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Abstract

We study Mean Field Games (MFGs) driven by a large class of nonlocal, fractional and anomalous 
diffusions in the whole space. These non-Gaussian diffusions are pure jump Lévy processes with some σ -
stable like behaviour. Included are σ -stable processes and fractional Laplace diffusion operators (−�)

σ
2 , 

tempered nonsymmetric processes in Finance, spectrally one-sided processes, and sums of subelliptic op-
erators of different orders. Our main results are existence and uniqueness of classical solutions of MFG 
systems with nondegenerate diffusion operators of order σ ∈ (1, 2). We consider parabolic equations in 
the whole space with both local and nonlocal couplings. Our proofs use pure PDE-methods and build on 
ideas of Lions et al. The new ingredients are fractional heat kernel estimates, regularity results for fractional 
Bellman, Fokker-Planck and coupled Mean Field Game equations, and a priori bounds and compactness of 
(very) weak solutions of fractional Fokker-Planck equations in the whole space. Our techniques require no 
moment assumptions and use a weaker topology than Wasserstein.
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1. Introduction

We study parabolic Mean Field Games (MFGs) driven by a large class of nonlocal, fractional 
and anomalous diffusions in the whole space:

⎧⎪⎪⎨
⎪⎪⎩

−∂tu −Lu + H (x,u,Du) = F (x,m(t)) in (0, T ) ×Rd,

∂tm −L∗m − div
(
mDpH (x,u,Du)

) = 0 in (0, T ) ×Rd,

m(0, x) = m0(x), u (x,T ) = G(x,m(T )) ,

(1)

where H is a (nonlinear) Hamiltonian, F and G are source term and terminal condition, and m0
an initial condition. Furthermore, L and its adjoint L∗, are non-degenerate fractional diffusion 
operators of order σ ∈ (1, 2) of the form

Lu(x) =
ˆ

Rd

u(x + z) − u(x) − Du(x) · z1|z|<1 dμ(z), (2)

where μ is a nonnegative Radon measure satisfying the Lévy-condition 
´
Rd 1 ∧ |z|2 dμ (z) <

∞, see (L1) and (L2) below for precise assumptions. The system is uniformly parabolic and 
consists of a backward in time fractional Hamilton-Jacobi-Bellman (HJB) equation coupled with 
a forward in time fractional Fokker-Planck (FP) equation.

1.1. Background

MFGs is an emerging field of mathematics with a wide and increasing range of applications 
in e.g. economy, network engineering, biology, crowd and swarm control, and statistical learning 
[26,22]. It was introduced more or less at the same time by Lasry and Lions [31,32] and Caines, 
Huang and Malhamé [27]. Today there is a large and rapidly expanding literature addressing 
a range of mathematical questions concerning MFGs. We refer to the books and lecture notes 
[1,12,10,23,7] and references therein for an overview of the theory and the current state of the 
art. Heuristically a large number of identical players want to minimize some cost depending on 
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their own state and the distribution of the states of the other players, and the mean field game 
system arises as a characterisation of Nash equilibria when the number of players tends to infinity 
under certain symmetry assumptions. The optimal MFG feedback control is almost optimal also 
for finite player games with moderate to large numbers of players, and often provides the only 
practical way of solving also such games.

In this paper the generic player controls a stochastic differential equation (SDE) driven by a 
pure jump Lévy process Lt with characteristic triplet (0, 0, μ) [3],

dXt = αt dt + dLt , (3)

with the aim of minimizing the cost functional

E

⎡
⎣ T̂

0

[
L(Xs,αs) + F(Xs,m(s))

]
ds + G(XT ,m(T ))

⎤
⎦

with respect to the control αs . Here L is the Legendre transform of H with respect to the second 
variable, F and G are running and terminal costs, and m the distribution of the states of the other 
players. If u is the value function of the generic player, then formally the optimal feedback control 
is α∗

t = −D2H(x, Du) and u satisfies the HJB equation in (1). The probability distribution of 
the optimally controlled process X∗

t then satisfies the FP equation in (1). Since the players are 
identical, the distribution m of all players will satisfy the same FP equation, now starting from 
the initial distribution of players m0. This is a heuristic explanation for (1).

What differs from the standard MFG formulation is the type of noise used in the model. 
In many real world applications, jump processes or anomalous diffusions will better model the 
observed noise than Gaussian processes [34,18,38,3]. One example is symmetric σ -stable noise 
which correspond to fractional Laplacian operators L = (−�)

σ
2 for σ ∈ (0, 2). In Finance the 

observed jump processes are not symmetric and σ -stable but rather non-symmetric and tempered. 
An example is the one-dimensional CGMY process [18] where dμ

dz
(z) = C

|z|1+Y e−Gz+−Mz−
for 

C, G, M > 0 and Y ∈ (0, 2). Our assumptions cover a large class of uniformly elliptic operators L
that includes fractional Laplacians, generators of processes used in Finance, anisotropic operators 
with different orders σ in different directions, Riesz-Feller operators, and operators with Lévy 
measures that non-absolutely continuous, spectrally one-sided, have no fractional moments, and 
a general behaviour at infinity. We refer to Section 4 for a discussion, results, and examples. We 
also analyse the system in the whole space, while many other papers focus on the compact torus. 
For control problems and games, the whole space case is usually more natural, but also more 
technical.

Main results. Under structure and regularity assumptions on L, H, F, G, m0, we show:

(i) Existence of smooth solutions of (1) with nonlocal and local coupling, see Theorems 3.2
and 3.5.

(ii) Uniqueness of smooth solutions of (1) with nonlocal and local coupling, see Theorems 3.3
and 3.6.

Our assumptions on H, F, G are fairly standard [33,9,1] (except maybe that the problem is 
posed on the whole space). For the existence results, we note that the Hamiltonian H (assump-
tions (A3)–(A5)) can be both nonconvex and noncoercive. Since we consider nondegenerate 
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parabolic problems, the order of the equations has to be greater than one and we do not need 
or impose semiconcavity assumptions. The proofs of the main results follow from an adaptation 
of the PDE-approach of Lions [33,9,1], and existence is much more involved than uniqueness. 
Existence for MFGs with nonlocal coupling is proved using a Schauder fixed point argument 
and well-posedness, regularity, stability and compactness results for individual fractional HJB 
and fractional FP equations of the form:

∂tu −Lu + H (x,u,Du) = f (t, x) ,

∂tm −L∗m + div (b(t, x)m) = 0.

Existence for MFGs with local coupling follows from an approximation argument, the results for 
nonlocal coupling, and regularity and compactness results, in this case directly for the coupled 
MFG system.

Secondary results:

(iii) Fractional heat kernel estimates, see Theorem 4.3 and Proposition 4.9.
(iv) Fractional HJB equations: Regularity, existence, and space-time compactness of deriva-

tives of classical solutions in Theorem 5.5 and Theorem 5.6.
(v) Fractional FP equations: Well-posedness, space-time compactness of derivatives, C(0, T ;

P(Rd)) compactness, and global L∞ bounds of smooth solutions in Theorem 6.8 (a), 
Theorem 6.8 (b) and (c), Proposition 6.6, and Lemma 6.7.

For both equations we show new high order regularity results of independent interest. These 
results are obtained from a Banach fixed point argument using semigroup/Duhamel representa-
tion of the solutions and bootstrapping in the spirit of [19,20,28]. Key ingredients are very general 
fractional heat kernel estimates and global in time Lipschitz bounds for u and L∞ bounds for m. 
The heat kernel estimates are based on [25], and we give some extensions, e.g. to operators with 
general Lévy measures at infinity and sums of subelliptic operators. To show space-time com-
pactness of derivatives, we prove that they are space-time equi-continuous, combining uniform 
Hölder estimates in space with new time and mixed regularity estimates for the Duhamel repre-
sentations of the solutions (see Section 5). In the local coupling case, the HJB and FP equations 
have less regular data, and regularity can no longer be obtained through separate treatment of the 
equations. Instead we need to work directly on the coupled MFG system and apply a more re-
fined bootstrapping argument based on fractional derivatives. These estimates also require better 
global in time Lipschitz and L∞ estimates the HJB and FP equations respectively. Here we use 
a variant of the Lipschitz bound of [5] and provide a new L∞-estimate for the FP equation.

For the Schauder fixed point argument to work and give existence for the MFG system, com-
pactness in measure is needed for a family of solutions of the FP-equation. We prove such com-
pactness essentially through an analysis of very weak (distributional) solutions of this equation: 
We prove preservation of positivity, mass, and L1-norms, equicontinuity in time, and tightness. 
Our proof of equicontinuity is simple and direct, without probabilistic SDE-arguments as in e.g. 
[9,1]. The tightness estimates are new in the fractional MFG setting and more challenging than 
in the local case.

This paper is the first to consider fractional MFGs in the whole space. To have compactness 
in measure on non-compact domains, a new ingredient is needed: tightness. Typically tightness 
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is obtained through some moment condition on the family of measures. Such moment bounds 
depend both on the initial distribution and the generator of the process. In the local case when 
Lt in (3) is a Brownian motion, then the process Xt and FP solution m have moments of any 
order, only limited by the number of moments of X0 and m0. In the nonlocal/fractional case, Xt

and m may have only limited (as for σ -stable processes) or even no fractional power moments 
at all, even when X0 and m0 have moments of all orders. We refer to Section 2.3 for more 
examples, details, and discussion. Nonetheless it turns out that some generalized moment exists, 
and tightness and compactness can then be obtained. This relies on Proposition 6.5 (taken from 
[15]), which gives the existence of a nice “Lyapunov” function that can be integrated against m0
and μ1|z|≥1.

In this paper we prove tightness and compactness without any explicit moment conditions 
on the underlying processes Xt or solutions of the FP equations m. This seems to be new for 
MFGs even in the classical local case. Furthermore, m is typically set in the Wasserstein-1 space 
W1 of measures with first moments, and compactness then requires more than one moment to 
be uniformly bounded. Since our Lévy processes and FP solutions may not have first moments, 
we can not work in this setting. Rather we work in a weaker setting using a weaker Rubinstein-
Kantorovich metric d0 (defined below) which is equivalent to weak convergence in measure 
(without moments). This is reflected both in the compactness and stability arguments we use as 
well as our assumptions on the nonlocal couplings.

1.2. Literature

In the case of Gaussian noise and local MGF systems, this type of MFG problems with non-
local or local coupling have been studied from the start [31–33,9] and today there is an extensive 
literature summarized e.g. in [1,23,7] and references therein. For local MFGs with local cou-
plings, there are also results on weak solutions [32,35,11,1], a topic we do not consider in this 
paper. Duhamel formulas have been used e.g. to prove short-time existence and uniqueness in 
[17].

In the case of non-Gaussian noise and nonlocal MFGs or MFGs with fractional diffusions, 
there is already some work. In [13] the authors analyze a stationary MFG system on the torus 
with fractional Laplace diffusions and both non-local and local couplings. Well-posedness of 
time-fractional MFG systems, i.e. systems with fractional time-derivatives, are studied in [8]. 
Fractional parabolic Bertrand and Carnout MFGs are studied in the recent paper [24]. These 
problems are posed in one space dimension, they have a different and more complicated structure 
than ours, and the principal terms are the (local) second derivative terms. The nonlocal terms 
act as lower order perturbations. Moreover, during the rather long preparation of this paper we 
learned that M. Cirant and A. Goffi were working on somewhat similar problems. Their results 
have now been published in [16]. They consider time-depending MFG systems on the torus with 
fractional Laplace diffusions and nonlocal couplings. Since they assume additional convexity and 
coercivity assumptions to ensure global in time semiconcavity and Lipcshitz bounds on solutions, 
they consider also fractional Laplacians of the full range of orders σ ∈ (0, 2). Regularity results 
are given in terms of Bessel potential and Hölder spaces, weak energy solutions are employed 
when σ ∈ (0, 1], and existence is obtained from the vanishing viscosity method. Our setup is 
different in many ways, and more general in some (a large class of diffusion operators, less 
smoothness on the data, problems posed in the whole space, no moment conditions, fixed point 
arguments), and most of our proofs and arguments are quite different from those in [16]. We also 
give results for local couplings, which in view of the discussion above is a non-trivial extension.
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1.3. Outline of paper

This paper is organized as follows: In section 2 we introduce notation, spaces, and give some 
preliminary assumptions and results for the nonlocal operators. We state assumptions and give 
existence and uniqueness results for MFG systems with nonlocal and local coupling in Section 3. 
To prove these results, we first establish fractional heat kernel estimates in Section 4. Using 
these estimates and Duhamel representation formulas, we prove regularity results for fractional 
Hamilton-Jacobi equations in Section 5. In Section 6 we establish results for fractional Fokker-
Planck equations, both regularity of classical solutions and C([0, T ], P(Rd)) compactness. In 
Sections 7 and 8 we prove the existence result for nonlocal and local couplings respectively, 
while uniqueness for nonlocal couplings is proved in Appendix A. Finally we prove a technical 
space-time regularity lemma in Appendix B.

2. Preliminaries

2.1. Notation and spaces

By C, K we mean various constants which may change from line to line. The Euclidean norm 
on any Rd -type space is denoted by | · |. For any subset Q ⊂ RN and for any bounded, possi-
bly vector valued, function on Q, we define the L∞ norms by ‖w‖L∞(Q) := ess supy∈Q|w(y)|. 
Whenever Q = Rd or Q = [0, T ] × Rd , we denote ‖ · ‖L∞(Q) := ‖ · ‖∞. Similarly, the norm 
in Lp space is denoted by ‖ · ‖Lp(Q) or simply ‖ · ‖p . We use Cb(Q) and UC(Q) to denote 
the spaces of bounded continuous and uniformly continuous real valued functions on Q, often 
we denote the norm ‖ · ‖Cb

simply by ‖ · ‖∞. Furthermore, Ck
b(Rd) or Cl,m

b ((0, T ) × Rd) are 
subspaces of Cb with k bounded derivatives or m bounded space and l bounded time derivatives.

By P(Rd) we denote the set of Borel probability measure on Rd . The Kantorovich-Rubinstein 
distance d0(μ1, μ2) on the space P(Rd) is defined as

d0(μ1,μ2) := sup
f ∈Lip1,1(Rd )

{ˆ
Rd

f (x)d(μ1 − μ2)(x)
}
, (4)

where Lip1,1(R
d) =

{
f : f is Lipschitz continuous and‖f ‖∞, ‖Df ‖∞ ≤ 1

}
. Convergence in 

d0 is equivalent to weak convergence of measures (convergence in (Cb)
∗), and hence tight subsets 

of (P, d0) are precompact by Prokhorov’s theorem. We let the space C([0, T ]; P(Rd)) be the set 
of P(Rd)-valued functions on [0, T ]. It is a metric space with the metric supt∈[0,T ] d0(μ(t), ν(t)), 
and tight equicontinuous subsets are precompact by the Arzela-Ascoli and Prokhorov theorems.

2.2. Nonlocal operators

Under the Lévy condition

(L1): μ ≥ 0 is a Radon measure satisfying 
´
Rd 1 ∧ |z|2 dμ (z) < ∞,

the operators L defined in (2) are in one to one correspondence with the generators of pure 
jump Lévy processes [3]. One example is the symmetric σ -stable processes and the fractional 
Laplacians,
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−(−�)
σ
2 φ(x) =

ˆ

Rd

[
φ(x + z) − φ(x) − z · Dφ(x)1|z|<1

]cd,σ dz

|z|d+σ
, σ ∈ (0,2).

They are well-defined pointwise e.g. on functions in Cb ∩ C2 by Taylor’s theorem and Fubini:

|Lφ(x)| ≤ 1

2
‖D2φ‖Cb(B(x,1))

ˆ

|z|<1

|z|2dμ(z) + 2‖φ‖Cb

ˆ

|z|≥1

dμ(z) for x ∈Rd .

Let σ ∈ [1, 2). With more precise upper bounds on the integrals of μ near the origin:

There is c > 0 such that rσ

ˆ

|z|<1

|z|2
r2 ∧ 1dμ(z) ≤ c for r ∈ (0,1), (5)

or equivalently, r−2+σ
´
|z|<r

|z|2dμ(z) + r−1+σ
´
r<|z|<1 |z|dμ(z) + rσ

´
r<|z|<1 dμ(z) ≤ c for 

r ∈ (0, 1), we can have interpolation estimates for the operators L in Lp .

Lemma 2.1. (Lp-bounds). Assume (L1), (5) with σ ∈ [1, 2), and u ∈ C2
b . Then for all p ∈ [1,∞], 

and r ∈ (0, 1],

‖Lu‖Lp(Rd ) ≤ C
(
‖D2u‖Lpr2−σ + ‖Du‖Lp�(σ, r) + ‖u‖Lpμ(Bc

1)
)

(6)

where

�(σ, r) =
{

| ln r|, σ = 1,

r1−σ − 1, 1 < σ < 2.

Proof. For p ∈ [1, ∞) we split Lu into three parts, L1 = ´
Br

u(x + z) −u(x) −Du(x) · z dμ(z), 
L2 = ´

B1\Br
u(x + z) − u(x) − Du(x) · z dμ(z), and L3 = ´

Rd\B1
u(x + z) − u(x) dμ(z). Using 

Taylor expansions, Minkowski’s integral inequality, and (5),

‖L1‖Lp(Rd ) ≤
(ˆ

Rd

|D2u(x)|p dx

)1/p ˆ

Br

|z|2 dμ(z) ≤ C‖D2u‖Lp(Rd )r
2−σ ,

‖L2‖Lp(Rd ) ≤ 2

(ˆ

Rd

|Du(x)|p dx

)1/p ˆ

B1\Br

|z|dμ(z) ≤ C‖Du‖Lp(Rd )�(σ, r),

‖L3‖Lp(Rd ) ≤ 2

(ˆ

Rd

|u(x)|p dx

)1/p( ˆ

Rd\B1

)
dμ(z) ≤ 2‖u‖Lp(Rd )μ(Bc

1).

Summing these estimates we obtain (2.1). The case p = ∞ is similar, so we omit it. �
Similar estimates are given e.g. in Section 2.5 in [21]. Note that assumption (5) holds for 

−(−�)β/2 for any β ∈ (0, σ ] \ {1} and is related to the order of L.
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Remark 2.2. (a) When μ is symmetric, 
´
B1\Br

Du(x) · z dμ(z) = 0,

‖L2‖Lp ≤ 2‖u‖p

ˆ

r<|z|<1

dμ(z) ≤ C‖u‖pr−σ ,

and ‖Lu‖Lp(Rd ) ≤ C
(‖D2u‖Lpr2−σ + ‖u‖Lpr−σ

)
. Minimizing w.r.t. r then yields

‖Lu‖Lp ≤ C‖D2u‖σ/2
p ‖u‖1−σ/2

p .

This result holds for the fractional Laplacian L = (−�)σ/2 when σ ∈ (1, 2).

(b) When σ ∈ (0, 1), a similar argument shows that

‖Lu‖Lp ≤ C
(‖Du‖Lpr1−σ + ‖u‖Lpr−σ

)
,

and we find that ‖(−�)σ/2u‖Lp(Rd ) ≤ C‖Du‖σ
p‖u‖1−σ

p for σ ∈ (0, 1).

We define the adjoint of L in the usual way.

Definition 2.3. (Adjoint). The adjoint of L is the operator L∗ such that

〈Lf,g〉L2(Rd ) = 〈f,L∗g〉L2(Rd ) for all f,g ∈ C2
c (Rd).

The L∗ operator has the same form as L, with the “antipodal” Lévy measure μ∗:

Lemma 2.4. Assume (L1) holds. The adjoint operator L∗ is given by

L∗u(x) =
ˆ

Rd

u(x + z) − u(x) − Du(x) · z1|z|<1 dμ∗(z),

where μ∗(B) = μ(−B) for all Borel sets B ⊂ Rd .

This result is classical (see e.g. Section 2.4 in [21]). Hence all assumptions and results in this 
paper for μ and L automatically also hold for μ∗ and L∗ (and vice versa).

2.3. Moments of Lévy-measures, processes and FP equations

Consider the solution Xt of the SDE (3) (e.g. with X0 = x ∈ Rd ) and the corresponding FP 
equation for its probability distribution m, mt + div(αm) −L∗m = 0. If α ∈ L∞ and (L1) holds, 
then it follows that Xt (and m) has s > 0 moments if and only if μ1|z|>1 has s moments [3]:

E|Xt |s =
ˆ

d

|x|sm(dx, t) < ∞ ⇐⇒
ˆ

|z|sdμ(z) < ∞.
R |z|>1
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The symmetric σ -stable processes have finite s-moments for any s ∈ (0, σ). It is well-known 
that smoothing properties of L only depend on the (moment) properties of μ1|z|<1, and hence is 
completely independent of the number of moments of μ1|z|>1, Xt and m(t). This fact is reflected 
in the ellipticity assumption (L2’) in the next section, and follows e.g. from simple heat kernel 
considerations in section 4, see Remark 4.8.

In this paper we will be as general as possible and assume no explicit moment assumptions on 
μ1|z|>1, Xt , and m(t). The only condition we impose on μ1|z|>1 is (L1).

Note however, that we will still always have some sort of generalized moments, but maybe 
not of power type, and these “moments” will be important for tightness and compactness for the 
FP equations. We refer to section 6 and Proposition 6.5 for more details.

3. Existence and uniqueness for fractional MFG systems

Here we state our assumptions and the existence and uniqueness results for classical solutions 
of the system (1) both with nonlocal and local couplings.

3.1. Assumptions on the fractional operator L in (2)

We assume (L1) and

(L2’): (Uniform ellipticity) There are constants σ ∈ (1, 2) and C > 0 such that

1

C

1

|z|d+σ
≤ dμ

dz
≤ C

1

|z|d+σ
for |z| ≤ 1.

These assumptions are satisfied by generators L of pure jump processes whose infinite activity 
part is close to α-stable. But scale invariance is not required nor any restrictions on the tail of 
μ except for (L1). Some examples are α-stable processes, tempered α-stable processes, and the 
nonsymmetric CGMY process in Finance [18,3]. Note that the upper bound on dμ

dz
implies that 

(5) holds. A much more general condition than (L2’) is:

(L2): There is σ ∈ (1, 2), such that
(i) μ satisfies the upper bound (5).

(ii) There is K > 0 such that the heat kernels Kσ and K∗
σ of L and L∗ satisfy for K =

Kσ , K∗
σ : K ≥ 0, ‖K(t, ·)‖L1(Rd ) = 1, and

‖DβK(t, ·)‖Lp(Rd ) ≤ Kt
− 1

σ

(|β|+(1− 1
p

)d
)

for t ∈ (0, T )

and any p ∈ [1, ∞) and multi-index β ∈Nd
0 where D is the gradient in Rd .

The heat kernel is a transition probability/fundamental solution. Under (L2) Lévy measures need 

not be absolutely continuous, e.g. L = −
(
− ∂2

∂x2
1

)σ1/2 −· · ·−
(
− ∂2

∂x2
d

)σd/2
for σ1, . . . , σd ∈ (1, 2)

satisfies (L2) with σ = mini σi and dμ(z) = ∑d
i=1

dzi

|zi |1+σi

j �=iδ0(dzj ). See Section 4 for precise 

definitions, a proof that (L2’) implies (L2), more examples and extensions.
In the local coupling case, we need in addition to (L2) also the following assumption:
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(L3): Let the cone Cη,r (a) := {z ∈ Br : (1 − η)|z||a| ≤ |〈a, z〉|}. There is β ∈ (0, 2) such that for 
every a ∈Rd there exist 0 < η < 1 and Cν > 0, and for all r > 0,

ˆ

Cη,r (a)

|z|2ν(dz) ≥ Cνη
d−1

2 r2−β .

This assumption is introduced in [5] to prove Lipschitz bounds for fractional HJB equations. 
It holds e.g. for fractional Laplacians [5, Example 1] and then also if the inequality of (L2’)
holds for all z ∈ Rd . Since the assumption is in integral form, it also holds for non-absolutely 
continuous Lévy measures, spectrally one-sided processes, sums of operators etc.

3.2. Fractional MFGs with nonlocal coupling

We consider the MFG system⎧⎪⎪⎨
⎪⎪⎩

−∂tu −Lu + H (x,u,Du) = F (x,m(t)) in (0, T ) ×Rd ,

∂tm −L∗m − div
(
mDpH (x,u,Du)

) = 0 in (0, T ) ×Rd ,

m(x,0) = m0(x), u (x,T ) = G(x,m(T )) in Rd ,

(7)

where the functions F, G : Rd × P
(
Rd

) → R are non-local coupling functions, and H :
Rd × R × Rd → R is the Hamiltonian. We impose fairly standard assumptions on the data 
and nonlinearities [33,9,1] (but note we use the metric d0 and not Wasserstein-1):

(A1): There exists a C0 > 0 such that for all (x1,m1) , (x2,m2) ∈Rd × P
(
Rd

)
:

|F(x1,m1) − F(x2,m2)| + |G(x1,m1) − G(x2,m2)| ≤ C0(|x1 − x2| + d0(m1,m2)).

(A2): There exist constants CF , CG > 0, such that

sup
m∈P

(
Rd

)‖F (·,m)‖C2
b

(
Rd

) ≤ CF and sup
m∈P

(
Rd

)‖G(·,m)‖W 3,∞(
Rd

) ≤ CG.

(A3): For every R > 0 there is CR > 0 such that for x ∈ Rd , u ∈ [−R,R] , p ∈ BR , α ∈ NN
0 , 

|α| ≤ 3,

|DαH (x,u,p) | ≤ CR.

(A4): For every R > 0 there is CR > 0 such that for x, y ∈ Rd, u ∈ [−R,R] , p ∈ Rd :

|H (x,u,p) − H (y,u,p) | ≤ CR (|p| + 1) |x − y|.

(A5): There exists γ ∈R such that for all x ∈Rd, u, v ∈R, u ≤ v, p ∈Rd ,

H (x, v,p) − H (x,u,p) ≥ γ (v − u) .

(A6): m0 ∈ W 2,∞ (
Rd

)∩ P(Rd).
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Note that convexity or coercivity of H is not assumed at this point and that we identify prob-
ability measures and their density functions (see (A6)).

Definition 3.1. (Classical solution) A classical solution of (7) is a pair (u, m) such that 
(i) u, m ∈ C(Rd × [0, T ]), (ii) m ∈ C([0, T ]; P(Rd)), (iii) Du, D2u, Lu, ut , Dm, L∗m, mt ∈
C(Rd × (0, T )), and (iv) (u, m) solves (7) at every point.

Theorem 3.2. (Existence of classical solutions) Assume (L1), (L2), (A1)–(A6). Then there exists 
a classical solution (u,m) of (7) such that u ∈ C

1,3
b ((0, T ) ×Rd) and m ∈ C

1,2
b ((0, T ) ×Rd) ∩

C([0, T ]; P(Rd)).

The proof will be given in Section 7. It is an adaptation of the fixed point argument of P.-
L. Lions [33,9,1] and requires a series of a priori, regularity, and compactness estimates for 
fractional HJB and fractional FP equations given in Sections 5 and 6.

For uniqueness, we add the following assumptions:

(A7): F and G satisfy monotonicity conditions:

ˆ

Rd

(F (x,m1) − F (x,m2)) d (m1 − m2) (x) ≥ 0 ∀m1,m2 ∈ P(Rd),

ˆ

Rd

(G(x,m1) − G(x,m2)) d (m1 − m2) (x) ≥ 0 ∀m1,m2 ∈ P(Rd).

(A8): The Hamiltonian H = H (x,p) and is uniformly convex with respect to p:

∃C > 0,
1

C
Id ≤ D2

ppH (x,p) ≤ CId.

Theorem 3.3. Assume (L1), (A1)-(A8). Then there is at most one classical solution of the MFG 
system (7).

Since L and L∗ are adjoint operators, the proof of uniqueness is essentially the same as the 
proof in the College de France lectures of P.-L. Lions [33,9,1]. For the readers convenience we 
give the proof in Appendix A.

Example 3.4. (a) F(x, m) = (ρ ∗ m)(x) satisfies (A1) and (A2) if ρ ∈ C2
b(Rd).

(b) F(x, m) = ´
Rd �(z, (ρ ∗ m)(z))ρ(x − z)dz satisfies (A1) and (A2) if ρ ∈ C2

b and � ∈ C1.

(c) Both functions satisfy (A7) if ρ ≥ 0 and � is nondecreasing in its second argument.
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3.3. Fractional MFG with local coupling

We consider the MFG system

⎧⎪⎨
⎪⎩

−∂tu −Lu + H (x,Du) = f (x,m(t, x)) in (0, T ) ×Rd

∂tm −L∗m − div
(
mDpH (x,Du)

) = 0 in (0, T ) ×Rd

m(0) = m0, u (x,T ) = g (x) ,

(8)

where the coupling term f are local and only depends on the value of m at (x, t). Again we 
impose fairly standard assumptions on f , g and H [33,9]:

(A2’): (Regularity) f ∈ C2(Rd × [0, +∞)) with ‖f (·, k)‖C2
b
≤ Ck , and g ∈ C3

b(Rd).

(A2”): (Uniform bound f ) ‖f ‖Cb
≤ Kf for Kf > 0.

(A3’): (Lipschitz bound H ) ‖DpH‖∞ ≤ LH for LH > 0.

Theorem 3.5. Assume (L1)–(L3), (A3)-(A6), (A2’), and either (A2”) or (A3’). Then there exists 
a classical solution (u,m) of (8) such that u ∈ C

1,3
b ((0, T ) ×Rd) and m ∈ C

1,2
b ((0, T ) ×Rd) ∩

C([0, T ]; P(Rd)).

The proof of this result is given in Section 8. The idea is to approximate by a MFG system 
with nonlocal coupling and use the compactness and stability results to pass to the limit. These 
results rely on new regularity results. As opposed to the case of nonlocal coupling, it not enough 
to consider the HJB and FP equations separately, in this local coupling case, regularity has to 
be obtained directly for the coupled system. This requires the use of fractional regularity and 
bootstrap arguments.

For uniqueness we follow [33,9] and look at the more general MFG system

⎧⎨
⎩

−∂tu −Lu + H (x,Du,m) = 0 in Rd × (0, T )

∂tm −L∗m − div
(
mDpH (x,Du(t, x) ,m)

) = 0 in Rd × (0, T )

m(0) = m0 , u (x,T ) = G(x) ,

(9)

where H = H (x,p,m) is convex in p and

(A9):

⎡
⎣ m∂2

ppH 1
2m∂2

pmH

1
2m

(
∂2
pmH

)T −∂mH

⎤
⎦ > 0 for all (x,p,m) with m > 0.

Note that when H (x,p,m) = H̃ (x,p) − F (x,m), we recover assumption (A8).

Theorem 3.6. Assume (L1), (A9), and H = H (x,p,m) ∈ C2. Then (8) has at most one classical 
solution.

We skip the proof which in view of adjointness of L and L∗ is the same as in [33,9]. The minor 
adaptations needed can be extracted from the uniqueness proof for nonlocal couplings given in 
Appendix A.
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4. Fractional heat kernel estimates

Here we introduce fractional heat kernels and prove L1-estimates of their spatial derivatives. 
These estimates are used for the regularity results of Sections 5, 6, and 8. The heat kernel of 

an elliptic operator A is the fundamental solution of ∂tu −Au = 0, or u = F−1(etÂ), where Â
is the Fourier multiplier defined by F(Au) = Âû. Taking the Fourier transform of (2), a direct 
calculation (see [3]) shows that

F
(
Lu

) = L̂(ξ)û(ξ),

where

L̂(ξ) =
ˆ

Rd

(
eix·ξ − 1 − iξ · z1|z|<1

)
dμ(z). (10)

We can split L̂ into a singular and a non-singular part,

L̂(ξ) =
( ˆ

|z|<1

+
ˆ

|z|≥1

)(
eix·ξ − 1 − iξ · z1|z|<1

)
dμ(z) = L̂s(ξ) + L̂n(ξ). (11)

Note that since μ ≥ 0, Re L̂ = ´ (
cos(z · ξ) − 1

)
dμ ≤ 0.

We will need the heat kernels Kσ and K̃σ of L and Ls :

Kσ (t, x) = F−1(etL̂(·)) and K̃σ (t, x) = F−1(etL̂s (·)). (12)

By the Lévy-Kinchine theorem (Theorem 1.2.14 in [3]), Kσ and K̃σ are probability measures for 
t > 0:

Kσ , K̃σ ≥ 0 and
ˆ

Rd

Kσ (x, t) dx = 1 =
ˆ

Rd

K̃σ (x, t) dx.

When (L2’) holds, Re L̂ and Re L̂s ≤ −c|ξ |σ for |ξ | ≥ 1, and Kσ and K̃σ are absolutely continu-

ous since |etL̂(·)| decays exponentially at infinity. An immediate consequence of assumption (L2)
is existence for the corresponding fractional heat equation.

Proposition 4.1. Assume (L1), (L2), u0 ∈ L∞(Rd), and let u (t, x) = Kσ (t, ·) ∗ u0 (x). Then 
u ∈ C∞(

(0, T ) ×Rd
)

and u is a classical solution of

∂tu −Lu = 0 in Rd × (0, T ), u (0, x) = u0 (x) in Rd .

We first show that sums of operators Li satisfying (L1) and (L2) also satisfy (L1) and (L2). 
Let
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L = L1 + · · · +LN where Liu(x) =
ˆ

Zi

u(x + z) − u(x) − Du(x) · z1|z|<1 dμi(z), (13)

Zi is a di -dimensional subspace, ⊕N
i=1Zi = Rd , and Li satisfy (L1) and (L2) in Zi :

(L1”): (i) Zi � Rdi is a subspace for i = 1, . . . , N , and ⊕M
i=1Zi = Rd for M ≤ N .

(ii) μi ≥ 0 is a Radon measure on Zi satisfying 
´
Zi

1 ∧ |z|2 dμi(z) < ∞.
(L2”): (i) μi satisfy the upper bound (5) with σ = mini σi .

(ii) There are σi ∈ (1, 2) and ci > 0 such that the heat kernels Ki and K∗
i of

Li and L∗
i satisfy for p ∈ [1, ∞), β ∈Ndi

0 , i = 1, . . . , M , and t ∈ (0, T ),

‖Dβ
zi
Ki(t, ·)‖Lp(Zi) + ‖Dβ

zi
K∗

i (t, ·)‖Lp(Zi) ≤ ci t
− 1

σi

(|β|+(1− 1
p

)d
)
.

First observe that here μ = ∑
i μiδ0,Z⊥

i
where δ0,Z⊥

i
is the delta-measure in Z⊥

i centered at 0. 
It immediately follows that (L1”) and (L2”) imply (L1) and (L2) (i).

Theorem 4.2. Assume (L1”), (L2”) (ii), and L is defined in (13). Then the heat kernel K and K∗
of L and L∗ belongs to C∞ and satisfy (L2) (ii) with σ = mini σi , i.e.

‖Dβ
x K(t, ·)‖Lp(Rd ) + ‖Dβ

x K∗(t, ·)‖Lp(Rd ) ≤ cβ,T t
− 1

σi

(|β|+(1− 1
p

)d
)

for t ∈ (0, T ), β ∈Nd
0 .

Proof. First note that in this case K(t) =F−1(etL̂1 · · · etL̂N ) = K1(t) ∗ · · · ∗KN(t) where

Ki (t) := F−1
Rd (etL̂i ) = Ki(t)δ0,Z⊥

i
, Ki(t) = F−1

Zi
(etL̂i ).

For t ∈ (0, T ), (L2”) (ii) implies that

‖Dβ
zi
Ki (t)‖Lp(Rd ) = ‖Dβ

zi
Ki(t, ·)‖Lp(Zi) ≤ ci t

− 1
σi

(|β|+(1− 1
p

)d
)
≤ cT t

− 1
σ

(|β|+(1− 1
p

)d
)
(σ ≤ σi)

for some constant cT > 0. Since Ki is a probability measure by the Lévy-Kinchine theorem 
[3, Thm 1.2.14], ‖Kj (t)‖L1(Rd ) = ‖Kj(t)‖L1(Zj ) = 1. By properties of mollifiers and Young’s 
inequality for convolutions it then follows that

‖Dβ
zi
K(t, ·)‖Lp = ‖K1 ∗ · · · ∗ Dβ

zi
Ki ∗ · · · ∗KN‖Lp ≤ 1 · ‖Dβ

zi
Ki‖Lp(Zi) ≤ cT t

− 1
σ

(|β|+(1− 1
p

)d
)
.

Since i = 1, . . . , M was arbitrary and ⊕M
i=1Zi = Rd , the proof for K is complete. The proof for 

K∗ is similar. �
It is easy to check that (L2’) implies (L2)(i). We then check that (L2’) implies (L2)(ii).

Theorem 4.3. Assume (L1), (L2’), and L is defined in (2). Then the heat kernels K and K∗ of L
and L∗ belong to C∞ and satisfies (L2)(ii): For p ∈ [1, ∞), β ∈Nd

0 ,

‖Dβ
x K(t, ·)‖Lp(Rd ) + ‖Dβ

x K∗(t, ·)‖Lp(Rd ) ≤ cβ,T t
− 1

σ

(|β|+(1− 1
p

)d
)

for t ∈ (0, T ).
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Example 4.4. In view of Theorems 4.2 and 4.3, assumption (L2) is satisfied by e.g.

L1 = −(−�Rd )σ1/2 − (−�Rd )σ2/2,

L2 = −
(
− ∂2

∂x2
1

)σ1/2 − · · · −
(
− ∂2

∂x2
d

)σd/2
,

L3u(x) =
ˆ

R

u(x + z) − u(x) − u′(x)z1|z|<1
Ce−Mz+−Gz−

|z|1+Y
,

where C,G,M > 0, Y ∈ (0,2), [CGMY model in Finance]
L4 = L+ L where L satisfy (L2) and L is any other Lévy operator.

We can even take L to be any local Lévy operator (e.g. �) if we relax the definition of Li to 
Liu(x) = tr[aiD

2u] + bi · Du + ´
Zi

u(x + z) − u(x) − Du(x) · z1|z|<1 dμi(s) for ai ≥ 0.

Remark 4.5. (a) (L2) holds also for very non-symmetric operators where μ has support in a cone 
in Rd . Examples are Riesz-Feller operators like

L3u(x) =
ˆ

z>0

u(x + z) − u(x) − u′(x)z1z<1
dz

z1+α
, α ∈ (0,2).

We refer to [2] for results and discussion, see e.g. Lemma 2.1 (G7) and Proposition 2.3.
(b) More general conditions implying (L2) can be derived from the very general results on deriva-
tives of heat semigroups in [36] and heat kernels in [25]. Such conditions could include more non 
absolutely continuous and non-symmetric Lévy measures.

We will now prove Theorem 4.3 and start by proving the result for K̃σ , the kernel of Ls .

Lemma 4.6. Assume (L1) and (L2’). Then K̃σ ∈ C∞, and for all β ∈ Nd
o and p ∈ [1, ∞), there 

is c > 0 such that

‖Dβ
x K̃σ (·, t)‖Lp(Rd ) ≤ ct

− 1
σ

(|β|+(1− 1
p

)d
)

for all t > 0.

Remark 4.7. (a) When p = 1, the bound simplifies to ‖Dβ
x K̃σ (·, t)‖L1(Rd ) ≤ ct−

|β|
σ .

(b) When |β| = 1, the bound is locally integrable in t when 1 ≤ p < p0 := d
1+d−σ

. Note that 
p0 > 1.

Proof. We verify the conditions of Theorem 5.6 of [25]. By (L2’), assumption (5.5) in [25] holds 
with

ν0(|x|) =
{

1
|x|d+σ , |x| < 1,

0, |x| ≥ 0.

Then we compute the integral h0,
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h0(r) :=
ˆ

Rd

1 ∧ |x|2
r2 ν0(|x|) dx =

⎧⎨
⎩cd( 1

2−σ
+ 1

σ
)r−σ − cd

σ
, r < 1,

cd
1

2−σ
r−2, r ≥ 1,

where cd is the area of the unit sphere. Note that h0 is positive, strictly decreasing, and that 
h0(r) ≤ λσ h0(λr) for 0 < λ ≤ 1 and every r > 0. Hence the scaling condition (5.6) in [25] holds 
with Ch0 = 1 for any θh0 > 0. The inverse is given by

h−1
0 (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
(2−σ)ρ

cd

)− 1
2

, ρ ≤ cd

2−σ
,(

ρ
cd

+ 1
σ

)− 1
σ
(

σ(2−σ)
2

)− 1
σ

, ρ ≥ cd

2−σ
.

In both cases t ≤ (2 − σ)/cd and t ≥ (2 − σ)/cd , we then find that h−1
0 (1/t) ≤ (c̃t)1/σ , where c̃

only depends on σ and d .
At this point we can use Theorem 5.6 in [25] to get the following heat kernel bound:

∣∣∂β
x p(t, x + tb[h−1

0 (1/t)])
∣∣ ≤ C0[h−1

0 (1/t)]−|β|Yt (x) = C0,σ t−
|β|
σ Yt (x),

for any t > 0, where br does not depend on x,

Yt (x) = [h−1
0 (1/t)]−d ∧ tK0(|x|)

|x|d ,

and

K0(r) := r−2
ˆ

|x|<r

|x|2ν0(|x|)dx = cd

2 − σ
·
{

.r−σ , r < 1

r−2, r ≥ 1

}
≤ cd

2 − σ
r−σ .

An integration in x then yields for p ∈ [1, ∞),

‖∂β
x p(t, ·)‖p

Lp(Rd )
≤ C

p
0,σ c̃pt−

p|β|
σ

ˆ

Rd

Yt (x)p dx. (14)

We compute ‖Yt‖Lp(Rd ). Since h−1
0 (1/t) ≤ c̃t1/σ and K0(r) ≤ cd

2−σ
r−σ , we can compute the 

minimum to find a constant cσ,d > 0 such that

0 ≤ Yt (x) ≤
{

(c̃t)−d/σ , for |x| < cσ,d t1/σ

cd

2−σ
t

|x|d+σ , otherwise.

A direct computation then shows that

ˆ

d

Yt (x)p dx ≤ cd,σ,pt−
(p−1)d

σ ,
R
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where cd,σ,p > 0 is a constant not depending on t . Combining this estimate with (14) concludes 
the proof of the Lemma. �
Proof of Theorem 4.3. Result for Kσ follows by Lemma 4.6 and a simple computation:

∥∥Dβ
x Kσ

∥∥
Lp = ∥∥Dβ

x F−1(etL̂s etL̂n
)∥∥

Lp = ∥∥(Dβ
x F−1(etL̂s

)) ∗F−1(etL̂n
)∥∥

Lp

≤ ‖Dβ
x F−1(etL̂s

)‖Lp

ˆ

Rd

F−1(etL̂n
) ≤ ct

− 1
σ

(|β|+(1− 1
p

)d
)
· 1.

The last integral is 1 since F−1
(
etL̂n

)
is a probability by e.g. Theorem 1.2.14 in [3]. Since L∗

is an operator of the same type as L with a Lévy measure μ∗ also satisfying (L1) and (L2’) (cf. 
Lemma 2.4), the computations above show that K∗

σ also satisfy the same bound as Kσ . �
Remark 4.8. From this proof it follows that the smoothing properties of L and Kσ are indepen-
dent of L̂n and then also μ1|z|>1.

By interpolation we obtain estimates for fractional derivatives of the heat kernel.

Proposition 4.9. Assume (L1), (L2), t ∈ [0, T ], s, σ ∈ (0,2), and |D|s := (−�)s/2. Then

‖|D|sKσ (t)‖L1
(
Rd

) ≤ ct−
s
σ ,

and if s ∈ (0,1), then

‖|D|s∂xKσ (t)‖L1
(
Rd

) ≤ ct−
s+1
σ .

Proof. By Remark 2.2 (a) with p = 1 and (L2), we find that

ˆ
||D|sKσ (t)|dx ≤ c‖D2Kσ (t)‖

s
2
L1‖Kσ ‖1− s

2
L1 ≤ (

ct−
2
σ
)s/211−s/2 ≤ ct−

s
σ .

The proof of the second part follows in a similar way from Remark 2.2 (b). �
5. Fractional Hamilton-Jacobi-Bellman equations

Here we prove regularity and well-posedness for solutions of the fractional Hamilton-Jacobi 
equation. In our proof we use heat kernel estimates (Section 4), a Duhamel formula, and a fixed 
point argument as in [28,19]. The fractional Hamilton-Jacobi equation is given by

{
∂tu −Lu + H (x,u,Du) = f (t, x) in (0, T ) ×Rd,

u (0, x) = u0 (x) in Rd,
(15)

where f is the source term and u0 initial condition. We assume

(B1): u0 ∈ Cb(Rd) and f ∈ Cb([0, T ] ×Rd).
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(B2): There is an L > 0 such that for all x, y ∈Rd , t ∈ [0, T ],

|f (t, x) − f (t, y)| + |u0(x) − u0(y)| ≤ L|x − y|.

assumptions (L1), (A3)–(A5), (B1)–(B2) implies that there exists a bounded x-Lipschitz con-
tinuous viscosity solution u of (15) (cf. e.g. [29,30,6,28]).

Theorem 5.1 (Comparison principle). Assume (L1), (A3)–(A5), (B1)–(B2) and u, v are viscosity 
sub- and supersolutions of (15) with bounded continuous initial data u0, v0. If u0 ≤ v0 in Rd , 
then u ≤ v in Rd × (0, T ).

Outline of proof. If u and v are uniformly continuous, then the proof is essentially the same as 
the proof of Theorem 2 in [28]. When u and v are not uniformly continuous, the limit (13) in [28]

no longer holds because (in the notation of [28]) |x̄−ȳ|2
ε

�→ 0. However, this can be fixed under 

our assumptions, loosely speaking because we can remove all O(
|x̄−ȳ|2

ε
)-terms before taking 

limits by modifying the test function. The modification consists in introducing an exponential 
factor in the quadratic term: e

Ct

ε
|x − y|2 for C large enough. �

Remark 5.2. We drop a complete proof here for two reasons: (i) it is long and rather standard, and 
(ii) we only apply the result in cases where u and v are uniformly continuous and an argument 
like in [28] is sufficient.

Theorem 5.3 (Well-posedness). Assume (L1), (A3)–(A5), and (B1)–(B2).
(a) There exists a (unique) bounded continuous viscosity solution u of (15) in (0, T ) ×Rd such 
that u (0, x) = u0 (x).

(b) ‖u‖∞ ≤ ‖u0‖∞ + C0T where C0 := ‖H(·, 0, 0)‖∞ + ‖f ‖∞ is finite by (A3) and (B1).

(c) If also u0 ∈ W 1,∞ (
Rd

)
, then

‖Du(t, ·)‖L∞(
Rd

) ≤ MT ,

where MT = e2CRT
( 1

2CR + T 2‖Dxf ‖2∞ + ‖Du0‖2∞
)1/2

, with CR from (A4) and R = ‖u‖∞.

Proof. The proof of (a) is quite standard and almost identical to the proof of Theorem 3 in [28]. 
Part (b) follows from comparison, Theorem 5.1, and the proof of part (c) is similar to the proof 
of Lemma 2 in [28]. �

Using parabolic regularity (in the form of (L3) [5]) and the method of Ishii-Lions, it is possible 
to obtain Lipschitz bounds that only depend on the Cb-norm of f :

Theorem 5.4. Assume (L1), (L3), (A3)–(A5), f ∈ Cb([0, T ] × Rd) and u0 ∈ W 1,∞(Rd). Then 
the viscosity solution u of (15) is Lipschitz continuous in x and there is a constant M > 0 such 
that for all t ∈ [0, T ],

‖Du(t, ·)‖ ∞(
d
) ≤ M,
L R
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where M depends on ‖u‖∞, ‖f ‖∞, d , and the quantities in (A3)–(A5).

Proof. In the periodic case this result is a direct consequence of Corollary 7 in [5]. The original 
proof is for a right-hand side f not depending on t . For continuous f = f (x, t), the proof is 
exactly the same. The result also holds in the whole space case, and this is explained in section 
5.1 (see Theorem 6 for the stationary case). �

Similar parabolic results for the whole space are also given in [14]. To have classical solutions 
we make further regularity assumptions on the data:

(B3): ‖f (t, ·)‖C2
b (Rd ) ≤ C for all t ∈ [0, T ].

(B4): u0 ∈ C3
b(Rd).

Note that f needs less spatial regularity than H in (A3).

Theorem 5.5 (Classical solutions). Assume (L1)–(L2), (A3)–(A5), and (B1)–(B4). Then (15) has 
a unique classical solution u such that ∂tu, u, Du, · · · , D3u ∈ Cb

(
(0, T ) ×Rd

)
with

‖∂tu‖L∞ + ‖u‖L∞ + ‖Du‖L∞ + . . . + ‖D3u‖L∞ ≤ c,

where c is a constant depending only on σ , T , d , and quantities from (L1)–(B4).

To have space-time uniform continuity (and compactness) of derivatives, we assume:

(B5): There is a modulus of continuity ωf such that for all x, y ∈Rd , t, s ∈ [0, T ],

|f (s, x) − f (t, y)| ≤ ωf (|s − t | + |x − y|).

Theorem 5.6 (Uniform continuity). Assume (L1)–(L2), (A3)–(A5), and (B1)–(B5). Then the 
unique classical solution u of (15) also satisfies

|u(t, x) − u(s, y)| + |Du(t, x) − Du(s, y)| + |D2u(t, x) − D2u(s, y)|
+ |∂tu(t, x) − ∂tu(s, y)| + |Lu(t, x) −Lu(s, y)| ≤ ω(|t − s| + |x − y|), (16)

where ω only depends on σ , T , d , and quantities from (L1)–(B5).

Remark 5.7. Imbert shows in [28] that when L = −(−�)σ/2, f ≡ 0, and u0 ∈ W 1,∞(Rd), there 
exists a classical solution u such that ‖u‖Cb

+ ‖Du‖Cb
+ ‖t1/σ D2u‖Cb

≤ c. He goes on to show 
that when H = H(p) ∈ C∞, then u ∈ C∞. In this paper we prove results for a much larger class 
of equations and nonlocal operators. Our results are also more precise: We need and prove time-
space uniform continuity of all derivatives appearing in the equation, see Theorem 5.6. To do we 
need a finer analysis of the regularity in time. A final difference is that our estimates do not blow 
up as t → 0+. Note that it is easy to adapt our proofs and obtain even higher order regularity, e.g. 
treat the case H = H(x, u, p) ∈ C∞.

To prove Theorem 5.5 and 5.6, we first restrict ourselves to a short time interval.
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5.1. Short time regularity by a Duhamel formula

Let K be the fractional heat kernel defined in (12). A solution v of (15) is formally given by 
the Duhamel formula

v(t, x) = ψ (v) (t, x)

:= K (t, ·) ∗ v0 (·) (x) −
tˆ

0

K (t − s, ·) ∗ (H (s, ·, v (s, ·) ,Dv (s, ·)) − f (s, ·)) (x) ds,
(17)

where ∗ is convolution in Rd . Note that solutions of this equation are fixed points of ψ .

Proposition 5.8 (Spatial regularity). Assume (L1)–(L2), (A3)–(A5), (B1)–(B3), and k ∈ {2, 3}. 
For R0 ≥ 0, let R1 = (1 +K)R0 + 1 with K defined in (L2).

(a) If v0 ∈ Wk−1,∞(Rd) with ‖v0‖Wk−1,∞ ≤ R0, then there is T0 ∈ (0, T ) such that ψ in (17) has 
a unique fixed point v ∈ Ck−1

b ([0, T0] ×Rd) with t1/σ Dkv ∈ Cb([0, T0] ×Rd) and

‖v‖L∞ + · · · + ‖Dk−1v‖L∞ + ‖t1/σ Dkv‖L∞ ≤ R1.

(b) If v0 ∈ Wk,∞(Rd) with ‖v0‖Wk,∞ ≤ R0, then there is T0 ∈ (0, T ) such that ψ in (17) has a 
unique fixed point v ∈ Ck

b([0, T0] ×Rd) and

‖v‖L∞ + · · · + ‖Dkv‖L∞ ≤ R1.

In both cases T0 only depends on σ and the quantities in (L1)–(B3).

Proof. (a) We will use the Banach fixed point theorem in the Banach (sub) space

X = {
v : v, . . . ,Dk−1v, t1/σ Dkv ∈ Cb([0, T0] ×Rd) and |||v|||k ≤ R1

}
,

where |||v|||k = ‖v‖k−1 +∑
|β|=k ‖t1/σ D

β
x v‖∞ and ‖v‖k = ∑

0≤|β|≤k ‖Dβ
x v‖∞.

Let v ∈ X. For i = 1, . . . , d and β ∈Nd , |β| ≤ k − 2,

∂β
x ∂xi

ψ(v) = K(t) ∗ ∂β
x ∂xi

v0(x) −
tˆ

0

∂xi
K
(
t − s

) ∗ ∂β
x

(
H

(·, ·, v,Dv
)− f

)
(s, x) ds, (18)

while for |β| = k − 1,

t1/σ ∂β
x ∂xi

ψ (v) = t1/σ ∂xi
K (t) ∗ ∂β

x v0 (x) (19)

− t1/σ

tˆ

0

∂xi
K (t − s) ∗ ∂β

x

(
H

(·, ·, v,Dv
)− f

)
(s, x) ds.
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If w and F are bounded functions, then K (t, ·) ∗ w and 
´ t

0 ∂xK (t − s, ·) ∗ F (s, ·) ds are well-
defined, bounded and continuous by (L2) and an argument like in the proof of [19, Proposition 
3.1]. It follows by (A3) and (B3), that the derivatives of ψ (v) in (18) and (19) are well-defined, 
bounded, and continuous. In particular by (L2), for t ∈ (0, T ),

‖t1/σ ∂xi
K (t) ∗ ∂β

x v0‖Cb
≤ K‖∂β

x v0‖Cb
.

Let u, v ∈ X and t ∈ [0, T0]. By (A3) and (B3) there is a constant CR1 > 0, such that

∣∣∂β
x

[
H (s, x,u(s, x),Du(s, x))

]∣∣+ ∣∣∂β
x f (s, x)

∣∣ ≤
{

CR1, 0 ≤ |β| ≤ k − 2,

CR1

(
1 + s− 1

σ

)
, |β| = k − 1,

(20)

∣∣∂β
x

[
H (s, x,u,Du)

]− ∂β
x

[
H (s, x, v,Dv)

]∣∣ ≤
{

CR1‖u − v‖|β|+1, 0 ≤ |β| ≤ k − 2,

CR1

(
1 + s− 1

σ

)
|||u − v|||3, |β| = k − 1.

(21)

By (L2)
´ t

0

´
Rd |K (t − s, x) | dx ds ≤ T0, 

´ t

0

´
Rd |∂xi

K (t − s, x) | dx ds ≤ k (σ )T
1−1/σ

0 , and

tˆ

0

s−1/σ

ˆ

Rd

|∂xi
K (t − s, x) |dx ds ≤ γ (σ )T

1−1/σ
0 ,

where k (σ ) = K σ
σ−1 and γ (σ ) = K

´ 1
0 (1 − τ)−1/σ τ−1/σ dτ . From these considerations and 

Young’s inequality for convolutions on (18) and (19), we compute the norm in X,

‖ψ (v)‖∞ +
d∑

i=1

(
‖∂iψ (v)‖∞ +

∑
1≤|β|=k−2

‖∂β
x ∂iψ (v)‖∞ +

∑
|β|=k−1

‖t1/σ ∂β
x ∂iψ (v)‖∞

)
≤ (1 +K)R0

+ CR1

(
T0 +

d∑
i=1

(
k (σ )T

1−1/σ

0 +
∑

1≤|β|=k−2

k (σ )T
1−1/σ

0 +
∑

|β|=k−1

k (σ )T0 + γ (σ )T
1−1/σ

0

))
︸ ︷︷ ︸

=:c(T0)

.

Taking T0 ∈ (0, T ) such that c(T0) ≤ 1/2, ψ maps X into itself: By the definition of R1,

|||ψ(v)|||k ≤ (1 +K)R0 + 1

2
≤ R1.

It is also a contraction on X. By (21) and ‖u‖1 ≤ ‖u‖k−1 ≤ |||u|||k ,

|||ψ (u) − ψ (v)|||k

≤ CR1

(
T0‖u − v‖1 +

d∑(
k (σ )T

1−1/σ
0 ‖u − v‖1 +

∑
k (σ )T

1−1/σ
0 ‖u − v‖|β|+1
i=1 1≤|β|≤k−2
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+
∑

|β|=k−1

(
k (σ )T0 + γ (σ )T

1−1/σ

0

)|||u − v||||β|+1

))

≤ c(T0)|||u − v|||k ≤ 1

2
|||u − v|||k.

An application of Banach’s fixed point theorem in X now concludes the proof of part (a).

(b) We define the Banach (sub) space

X = {
v : v,Dv, . . . ,Dkv ∈ Cb((0, T0) ×Rd) and ‖v‖k ≤ R1

}
,

where ‖v‖k = ∑
0≤|β|≤k ‖Dβ

x v‖∞. We use (18) with |β| ≤ k − 1, and only the first parts of (20)
and (21). The rest of the proof is then similar to the proof of part (a). �
We proceed to prove time and mixed time-space regularity results. As a consequence, the solution 
of (17) is a classical solution of (15).

Proposition 5.9. Assume T0 > 0, (L1)–(L2), (A3)–(A5), (B1)–(B3), v satisfies (17), and 
v, Dv, D2v ∈ Cb([0, T0] ×Rd). Then

(a) ∂tv ∈ Cb([0, T0] ×Rd) and ‖∂tv‖∞ ≤ c, where c depends only on σ, T0, d , the quantities in 
assumptions (L1)–(B3), and ‖Dkv‖∞ for k = 0, 1, 2.

Assume in addition D3v ∈ Cb([0, T0] ×Rd).

(b) v, Dv, Lv, D2v ∈ UC([0, T0] × Rd) with modulus ω(t − s, x − y) = C(|t − s| 1
2 + |x −

y|), where C > 0 only depends on σ, T0, d , the quantities in assumptions (L1)–(B3), and 
‖Dkv‖∞ for k = 0, 1, 2, 3.

(c) If also (B5), then ∂tv ∈ UC((0, T0] ×Rd), where the modulus only depends on T0, σ, T0, d , 
the quantities in assumptions (L1)–(B5), and the moduli of v, Dv, Lv, D2v.

Corollary 5.10. Under the assumptions of Proposition 5.9 (a), v is a classical solution of (15)
on (0, T0) ×Rd .

Follows by differentiating formula (17). To prove Theorem 5.9 we use the Duhamel formula

v (t, x) = K (t, ·) ∗ v0 (·) (x) −
tˆ

0

K (t − s, ·) ∗ g (s, ·) (x) ds, (22)

corresponding to the equation

∂tv (t, x) −Lv (t, x) + g (t, x) = 0. (23)

The following technical lemma is proved in Appendix B.
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Lemma 5.11. Assume (L1)–(L2), g, ∇g ∈ Cb

(
(0, T ) ×Rd

)
, and let

�(g)(t, x) =
tˆ

0

K(t − s, ·) ∗ g(s, ·)(x)ds.

(a) �(g)(t, x) is C1 w.r.t. t ∈ (0, T ) and ∂t�(g)(t, x) = g(t, x) +L[�(g)](t, x).

(b) If β ∈ (σ − 1, 1) and g ∈ UC((0, T ) ×Rd), then

|∂t�(g)(t, x) − ∂t�(g)(s, y)| + |L�(g)(t, x) −L�(g)(s, y)|
≤ 2(1 + c)‖g‖Cb,tC

1
b,x

|x − y|1−β

+ 2(1 + c)‖g‖β

Cb,tC
1
b,x

ωg(|t − s|)1−β + c̃‖g‖Cb
|t − s| σ−1

σ ,

where c = σ
σ−1T

σ−1
σ K

´
|z|<1 |z|1+βdμ(z) + 4T

´
|z|≥1 dμ(z),

c̃ = 2
σ

σ − 1
K

ˆ

|z|<1

|z|1+βdμ(z)K + 2T
1
σ

ˆ

|z|≥1

dμ(z),

and K = maxs,t∈[0,T ]
∣∣t σ−1

σ − s
σ−1
σ

∣∣/|t − s| σ−1
σ .

Note that c, c̃, and K are finite. We have the following results for (22) and (23).

Lemma 5.12. Assume (L1)–(L2), v satisfies (22), and v, ∇v, D2v, g, ∇g ∈ Cb

([0, T ] ×Rd
)
.

(a) ∂tv ∈ Cb

(
(0, T ) ×Rd

)
, and v solves equation (23) pointwise.

(b) If in addition g ∈ UC([0, T ] × Rd), then ∂tv and Lv are uniformly continuous and for any 
x, y ∈Rd , t, s ∈ [0, T ], k = 0, 1, 2,

|∂tv(t, x) − ∂tv(s, y)| + |Lv(t, x) −Lv(s, y)| ≤ ω(|t − s| + |x − y|), (24)

where ω only depends on ωg , ‖g‖∞, ‖g‖Cb,tC
1
b,x

, ‖Dv0‖∞, ‖D2v0‖∞, σ , T , and μ.

Proof. (a) By the assumptions and Proposition 4.1 and Lemma 5.11 (a), we can differentiate the 
right hand side of (22). Differentiating and using the two results then leads to

∂tv = ∂t (K (t) ∗ v0) − ∂t

tˆ

0

K (t − s) ∗ g (s) ds

= L (K (t) ∗ v0) − g (t) −L
tˆ
K (t − s) ∗ g (s) ds
0
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= −g (t) +L

⎛
⎝K (t) ∗ v0 −

tˆ

0

K (t − s) ∗ g (s) ds

⎞
⎠

= −g (t) +Lv (t) .

Thus we end up with (23) and the proof of (a) is complete.
(b) By (22), v is the sum of two convolution integrals. The regularity of the second integral 
follows from Lemma 5.11 (b). The regularity of the first integral follows by similar but much 
simpler arguments, this time with no derivatives on the kernel K (and hence two derivatives on 
v0). We omit the details. �
Proof of Proposition 5.9. (a) In view of the assumptions, the result follows from Lemma 5.12(a) 
with g (t, x) = H

(
x, v(t, x), Dv(t, x)

) − f (t, x).
(b) By (a) and Corollary 5.10, v solve (15). We show that D2v ∈ UC([0, T ] × Rd). Let 
w = ∂2

xixj
v and wε = w ∗ ρε for a standard mollifier ρε . Convolving (15) with ρε and then 

differentiating twice (∂xi
∂xj

), we find that

∂tw
ε −Lwε + ∂2

xixj

(
H(t, x, v,Dv) ∗ ρε

) = ∂xixj
f ∗ ρε.

By Lemma 2.1 ‖Lwε‖∞ ≤ c‖wε‖C2
b
, and then by properties of convolutions,

‖Lwε‖∞ ≤ c

4∑
k=2

‖Dkvε‖∞ ≤ c

ε
‖Dρ‖L1‖D3v‖∞ + c(‖D3v‖∞ + ‖D2v‖∞).

It follows that |∂tw
ε | ≤ c̃

ε
+ K , where c̃ = c‖Dρ‖L1‖D3v‖∞ and K > 0 is a constant only 

depending on ‖v‖∞, ‖Dv‖∞, ‖D2v‖∞, ‖D3v‖∞, ‖D2f ‖∞ and CR > 0 from (A3), with R =
max(‖v‖∞, ‖Dv‖∞). We find that

‖w(t) − w(s)‖∞ ≤ ‖wε(t) − w(t)‖∞ + ‖wε(t) − wε(s)‖∞ + ‖wε(s) − w(s)‖∞

≤ 2‖Dw‖∞ · ε + ‖∂tw
ε‖∞|t − s| ≤ 2‖D3v‖∞ · ε + (

c̃

ε
+ K)|t − s| ≤ C|t − s| 1

2 + K|t − s|,

where we took ε = |t − s| 1
2 . Since w is bounded, this implies Hölder 1/2 regularity in time. The 

spatial continuity follows from |w(t, x) − w(t, y)| ≤ ‖D3v‖∞|x − y|. In total, we get (recalling 
that w = ∂xi

∂xj
v),

|D2v(s, x) − D2v(t, y)| ≤ C(|t − s| 1
2 + |x − y|),

where C > 0 is only dependent on T0, σ , T , d , the quantities in (L1)–(B3), and ‖Dkv‖∞ for 
k = 0, 1, 2, 3. The results for v and Dv follow by simpler similar arguments. Since v, Dv and 
D2v are uniformly continuous, by Taylor’s theorem (as in the proof Lemma 2.1) Lv is uniformly 
continuous with a modulus only depending on the moduli of v, Dv and D2v.
(c) By (B5) and the results from (b), ∂tv ∈ UC((0, T0) ×Rd) by the equation (15). �
451



O. Ersland and E.R. Jakobsen Journal of Differential Equations 301 (2021) 428–470
5.2. Global regularity and proofs of Theorem 5.5 and 5.6

From the local in time estimates, we construct a classical solution u of (15) on the whole 
interval (0, T ) × Rd . By Theorem 5.3, there is a unique viscosity solution u of (15) on (0, T ). 
To show that this solution is smooth, we proceed in steps.

1) By Lemma 5.8 (b) we find a T0 > 0 and a unique solution v of (17) satisfying

v,Dv,D2v,D3v ∈ Cb([0, T0] ×Rd) and v(0) = u0,

and by Corollary 5.10, v is a classical solution of (15) on (0, T0). Since classical solutions are 
viscosity solutions, v coincides with the unique viscosity solution u on (0, T0).

2) Fix t0 ∈ [0, T ) and take the value of the viscosity solution u of (15) as initial condition for 
(17) at t = t0. Then v(t0, x) = u(t0, x) and by Lemma 5.3,

‖v (t0, ·)‖W 1,∞(
Rd

) ≤ MT . (25)

We apply Lemma 5.8 (a) with k = 2 (translate time t → t − t0, apply the theorem, and translate 
back) to obtain a T1 > 0, independent of t0, such that on

(t0, t0 + T1),

we have a unique solution v of (17) satisfying v, ∇v, (t − t0)
1/σ D2v ∈ Cb . Then

v,∇v,D2v ∈ Cb

(
(t0 + δ1, t0 + T1) ×Rd

)
for any δ1 ∈ (0, T1). Let δ1 ≤ 1

4 min(T0, T1), and take v (t0 + δ1, ·) as initial condition. By 
Lemma 5.8 (a) again we find a T2 > 0 such that on the interval

(t0 + δ1, t0 + δ1 + T2)

there exists a unique solution v of (17) such that for any δ2 ∈ (0, T2),

v,∇v,D2v, t1/σ D3v ∈ Cb((t0 + δ1 + δ2, t0 + δ1 + T2)).

We define T̃ := min(T0, T1, T2), and let δ2 ≤ 1
8 T̃ . Defining δ := δ1 + δ2 ≤ 1

2 T̃ , we find that

v,Dv, . . . ,D3v ∈ Cb((t0 + δ, t0 + δ + T̃ ) ×Rd).

By Proposition 5.9, ∂tv ∈ Cb, and v is a classical solution of (15) on (t0 +δ, t0 +δ+ T̃ ), therefore 
coinciding with u on this time interval. Note that T̃ > 0 can be chosen independently of t0 by 
(A3), (B3), (B4), and (25).

3) We cover all of (0, T ) by intervals from step 1) and 2), repeatedly taking t0 = 0, 1
2 T̃ , T̃ , 3

2 T̃ , 
. . ., N−1

2 T̃ with N
2 T̃ ≥ T . We then find that the viscosity solution u is a classical solution with 

bounded derivatives on (0, T ) and the proof of Theorem 5.5 is complete.

4) Theorem 5.6 follows from Theorem 5.5 and Proposition 5.9.
452



O. Ersland and E.R. Jakobsen Journal of Differential Equations 301 (2021) 428–470
6. Fractional Fokker-Planck equations

Here we prove the existence of smooth solutions of the fractional Fokker-Planck equation, 
along with Cb, L1, tightness, and time equicontinuity in L1 a priori estimates. The equation is 
given by {

∂tm −L∗m + div (b(t, x)m) = 0 in (0, T ) ×Rd ,

m(0, x) = m0 (x) in Rd ,
(26)

where b : [0, T ] ×Rd →Rd , and L (and hence also L∗) satisfies (L1), (L2).
We first show preservation of positivity and a first Cb-bound for bounded solutions.

Proposition 6.1. Assume (L1) and b, Db ∈ Cb((0, T ) ×Rd) and m is a bounded classical solu-
tion of (26).

(a) If m0 ≥ 0, then m(x, t) ≥ 0 for (x, t) ∈ [0, T ] ×Rd .

(b) If m0 ∈ Cb(Rd), then ‖m(t, ·)‖∞ ≤ e‖(divb)+‖∞t‖m0‖∞.

In fact this result also holds for bounded viscosity solutions, but this is not needed here. The 
result is an immediate consequence of the following lemma.

Lemma 6.2. Assume (L1) and b, Db ∈ Cb((0, T ) ×Rd) and m is a bounded classical subsolution 
of (26). Then for t ∈ [0, T ],

‖m(t, ·)+‖∞ ≤ e‖(divb)+‖∞t‖m+
0 ‖∞ (27)

Proof of Proposition 6.1. (a) Apply Lemma 6.2 on −m (which still is a solution) and note that 
(−m0)

+ = 0. (b) Apply Lemma 6.2 on m and −m. �
Proof of Lemma 6.2. In non-divergence form we get (the linear!) inequality

∂tm −L∗m + b · Dm + (divb)m ≤ 0,

with Cb coefficients by the assumptions. The proof is then completely standard and we only 
sketch the case that divb < 0. Let

a = sup
(x,t)∈QT

m(x, t)+ − ‖m+
0 ‖∞,

χR(x) = χ( x
R

) where 0 ≤ χ ∈ C2
c such that χ = 1 in B1 and = 0 in Bc

2 , and

�(x, t) = m(x, t) − ‖m+‖∞ − at − ‖m+‖∞χR(x).

We must show that a ≤ 0. Assume by contradiction that a > 0. Then there exists a max point 
(x̄, ̄t) of � such that t̄ > 0. At this max point m > 0 (since a > 0) and

mt ≥ a, Dm = DχR, and L∗m ≤ L∗χR.
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Hence using the subsolution inequality at this point and divb < 0, we find that

a ≤ mt ≤ L∗m + b · Dm + (divb)m ≤ ‖m+‖∞
(
L∗χR + b · DχR

)
.

An easy computation shows that all χR-terms converge to zero as R → ∞. Hence we pass to the 
limit and find that a ≤ 0, a contradiction to a > 0. The result follows. �

The Fokker-Planck equation (26) is mass and positivity preserving (it preserves pdfs) and 
therefore may preserve the L1-norm in time. We will now prove a sequence of a priori estimates 
for L1 solutions of (26), using a “very weak” (distributional) formulation of the equation.

Lemma 6.3. Assume (L1), m0 ∈ L1
loc, b, Db ∈ Cb , and m is a classical solution of (26) such that 

m, Dm, D2m ∈ Cb . Then for every φ ∈ C∞
c (QT ), 0 ≤ s < t ≤ T ,

ˆ

Rd

mφ(x, t) dx =
ˆ

Rd

mφ(x, s) dx +
tˆ

s

ˆ

Rd

m
(
φt +Lφ − b · Dφ

)
(x, r) dx dr. (28)

Proof. Note that Lφ ∈ C([0, T ]; L1(Rd)) by Lemma 2.1 with p = 1. Multiply (26) by φ, in-
tegrate in time and space, and integrate by parts. The proof is completely standard, after noting 
that 

´
L∗m φ dx = ´

m Lφ dx in view of the assumptions of the Lemma. �
Remark 6.4. If in addition m ∈ C([0, T ]; L1(Rd)), then a density argument shows that (28)
holds for any φ ∈ C∞

b .

Next we prove mass preservation, time-equicontinuity, and tightness for positive solutions in 
L1. For tightness we need the following result:

Proposition 6.5. Assume (L1) and m0 ∈ P(Rd). There exists a function 0 ≤ ψ ∈ C2(Rd) with 
‖Dψ‖∞, ‖D2ψ‖∞ < ∞, and lim|x|→∞ψ(x) = ∞, such that

ˆ

Rd

�(x)m0(dx) < ∞,

ˆ

Rd\B1

�(x)μ(dx) < ∞ (29)

Proof. We let μ0 = μ(dx)1|x|≥1´
Bc

1
μ(dx)

and 
 = {m0, μ0} and apply [15, Proposition 3.8]. �
Proposition 6.6. Assume (L1), m0 ∈ Cb, b, Db ∈ Cb , and m is a classical solution of (26) such 
that m, Dm, D2m ∈ Cb . We also assume m ∈ C([0, T ]; L1(R1)), m0 ≥ 0, and 

´
Rd m0 dx = 1.

(a) m ≥ 0 and 
´
Rd m(x, t) dx = 1 for t ∈ [0, T ].

(b) There exists a constant c0 > 0 such that

d0(m(t),m(s)) ≤ c0(1 + ‖b‖∞)|t − s| 1
σ ∀s, t ∈ [0, T ].
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(c) For ψ defined in Proposition 6.5 there is c > 0 such that for t ∈ [0, T ],
ˆ

Rd

m(x, t)ψ(|x|) dx ≤
ˆ

Rd

m0ψ(|x|) dx (30)

+ 2‖ψ ′‖Cb
+ cT ‖ψ ′‖Cb

(
‖b‖Cb

+
ˆ

|z|<1

|z|2dμ(z)
)

+ T

ˆ

|z|>1

ψ(|z|) dμ(z).

Proof. (a) By Proposition 6.1, m ≥ 0. Let R > 1 and χR(x) = χ( x
R

) for χ ∈ C∞
c such that 

0 ≤ χ ≤ 1 and χ = 1 in B1 and = 0 in Bc
2 . We will apply Lemma 6.3 with φ = χR and s = 0 and 

pass to the limit as R → ∞. To do that, we write L =L1 +L1 = ´
|z|<1 · · · + ´

|z|>1 · · · , and note 
that by Lemma 2.1 with p = ∞ and μ(Bc

1) = 0,

‖L1χR‖Cb
≤ C inf

r∈(0,1)

(
r2−σ 1

R2 ‖D2χ‖Cb
+ (r1−σ − 1)

1

R
‖Dχ‖Cb

)
≤ C

1

R2 ‖χ‖C2
b
,

and then

‖∂tχR +L1χR − b · DχR‖Cb
≤ 1

R

(
‖χ‖C2

b
+ ‖b‖Cb

‖Dχ‖Cb

)
−→
R→∞ 0.

Also note that ‖L1φR‖Cb
≤ 2μ(Bc

1) and L1φR(x) → 0 for every x ∈Rd . Since m ∈ C([0, T ]; L1)

by assumption, it follows by the dominated convergence theorem that,

tˆ

0

ˆ

Rd

mL1χR dx dr −→
R→∞ 0.

Now we apply Lemma 6.3 with φ = χR and s = 0 and pass to the limit in (28) as R → ∞:

lim
R→∞

ˆ

Rd

m(x, t)χR(x) dx = lim
R→∞

ˆ

Rd

m0χR(x)dx + 0.

The result now follows from the dominated convergence theorem since χR → 1 pointwise and ´
m0 dx = 1.

(b) Fix a Lip1,1 function φ(x). For ε ∈ (0, 1), let φε ∈ C∞
b be an approximation (e.g. by mollifi-

cation) such that

‖φ − φε‖Cb
≤ ε‖Dφ‖Cb

and ‖Dkφε‖Cb
≤ cε(k−1)+‖φ‖C1

b
, k ≥ 0. (31)

Applying Lemma 6.3 and Remark 6.4 with φ = φε(x), then leads to

ˆ

Rd

(m(x, t) − m(x, s))φε(x) dx =
tˆ

s

ˆ

Rd

m
(
0 +Lφε − b · Dφε

)
(x, r) dx dr.
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By Lemma 2.1 with p = ∞ and (31),

‖Lφε‖Cb
≤ c inf

r∈(0,1)

(
r2−σ ‖D2φε‖Cb

+ r1−σ ‖Dφε‖Cb
+ ‖φε‖Cb

)
≤ c inf

r∈(0,1)

(
r2−σ 1

ε
+ r1−σ + 1

)‖φ‖C1
b
≤ Cε1−σ ‖φ‖C1

b
,

and hence
ˆ

Rd

(m(x, t) − m(x, s))φε(x) dx ≤ C|t − s|ε1−σ (1 + ‖b‖Cb
)‖φ‖C1

b
‖m‖C(0,T ;L1).

Then by adding and subtracting (m(x, t) − m(x, s))φε(x) terms, we find that

ˆ

Rd

(m(x, t) − m(x, s))φ(x) dx

≤
ˆ

Rd

(m(x, t) − m(x, s))φε(x) dx + 2‖m‖C(0,T ;L1)‖φ − φε‖Cb

≤ C(|t − s|ε1−σ + ε)(1 + ‖b‖Cb
)‖φ‖C1

b
‖m‖C(0,T ;L1).

Since ‖m‖C(0,T ;L1) = 1 by part (a), and ‖φ‖C1
b
≤ 2 for Lip1,1-functions, the result follows from 

the definition of the d0 distance in (4) after a minimization in ε.
(c) Let ψR(r) = ρ1 ∗ (ψ ∧ R)(r) for r ≥ 1, where 0 ≤ ρ1 ∈ C∞

c ((−1, 1)) is symmetric and has ´
ρ1 dx = 1 (a mollifier). We note that ρ1 ∗ ψ ≤ ψ and that ψ ∧ R is nondecreasing, concave, 

and ↗ ψ . Standard arguments then show that ψR ∈ C∞
b ([1, ∞)),

0 ≤ ψR ≤ R, 0 ≤ ψ ′
R ≤ ψ ′, ψ ′′

R ≤ 0, ‖ψ ′′
R‖Cb

≤ ‖ρ′
1‖L1‖ψ ′‖Cb

, (32)

ψR ↗ ρ1 ∗ ψ (≤ ψ) as R → ∞. (33)

The convergence as R → ∞ is pointwise. We apply Lemma 6.3 and Remark 6.4 with

φ(x, t) = φR(x) := ψR(

√
1 + |x|2).

Let L = L1 + L1 as in the proof of part (a), and note that (using also (32) and Lemma 2.1 with 
r = 1),

‖DφR‖Cb
≤ c‖ψ ′‖Cb

, ‖D2φR‖Cb
≤ c‖ρ′

1‖L1‖ψ ′‖Cb
, ‖L1φR‖ ≤ c‖ρ′

1‖L1‖ψ ′‖Cb

ˆ

|z|<1

|z|2 dμ.

Next since ψR is nonnegative, nondecreasing, and subadditive,1 we observe that

1 Nonnegative concave functions h on [0, ∞) are subadditive: h(a + b) ≤ h(a) + h(b) for a, b ≥ 0.
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|ψR(r) − ψR(s)| ≤ ψR(r − s) for all r, s ≥ 0.

Hence we find that

|L1φR(x)| ≤
ˆ

|z|>1

∣∣∣ψR(

√
1 + |x + z|2) − ψR(

√
1 + |x|2)

∣∣∣dμ(z)

≤
ˆ

|z|>1

ψR(|z|) dμ(z) ≤
ˆ

|z|>1

ψ(|z|) dμ(z).

From the estimates above we conclude that∣∣∣∂tφR +LφR − b · DφR

∣∣∣ ≤ c‖ψ ′‖Cb

(
‖b‖Cb

+ ‖ρ′
1‖Cb

ˆ

|z|<1

|z|2 dμ
)

+
ˆ

|z|>1

ψ(|z|) dμ.

Inserting this estimate into (28) with φ = φR , along with m ≥ 0, 
´

m(x, t) dx = 1 (by part (a)), 
and φR(x) ≤ ψ(

√
1 + |x|2), we get

ˆ

Rd

m(x, t)φR(x) dx ≤
ˆ

Rd

m0(x)ψ(

√
1 + |x|2) dx

+ T c‖ψ ′‖Cb

(
‖b‖Cb

+ ‖ρ′
1‖Cb

ˆ

|z|<1

|z|2 dμ
)

+ T

ˆ

|z|>1

ψ(|z|) dμ.

By the monotone convergence theorem and (33),

lim
R→∞

ˆ

Rd

m(x, t)φR(x) dx =
ˆ

Rd

m(x, t) ρ1 ∗ ψ(

√
1 + |x|2) dx.

To conclude that (30) holds, we note that ρ1 ∗ ψ ≥ ψ − ‖ψ ′‖Cb
and

ψ(|x|) ≤ ψ(

√
1 + |x|2) ≤ ψ(|x|) + ‖ψ ′‖Cb

.

The proof of (c) is complete. �
Solutions in L1 also have a better Cb bound than the one in Proposition 6.1. This bound is 

needed in the local coupling case – see Section 8.

Lemma 6.7. Assume (L1), (L2) (ii), b ∈ Cb , 0 ≤ m0 ∈ Cb , and 0 ≤ m ∈ Cb(QT ) is a classical 
solution of (26). If m ∈ C(0, T ; L1(Rd)), then there exists a constant C > 0 only dependent on 
d, q, σ, T , such that for any 1 < p < p0 := d

d+1−σ
,

‖m‖Cb
≤ 1 ∨

[
‖m0‖Cb

+ CT
d−p(1+d−σ)

pσ ‖b‖Cb

] p
p−1

.
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Proof. (Inspired by [4, Proposition 2.2]) For any y ∈ Rd , let φ(s, x) = K(t − s, y − x) where 
K is the heat kernel of Section 4. Then φ ≥ 0 is smooth, 

´
Rd φ(x, s)dx = 1, and φ solves the 

backward heat equation

{
−∂tφ −Lφ = 0, s < t,

φ(x, t) = δy(x),
(34)

where the δ-measure δy has support in y. Multiply (26) by φ, integrate in time and space, and 
integrate by parts to get

ˆ
mφ(x, t)dx −

ˆ
mφ(x − y,0)dx =

tˆ

0

ˆ
m(x, s)[φt +Lφ − b · Dφ](x − y, s) dx ds

or

m(y, t) = m ∗ K(·, t)(y) +
tˆ

0

ˆ
(bm)(·, s) ∗ DK(·, t − s) dx ds.

Then by the heat kernel estimates of (L2) (ii), ‖DK(s, ·)‖Lp ≤ Cs
d−p(1+d)

pσ , the Hölder and 
Young’s inequalities, the properties of K , and ‖m(·, t)‖q

Lq ≤ ‖m‖q−1
Cb

‖m(·, t)‖L1 = ‖m‖q−1
Cb

,

|m(y, t)| ≤ ‖m0‖Cb
+ ‖b‖Cb

tˆ

0

‖DK(·, t − s)‖Lp‖m(·, s)‖
Lp′ dt

≤ ‖m0‖∞ + Ct
d−p(1+d)+pσ

pσ ‖b‖Cb
‖m‖1− 1

p′
Cb

,

for 1 ≤ p ≤ d
1+d−σ

where 1
p

+ 1
p′ = 1. Since y is arbitrary, we get after taking the supremum and 

dividing both sides by ‖m‖
1
p

Cb
that

‖m‖Cb
≤ 1 ∨ [‖m0‖Cb

+ CT
d−p(1+d−σ)

pσ ‖b‖Cb

]p′
.

This concludes the proof. �
Finally, we state the main result of this section, the existence of classical solutions of (26) that 

are positive and mass-preserving.

Proposition 6.8. Assume (L1), (L2), b, Db, D2b ∈ Cb

(
(0, T ) × Rd

)
, 0 ≤ m0 ∈ C2

b(Rd), and ´
Rd m0 dx = 1.

(a) There exists a unique classical solution m of (26) satisfying m ≥ 0, 
´
Rd m(x, t) dx = 1 for 

t ∈ [0, T ], and
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‖m‖L∞ + ‖Dm‖L∞ + ‖D2m‖L∞ + ‖∂tm‖L∞ ≤ c,

where c is a constant depending only on σ , T , d , and ‖Dkb‖∞ for k = 0, 1, 2.

(b) There exists a modulus ω̃ only depending on ‖Dkm‖∞, ‖Dkb‖∞ for k = 0, 1, 2, and (L1), 
such that for s, t ∈ [0, T ] and x, y ∈ Rd ,

|m(t, x) − m(s, y)| + |Dm(t, x) − Dm(s, y)| ≤ ω̃(|t − s| + |x − y|).

(c) If in addition b, Db ∈ UC((0, T ) ×Rd), then there exists a modulus ω only depending on ω̃, 
ωb, ωDb, ‖Db‖∞, m0, T , σ , and d , such that for s, t ∈ [0, T ] and x, y ∈Rd ,

|L∗m(x, t) −L∗m(s, y)| + |∂tm(x, t) − ∂tm(s, y)| ≤ ω(|s − t | + |x − y|).

Proof. (a) The proof uses a Banach fixed point argument based on the Duhamel formula

m(t, x) = ψ̃ (m) (t, x) (35)

:= K∗ (t, ·) ∗ m0 (·) (x) −
d∑

i=1

tˆ

0

∂xi
K∗ (t − s, ·) ∗ (bim) (s, ·) ds,

and is similar to the proof of Theorem 5.5. Here K∗ is the heat kernel of L∗. It is essentially a 
corollary to Proposition 5.1 in [19] (but in our case the we have more regular initial conditions 
and hence no blowup of norms when t → 0+).

Similar to the corresponding proof for the HJB equation, we first show short-time C1-
regularity using the Duhamel formula. Let R0 = 1 + ‖m0‖∞, R1 = (2 + dK)R0 + 1, and the 
Banach (sub) space

X = {
m : m, t1/σ Dm ∈ Cb

(
(0, T0) ×Rd

)
, m ∈ C([0, T ];L1(Rd)), and ‖m‖ ≤ R1

}
, (36)

where ‖m‖ = ‖m‖C([0,T ];L1) + ‖m‖∞ +∑d
i=1 ‖t1/σ ∂xi

m‖∞. Then if k(σ ) and γ (σ ) are defined 
in the proof of Proposition 5.8 (a), we find from (35) that for p ∈ {1, ∞},

‖ψ̃(m)(t, x)‖Lp ≤ ‖K∗‖L1‖m0‖p +
d∑

i=1

tˆ

0

‖∂xi
K∗(t − s, ·)‖L1‖bi‖∞‖m(s)‖p ds

≤ R0 + dk(σ )T
1− 1

σ

0 ‖b‖∞R1,

and

|t1/σ ∂xj
ψ̃(m)(t, x)|

≤ t1/σ ‖∂xj
K∗‖L1‖m0‖∞ +

d∑
i=1

t1/σ

tˆ
‖∂xi

K∗(t − s, ·)‖L1‖(m∂jbi + bi∂jm)‖∞ds
0
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≤KR0 +
d∑

i=1

t1/σ

tˆ

0

K(t − s)−1/σ
[
‖m‖∞‖∂j bi‖∞ + s−1/σ ‖bi‖∞‖s1/σ ∂jm‖∞

]
ds

≤KR0 +
[
k(σ )T0‖Db‖∞ + γ (σ )T

1−1/σ
0 ‖b‖∞

]
dR1,

Computing the full norm, we get

‖ψ̃(m)‖

≤ (2 + dK)R0 +
[

2dk(σ )T
1− 1

σ

0 ‖b‖∞ + d2
[
k(σ )T0‖Db‖∞ + γ (σ )T

1−1/σ
0 ‖b‖∞

]]
R1︸ ︷︷ ︸

:=c(T0)

.

We take T0 > 0 so small that c(T0) ≤ 1/2. Then it follows that ψ̃ maps X into itself by the 
definition of R1. It is also a contraction since for m1, m2 ∈ X, it easily follows that

‖ψ̃(m1) − ψ̃(m2)‖ ≤ c(T0)‖m1 − m2‖.

An application of Banach’s fixed point theorem in X then concludes the proof. Note that we only 
needed m0 ∈ Cb and b, Db ∈ Cb to obtain the result.

We can now repeatedly differentiate the Duhamel formula (17) and use similar contraction 
arguments to conclude that if b, Db, ..., Dkb ∈ Cb((0, T ) × Rd), then there exists a solution 
m ∈ X such that

D2m, ...,Dk−1m, t
1
σ Dkm ∈ Cb((0, T0) ×Rd) for T0 > 0 sufficiently small.

In a similar way as in Proposition 5.9 (a) and Corollary 5.10 for the HJB-equation, it now follows 
that m is a classical solution to (26). By Lemma 6.1 and Lemma 6.6 (a), we then have global 
in time bounds m in Cb ∩ C([0, T ]; L1). We can therefore extend the local existence and the 
derivative estimates to all of [0, T ]. The argument is very similar to the proof in Section 5.9 and 
we omit it. Finally, by Lemma 6.6 (a) again, we get that m ≥ 0 and 

´
Rd m(x, t) dx = 1.

(b) Part (b) follows in a similar way as part (b) in Theorem 5.9. We omit the details.

(c) From part (a), (b), and the assumptions, the function g(t, x) = div(mb) satisfies g, ∇g ∈
Cb((0, T ) × Rd) and g ∈ UC((0, T ) × Rd). Lemma 5.11 (b) (with K∗ instead of K) 
then gives that ∂t�(g), L∗�(g) ∈ UC((0, T ) × Rd) with modulus ω only dependent on 
σ, T , d, ‖g‖∞, ‖∇g‖∞ and ωg . A similar, but simpler argument shows that ∂tK

∗
t ∗ m0 =

L∗K∗
t ∗ m0 ∈ UC((0, T ) ×Rd). Since m = K∗

t ∗ m0 − �(g), this concludes the proof. �
7. Existence for MFGs with nonlocal coupling – proof of Theorem 3.2

We adapt [33,9,1] and use the Schauder fixed point theorem. We work in C([0, T ], P(Rd))

with metric d(μ, ν) = supt∈[0,T ] d0(μ(t), ν(t)) and the subset
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C :=

⎧⎪⎨
⎪⎩μ ∈ C([0, T ],P(Rd)) : sup

t∈[0,T ]

ˆ

Rd

ψ(|x|)μ(dx, t) ≤ C1, sup
s �=t

d0(μ(s),μ(t))

|s − t | 1
σ

≤ C2

⎫⎪⎬
⎪⎭ ,

(37)

where ψ is defined in Proposition 6.5 and the constants C1, C2 > 0 are to be determined. For 
μ ∈ C, define S(μ) := m where m is the classical solution of the fractional FPK equation

{
∂tm −L∗m − div

(
DpH(x,u,Du)m

) = 0,

m(0, ·) = m0(·),
(38)

and u is the classical solution of the fractional HJB equation

{−∂tu −Lu + H(x,u,Du) = F(x,μ),

u(x,T ) = G(x,μ(T )).
(39)

Let U := {u : u solves (39) for μ ∈ C} and M := {m : m solves (38) for u ∈ U}.
1. (C convex, closed, compact). The subset C is convex and closed in C([0, T ], P(Rd)) by stan-
dard arguments. It is compact by the Prokhorov and Arzèla-Ascoli theorems.

2. (S : C → C is well-defined). By (L1), (L2), (A1)–(A6), Theorem 5.5 and 5.6, there is a unique 
solution u of (39) with

‖u‖∞,‖Du‖∞, · · · ,‖D3u‖∞,‖∂tu‖∞ ≤ U1, (40)

∂tu,u,Du,D2u,Lu equicontinuous with modulus ω,

where U1 depends on d, σ and the spatial regularity of F , G and H . The modulus ω depends in 
addition on C2 in (37). By the uniform bound in (A2), U1 is independent of μ. By Proposition 6.8
part (a)–(c), for any u ∈ U there is a unique m solving (38) such that

‖m‖∞,‖Dm‖∞,‖D2m‖∞,‖∂tm‖∞ ≤ M1, (41)

∂tm,m,Dm,L∗m are equicontinuous with modulus ω̄,

where M1 depends on U1 and the local regularity of H but not on μ. The modulus ω̄ depends in 
addition on ω. By Lemma 6.6 (b)–(c),

d0(m(s),m(t)) ≤ c0(1 + ‖DpH(·,Du)‖∞)|s − t | 1
σ ,ˆ

Rd

m(x, t)ψ(|x|) dx ≤
ˆ

Rd

m0ψ(|x|) dx

+2‖ψ ′‖Cb
+ cT ‖ψ ′‖Cb

(
‖DpH(·,Du)‖Cb

+
ˆ

|z|<1

|z|2dμ(z)
)

+ T

ˆ

|z|>1

ψ(|z|) dμ(z).
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By (40) and (A3), ‖DpH(x, Du)‖∞ ≤ C̃, where C̃ is independent of μ. Hence, we take 

C1 = ´
Rd m0ψ(|x|) dx + 2‖ψ ′‖Cb

+ cT ‖ψ ′‖Cb
C̃ + ´

|z|<1 |z|2dμ(z)
)

+ T
´
|z|>1 ψ(|z|) dμ(z), 

and C2 = c0(1 + C̃) and get that S maps C into itself.

3. (S is continuous). We use the well-known result:

Lemma 7.1. Let (X, d) a metric space, K ⊂⊂ X a compact subset and (xn) ⊂ K a sequence 
such that all convergent subsequences have the same limit x∗ ∈ K . Then xn → x∗.

Define X1 := {f : f, Df, D2f, ∂tf, Lf ∈ Cb} and X2 := {f : f, Df, ∂tf, L∗f ∈ Cb}, equipped 
with the metric of local uniform convergence, taken at all the derivatives. Then X1 and X2 are 
complete metric spaces. By (40), (41), Arzela-Ascoli, and a diagonal (covering) argument U and 
M are compact in X1 and X2, respectively.

Let μn → μ ∈ C, and let (un, mn) be the corresponding solutions of (39) and (38). Take a 
convergent subsequence (un) ⊃ unk

→ ũ ∈ U and let L = L1 + L1 = (´
|z|<1 + ́ |z|≥1

)
(. . .). By 

uniform convergence L1unk
(t, x) → L1ũ(t, x), and by dominated convergence L1unk

(t, x) →
L1ũ(t, x). By (A1), (A3) and for any (t, x) ∈ (0, T ) ×Rd :

∣∣− ∂t ũ(t, x) −Lũ(t, x) + H(x,Dũ(t, x)) − F(x,μ)
∣∣

≤ ∣∣∂tunk
(t, x) − ∂t ũ(t, x)

∣∣ + ∣∣Lunk
(t, x) −Lũ(t, x)

∣∣
+ ∣∣H(x,Dunk

) − H(x,Dũ)
∣∣+ ∣∣F(x,μnk

(t)) − F(x,μ(t))
∣∣

→ 0,

and 
∣∣ũ(T , x) − G(x, μ(T ))

∣∣ ≤ |ũ(T , x) − unk
(T , x)| + ∣∣G(x, μnk

(T )) − G(x, μ(T ))
∣∣ → 0. This 

shows that ũ solves (39) with μ as input. By uniqueness of the HJB equation, compactness of U
in X1, and Lemma 7.1, we conclude that un → u in X1.

A similar argument shows that mn → m ∈ X2. By compactness of C in part 2, uniqueness of 
solutions, and Lemma 7.1, we also find that mn → m in C([0, T ], P(Rd)). The map S : C → C
is therefore continuous.

4. (Fixed point). By Schauder fixed point theorem there then exists a fixed point S(m) = m, and 
this fixed point is a classical solution of (7) and the proof of Theorem 3.2 is complete.

8. Existence for MFGs with local coupling – proof of Theorem 3.5

1. (Approximation) We follow Lions [33,9], approximating by a system with non-local cou-
pling and passing to the limit. Let ε > 0, 0 ≤ φ ∈ C∞

c with 
´
Rd φ = 1, φε := 1

εd φ(x/ε), and 
for μ ∈ P(Rd) let Fε(x, μ) := f (x, μ ∗ φε(x)). For each fixed ε > 0, Fε is a nonlocal coupling 
function satisfying (A1)–(A2), since ‖Dβ(μ ∗ φε)‖∞ ≤ ‖μ‖1‖Dβφε‖∞ = ‖Dβφε‖∞. assump-
tions (L1)–(L2), (A1)–(A6) then hold for the approximate system

⎧⎨
⎩

−∂tuε −Luε + H(x,Duε) = Fε(x,mε(t)) in (0, T ) ×Rd ,

∂tmε −L∗mε − div(mεDpH(x,Duε)) = 0 in (0, T ) ×Rd ,

m(0) = m0, u(x,T ) = g(x),

(42)
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and by Theorem 3.2 there exists a classical solution (uε, mε) of this system.

2. (Uniform bounds) Since either (A3’) or (A2”) holds, Fε(x, mε(t)) is uniformly bounded in ε. 
In the case of (A3’) this follows from Lemma 6.7 and the estimate

‖mε‖Cb
≤ 1 ∨

[
‖m0‖Cb

+ CT
d−p(1+d−σ)

pσ ‖DpH(·,Duε)‖∞
] p

p−1 ≤ K (43)

for K independent of ε. By Theorem 5.3 (b) and (A3) we then have

‖uε‖∞ ≤ ‖g‖∞ + (T − t)(‖Fε(·,mε(t))‖∞ + ‖H(·,0)‖∞) ≤ K̃ (44)

for K̃ > 0 independent of ε, and since Fε is also continuous, by Theorem 5.4

‖Duε‖∞ ≤ C (45)

for C ≥ 0 independent of ε (C depends on Fε only through its Cb-norm). Under (A3’) m is 
bounded and satisfies (43), and this is still true if (A3’) is replaced by (A2”) in view of the 
uniform bound on Duε in (45).

3. (Improvement of regularity) The Duhamel formulas for mε and Duε are given by

mε(t) = K∗
σ (t) ∗ m0 −

d∑
i=1

tˆ

0

∂iK
∗
σ (t − s) ∗ mε[DpH(·,Duε(s))]ids, (46)

Duε(t) = Kσ (t) ∗ Du0 −
tˆ

0

DxKσ (t − s) ∗ (H(·,Duε(s)) − Fε(·,mε(s, ·)))ds, (47)

where Kσ (t) = Kσ (t, x) and K∗
σ (t) = K∗

σ (t, x) are the fractional heat kernels in Rd correspond-
ing to L and L∗. Fractional differentiations of these will lead to improved regularity.

Assume that for k ∈ {0, 1, 2} and α ∈ [0, 1), there is C ≥ 0 independent of ε such that for all 
t ∈ [0, T ],

‖mε(t)‖Ck,α(Rd ) + ‖Duε(t)‖Ck,α(Rd ) ≤ C. (48)

We will show that for any δ ∈ (0, α) and s ∈ (0, σ − 1) there is C̃ ≥ 0 independent of ε and t
such that{

‖mε(t)‖Ck,s+α−δ(Rd ) + ‖Duε(t)‖Ck,s+α−δ(Rd ) ≤ C̃, for s + α − δ ≤ 1,

‖mε(t)‖Ck+1,s+α−δ−1(Rd ) + ‖Duε(t)‖Ck+1,s+α−δ−1(Rd ) ≤ C̃, for s + α − δ > 1.
(49)

Assume first α ∈ (0, 1) and consider the mε-estimate. When (48) holds, then mεDpH(x, Duε)

∈ Ck,α(Rd) by the chain rule and (A3), and |D|α−δDk
(
mεDpH(x, Duε)

) ∈ C
0,δ
b (Rd) for 

δ ∈ (0, α) by [37, Proposition 2.7]. Let s ∈ (0, σ − 1) and apply |D|s |D|α−δDk to (46),
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|D|s |D|α−δDkmε = K∗
σ (t) ∗ |D|s+α−δDkm0

−
d∑

i=1

tˆ

0

|D|sDK∗
σ (t − s) ∗ |D|α−δDk

[
mεDpH(·,Duε)

]
i
ds.

By Young’s inequality and Proposition 4.9 (heat kernel estimates),

‖|D|s+α−δDkmε‖∞ ≤ ‖|D|s+α−δDkm0‖∞ + c
T 1− 1+s

σ

1 − 1+s
σ

‖|D|α−δDk(mεDpH(·,Duε))‖∞,

and taking δ < α/2, we get uniform in ε Hölder estimates by [37, Proposition 2.9],

mε(t) ∈
{

C
k,s+α−2δ
b (Rd), for s + α − 2δ ≤ 1,

C
k+1,s+α−2δ−1
b (Rd), for s + α − 2δ > 1.

The case α = 0 follows in a similar but more direct way differentiating (46) by |D|sDk instead 
of |D|s |D|α−δDk as above. The estimates on Duε follow similarly.

4. (Iteration and compactness) Starting from (43), (44), and (A2’) and (A3), we iterate using (49)
to find that

‖uε(t)‖C3
b (Rd ) + ‖mε(t)‖C2

b (Rd ) ≤ C

independent of ε and t ∈ [0, T ]. By Proposition 5.9 and Proposition 6.8, we then find that

‖∂tuε‖∞ ≤ U and ∂tuε, uε,Duε,D
2uε,Luε equicontinuous with modulus ω,

‖∂tmε‖∞ ≤ M and ∂tmε,mε,Dmε,L∗mε equicontinuous with modulus ω̄,

where U , ω, M and ω̄ are independent of ε. As in the proof of Theorem 3.2, these bounds imply 
compactness of (mε, uε) in X1 × X2 (see below Lemma 7.1 for the definitions).

5. (Passing to the limit) We extract a convergent subsequence, (uεk
, mεk

) → (u, m) in X1 ×
X2. By a direct calculation the limit (u, m) solves equation (8). This concludes the proof of 
Theorem 3.5.

Appendix A. Uniqueness of solutions of MFGs – proof of Theorem 3.3

The proof of uniqueness is essentially the same as the proof in the College de France lectures 
of P.-L. Lions [33,9]. Let (u1,m1) and (u2,m2) be two classical solutions, and set ũ = u1 − u2
and m̃ = m1 − m2. By (7) and integration by parts,

d

dt

ˆ

Rd

ũm̃ dx =
ˆ

Rd

∂

∂t
(ũm̃) dx =

ˆ

Rd

(∂t ũ) m̃ + ũ (∂t m̃) dx

=
ˆ

d

[(
−Lũ + H (x,Du1) − H (x,Du2) − F (x,m1) + F (x,m2)

)
m̃

R
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+ ũL∗m̃ − 〈Dũ,m1DpH (x,Du1) − m2DpH (x,Du2)〉
]

dx.

By the definition of the adjoint, 
´
Rd (Lũ) m̃ − ũ (L∗m̃) dx = 0, and from (A7) we get

ˆ

Rd

(−F (x,m1) + F (x,m2)) d (m1 − m2) (x) ≥ 0 ∀m1,m2 ∈ P(Rd).

For the remaining terms on the right hand side, we use a Taylor expansion and (A8),

ˆ

Rd

[
− m1

(
H (x,Du1) − H (x,Du2) − 〈DpH (x,Du1) ,Du2 − Du1〉

)

− m2

(
H (x,Du2) − H (x,Du1) − 〈DpH (x,Du2) ,Du1 − Du2〉

)]
dx

≤ −
ˆ

Rd

m1 + m2

2C
|Du2 − Du1|2 dx.

Integrating from 0 to T , using the fact that m̃ (t = 0) = 0 and ũ (t = T ) = G (x,m1 (T )) −
G (x,m2 (T )),

T̂

0

d

dt

ˆ

Rd

ũm̃ dx dt =
ˆ

Rd

(G(x,m1 (T )) − G(x,m2 (T ))) (m1 (x, T ) − m2 (x, T )) dx ≥ 0,

where we used (A7) again. Combining all the estimates we find that

0 ≤ −
T̂

0

ˆ

Rd

m1 + m2

2C
|Du1 − Du2|2 dx dt

Hence since the integrand is nonnegative it must be zero and Du1 = Du2 on the set {m1 > 0} ∪
{m2 > 0}. This means that m1 and m2 solve the same equation (the divergence terms are the 
same) and hence are equal by uniqueness. Then also u1 and u2 solve the same equation and u1 =
u2 by standard uniqueness for nonlocal HJB equations (see e.g. [29]). The proof is complete.

Appendix B. Proof of Lemma 5.11

a) The proof is exactly the same as in [28]. The difference is that f only needs to be C1 in space, 
since DxK is integrable in t .

b) Part 1: Uniform continuity in x for L�(f ) and ∂t�(f ). By the definition of L,

L[�(f )](t, x) =
tˆ
LK(t − s, ·) ∗ f (s, ·)(x)ds
0
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=
tˆ

0

ˆ

Rd

[ˆ
Rd

K(t − s, y + z) − K(t − s, y) − ∇xK(t − s, y) · z1|z|<1dμ(z)
]
f (s, x − y)dyds

=
tˆ

0

ˆ

Rd

ˆ

|z|<1

(
· · ·

)
+

tˆ

0

ˆ

Rd

ˆ

|z|>1

(
· · ·

)
=: I1(t, x) + I2(t, x).

After a change of variables and ‖K(t, ·)‖L1 = 1,

|I2(t, x1) − I2(t, x2)| ≤
tˆ

0

ˆ

|z|≥1

ˆ

Rd

K(t − s, y)
[
f (s, x1 − y + z) − f (s, x1 − y)

− f (s, x2 − y + z) + f (s, x2 − y)
]
dydμ(z)ds

≤ 2t‖f ‖Cb,tC
1
b,x

|x1 − x2|
ˆ

|z|≥1

dμ(z).

Then since and ‖I2(t, ·)‖Cb
≤ 2t‖f ‖Cb,tC

1
b,x

´
|z|≥1 dμ(z),

|I2(t, x1) − I2(t, x2)| ≤ (2‖I2(t, ·)‖Cb
)β |I2(t, x2) − I2(t, x2)|1−β

≤ 4t‖f ‖Cb,tC
1
b,x

ˆ

|z|≥1

dμ(z)|x1 − x2|1−β.

By the fundamental theorem, Fubini, and a change of variables,

I1(t, x) =
tˆ

0

ˆ

|z|<1

[ˆ
Rd

1ˆ

0

∇xK(t − s, y + σz) − ∇xK(t − s, y)
]
· zf (s, x − y)dσdydμ(z)ds,

=
tˆ

0

1ˆ

0

ˆ

Rd

ˆ

|z|<1

∇xK(t − s, y) · z
[
f (s, x − y + σz) − f (s, x − y)

]
dμ(z)dydσds.

It follows that

I1(t, x1) − I1(t, x2) =
tˆ

0

1ˆ

0

ˆ

Rd

∇xK(t − s, y) ·
ˆ

|z|<1

z
[
f (s, x1 − y + σz)

− f (s, x2 − y + σz) − (
f (s, x1 − y) − f (s, x2 − y)

)]
dμ(z)dydσds.

Since
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|f (x1 + σz) − f (x1) − f (x2 + σz) − f (x2)|1−β+β

≤ 2‖f ‖1−β

Cb,tC
1
b,x

|x1 − x2|1−β‖f ‖β

Cb,tC
1
b,x

|σz|β,

we see by Theorem 4.3 and (L1) that

|I1(t, x1) − I1(t, x2)|

≤
tˆ

0

ˆ

Rd

|∇xK(t − s, y)|dyds 2‖f ‖1−β

Cb,tC
1
b,x

|x1 − x2|1−β‖f ‖β

Cb,tC
1
b,x

ˆ

|z|<1

|z|β+1dμ(z)

≤K σ
σ−1T

σ−1
σ

ˆ

|z|<1

|z|β+1dμ(z)‖f ‖Cb,tC
1
b,x

|x1 − x2|1−β.

Combining the above two estimates, we conclude that

|L[�(f )](t, x1) −L[�(f )](t, x2)| ≤ c‖f ‖Cb,tC
1
b,x

|x1 − x2|1−β,

with c = σ
σ−1T

σ−1
σ K

´
|z|<1 |z|1+βdμ(z) + 4T

´
|z|≥1 dμ(z). By part a), ∂t�(f )(t, x) = f (t, x) +

L[�(f )](t, x). Since

|f (t, x) − f (t, y)| ≤ (2‖f ‖Cb
)β |f (t, x) − f (t, y)|1−β ≤ 2‖f ‖Cb,tC

1
b,x

|x − y|1−β,

we then also get that

|∂t�[f ](t, x1) − ∂t�[f ](t, x2)| ≤ (2 + c)‖f ‖Cb,tC
1
b,x

|x1 − x2|1−β.

b) Part 2: Uniform continuity in time. First note that

L�[f ](t, x) −L�[f ](s, x) =
tˆ

0

LK(τ, ·) ∗ f (t − τ, ·)dτ −
sˆ

0

LK(τ, ·) ∗ f (s − τ, ·)dτ

=
sˆ

0

LK(τ, ·) ∗ (
f (t − τ, ·) − f (s − τ, ·))dτ +

tˆ

s

LK(τ, ·) ∗ f (t − τ, ·)dτ.

Now we do as before: Split the z-domain in two parts, use the fundamental theorem and a change 
of variables to get

LK(τ, ·) ∗ (
f (t − τ, ·) − f (s − τ, ·))

=
1ˆ ˆ

d

ˆ
∇xK(τ, x − y) · z[f (t − τ, y + σz) − f (t − τ, y)
0 R |z|<1
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− f (s − τ, y + σz) + f (s − τ, y)
]
dμ(z)dydσ.

+
ˆ

Rd

ˆ

|z|≥1

K(τ, x − y)[f (t − τ, y + z) − f (t − τ, y)

− f (s − τ, y + z) + f (s − τ, y)]dμ(z)dy.

Then we apply the trick

|f (t − τ, y + σz) − f (t − τ, y) − f (s − τ, y + σz) + f (s − τ, y)|
≤ 2ωf (|t − s|)1−β(‖f ‖Cb,tC

1
b,x

|z|)β or 4ωf (|t − s|)1−β‖f ‖β
Cb

,

and find using Theorem 4.3 and (L1) that

∣∣∣ sˆ

0

LK(τ, ·) ∗ (
f (t − τ, ·) − f (s − τ, ·))dτ

∣∣∣
≤

[ σ

σ − 1
s

σ−1
σ K

ˆ

|z|<1

|z|1+βdμ(z) + 4s

ˆ

|z|≥1

dμ(z)
]
‖f ‖β

Cb,tC
1
b,x

ωf (|t − s|)1−β .

In a similar way we find that

∣∣∣
tˆ

s

LK(τ, ·) ∗ f (t − τ, ·)dτ

∣∣∣
≤

[
2

σ

σ − 1
(t

σ−1
σ − s

σ−1
σ )K

ˆ

|z|<1

|z|1+βdμ(z) + 2(t − s)

ˆ

|z|≥1

dμ(z)
]
‖f ‖Cb

≤ c1‖f ‖Cb
|t − s| σ−1

σ .

Combining all above estimates leads to∣∣∣L�[f ](t, x) −L�[f ](s, x)

∣∣∣ ≤ c‖f ‖β

Cb,tC
1
b,x

ωf (|t − s|)1−β + c̃‖f ‖Cb
|t − s| σ−1

σ ,

where c is defined above and in the Lemma and

c̃ = 2
σ

σ − 1
K

ˆ

|z|<1

|z|1+βdμ(z) max
s,t∈[0,T ]

∣∣t σ−1
σ −s

σ−1
σ

∣∣
|t−s| σ−1

σ

+ 2T
1
σ

ˆ

|z|≥1

dμ(z).

Note that c̃ is finite. Then since

∂t�[f ](t, x) − ∂t�[f ](s, x) = f (t, x) − f (s, x) +L�[f ](t, x) −L�[f ](s, x),

and |f (t, x) − f (s, x)| ≤ (2‖f ‖C )βωf (|t − s|)1−β , the continuity estimate for ∂t�[f ] follows.

b

468



O. Ersland and E.R. Jakobsen Journal of Differential Equations 301 (2021) 428–470
c) The proof follows by writing

∂xi
�(g)(t, x) =

tˆ

0

∂xi
K(τ, z)g(t − τ, x − z)dzdτ,

and then directly compute the difference |∂xi
�(g)(t, x) − ∂xi

�(g)(s, y)|.
The proof is complete.
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