0 0 0 0 0 0

Table 8.10: Duration of intervals without detection for different distances for scenario 2, Cluster
stereo

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 65 0 0 0 0 0 1 0 0 6
40-60 12 0 0 0 0 0 0 0 1 15
>60 0 0 0 0 0 0 0 0 1 160

Table 8.11: Duration of intervals without detection for different distances for scenario 2, Cluster
lidar

Scenario 3

(a) Successful detection
(b) Failed detection

Figure 8.27: Examples of stixel detection in scenario 3

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 39 3 1 0 0 0 1 0 0 6
40-60 46 3 0 1 1 0 0 0 0 4
60-80 36 2 1 0 0 0 0 0 0 2

Table 8.12: Duration of intervals without detection for different distances for scenario 3, Stixel
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Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 39 0 0 0 0 0 1 0 0 6
40-60 45 0 0 0 0 0 0 0 1 10
60-80 23 0 0 0 0 0 0 0 0 0

Table 8.13: Duration of intervals without detection for different distances for scenario 3, Cluster
stereo

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 102 0 1 1 0 0 0 0 1 9
40-60 0 0 0 0 0 0 0 0 1 100
60-80 0 0 0 0 0 0 0 0 1 34

Table 8.14: Duration of intervals without detection for different distances for scenario 3, Cluster
lidar

Scenario 4

(a) Successful detection
(b) Successful detection

Figure 8.28: Examples of stixel detection in scenario 4

(a) Failed detection (b) Failed detection

Figure 8.29: Examples of stixel detection in scenario 4

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 124 12 1 0 0 1 0 0 0 5
40-60 116 13 9 3 3 1 0 0 0 5

Table 8.15: Duration of intervals without detection for different distances for scenario 4, Stixel
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Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 119 1 1 0 0 0 1 0 1 11
40-60 112 0 1 0 0 0 0 0 0 2

Table 8.16: Duration of intervals without detection for different distances for scenario 4, Cluster
stereo

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 105 0 0 0 0 1 0 0 3 85
40-60 31 0 0 1 0 0 0 0 4 84

Table 8.17: Duration of intervals without detection for different distances for scenario 4, Cluster
lidar

Scenario 5

(a) Successful detection (b) Failed detection

Figure 8.30: Examples of stixel detection in scenario 5

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 14 2 0 0 0 0 0 0 0 0
40-60 82 15 2 1 0 0 0 0 0 3

Table 8.18: Duration of intervals without detection for scenario 5, Stixel

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 16 0 0 0 0 0 0 0 0 0
40-60 58 0 0 0 1 0 0 0 0 4

Table 8.19: Duration of intervals without detection for scenario 5, Cluster

Distance [m] 0 1 2 3 4 5 6 7 >7 Max
20-40 78 0 0 0 0 1 0 0 0 5
40-60 40 1 0 0 0 0 0 0 0 1

Table 8.20: Duration of intervals without detection for scenario 5, Cluster Lidar
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8.4 Run time

In this section the run times for the algorithms will be presented. Each table consists of the mean total
run time for each scenario and the the sub task within the algorithm that is the largest contributers
to the run time.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Disp. calc.[ms] 91.6 96 89 86.8 93.2

Surface mod.[ms] 145.8 141 149.4 159.8 155.4
Total.[ms] 273.2 274.8 277.8 284 282.4

Table 8.21: Mean run times for each scenario, stixel

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
ROS to PCL. [ms] 105.8 112.6 116.6 115.6 114.2

Cut off [ms] 10.0 12.6 11.4 12.6 10.8
SOR [ms] <0.1 310.2 707.7 298.2 525.8

Total. [ms] 116.4 453.6 875.0 451.6 661.2

Table 8.22: Mean run times for each scenario, stereo cluster

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Clustering [ms] <0.1 8.9 8.6 5.7 2.5

SOR [ms] <0.1 7.9 8.2 4.46 1.5
Total. [ms] 0.25 20.1 20.0 11.1 5.4

Table 8.23: Mean run times for each scenario, lidar cluster





Chapter 9

Discussion

9.1 Stereo Calibration

The stereo calibration, as seen in fig. 8.5, resulted in a low reprojection error of 0.04px, which in
turn leads to a low distance error. Given perfect matching the distance error can be seen in fig. 8.6.
In table 8.1 one can see that the rotation around the Y-axis is 5.7◦ and not 2.0◦ which was intended
by design. A possible explanation for this deviation is poor accuracy when mounting the cameras on
the stereo rig. This is also the reason for the large translation in the Z axis seen in table 8.1. As the
transformation is with respect to the reference frame of the left camera, a rotation of that camera
will cause the illusion of the right camera being translated in the Z-direction, this is illustrated in fig.
9.1.

Figure 9.1: Rotation of left camera causes translation of the right camera

9.2 Stixel Tesselation

The stixel tesselation method was less robust than anticipated because of a loss of detection seem-
ingly at random. However, in most where cases with loss of detection occured the algorithm also fails
in estimating the free space surrounding the target. As free space calculation is the foundation of the
algorithm, this calculation should be both robust and accurate. This type of error can be seen in fig.
8.27 and fig.8.30 a), but it cannot account for all the detection misses such as the one in fig.8.30 b).
This error might be caused by changes in the pitch of milliAmpere during calculation, but it also oc-
curred during still water. Running the algorithm on other data sets such as the Daimler Stixel Grouth
Truth Dataset 1 produced a much more stable result with no loss of detection. This indicates that
an improved result on milliAmpere data could be obtained with more tuning of both disparity map
calculation and free space calculation.

1http://www.6d-vision.com/ground-truth-stixel-dataset
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The depth estimation is comparable to the other methods, having an error of ±1m compared to the
stereo cluster method in most of the scenarios. Calculating the mean disparity of a stixel was expec-
ted to improve on accuracy compared to evaluating pixel by pixel, but over all it was slightly worse
than the Euclidean Cluster method. The depth estimations might have suffered from the irregular
shape of the target and at times difficulties with detection.

One improvement to the stixel method can be done in the depth calculations. In the implemented
method the distance to each stixel was calculated in the Xc/Zc-plane. This was done because of stixels
having a constant disparity across the entire stixel, and most object being in the same height as mil-
liampere. However, this simplification can give unnecessary errors when calculating the distance to
lower targets close to milliAmpere such as kayaks or smaller motor boats. To improve the distance
estimation to these objects, the mid point in the vertical direction for each stixel could be extracted
as the top and bottom points are known. This mid point could then be used to estimate distance in
the 3D rather than 2D.

Comparing the stixel method to the lidar implementation it is obvious that the lidar is more accurate
in terms of distance estimation error, but in terms of operating range the stixel method is superior.
For instance, in scenario 2 the stixel algorithm was able to detect Havfruen at a distance of approx-
imately 100m, while the lidar was first able to detect it at 50 meters (fig 8.11). A similar example
can be seen in scenario 3 where the stixel method established detection as soon as Havfruen exited
the ship tunnel, while the lidar detected it 13 seconds later at half the distance.

The run time results presented in section 8.4 shows how long it took for the algorithm to run on
an ordinary desktop computer. In table 8.21 we can see that the run time for the stixel method is
consistent for all scenarios. A run time in the range 270-300ms results in a operating frequency of
<4Hz. Whether this is a fast enough run time to be considered real time depend on the constraints
determined by the designer of milliAmpere perception system as a whole. However, with an average
run time of 278.46ms for all scenarios it is clear that the system is slower than what was hoped
for. In table 8.21 one can see that computing the surface model is taking more than half the run
time. In the Daimler data set free space computation consisted for a little under half the run time,
but with a total run time of ~10ms for images of size (1024, 333)px . I believe this leaves room for
more improvement with tuning of the algorithm. Another way of reducing the run time is to further
reduce the size of the input images by altering the ROS resizing node presented in section 6.2.

9.3 Euclidean Cluster

The Euclidean Cluster method was very robust and able to detect Havfruen far more often than the
stixel algorithm. In most scenarios the Euclidean Clustering method and the Stixel algorithm was
able to detect Havfruen at similar distances, but in general the detection was maintained both at
longer distances, such as in scenario 1 (fig. 8.8), but also at closer distances such as in scenario 4
(fig. 8.17). The comparison is however, somewhat unfair as the accumulation step in the Euclidean
Clustering method builds one point cloud of the three previous time steps. If a similar feature was
added to the stixel algorithm the detection rate would most likely be improved.

In spite of the good detection rate, the Euclidean Cluster apporach is not that precise. The centroid
point of the point cloud often drifted within the target point cloud. If the filtering failed to eliminate
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noise such as the vortexes produced by the propeller the centroid point would occasionally be located
behind the boat it self. In this evaluation these instances was still considered a positive detection,
but with poor precision.

Another aspect to consider is that this method reduces all object down to points. A kayak and sailing
boat would both be represented as single points. Depending on what the information provided by
the perception system is going to be used for this reduction in information seems wasteful.

The run time while using the Euclidean Clustering method was heavily dependent on the amount of
objects in the scene. In table 8.22 the run time spans from 116.4ms in the scenario in open water
to 875ms in the most cluttered scenario from within the canal. For use in the canal this algorithm
can run with a frequency of 2Hz, which is slow. Especially if the system is going to be used for close
encounters.

To reduce the run time for the euclidean clustering method some measures can be done. If the Voxel
Grid -and Statistical Outlier filter changed places in the sequence of filters, as shown in fig. 9.2 the
run times where reduced to the ones showed in table 9.1. However, this affected the detection rate
of the system. With more tuning the performance may have been on the same level as the original
one, but due to lack of time this was not investigated further.

(a) Original filtering sequence

(b) Alternative filtering sequence

Figure 9.2

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
ROS to PCL. [ms] 114.6 127.0 123.8 131.0 130.2

Cut off [ms] 11.6 14.0 20.6 16.2 21.4
SOR [ms] 0.24 26.2 30.0 28.6 34.6

Total. [ms] 127.8 209.4 239 236.8 253.8

Table 9.1: Mean run times for each scenario - Alternative filtering sequence - Stereo

The run time of the Euclidean Clustering method on the lidar data is shown in table 8.23. Also in
this case the run times are dependent on the complexity of the point cloud, but with the run times
varying from 0.25ms in scenario 1 to 20ms in scenario 2 and 3, resulting in an frequency of >50Hz,
it is more than fast enough for real time applications.





Chapter 10

Conclusion and Future Work

10.1 Conclusion

Several methods for solving the correspondence problem has been evaluated. The feature based al-
gorithms simply does not provide a dense enough point cloud for this application. There are probably
multiple of the correlation based methods that could provide decent results. However, the choice of
using the SGM method has yielded in over all good results.

Five different object detection algorithms were also evaluated whereof two where tested on real life
scenarios. The differences in the algorithms also showed in the results where the Euclidean Cluster
method scored best regarding detection rate, but it has its drawbacks with presenting any object as
a single point. The accuracy and operating range were good, but the run time in the given configur-
ation was not low enough to be considered applicable for a real time application.

The stixel method had a poorer detection rate, but good accuracy and operating range. The run time
was better than Euclidean Cluster, but still higher than ideal. The stixel method has the advantage of
providing basic information about the shape of the objects detected in the form of stixel height. The
width of objects can also be determined by counting the number of stixels with the same depth. Hav-
ing this additional information primitive information about the shape of the objects can be extracted.

In comparison to the lidar the stereo vision system performed as expected being slightly less accur-
ate than the lidar, but able to operate at a much larger distance than the lidar currently mounted
on milliAmpere. However, the lidar has a much lower run time making it able to operate at a much
higher frequency than the stereo vision alternatives.

Both of the presented stereo vision systems has complementary features to the lidar. With further
improvements the implementations of some of the suggested future work, the stereo camera can be
a valuable sensor on board milliAmpere, either alone, or in combination with the lidar.
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10.2 Future Work

• As mentioned in section 5.2 there exists several variations and improvements of the stixel al-
gorithm presented in this thesis. This includes multi layer variations where objects at different
depths in the same direction are detected. There are segmentation variations where groups of
stixels are grouped into objects.

• Permanent mounting on milliAmpere needs to be done. This increases the accuracy as the
transformation between reference frames is constant.

• Examine if use of GPU based processing can reduce run time in this scenario.

• Online calibration - Implementing an online calibration scheme that can recalibrate the system
when needed will improve the over all accuracy.

• Fusing stereo vision and lidar data to utilize complementary aspects.
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Appendix A

Additional Material

A.1 Maximum Likelihood Estimation - MLE

The MLE is a well known maximizing estimator that estimates the parameters of a probability distri-
bution by maximizing the likelihood function. This is done so that a distribution can be fitted to the
data as best as possible [45].

x̂ = arg max
x

p(z|x) (A.1)

A.2 Generalized Likelihood Ratio Test - GLRT

The GLRT is a test that decides which of two hypothesis that is most likely to be true in a given
scenario. The more common Likelihood Ratio Test can be used when the probability density functions
are known. In the cases where the pdf is unknown, the GLRT is used [46]. In eq. A.2 and eq. A.3 two
generic hypothesis are presented.

H0 : X ∼ p0 ∈ p0(x |θ0), θ0 ∈ Θ0 (A.2)

H1 : X ∼ p1 ∈ p1(x |θ1), θ1 ∈ Θ1 (A.3)

The GLRT replaces unknowns (θi) by their MLE’s (θ̂i), as described in A.1. Then a threshold can be
set with γ to decide whether the null hypothesis (H0) is to be kept or rejected.

LG(x ) =
p(x ; θ̂1,H1)

p(x ; θ̂0,H0)
> γ (A.4)
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Scenario Overview
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Experiment Overview 
 

Overview of the different scenarios tested in the experiments.  

Yellow arrow = Havfruen 

Green arrow  = milliAmpere 
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Point clouds - Euclidean Cluster - Stereo
Vision
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