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Katsura–Exel–Pardo groupoids and the AH conjecture

Petter Nyland and Eduard Ortega

Abstract

It is proven that Matui’s AH conjecture is true for Katsura–Exel–Pardo groupoids GA,B

associated to integral matrices A and B. This conjecture relates the topological full group of an
ample groupoid with the homology groups of the groupoid. We also give a criterion under which
the topological full group [[GA,B ]] is finitely generated.

1. Introduction

The AH conjecture is one of two conjectures formulated by Matui in [8] concerning certain
ample groupoids over Cantor spaces. This conjecture predicts that the abelianization of the
topological full group of such a groupoid together with its first two homology groups fit together
in an exact sequence as follows:

H0(G) ⊗ Z2
j−−−−→ �G �ab

Iab−−−−−→ H1(G) −−−→ 0.
So far, the AH conjecture has been confirmed in a number of cases. For instance, it holds

for groupoids which are both almost finite and principal [6]. This includes AF-groupoids,
transformation groupoids of higher dimensional Cantor minimal systems, and groupoids
associated to aperiodic quasicrystals (as described in [11, Subsection 6.3]). At the opposite
end of the spectrum, the AH conjecture is also true for (products of) SFT-groupoids [8].
The same goes for transformation groupoids associated to odometers [14], which incidentally
provided counterexamples to the other conjecture from [8], namely, the HK conjecture. In the
recent paper [12], we showed that the AH conjecture holds for graph groupoids of infinite
graphs, complementing Matui’s result in the finite case [7].

The present paper may be viewed as a follow-up to [12]. Here we investigate the validity
of the AH conjecture for a class of groupoids known as Katsura–Exel–Pardo groupoids. These
groupoids are built from two equal-sized row-finite integer matrices A and B, where A has
no negative entries, and are denoted by GA,B . Their origins stem from Katsura’s paper [5],
in which he constructed C∗-algebras OA,B — which we call Katsura algebras — from such
matrices. Katsura showed that every Kirchberg algebra (in the UCT class) is stably isomorphic
to some OA,B and used this concrete realization to prove results pertaining to lifts of actions
on the K-groups of Kirchberg algebras. The Katsura algebras OA,B first appear as examples
of topological graph C∗-algebras in [4].

Some years later, Exel and Pardo introduced the notion of a self-similar graph, and
showed how to construct a C∗-algebra from this data, in [1]. This generalized Nekrashevych’s
construction from self-similar groups in [9], as a self-similar group may be viewed as a self-
similar graph where the graph has only one vertex [1, Example 3.3]. On the other hand, the
construction of Exel and Pardo also encompassed the Katsura algebras. They realized that
the matrices A and B could be used to describe a self-similar action by the integer group Z
on the graph whose adjacency matrix is A in such a way that the associated C∗-algebra
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becomes OA,B . Exel and Pardo also gave a groupoid model for their C∗-algebras, and it is the
groupoid associated with the aforementioned Z-action that we call the Katsura–Exel–Pardo
groupoid. See Section 3 for details.

The second author computed the homology groups of the Katsura–Exel–Pardo groupoids
in [13] (under the assumption of pseudo-freeness, see Subsection 3.3), and found that the
homology groups of GA,B sum up to the K-theory of C∗

r (GA,B) ∼= OA,B in accordance with
Matui’s HK conjecture [8, Conjecture 2.6].

In the present paper, we make use of the description of the homology groups of GA,B from
[13] to show that the AH conjecture holds whenever GA,B is Hausdorff and effective and the
matrix A is finite and irreducible (Corollary 5.8).

There are two subgroupoids of GA,B that play important roles in the proof. One is the
SFT-groupoid GA

∼= GA,0 associated to the matrix A. The other is the kernel of the canonical
cocycle on GA,B , denoted as HA,B. Unlike the case of SFT-groupoids (or graph groupoids),
the kernel of the cocycle is no longer an AF-groupoid. This means that we also need to
take H1(HA,B) into account when describing H1(GA,B). A key observation that drives our
proof is that the topological full group �GA,B � can be decomposed as �GA,B � = �HA,B � �GA �,
when viewing �HA,B � and �GA � as subgroups of �GA,B �.

We also investigate whether the topological full group �GA,B � is finitely generated. Matui
has shown that topological full groups of (irreducible) SFT-groupoids are finitely presented
[7]. In the same vein, topological full groups associated to self-similar groups were shown to
be finitely presented by Nekrashevych whenever the self-similar group is contracting [10]. We
extend Nekrashevych’s notion of a contracting self-similar group to self-similar graphs and
show that the self-similar graph associated to the pair of matrices A and B is contracting,
assuming that B is entrywise smaller than A. Combining this with the finite generation of
�GA �, we show in Theorem 6.6 that �GA,B � is then indeed finitely generated. In contrast,
if E is a graph with an infinite emitter, then the topological full group �GE � is not finitely
generated [12, Proposition 10.1].

We emphasize that the Katsura–Exel–Pardo groupoids are merely prominent special cases of
the tight groupoids constructed from self-similar graphs in [1]. Moreover, this construction was
further generalized to non-row-finite graphs in [2]. It is therefore a natural question whether the
results of this paper can be generalized to other groupoids arising from self-similar graphs. A
few things that make the Katsura–Exel–Pardo groupoids particularly nice to work with is that
the self-similar action is explicitly given in terms of the matrices A and B, the action does not
move vertices, and the acting group is abelian (the “most elementary” abelian group even). We
believe that the methods employed in this paper could work well for other self-similar graphs
where the acting group is abelian and the action fixes the vertices.

This paper is organized as follows. In Section 2, we briefly recall Matui’s AH conjecture and
give references to the necessary preliminaries. The construction of the Katsura–Exel–Pardo
groupoid is recalled in detail in Section 3. Then Hausdorffness, effectiveness, and minimality
of GA,B are characterized in terms of the matrices A and B. We also observe that if GA,B

satisfies the assumptions in the AH conjecture, then GA,B must be purely infinite. In Section 4,
we describe the first two homology groups of GA,B . This is done using a long exact sequence
that relates the homology groups of GA,B to those of the kernel groupoid HA,B. Our main
result, namely, that the AH conjecture is true for Katsura–Exel–Pardo groupoids, is proved in
Section 5. Finally, in Section 6, we prove that �GA,B � is finitely generated, provided that B is
entrywise smaller than A.

2. The AH conjecture

As mentioned in the introduction, this paper is a follow-up to our recent paper [12]. We
treat the same problem — namely, the AH conjecture — for a related, but different, class
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of groupoids. Since the setting is so similar, we have chosen to not give an extensive section
covering preliminaries, but rather refer the reader to [12, Section 2] and adapt all notation and
conventions from there. Topics covered there include ample groupoids, topological full groups,
homology of ample groupoids, cocycles, and skew products. The reader is hereby warned that
notation from [12, Section 2] henceforth will be used directly without reference.

Let us move on to describing the AH conjecture, which predicts a precise relationship between
the topological full group and the first two homology groups. For further details, consult [12,
Section 4].

Matui’s AH Conjecture [8, Conjecture 2.9]. Let G be an effective minimal second
countable Hausdorff ample groupoid whose unit space G(0) is a Cantor space. Then the following
sequence is exact:

H0(G) ⊗ Z2
j−−−−→ �G �ab

Iab−−−−−→ H1(G) −−−→ 0.

The index map I : �G � → H1(G) is the homomorphism given by πU �→ [1U ], where U is a
full bisection in G, and the induced map on the abelianization �G �ab is denoted by Iab. The
map j will not be used directly (see, for example, [12, Subsection 4.1] for its definition).

Recall the notion of transpositions in the topological full group from [12, Subsection 2.2].
We will let T (G) denote the subgroup of �G � generated by all transpositions. Beware that in
[12], the subgroup generated by all transpositions is denoted by S(G), but for G = GA,B we
find this to be too similar to the set SA,B that is defined in Subsection 3.2 below. One always
has T (G) ⊆ ker(I), and having equality is closely related to the AH conjecture.

Definition 2.1 [8, Definition 2.11]. Let G be an effective ample Hausdorff groupoid. We
say that G has Property TR if T (G) = ker(I).

In the next section, we will see that the Katsura–Exel–Pardo groupoids that satisfy the
assumptions of the AH conjecture are purely infinite (in the sense of [7, Definition 4.9]). It
then follows that the AH conjecture is equivalent to having Property TR for these (see [12,
Remark 4.12]). The main goal therefore becomes to establish property TR for GA,B .

3. The Katsura–Exel–Pardo groupoid

In this section we recall the construction of the The Katsura–Exel–Pardo groupoid GA,B from
[1], and we recall some of its properties.

3.1. The self-similar action by Z on the graph EA

Let us begin by explaining the construction. Let N ∈ N ∪ {∞} and let A and B be two row-
finite N ×N integral matrices. We require that all entries in A are non-negative and that A has
no zero rows. For the construction we may also assume without loss of generality that Bi,j = 0
whenever Ai,j = 0. Let EA denote the (directed) graph whose adjacency matrix is A. For graphs
we freely adopt notation and conventions from [12, Section 3]. In addition to that, given a finite
path μ = e1e2 · · · ek ∈ E∗

A and an index 1 � j � k, the subpath e1e2 . . . ej is denoted by μ|j .
We will call a matrix essential if it has no zero rows and no zero columns.

We will now describe how the matrices A and B give rise to a self-similar action by the
integer group Z on the graph EA as in the framework of [1]. In the next subsection, we will
describe the associated (tight) groupoid.

Remark 3.1. We remark that Exel and Pardo use the opposite convention for paths in [1],
which means that their paths go “backwards” in the graph.
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To describe the action κ : Z � EA we need to fix an (arbitrary) enumeration of the edges
in EA as follows:

E1
A = {ei,j,n | 1 � i, j � N, 0 � n < Ai,j}.

Then s(ei,j,n) = i and r(ei,j,n) = j, when enumerating the vertices as E0
A = {1, 2, . . . , N}. In

the case N = ∞ we identify E0
A with N and the indices i, j above run through N. Let m ∈ Z

and ei,j,n ∈ E1
A be given. By the division algorithm there are unique integers q and r satisfying

mBi,j + n = qAi,j + r and 0 � r < Ai,j .

The action κ is defined to be trivial on the vertices (that is, κm(i) = i), and on edges it is given
by

κm(ei,j,n):=ei,j,r.

In words κm maps the nth edge between the vertices i and j to the rth edge, where r is the
remainder of mBi,j + n modulo Ai,j . The associated one-cocycle ϕ : Z × E1

A → Z is given by

ϕ(m, ei,j,n):=q.

The cocycle condition

ϕ(m1 + m2, e) = ϕ(m1, κm2(e)) + ϕ(m2, e)

is easily seen to be satisfied. That same computation shows that κm1+m2 = κm1 ◦ κm2 .
Furthermore, the standing assumption (2.3.1) on page 1051 of [1] is trivially satisfied since κ
fixes the vertices. Note that ϕ(0, e) = 0 and κ0(e) = e for all e ∈ E1

A.
As in [1, Proposition 2.4] κ and ϕ extends inductively to finite paths by setting

κm(μe):=κm(μ)κϕ(m,μ)(e) and ϕ(m,μe):=ϕ(ϕ(m,μ), e)

for μ ∈ E∗
A and e ∈ r(μ)E1

A. Explicitly, for a finite path μ = e1e2 · · · ek ∈ E∗
A we have

κm(μ) = κm(e1)κϕ(m,e1)(e2)κϕ(m,e1e2)(e3) · · ·κϕ(m,μ|k−1)(ek) (3.1)

and

ϕ(m,μ) = ϕ(ϕ(. . . (ϕ(ϕ(m, e1), e2), . . .), ek−1), ek). (3.2)

By allowing equation (3.1) to go on ad infinitum, κ extends to an action on the infinite path
space E∞

A . Note that we still have

ϕ(m1 + m2, μ) = ϕ(m1, κm2(μ)) + ϕ(m2, μ)

and

κm(μν) = κm(μ)κϕ(m,μ)(ν)

for μ, ν ∈ E∗
A with r(μ) = s(ν). The latter formula also holds if ν is replaced by an infinite path.

3.2. Describing the tight groupoid

Define the set

SA,B :={(μ,m, ν) ∈ E∗
A × Z × E∗

A | r(μ) = r(ν)}.
In [1], the set SA,B is given the structure of an inverse semigroup which acts on the infinite
path space E∞

A . In brief terms this partial action is given by

(μ,m, ν) · νy = μκm(y) for y ∈ r(ν)E∞
A .

Following [13] we skip directly to the concrete description of the tight groupoid Gtight(SA,B)
given in [1, Section 8].
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Consider the set of all quadruples (μ,m, ν;x) where (μ,m, ν) ∈ SA,B and x ∈ Z(ν). Then
we can write x = νez for some e ∈ E1

A and z ∈ E∞
A . Let ∼ be the equivalence relation on this

set of quadruples generated by the basic relation

(μ,m, ν;x) ∼ (μκm(e), ϕ(m, e), νe;x). (3.3)

Denote the equivalence class of (μ,m, ν;x) under ∼ by [μ,m, ν;x]. In particular, we have

[μ,m, ν;x] = [μκm(y|j), ϕ(m, y|j), νy|j ;x]

for each j ∈ N, where y is the infinite path satisfying x = νy. It is somewhat cumber-
some to explicitly write this equivalence relation out, but it can be done as follows.
Let (μ,m, ν), (λ, n, τ) ∈ SA,B , x ∈ Z(ν) and z ∈ Z(τ). Then

[μ,m, ν;x] = [λ, n, τ ; z]

if and only if

(1) x = z, so then x = νy = τw for some infinite paths y and w. In particular, ν is a subpath
of τ or vice versa.

(2) |μ| − |ν| = |λ| − |τ |.
(3) μκm(y) = λκn(w).
(4) ϕ(m, y|j) = ϕ(n,w|l) for some j, l ∈ N with l − j = |μ| − |ν|.

We define the Katsura–Exel–Pardo groupoid to be

GA,B :={[μ,m, ν;x] | (μ,m, ν) ∈ SA,B , x ∈ Z(ν)}.

Writing x = νy, the inverse operation is given by

[μ,m, ν;x]−1:=[ν,−m,μ;μκm(y)].

The composable pairs are

G(2)
A,B :={([λ, n, τ ; z], [μ,m, ν; νy]) ∈ GA,B × GA,B | μκm(y) = z}

and the product is given by

[λ, n, τ ; z] · [μ,m, ν;x]:=[λκm(τ ′), ϕ(n, τ ′) + m, ν;x],

in the case that μ = ττ ′. In the case that τ = μμ′ the formula is slightly more complicated, so
let us instead use the equivalence relation ∼ to state a simpler “standard form” for the product.
Using the basic relation (3.3) we can choose representatives with |τ | = |μ|, which forces τ = μ.
Hence every composable pair and their product can be represented as

[λ, n, μ;μκm(y)] · [μ,m, ν; νy] = [λ, n + m, ν; νy].

The source and range maps are given by

s([μ,m, ν; νy]) = [ν, 0, ν; νy] = [s(ν), 0, s(ν); νy],

r([μ,m, ν; νy]) = [μ, 0, μ;μκm(y)] = [s(μ), 0, s(μ);μκm(y)].

Thus we may identify the unit space G(0)
A,B with the infinite path space E∞

A under the
correspondence [s(x), 0, s(x);x] ↔ x. This correspondence is also compatible with the topology
on GA,B that will be specified shortly. The source and range maps become

s([μ,m, ν;x]) = x and r([μ,m, ν; νy]) = μκm(y).

For a triple (μ,m, ν) ∈ SA,B we define

Z(μ,m, ν):={[μ,m, ν;x] | x ∈ Z(ν)}.
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These sets form a basis for the topology on GA,B , in which each basic set Z(μ,m, ν) is a
compact open bisection [1, Proposition 9.4]. Note that

s(Z(μ,m, ν)) = Z(ν) and r(Z(μ,m, ν)) = Z(μ).

The Katsura–Exel–Pardo groupoid GA,B
∼= Gtight(SA,B) is ample, second countable, and

amenable [1]. However, it is not always Hausdorff. This, and other properties, will be
characterized in the next subsection.

An important observation that will be exploited in several of the coming proofs is that
the graph groupoid GEA

is isomorphic to GA,0, and moreover embeds canonically into GA,B

for any matrix B. Observe that in GA,0 we have [μ,m, ν; νy] = [μ, 0, ν; νy] for each m ∈ Z.
Hence mapping [μ, 0, ν; νy] to (μy, |μ| − |ν|, νy) yields an isomorphism between GA,0 and GEA

.
Furthermore, it is clear that [μ, 0, ν;x] �→ [μ, 0, ν;x] gives an étale embedding GA,0 ↪→ GA,B

which preserves the unit space.
Another special case is when A = B. Then we have GA,A

∼= GA × Z (where Z is viewed as a
group(oid)). These groupoids fall outside of the scope of the AH conjecture, however, for they
are far from being effective.

3.3. When is GA,B Hausdorff, effective, and minimal?

We begin by noting that GA,B has compact unit space if and only if N < ∞ (that is, A and B
are finite matrices). In this case it is a Cantor space precisely when EA satisfies Condition (L).

Before characterizing Hausdorfness precisely, we discuss a sufficient condition known as
pseudo-freeness. This is an underlying assumption in [13]. The action κ : Z � EA is called
pseudo-free if κm(e) = e and ϕ(m, e) = 0 implies m = 0, for m ∈ Z and e ∈ E1

A (see [1,
Definition 5.4] for the general definition). Combining Lemma 18.5 and Proposition 12.1 from
[1] yields the following.

Proposition 3.2 [1]. The action κ : Z � EA is pseudo-free if and only if Ai,j = 0
whenever Bi,j = 0. When this is the case GA,B is Hausdorff.

A precise characterization of when GA,B is Hausdorff is the following.

Proposition 3.3 [1, Theorem 18.6]. The following are equivalent.

(i) The Katsura–Exel–Pardo groupoid GA,B is Hausdorff.
(ii) Whenever Bi,j = 0 while Ai,j � 1, then for any m ∈ Z \ {0} the set{

μ ∈ E∗
A | r(μ) = i and m

Bμ|t
Aμ|t

∈ Z \ {0} for 1 � t � |μ|
}

is finite.

Remark 3.4. There is a small misprint in the statement of [1, Theorem 18.6], which is why
the statement above differs slightly (even after reversing the direction of the edges).

The minimality of GA,B turns out to be independent of the matrix B, and is only governed
by the minimality of the graph groupoid GEA

.

Proposition 3.5 [1, Theorem 18.7]. The Katsura–Exel–Pardo groupoid GA,B is minimal if
and only if the graph EA is cofinal.

In particular, if the matrix A is irreducible (which is equivalent to EA being strongly
connected), then GA,B is minimal. The converse holds if EA has no sources (nor sinks).
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Remark 3.6. Proposition 3.5 actually holds for any self-similar graph in which the vertices
are fixed. A general characterization is given in [1, Theorem 13.6].

Let us move on to characterizing when GA,B is effective. As in [12], we call a topological
groupoid effective when the interior of the isotropy equals the unit space. Beware that in [1],
the term “essentially principal” is used for this property.

Proposition 3.7 [1, Theorem 18.8]. The following are equivalent.

(i) The Katsura–Exel–Pardo groupoid GA,B is effective.
(ii)

(a) The graph EA satisfies Condition (L).
(b) If 1 � i � N , m ∈ Z \ {0}, and for all x ∈ Z(i) we have m

Bx|t
Ax|t

∈ Z for all t ∈ N, then

there exists T ∈ N such that Bx|T = 0 for all x ∈ Z(i).

The premise in (b) above is fairly strong, as it stipulates that κm(x) = x for all x ∈ Z(i).
In many cases this will not happen for any vertex i, which means that (b) is trivially satisfied.
One such case is the following.

Corollary 3.8 [1, Corollary 18.9]. If EA satisfies Condition (L) and for each 1 � i �
N , there exists x ∈ Z(i) such that Bx|t �= 0 for all t ∈ N and limt→∞

Bx|t
Ax|t

= 0, then GA,B

is effective.

The following is a class of examples to which Corollary 3.8 applies.

Example 3.9. If the matrices A,B satisfy Ai,i � 2 and 0 < |Bi,i| < Ai,i for all 1 � i � N ,
then GA,B is effective. If A is irreducible, it suffices that this condition holds for a single vertex i.

The following remark illustrates that the class of examples above is already fairly rich.

Remark 3.10. It suffices to consider matrices A,B satisfying Ai,i � 2 and Bi,i = 1 for
each 1 � i � N with A irreducible for OA,B to exhaust all Kirchberg algebras up to stable
isomorphism [4, Proposition 4.5].

Next we observe that the Katsura–Exel–Pardo groupoids that satisfy the assumptions of
the AH conjecture are purely infinite (in the sense of [7, Definition 4.9]). This means that the
index map is surjective [7, Theorem 5.2], so we only need to establish Property TR in order to
prove that the AH conjecture hold for these groupoids.

Proposition 3.11. Let N < ∞ and assume that GA,B is Hausdorff, effective, and minimal.
Then GA,B is purely infinite.

Proof. Since the SFT-groupoid GA
∼= GA,0 is an open ample subgroupoid of GA,B , the pure

infiniteness of GA,B follows from that of GA, which is established in [7, Lemma 6.1]. �

As in [12] we make the following ad hoc definition for brevity.

Definition 3.12. We say that the matrices A,B satisfy the AH criteria if N < ∞ and GA,B

is Hausdorff, effective, and minimal.

A large class of pairs of matrices satisfying the AH criteria are given in the following example.
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Example 3.13. Let N ∈ N and let A ∈ MN (Z+), B ∈ MN (Z). Assume that A is irreducible
and that Bi,j = 0 if and only if Ai,j = 0. Assume further that there exists some i between 1
and N such that |Bi,i| < Ai,i � 2. Then the matrices A,B satisfy the AH criteria.

4. The homology of GA,B

In this section, we will describe the homology groups of the Katsura–Exel–Pardo groupoids,
following [13]. Although the action is assumed to be pseudo-free throughout in [13], most of
what we need here also work without this assumption, with one notable exception which is
addressed in equation (4.6) below.

Assumption 4.1. We assume throughout that N < ∞ and that GA,B is Hausdorff.

4.1. The kernel subgroupoid HA,B

Similarly to the canonical cocycle on an SFT-groupoid (see [6, page 37]), we can define a cocycle
(that is, a continuous groupoid homomorphism into a group) c : GA,B → Z on a Katsura–Exel–
Pardo groupoid by setting

c([μ,m, ν;x]) = |μ| − |ν|.
This is well defined since the difference |μ| − |ν| is preserved under the equivalence relation ∼.
Now define

HA,B:= ker(c) = {[μ,m, ν;x] ∈ GA,B | |μ| = |ν|},
which is a clopen ample subgroupoid of GA,B . In contrast to the case of graph groupoids, this
kernel is generally not an AF-groupoid (it need not be principal), but it is still key to computing
the homology of GA,B .

Next, for each n ∈ N we define the open subgroupoid

HA,B,n:={[μ,m, ν;x] ∈ GA,B | |μ| = |ν| = n} ⊆ HA,B .

Observe that HA,B,n ⊆ HA,B,n+1 by (3.3) and that ∪∞
n=1HA,B,n = HA,B. Hence

Hi(HA,B) ∼= lim−→ (Hi(HA,B,n), Hi(ιn)) (4.1)

by [3, Proposition 4.7], where ιn is the inclusion map.
It follows from the proof of [13, Proposition 2.3] that if μ, ν ∈ En

A and r(μ) = r(ν), then[
1Z(μ)

]
=

[
1Z(ν)

]
∈ H0(HA,B,n)

and that we have

H0(HA,B,n) = span
{[

1Z(μ)

]
| μ ∈ En

A

} ∼= ZN , (4.2)

even without the assumption of pseudo-freeness. The isomorphism in (4.2) is given by
mapping [1Z(μ)] to 1r(μ), where by 1w for w ∈ E0

A, we mean the tuple in ZN ∼= ⊕v∈E0
A

Z with 1
in the wth coordinate and 0 elsewhere.

As for H1(HA,B,n), for paths μ and ν as above, it similarly follows from the proof of [13,
Proposition 2.4] that[

1Z(μ,m,μ)

]
=

[
1Z(μ,m,ν)

]
=

[
1Z(ν,m,ν)

]
∈ H1(HA,B,n),[

1Z(μ,m,μ)

]
= m

[
1Z(μ,1,μ)

]
∈ H1(HA,B,n), (4.3)

and hence

H1(HA,B,n) = span
{[

1Z(μ,1,μ)

]
| μ ∈ En

A

}
. (4.4)
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If the action is pseudo-free, then

H1(HA,B,n) ∼= ZN

by identifying [1Z(μ,1,μ)] with 1r(μ).
However, when the action is not pseudo-free, we need to take care. The group H1(HA,B,n) will

still be a free abelian group, but its rank may be smaller than N . To explain this phenomenon,
let us call a vertex i ∈ {1, 2, . . . , N} a B-sink if Bi,j = 0 for all j with Ai,j > 0. Any path
passing through a B-sink will be strongly fixed by the action, meaning that κm(μ) = μ and
ϕ(m,μ) = 0 ([1, Definition 5.2]). To see the impact this has on H1(HA,B,n), suppose that i is
a B-sink and that μ ∈ En

A has r(μ) = i. Then we have the counter-intuitive equality

Z(μ, 1, μ) = Z(μ, 0, μ) ⊆ G(0)
A,B , (4.5)

since for any x = μez ∈ Z(μ) with e ∈ r(μ)E1
A we have

(μ, 1, μ;x) ∼ (μκ1(e), ϕ(1, e), μe;x) = (μe, 0, μe;x) ∼ (μ, 0, μ;x).

This in turn means that [1Z(μ,1,μ)] = 0 ∈ H1(HA,B,n), so this part of H1(HA,B,n) col-
lapses. More generally, the same will happen to any path μ ∈ En

A for which every infinite
path x ∈ Z(r(μ)) passes through a B-sink. To have a name for vertices for which this does not
happen, let us define a vertex 1 � i � N to be a B-regular if there exists a path μ, containing
no B-sinks, starting at i which connects to a cycle that contain no B-sinks. This is the same as
saying that there is some infinite path starting at i which does not pass through any B-sink.
Bisections Z(μ, 1, μ) with r(μ) B-regular behave just like in the pseudo-free case, while those
with r(μ) not B-regular vanish in H1(HA,B,n) as explained above. Let RB denote the number
of B-regular vertices. Then we have that

H1(HA,B,n) = span
{[

1Z(μ,1,μ)

]
| μ ∈ En

A with r(μ) B-regular
} ∼= ZRB . (4.6)

This particular description (as opposed to (4.4)) is only used in the proof of Lemma 5.3.

Remark 4.2. By viewing the matrices A and B as endomorphisms of ZN (via left
multiplication), we may consider the inductive limits

ZA:= lim−→
(
ZN , A

)
and ZB := lim−→

(
ZN , B

)
. (4.7)

Let φA
n,∞ : ZN → ZA and φB

n,∞ : ZN → ZB denote the canonical maps into the inductive limits.
Propositions 2.3 and 2.4 in [13] remain valid without pseudo-freeness and they show that the
inductive limits in (4.1) for i = 0 and i = 1 turn into the limits in (4.7), respectively. This
means that

H0(HA,B) ∼= ZA and H1(HA,B) ∼= ZB ,

where the isomorphisms are given by[
1Z(μ)

]
�→ φA

n,∞
(
1r(μ)

)
and

[
1Z(μ,1,μ)

]
�→ φB

n,∞
(
1r(μ)

)
,

respectively, for μ ∈ En
A. This is still compatible with equation (4.6), because if v is a non-

B-regular vertex, then 1v is eventually annihilated in the inductive limit ZB . What does not
necessarily hold without pseudo-freeness is [13, Lemma 2.2], which says that Hn(HA,B) = 0
when n � 2. This part, however, is not needed for the results in the present paper.

Let GA,B ×c Z denote the skew product groupoid (see [12, Subsection 2.5]) associated to the
cocycle c defined above.

Lemma 4.3. The clopen set E∞
A × {0} ⊆ (GA,B ×c Z)(0) is (GA,B ×c Z)-full.
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Proof. The same proof as for SFT-groupoids works here (see [3, Lemma 6.1] for a more
general result). Let (x, k) ∈ E∞

A × Z = (GA,B ×c Z)(0) be given. If k < 0, then the groupoid
element [x|−k, 0, r(x|−k);x[−k+1,∞]] ∈ GA,B ×c Z has range (x, k) and source (x[−k+1,∞], 0),
which shows that E∞

A × {0} meets the (GA,B ×c Z)-orbit of (x, k). In the case that k > 0 we
can, since EA is a finite graph without sinks, find an index n ∈ N for which r(xn) supports
a cycle. By concatenating along this cycle we can find a path ν ∈ E∗

A with r(ν) = r(xn) and
|ν| = n + k. Then the element [x|n, 0, ν; νx[n+1,∞]] has range (x, k) and source (νx[n+1,∞], 0) ∈
E∞

A × {0}. �

Recall that

HA,B
∼= (GA,B ×c Z)|E∞

A ×{0}

via the map

[μ,m, ν;x] �→ ([μ,m, ν;x], 0).

Composing this with the inclusion of the restriction we obtain an embedding ι of HA,B into
the skew product GA,B ×c Z. Lemma 4.3 says that HA,B is Kakutani equivalent to GA,B ×c Z
from which we have the following consequence (by [3, Lemma 4.3]).

Proposition 4.4. The embedding ι : HA,B → GA,B ×c Z induces isomorphisms

Hi(HA,B) ∼= Hi(GA,B ×c Z)

for each i � 0.

4.2. A long exact sequence in homology

From [12, Proposition 6.1] applied to the cocycle c : GA,B → Z, we obtain the following long
exact sequence in homology:

(4.8)

Consult [12, Section 6] for a description of the maps. Appealing to Proposition 4.4 we can
replace Hi(GA,B ×c Z) with Hi(HA,B) and extract the following exact sequence from the one
above:

H1(HA,B)
ρ1

−−−−−→ H1(HA,B) Φ−−−−→ H1(GA,B) Ψ−−−−−→ H0(HA,B)
ρ0

−−−−−→ H0(HA,B). (4.9)

The maps Φ and Ψ are the unique maps satisfying

H1(π•) ◦H1(ι) = Φ and ∂1 = H0(ι) ◦ Ψ,

respectively. Similarly, the maps ρi are defined by

Hi(ι) ◦ ρi = (id−Hi(ρ•)) ◦Hi(ι) for i = 0, 1.

In the next section we are going to need explicit descriptions of the maps in (4.9). This is
provided in the lemmas below. Some of them are given in terms of “prefixing an edge” to a
path, and therefore, we need to assume that the graph EA has no sources.

Assumption 4.5. For the remainder of this section we assume that the matrix A is essential.
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Lemma 4.6. The map Φ: H1(HA,B) → H1(GA,B) is given by

Φ
([

1Z(μ,1,μ)

])
=

[
1Z(μ,1,μ)

]
=

[
1Z(r(μ),1,r(μ))

]
∈ H1(GA,B)

for [1Z(μ,1,μ)] ∈ H1(HA,B). In particular, I(α) = Φ(IH(α)) ∈ H1(GA,B) for α ∈ �HA,B �.

Proof. Straightforward. �

Lemma 4.7. The map ρ0 : H0(HA,B) → H0(HA,B) is given by

ρ0
([

1Z(μ)

])
=

[
1Z(μ)

]
−
[
1Z(eμ)

]
,

where e ∈ E1
A is any edge with r(e) = s(μ).

Proof. We have the following commutative diagram:

The maps are given by

H0(ι)
([

1Z(μ)

])
=

[
1Z(μ)×{0}

]
∈ H0(GA,B ×c Z)

and

H0(ρ•)
([

1Z(μ)×{0}
])

=
[
1Z(μ)×{1}

]
=

[
1Z(eμ)×{0}

]
∈ H0(GA,B ×c Z),

where e ∈ E1
A is any edge with r(e) = s(μ). Combining these we obtain the desired description

of ρ0. �

When B = 0, the map ρ0 : H0(HA,0) → H0(HA,0) coincides with the map

(id−ϕ) : H0(HEA
) → H0(HEA

),

where ϕ is from [12, Definition 7.5]. We apologize for the conflicting notation of ϕ with the
1-cocycle from Section 3, but since the 1-cocycle makes no appearance for the rest of this
section, we believed it better to stick with the notation from [12] to make it easier to compare
with results therein. Below, we (trivially) extend the definition of ϕ, as well as ϕ(k) from [12,
Definition 8.5], to Katsura–Exel–Pardo groupoids. The automorphism ϕ is the one induced
by H0(ρ•) when identifying H0(GA,B ×c Z) with H0(HA,B).

Definition 4.8. Define ϕ : H0(HA,B) → H0(HA,B) by for each μ ∈ E∗
A by setting

ϕ
([

1Z(μ)

])
=

[
1Z(eμ)

]
,

where e ∈ E1
A is any edge with r(e) = s(μ). For k ∈ Z we further define

ϕ(k):=

⎧⎪⎨
⎪⎩
−(id +ϕ + · · · + ϕk−1) k > 0,
0 k = 0,
ϕ−1 + ϕ−2 + · · · + ϕk k < 0.

Remark 4.9. In the case that B = 0 the map ϕ : H0(HA,0) → H0(HA,0) coincides the
inverse δ−1 of Matui’s map δ from [7, page 56]. See [12, Remarks 7.6 and 8.8] for more on this.

The next lemma is essentially the same as [12, Lemma 8.6].
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Lemma 4.10. Let [f ] ∈ H1(GA,B) and write f =
∑k

i=1 ni1Z(μi,1,νi). Then the map
Ψ: H1(GA,B) → H0(HA,B) is given by

Ψ([f ]) =
k∑

i=1

niϕ
(|νi|−|μi|)([1Z(νi)

])
.

Proof. Recall that ∂1 = H0(ι) ◦ Ψ, where ∂1 : H1(GA,B) → H0(GA,B ×c Z) is the connecting
homomorphism in (4.8). We are going to describe ∂1 in a similar way as in the proof of [12,
Lemma 8.6]. It may be helpful to consult Figure 2 on page 29 of [12], as we will adopt the
notation from there.

Let [f ] ∈ H1(GA,B) be given, where f ∈ Cc(GA,B ,Z) satisfies δ1(f) = 0. Then we can
write f =

∑k
i=1 ni1Z(μi,1,νi), where

∑k
i=1 ni1Z(μi) =

∑k
i=1 ni1Z(νi). Now view f + im(δ2) as

an element in Cc(GA,B ,Z)/ im(δ2).
The element π1(h) + im(δ2), where

h:=f × 0 =
k∑

i=1

ni1Z(μi,1,νi)×{0} ∈ Cc(GA,B ×c Z,Z),

provides a lift of f + im(δ2) by π1 + im(δ2). Next, we need to compute

δ̃1(h + im(δ2)) = δ1(h) ∈ Cc

(
(GA,B ×c Z)(0),Z

)
∼= Cc(E∞

A × Z,Z).

Setting li:=|μi| − |νi| to save space we have

δ1(h) =
k∑

i=1

ni(s∗ − r∗)
(
1Z(μi,mi,νi)×{0}

)

=
k∑

i=1

ni

(
1s(Z(μi,mi,νi)×{0}) − 1r(Z(μi,mi,νi)×{0})

)

=
k∑

i=1

ni

(
1Z(νi)×{|μi|−|νi|} − 1Z(μi)×{0})

)

=
k∑

i=1

ni

(
1Z(νi)×{li} − 1Z(νi)×{0})

)
,

where we have used that
∑k

i=1 ni1Z(μi) =
∑k

i=1 ni1Z(νi). By [12, Lemma 6.2] the (unique) lift
of δ1(h) by id−ρ0 is the function

g:=
k∑

i=1

niLi,

where

Li =

⎧⎪⎨
⎪⎩
−
∑li−1

j=0 1Z(νi)×{j} li > 0,
0 li = 0,∑−1

j=li
1Z(νi)×{j} li < 0.

Observe that

[Li] = ϕ(li)
([

1Z(νi)×{0}
])

∈ H0(GA,B ×c Z).
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This means that

∂1([f ]) = [g] =
k∑

i=1

niϕ
(|μi|−|νi|)([1Z(νi)×{0}

])
∈ H0(GA,B ×c Z),

and hence

Ψ([f ]) =
k∑

i=1

niϕ
(|νi|−|μi|)([1Z(νi)

])
∈ H0(HA,B). �

Lemma 4.11. Assume that U ⊆ GA,0 ⊆ GA,B is a full bisection. Let I and IA
denote the index maps of GA,B and GA,0, respectively. If Ψ(I(πU )) = 0 ∈ H0(HA,B),
then IA(πU ) = 0 ∈ H1(GA,0).

Proof. We can write U = �k
i=1Z(μi, 0, νi), where E∞

A = �k
i=1Z(μi) = �k

i=1Z(νi). By
Lemma 4.10 we have

0 = Ψ(I(πU )) = Ψ([1U ]) =
k∑

i=1

ϕ(|νi|−|μi|)([1Z(νi)

])
∈ ker

(
ρ0
)
⊆ H0(HA,B).

On the other hand, we have that H1(GA,0) ∼= ker(ρ0) ∼= ker(id−H0(ρ•)) because
H1(GA,0 ×c Z) = 0 (see [12, Section 7]). This isomorphism is implemented by the connecting
homomorphism ∂1 from (4.8) for B = 0. Lemma 8.6 in [12] (or the proof of Lemma 4.10
with B = 0) says that under this isomorphism the element IA(πU ) ∈ H1(GA,0) corresponds
to Ψ(I(πU )) ∈ ker(ρ0). Hence IA(πU ) = 0. �

The following lemma is part of the proof of [13, Proposition 2.5], but we nevertheless sketch
the proof for completeness.

Lemma 4.12. The map ρ1 : H1(HA,B) → H1(HA,B) is given by

ρ1
([

1Z(μ,m,μ)

])
=

[
1Z(μ,m,μ)

]
−
[
1Z(eμ,m,eμ)

]
,

where e ∈ E1
A is any edge with r(e) = s(μ).

Proof. Arguing similarly as in the proof of Lemma 4.7, it suffices to show that[
1Z(μ,1,μ)×{1}

]
=

[
1Z(eμ,1,eμ)×{0}

]
in H1(GA,B ×c Z).

Suppose that U , V are compact bisections with s(U) = r(V ) in some ample groupoid G.
Denote

U ◦ V :=(U × V ) ∩ G(2) =
{

(g, h) ∈ G(2) | g ∈ U, h ∈ V
}
.

By [6, Lemma 7.3], we have

δ2(1U◦V ) = 1U − 1U ·V + 1V . (4.10)

Let e ∈ E1
A be any edge with r(e) = s(μ) and define the following bisections in GA,B ×c Z:

U1:=Z(μ, 1, μ) × {1}, V1:=Z(μ, 0, eμ) × {1},

U2:=Z(eμ, 0, μ) × {0}, V2:=Z(μ, 1, eμ) × {1},

U3:=U2, V3:=V1,

U4:=Z(eμ, 0, eμ) × {0}, V4:=U4.
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From these we define the indicator functions fi:=1Ui◦Vi
∈ Cc(G(2)

A,B ,Z) for i = 1, 2, 3, 4.
Using (4.10) it is easy to check that

δ2(f1 + f2 − f3 − f4) = 1Z(μ,1,μ)×{1} − 1Z(eμ,1,eμ)×{0},

which shows that [1Z(μ,1,μ)×{1}] = [1Z(eμ,1,eμ)×{0}] in H1(GA,B ×c Z). �

Remark 4.13. The main result of [13] is the following description of the homology groups
of GA,B , assuming that the self-similar graph is pseudo-free:

H0(GA,B) ∼= coker (IN −A),

H1(GA,B) ∼= ker (IN −A) ⊕ coker (IN −B),

H2(GA,B) ∼= ker (IN −B),

Hi(GA,B) = 0, i � 3.

Here IN is the N ×N identity matrix and IN −A, IN −B are viewed as endomorphisms
of ZN . When the self-similar graph is pseudo-free, [13, Lemma 2.2] shows that Hi(HA,B) = 0
for i � 2. This truncates the long exact sequence (4.8) into (identifying as in (4.9)):

It follows that H2(GA,B) ∼= ker(ρ1), H0(GA,B) ∼= coker(ρ0) and that

0 −−−→ coker
(
ρ1
) ˜Φ−−−−→ H1(GA,B) Ψ−−−−−→ ker

(
ρ0
)
−−−→ 0 (4.11)

is exact. It is also shown in [13] that

ker
(
ρ0
) ∼= ker (IN −A), coker

(
ρ0
) ∼= coker (IN −A),

ker
(
ρ1
) ∼= ker (IN −B), coker

(
ρ1
) ∼= coker (IN −B).

Since ker(ρ0) is free, the exact sequence (4.11) splits, and we therefore obtain an isomor-
phism H1(GA,B) ∼= ker(ρ0) ⊕ coker(ρ1).

We remark that these results are valid for N = ∞ as well. Moreover, the descriptions
of H0(GA,B) and H1(GA,B) are valid even when the self-similar graph is not pseudo-free.

5. Property TR for GA,B

The aim of this section is to show that the Katsura–Exel–Pardo groupoid GA,B has Prop-
erty TR. This means that given α ∈ �GA,B � with I(α) = 0, we need to show that α ∈ T (GA,B).
In a nutshell, the strategy is to decompose the topological full group as

�GA,B � = �HA,B � �GA,0 �

and show that Property TR is inherited from the kernel groupoid HA,B and the SFT-
groupoid GA,0. In what follows we will view GA,0

∼= GA as a subgroupoid of GA,B .

Assumption 5.1. In this whole section we fix N ×N matrices A,B which satisfy
the AH criteria and where A is essential. In particular N < ∞ and A is an irreducible
non-permutation matrix.

Proposition 5.2. The index map IH : �HA,B � → H1(HA,B) is surjective.
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Proof. Let μ ∈ E∗
A and consider the bisection V :=Z(μ, 1, μ) ⊆ HA,B. Since we have

that s(V ) = r(V ) = Z(μ), we can from V define a full bisection U :=V � (E∞
A \ Z(μ)) ⊆ HA,B.

By [6, Lemma 7.3] we have IH(πU ) = [1V ]. The result now follows since these elements
span H1(HA,B) (by (4.1) and (4.4)). �

Lemma 5.3. For each n ∈ N the groupoid HA,B,n has Property TR.

Proof. Let U ⊆ HA,B,n be a full bisection. Then U = �k
i=1Z(μi,mi, νi), where μi, νi ∈ E�n

A

satisfy |μi| = |νi|, r(μi) = r(νi) and E∞
A = �k

i=1Z(μi) = �k
i=1Z(νi). Using the fact that each

basic bisection decomposes as

Z(μ,m, ν) =
⊔

e∈s−1(r(ν))

Z(μκm(e), ϕ(m, e), νe) (5.1)

we can assume without loss of generality that |μi| = |νi| = n for all 1 � i � k. We may also
set mi = 0 whenever r(μi) is not B-regular, for then Z(μi,mi, νi) = Z(μi, 0, νi), by the same
reasoning as in equation (4.5).

Let us now consider the index map IH,n : �HA,B,n � → H1(HA,B,n). Using (4.3) we compute

IH,n(πU ) = [1U ] =
k∑

i=1

[
1Z(μi,mi,νi)

]
=

k∑
i=1

mi

[
1Z(μi,1,μi)

]
∈ H1(HA,B,n).

For each vertex v ∈ E0
A let Iv:={1 � i � k | r(μi) = v}. Using the identification in (4.6) (where

only the B-regular vertices matter) we see that IH,n(πU ) = 0 if and only if
∑

i∈Iv
mi = 0 for

each vertex v ∈ E0
A.

We define two more full bisections in HA,B,n, namely,

UH:= �k
i=1 Z(μi,mi, μi) and UA:= �k

i=1 Z(μi, 0, νi).

Observe that UH · UA = U . We claim that πUA
∈ T (HA,B,n), in other words, that πUA

is
a product of transpositions. Indeed, since E∞

A = �k
i=1Z(μi) = �k

i=1Z(νi) and |μi| = |νi| = n,
we must have that En

A = {μ1, μ2, . . . , μk} = {ν1, ν2, . . . , νk}. Hence the homeomorphism πUA

on E∞
A can be identified with a permutation on a finite set of k symbols which maps νi to μi.

The claim then follows.
Next we will show that πUH is a product of transpositions when IH,n(πU ) = 0. Let I0

denote the set of vertices v for which Iv �= ∅ and pick a distinguished index iv ∈ Iv for
each vertex v ∈ I0. Suppose that r(μj1) = v = r(μiv ) for some index j1 �= iv. Define the
bisections V1:=Z(μiv ,mj1 , μj1) and W1:=Z(μiv , 0, μj1). Then

UH · V̂1 · Ŵ1 =

⎛
⎝ ⊔

i�=iv,j1

Z(μi,mi, μi)

⎞
⎠⊔

Z(μiv ,miv + mj1 , μiv )
⊔

Z(μj1 , 0, μj1).

By iterating this process enough times for each vertex, we can write

UH · V̂1 · Ŵ1 · · · V̂K · ŴK =
⊔

v∈I0

⎛
⎝Z

(
μiv ,

∑
i∈Iv

mi, μiv

)
�

⊔
i∈Iv\{iv}

Z(μi, 0, μi)

⎞
⎠, (5.2)

where the functions of Vi,Wi are compact bisections with disjoint source and range, so that
π

̂Vi
, π

̂Wi
are transpositions. Now if IH,n(πU ) = 0, then each

∑
i∈Iv

mi = 0, in which case (5.2)
says that

πUH

(
π
̂V1
π
̂W1

· · ·π
̂VK

π
̂WK

)
= idE∞

A
.

This shows that πUH ∈ T (HA,B,n) and hence πU = πUHπUA
∈ T (HA,B,n) too. �
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Proposition 5.4. The groupoid HA,B has Property TR.

Proof. Since HA,B = ∪∞
n=1HA,B,n and HA,B,n

(0) = H(0)
A,B is compact, we also have

that �HA,B � = ∪∞
n=1 �HA,B,n �. Suppose that IH(πU ) = 0 ∈ H1(HA,B) for some πU ∈ �HA,B �.

We have πU ∈ �HA,B,n � for some n. By (4.1) we must have IH,n′(πU ) = 0 for some n′ � n.
The result now follows from Lemma 5.3. �

Remark 5.5. Even though HA,B is minimal and has Property TR, [8, Proposition 4.5]
does not apply, because HA,B is not purely infinite and generally not principal.

Recall the exact sequence (4.9) from the previous section, as it is going to be used in the
proofs of the next two results. The following lemma is inspired by [8, Lemma 4.7].

Lemma 5.6. Let U ⊆ HA,B be a full bisection and view πU as an element of �GA,B �.
If I(πU ) = 0 ∈ H1(GA,B), then πU ∈ T (GA,B).

Proof. Set α:=πU . By Lemma 4.6 we have Φ(IH(α)) = I(α) = 0, which means
that IH(α) ∈ ker(Φ) = im(ρ1). Let [f ] ∈ H1(HA,B) be such that IH(α) = ρ1([f ]). By Proposi-
tion 5.2 there is some β ∈ �HA,B � such that IH(β) = [f ].

We have β = πV for some full bisection V = �k
i=1Z(μi,mi, νi) ⊆ HA,B, where the μi and νi

satisfy E∞
A = �k

i=1Z(μi) = �k
i=1Z(νi) and |μi| = |νi| = n for all i, for some n ∈ N. Employing

the same argument and notation as in the proof of Lemma 5.3, we can find a product of
transpositions β0 ∈ T (HA,B) such that ββ0 = πW , where W = (�v∈I0Z(μiv , liv , μiv )) �A with
A ⊆ H(0)

A,B and liv ∈ Z. In particular, the paths μiv all have different ranges.
For each v ∈ I0 pick an edge ev ∈ E1

A with r(ev) = s(μiv ) �= s(ev), so that ev is not a loop.
Then for each v, the path evμiv is disjoint from μiv . Since all the functions of μiv are mutually
disjoint, so are all the functions of evμiv too. A priori, it is not guaranteed that μiv is disjoint
from ewμiw when v �= w ∈ I0. However, this (that is, μiv � ewμiw) can be arranged if we at
the start ensure that n is chosen large enough (which in turn can be done by (5.1)) so that
|En−1

A v| � 2N for each v ∈ E0
A. This gives enough options when choosing the distinguished

indices iv to ensure that the total collection of paths ∪v∈I0{μiv , evμiv} are mutually disjoint
(independent of the choice of the functions of ev).

By the paragraph above we may define the compact bisection

T := �v∈I0 Z(evμiv , 0, μiv ) ⊆ GA,B ,

which has disjoint source and range. Now define τT :=π
̂T ∈ T (GA,B). Observe that we have

T̂ ·W · T̂ = (�v∈I0Z(evμiv , liv , evμiv )) �A′

with A′ ⊆ H(0)
A,B. Combining this with the description of ρ1 from Lemma 4.12 we see that

ρ1(IH(πW )) = ρ1([1W ]) = [1W ] −
[
1
̂T ·W ·̂T

]
= IH(πW ) − IH(τTπW τT ) = IH

(
πW τTπ

−1
W τT

)
. (5.3)

At the same time we have

IH(πW ) = IH(β) = [f ], (5.4)

since πW = ββ0 and β0 ∈ T (HA,B). Next we observe that

W · T̂ ·W−1 =
⊔

v∈I0

(Z(evμiv ,−liv , μiv ) � Z(μiv , liv , evμiv )) �A′′,
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where A′′ ⊆ G(0)
A,B . This actually shows that πW τTπ

−1
W ∈ T (GA,B), since W · T̂ ·W−1 = R̂,

where R = �v∈I0Z(μiv , liv , evμiv ). Define the element γ:=πW τTπ
−1
W τT ∈ T (GA,B). Equa-

tions (5.3) and (5.4) now say that

IH(γ) = ρ1(IH(πW )) = ρ1([f ]) = IH(α).

This means that IH(αγ−1) = 0 ∈ H1(HA,B), and hence αγ−1 ∈ T (HA,B) by Proposition 5.4.
It follows that α ∈ T (GA,B) and we are done. �

Theorem 5.7. The Katsura–Exel–Pardo groupoid GA,B has Property TR.

Proof. Let U ⊆ GA,B be a full bisection. Then we can write U = �k
i=1Z(μi,mi, νi),

where E∞
A = �k

i=1Z(μi) = �k
i=1Z(νi) (but the paths μi and νi may now have different lengths).

As in the proof of Lemma 5.3 we define the full bisections

UH:= �k
i=1 Z(μi,mi, μi) ⊆ HA,B and UA:= �k

i=1 Z(μi, 0, νi) ⊆ GA,0,

where we view both HA,B and GA,0 as subgroupoids of GA,B . Recall that we have UH · UA = U
and πU = πUHπUA

∈ �GA,B �. We will be considering all three index maps:

I : �GA,B � → H1(GA,B),

IH : �HA,B � → H1(HA,B),

IA : �GA,0 � → H1(GA,0).

We have that I(πU ) = I(πUH) + I(πUA
) ∈ H1(GA,B), but by viewing πUH ∈ �HA,B �

and πUA
∈ �GA,0 � we may also consider IH(πUH) and IA(πUA

) as elements of H1(HA,B)
and H1(GA,0), respectively. The idea is to show that if I(πU ) = 0, then both I(πUH)
and IA(πUA

) vanish as well. At this point we may appeal to Lemma 5.6 and Property TR
for GA,0

∼= GA, respectively, to conclude that πU itself must be a product of transpositions.
Assume now that I(πU ) = 0 ∈ H1(GA,B). By Lemma 4.6 and the exactness of (4.9) have

Ψ(I(πUH)) = Ψ(Φ(IH(πUH))) = 0.

This means that Ψ(I(πUA
)) = Ψ(I(πU )) = 0. From Lemma 4.11 we may conclude

that IA(πUA
) = 0 ∈ H1(GA,0). Hence πUA

∈ T (GA,0) ⊆ T (GA,B) by appealing to Prop-
erty TR for SFT-groupoids [7]. It follows that I(πUA

) = 0 ∈ H1(GA,B) too, and
then I(πUH) = I(πU ) = 0 ∈ H1(GA,B). By Lemma 5.6 we then get πUH ∈ T (GA,B) as well.
This finishes the proof, since πU = πUHπUA

. �

Corollary 5.8. The AH conjecture holds for the Katsura–Exel–Pardo groupoid GA,B

whenever the matrices A,B satisfy the AH criteria and A is irreducible.

Proof. Since GA,B has Property TR (Theorem 5.7) and is purely infinite (Proposition 3.11)
and minimal, the result follows from [8, Theorem 4.4]. �

Remark 5.9. To get rid of the assumption of A being essential, that is, allowing for sources
in EA, one could prove Property TR for restrictions, as is done for graph groupoids in [12].
This should be doable.

6. Finite generation of �GA,B �

In this section we will show that the topological full group �GA,B � is finitely generated, under
the following hypotheses on A and B.



18 PETTER NYLAND AND EDUARD ORTEGA

Assumption 6.1. In this whole section we fix N ×N matrices A,B which satisfy
the AH criteria and where A is essential. In particular N < ∞ and A is an irreducible
non-permutation matrix. Furthermore, we assume that |Bi,j | < Ai,j whenever Ai,j �= 0.

In [10, Definition 5.1], Nekrashevych defined the notion of a self-similar group being
contracting. He showed that for a contracting self-similar group, the topological full group of the
associated groupoid of germs is finitely presented. We will extend Nekrashevych’s definition to
cover the self-similar graphs of Exel and Pardo, and show that the self-similar graph associated
to matrices A and B as above is contracting. However, we will settle for showing that �GA,B �
is finitely generated. A crucial ingredient in our argument is the fact that the topological full
group �GA,0 � is finitely generated [7].

Definition 6.2. Let (G,E, ϕ) be a self-similar graph as in [1, Section 2]. We say
that (G,E, ϕ) is contracting if there exists a finite subset N ⊂ G with the property that for
every g ∈ G there is some n ∈ N such that ϕ(g, μ) ∈ N for all μ ∈ E�n.

The following rudimentary lemma will be used when showing that the self-similar graph
from Section 3 is contracting.

Lemma 6.3. Assume that a, b,m, t ∈ Z are integers satisfying a � 1 and

(b− a)m− a < at < (b− a)m + a,

1 − 2a � b− a � −1.

Then

|m + t| < |m| when |m| � 2a,

|m + t| � |m| when |m| < 2a.

Proof. Assume first that m � 0. Then

(b− a)m− a � (1 − 2a)m− a = m− a− 2ma

and

(b− a)m + a � (−1)m + a = a−m,

so

m− a− 2ma < at < a−m.

Now if m � 2a, then

a−m � −a and m− a− 2ma � a− 2ma = (1 − 2m)a.

We infer from this that

1 − 2m < t < −1 ⇒ −2m < t < 0 ⇒ |m + t| < |m|.
Next, if 0 � m < a, then

a−m � a and m− a− 2ma � −a− 2ma = (−1 − 2m)a.

And from this we get

−1 − 2m < t < 1 ⇒ −2m � t � 0 ⇒ |m + t| � |m|.
The case m < 0 proceeds in essentially the same way. �
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Lemma 6.4. Let e = ei,j,n ∈ E1
A and m ∈ Z be given. Then we have

|ϕ(m, e)| < |m| when |m| � 2Ai,j ,

|ϕ(m, e)| � |m| when |m| < 2Ai,j .

Proof. We have that Ai,j � 1 and that 0 � n < Ai,j . Let t and r be the unique integers
satisfying

mBi,j + n = (m + t)Ai,j + r and 0 � r < Ai,j .

Recall that then ϕ(m, e) = m + t. We now have

(Bi,j −Ai,j)m + n− r = Ai,jt

where −Ai,j < n− r < Ai,j . From this we see that

(Bi,j −Ai,j)m−Ai,j < Ai,jt < (Bi,j −Ai,j)m + Ai,j .

We also have

1 − 2Ai,j � Bi,j −Ai,j � −1,

since |Bi,j | < Ai,j . We are now in the setting of Lemma 6.3 and so the result follows. �

Proposition 6.5. The self-similar graph (Z, EA, ϕ) associated to the matrices A and B
is contracting.

Proof. Define R:=2 · max{Ai,j | 1 � i, j � N}. Let m ∈ Z be given. Combining Lemma 6.4
with equation (3.2) we see that |ϕ(m,μ)| � R whenever μ ∈ E

�|m|
A . So by set-

ting N = [−R,R] ∩ Z and n = |m| in Definition 6.2 we find that (Z, EA, ϕ) is contracting. �

Before establishing the finite generation of �GA,B � we introduce some notation. Given a finite
path γ ∈ E∗

A and m ∈ Z we denote the full bisection Z(γ,m, γ) � (G(0)
A,B \ Z(γ)) by Uγ,m. Given

two disjoint paths μ, γ ∈ E∗
A with r(μ) = r(γ), we define the transposition τμ,γ :=π

̂V ∈ �GA,0 �,
where V = Z(μ, 0, γ). Observe that we have

τμ,γ ◦ πUγ,m
◦ τμ,γ = πUμ,m

.

Theorem 6.6. Let A,B be matrices satisfying the AH criteria with A irreducible.
Assume that |Bi,j | < Ai,j whenever Ai,j �= 0. Then the topological full group �GA,B � is
finitely generated.

Proof. First pick n ∈ N large enough so that En
Av � 2 for each v ∈ E0

A. As above,
set R:=2 · max{Ai,j | 1 � i, j � N}. Let S be a finite generating set for �GA,0 � ([7, Theo-
rem 6.21]) and define the finite set

T :=
{
πUγ,m

| γ ∈ En
A and −R � m � R

}
.

We claim that S ∪ T generates �GA,B �.
To prove the claim let πU ∈ GA,B be given. Write U = �k

i=1Z(μi,mi, νi). By applying the
splitting in equation (5.1) enough times to each basic bisection in U , we may assume without
loss of generality that |μi| � n for each i. Similarly, by Proposition 6.5 we may assume
that |mi| � R. As we have done a few times already we split the full bisection U into the
two full bisections

UH:= �k
i=1 Z(μi,mi, μi) and UA:= �k

i=1 Z(μi, 0, νi),
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making πU = πUHπUA
. Since πUA

∈ �GA,0 � and πUH = Πk
i=1πUμi,mi

it suffices to consider
each πUμi,mi

. By the assumption on n we can for each i find a path γi ∈ En
Ar(μi) which is

disjoint from μi. The equation

πUμi,mi
= τμi,γi

◦ πUγi,mi
◦ τμi,γi

then proves the claim, since τμi,γi
∈ �GA,0 � and πUγi,mi

∈ T . �
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