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Abstract: Volume of interest segmentation is an essential step in computer-aided detection and 

diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate 

segmentation, but little is known about the reproducibility of these methods. In this work, an in-house 

collected dataset from 244 patients was used to investigate the intra-patient reproducibility of 14 shape 

features for DL-based segmentation methods of the whole prostate gland (WP), peripheral zone (PZ), 

and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance (MR) images 

compared to manual segmentations. The DL-based segmentation was performed using three different 

convolutional neural networks (CNNs): V-Net, nnU-Net-2D, and nnU-Net-3D. The two-way random, 

single score intra-class correlation coefficient (ICC) was used to measure the inter-scan reproducibility 

of each feature for each CNN and the manual segmentation. We found that the reproducibility of the 

investigated methods is comparable to manual for all CNNs (14/14 features), except for V-Net in PZ 

(7/14 features). The ICC score for segmentation volume was found to be 0.888, 0.607, 0.819, and 0.903 

in PZ; 0.988, 0.967, 0.986, and 0.983 in non-PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, 

nnU-Net-2D, and nnU-Net-3D, respectively. The results of this work show the feasibility of 

embedding DL-based segmentation in CAD systems, based on multiple T2W MR scans of the prostate, 

which is an important step towards the clinical implementation. 
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1. Introduction 

Prostate cancer is the most detected cancer in men and the second most common 

cause of cancer related death for men worldwide [1]. An early diagnosis of prostate cancer 

is essential for a better disease management [2]. Following reasonable suspicion of 

prostate cancer, based on elevated prostate-specific antigen (PSA) levels in blood and a 

digital rectal examination (DRE), the patient, in many countries, is likely to be referred to 

a pre-biopsy magnetic resonance imaging (MRI) to guide the collection of biopsies [3]. To 

improve the diagnostic process, the use of multi-parametric MRI (mpMRI) has been 

established through international guidelines [4–6]. Additionally, mpMRI has been 

employed in active surveillance programs to follow up the patients with indolent lesions 

[7], prostate cancer risk calculators [8], and treatment response monitoring [6,9]. 

Currently, the mpMR images are interpreted qualitatively by a radiologist, which is a 

tedious, time-consuming [10], and reader opinion-dependent [11,12] process. The 
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resulting vulnerability to inter and intra-observer variability is problematic for clinical 

applications based on multiple scans in time, such as with active surveillance and 

response monitoring, where reproducibility of results is paramount. Automated 

computer-aided detection and diagnosis (CAD) systems have the potential to overcome 

the limitations of the traditional radiological reading by implementing quantitative 

models to automate, standardize, and support reproducible interpretations of radiological 

images [10,13–15]. 

Segmentation is an essential step for prostate CAD systems [13,15]. It helps locate the 

volume of interest (VOI), enabling subsequent extraction of quantitative features for 

radiomics-based approaches. Accurate segmentation is paramount as the following steps 

of a CAD system are dependent on it. Traditionally, the VOI segmentation is performed 

manually by a radiologist on T2-weighted (T2W) MR images. However, deep learning 

(DL)-based segmentation methods have shown promising performances [16–20]. 

Importantly, the inter-observer variability between DL-based segmentation methods and 

expert radiologists has been shown to be approximately equal to that between expert 

radiologists [21]. However, little is known about the reproducibility of DL-based 

segmentation methods for clinical MRI scans. To investigate the reproducibility of DL-

based segmentation, radiomics shape features can be used. Shape features, like prostate 

volume, are already part of today’s clinical risk calculators for prostate cancer [8] and will 

likely play an important role in future radiomics-based clinical applications. 

Recently, the reproducibility of several radiomics features, using manually 

segmented masks of the prostate on clinical MR images, has been investigated [22–25]. 

The study by Schwier et al. [22] was the only one that used segmentations of the whole 

prostate gland and zones. Their results showed high reproducibility of shape features, 

between manual segmentations on mpMRI scans, during a short time interval. Despite 

the useful information provided by these studies, they do not provide insight into the 

reproducibility of automatically generated segmentations. Furthermore, these studies did 

not focus on investigating the reproducibility of the segmentation masks themselves, as 

the manual segmentations were considered the reference. To the best of our knowledge, 

the reproducibility of DL-based segmentations of the prostate, on clinical MR images, has 

not been previously investigated. 

The contribution of this study is the assessment of the reproducibility of DL-based 

segmentations of the whole prostate gland (WP), peripheral zone (PZ), and the remaining 

prostate zones (non-PZ; central, transition, and anterior fibro-muscular zones, combined) by 

comparing radiomics shape features from T2W MR images acquired with short time intervals. 

2. Materials and Methods 

2.1. Dataset 

In this study, we used an in-house collected mpMRI dataset from 244 patients 

(median age = 65; range: 44–76 years) for retrospective analysis. This dataset came from a 

previous prospective study conducted by our group. The patients were examined at St. 

Olavs Hospital, Trondheim University Hospital, Trondheim, Norway between March 

2015 and December 2017, due to suspicion of prostate cancer, via the Norwegian 

standardized care pathway, in which patients with elevated PSA and/or abnormal DRE 

results are referred for an initial mpMRI scan to identify suspicious cancerous tissue [26]. 

If the radiologist detected suspicious tissue in the aforementioned prospective study, 

patients were randomly selected for either standard transrectal ultrasound-guided biopsy 

or in-bore targeted MR-guided biopsy. The latter group (n = 62), therefore, had two 

mpMRI scans. The Regional Committee for Medical and Health Research Ethics (REC 

Central Norway) approved the use of the dataset (identifiers 2013/1869 and 2017/576). All 

the patients signed informed consent prior to the initiation of the prospective study. 

The dataset (T2W images) was split into a training set (n = 182), to train the DL-based 

segmentation networks, and an investigation set (n = 62), to investigate the reproducibility 
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of shape features extracted from the segmented prostate masks. The investigation set was 

acquired at two different time points: first, at the initial visit for the detection of prostate 

cancer (scan 1) and second, during an MR-guided biopsy procedure (scan 2). The interval 

between scans ranged from 1–71 (median = 7) days. Patients in the collected dataset with 

two scans were assigned to the investigation set. Those who had only one scan, acquired 

at the initial visit for detection of prostate cancer, were assigned to the training set. 

T2W MRI was performed on a Magnetom Skyra 3 T MRI system (Siemens 

Healthineers, Erlangen, Germany) with a turbo spin-echo sequence. The scanning 

parameters details are given in Table 1. 

Table 1. Summary of MRI scanning parameters. 

 Investigation Set 
Training Set 

 Scan 1 Scan 2 

Repetition time (ms) 4800–8921 5660–7740 4450–9520 

Echo time (ms) 101–104 101–104 101–108 

Flip angle (degree) 152–160 152–160 145–160 

Number of averages 3 3–6 1–3 

Matrix size 320 × 320–384 × 384 320 × 320–384 × 384 320 × 320–384 × 384 

Slices 24–30 17–24 24–34 

Slice thickness (mm) 3 3 3–3.5 

In plane resolution (mm2) 0.5 × 0.5–0.6 × 0.6 0.5 × 0.5–0.6 × 0.6 0.5 × 0.5–0.6 × 0.6 

2.2. Prostate Segmentation 

Manual segmentation of PZ and non-PZ for the in-house collected dataset was 

performed using ITK-SNAP [27] (version 3.6.0) by a radiology resident (E.S.) at St. Olavs 

Hospital, Trondheim University Hospital, Trondheim, Norway, under the supervision of 

a radiologist (S.L.) with more than 10 years′ experience in prostate imaging. PZ and non-

PZ masks were used to generate the WP masks by merging. Lesion segmentation was 

beyond the scope of this study and was, therefore, not considered. 

The DL-based segmentation was performed using three different convolutional neural 

networks (CNNs), which are all variants of the famous U-Net with an encoder-decoder 

scheme, along with long skip connections [28], further referred to as V-Net [18], nnU-Net-

2D [16], and nnU-Net-3D [16]. These three networks were chosen for their popularity, good 

performance, and public availability. Unlike U-Net, V-Net is a residual learning network 

that replaces the maximum pooling operation with strided convolutions and the ReLU 

activation functions with PReLU activation functions [18]. On the other hand, nnU-Net does 

not introduce a new architecture, but it uses a 2D or 3D U-Net network with automatic self-

configuration of pre-processing, network architecture, training, and post-processing [16]. 

nnU-Net-2D performed the segmentation on a 2D slice-by-slice basis, whereas V-Net and 

nnU-Net-3D performed the segmentation on a 3D volume basis. Prior to segmentation, all 

images were pre-processed in accordance with the corresponding segmentation method. 

The segmentation pre-processing, training, and testing were performed on a single NVIDIA 

Tesla P100 PCIe 16 GB GPU in Ubuntu 18.04.4 LTS. 

V-Net was implemented with PyTorch [29] (version 1.4.0) using Python (version 

3.6.9; Python Software Foundation, Wilmington, DE, USA) to generate two separate 

models for WP and PZ, which were used to generate non-PZ masks by subtraction. Each 

of the V-Net models was trained for 16,000 iterations with a batch size of 2. Adaptive 

moment estimation with momentum of 0.99, a weight decay of 1 × 10-8, and an initial 

learning rate of 1 × 10-4 were used for learning the network weights. The training time for 

each of the models was 10 h with cuDNN acceleration. 

nnU-Net-2D (version 2.1) and nnU-Net-3D (version 2.1) were implemented with 

PyTorch (version 1.7.0) using Python (version 3.6.10) to generate one model for both PZ 

and non-PZ, which were used to generate the WP masks by merging. The nnU-Net-2D 
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model was trained for 978 epochs with a batch size of 22. Stochastic gradient descent with 

Nesterov Momentum of 0.99, a weight decay of 3 × 10-5, and an initial learning rate of 1 × 

10-2 were used for learning the network weights. The training time of the model was 55 h 

with cuDNN acceleration. The nnU-Net-3D model was trained for 625 epochs with a batch 

size of 2. Stochastic gradient descent with Nesterov Momentum of 0.99, a weight decay of 

3 × 10-5, and an initial learning rate of 1 × 10-2 were used for learning the network weights. 

The training time of the model was 88 h with cuDNN acceleration. 

The DL-based segmentations were post-processed to only keep the largest 3D 

connected component, using a pixel connectivity of 26. 

2.3. Feature Extraction 

Shape features were extracted from the 3D segmentation masks (Manual or DL-

based) of PZ, non-PZ, and WP using Pyradiomics [30] (version 3.0; an open-source Python 

package). The following 14 shape features were extracted: Elongation, Flatness, Least Axis 

Length, Major Axis Length, Maximum 2D diameter (Column), Maximum 2D diameter 

(Row), Maximum 2D diameter (Slice), Maximum 3D diameter, Mesh Volume, Minor Axis 

Length, Sphericity, Surface Area, Surface Area to Volume ratio, and Voxel Volume. A 

detailed description of the features can be found at [31]. 

2.4. Investigation of Reproducibility 

Reproducibility is defined as the “variability in measurements made on the same 

subject, but under changing conditions” [32]. The variability and reproducibility are 

inversely related, i.e., the higher the variability, the lower the reproducibility. In this work, 

scan 1 and scan 2 were performed on the same patients, but at different time points and 

using different scanning procedures. 

To investigate the reproducibility, all extracted features from the two scans of 62 

patients’ scans, using the manual and post-processed DL-based segmentations, were 

included. The reproducibility for each of the 14 shape features was investigated, 

separately, for each of the CNNs and compared to that of the corresponding feature from 

the manual segmentations. Furthermore, the DL-based segmentation performance and 

segmentation volume (Voxel Volume feature) in scan 1 and scan 2 were compared to those 

of manual segmentations. 

In addition, the reproducibility results were compared to the corresponding results 

where (1) the post-processing step was excluded, and (2) patients with a poor 

segmentation quality score were excluded. To enable the last comparison, our previously 

proposed automated segmentation quality control system (SQCS) [33] was implemented, 

and the patients with a quality score of less than 85 for scan 1 or/and scan 2 were excluded 

from further analysis. As per [33], the SQCS was implemented using pre-processed T2W 

images and WP segmentations. 

2.5. Statistical Analysis 

The dice similarity coefficient (DSC) [34], between manual and DL-based 

segmentations, was calculated as a metric of segmentation performance. 

The two-way random, single score intra-class correlation coefficient (ICC) [35,36] was 

used to measure the inter-scan reproducibility of each feature for each CNN and the 

manual segmentations. Statistical significance between features, from manual 

segmentation and each CNN, and between features, from including and excluding the 

post-processing step, was based on overlapping 95% confidence intervals (CI) [37]. 

The paired Wilcoxon signed rank test [38], followed by Benjamini–Hochberg 

correction for multiple testing [39], was used to assess the differences in DSC, the ICC 

values between VOIs, and segmentation volume between networks and scans. 

The Bland–Altman analysis [40] and Spearman’s rank test [38] were performed to 

assess the correlation between the segmentation volumes for scan 1 and scan 2 and 
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between the segmentation volumes of each of the CNNs and the manual segmentations 

in scan 1 and scan 2. 

To assess the difference in feature reproducibility, before and after implementing the 

SQCS, a permutation test [38] with 1000 runs was performed for each CNN. In each of 

these 1000 runs, the ICC value was calculated after randomly excluding the same number 

of cases as excluded by the SQCS. The improvement in ICC, after applying the SQCS, was 

considered significant if less than 50/1000 randomly permuted values were higher or 

equal to the ICC after the SQCS implementation. 

MATLAB R2019b (MathWorks, Natick, MA, USA) was used for statistical analysis. 

3. Results 

An example case segmented with the three investigated CNNs is shown in Figure 1. 

 

Figure 1. The middle slice for the whole prostate, apex, and base of a randomly selected case was segmented (peripheral 

zone (PZ) and the remaining prostate zones (non-PZ)) by different approaches for scan 1 and 2. For each network, the dice 

similarity coefficient (DSC) of the 3D segmented volume is reported for the whole prostate gland (WP), PZ, and non-PZ. 

Figure 2 shows the performance of the investigated CNNs segmentations. The median 

DSCs were 0.781, 0.821, and 0.825 in PZ; 0.871, 0.916, and 0.917 in non-PZ; 0.909, 0.937, and 

0.940 in WP for V-Net, nnU-Net-2D, and nnU-Net-3D, respectively, in scan 1; 0.714, 0.788, 

and 0.798 in PZ; 0.853, 0.896 and 0.904 in non-PZ; 0.893, 0.917, and 0.929 in WP for V-Net, 

nnU-Net-2D, and nnU-Net-3D, respectively, in scan 2. Median of DSC difference between 

the scans (scan 2–scan 1) was −9.49%, −4.06% and −3.65% in PZ; −3.12%, −1.80% and −1.08% 

in non-PZ; −1.98%, −1.95% and −1.39% in WP for V-Net, nnU-Net-2D and nnU-Net-3D, 

respectively. V-Net performed significantly lower (p < 0.001) than nnU-Net-2D and nnU-

Net-3D in both of the scans and all of VOIs. nnU-Net-3D performed significantly higher (p 
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< 0.01) than nnU-Net-2D in scan 2 for all of VOIs. In addition, each of the CNNs performed 

significantly lower (p < 0.001) in scan 2 compared to scan 1. 

 

Figure 2. The performance (dice similarity coefficient-DSC) of the segmentation methods for the 

whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ). The 

Manual segmentations were considered as reference. The means are denoted by , while the 

outliers are denoted by ●. 

Figure 3 shows the ICCs from the extracted shape features from scan 1 and scan 2, 

where the segmentation post-processing step was included, and the segmentation quality 

control system was not implemented, demonstrating that the reproducibility of DL-based 

segmentation is comparable to manual segmentation for all networks (14/14 features), 

except for V-Net in PZ (7/14 features). In both manual and DL-based segmentations, 

Elongation, Flatness, and Sphericity had a remarkably lower ICC than the other features 

in WP and non-PZ. nnU-Net-3D showed higher reproducibility than the rest of the CNNs 

with a median difference in ICC equal to 54.03% and 9.06% in PZ; 3.95% and 0.38% in non-

PZ; 0.95% and 1.09% in WP with V-Net and nnU-Net-2D, respectively. Additionally, in 

most cases, feature reproducibility in the non-PZ and WP was higher than in the PZ. V-

Net had significantly higher (p < 0.01) ICCs in non-PZ and WP compared to PZ. 

Comparing reproducibility when including (Figure 3) and excluding (Figure A1) the 

segmentation post-processing step, while SQCS was not implemented in any of them, 

shows that the reproducibility is remarkably enhanced when including the segmentation 

post-processing step. The ICC, after including the segmentation post-processing step, was 

significantly better in (4/14) features for V-Net in non-PZ; (14/14), (12/14), and (13/14) 

features for nnU-Net-2D in PZ, non-PZ, and WP, respectively; (13/14), (14/14), and (13/14) 

features for nnU-Net-3D in PZ, non-PZ, and WP, respectively. 
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Similarly, the reproducibility was increased with the SQCS implementation (Figure 

A2) compared to no implementation (Figure 3); the segmentation post-processing step 

was included in both cases. After implementing the SQCS, 10, 11, and 6 patient’s 

segmentations were excluded from V-Net, nnU-Net-2D, and nnU-Net-3D, respectively. 

The ICC after implementing the SQCS was significantly better in (3/14), (2/14), and (3/14) 

features for V-Net in PZ, non-PZ, and WP, respectively; in (7/14) and (2/14), features for 

nnU-Net-2D in non-PZ, and WP, respectively; in (1/14) and (5/14) features for nnU-Net-

3D in non-PZ and WP, respectively. 

 

Figure 3. The single score intra-class correlation coefficient (ICC), with the 95% confidence interval (95% CI), of the shape 

features extracted from the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ) 

for the investigated methods, where the segmentation post-processing step was included, and the segmentation quality 

control system was not implemented. 

The segmented volume (Voxel Volume feature) was further investigated, as it is an 

important and in-use biomarker for multiple clinical applications [41–43]. Its ICC score, 

when the segmentation post-processing step was included and the SQCS was not 

implemented, was 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-

PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D, 

respectively. Figure 4 shows that the segmented volume was significantly lower in scan 2, 

compared to scan 1, for all the methods in PZ and WP (p < 0.001) and for nnU-Net-2D in 

non-PZ (p = 0.003). Bland–Altman analysis shows a similar bias for manual and DL-based 

methods (Figure A3). Median of volume difference between the scans (scan 2–scan 1) was 

−4.33%, −3.58%, −5.80%, and −3.32% in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-

3D, respectively. It also shows a small bias between the volumes of the DL-based and 

manual segmentations in scan 1 (Figure A4) and scan 2 (Figure A5). It was noticed that PZ 

has higher bias between scans and methods than non-PZ and WP. V-Net has also showed a 

slightly higher bias between scans and methods than nnU-Net-2D and nnU-Net-3D. 
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Figure 4. The segmented volume of the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate 

zones (non-PZ) from the investigated methods in scan 1 and scan 2. The means are denoted by , while the outliers are 

denoted by ●. 

4. Discussion 

VOI segmentation is an essential step in CAD systems. DL-based methods provide 

good performance for prostate segmentation, but little is known about their 

reproducibility. The reproducibility of radiomics shape features can be used as an 

indicator of the segmentation reproducibility. Therefore, in this paper, we investigated 

the reproducibility of the shape features extracted from DL-based segmentations of the 

WP, PZ, and non-PZ on T2W MR images, acquired with short time intervals (median = 7 

days), and compared them to those of manual segmentations. Prostate gland volume is 

proportionally related to benign enlargement [44] and inversely related to prostate cancer 

[45]. Both of those conditions usually require long time to develop, thus no significant 

change in prostate gland volume is expected during a short time interval. Shape features, 

such as prostate volume, used to measure the PSA-density (PSA level/prostate volume) 

[46], are already part of today’s clinical risk calculators for prostate cancer [8] and will 

likely play an important role in future radiomics-based clinical applications. For clinical 

applications based on multiple scans in time, like active surveillance, it is key that 

extracted features are both accurate and reproducible. 

The DSC values were in line with those expected from the literature [16,18], indicating 

that the trained networks have state-of-the-art performance. nnU-Net-3D had the best 

overall segmentation accuracy, while V-Net showed the lowest segmentation accuracy 
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comparable to the manual segmentations. This work extends previous studies, showing the 

excellent performance of nnU-Net, specifically the 3D volume basis model, on a wide 

variety of medical image segmentation tasks [16]. The DSC values were slightly lower in 

scan 2 compared to scan 1. This is probably due to the nature of the segmentation training 

set, which consisted of cases acquired with a scan protocol similar to that of scan 1. 

Based on ICCs of the shape features, nnU-Net-2D and nnU-Net-3D were shown to 

have comparable reproducibility to manual segmentations in all VOIs. WP and non-PZ 

showed higher ICCs compared to PZ, which was expected due to the low PZ 

segmentation performance. nnU-Net-3D provided higher ICCs compared to the other 

CNNs, which was expected as it had the highest segmentation performance among 

CNNs. Overall, the results show that DL-based segmentation methods can generate 

highly intra-patient reproducible masks for T2W images of the prostate. Good 

reproducibility gives potential for picking up changes in the prostate when they appear, 

an important step towards the clinical implementation of prostate CAD systems, based on 

multiple T2W MRI scans. 

Including a post-processing step to the segmentation, where only the largest 

connected component in 3D volume is kept, was shown to remarkably enhance the 

features reproducibility. Similarly, the implementation of the SQCS significantly 

increased the reproducibility. Therefore, the implementation of these two post-processing 

steps in a CAD system pipeline is recommended to assure highly reproducible shape 

features. In clinical applications, the cases with low segmentation quality score, predicted 

by the SQCS, should be either referred to a radiologist for manual intervention or re-

segmented using another CNN. 

One possible explanation for the lower ICC of Elongation, Flatness, and Sphericity in 

WP and non-PZ is that the prostate gland in scan 2 was potentially compressed due to a 

guiding probe for the biopsy needle inside the patient’s rectum during the image 

acquisition. Moreover, the patients were scanned in prone position during scan 2, in 

contrast to scan 1, where they were scanned in supine position. The probe and the prone 

position would, indeed, not alter the volume of the prostate but might deform its shape 

slightly. In their study, Osman et al. [47] have investigated the endorectal coil effect on the 

WP volume and shape during prostate T2W MRI and concluded that, despite shape 

deformation, there is no significant change in the WP volume between including and 

excluding the endorectal coil. Although the needle guiding probe differs from the 

endorectal coil, its impact may be expected to be similar. In addition, the prostate gland 

might deform between scans due to other factors, e.g., different bladder/bowel loading, 

which were not taken into account in this study. The shape deformation may have had an 

impact on the decision of including or excluding a slice from the segmentation. We noticed 

that, overall, scan 2 had a lower number of segmented slices than scan 1. Median of the 

segmented slices number was 14, 14, 14, and 14 in WP for manual, V-Net, nnU-Net-2D, 

and nnU-Net-3D, respectively, in scan 1 and 13, 13.5, 13, and 14 in WP for manual, V-Net, 

nnU-Net-2D, and nnU-Net-3D, respectively, in scan 2. Although the difference between 

the numbers is small (≈1 slice), it will influence the segmented volumes, which were 

indeed slightly lower in scan 2 than in scan 1. 

The reproducibility of the segmented volume might be the most important among the 

14 investigated features. WP volume is used by the radiologist to measure the PSA-density, 

which is part of today’s clinical risk calculators [8], and can be used as a biomarker to 

evaluate prostate cancer progression and the need for re-biopsy [43]. An alternative 

biomarker to the traditional PSA-density is the zonal adjusted PSA-density, which depends 

on the segmented volume from various prostate gland zones, i.e., non-PZ volume [48,49]. 

Our study shows that the segmented volume feature is highly reproducible, and in 

agreement with manual volumes on both zonal and whole prostate-level. 

In their work, Schwier et al. [22] used manual segmentations to assess the 

reproducibility of radiomics features on prostate T2W MR images. Their focus was mainly 

on the reproducibility of the radiomics textural features under different settings, but they 
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have also included results on some of the shape features reproducibility. Although there 

is some similarity between their work and ours, our work focused on the reproducibility 

of DL-based segmentations. Like in our work, Schwier et al. showed that the 

reproducibility of shape features is high. Furthermore, they showed that the segmented 

volume reproducibility is higher in WP than in PZ, which was also in line with our 

findings. The high ICC values found in this work suggest that all the shape features, 

except for Elongation, Flatness, and Sphericity, extracted using DL-based segmentation 

methods, can be used in clinical applications based on multiple scans without being 

concerned about their reproducibility. 

In this work, we used a dataset from prostate cancer patients referred and scanned 

according to prevailing guidelines. Consequently, the results represent the reproducibility 

of the DL-based segmentations in a real clinical setting. Nevertheless, our study has some 

limitations. The patient cohort was relatively small, and it was obtained from a single 

center. Conducting a multicenter study in the future might give additional insight on the 

reproducibility of DL-based segmentation across institutions. Moreover, the manual 

segmentations in this study have been performed by one reader. A set of manual 

segmentations, where multiple readers are included, will facilitate additional 

comparisons, which might provide us with more information, but this can be considered 

for a future work. 

5. Conclusions 

We investigated the reproducibility of the shape features, extracted from DL-based 

segmentations, of the prostate gland and zones on T2W MR images acquired with short 

time intervals. The reproducibility of the best-performing DL-based prostate 

segmentation methods is comparable to that of manual segmentations, which is important 

for clinical applications, based on multiple scans in time. 
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Appendix A 

 

Figure A1. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval (95%CI) of the shape 

features extracted from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) 

for the investigated methods, where the segmentation post-processing step was skipped and the segmentation quality 

control system was not implemented. 

 

Figure A2. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval (95%CI) of the shape 

features extracted from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) 

for the investigated methods, where the segmentation post-processing step was included and the segmentation quality 

control system was implemented. The patients with a quality score less than 85 for scan 1 or/and scan 2 were excluded. 
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Figure A3. The Bland-Altman plots for the agreement between scan 1 and scan 2 volumes from the whole prostate gland 

(WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) for the investigated methods. The 95% confidence 

interval limits for mean and agreement limits are denoted by Ι, while the cases are denoted by ○. 

 

Figure A4. The Bland-Altman plots for the agreement between manual and rest of the investigated methods volumes from 

the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) in scan 1. The 95% 

confidence interval limits for mean and agreement limits are denoted by Ι, while the cases are denoted by ○. 
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Figure A5. The Bland-Altman plots for the agreement between manual and rest of the investigated methods volumes from 

the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) in scan 2. The 95% 

confidence interval limits for mean and agreement limits are denoted by Ι, while the cases are denoted by ○. 
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