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a b s t r a c t 

Registration is a ubiquitous operation in visual computing and constitutes an important pre-processing 

step for operations such as 3D object reconstruction, retrieval and recognition. Particularly in cultural her- 

itage (CH) applications, registration techniques are essential for the digitization and restoration pipelines. 

Cross-time registration is a special case where the objects to be registered are instances of the same 

object after undergoing processes such as erosion or restoration. Traditional registration techniques are 

inadequate to address this problem with the required high accuracy for detecting minute changes; some 

are extremely slow. A deep learning registration framework for cross-time registration is proposed which 

uses the DeepGMR network in combination with a novel down-sampling scheme for cross-time registra- 

tion. A dataset especially designed for cross-time registration is presented (called ECHO) and an extensive 

evaluation of state-of-the-art methods is conducted for the challenging case of cross-time registration. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Geometric registration (or alignment) is a crucial tool in visual 

omputing with applications in robotics, medical imaging and cul- 

ural heritage (CH) analysis, among many others. Registration of 

atasets and particularly point clouds, has become a key opera- 

ion in many shape analysis tasks, such as 3D object retrieval [1,2] , 

emantic segmentation and classification [3,4] , 3D mapping [5–7] , 

D object scanning [8] and 3D model reconstruction [9–11] . 

Registration aims to find the transformation that optimally 

ligns two or more similar objects or two or more instances of the 

ame object taken at different times (cross-time data), from dif- 

erent viewpoints (multi-view data) or by different sensors (multi- 

ensor data), in order to bring the data into a common reference 

rame [12] . The surface alignment problem is a broad research 

opic and advances have been made over the years, resulting in a 

lethora of different strategies and algorithms. However, there are 

till open problems to be addressed, especially in the context of 

H. Archaeological objects differ from mechanical or medical ob- 

ects in their shape and size (some CH objects can be quite large), 

rticulation and fragility. Moreover, the number of objects digitized 

nd available for experimentation is limited in CH. 

Computing has greatly aided the CH field over the last decades, 

ncluding the restoration, preservation and monitoring processes 

13] . In monitoring, microgeometric changes over time are mea- 
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ured and analyzed in order to support conservation strategies 

14] . CH objects have been constantly undergoing changes or 

egradation over time. In this matter, geometric acquisition and 

easurements of a CH object produce snapshots of 3D models and 

an be used to track an object through time, in order to document 

ifferent phases of the conservation pipeline and identify any de- 

tructive intervention, or to understand any damages that these 

odifications may indicate. 3D surface registration can automate 

he process of monitoring CH artefacts in a non-invasive manner 

y aligning the objects in such a way that even minute modifi- 

ations on the object’s surface or shape can be automatically de- 

ected and measured. 

As CH digitization is becoming more widespread, CH object 

onitoring activities based on the digitized objects are increasingly 

elevant. Several methodologies have been proposed over the last 

ears, but the contribution is limited due to the relatively small 

umber of digitized CH objects than can be used in the experimen- 

ation with the monitoring process. The main reasons are that the 

onservation process is time consuming and needs to be planed 

roperly so as not to harm the CH object and that the change de- 

ected from environmental erosion cannot be easily identified un- 

ess several decades pass. The lack of an adequate digital bench- 

ark for deeper analysis and comparison is a major obstacle to- 

ards the development of automatic techniques for proper mon- 

toring and documenting different phases of conservation. Such a 

enchmark is crucial for comparing methodologies and scenaria. 

This work is focused on the pairwise cross-time registration 

roblem. We introduce a registration methodology that copes with 
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ig data using a down-sampling scheme that is appropriate for 

bjects that undergo erosion over time and overcomes limitations 

ike the computational complexity of iterative methods, the neces- 

ity for point-level correspondence or a coarse pre-alignment step. 

oreover, we address the absence of benchmarking data by con- 

ributing a dataset of artificially eroded CH objects, including their 

round truth transformation. The initial models are taken from the 

HREC 2021 dataset for retrieval of CH objects [15] and have been 

rtificially eroded based on weathering conditions resulting from 

olluted environments and from naturally occurring climatic con- 

itions [16] . 

The contributions of this paper are: 

• The problem of cross-time 3D registration is formally defined 

and a framework for cross-time 3D registration is proposed. 

Publicly available upon publication. 
• A down-sampling methodology that detects the most valuable 

points for cross-time registration is proposed. Publicly available 

upon publication. 
• A benchmark for evaluating both traditional and cross-time reg- 

istration algorithms is created. Publicly available upon publica- 

tion. 
• An extensive evaluation of both geometry-based and deep 

learning state-of-the-art approaches on 3D cross-time registra- 

tion is performed. 

The remainder of this paper is organized as follows: In 

ection 2 related works are discussed while in Section 3 the prob- 

em of cross-time 3D registration is defined. In Section 4 the pro- 

osed methodology for cross-time 3D registration is introduced 

hile Section 5 presents the proposed evaluation benchmark. 

xperimental results on cross-time registration are presented in 

ection 6 . The paper is concluded in Section 7 . 

. Related work 

Since surface registration is fundamental to many visual com- 

uting domains, there is a very extensive literature on the subject. 

owever, to the best of our knowledge, there exists no methodol- 

gy specifically for cross-time registration. Instead, standard point 

loud or surface registration techniques have been used, but the 

esults are sub-optimal as we shall see later. In this section, we re- 

iew the methods that are most related to cross-time registration. 

or a comprehensive review of general registration methods, the 

nterested reader is referred to [17] and for a survey oriented to 

ultural heritage applications to [18] . 

Registration methods can be roughly classified into two broad 

ategories, local and global. Global registration techniques align 

he source and target objects without any prior information about 

heir relative pose, whereas in local registration, a prior coarse 

ransformation is known and the algorithm tries to refine the so- 

ution. In general, local approaches are more accurate but less ro- 

ust to initial pose than global approaches. Examples of local ap- 

roaches are the well-known Iterative Closet Point (ICP) [19] and 

ts variants [20] , while RANSAC [21] and Fast Global Registra- 

ion [22] are examples of global methods. Further, registration ap- 

roaches can rely on point-to-point correspondences between the 

ata or be correspondence-free [23] . 

In addition to geometry-based registration techniques, there has 

een a recent wave of deep learning approaches, attempting to 

vercome the challenge of prolonged running time and aiming to 

oost accuracy further [12] . 

.1. Geometry-based registration 

Correspondence-based methodologies are based on the obser- 

ation that computing the optimal alignment between two sur- 
140 
aces is equivalent to finding corresponding points and then com- 

uting the transformation that best aligns them with respect to 

inimizing a specific distance function. The Iterative Closest Point 

ICP) [19] is the best-known and most applied such algorithm for 

olving rigid registration problems. ICP iteratively alternates be- 

ween finding point-to-point correspondences and distance mini- 

ization to compute the optimal alignment. Given its popularity, a 

arge number of variants have appeared [20,24] but there are some 

rawbacks. The method is local and, thus, is effective only when 

he initial pose of the input geometries is close to the global op- 

imum, otherwise it can converge to a local minimum. Moreover, 

he iterative nature of the algorithm and its point-to-point corre- 

pondence nature result in high computational complexity. In ad- 

ition, real-world data and particularly in the case of cross-time 

egistration where erosion is involved, do not contain exact point 

evel correspondences. 

To overcome the issues of point-to-point matching, many 

trategies try to identify feature-level similarities and correspon- 

ences. Approaches like RANSAC [21] and Fast Global Registration 

FGR) [22] use feature descriptors and matching combined with 

obust fitting or optimization techniques to achieve registration. 

hese techniques are much more efficient than point-level meth- 

ds but are highly dependent on the quality of features. Feature- 

ased techniques generally involve three steps: feature detection, 

eature description and correspondence estimation. Features are a 

mall group of interest points that can be detected on both objects, 

ue to their distinctiveness or geometric stability under different 

ransformations. Each feature can be delineated by a descriptor 

hat characterizes its geometric information. Two main categories 

f descriptors exist: global and local. Global descriptors represent 

he geometric information of an entire 3D object, whereas local de- 

criptors encode the local information at each feature point [25] . 

pecifically for 3D registration local descriptors are more com- 

only used, because they can identify similar localities between 

he two surfaces to be aligned by exploiting the geometric proper- 

ies around a certain point and its neighborhood. 

A large number of descriptors have been proposed. Diez et al. 

resented an analytical review in [26] , however not every descrip- 

or is suitable for cross-time registration. Some potentially applica- 

le methodologies are next described. Fast Point Feature Histogram 

FPFH) [27] consists of pose-invariant features and is generated as 

 simplified point feature histogram for each key point and its k- 

earest neighbors. Johnson and Hebert introduced the Spin Image 

SI) descriptor [28] , a rigid transformation-invariant 2D characteri- 

ation of the surface location around a support region of a specific 

oint. This descriptor obtains competitive results in rigid registra- 

ion, but is vulnerable to symmetries, noise and clutter. The Ra- 

ial Intersection Count Image (RICI) descriptor [29] , a variation of 

he SI, has been proposed to overcome the limitations of cluttered 

cenes and is a 2D histogram of integers that represent the num- 

er of intersections of circles centered over the point of interest 

ith the 3D surface. Another variant of the SI is the Scale Invariant 

pin Image mesh descriptor (SISI) [30] , where the SI descriptor is 

omputed over an estimated local scale at each interest point. The 

ame authors also proposed the Local Depth SIFT (LD-SIFT) [30] , a 

otation and scale invariant descriptor based on the prior work of 

owe [31] . LD-SIFT represents the vicinity of the each interest point 

s a depth map by computing a local radial-angular histogram of 

he pixel value derivatives. 

Another approach to registration is based on the branch-and- 

ound framework [32,33] where the low dimensionality (6DoF) 

s taken as an advantage to exhaustively search the Special Eu- 

lidean Group SE(3) space for the optimal alignment. Although, 

hese methods can achieve a good matching regardless of initial 

onditions, they often have low efficiency. A popular methodology 

s the use of statistical models for outlier rejection and geometric 
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{  
lignment. Specific methods include the use of the Expectation- 

aximization (EM) [34] principle for finding accurately and effi- 

iently the alignment transformation [35] and the use of Gaussian 

ixture Models (GMMs) to reformulate the point-to-point corre- 

pondence problem in a lower dimension resulting in a computa- 

ionally efficient solution, resistant to noise and outliers [36,37] . 

.2. Learning-based registration 

Significant recent advances of deep learning methodologies on 

D point clouds provide new opportunities for learning point cloud 

epresentations. Milestones like PointNet [38] and DGCNN [3] offer 

tructured representations of 3D point clouds and even if originally 

esigned for point cloud classification and segmentation, they have 

e transformed and applied to point cloud registration. Learning- 

ased registration has recently shown robustness and efficiency 

ains over geometry-based techniques. 

PointNetLK [39] integrates the Lucas & Kanade (LK) algorithm 

40] with the PointNet network for aligning the global features 

roduced by the latter. PointNetLK performs well on shapes un- 

een in training, but is not robust to noise. PCRNet [41] , like Point-

etLK, uses PointNet to encode the shape information of the in- 

ut point clouds but replaces the Lucas-Kanade step by a deep 

etwork. DCP [42] is a non-iterative, one-shot algorithm that uses 

 Siamese DGCNN [3] network to extract the learned correspon- 

ences and a differentiable SVD method for registration. RPM-Net 

43] tries to improve the robustness to partial visibility by inher- 

ting the idea of the RPM algorithm [44] and incorporating it in a 

eep network. DeepGMR [45] integrates Gaussian Mixture Model 

GMM) registration [36] with neural networks by extracting pose- 

nvariant correspondences between raw point clouds and GMM pa- 

ameters. Then, these correspondences are fed into the GMM opti- 

ization module to estimate the transformation matrix in a single 

tep. The method is efficient and robust to arbitrary displacements 

nd noise. Although, DeepGMR shows highly accurate results, it es- 

imates the correspondence between all points and all components 

n the latent GMM, which is not suitable for real-life applications 

nd especially in the case of 3D objects that are changing over 

ime. 

.3. Partial registration 

A more challenging sub-problem of 3D registration is partial 

egistration, where only subsets of the source and the target ob- 

ect match to one another. Having partially overlapping areas, the 

lignment is performed by registering the mutually shared patches. 

everal methods attempt to find correspondences in the area of 

verlap by identifying keypoints that are common in both source 

nd target. Super4PCS [46] , is a variant of RANSAC which itera- 

ively aligns congruent sets of four points taken from the source 

nd the target object. The number of iteration is adaptive, so that 

hen the partial overlap is low, more iterations are performed to 

each an acceptable registration result, regardless of initial pose 

nd overlap percentage. Other methods are variants of ICP that 

eal with noisy data and partial overlap by using general optimiza- 

ion algorithms, like Simulating Annealing [24] and Particle Swarm 

ptimization [47] . More recently, partial registration has been ad- 

ressed by PRNet [48] , which follows an iterative refinement strat- 

gy. It uses deep networks to detect the points of interest followed 

y estimating the correspondences iteratively in a coarse-to-fine 

anner to perform the final registration. 

Cross-time registration and partial registration share a lot of 

haracteristics. However, there is a crucial difference: in partial 

egistration it is assumed that where overlaps exist, the shape has 

ot changed, while in cross-time registration the objects may en- 

ounter considerable shape differences throughout their surface. 
141 
. Problem statement 

.1. 3D registration 

In 3D registration we are given two 3D point clouds, the source 

 = { p i ∈ R 

3 | i = 1 , 2 , . . . , N} and the target Q = { q j ∈ R 

3 | j =
 , 2 , . . . , M} and the objective is to recover the unknown rigid

ransformation T so as to match the source P into the target point 

loud Q . 

A rigid transformation in 3D can be represented by a trans- 

ormation matrix T which consists of two components; a rotation 

ubmatrix R and a translation vector t . The rigid transformation T 

an then be represented by the following homogeneous 4 × 4 ma- 

rix: 

 = 

[
R | t 
0 | 1 

]
(1) 

here T ∈ SE (3) , R ∈ SO (3) and t ∈ R 

3 . SE (3) is the special Eu-

lidean group of rigid transformations in 3D space (rotations and 

ranslations), while SO (3) is the special orthogonal group of rota- 

ions in Euclidean Space R 

3 . 

The problem of rigid registration between two discrete point 

louds can be formulated as [49] : 

rg min 

R , t 

N ∑ 

i =1 

d( Rp i + t , Q ) (2) 

here function d(p , Q ) measures the distance of an arbitrary point 

 ∈ P to the point cloud Q and can be defined as: 

(p , Q ) = min 

q ∈ Q 
d(p, q ) (3) 

here d(p, q ) is the distance between two points in space. 

Eq. (3) is referred to as the distance or error metric. Many 

ethods [24,32] use the squared Euclidean norm as the distance 

etric and optimize Eq. (2) using least squares: 

rg min 

R , t 

N ∑ 

i =1 

‖ Rp i + t − ̂ q i ‖ 

2 (4) 

here ̂ q i is the closest point in Q to each point p i ∈ P based on

he transformation T (R , t ) . 

.2. The cross-time 3D registration problem 

Methods that monitor the geometric variation of an object over 

ime, must try to compare the 3D representations of the same ob- 

ect captured at different points in time. During these time in- 

ervals, several modifications like degradation from environmental 

rosion, cleaning and conservation actions, or even cracking may 

ave occurred on the surface of the object. Therefore, it is not ex- 

ected that the acquisition process will start at the exact same po- 

ition at both times; thus the 3D point clouds will not have the 

ame number of points and no perfect correspondences. 

Various decay phenomena and alteration processes may occur 

o the surface of a CH object. Alterations can be due to weathering 

onditions, physical or chemical aging or human intervention [50] . 

he material alteration processes can cause local loss of the surface 

bursting, chipping, peeling), change in shape (deformation, blis- 

ering, delamination, exfoliation, crumbling), cracks (splitting, hair 

racks, star cracks) or changes in texture (discoloration, bleaching, 

taining). Moreover, any conservation process can be considered as 

n alteration operation to the object, even though it does not im- 

ly a worsening of its characteristics and shape (e.g. application 

f reversible coating, varnish removal or mechanical and chemical 

leaning). 

Let us define the initial CH object as a set of 3D points P =
 p i ∈ R 

3 | i = 1 , 2 , . . . , N} and the altered object as ̂  P = { ̂  p j ∈ R 

3 | j =
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Fig. 1. Overview of the proposed CrossTimeReg cross-time 3D registration pipeline. 
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 , 2 , . . . , M} . Without loss of generality, one can assume the ex-

stence of a change function f ch that describes the modifications 

hat the initial object has undergone, so that ̂ P = f ch (P ) . f ch may

ncompass various types of alterations. 

In this framework, the 3D cross-time registration problem can 

e formulated as: given two 3D point clouds of the same object 

ut captured at different time frames, the source P = { p i ∈ R 

3 | i =
 , 2 , . . . , N} and the target ̂ P = { ̂  p j ∈ R 

3 | j = 1 , 2 , . . . , M} with N � =
, the aim is to find the unknown rigid transformation T so as 

o align the source P onto the target ̂ P as well as possible for a

pecific distance metric d: 

rg min 

R , t 

N ∑ 

i =1 

d( Rp i + t , ̂  P ) (5) 

The problem of cross-time registration can be really challeng- 

ng if all the different aspects of alterations that a CH object may 

xperience are taken into account. In this work, we focus on the 

implified but still challenging case of weathering erosion, where 

e assume that the objects have been uniformly exposed to en- 

ironmental effects, both spatially and temporally. We are moti- 

ated from the observation of [51] that a typical registration algo- 

ithm like ICP [19] , will align the source and target point clouds P

nd 

̂ P , so as to minimise the error (i.e. RMSD, Chamfer distance) 

etween them. In doing this, the registration process will often 

ring the two point clouds close together in certain areas, most 

robably where the sampling density is higher. This is not ideal 

here objects have undergone uniform erosion across their surface 

s shown in the experiments of [52] . 

This problem has a number of interesting characteristics, espe- 

ially when considered in the Cultural Heritage domain where the 

ross-time nature of P and ̂

 P arises after erosion over a long time 

eriod: 

• A classic registration algorithm will weigh more areas with 

dense sampling as more points are contributing to the error 

metric; however an erosion process is more likely to affect the 

surface of the object evenly and thus a resampling process is 

required. 
• As P and 

̂ P can be assumed to be the same object, we know 

that there exists an ideal registration (R , t ) ideal . However, as ob- 

ject scans are likely to have been taken across several years, 

probably with different scanner technology and without exter- 

nal reference points, (R , t ) ideal is not known. In Section 5 we 

have created a synthetically eroded dataset where (R , t ) ideal is 

known by definition and can be used for training and bench- 

marking cross-time registration algorithms. 

. Method overview 

In this Section, the CrossTimeReg framework is presented, see 

ig. 1 for the pipeline. The initial and eroded point clouds (also 

eferred to as source and target ) are denoted by P and 

̂ P re- 

pectively. P and 

̂ P are first down-sampled using the Curvature 
142 
own-Sampling (CDS) block and then rotation invariant features 

re computed by the Feature Extraction block (RRI). The features 

long with the point clouds are then sent to a Siamese architec- 

ure of KPConv networks. KPConv network is a segmentation net- 

ork, which estimates for each point the component that it be- 

ongs to; it thus determines a point-to-component correspondence. 

inally, the registration is performed by aligning the component 

entroids (weighted by the covariances) using the DeepGMR mod- 

le, a weighted version of the SVD solution proposed in [42] . 

Curvature down-sampling (CDS): Registration algorithms often 

se a down-sampling pre-processing step on the input point clouds 

o accelerate the registration process. Some methods [30] detect 

he most interesting points and compute a descriptor for each of 

hem while others [45,48] keep the nearest or farthest S points to 

he centroid of the object. In traditional registration, these meth- 

ds may be sufficient as the local shape of the source and target 

bject is not expected to vary. However in cross-time registration, 

he target object’s local shape is expected to be modified due to 

rosion and other effects and the aforementioned down-sampling 

pproaches may fail. To address this, we propose a down-sampling 

pproach for cross-time registration that takes into consideration 

he points that are less likely to be significantly altered by ero- 

ion. We expect these points to be those with the minimum princi- 

al curvature [53,54] . The intuitive reason behind this is that such 

oints are less exposed to erosion/degradation processes or con- 

ervation activities. Thus they are considered to be a robust rep- 

esentation of the object across such processes or activities [55] . 

e thus compute the principal curvature of each point of P and 

own-sample by retaining the S points with the minimum princi- 

al curvature values. We have selected S = 1024 (see Section 6 ). 

To compute the principal curvature λi of a point p i ∈ P , the 

eighborhood covariance matrix C i is first computed and then Eq. 

6) is resolved with respect to scalar λi (eigenvalue of C i ) and ma- 

rix u (eigenvectors of C i ) [56] : 

 i u = λi u (6) 

The symmetric 3 × 3 covariance matrix C i of a point p i is cal- 

ulated based on its local neighborhood of κ nearest points q j , j = 

 , 2 , . . . , κ : 

 i = 

1 

κ

κ∑ 

j=1 

⎡ ⎢ ⎣ 

q x 
j 
q x 

j 
q x 

j 
q y 

j 
q x 

j 
q z 

j 

q y 
j 
q x 

j 
q y 

j 
q y 

j 
q y 

j 
q z 

j 

q z 
j 
q x 

j 
q z 

j 
q y 

j 
q z 

j 
q z 

j 

⎤ ⎥ ⎦ 

(7) 

here q x 
j 
, q 

y 
j 
, q z 

j 
correspond to the x,y and z coordinates of neigh-

oring point q j respectively. 

Eigenvectors u represent the principal axes of the neighbor- 

ood: 

 = 

⎡ ⎣ 

A x A y A z 

B x B y B z 

C x C y C z 

⎤ ⎦ (8) 
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nd their eigenvalues λ are: 

= 

[ 

λA 0 0 

0 λB 0 

0 0 λC 

] 

(9) 

Then the principal curvature λi of p i is: 

i = 

min (λA , λB , λC ) 

λA + λB + λC 

(10) 

Feature extraction (RRI): We adopt the RRI (rigorous rotation 

nvariant) descriptors for the point cloud [57] which creates fea- 

ures that remain fixed under different orientations. For each point 

p i ∈ P , the RRI module searches for its K-nearest neighbors and 

onstructs a K − N N graph. Then a combination of distance, angle, 

in and cos features are computed for p i based on the local neigh- 

orhood of the K − N N graph. 

Thus, the outcome of the RRI module is a feature matrix F = 

 f i ∈ R 

D | i = 1 , 2 , . . . , S} of dimension S × D, where D = 4 ∗ K ( K 

eighbors with 4 features each). The features F are then com- 

ined with the points P = { p i ∈ R 

3 | i = 1 , 2 , . . . , S} that resulted

rom down-sampling and the concatenated matrix of dimension 

 × (3 + D ) is output to the next stage. 

Model segmentation (KPConv): We next estimate point-to- 

omponent correspondences, by segmenting each point cloud with 

he KPConv network [58] . We chose the deformable KPConv (KP- 

CNN) presented in the same work, as our segmentation backbone 

or its good performance in learning local shifts effectively by de- 

orming the convolution kernels to make them fit into the point 

loud. 

Given the down-sampled point cloud P = { p i ∈ R 

3 | i =
 , 2 , . . . , S} and its D corresponding features at each point

 = { f i ∈ R 

D | i = 1 , 2 , . . . , S} , the convolution of a kernel g at

 point x ∈ R 

3 is defined as: 

(x , P , F ) = 

∑ 

x i ∈ N x 
g( x i − x ) f i (11) 

here N x = { x i ∈ P | ‖ x i − x ‖ � r ∈ R } , is the radius neighborhood

f point x [59] . This neighborhood creates a sphere S 3 r around the 

oint of interest x , and K kernels are spread in this sphere. Let 

 ̃  x k | k = 1 , ., K} ⊂ S 3 r be the kernel points and { W k | k = 1 , ., K} be

heir associated weight matrices; then the kernel g can be defined 

n association with the linear correlation h between the kernel 

oints ̃  x k and any point ( x i − x ) of sphere S 3 r , as: 

( x i − x ) = 

K ∑ 

k =1 

h ( x i − x , ̃  x k ) W k (12) 

here 

 ( x i − x , ̃  x k ) = max 

(
0 , 1 − ‖ ( x i − x ) − ˜ x k ‖ 

σ

)
(13) 

nd σ is the influence distance between the kernel point and the 

elected point of the sphere that is related on the input density. 

Combining equations Eqs. (12) and (11) we get the standard KP- 

onv layer: 

(x , P , F ) = 

∑ 

x i ∈ N x 

( 

K ∑ 

k =1 

h ( x i − x , ̃  x k ) W k 

) 

f i (14) 

Even though the standard KPConv produces sufficiently good 

esults, we concluded that the deformable KPConv [58] suits the 

ross-time registration even better, because the network learns the 

ernel point positions. Instead of defining the kernel g on the ker- 

el points ̃  x k , the network generates a set of K shifts �(x ) for ev- 

ry point x ∈ R 

3 . Then the deformable KPConv layer is defined as:

(x , P , F ) = 

∑ 

x i ∈ N x 

( 

K ∑ 

k =1 

h ( x i − x , ̃  x k + �(x )) W k 

) 

f i (15) 
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The KPConv module estimates the point-to-component corre- 

pondences of both source and target point clouds, essentially per- 

orming a segmentation. The registration is done by the GMM- 

ased DeepGMR module, which learns a consistent GMM repre- 

entation of J components in order to recover the optimal trans- 

ormation between the segmented point clouds. Given the desired 

umber of segmentation components J, KPConv produces a respec- 

ive segmentation of the input points in the form of an S × J asso- 

iation matrix � = { γi j } whose elements represent the probability 

f a point p i belonging to a component j ∈ J . These J components

re used to express the point cloud as a Gaussian Mixture Model 

GMM) of J Gaussian distributions. 

Final alignment (DeepGMR): The association matrix �, repre- 

enting the point-to-component correspondence, is used to esti- 

ate the transformation matrix T that aligns P and 

̂ P . To this 

nd, we employ the optimization module of the DeepGMR net- 

ork [45] , where two differentiable blocks M � and M T are used 

o calculate the Gaussian mixture model (GMM) parameters from 

he association matrix � and transformation matrix T respectively. 

M � block converts the given point cloud P = { p i | i = 1 , ., S} and

ts association matrix � = { γi j | i = 1 , . . . , S & j = 1 , . . . , J} to

MM parameters � as: 

j = (π j , μ j , 	 j ) (16) 

here: π j = 

1 
S 

S ∑ 

i =1 

γi j is a scalar mixture weight, μ j is the mean 

ector and � the covariance matrix of the j-th component, com- 

uted by solving the equations: 

π j μ j = 

S ∑ 

i =1 

γi j p i (17) 

π j 	 j = 

S ∑ 

i =1 

γi j (p i − μ j )(p i − μ j ) 
� (18) 

Finally, the transformation matrix T ∗ = (R , t ) is computed by 

lock M T , which tries to minimize the KL-divergence between the 

ransformed GMM parameters � of the source and the GMMs ̂ �

f the target: 

 

∗ = arg min 

T 
KL (T ( ̂  �) | �) = arg min 

T 

J ∑ 

j=1 

ˆ π j 

σ 2 
j 

‖ T ( ˆ μ j ) − μ j ‖ 

2 (19)

here 	 j = diag([ σ 2 
j 
, σ 2 

j 
, σ 2 

j 
]) due to the fact that the covariances 

re chosen to be isotropic. This computes the alignment of the 

omponents’ centroids instead of the alignment of the point clouds 

hemselves. 

The loss function of the DeepGMR module is back-propagated 

o the KPConv module in order to fine-tune its parameters with 

espect to the segmentation into the desired J components. 

Loss function: The training objective of the loss function is to 

inimize the registration error. Many previous methods try to 

inimize the actual distance between the corresponding points in 

ource and target point clouds [41,60] , but in the case of cross-time 

egistration this may not be ideal. We employ the directed Haus- 

orff distance, which has been proposed before [51] as a suitable 

etric for erosion. Given the ground truth transformation T ideal = 

R , t ) ideal that aligns the source P = { p i ∈ R 

3 | i = 1 , 2 , . . . , N} to the

arget ̂  P = { ̂  p j ∈ R 

3 | j = 1 , 2 , . . . , M} and the predicted transforma-

ion T = (R , t ) that CrossTimeReg estimates, the loss function that 

e aim to minimize is: 

 = 

√ 

D H + D MH (20) 

here D H is the standard Hausdorff distance calculated as the 

aximum of the directed Hausdorff distances D ,where D = 
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Fig. 2. The steps of the ECHO dataset creation for one object. The object is initially transformed and then the erosion simulator runs for 20 epochs of 3 years each. In this 

example, the initial model is shown degraded due to the effect of acid rain after 3, 15, 30 and 60 years. Below each step the point-wise MSD ( Eq. (26) ) and RMSD from the 

transformed model are given. 
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Fig. 3. Original CH objects from SHREC2021 datasetShape. 

Fig. 4. Original CH objects from SHREC2021 datasetCulture. 
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ax i ( min j ‖ p i − ̂ p j ‖ ) : 
 H = max (D h (P , ̂  P ) D h ( ̂

 P , P )) (21) 

nd D MH is the average directed Hausdorff distance: 

 MH = 

1 

N 

N ∑ 

i =1 

min 

j 
(‖ p i − ̂ p j ‖ ) (22) 

The average directed Hausdorff distance denotes the mean 

alue of the minimum Euclidean distances ‖ p i − ̂ p j ‖ between the 

nitial source point cloud and the eroded target point cloud. 

. ECHO: a dataset of Eroded Cultural Heritage Objects 

To the best of our knowledge, there is no publicly available 

ataset with ground truth for cross-time 3D registration. In or- 

er to benchmark and train cross-time 3D registration algorithms, 

e propose the ECHO dataset. Starting from a publicly available 

ataset of CH objects (see Section 5.1 ) we first applied a random 

otation and translation (R , t ) to the objects; then we used an ar- 

ificial erosion process to erode the transformed objects. Since ero- 

ion is done in situ and the (R , t ) parameters are known, we have 

he ground truth for benchmarking cross-time registration algo- 

ithms. The process is outlined in Fig. 2 . 

The ECHO dataset consists of three main parts, the original 

ataset, the transformed objects and the transformed-eroded ob- 

ects. All three parts of the dataset along with the steps performed 

re explained thoroughly in the following subsections. 

ECHO will be made publicly available with this paper. 

.1. Initial CH dataset 

As a cornerstone, we selected the freely available SHREC 2021: 

etrieval of Cultural Heritage Objects dataset [15] hereafter called 

HREC2021. SHREC2021 dataset consists of 1575 3D scans of 

H objects from pre-Columbian cultures captured in the Josefina 

amos de Cox museum in Lima, Peru. The SHREC2021 dataset 

s separated into two sub-datasets, considering two aspects, the 

hape and the culture. Each of the datasets is also divided into 

 collection set (70% of the dataset) and a query set (30% of the 

ataset) that can be used for training and testing respectively. The 

ataset regarding shape (referred as datasetShape ) consists of 938 

bjects, 661 objects for training and 277 for testing. The other 

ataset is related to the retrieval-by-culture challenge of the SHREC 

ompetition, thus we will refer to it as datasetCulture . This dataset 

onsists of 637 objects, 448 objects for training and 189 for test- 

ng. The objects of both sub-datasets are 3D meshes in.OBJ format, 

ach consists of nearly 40,0 0 0 triangles, and they have been pre- 

rocessed so as to be centered in the origin of 3D space and with

he up direction along the Y-axis. Figs. 3 and 4 show examples 

rom SHREC2021. 
144 
.2. Building the ECHO dataset 

Random transformation As a first step, we generated a variation 

f the initial dataset by applying a randomly calculated rigid 3D 

ransformation; each object of the SHREC2021 dataset has been 

andomly rotated and translated. The rotation parameters were un- 

estricted while the translation vector was restricted to a maxi- 

um limit of 30 cm. The latter was decided based on the size of 

he objects. Fig. 5 shows examples of the initial objects along with 

heir transformed instances. This dataset can of course be used as 

s for evaluating regular 3D registration algorithms. However, we 

xtended it as per the next Section, in order to assess cross-time 

egistration algorithms specifically. 

Introduction of erosion Erosion due to atmospheric factors can 

ffect the physiology of the object, resulting in alteration of its 

mall-scale features that can challenge the registration process. 

e extended the aforementioned dataset by providing an eroded 
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Fig. 5. Original CH objects from SHREC2021 datasetShape (left), along with their 

transformed instances (middle). On the (right), a combination of the original and 

the transformed object is shown in order to demonstrate the translation value. 
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Fig. 6. Point-wise MSD between the initial and eroded carbonate stone objects over 

a period of 0–100 years, for different weathering cases. 
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ataset of the transformed objects. The eroded set represents the 

rosion/degradation phenomenon that an object faces when ex- 

osed to the outdoor environment. Without loss of generality, we 

ocus on chemical weathering of carbonate stone, i.e. the process 

hat carbonate stone objects undergo when exposed to weather 

nd especially to common atmospheric chemicals, such as carbon 

ioxide ( CO 2 ) and nitrogen dioxide ( NO 2 ). 

The exact physico-chemical composition of the original objects 

f our source CH dataset is not known. Since our aim is the train-

ng and benchmarking of cross-time registration algorithms, rather 

han the simulation of realistic erosion for the objects’ specific ma- 

erial, we have assumed that they consist of carbonate stone (a 

ommon material for CH objects, e.g. around the Mediterranean 

egion) and applied weathering models that were available to us 

or this material (see below). Note that weathering models for 

ther materials are not commonly available and, to the best of our 

nowledge, no other large publicly available dataset of eroding CH 

bjects exists, for any type of material, that is suitable for training 

nd testing deep networks (i.e. contains ground truth). 

To this end, we adapted the simulation algorithm for the ero- 

ion of carbonate stone and marble presented in [51] . The simula- 

or estimates the degradation of homogeneous marble or carbonate 

tone objects after their uniform exposure (spatially and tempo- 

ally) to environmental conditions of polluted areas. We used the 

ases of chemical weathering in polluted atmosphere regions and 

he interaction of sulfur dioxide ( SO 2 ), nitrogen dioxide ( NO 2 ) and 

arbon dioxide ( CO 2 ) with the material of the object. Specifically, 

e considered the effects of dry deposition of crust due to pol- 

ution and the recession by acid rain, which can result in gain or 

oss of material on the surface of an object. Dry deposition indi- 

ates the reaction of the material with SO 2 and NO 2 and manifests 

tself by the creation of crust upon the object’s surface due to the 
145 
ransfer of chemical compounds from polluted industrial environ- 

ents [61] . Recession by acid rain is the effect of surface loss of 

he object mainly due to its reaction with water and SO 2 , NO 2 and 

O 2 [62] . 

These weathering processes describe the change of the surface 

eometry and can be formulated as follows. Assuming that the 

nitial object is modelled as a set of 3D points P = { p i ∈ R 

3 | i =
 , 2 , . . . , N} and n = { n i ∈ R 

3 | i = 1 , 2 , . . . , N} are the normals per

D point, the deposition/recession process relies on a computa- 

ional and chemical model. The model can be formulated as a uni- 

orm offsetting procedure based on the diffusion equation: 

∂P 

∂t 
= μ∇ 

2 P = δ n (23) 

o the target eroded surface ̂ P = { ̂  p j ∈ R 

3 | j = 1 , 2 , . . . , N} is then

alculated as 

 

 = P + δ n dt (24) 

hich becomes: ̂ p j = p i + δi n i dt (25) 

here n i is the normal vector of point p i , δi is the surface alter- 

tion at this point as predicted by the erosion model and dt is the 

ime interval that the change is occurred. The above computation 

an be repeated for a number of epochs. Each epoch consists of 

ime intervals of dt, where the environmental conditions are sim- 

lated. At the end of each epoch a new eroded surface is produced. 

he final surface produced after the total number of epochs reflects 

he changes that the initial surface faced when exposed to weath- 

ring conditions. If δi > 0 , the process simulates the surface reces- 

ion due to dry deposition and when δi < 0 it simulates the reces- 

ion due to acid rain at a specific point i . The surface alteration 

ffset δ derives from modeling the chemical processes according 

o the weathering models, described in [51,61–64] . 

In order to quantify the degradation that the CH objects expe- 

ience under the above chemical models, we computed the Mean 

quare Distance (MSD) between each initial object and its eroded 

ounterpart over a period of 0–100 years. Let P 0 = { p 0 i ∈ R 

3 | i =
 , 2 , . . . , N} be the original transformed point cloud and ̂

 P e = { ̂  p e j ∈
 

3 | j = 1 , 2 , . . . , M} be the eroded point cloud after e years of ero-

ion ( ̂  P e has level of erosion = e); then the MSD at level e is cal-

ulated as: 

SD = 

1 

N 

N ∑ 

i =1 

‖ p 0 i − ̂ p e j ‖ 

2 (26) 

here ̂ p e j is the nearest neighbor of p 0 i . 

Fig. 6 shows how considerably high is the degradation due to 

cid rain, compared to the respective degradation due to crust. 
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Fig. 7. Original CH objects from SHREC2021 datasetShape (left), along with their 

transformed instances (middle). The transformed object after application of acid 

rain erosion simulation is shown on the (right). 
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The erosion simulation is performed on each transformed ob- 

ect, for the time interval of 60 years, divided into 20 epochs (of 3 

ears each). During the simulation, the object’s rigid parameters do 

ot change, so we can argue that the ground truth random trans- 

ormation matrix still holds. 

Fig. 7 shows examples of the three main steps of the creation 

f ECHO dataset, the original object, the transformed one and the 

roded instance. 

. Experiments 

Our experiments are divided into five parts. First, we evaluate 

he proposed registration algorithm against the relevant state-of- 

he-art methods using the proposed ECHO dataset for the challeng- 

ng problem of cross-time registration. Second, we compare the 

ethods across multiple levels of erosion on ECHO. Third, we eval- 

ate them on the task of traditional registration on two datasets; 

he ECHO dataset (containing only random rigid transformations, 

o erosion) and the SHREC2016 dataset [65] . Fourth, we evalu- 

te CrossTimeReg on real erosion data, by performing cross-time 

egistration on data from the PRESIOUS project [16] ; these data 

re derived from erosion accelerators that simulate acid rain, salt 

nd freeze-thaw effects on marble and soapstone slabs. Fifth, we 

ttempt to measure the contribution of the proposed curvature 

ownsampling on the cross-time registration task. 

We compare against both geometry-based and deep-learning, 

ocal and global, as well as correspondence-based and non- 

orrespondence-based algorithms. Regarding geometry-based 

ethods, we compare against ICP [19] , RANSAC [21] and Fast 

lobal Registration (FGR) [22] . For RANSAC and FGR, we evalu- 

ted several variants with different feature extraction methods: 

PFH [27] , Spin Images (SI) [28] , SISI, LD-SIFT [30] , and RICI

29] . We tested each feature descriptor, as a pre-process step 

or both RANSAC and FGR algorithms. However, we kept and 

resent the combinations that gave the best result in the Recall α
etric. Regarding deep-learning methods, we evaluated PRNet 

48] , PointNetLK [39] , PCRNet [41] , RPM-Net [43] , DCP [42] and

eepGMR [45] . For ICP, RANSAC, FGR and FPFH we used the 

ython implementations from the Open3D library [66] , while for 
146 
ISI, LD-SIFT and RICI we adapted the code bases released by the 

uthors, which were implemented in MATLAB and C++. For the 

eep-learning methods, we used the pre-trained models provided 

y the open-source library Learning3D [67] . To ensure a fair 

omparison, all deep learning methods (including the proposed 

ne) have been trained on the ModelNet dataset [68] . We have 

rained the complete CrossTimeReg pipeline using the ModelNet 

ataset with the annotated data provided in [45] . The first 20 

lasses of ModelNet have been used, as only those have been 

nnotated by the authors (the rest were used for testing). Random 

ranslations and rotations are generated on the fly during the 

raining/validation process for each annotated input point cloud of 

he ModelNet dataset. Based on the ablation study [45] regarding 

he ideal number J of Gaussian distributions, we use J = 16 for all 

xperiments. 

All tests were run on a PC with an i7-7700K CPU at 4.20 GHz, 

VIDIA GeForce GTX 1080 Ti GPU and 32 GB of RAM. 

.1. Evaluation metrics 

The rotation and translation errors are the absolute errors in 

uler angles and translation vectors with respect to the ground 

ruth. Ideally, both should be zero: 

If T GT = (R GT , t GT ) and T pred = (R pred , t pred ) are the ground truth

nd predicted transformations respectively, the rotation and trans- 

ation errors are measured as: 

r ror (R ) = ‖ I − R 

−1 
GT R pred ‖ (27) 

r ror (t) = ‖ t GT − t pred ‖ (28) 

here I is the identity matrix. 

We next measure the root mean square error (RMSE) in Eu- 

lidean space against the ground truth solution. For the case of 

ross time registration, it is not sufficient to consider the registra- 

ion error between the transformed source and the target, since 

here may not exist exact correspondence between them. Further, 

he commonly eroded surfaces of the objects may erroneously be 

easured as registration error, even though they represent the ac- 

ual degradation of material. We thus measure the effect of the 

redicted transformation T pred against the ground truth transfor- 

ation T GT on the source object based on [69] : 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T pred p i − T GT p i ) ‖ 

2 (29) 

here N is the total points of the source object. 

Moreover, following [12,70] , we use the root mean square dis- 

ance (RMSD) metric as a distance function employing Euclidean 

istance. It measures the similarity across the post-registration 

oint cloud and the target point cloud (ground truth). This met- 

ic often appears in the literature as RMSE, but we decided to dif- 

erentiate it from the aforementioned RMSE of Eq. (29) in order to 

ighlight the difference of measuring the distance between the tar- 

et and transformed point clouds from the error based only on the 

round truth transformation. This results from the observation that 

he source and the target are not the same or parts of the same 

oint cloud. The target object is eroded, which means that even if 

e perform the ground truth transformation on the source object, 

he result will not coincide with the target object. Thus, the RMSD 

hich measures the distance between the point clouds, will not 

resent the real registration success or error. We estimate RMSD 

s: 

MSD = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T pred p i − ̂ p i ) ‖ 

2 (30) 
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Table 1 

Registration results on the ECHO dataset when only random rotations, translations and 60 years of erosion are performed on the initial objects. 

The metrics evaluated are rotation error, Error(R), translation error, Error(t), root mean square error, RMSE, root mean square distance, RMSD and 

Recall with threshold 0.2. Bold and dark gray denote best and second best performing methods for each measure respectively. For fairness reasons, 

we have not included in bold, cases where CrossTimeReg performs best when trained on the training partition of ECHO; instead such cases are in 

bold italics. 

Method Registration Error(R) Error(t) RMSE RMSD Recall a (%) Mean Exec. 

Local Global Time (sec) 

Geometry-based ICP [19] � 1.6992 42.5667 38.6065 42.583 0 34 

FPFH-RANSAC [21,27] � 1.8314 29.2151 29.3316 29.2326 0 32 

SI-FGR [22,28] � 1.8202 0.0629 1.1298 1.1344 21.91 32 

SISI-RANSAC [21,30] � 0.9984 0.1044 0.6870 0.6877 96.88 67 

LD-SIFT -RANSAC [21,30] � 0.3496 0.0793 0.2789 0.2878 98.79 68 

RICI-FGR [22,29] � 1.1396 0.0495 1.1832 1.1396 20.77 38 

Deep Learning PRNet [48] � 1.7514 1.0184 1.4723 1.4858 43.12 14 

PointNetLK [39] � 1.7413 29.2389 29.2514 29.2561 0 11 

PCRNet [41] � 1.8095 49.3442 49.3603 49.3600 0 10 

RPM-Net [43] � 1.6993 29.2594 29.2784 29.2755 0 15 

DCP [42] � 1.6881 38.6109 38.6542 38.6133 0 15 

DeepGMR [45] � 1.0065 0.0673 0.9454 0.6746 99.31 4 

CrossTimeReg � 0.9942 0.0448 0.6764 0.6812 99.55 6 

CrossTimeReg (trained on ECHO) � 0.1397 0.0714 0.2606 0.6928 99.98 6 
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Since exact point correspondences do not exist in cross-time 

egistration, we approximate the computation using the nearest 

eighbor ̂ p i of the respective point. 

Finally, we compute the success rate across the dataset recall α, 

.e. the percentage of tests for which the RMSE is below a certain 

hreshold α: 

ecall α = 

| S α| 
| S| × 100% (31) 

here | S| is the total number of tests performed and | S α| is the

umber of tests that achieve RMSE less that the threshold α. 

In previous literature, more metrics have been proposed and 

sed to evaluate registration techniques, such as Chamfer distance 

r Earth Mover’s Distance [71] . However, these metrics are less ro- 

ust and have the same problem as RMSD in the case of erosion, 

.e. they do not take into consideration the common erosion that 

ay have occurred on all points of the surface. They have thus not 

een considered further. 

.2. Experimental results and analysis 

Synthetic data - ECHO dataset In Table 1 we summarize the 

uantitative registration results on the challenging ECHO dataset 

or cross-time 3D registration; Fig. 8 illustrates some qualitative re- 

ults. CrossTimeReg generally outperforms the state-of-the-art un- 

er most performance metrics. 

Since cross-time registration involves point clouds with non ex- 

ct point-level correspondences, methods like FPFH and DCP fail 

o converge in every run of this experiment. In addition, the ini- 

ial poses of corresponding objects are generally far apart, both in 

erms of translation and rotation, and thus local methods like ICP, 

ointNetLK and PRNet fail to converge for many objects. 

The performance of geometry-based global registration meth- 

ds RANSAC and FGR rely on feature matching or keypoint de- 

ection from hand-crafted descriptors. Such descriptors face un- 

sual challenges in the case of eroded objects. When SI is used 

s the local descriptor, its instability in the presence of noise and 

on-uniform sampling of the object’s surface, result in many failed 

egistrations. SISI and RICI, being derivatives of the SI, face simi- 

ar challenges. RICI fails to properly identify the keypoints across 

he source and the target because it counts the intersections of 

omocentric circles with the surface. A target object which is 

venly eroded produces different intersections to the correspond- 

ng source object. LD-SIFT, being both rotation and scale invariant, 
147 
erforms considerably better than the rest of the state-of-the-art; 

ince erosion may affect the surface of the object evenly, the scale 

nvariant features result in better recovery of the correct transfor- 

ation. However, in terms of translation, the errors are larger and 

his is reflected in the Recall α metric which is not as good as that 

f CrossTimeReg. A significant disadvantage of LD-SIFT is the large 

omputation time and memory requirements which precludes its 

se in real time applications and on large scale datasets. 

Interestingly, most deep learning methods perform significantly 

orse on the cross-time registration problem than geometry-based 

ethods. This can be due to the fact that the networks have been 

rained on a different dataset and task than the related test ones. 

s mentioned before, to ensure a fair comparison, all deep learning 

ethods have been trained on the ModelNet dataset for the tradi- 

ional 3D registration problem. Thus, methods like PointNetLK that 

re trained on feature detection for specific object categories, fail 

o recognize useful features in different objects categories, like the 

ots and figurines of cultural heritage datasets. The generalization 

o unseen data, unrestricted rotation and significant translation re- 

ults in poor performance for many deep learning methods. How- 

ver, PRNet, DeepGMR and CrossTimeReg seem to overcome this 

bstacle and produce accurate registration results. The fact that 

RNet was designed to perform partial-to-partial registration, can 

xplain why the method converges on the cross-time registration 

roblem. Cross-time registration shares a lot of common with the 

artial-to-partial registration, since the source and the target may 

ave different surfaces but share common parts of their geometry. 

till, PRNet is a local method and does not converge under large 

ransformations. 

Both DeepGMR and CrossTimeReg learn latent correspondences 

etween the point clouds and GMM components, which are pose- 

nvariant. Thus, the registration result is invariant to the magnitude 

f transformation or the density of the input geometries. How- 

ver, DeepGMR estimates the correspondence between all points 

nd all components in the latent GMM, meaning that its perfor- 

ance degrades when the point clouds partially overlap or if the 

oints of the source and the target point clouds have been shuf- 

ed and randomly sampled. CrossTimeReg overcomes this draw- 

ack with the addition of the curvature based sub-sampling step. 

oreover, with the addition of the KPConv network, CrossTimeReg 

earns local shifts effectively, im plying that it learns the ero- 

ion part of the cross-time registration. The CrossTimeReg model 

as been trained in the same dataset as the rest of the deep 
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Fig. 8. Comparison between different registration methods on examples from the ECHO dataset for cross-time registration. Methods with the highest recall rates (Recall α > 

40% ) are included. 
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Fig. 9. Comparison between different registration methods on examples from the 

ECHO dataset for cross-time registration on different levels of erosion. 
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etworks (ModelNet), so that it is fairly comparable against the 

tate-of-the-art. In order to investigate the effect of using eroded 

odels in training, we have also fine-tuned the CrossTimeReg 

odel on the training partition of the ECHO dataset. As can be 

een from the last line of Table 1 , the performance increases 

pectacularly. 

ECHO Dataset - Multiple levels of erosion: In order to detect how 

he registration methods perform on different levels of degrada- 

ion, in this section we evaluate the registration methods on the 

CHO dataset against different levels of erosion. We have per- 

ormed experiments for 20 different levels of erosion; from 1 year 

p to 60 years. Fig. 9 shows the RMSE metric for the most accurate

ethods. For clarity of illustration, we have excluded the methods 

hich had average RMSE greater than 20, for every erosion level. 

t can be deduced that most methods tend to perform worse as 

he level of erosion increases. This is because when there is no or 

mall amount of degradation, the geometry of the objects remains 

asically the same, so the identified keypoints and subsequent reg- 

stration are accurate enough. However, as degradation increases, 

he target shape differentiates more and more from the source 

hape and most traditional registration methods tend to lose ac- 

uracy. Across all levels of erosion, CrossTimeReg appears to have 

table performance, which even increases slightly at the highest 

evels. 

In Table 2 we summarize the quantitative registration results on 

he ECHO dataset when only random rotations and translations are 

erformed (no erosion). 
148 
By comparing Tables 1 and 2 we can see that, relative to other 

ethods, CrossTimeReg performs better when erosion is involved. 

SHREC2016 dataset - traditional registration: In this section 

e evaluate the methods on traditional registration using the 

HREC2016 dataset [65] . We chose this dataset, consisting of 383 

odels, as it is related to the cultural heritage domain. The 3D ob- 

ects are pottery models originating from the Virtual Hampson Mu- 

eum collection [72] . Again, we performed random rotations and 
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Table 2 

Registration results on the ECHO dataset when only random rotations and translations are per- 

formed on the initial objects (no erosion). Bold and dark gray denote best and second best per- 

forming methods for each measure respectively. 

Method Error(R) Error(t) RMSE Recall a (%) 

Geometry-based ICP [19] 1.6453 40.3423 30.0234 0 

FPFH-RANSAC [21,27] 1.8315 29.2325 29.4201 0.07 

SI-FGR [22,28] 1.7274 0.0247 1.0814 92.52 

SISI-RANSAC [21,30] 1.2945 0.2363 0.8774 85.89 

LD-SIFT -RANSAC [21,30] 0.7021 0.1661 0.5102 99.01 

RICI-FGR [22,29] 1.7392 0.0272 1.0814 93.73 

Deep Learning PRNet [48] 1.7368 0.9868 1.4728 49.35 

PointNetLK [39] 1.7346 29.2016 29.2192 0 

PCRNet [41] 1.8054 49.4641 49.4701 0 

RPM-Net [43] 1.6779 29.1860 29.2018 0 

DCP [42] 1.7219 39.7070 39.7200 0 

DeepGMR [45] 0.9578 1.9203 0.5192 98.34 

CrossTimeReg 0.9456 1.0821 0.6751 99.43 

Table 3 

Registration results on SHREC2016 dataset when only random rotations and translations are per- 

formed (no erosion). Bold and dark gray denote best and second best performing methods for each 

measure respectively. 

Method Error(R) Error(t) RMSE Recall a (%) 

Geometry-based ICP [19] 1.2593 20.8497 91.60 9.14 

FPFH-RANSAC [21,27] 1.2295 18.2610 89.56 9.39 

SI-FGR [22,28] 0.0062 0.0014 0.002 99.67 

SISI-RANSAC [21,30] 0.0118 1.6920 3.40 99.47 

LD-SIFT -RANSAC [21,30] 0.0021 0.0418 0.002 99.74 

RICI-FGR [22,29] 0.0088 1.6819 2.66 98.47 

Deep Learning PRNet [48] 1.4985 71.6138 119.12 1.30 

PointNetLK [39] 1.4044 22.0351 100.32 7.57 

PCRNet [41] 1.3341 35.9334 98.40 2.61 

RPM-Net [43] 1.3670 98.0969 143.25 0.26 

DCP [42] 1.5797 123.5982 160.85 0 

DeepGMR [45] 0.7650 0.2756 5.47 98.56 

CrossTimeReg 0.0341 0.2328 2.64 98.13 

Fig. 10. Some of the stone slabs used in PRESIOUS accelerated erosion experi- 

ments [16] . The stones named Elefsis consist of pentelic marble, while stones names 

Nidaros consist of grytdal soapstone, representing the material of two monuments 

that were considered in the PRESIOUS project, the Demeter Sanctuary in Elefsis 

(Greece) and the Nidaros Cathedral in Trondheim (Norway) respectively. 
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ranslations to the objects (no erosion is present) and the results 

re shown in Table 3 . The behaviour of the methods is similar to

hat on the ECHO dataset, a positive indication for the quality of 

CHO; CrossTimeReg demonstrates high accuracy without achiev- 

ng the top results. Interestingly, in both Tables 2 and 3 where 

o erosion is involved, CrossTimeReg is one of the top 2 deep 

earning methods, while non-learning methods perform extremely 

ell. 

PRESIOUS dataset - real erosion data from accelerated erosion ex- 

eriments: To demonstrate how CrossTimeReg performs in the case 

f real erosion data, we employed data from the PRESIOUS EU 

roject [16] . These data consist of three accelerated erosion exper- 

ments on two different types of stone slabs; pentelic marble and 

rytdal soapstone, see Fig. 10 . 
149 
The erosion effects that were studied in the accelerated erosion 

xperiments were acid rain weathering, salt and freeze-and-thaw 

ffects. Table 4 gives details on the 3D scanned slabs across the 

rosion experiments. We tested CrossTimeReg and LD-SIFT with 

ANSAC, see Table 5 . For each stone slab, we register the initial 

can with the scan after the first period of erosion (Round 1 - 

ound 2), the scan after the first period with the final scan (Round 

 - Round 3) and the initial scan with the final scan after 2 pe-

iods of experiments (Round 1 - Round 3). Both methods have 

een run on the same hardware. CrossTimeReg’s execution time 

ncreased with the number of object points, but this was only due 

o the curvature downsampling component; the execution of the 

est of the modules of CrossTimeReg remained constant, irrespec- 

ive of the number of object points. LD-SIFT had to be interrupted 

fter 4 hours on the same data. To overcome this, we uniformly 

own-sampled the 3D models, so that the down-sampled meshes 

ould contain 50K points. For this reason, we omitted the execu- 

ion time of LD-SIFT in the above Table. Since, the dataset had no 

round truth of the transformations performed on the objects, we 

easured the RMSD based on eq. (30) , which measures also the 

istance due to the degradation of the objects. Table 5 and Fig. 11 

how that CrossTimeReg behaves favourably compared to LD-SIFT 

n real data. 

Evaluating curvature downsampling (CDS) for cross-time registra- 

ion: In order to get a better intuition of the contribution of the 

roposed downsampling method on final performance, we carried 

ut an ablation study on the ECHO dataset. The erosion level was 

aried from no erosion (only random rotations and translations) 

p to 60 years of erosion due to deposition of crust and acid rain. 

e compare against the case where uniform sampling, based on 
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Table 4 

Details of the slabs used in the PRESIOUS dataset. Round 1 contains the initial 

scanned object, Round 2 after the first period of erosion and Round 3 after the 

second period of erosion. 

Experiment Material Stone Slab Label Round # points 

Freeze and 

Thaw 

1 998621 

Pentelic Marble Elefsis Large 01 2 790553 

3 847791 

1 1904088 

Grytdal Soapstone Nidaros Bad Large 

01 

2 2671989 

3 2778924 

Salt 1 1236236 

Pentelic Marble Elefsis Large 02 2 1050038 

3 1336365 

1 2023069 

Grytdal Soapstone Nidaros Bad Large 

02 

2 3978584 

3 4250544 

Acid Rain 1 983698 

Pentelic Marble Elefsis Large 03 2 976587 

3 612447 

1 3009981 

Grytdal Soapstone Nidaros Good 

Large 03 

2 2858613 

3 3130228 

Table 5 

Registration results on the PRESIOUS dataset of real erosion data from accelerated 

experiments. The best performance between LD-SIFT and CrossTimeReg is in bold. 

CrossTimeReg was run on the original datasets; LD-SIFT had not completed execu- 

tion after 4h on the original datasets and was run on subsampled versions. 

Exp. Stone Slab Label Rounds LD-SIFT Cross Time Reg 

RANSAC 

[21,30] Exec.Time 

RMSD RMSD (sec) 

Freeze and 

Thaw 

1 - 2 0.03854 0.03817 250 

Elefsis Large 01 2 - 3 0.05358 0.03858 196 

1 - 3 0.05916 0.03867 264 

1 - 2 0.05087 0.03617 450 

Nidaros Bad Large 

01 

2 - 3 0.03605 0.03132 511 

1 - 3 0.03840 0.03838 461 

Salt 1 - 2 0.04682 0.03888 252 

Elefsis Large 02 2 - 3 0.03667 0.03719 250 

1 - 3 0.04079 0.03676 239 

1 - 2 0.03831 0.03564 663 

Nidaros Bad Large 

02 

2 - 3 0.04702 0.03793 900 

1 - 3 0.03537 0.03033 699 

Acid Rain 1 - 2 0.03552 0.03799 174 

Elefsis Large 03 2 - 3 0.04253 0.03544 118 

1 - 3 0.05479 0.03667 150 

1 - 2 0.03896 0.03931 331 

Nidaros Good 

Large 03 

2 - 3 0.03460 0.03819 343 

1 - 3 0.03794 0.03253 406 

v

0

c  

t

e

r

e

Fig. 11. Qualitative comparison between CrossTimeReg and LD-SIFT on examples 

from the PRESIOUS dataset of real eroded data. 

Fig. 12. Ablation study of downsampling methodologies on different levels of ero- 

sion on the ECHO dataset. 
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oxel size, is used; in our experiments we considered voxel size = 

.05 (5 cm in metric scale) which gives the best results. We cal- 

ulated the RMSE based on Eq. (29) . As can be seen from Fig. 12 ,

he proposed downsampling scheme behaves stably across levels of 

rosion. On the contrary, uniform downsampling has better RMSE 

esults on small erosion values but increases with the level of 

rosion. 
150 
. Conclusions and future work 

The challenging problem of cross-time 3D registration has been 

efined and CrossTimeReg, a deep learning method for cross- 

ime 3D registration, has been proposed. CrossTimeReg achieves 

tate-of-art accuracy and robustness to large initial transformations 

hile being computationally efficient. Indeed computational effi- 

iency is a main advantage of the proposed method against previ- 

us very accurate geometry based methods. The proposed method 

s also very stable as the level of erosion increases. Its compu- 

ational efficiency can be further optimized, especially the sub- 

ampling step. A new dataset, ECHO, has been created to facili- 

ate the evaluation of techniques on cross-time registration with 

igh quality models and ground truth. We anticipate that the 

ublic availability of ECHO will facilitate future experiments for 

ross-time related tasks (registration, retrieval, recognition). In ad- 
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ition, an implementation-based comparison of both deep learning 

nd geometry-based object registration algorithms has been made, 

ith some interesting observations. 

As a future step, we consider to replace the hand-crafted fea- 

ures with features learned specifically for cross-time registration 

y the network. We plan to integrate our network into larger sys- 

ems, for tasks such as monitoring and segmentation of changes 

hat CH objects undergo and extend the framework to register and 

use multiple modalities, in addition to 3D point clouds. Moreover, 

e intend to study partiality in conjunction with degradation on 

H objects. 

If extreme erosion values are applied on surface meshes, then 

esh folding can occur. This can also arise on boundary and fragile 

dges (e.g. Fig. 2 ). Mesh folding is a challenging but worthwhile 

roblem to address (see for example [73,74] ). 

Another potential avenue of future work is to apply a non- 

niform, more realistic erosion model in the simulation pro- 

ess, which could take into consideration the surface’s orientation, 

hape and texture. 
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