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Abstract 

Criticality in the brain is considered by many to be one of the underlying activity dynamics 

for healthy neural networks, and thereby important for optimal information processing and 

computational capacity. Furthermore, the emergence of critical dynamics has been associated 

with the balance of excitation to inhibition (E/I). The aim of this thesis was to explore the 

relationship of E/I balance with emergence of critical dynamics, stability of critical dynamics 

and critical resilience. This was examined by creating an in silico model predicting which 

ratios of excitatory to inhibitory neurons supported critical emergence, and then culturing 

biological neural networks based on the modeled data. These networks consisted of 8%, 15% 

and 24% inhibitory neurons. Electrophysiological data were obtained from the networks, then 

the topology was analyzed with graph theory, critical dynamics were assessed, and network 

resilience was tested with GABA and NMDA perturbation. Finally, the topology, bursting 

activity, synchrony, and the effects of cell culture media change were studied with regard to 

critical dynamics. Our in vitro data suggests that neural networks consisting of 24% inhibitory 

neurons, compared to networks with inhibitory populations of 8% and 15%, tend to have 

better critical resilience and critical emergence. Our data also suggests that networks with 

24% and 15% inhibitory populations stay active over longer periods than the lower inhibitory 

population networks and that graph theory parameters clustering, mean degree and small-

worldness seem to change with increased inhibitory populations. Network bursts and 

synchronous activity tended to increase with inhibitory populations, however, out of the two, 

only evidence for synchronous activity’s association to critical dynamics was found.  
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1. Introduction 
Criticality in the brain is considered by many to be one of the underlying activity dynamics 

for healthy neural networks and this dynamic is accompanied by a signaling behavior named 

neuronal avalanches following distinct size distributions. This dynamic emerges 

spontaneously both in vivo and in vitro through self-organization and was subsequently 

named self-organized criticality (SOC).   

This mode of activity is proposed to be one that maximizes information transfer and capacity 

(1) and it has indicated relevance to disease and information integration mechanisms (1-5). 

Through self-organization, the dynamic also encompasses more researched topics like 

attractor dynamics, albeit in a different kind of attractor state then the ones previously studied 

in hippocampal cells. The research of this topic might not only be of clinical interest, but also 

as a new puzzle-piece in understanding information processing and homeostatic brain 

mechanisms.       

1.1 Definitions 
Neural dynamics: The collective signaling behavior of neurons in a network. Neural dynamics 

are a specific way neurons communicate and interact with each other, both in a temporal and 

spatial manner.  

Phases/states: Phase or state are specific configuration of a system. These configurations are 

associated with distinct dynamics and features (6, 7). A state in regard to neural networks is 

defined as distinct dynamical regimes, displaying different modes of activity and processing 

properties.  

Phase transitions: A phase transition is the process of change from one phase of a system to 

another, altering the dynamics or features the systems displays (7). Concerning the brain, 

phase transitions regards changes in firing dynamics, changing from one activity state to 

another (8). An example of such a phase transition may be the change form asynchronous to 

synchronous activity. 

Critical point: The critical point is characterized as a phenomenon that emerges between 

phase transitions through precise tuning of tuning parameters. In the critical point the 

transitions between phases are continuous and the two phases at both sides of the critical point 

coexists with no clear differences in phases between the transition, giving unique properties to 

systems. This stands in contrast to standard phase transition behavior, where a system only 

exists in one state at any given time. Some of the defining features of critical emergence are 
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that critical dynamics are found to be independent of quantity (i.e. independent of the systems 

size and scale) and are found to only be dependent on specific adjustment of tuning-

parameters (7). Systems which have reached the critical point are here referred to as being in a 

critical state. 

Criticality: Criticality is a synonym for critical state dynamics. The states concerning critical 

dynamics are divided into the states sub-critical, critical, and super-critical. These states are 

the states of a system which occur prior to a critical state, during a critical state, and the state 

past the critical state in respect to a specific tuning factor (7, 9). 

Criticality in the brain: Criticality in the brain is observed though changes in firing dynamics. 

In the brain, the sub-critical, critical and super-critical states are abstract descriptions for 

different states of activity with different neural firing dynamics. (2, 10). Criticality in the 

brain can be measured though many means, but the most common is through the behavior of 

signaling cascades in regard to the branching ratio. 

Branching ratio: The branching ratio is a measurement of the average number of downstream 

neural firings each up stream firing elicits. Signal branching is categorized by branching < 1, 

where signals die out quickly without spreading, branching = 1 where signals propagate 

normally, and branching > 1, where each firing may cause widespread activity.      

Power Law: A power law is a type of data distribution which describes scale invariant 

functional relationships where one quantity varies as power of a scalar (11).  

Scale invariant: When a system is scale invariant then the behavior of the system is the same 

no matter which size or scale the system is observed from. 

Neural avalanches: Neural avalanches are a type of neural activity in the form of continuous 

cascading bursts of neural signaling. Each avalanche is separated by periods of inactivity, and 

the size distribution of avalanches can be approximated by power laws, meaning that this 

signaling activity is scale invariant. The power law exponent of avalanches is dependent on 

the branching ratio as high branching numbers favors heavy tailed distributions (power law-

like distributions) while low branching favors no heavy tail and branching approximately 

equal to 1 facilitates size distributions closest approximated by power laws. Additionally, the 

spatio-temporal patterns avalanches occur in are shown to be different than pure random 

patterns (9, 12-14).   
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Sub-critical behavior in the brain: Sub-critical behavior in the brain is associated with 

depressed activity. Branching < 1 and power law exponents > -3/2 for size distributions.  

Super-critical behavior in the brain: Super-critical behavior in the brain is associated with 

network-wide activity. Branching > 1 and power law exponents < -3/2 for size distributions.  

Critical behavior in the brain: Critical behavior in the brain is associated with varied and 

balanced activity (1, 4, 9, 15). The dynamics in the critical state is observed to be scale 

invariant, and in this state neural avalanches are observed with specific size distributions and 

branching ratios. Additionally, in the critical state does networks gain attributes beneficial for 

information processing; neural 

signals are sent over longer 

distances, increase dynamic range 

for amplitude integration, 

maximized mutual information and 

intermediary entropy (13, 14, 16, 

17). In neural avalanches following 

critical dynamics, the size 

distributions of propagating signals 

are expected to have a power law 

distribution with an exponent of -

3/2 and an average branching 

parameter of 1. How well size 

duration distributions conform to 

power laws are used as a measure 

of critical dynamics (9, 13, 14). 

Features associated with critical dynamics are illustrated in figure 1. 

Attractor dynamics: Attractor dynamics are a type of dynamical network behavior in which a 

system evolves towards a specific state. The state which the system evolves towards is called 

an attractor state, and the system evolves towards the attractor state without the help of tuning 

parameters. This attraction only works if the system is within the attractor zone; a limit to 

deviations in which the system is able to stabilize back into its attractor state. If the system is 

pushed past this attractor zone, the system will not stabilize back into the attractor state 

 

Figure 1: Predicted features of critical dynamics in the brain. 

This figure depicts the three critical states, scale invariance, 

power law distributed avalanche data and computational gain.  
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without additional influence (18, 19). A conceptual illustration of point attractor dynamics is 

shown in Figure 2.    

 

Figure 2: a conceptual illustration of attractor dynamics. The blue 

ball represents the current dynamics of a system while the black line 

represents different dynamical system configurations as an attractor 

field. A) depicts a point attractor. Here the dynamics are pushed away 

from the attractor point, but because this is still within the zone of 

attraction the network stabilizes back into the attractor point. Much 

like putting a ball in a either side of a half pipe. B) depicts the event 

when a system is push out of its attractor zone and hence is no longer 

attracted to its attractor point.   

Self-organized criticality (SOC): SOC is a type of neural dynamic where the attractor point of 

a network is a state displaying critical dynamics (20). The concept of SOC is illustrated in 

Figure 3 below.  
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Figure 3: a conceptual illustration of SOC. The blue ball represents the current dynamics of a system while 

the black line represents different dynamical system configurations as an attractor filed. A) when the system is 

pushed in either direction, the system will stabilize back into a critical state. B) shows a system being pushed 

out of the critical state and into a super-critical state, the system then stabilizes back into a critical state.      

 

1.2 From the Critical point to critical brain dynamics; History  
The origin of critical systems in the field of physics dates back to the discovery of the critical 

point in 1822 (21), however, the real story of SOC occurred over one and half century later 

(20). This phenomenon, in which emergence relates to phase transition dynamics, would later 

be the founding idea of the dynamics explored in this thesis.   

 

The concept of SOC was first presented in the field of physics in 1987 by Per Bak, Chao 

Tang and Kurt Wiesenfeld (20, 22). Their model, known as the “1/f noise” model, originated 

from the idea that a system with attractor dynamics would stabilize at a critical point. In the 

two-dimensional case the model describes the effect of placing a sand grain on the top of a 

sand pile, thereby perturbing the model. When initiated, the model starts off on an empty 

board, with the only condition being that sand grains are added to the model. The model then 

describes how the grain interacts with its neighbors displacing them in x and y directions, 

subsequently changing the whole sand pile slope. These perturbations to the system resulted 

in event cascades which ripple through the system, these event cascades were termed 

avalanches. They did this system perturbation to see when the model converged into a stable 

state. In the two-dimensional case, the models did not reach the most stable state, but it did 
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stabilize in what they called the minimally-stable state. When the system was in the 

minimally-stable state, they observed that the model produced what is called 1/f noise (or 

fractal self-similar behavior) in terms of the distribution of the sand pile avalanche sizes 

(height differences caused by the avalanche) and durations. This scale invariant behavior was 

observed through a power law distribution for variations in temporal durations and size (20, 

22). 

The sand pile model is the way Bak et al. (20, 22) chose to metaphorically visualize their 

SOC model (shown in Figure 4 below). Reviewing the dynamical regimes that emerges from 

this simple model, one can differentiate between three different states. The first state, named 

the sub-critical state, is observable when the sand pile slope is low. Low incline levels cause 

the addition of grains to be unlikely to displace the grains in the pile. As more grains are 

added, the slope increases, and each perturbation (added grain) has a greater possibility of 

displacing a larger number of grains. The grain addition eventually organizes the slope into 

the second dynamical regime, the critical state, which we will get back to. Skipping forward 

we reach the third state, named the super-critical state. This state is observed once the slope 

becomes too steep. When the slope incline is too high, each grain is more likely to displace a 

large number of other grains. 

 Lastly there is the critical state, which is reached when the system evolves itself into its 

minimally stable state; the state where maximum number sand grains are added to the system 

without the system necessarily undergoing dynamical changes and destabilizing the sand 

slope. This state emerges at the precise point of phase transition when the system is halfway 

between the two aforementioned phases. In the critical state the addition of more grains will 

cause varied responses due to the instability in the system. With each new grain addition it is 

impossible to predict if the addition of a grain of sand will cause avalanches displacing a few 

or many grains, or if the addition will have no effect on the sand pile. When there is a collapse 

into an avalanche, the slope will intrinsically converge on a given steepness, where new 

grains can displace a wide range of existing grains in the pile, resulting in a wide range of 

differently sized avalanches (20). This also ensures that the slope stays close to the critical 

steepness, since smaller slopes will lead to smaller avalanches and steeper slopes will lead to 

larger avalanches. These self-organization principles cause the sand pile model to spend most 

of its time in a critical or near-critical state. 
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Figure 4: This figure depicts Bak et al’s sand pile metaphor, which is a SOC model. The addition of grains 

creates at some point a minimally stable point, the addition of more grains makes the model stabilize back to this 

minimally stable point (23). [“The sand pile model”, from Self-organized criticality as a fundamental property of 

neural systems, by Hesse et al. (2014). URL: https://www.researchgate.net/figure/The-sandpile-model-The-

classical-thought-experiment-motivating-self-organized_fig2_266626997, Figure license ( CC BY 4.0), full 

terms: Creative Commons Attribution 4.0 International   

 

The visualization described above initiated the experimental work to focus on examining real 

avalanches in granular matter (24). From these investigations, systems displaying SOC 

typically were observed to be slowly driven non-equilibrium systems with many degrees of 

freedom and strong nonlinear dynamics (15, 20, 24, 25). While it was shown that critical 

systems must contain a large portion of interacting nonlinear components, this condition alone 

is not sufficient for the emergence of criticality (15, 20, 24, 25). As more examination was 

done into SOC, it became clear that SOC schemes represent a great source for variability in a 

system, and the phenomena is theorized to be one of the ways complexity naturally emerges 

(26). Following the publication of the Bak et al.’s article (20), many systems demonstrating 

SOC have been found in nature, including, but not limited to, earthquakes, forest fires and 

sand piles (27). 

 

Around the 1980s, Wolfram (28) established a model out of curiosity of how computational 

abilities could spontaneously arise from interacting simple elements. This model was created 

from the cellular automat model, a model made from a regular grid of cells where each cell 

can inhabit a finite number of states. Wolfram’s model was called the Cellular automata 

model IV (28) and this model had many similarities to artificial neural networks, and could 

conceptually be viewed as one. The model was later shown to operate near criticality, 

functioning as an SOC system (29). Later, Langton (15) studied cellular automata as a critical 

model, a model that could be tuned into ordered, critical or chaotic regimes, as depicted in 

Figure 5. These regimes are further described in the following sections.  

 

 

https://www.researchgate.net/figure/The-sandpile-model-The-classical-thought-experiment-motivating-self-organized_fig2_266626997
https://www.researchgate.net/figure/The-sandpile-model-The-classical-thought-experiment-motivating-self-organized_fig2_266626997
https://creativecommons.org/licenses/by/4.0/
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Langton’s Regemes (15) 

Ordered regime Critical regime Chaotic regime 

 
  

Figure 5: This figure shows Langton’s Ordered, Critical and Chaotic regimes. From these depiction can one 

also see that the critical regime hade the longest transition length (15).[Figure are from Langton’s 

conference (1990): Computation at the edge of chaos: Phase transition and emergent computation] 

 

Langton examined three different aspects of the cellular automata IV: the transition length of 

activity in the model, the information capacity through Shannon’s entropy and the mutual 

information (MI) (15), these parameters are explained in Table 1. 

 

 

For different degrees of freedom with different lambda values; which is stated to be a measure 

of possible states each cell can position into (i.e., lambda reflected the amount of chaos in the 

environment), three qualities vary in the model: the average transition length; the distance of 

nodes through which the signal propagated, the entropy, and MI. Varying lambda from 0.0 to 

1.0 (highly ordered to fully chaotic and random) the transition length, entropy and MI all had 

a clear cutoff point where the values suddenly peaked, as show in Figure 6 below. The 

transition length was close to zero before a sharp increase, followed by rapid decrease. The 

entropy went from low entropy to high entropy after the cutoff point, then it gradually 

Table 1: Describes the three technical terms of Degree of freedom, Entropy, and Mutual 

information (30-32) 

Technical term description 

Degrees of freedom The number of different ways the system is 

allowed to evolve by. 

Entropy (Shannon’s)  The minimum amount of bits needed to store 

and send information 

Mutual information A measure of the reduction in uncertainty for 

one variable given a known value of the other 

variable, this uncertainty is represented through 

entropy. 
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evolved towards a maximal value. The MI was nearly zero before it jumped after the cutoff 

point, then it gradually decayed again toward a limit value. 

 

This state before the cutoff points was called the ordered state, the state after was called the 

critical state, and the last state after the second transition length cutoff, where the entropy and 

MI gradually started to change was called the chaotic regime (15). The conclusion to 

Langton’s experiments on Wolfram’s model suggested that computations such as signal 

transduction and adaptability were performed best by systems near the critical point, where 

signal propagation lies between order and chaos (15). This state between total chaotic 

randomness and deterministic order he described as ‘at the edge of chaos’ (15). 

 

Langton’s results with the cellular automata model together with the coincidental similarities 

between artificial neural networks and the cellular automata model sparked ideas of the brain 

as a potential candidate for an SOC system, as the branching regimes of neuronal signaling 

were highly comparable to Langton’s model on signal transduction where both could be 

classified into sub-critical, critical, and super-critical regimes. Around the year 2000, SOC 

started to be investigated as a potential brain phenomenon; with most of the investigations 

being grounded in statistical physics with regards to the work by Bak et al. (20). This led to 

the creation of Beggs’s Critical Hypothesis in 2008 (10), the article where Beggs presented 

contemporary evidence suggesting that cortical networks operated in a critical state (10).   

 

Illustration of Langton’s results (15) 

Transition length Entropy Mutual information 

   

Figure 6: The following pictures show Langton’s results of transition length, entropy and mutual 

information respectively. These factors were used to discriminate between Langton’s three different regimes 

for his model (15). [Figure are from Langton’s conference (1990): Computation at the edge of chaos: Phase 

transition and emergent computation]  
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1.3 Evidence for SOC  
Bak’s “1/f noise” model showed that scale invariance and power laws emerged at the critical 

point through a signaling cascade type called avalanches and that input to SOC systems forms 

avalanches following power law distributions for both size (in terms of participating units) 

and duration (20). Similar attributes to the ones found in the “1/f noise” model have since 

been found in signaling cascades in brain networks.  

 

Neural branching ratios can be categorized into different regimes, each branching regime 

relating to a particular critical state. Because of this, critical states in the brain are measured 

according to the average signal branching as branching ratios are quantifiable features of the 

different critical states (sub-critical, critical, or super-critical). The branching of neural signals 

may be classified as different phases, varying from a branching of under 1 to 1 to over 1. This 

led to the application of phase transition dynamics to neural signaling. Branching under 1 

were designated as a sub-critical feature, branching of 1 were attributed as a critical feature, 

and branching of over 1 as a super-critical features (9, 13, 14, 17). This is visualized in Figure 

7. 

 

 
Figure 7: This illustration shows the branching dynamics of neural signal. The three branching regimes shown 

are branching < 1 where the signal abruptly stops, branching of 1, and a branching > 1 in which the branching 

cause widespread activity.  

 

In addition to the phase transition dynamics, avalanche event cascades are present in neural 

networks. Neural signaling activity with avalanche properties and branching have been found 

in layer 2/3 of cats (33), rats (9), in primates such as monkeys and humans (34, 35) and in 

different brain states (during sleep and active/resting wakefulness) (35-38). Criticality has 

also been found on different scales, which supports the prediction of scale-freeness in critical 

networks, as avalanches have been observed in spiking behavior (microscale) (33), LFP 

(mesoscale) (9), and fMRI, ECOG, EEG, MEG (macroscale) (37-40). Furthermore, a large 

body of research shows this propagation behavior in acute brain slices (9), and in cell cultures 
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(41, 42), indicating this behavior both in vivo and in vitro. Lastly, properties similar to 

Langton’s results (intermediate entropy, maximized transition length and MI) have also been 

observed from critical state dynamics (1, 41). These above-mentioned virtues combined with 

the fact that the brain is self-organizing led to the application of the name self-organized 

criticality for this phenomenon. Despite intriguing observations, critical dynamics are still a 

conflicting and debated topic, which is yet to be definitely proved and defined (17, 43-45).   

 

Evidence for E/I ratios involvement in SOC  

A 2012 article analyzed the critical behavior of neural networks in pre-ictal and ictal states in 

epileptic patients (40). They found not only that excessive excitation disrupted the power law 

distribution of neural avalanches, which supported the notion of the brain operating with 

critical dynamics, but it also showed that different brain areas seemed to operate at different 

near-critical states under normal circumstances (40).  

The result that interference with excessive excitation drives near-critical networks to a super-

critical state, in the company of many other experiments including Beggs experiment (9) of 

perturbing critical networks with excitatory and inhibitory agonists and antagonists, indicated 

that the excitation to inhibition (E/I) ratio in the network was a vital aspect in the emergence 

of SOC (1, 9, 46, 47). E/I balance is prevalent on all neuronal scales and this may be why it is 

considered one of the most important factors for emergence of critical dynamics. 

Several experiments have shown how tuning of different parameters may contribute to the 

emergence of criticality, with some of the more prevalent parameters being network topology 

(the coupling of network and the cell components) and the distribution of synaptic weights 

(14). However, criticality is not only defined by the mechanical coupling of the neuronal 

topology, as it takes networks longer to develop their topology than it takes to organize into 

the critical state (42, 48).  

Around the year 2000, multiple experimental observations were reported supporting the 

notion that the E/I ratio was one of the parameters important for the emergence of SOC. 

Evidence supporting this claim includes observations from perturbation experiments. 

Networks without the configuration to stay critical, specifically those that fall into super-

critical states, can be artificially moved and held in the critical state through pharmacological 

intervention with GABA (49). Additionally, critical networks can be moved out of criticality 

through pharmacological intervention targeting AMPA, NMDA and GABAA receptors (1, 9).  



1. Introduction 

Page 18 of 101 
 

 

1.4 Aspects of critical self-organization 
Extensive research into SOC has focused on understanding the mechanisms of the attractor 

dynamics underling the self-organization. These investigations focus on four main categories: 

the self-organization during development, the attractor state(s) which networks organize into, 

self-organization after perturbation (self-organization in mature networks), and factors that 

can control the self-organization.        

Development 
Evidence shows that developing networks grow through a sub-critical and a super-critical 

state and before they stabilize in a near-critical state (42, 48), indicating that criticality 

develops through overshooting before it is tuned into the critical state. The emergence of SOC 

is likely to be dependent on multiple factors, from genes, to molecules, initial growth of 

axons, to neurons, to networks of neurons, to plasticity and homeostatic mechanisms (13). 

Critical emergence seems to be an inbuilt intrinsic mechanism of the neurons in the brain, as 

critical power law distributed avalanches occur in developing networks (41, 42). Additionally, 

neural networks have been shown to produce avalanches predicted by critical dynamics even 

when developing with elevated firing rates (41, 47), showing self-organization in varied 

environments, further suggesting that innate mechanisms upholds and regulates critical 

dynamics.  

Network E/I firing balance is hypothesized to help regulate and maintain avalanche size and 

duration distributions (41, 42). Combined, these results indicate that network development 

into states of balanced E/I firing may be intrinsically regulated. However, little is known 

about how the E/I ratio affects the neurons' ability to develop, self-organize or establish 

critical dynamics. Considering that developing neurons wire differently based on molecular 

ques for different neuronal subtypes (50), and the observations that different brain areas have 

different E/I populations and different topologies (51-53), one would assume that the E/I 

population affects the topological development of a network. With the E/I firing balance 

being a tuning parameter for critical emergence, increased inhibitory populations are also 

expected to alter a network’s ability to produce critical dynamics to some capacity, as this 

would alter the dynamics of the firing balance.  
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Attractor state 
Several studies suggest that in vitro neural networks develop into a near-critical state (1, 37, 

40), and not a critical one (40). The different brain areas are also observed to be in a near-

critical sub-critical states (35, 54), and many theories have tried to describe this phenomenon. 

Some suggest it is an artefact of other underling neural mechanisms, or an evolutionary 

compromise between metabolic requirements and computationally gains (55), while other 

models indicate that it is beneficial for operating in noisy environments (56), yet others again 

claim it to be a defense mechanism from being pushed into a pathological super-critical state 

(23). The critical state has also been hypothesized to be less metabolically demanding to 

maintain compared to strong plastic circuits (57). Disregarding the definitive purpose of 

developing into near-critical dynamics, the matter that critical dynamics 1) can emerge from 

different network configuration and 2) can stabilize in more nuances than strictly sub-critical 

or critical are in themselves important traits.  

An article by Ma et al. demonstrated that SOC may be the homeostatic state of networks in 

layer 2/3, thereby important for generic information processing in these layers (58). Different 

regions of the brain have also been shown to be separately tuned to different configurations of 

near-criticality (40), and these separate configurations may possibly represent multiple unique 

attractor states. This has led many to hypothesize that critical brain dynamics operate with 

critical regions rather than a sole critical point. This would allow the different brain regions to 

optimize for different computational purposes (14, 23). Further elaborating on the idea that 

critical dynamics can be established in different network topologies, it can be hypothesized 

that networks with different topologies may have different E/I firing balances which causes 

critical dynamics to emerge. Or oppositely, there is a chance that the E/I firing balance 

established from different inhibitory populations may cause changes to development of 

networks and thereby which attractor state a network develops into.  

SOC Resilience and homeostatic plasticity  
Resilience of critical states and attractor dynamics are observed through the re-stabilization 

into critical dynamics after small and moderate perturbations. On a short-term scale this is 

shown through the regain of critical measurements after critical exponents dwindle then 

shifting back towards a critical-state during a switch in mental states (35, 37); from rest to 

mindful meditation (38) or from ictal to post ictal states (40, 59). On a long term scale this is 

shown through homeostatic mechanisms regulating the overarching excitability of the 

network (58, 60).  
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Electrical stimulation in the brain showed that the branching of neural signal increase with the 

onset of applied stimuli but quickly regained resting values, this shows an example of short 

term critical resilience (35). Similarly, incoming signal inputs can lead to deviations from 

critical dynamics followed by rapid tuning back to the critical regimen (3), although bigger 

perturbation may require more time to re-tune to criticality (3, 58). There is growing evidence 

that one of the main contributing mechanism to the attractor dynamics of SOC is homeostatic 

mechanisms such as synaptic scaling or synaptic depression (58). In vivo experiments of 

monocular deprivation caused destabilization of critical readings which was adapted to and 

restored over a 48h period (58). This is brought about by the slow working homeostatic 

plasticity, as seen by the observations that perturbations often cause slow tuning back to 

criticality (58). Given that networks can self-organize to different near-critical states, one 

possibility is that some attractor states create more stable dynamics then others or that the 

self-organizing mechanisms such as homeostatic plasticity operate differently in order to 

attract to different attractor states. One might speculate that differences in the action of 

attracting or the differences in the attracting state could alter a network’s critical resilience 

both on a short and long term. If it is true that some network configurations are better at 

resisting perturbations or self-organizing back after perturbations than others, then tuning of 

parameters for critical emergence such as E/I balance may yield networks which shows 

differences in resilience.   

 

SOC associated factors 
Accompanying topology and E/I firing balance, network wide bursts and the balance of 

synchrony/asynchrony have been associated with networks operating with critical dynamics 

(41, 61). Due to the scale invariance of critical dynamics for avalanche sizes, high levels 

network bursts (NBs) are expected (61). Intermediate levels of synchronous activity are also 

observed during critical dynamics, hence should relative intermediate levels of network bursts 

to synchronous activity (NB/S) also be expected during critical dynamics. Interestingly, burst 

activity and synchronous activity have also been associated with E/I balance (62-65). Which 

might indicate that these concepts, in some way, are interconnected. Exploration of critical 

and synchronous dynamics have indicated that a critical state can occur in a synchronization 

phase transition, at which oscillations and scale-free avalanches both occur (5, 44).  

Furthermore, in 2020 Li & Shew (57) showed through modeling that a balance of the synaptic 

strength between E/I neurons could cause both the emergence of criticality (in which they 



1. Introduction 

Page 21 of 101 
 

observed synchrony-like behavior) and asynchrony (57). These observations together hint at a 

correlation between synchronous activity patterns and emergence of critical dynamics with 

different E/I ratios, as emergence of synchronous activity and critical dynamics both seem 

dependent on E/I ratios, and since synchrony-like behavior is observed under critical 

dynamics. 

 

1.5 Critical topology 
It is widely recognized that the topology of the brain provides a physiological basis for its 

information processing and dynamics, and this is also true for the emergence of criticality. 

The structure of brain networks is commonly referred to as being hierarchical and modular, 

and the average brain network is said to be share traits of three different network topologies: a 

regular (lattice), a random and a scale-free network (14, 66). The small-world (SW) topology 

shares some features of lattice and random networks. Many experiments and observations 

point to brain networks having a SW organization, due to graph theory measurements which 

coincide with SW qualities; short average path length and high local clustering (terms are 

described in detail in section 2.2) (14, 66-70). Network topologies which are regarded as more 

efficient for computation such as modular, SW and scale-free topologies have also been 

shown to be better suited for the emergence of critical dynamics compared to computationally 

inefficient topologies such as random and regular networks (14, 16, 68). These results tie into 

the observations of critical dynamics having ideal processing properties.  

Neural avalanches following size distributions predicted from critical dynamics have so far 

only been observed in the superficial layers; layer 2/3 of the brain (71). These layers are 

normally described as being composed of mostly small and medium pyramidal cells and 

stellate cells. The cells in these layers are found to have many subtypes with genetic and 

functional differences (52, 53, 72) and layer 2/3 is even shown to contain area and cell type 

specific microcircuits (73-75). The GABAergic cells in layer 2/3 are estimated to amount to 

approximately 10-15% of the cortex in rodents (72) and 18-27% in monkeys (51), and 15-

30% for humans (53). Interestingly, despite all these specialized cell-type populations and 

circuits in layer 2/3, neural avalanche following critical size distributions are also observed in 

simple in vitro cultures made of excitatory and inhibitory neurons, both in IPSC and 

organotrophic derived cultures (9, 41, 76). In vitro networks also tend to develop small-world 

topologies (77, 78). In addition, these networks also develop as single compartment networks, 

meaning that they do not get any external input, and that all activity is locally generated. 
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Considering these virtues, in vitro neural cultures provide a less complex system with fewer 

variables, which allows for less complications regarding data analysis when studying SOC in 

biologically relevant networks.  

 

1. 6 Criticality in silico 
Criticality was first described in physics, therefore mathematical models are the natural 

starting place for recreating a critical system. However, many in silico models operate with 

few and simplified neural mechanics, limiting their biological realism. Hence, model results 

alone should not be considered proof of system limitations or exact behavior without 

experimental data to back it up. For most neural network models translated from theory to 

reality, we expect to find the same core dynamics, but also some deviations. Therefore, when 

estimating general properties, it is easier to start from simple systems, as core behaviors are 

less likely to vary between different models and between in silico and in vitro systems. 

The Izhikevich model (79) is a simple firing model derived from the Hodgkin–Huxley model, 

which is both biologically plausible and computationally efficient compared to other models 

(80). The Izhikevich firing model has the ability to reproduce spiking and burst behaviour of 

several types of excitatory and inhibitory neurons, and the model even accounts for noise 

through random thalamic input. While initial investigations with the model sacrificed its 

plastic qualities in exchange for staying simple and robust (79, 80), explorations of the 

Izhikevich model with spike-time dependent plasticity rules have been shown to produce 

similar behaviors, regardless whether the rule is active or not (81). This simplicity and 

robustness make the Izhikevich model a good candidate for estimating simple or generic 

network features.  

 

1. 7 Study aim 
Inhibitory interneurons seem to be important to “tune” the excitatory activity of neural 

networks to criticality, even though the excitatory activity can vary greatly and even change 

without disrupting the criticality of the system (58). The importance of balance between 

excitation and inhibition is indicated in multiple published papers (9, 47, 82), yet there is a 

lack of  knowledge concerning the balance of excitatory to inhibitory neurons in the context 

of affecting and establishing critical dynamics. This project aims to investigate that balance 

and its significance for neural networks to self-organize to a critical state, and its capability to 
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alter the resilience of critical dynamics. Additionally, factors such as synchrony and network 

bursts which is associated with E/I balance and emergence of critical dynamics will be 

explored. Criticality is usually assessed from electrophysiological spiking data, especially 

when working with the balance between excitatory to inhibitory firing (1, 9, 47). 

Microelectrode arrays (MEAs) are a common tool used to study this aspect of criticality due 

to their temporal and spatial resolution and were used for investigating critical dynamics in 

this thesis. Additionally, MEAs gives us the ability to control the environment to a degree 

which is not available in other systems, for instance the fraction of inhibitory neurons in the 

population of the networks.  

In this project, a neural network simulation was used to predict the ratio of excitatory to 

inhibitory neurons where criticality spontaneously emerged. Several networks were then 

grown on MEA interfaces with different ratios of excitatory to inhibitory induced pluripotent 

stem cell (iPSC)-derived neurons to try to find the optimal ratio for emergence of SOC. The 

exact ratios were informed by the results of the simulated model. The developing activity of 

the networks was analysed to assess for criticality and network features such as topology.  

Furthermore, the differences in the simulated networks and the biological ones were 

examined, and the simulated model was then updated to better capture the experimentally 

observed behaviour of the biological network by tuning topological factors. Finally, the 

resilience of critical dynamics was also examined through pharmacological perturbation of 

biological networks. This was done to investigate whether critical networks with different 

inhibitory populations differed in perturbation resiliency. The information gained from 

exploring emergence and resilience of critical network dynamics might give new insight on 

the subject of SOC, and potentially be of benefit for future research on the topic, as well as 

studies on E/I balance in general. 
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2. Material and methods  

 

2.1 Material  

Induced Pluripotent Stem Cells 

The cells used in this project were fully differentiated cells purchased from BrainXell. 

These cells originated from human fibroblasts and were driven through cell fate 

determination stages observed during embryonic development, to increase their 

similarity to primary neurons. The neurons used were Cortical Glutamatergic Neurons (BX-

0300) and Cortical GABAergic Neurons (BX-0400). The astrocytes used in this project were 

purchased from Gibco. These astrocytes were human brain progenitor-derived astrocytes, 

derived from human brain tissue.  

Material for cell culturing 
Below are the chemical-solutions and reactants used in the project. The material for all 

solutions listed here are further detailed in the appendix A Table A-1, where producer, 

catalogue and lot numbers are presented. The material for the laminin coating includes 0.05% 

PEI in HEPES, and 20µl/mL Mouse laminin diluted in PBS. 

All solutions used in the neuronal culturing includes Seeding medium, Day 4 medium, Day 10 

and onward medium, and Gibco® Astrocyte Medium. The individual cell culture media 

material for astrocytes and Glutamatergic and GABAergic neuron solutions are shown in 

further detail in appendix A Table A-2 to A-4, while the composition of the solution is shown 

in appendix B. 

The chemicals and solutions used in the immunostaining were PBS, 4% Paraformaldehyde in 

PBS, Block (PBS, 5% Goat serum, 0.3% Triton-X), Primary antibodies, Secondary 

antibodies, Flouroshield, and Hoescht. The materials for staining medias are described in 

appendix A Table A-5, while the antibodies of the immunocytochemistry (ICC) staining is 

depicted in appendix A Table A-6. 
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2.2 Methods 

Computation and models 
The firing model used in this thesis, The Izhikevich model (79), is described by the equations 

 

 𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼,      (1)    

and 

𝑢′ = 𝑎(𝑏𝑣 − 𝑢).     (2) 

The parameters of the model include the membrane potential, v,  thalamic input (the driving 

force of the model), I,  and the membrane potential recovery value, u (79). The update rule, 

which is given by 

 if 𝑣 ≥ 30 mV, then {
 𝑣 ← 𝑐

 𝑢 ← 𝑢 + 𝑑
,      

    

dictates the firing threshold, and how the recovery and rest factors affect the neurons after a 

firing (79). 

The a, b, c, and d components are parameters which help the model behave like a Hodgkin-

Huxley model. Parameter a related to the length of the recovery period after a firing 

(refractory period and hyper polarization) and b is involved determining the recovery of 

membrane potential (tunes the sensitivity, simulates Na+/K+ pumps decreasing effect on 

membrane potential). Parameter c is related to determining the membrane resting potential 

after spikes, and parameter d concern the reset of the recovery variable after firing (simulates 

a reset of internal Na+/K+ concentrations). The a, b, c and d parameters effect on the 

excitatory and inhibitory neurons are shown in Table 2 below. 

Table 2: Shows the model parameters a, b, c, and d, and their 

respective effects to excitatory and inhibitory neurons. ri & re are the 

lists of the inhibitory and excitatory neurons membrane potential 

respectfully. 

Parameter Excitatory neurons Inhibitory neurons 

a 0.02 0.02 + 0.08𝑟𝑖 

b 0.2 0.25-0.05𝑟𝑖 

c -65 + 15𝑟𝑒
2 65 

d 8-6𝑟𝑒
2 2 

 

ri and re are the lists of the inhibitory and excitatory neurons membrane potential respectfully 

(79). 
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To approximate the SW topologies in biological networks, we used the Watts-Strogatz 

networks implemented through NetworkX (83). For the random topology a simple randomly 

connected graph was used. The generation of SW topologies through Watts-Strogatz networks 

was kept at 30% chance to rewire as the in vitro networks are expected to have slightly 

different small-world topologies, hence would the average over a wide range of SW 

topologies give a better understanding of the effects of tuning the E/I ratio.  

The Izhikevich model is a stepwise model, where each step represents 1 ms. To allow the 

model to equilibrate and saturate, the first 1000 ms were discarded for all simulation runs, 

leaving 1000 ms for analysis. The networks used for analysis all had 650 nodes with 

randomly placed inhibitory nodes. For simplicity’s sake synaptic weights were put on a static 

0.25, because the original Izhikevich model used randomly distributed weights between 0-0.5. 

It was tested beforehand that this static changed did not greatly alter any outcomes, this was 

tested by comparing results with and without the static weights.  

The Izhikevich model was tested with the varying parameters of clustering values ranging 

from 0.5 to 0.9 in steps of 0.1, and inhibitory percentage from 0 to 50% in steps of 2%. Each 

parameter variation was tested with 500 model iterations. The code for the model is 

assessable via (84). 

As the Izhikevich model does not have spontaneous activity from the neurons, the networks 

were driven using a random input to model thalamic input (79). It was tested that the external 

noise the model received (the models driving force) was not also the drive for the model’s 

critical behavior. This was tested by only applying input of the same strength to a fixed spot 

of the network. 

 

Analysis with Graph theory 
The graph theory analysis were performed on the functional connectivity between electrodes. 

This connectivity was based on temporal cross-correlations in spiking data i.e. the similarities 

between two sequences of spiking data from different electrode based on the displacement of 

one relative to the other. The networks functional connectivity was represented through 

undirected adjacency matrixes; undirected meaning that the connection between the 

electrodes does not inform which way information is transmitted. The adjacency matrix was 

computed by searching 2 ms bins of the electrophysiological recordings using the MATLAB 

function xcorr to find the cross-correlation between all pairs of electrodes (varying from 0 to 
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1). This cross-correlation function tries to synchronize two temporal sequence by shifting one 

sequence back or forth and gives points for every event (spike) that could be synchronized 

within the sequences. The mean of the cross-correlations output was given as an output 

matrix. The adjacency matrix was subsequently filtered to remove weak correlations not 

considered as viable connections. The filtering was based on connection persistence, filtering 

away correlations levels found to be ≤ 25% of the total data, following previously work on 

topological assessments of MEA data (77). Additionally, another filtering method of 

empirically testing thresholds was used to make sure that the mean degree of each recording 

was not more than the total active electrodes of the recording in question.  

Once the topology was established the network describing measurements average pathlength, 

average clustering, average mean degree, and Small-world metric ω were computed. These 

parameters are explained in Table 3.   

Table 3: Information table Graph theory measurements. This table informs about the basic graph 

theory parameters: Path length, Clustering, Mean degree, and small-worldness metric Omega. 

Average Pathlength  A measure of the distance between nodes in the network, calculated as 

the mean of the shortest distances (measured in connections) between 

every pair of nodes (85). 

Clustering  The percentage wise measurement of the edges that exist between the 

neighbors of a node compared to the total number of possible edges 

between the neighbors if the neighbors were fully connected (85). 

Mean degree: A measurement of how many other nodes the average node is 

connected to (86). 

Small-world metric (ω) 

 

Omega (ω) is a measurement for a networks small-worldness. 

Computed as the difference between ratios of the networks clustering 

against clustering of a comparable lattice network and the ratio of the 

networks path length against pathlength of a comparable random 

network (66):  topologies with -0.5 < ω < 0.5 was considered to have 

small-world features. 

 

The topological analysis was made using the python package NetworkX (83), using built in 

functions to compute topological measurements, average pathlength, clustering, mean degree, 

and ω. 

The graph theory analysis script was also used for the Izhikevich model. The topological 

parameter was only computed for the network configurations which was predicted to yield the 

best critical emergence, and only on readings considered critical. 

After the topological measurement were taken, the in vitro networks were classified and 

grouped into one of 16 groups based on clustering, average pathlength, mean degree and 

small-world metric ω, where each measurement was characterized binary as either low or high 

depending highest and lowest data values found from the analysis. 
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Biological experiments and neuronal cultures 

18 neural networks were cultured, 6 per E/I ratio tested, according to the following 

procedures. General information about the cell cultures are shown in Table 4. 

PEI + Laminin coating 

To prepare the MEAs for seeding the surface of each MEA well was coated with PEI and 

laminin to mimic an extracellular environment permissive to neural growth. This was done 

following a previously established inhouse protocol Fig C-1 in Appendix C. 

Cell Seeding 

The seeding was carried out following a modified version of BrainXell’s seeding protocol for 

Human mixed cortical neurons. For both glutamatergic and GABAergic neurons the seeding 

steps were identical following Appendix C Fig C-2 with a few alterations, while the 

astrocytes were treated differently.  

 

The seeding of all cell types was done in 5 main steps: 

- The frozen cells were thawed in water baths  

- Warm Seeding media was added to the cells 

- Cells were centrifuged and cryovial fluid was removed and replaced with seeding 

media. 

- Viable cells were counted with the trypan blue method 

- The cells were seeded 

  

Protocol step 1-8 (Appendix C Fig C-2) were followed normally for the cortical neurons with 

the exception that the antibiotic Penicillin Streptomycin was added to the seeding media, 

while the astrocyte seeding used Gibco® Astrocyte medium instead of seeding medium for 

the thawing process. The neurons were centrifuged at 160xg for 3 minutes, while the 

astrocytes were centrifuged at 290 × g for 5 minutes. The supernatant was then fully removed, 

and the cell pellets were then gently resuspended in 1mL seeding media.  

The trypan blue exclusion method was used to count the cells. The number of viable cells per 

mL was counted with the automated cell counter Countess™ II from life technologies. Then 

the necessary amount of seeding medium was added to achieve a desired concentration of 

viable neurons/μl. The equation used to calculate the volume of viable cells per milliliter 

needed to achieve desired cell density is given:  
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 𝑚𝐿 =
Desired number of cells

Viable cells per mL
.  

(3) 

Before the seeding a small volume of seeding media was placed onto the MEAs to prevent the 

surfaces from drying. Each MEA was plated with different volumes to achieve the desired 

ratio of excitatory to inhibitory neurons and each culture contained 10% viable astrocytes, 

totaling a cell count of 110,000 viable cells/MEA for all cultures. The three different ratios 

were each seeded in two random MEAs per plate as to avoid systemic errors in treatment. 

After seeding, the cells were left in the laminar flow hood for 15 minutes to allow the cells to 

settle to the bottom of the wells.  

 

BrainXell protocol steps 13-15 (Appendix C Fig C-2) were followed with the only differences 

being that the media in each well was filled to a final volume of 1 mL and that cells were left 

to incubate in an incubator for 1 hour to allow neurons to attach to the laminin instead of 30 

min.  

 

Network maturation 

The networks were visually inspected with light-microscope to ensure the neurons were 

healthy and that they attached to the MEA surface. The networks were incubated with water 

reservoirs, and more media was added if the pH indicator showed signs of turning from pink 

to yellow.  

 

On day 4 and 10, half the media (500 μL/MEA) was replaced with appropriate media 

according to the protocol in appendix B, Fig B-3 and B-4 respectively (with 1% Penicillin 

Streptomycin). After day 10, half the media was replaced every fifth day. 

 

 

Table 4: Information about the cultured cells 

Cell culturing information table 

Origin Fibroblast in humans  

Cell type Cortical  

Culture media BrainXell media 

Ph, temperature, Co2 37Co, 5% 

Cell density under seeding  110,000 viable cells 

ml of culture media  1 

Media Change Every 5th day 

Nr of networks 6 per inhibitory ratio 

tested 
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Immunocytochemistry (ICC) 
The cultures used for ICC were prepared on microscope plates (“8 well chamber slide w/, 

removable wells” Nunc™ Lab-Tek™ Chamber Slide System, Thermo Scientific™). ICC was 

carried out to confirm the presence of the different cell types in the cultures. The staining was 

accompanied by a negative test, to test for false positives. In the wells housing the negative 

controls were the primary antibodies not added. Three different sets of markers were used to 

stain the networks, additionally all sets also contained Hoechst. These marker-antibodies 

where added in triplets. 

 

Table 5: The four sets of antibody triplets used in the immune staining. A =astrocytes, 

N= neurons, E = excitatory neuron, I =Inhibitory neuron   

Antibody marker cocktails 

 Marker targets Cocktail purpose  

Marker set 1 AMPA-r1, GABA β-R1, βIII-

tubulin 

Marker for: N  

Marker set 2 TBR-1, βIII-tubulin, NeuN Marker for: N & E. 

Marker set 3 GABA, NeuN, GFAP Marker for: I, N & A. 

 

ICC Indirect Staining  

The immuno-staining was done following a slight alteration of the internal staining protocol 

shown in Fig C-3 in Appendix C. This protocol can be divided into 6 steps over 2 days: 

Day 1 

- Preparation and fixation: the networks are rinsed with warm PBS (37oC) and then 

fixated with PFA, which causes covalent binding in the tissue, preventing degradation 

(87).    

- Non-specific site blocking: PFA was rinsed away and the block solution is added to 

block non-specific binding sites.  

- Primary staining: The primary antibodies were added. The primary antibodies are 

listed in appendix A Fig A-6, while antibody markers and general information can be 

found in Table 5 and 6 respectively. 

Day 2 

- Rinsing: PBS is used to rinse networks excess primary antibodies.  
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- Secondary staining: Secondary antibodies are added. Secondary antibodies are shown 

in appendix A Fig A-6, while antibody markers and general information can be found 

in Table 5 and 6 respectively. 

- Fluorescent preservation and coverslip fixation: Fluoroshield was used to preserve 

fluorescence over a longer period of time and to attach glass coverslips. 

 

Table 6: General information on immuno-staining. 

ICC 

Microscope type EVOS™ M5000 Imaging System 

Antibody type IgG 

Fluorescent specter 488 nm, 546 nm, 647 nm 

Antibody pairing Mouse-anitmouse, chicken-antichicken, rabbit-

antirabbit 

Antibody specificity Polyclonal 

  

 

MEA set up / analysis  
Electrophysiology recordings 

used Axion CytoView MEA 

plates, and the recording was 

done with Maestro Pro (Axion 

Biosystems) together with the 

AxIS navigator 2.0.4 software 

(Axion Biosystems). The MEA 

plate specifications are described 

below in Table 7. Recordings 

from days in vitro (DIVs) 18- 21 and 41-65 were taken for all 18 networks, which amounted 

to a total of 286 single well recordings (including recording data from perturbation 

experiment). However, only recordings from 41-55 DIV were used for electrophysiological 

analysis. Networks of 21 DIV and below did not show electrophysiological behaviors 

associated with mature networks, namely the lack of network bursts. Networks older than day 

55 showed signs of ageing like more varied electrophysiological measurements. Prior to each 

recording the networks were equilibrated through incubation for 15 min in the Maestro Pro. 

Each individual recoding was 30 min at approximately the same time of day. Spike detection 

was performed using ± 7 standard deviations from the median of the signal. The sampling 

frequency was 12.5kHz. Data from all networks were filtered. Networks with firing rates of 

 
Figure 8: Display of the MEA recorder maestro Pro (Axion 

biosystems) 
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under 5 spiks per min were deemed silent networks, and no networks with 4 or fewer active 

electrodes were considered active. 

 

Table 7: General information about MEA plates 

MEA information table 

MEA type Axion biosystems Cytoview MEA 6 

Plate Name M384-tMEA-6B 

Nr of electrodes 64 (PEDOT) 

Layout 8x8 grid (centered) 

Nr of well 6 

Electrode spacing 300 µm 

Electrode diameter 50 µm 

Recording area 2.1mm X 2.1 mm 

 

 

Analysis of electrophysiological data 
 

The firing rates, synchrony and network burst detections were all captured through 

preexisting inhouse MATLAB scripts. The firing rate was computed from the total number of 

spikes divided by the length of the recording, while network burst and the synchrony analysis 

were computed as described below.  

Network bursts (NB) were found by binning the recording into 50ms bins. The mean firing 

rate was then found for each bin. Any bin where the firing rate exceeded the firing threshold 

(mean firing + 5*SD from the whole recording) and more than 20% of the network was 

active, was considered part of a network burst. Consecutive bins that met condition of being 

in a network burst, were counted as parts of the same burst. From this analysis the frequency 

of NBs in each recording were found, and the measurement frequency of NBs were used for 

all analysis concerning NB in this thesis. 

The synchrony (or coherence index) was found following the definition in (88). Here, the 

recording was binned by 2ms, and the firing rate was found in each bin. The mean firing rate 

over all bins was found and divided by the standard deviation (SD). Synchronous networks 

which have a low SD would obtain large coherence index value, while asynchronous firings 

with high SDs would have low coherence values.  
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Analyzing avalanches; detection and measurements 

Avalanche detection 

Neuronal avalanches were detected based on the work by Beggs et al. (9). MEA recordings 

were divided by silent periods larger than ∆t. The observation of an avalanche event was 

defined by sequences of activity bounded before and after by inactive time bins larger than ∆t. 

In this project the size of an avalanche was defined by the total number of electrodes active 

during the avalanche, and the duration of an avalanche was defined by the number of active 

time bins spanning the avalanche. The interspike interval (ISI) for each individual recording 

was chosen as ∆t. A numerical testing of different bin sizes was also done to test for linearly 

decreasing relationships between critical exponent and chosen bin size, as true critical 

recordings are observed to have this feature (9). As with the electrophysiological data, the 

networks which spiked under 5 spikes per minute were considered silent. In addition, 

networks with five or less data points for either the size or duration distribution were removed 

from further analysis.  

 

The inter electrode distance 

(IED) was also accounted 

for following previously 

established methods (61). It 

was tested that the different 

ISI bins size was not so 

small that the velocity 

needed to move between 

electrodes (IED/Bin size) 

to be captured by the bin 

size did not surpass 

previous reported propagation velocity for neuronal activity in MEA networks (ranged from 30 

to 350 mm/s) (89, 90). To make sure that the bin size at least captures the time frame a neural 

transduction theoretically would need to propagate along the length between electrodes were 

bin sizes from 0.9ms and upward put as a limit. However, because of the common input problem 

and indirect signaling problem (described in Figure 9), this ∆t threshold was lowered to 0.5ms.   

 

 

 

a) 

 

b) 

 
Figure 9: The common input problem and indirect signaling problem: a) 

depicts the common input problem. This is the issue that it is difficult to 

distinguish connection correlations from temporal correlations in spiking 

activity between pairs of neurons and correlations from common input 

from a third unobserved neuron. b) shows the indirect signaling problem. 

A signal may not be sent directly from electrode A to B but instead A to an 

unobserved C, then C to B. 
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ISI   

Through visual inspection was it seen that most of the spike recordings had ISI distributions 

where 75-95% of the data were binned < 1ms. This made it problematic to use a mean 

estimation of ISI as the remaining 5-25% of data varied form 1-100ms, making the mean ISI 

significantly larger (typically between 0.4-4 sec) than the majority of the data, as shown in 

Figure 10. Therefore, when 75% or more of the ISI data was binned at <1 ms, the median of 

the interspike interval was used instead of the mean. Note that this is not the normal convention, 

but due to the power law distribution of spike times, this method was tried out.  

 

  
Figure 10: This figure shows the ISI distribution from 0-100ms for 41 DIV, plate 13, well A3, in the left 

picture we see that over 70% is binned under 1 ms, but that a few ISI even goes over 80ms. The right shows 

the ISI distribution of the data binned under 1ms ranges 0.0-1ms. Mean ISI = 4 sec, media ISI = 0.08 sec.  

 

 

Branching parameter 

The branching (𝜎) of neural signal is one of the parameters used to estimate true critical 

networks. Here, branching is defined as the average number of spikes detected in a time bin 

compared to the spike count in the previous time bin. This formula is mathematically defined 

as (9)   

 

𝜎 =  ∑ (
𝑁𝑝

𝑁𝑎
) 

𝑛𝑚𝑎𝑥

𝑛=0

. 
 

(4) 

For this equation nmax is the total amount of occurrences of active time bins (bins where at 

least one spike was detected). Na is the number of active electrodes observed in the starting 

time-bin, and Np is the number of active electrodes in the preceding time bin of an avalanche 

(9). 
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Probability distribution 

The probability distribution was computed from the total active electrodes within each 

avalanche. The probability distribution was made through binning all occurrences of a 

frequency (total active electrode in an avalanche), which then was divide by total number of 

avalanches.  

 

Finding the Power law exponent 

A power law distribution is defined as Y = CXα, where: X and Y are the variables in question, 

α is the law’s exponent, and C is a constant. When taking the logarithm of Y, the power law 

distributed data can be approximated by a line with slope number = α.   

 log(𝑌) =  𝛼 log(𝐶𝑋) (5) 

The power law exponent (α -value) was found by make a plot of log occurrences and log 

probability distribution.  

 

Maximum-likelihood estimations and best fit regression 

MEAs have good spatial and temporal recording resolution but can only partly capture 

network activity due to their inter-electrode spacing, which creates unrecorded regions 

between electrodes. These unrecorded regions cause problems when analyzing propagation of 

avalanches. Furthermore, biological spiking data is notoriously accompanied by noise. 

Therefore, the empirical data was constrained using a Maximum likelihood estimation 

(MLE). 

 

The MLE is a statistical method which finds the most likely estimator for describing data 

distributions. Here MLE is used to find the α-value of a continuous sub-population in the data 

which most likely originated from the same sample set. This means that it finds the α-value 

from the range of data which is most likely to not have been affected by sub-sampling or 

noise.  

 

The MLE was preformed following the works of Marshall et al. (91), which describes an 

MLE technique for truncated, discrete power laws. This method also compares the α value of 

the truncated data set against the full data set when estimating the likelihood, unlike other 

MLEs. The truncated ranges were found through numerically testing different variations of 

xmin and xmax, which are positional numbers in the avalanche data distribution which varies 
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from zero to the total number of data points (N). The power law exponent was found though 

fitting the data with least square linear regression with goodness of fit test. xmin and xmax was 

constrained to at least cover 40% of the avalanche data as it was seen that small xmin and xmax 

intervals at the ends of the avalanches were preferably selected when the MLE analysis was 

done on heavy tailed distributions. 

For the truncated, discrete power law, the log likelihood function, which here simply is 

referred to as the likelihood function, is given by 

 

𝐿(𝛼) = − log ( ∑ (
1

𝑥
)

𝛼
𝑥𝑚𝑎𝑥

𝑥=𝑥𝑚𝑖𝑛

) −
𝛼

𝑁
∑ log(𝑥𝑖)

𝑁

𝑖=1

.   

 

(6) 

In equation 6 is L(α) the likelihood estimation for a given xmin to xmax interval, 𝛼 is the 

predicted power law exponent following the xmin to xmax interval in question, while 𝑁 is the 

total number of data points for a given avalanche. Once all likelihood estimations were found 

for all xmin to xmax intervals, was a search algorithm used to choose the α-value that gave the 

highest L(α) score.  

 

Scaling relationship and Shape collapse 

Scale freeness in critical dynamics predicts that avalanches of different lengths share a 

universal shape, which only differs from the mean temporal profile of any avalanche because 

of scaling when the duration is normalized. i.e. avalanche data is predicted to be collapsible 

through rescaling. The scaling relationship, Y, between the power law exponents of avalanche 

duration and size distribution was shown by Friedman et al. (92) this relationship is described 

by 

 
𝑌 =

1

𝛾
=

𝛼 − 1

𝜏 − 1
,  

 

(7) 

where 𝜏 is the critical exponent, 𝛼 is the avalanche duration exponent and 𝛾 is the scaling 

constant. In critical networks 𝛾 is typically described as 0.5 while Y is typically described as 2 

in critical networks (92). Note that the scaling relationship is calculated with absolute values 

for the power law exponents. 

The shape collapse was done through dividing all avalanches by the ISI and binning all active 

electrodes in each time bin for the whole duration of the avalanche (92). The temporal profiles 

were normalized by dividing each time bin of each avalanche by the avalanche’s total 
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duration, this way are the avalanches normalized with a duration between 0 and 1. Each 

avalanche size was then scaled accordingly to equation 8, where the scaling relationship 

between avalanches of different durations and the universal shape is described as 

 𝑆𝑚𝑒𝑎𝑛(t, T)

𝑇𝑌−1
~𝑓(𝑡, 𝑇).   

 

(8) 

Smean(t,T) is the function describing mean active electrodes per time t, for the whole duration 

T, for any avalanche, Y is the scaling relationship from equation 7, and f(t,T) is the universal 

scaling function that determines the shape of the average temporal profile (92). 

 

Data which have α values within the range -1.5 ±0.2 , scaling constant of 0.5 ±0.3, are 

collapsible, have a branching of 1±0.1, has linearly decreasing relationship between bin size 

and critical exponent, and can be observed in all different critical phases are considered 

critical. The analysis code for critical detection is available via (84). 

 

 

Perturbation methods 
 

Pharmacological perturbation 

Networks were perturbed through addition of inhibitory γ-Aminobutyric acid (GABA) and 

excitatory NMDA diluted in water. The initial dosage of GABA and NMDA was given based 

on the predictions from the Izhikevich model as seen in Table 8 below. The different 

inhibitory population networks were tested with each other’s predicted perturbation volumes 

in order to compare their responses. 

Table 8: Table of the Perturbation trial. This table shows all the 

perturbation trial with GABA and NMDA. 0.2µM of GABA was additionally 

tested reasoned limitations of available pipets.   

GABA 0.1 µM 0.15 

µM 

0.2 

µM 

0.3 

µM 

Controls  

Low Inhibitory Culture - 2 1 1 Low: 

4 Medium Inhibitory Culture - - 2 - 

High Inhibitory Culture 3 2 1 - Medium: 

4 NMDA 0.4 µM 6 µM 18 µM 

Low Inhibitory Culture 1 1 3 High: 

5 Medium Inhibitory Culture - 4 3 

High Inhibitory Culture - 3 2 
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The predictions were found though combining the E/I firing ranges in the Izhikevich model in 

which critical readings occurred with the Hill–Langmuir equation (93, 94) 9.  

 𝜃 =
[𝐿]𝑛

𝐾𝑑+[𝐿]𝑛.  

(9) 

Here, 𝜃 is the percentwise saturation of receptors, L is the concentration of unbound ligand, n 

is how many binding sites the receptors have, and Kd is the dissociation constant for the 

receptor in question. This was done in order to predict the percentwise saturation of GABA 

and NMDA receptors which would cause a decrease or increase in activity to make the 

Izhikevich model fall out of the predicted E/I firing range observed in critical networks. 

Prior to adding the neurotransmitters, a 30-min baseline measurement was obtained. The 

recording was limited to 15-min and conducted directly after applying the neurotransmitter 

solution, to avoid effects of plasticity. After recording the media was replaced both to limit 

plastic changes and to prevent pathological conditions like excitotoxicity (95) and networks 

were left 48h to let homeostatic mechanisms undo any potential plastic changes from the 

recording.  
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3. Results 

3.1 Modeling 
 

The in silico model was shown to produce critical readings for the ranges 0-50% inhibitory 

populations by tuning with different the clustering levels. Figure 11 shows typical critical 

reading. Assessing the firing and ISI distributions, the model appeared to have biologically 

plausible firing regimes, as biological spikings rates average around 1-50 spikes per sec, 

although it is not uncommon to observe firing rates up to 200 spikes per sec (96-101). Single 

neuron interspike interval varied from ~10-11ms, which is plausible even when considering 

the refractory time of biological neurons (102).    

 
Figure 11: Results from a critical reading in the izhikevich model, A) is the Log-log plot of the probability 

distribution plotted against the ocuranses of sizes. B) is the same plot as A with a regresion line to calculate 

the powerlaw exponent. C) is the raster plot of the spikes, and D) is the ISI distribution.  

 

To make sure these results were not biased, excitatory input was appiled to a fixed position in 

the izhikevich model with every milisecond. The izhikevich model was shown to be able to 

produce critical readings despite having fixed “thalamic” input. This meant that the models 
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internal dynamic and topology cause the critical readings and not just happenstanse from 

random noise.  

Criticality in the models could only be detected with sufficient time for sampling data, and 

clustering and the the inhibitory population played a big role in the generation of critical 

readings. Figure 12 shows the critical emergense rates of networks with 70-90% clustering 

(50% clustering had no occurrences and 60% clustering only had one occurrence and were 

therefore omitted from the graph). The networks shown were able to create critical readings 

with the inhibitory populations from 0-5.5%, 8.3-24%, and 21.5-50.2% respectivley.  

 
Figure 12: The predicted ratios of inhibitory neurons which enables critical networks to 

emerge. These predictions were done by the Ichikevitch model on 70-90% clustered 

networks with Small-world topologies. All itterations had static weights of 0.25, as statics 

weights of under 0.2 casues the itterations to be sub-critical, while weight over 0.3 

caused super critical itterations.    

 

SW networks with clustering of 80% were chosen as the starting point based on the 

observations that 70% clustering networks favored no inhibitory neurons, while SW networks 

with 90% clustering branched over the branching limit of 1±0.1. Ciriticality most commonly 

emerged in different topologies with an inhibitory population of about 8.3-24% of the total 

population for networks with clustering of 80%, as shown in Figure 12. Networks which had 

80% clustering also yielded the best critical readings, with highest number of critical 

occurances along side best fit of branching ratios. The firing ratios between exciatatory and 

inhibitory neurons in networks with 80% clustering is shown in Figure 13. 
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Figure 13: Figure depicts the exitatory to inhibitory firing rates with the standatd 

deciation for critical readings in netwroks with 8%-24% inhibitory neurons. 

 

The critical emergence rate was compaired between in silico Izikevich neworks with small-

world and random topologies with 80% clustering, to see if different topologies altered the 

rate of critical emergence, this is depicted in Figure 14.  

 
Figure 14: A comparison of the critical emergence rates between a 

random and a small-world Izhikevixh model. The random topology is 

shown in blue, while data from the small-world topology is shown in 

orange. 
  

The model was also used as a basis to predict the concentrations of GABA and NMDA 

needed to disrupt critical dynamics in the different inhibitory population networks. 

Combining the E/I firing ratios from Figure 13 with results of the concentration prediction in 

Appendix D Fig. D-1, the different inhibitory ratio networks were predicted to fall out of 
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criticality following treatment with the neurotransmitter concentrations doses presented below 

in Table 9. 

Table 9: Initial dosage of agonists. The dosages were found using the Izhikevich model, by looking at the E/I 

firing ratio predicted of each culture it was calculated from GABAA and AMPA receptors drug binding 

kinetics how much concentration would need to be added to transform the E/I firing ratio of the culture in 

question into lower and higher E/I firing ratios, this we predict should push the network into a sub- or super-

critical state, which also was predicted by the model. The data used is found in appendix D Fig D 1-2 and 

Table D-3. 

 Initial Dose trial 1, GABA Initial Dose trial 1, Glutamate 

Low Inhibitory Culture 0.1 µM 18 µM 

Medium Inhibitory Culture 0.15 µM 6 µM 

High Inhibitory Culture 0.3 µM 0.4 µM 

 

 

3.2 Immunostaining  
Figure 15 A shows glutaminergic neurons expressing GABA & AMPA receptors. C shows 

glutaminergic neurons expressing glutaminergic specific marker TRB-1 & neuron specific 

marker NeuN. Figure 15 B, and D illustrates the individual pictures taken with different light 

filters, which composes figure 15 A, and C respectfully. Figure 16 A shows GABAergic 

neurons expressing GABA & AMPA receptors. While C shows GABAergic neurons 

expressing intracellular GABA molecules and proteins GFAP for astrocytes. Figure 16 B, D 

illustrates the individual pictures taken with different light filters, which composes figure 16 

A, and C respectfully. In the control tests no protein expression was visible in the primary 

exclusion assays, as shown in the supplementary results appendix (Appendix D D-4). 

The staining results show both neuronal types have inhibitory and excitatory receptors, 

through the overlap of the orange and green fluorescents in Figure 15 A and 16 A. The 

excitatory neurons have a glutamatergic specific marker (Fig 15 C, orange fluorescents) and 

the inhibitory neurons have intracellular GABA, signatures of GABAergic neurons (Fig 16 C, 

green fluorescents around Hoescht stained nuclei). Additionally, astrocyte marker GFAP were 

found (Fig 16 C, orange fluorescents), indicating that all cell types were present in the 

networks of the thesis. In all trials the anti-rabbit antibodies were barely visible, this could be 

due the light filters of the microscope not fully matching the emission wavelengths from the 

anti-rabbit secondary antibody.  
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A)  

Glutaminergic cells: GABAB, AMPA reseptor 

stain 

 

 

B)  
Glutaminergic Stain TX-red, CY5, GFP, 

DAPI filters 

 

 
C)  

Glutaminergic-specific stain 

 

 

D)  

Glutaminergic-specific stain: TX-red, CY5, 

GFP, DAPI filters 

 
Figure 15: Shows the immunostaining of three sets of three different antibodies all also containing Hoescht 

in blue: A) Stains for GABAB-R1, AMPA-R1, beta III tubulin on Glutaminergic neurons, in the colors green, 

orange, red respectfully. B) Illustration of Glutaminergic stains view with DAPI (blue) ,GFP (Green), CY5 

(orange) and TX-red (red) light filters. The DAPI filter is for finding nuclei stains, the GFP filter is for finding 

GABAB-R1stains, the CY5 filter is for finding AMPA-R1 stains, and the TX-red filter is for finding beta III 

tubulin stains. C) Glutaminergic specific stains for NeuN, TBR1, βIII-tubulin on Glutaminergic neurons, in 

the colors Green, orange. Red respectfully. D) Illustration of Glutaminergic specific stains view with DAPI 

(blue) ,GFP (Green), CY5 (orange) and TX-red (red) light filters. The DAPI filter is for finding nuclei stains, 

the GFP filter is for finding NeuN stains, the CY5 filter is for finding TBR1 stains, and the TX-red filter is for 

finding beta III tubulin stains.  
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A)  
GABAergic cells: GABAB, AMPA reseptor 

stain 

 

B)  
GABAergic: GABAB, AMPA stain TX-red, 

CY5, GFP, DAPI filters 

 

C)  

GABAergic-spesific stain 

 

 

D)  

GABAergic-specific stain: TX-red, CY5, 

GFP, DAPI filters 

 

Figure 16: Shows the immunostaining of three sets of three different antibodies all also containing Hoescht 

in blue: A) Stains for GABAB-R1, AMPA-R1, beta III tubulin (Tuj) on GABAergic neurons, in the colors 

green, orange, red respectfully. B) Illustration of GABAergic stains viewed with DAPI (blue), GFP (Green), 

CY5 (orange) and TX-red (red) light filters. The DAPI filter is for finding nuclei stains, the GFP filter is for 

finding GABAB-R1 stains, the CY5 filter is for finding AMPA-R1 stains, and the TX-red filter is for finding 

beta III tubulin stains. C) GABAergic specific stains for GABA, GFAP, NeuN on GABAergic neurons, in the 

colors green, orange, red respectfully. D) Illustration of GABAergic and astrocyte specific stains view with 

DAPI (blue) ,GFP (Green), CY5 (orange) and TX-red (red) light filters. The DAPI filter is for finding nuclei 

stains, the GFP filter is for finding GABA stains, the CY5 filter is for finding GFAP, and the TX-red filter is 

for finding NeuN stains.   
 

 

 

3.3 Electrophysiology 
The overarching trends for all networks (after the networks were considered mature, 41 DIV) 

were that the firing trended downwards while both synchrony and NB trended upwards. In 

addition, the fraction of network burst to synchrony coefficient (NB/S) remained stable from 

40 DIV. The 24% inhibitory populations tended to have the largest mean readings in all tested 
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factors. However, as seen in Table 10 no significant difference between the inhibitory ratio 

networks were found. Figure 17 shows the results of the electrophysiological analysis of the 

networks. 

A) 

 

B) 

 
C) 

 

D) 

 
Figure 17: Electrophysiological results. The line represents the mean of the data while the shaded regions is 

the SD. The Low, medium and high reffers to the networks with inhibitory population percentage 8%,15% and 

24% respectfully. A) shows the synchrony coefficient for all networks over 21-65 DIV. B)  Network burst 

frequency for all networks over 21-65 DIV. C)  shows the firing rate for all cultures over 21-65 DIV. D)  

shows the Burst to synchrony ratio(I.e. measurment of B/A) for all networks over 21-65 DIV.   

 

To check for significant differences between the three network types, a one-way ANOVA test 

was used to compare the electrophysiological data from the three different inhibitory 

percentages (from 41 DIV), Table 10 depicts the results. These values come from Appendix 

D, Figure D-5, which also depicts the mean differences between the samples in the 

electrophysiological recordings. The total count of active networks of each inhibitory 

population is shown in appendix D Figure D-11. 
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Table 10: A table of the statistical 

differences between the three different 

inhibitory population networks 

regarding the electrophysiological 

measurements. Samples gathered from 

41 DIV 

Parameter p-value 

Firing rate 0.17 

Synchrony 0.28 

Frequency of 

Network bursts 

0.78 

Bursts/Synchrony 0.56 

 

MEA recordings were preformed varying from 1-5 days following media changes. To make 

sure that this did not cause bias in the electrophysiological analysis, the effects of recoding on 

different days away from media changes was tested with one-way ANOVA, as seen in Table 

11. Electrophysiological data from all cultures were compared against the data from all other 

days away from media change (1 day, 2 days, 3 days, 4 days, and 5 days). These values come 

from appendix D D-6 which also depicts mean differences between the samples. 

Table 11: A table of the statistical 

significance between days away from 

last media change and changes in 

electrophysiological measurements. 

Parameter p-value 

Firing rate 0.00041 

Synchrony 0.00013 

Frequency of 

Network bursts 

0.092 

Bursts/Synchrony 0.0088 

 

These results suggest that the media change affected all electrophysiological measurements 

except for the NBs. Firing rates and the synchrony coefficient tends to decrease with more 

days without media change (Appendix D D-6).    

 

3.4 Graph theory measurements 
Visual inspections of the mature networks showed that the networks mostly developed into 

condensed clusters, but some had sparse regions of neurons. Typical healthy networks are 

shown in Figure 18.   
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 The functional topology of the 

networks was assessed by graph 

theory. A typical topological MEA 

network description is depicted in 

Figure 19. Additional, pictures of 

stability of functional network over 

time is shown in appendix D Fig D-7. 

 

 The in vitro networks were classified 

based on their clustering, average 

pathlength, mean degree distribution 

and small-world metric ω, these 

classifications are shown in Table 12 

below. The classification was binary 

and based on whether the values were 

in the lower (state 1) or upper (state 2) 

half of the maximum and minimum 

measured data. The clustering ranged 

from 0.3-0.75, the average pathlength 

varied from 1.6-2 and the 

mean degree varied from 10-

26. All networks had small-

worldness metrics counted as 

having small-world features 

(0.5 > ω > -0.5), these 

networks were classified 

based on which side of the 

specter the ω value was 

located on. The two sides of 

the ω specter were the 

positive side (state 1) and the 

negative (state 2), ω > 0 and 

ω < 0 respectfully.  

A)

  
B) 

 
Figure 18: A) mature cells 41 DIV. This picture 

shows a common mature culture B) mature cells 41 

DIV with sparse neural density.  

 
Figure 19: Topological description of networks 08 A2 D.IV 41. This 

figure is representative of the typical visual, following the topological 

description.    
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Table 12: Classification table. This table shows the binary 

classification of all networks from the different E/I ratio 

groups. This data was found from appendix D Table D-8 and 

D-9, which shows the binary classification for each network. 

The mean measurements from the in vitro data of the graph 

theory measurements: clustering, average path, ω, and mean 

degree is also shown for all different inhibitory populations 

and collectively for all networks. 

Collective values State 1 State 2 Mean  

Clustering 14 4 0.43 

Average pathlength 16 2 1.74 

Small-Worldness  6 12 -0.088 

Mean degree 14 4 17 

8% inhibitory population State 1 State 2 Mean  

Clustering 6 0 0.37 

Average pathlength 4 2 1.76 

Small-Worldness  0 6 0.01 

Mean degree 6 0 14.7 

15% inhibitory population State 1 State 2 Mean  

Clustering 6 0 0.44 

Average pathlength 5 1 1.72 

Small-Worldness  5 1 -0.008 

Mean degree 2 4 17.6 

24% inhibitory population State 1 State 2 Mean  

Clustering 4 2 0.49 

Average pathlength 5 1 1.74 

Small-Worldness  3 3 -0.09 

Mean degree 3 3 18.8 

 

Table 12 shows that the clustering and mean degree trended upwards with the increased 

inhibitory population, the ω trended more towards the negative side of the specter, while the 

average pathlength seemed to fluctuate between the different inhibitory population networks. 

Additional data can be seen in Appendix D D-8, which shows the mean values of the graph 

theory measurement for all networks, and D-9 which shows the binary classification of all 

networks. Further, the number of strong cross-correlations were found to increase with 

increasing inhibitory populations (Appendix D D-10). It was found that half of the networks 

had the same topological description following these binary classifications, and 6 of the 

remaining 9 networks differed from having this description by one parameter category 

(Appendix D D-9). This shows that the functional topology was fairly similar for most 

networks. The most reoccurring graph theory measurements from all the networks are shown 

in Table 13. These values were used when trying to update the in silico model with the in 

vitro data. 
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Table 13: Median measurements from the in vitro data of the graph theory 

measurements: clustering, average pathlength, ω, and mean degree. 

Median   Clustering Average 

pathlength 

Small-worldness Mean degree 

values 0.41 1.73 0.01 16 

 

Additionally, all networks had what were considered small-world features, with low average 

pathlengths and high clustering, consistent with earlier topological assessments of MEA 

networks (69, 77, 78). Supplementary data comparing the mean topological measurements of 

the connection persistence and hard threshold filters is shown in Appendix D Fig D-12.           

In vitro in silico comparison 
The topology of the in silico model and the MEA in vitro networks were compared. The in 

silico results were produced from average of the 10 best critical in silico networks, while the 

in vitro results for each of the three different inhibitory population networks stem from the 

average of the measurements collected in the 41-55 DIV period. These results are shown in 

Table 14.   

Table 14: Comparison of graph theory measurements between Izhikevich model data, and in vitro data 

filtered a hard threshold of 0.25 in correlations. 

Model Average clustering Average 

Pathlength 

Small-world 

metric ω 

Mean Degree 

In Silico 0.801 1.18 7.5*10-4 519.81(80%) 

In Vitro (MD < active 

electrodes) 8% 

inhibitory networks 

0.370 1.76 0.01 14.7(23%) 

In Vitro (MD < active 

electrodes) 15% 

inhibitory networks 

0.440 1.72 -0.008 17.6(27%) 

In Vitro (MD < active 

electrodes) 24% 

inhibitory networks 

0.490 1.74 -0.09 18.8(29%) 

 

For all the graph theory measurements the in vitro results varied from the in silico data. The 

clustering, and the mean degree were lower in the in vitro measurements, and the average path 

length was higher for the in vitro measurement. Regarding ω, the two models were similar, 

however the ω values from the in vitro measurements were further away from 0 than the in 

silico model, if only marginally.       
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3.5 Critical analysis 

Critical readings of different inhibitory ratio networks 

The recorded data was analyzed with the critical analysis scripts available from (84) and 

Figure 20 shows the results for the predicted critical exponent and scaling relationship for all 

networks over all recordings (except recordings from the perturbation experiment), as well as 

box plots for the critical exponent and scaling constant with data restricted to the 41-55 DIV 

period.     

A) 

 

B)  

 

C) 

 
P-value = 0.15 

D) 

 
P-value = 0.19 

Figure 20: critical and scaling values. A) shows a dot plot of the Critical exponents from 21-65 DIV, data 

within the blue stippled line is considered critical. B) shows a dot plot of the scaling constant from 21-65 DIV, 

data within the blue stippled line is considered critical. C) Shows a box plot of the Critical exponents from 41-

55 DIV, where the orange line is the median off the critical exponents in the data. The box encases 50% of the 

data, and 95% of the data is within the whiskers. Additionally, the p-value from an ANOVA test comparing 

the critical exponent data from the three different inhibitory ratio networks is shown. D) Shows a box plot of 

the Scaling constant from 41-55 DIV, where the orange line is the median off the scaling constant in the data. 

The box encases 50% of the data, and 95% of the data is within the whiskers. Additionally, the p-value from 

an ANOVA test comparing the scaling constant data from the three different inhibitory ratio networks is 

shown. 

 

As seen in Figure 20 was no significant differences found between the critical exponent nor 

the scaling constant data form the different inhibitory percentage networks. Assessing the 

critical exponent and the scaling constant data, visual inspection of avalanche size 
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distribution, ISI distribution and avalanche durations (appendix D Fig D-13), it was seen that 

the networks past 41 DIV were all considered super-critical. Networks up to 20 DIV were 

found to be sub-critical, and some networks in the period 21 & 41 were considered critical. 

Additionally, some networks were observed in all critical states throughout the 65 DIV 

period, appendix D D-14. 

When finding the mean critical exponent and scaling constant, single day anomalies (scaling 

constant data over 50 and under -50) were filtered away, and the unfiltered data is shown in 

appendix D Figure D-15. The mean results of the critical analysis are shown in Table 15 

below. 

Table 15: Mean results for critical exponent, scaling constant, ISI, branching, and avalanches for the three 

different inhibitory population networks from recordings from DIV 41-55.  

Culture Mean critical 

exponent 

Mean scaling 

constant 

Mean 

Branching  

ISI (ms) Mean 

Avalanche nr 

Low -2.8±0.5 2.2±1.7 1.15±0.01 57±104 10773±5084 

Medium -2.7±1.0 1.5±0.6 1.14±0.01 35±17 8468±5249 

High -3.9±2.2 2.4±1.1 1.14±0.01 39±48 11818±7750 

 

For the different network types the branching ratio trended downwards with increased 

inhibitory populations. The mean critical exponent showed a slight trend downward, however 

one must be mindful of the large variance. The other data categories varied between all 

network types with no clear trends.  

The relative occurrence rate for the networks considered critical is shown below in Table 16, 

furthermore, the networks were also observed in all critical phases (Appendix D Fig D-5). 

Table 16: Shows count of networks which fit this thesis criteria for being 

considered critical, these networks were found between 21 and 41 DIV. 

Combined had each different inhibitory ratio network 12 recordings from 21 and 

41 DIV.  

 Low inhibitory 

Networks 

Medium inhibitory 

Networks 

High inhibitory 

Networks 

Total Critical 

readings 

3/12 2/12 4/12 

 

The 8% inhibitory networks had 3/12 and the 15% inhibitory networks had 2/12 critical 

recordings, however no same network was stable over DIV 21 & 41. 24% inhibitory networks 

had 4/12 where one network was stable over the period.  
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Critical readings filtered by topology 
The networks which were classified as having the same functional topology (appendix D 

Table D-9) were compared to see if similar networks provided results with less variance, the 

results are shown in Table 17. By only comparing networks of the same function topology the 

variance in the data decreased for most of the data, however some scaling constant values 

only decreased in mean measurement and increased in variance. However, there were still no 

significant differences found between the critical exponent or scaling constant of the different 

inhibitory population networks.  

Table 17: Critical exponent and scaling constant of networks 

classified with the same topology. ANOVA results for critical 

exponent and scaling constant from networks filtered by topology is 

also shown. 

Culture Mean critical exponent Mean scaling constant 

Low - 3.9 ± 2.2 3.9 ± 2.2 

Medium - 2.4 ± 0.1 1.5 ± 0.1 

High - 3.7 ± 0.7 2.8 ± 1.0 

p-value 0.3 0.1 

 

One-way ANOVA test was used to test if the three inhibitory ratio networks significantly 

differed in critical exponents or scaling constants when comparing measurements from the 

same day away from media change, these results are shown in Table 18.  

Table 18: Critical exponent and scaling constant of networks 

classified with the same day away from media change (1 day). 

ANOVA results for critical exponent and scaling constant from 

networks filtered by same day away from media change (1 day). 

Culture Mean critical exponent Mean scaling constant 

Low - 2.7 ± 0.84 1.48 ± 1.77 

Medium - 2.4 ± 1.16 1.55 ± 1.99 

High - 3.5 ± 0.85 1.93 ± 1.05 

p-value 0.8 0.04 

 

There was found no significant difference between the critical exponents from data taken the 

same day way from media change, but there was a significant difference between the scaling 

constants. For this filtering the standard deviation was lower for all critical exponent data and 

some scaling constant data, compared to the data in Table 19. 

 

Shape collapse 
Data collapse was tried on all the data, and most of the data was not collapsible. Figure 21 

depicts a typical successful collapse. 
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Figure 21: Figures taken from DIV 41 13 A2. Mean shape of raw avalanches of durations 6-11 bin sizes. B) 

shape collapsed avalanche data (scaled with durations in ∆T and not T as in Friedman et al.)  

 

To show that this collapse was possible due to the sequential shape of an avalanche and that 

any data could not be collapsed, the data from Figure 21 was shuffled and the shuffled data 

was tried with a collapse. However, the shuffled the data was not collapsible, as seen in 

Figure 22. 

A) 

 

B) 

 
Figure 22: Randomly shuffled data does not collapse. A) Re-shuffled data form Figure 21 A. B) results of 

collapse analysis on shuffled data from A.  

 

An example of what was not counted as a successful collapse is depicted in appendix D 

Figure D-16. Additionally, in appendix D Fig D-16 is a picture of collapsible data from a non-
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critical recording. Appendix D Figure D-13 also depicts a full range of avalanche from the 

non-collapsible data.  

 

Factors affecting critical stability 
The effect of media changes on the critical exponent was also tested to determine if recording 

on different days away from last media change could have caused some of the variance in the 

data (5 groups were used in this ANOVA test, the groups included 1-5 days away from last 

media change). Furthermore, critical exponent and scaling constant data from low synchrony 

value recordings were tested against critical exponent and scaling constant data of high 

synchrony value recordings to see if they produced differences in critical exponent. This 

method of testing for statistical differences was also done between critical exponent and 

scaling constant data in low and high frequencies of NBs and for high and low NB/S 

recordings. These values are all shown in Table 19, and the values are taken from Appendix D 

Table D-17. 

Table 19: Statistical significance of changes in critical 

exponent and scaling constant regarding changes in: Last 

media change, fraction of network bursts, synchrony, and 

ratio of burst/synchrony. 

Name P-Value 

exponent 
P-vale 

scaling 

Media changes effect on 

Critical exponent 

0.015 0.018 

Bursts effect on Critical 

exponent 

0.5 0.26 

Synchrony effect on Critical 

exponent 

0.012 0.042 

Intermediate Burst/synch 

level effect on Critical 

exponent 

0.21 0.051 

 

Table 19 shows that media change had significant differences between values of both critical 

exponents and scaling constants on different days away from media change. The critical 

exponents trended downward with increased days away from media change while the 

variance of the scaling constant increased with increasing days away from media change 

(appendix D Table D-13). Significant differences between critical exponent and scaling 

constant data from days of high and low synchrony values were also found. It was also found 

that both the mean critical exponent and scaling constant and their SDs were lower on 

recordings with higher synchrony (appendix D Table D-14).     
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3.6 Perturbation and Resilience  
To test if the networks differed in resilience to perturbation the networks were perturbed with 

GABA and NMDA. Figure 23 shows the effect of these neurotransmitters on firing rate, 

critical exponents and scaling constant.  

A) 

 

B) 

 

C) 

 
Figure 23: Changes in firing rate from NMDA and GABA addition. A) is the perturbations effect on the 

firing rates compared to control, B) the perturbations effect on the critical exponent compared to control, C) 

the perturbations effect on the scaling constant compared to control. 

 

NMDA (and some GABA trials) caused firing rate changes overlapping with the control, 

some NMDA trial even causing a decrease in firing rates. Table 20 below shows comparison 

between all perturbations (where there were enough samples to compare). The networks were 

compared in two categories as seen in Table 20, percental differences in critical exponent and 

scaling relationship caused by acute perturbation, and percental differences between 

measurements before the perturbation and 48 h after the perturbation, to look at self-

organization capabilities. GABA and NMDAs effect on the firing rates are shown in appendix 

D Table D-18, this data insinuates that firing of lower inhibitory networks are less affected by 

GABA interactions while no clear trends were found for NMDA effect on activity.  
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Table 20: Perturbation data. The table shows all different trials of the perturbation. The table also shows 

the percental differences between critical exponent and scaling constant the perturbation, from value before 

the perturbation against values after perturbation. And the changes in critical exponent and scaling 

constant before perturbation against values 48h after the perturbation. Trial results without the SD were 

single trials.   
Reactant  Inhibitory 

Ratio  

% Change to 

perturbation: 

Critical 

exponent  

% Change to 

perturbation: 

Scaling 

constant 

% Change 

48h after 

perturbation: 

Critical 

exponent 

% Change 

48h after 

perturbation: 

Scaling 

constant 

GABA  

0.1µM 24% 0.63±0.48 3.90±5.90 0.05±0.16 -1.32±1.72 

0.15µM 8% 0.06 0.10 0.15 0.62 

0.15µM 24% 0.68 1.17 0.04 -- 

0.2µM 8% -0.36 1.22 0.49 -3.88 

0.2µM 15% -0.58 -1.50 -0.03±0.27 -0.19±0.29 

0.2µM 24% -016 -2.29 0.29 0.46 

NMDA  

6µM 15% 0.16 -4.02 -0.03±0.79 -0.84±0.82 

6µM 24% -0.58 -0.84 -- -- 

18µM 8% 0.00±0.65 20.77±43.28 -0.40±0.19 -0.35±2.29 

18µM 15% 0.15±0.58 -1.70±4.97 -0.13±0.52 -1.5±2.01 

18µM 24% -0.52 -0.63 -0.66 -0.81 

Control 

 8% 0.98 0.45 -- -- 

 15% 0.00±0.61 -0.93±1.29 0.60 -0.26 

 24% -0.27±0.52 -0.27±0.74 0.64±1.3 3.28±5.19 

 

From Table 20 the 24% inhibitory networks collectively changed the least 48h after 

perturbation, compared to 15% and 8% networks. 15% collectively also beat 8% inhibitory 

networks in the 48h after perturbation categories. Changes to acute perturbation varied more. 

The data might hint to higher inhibitory populations resisting NMDA better than lower 

percentage networks, and that lower inhibitory percentage networks resist GABA 

perturbations better. Curiously, 24% inhibitory networks seem to be more effected by lower 

GABA concentrations than higher ones. Reviewing the perturbation data, the 8% networks 

were only consistently better at resisting changes to scaling constant during acute effects of 

GABA perturbation compared to the other network types, while the 24% was better in re-

stabilization 48h after perturbation and in acute changes to NMDA perturbation. Interestingly, 

8% and 24% each outperformed the other once in the effect of GABA on acute resilience to 

critical exponents. 

 



3. Results 

Page 57 of 101 
 

3.7 Updated model results 
The Izhikevich model was modified to mimic the functional topology found in vitro. This 

modification caused the model to be unable to create critical reading as seen in Table 26. 

Table 21: Critical emergence rate in updated 

model. Shows the mean critical exponent ant the 

critical occurrence rate. 

Izhikevich model with in vitro 

topology values 

Values 

Critical exponent 1.9±0.3 

Critical occurrence rate 0% 

 

Additionally, the model only showed asynchronous behavior, with long ISI periods. A typical 

model simulation with the functional in vitro topology is depicted in Figure 24.    

A) 

 

B)

 

C) 

 
Figure 24: Typical readins from the updated Izhikevich model. A) is the Log-log plot of the probability 

distribution plotted against the ocuranses of the sizes, B) is the raster plot of the spiking, C) is the ISI 

distribution. 

 

However, the network could be tuned to criticality with a change in the total neuronal 

population of the network (Appendix D Figure D-19). The critical emergence rates of size 

increased networks are shown in Figure 25:  
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Figure 25: The critical emergence rate of the updated Izhikevich model 

with 1.5 x increase in total neuronal population  

 

With the increased size the in silico model manage to produce critical reading between 22-

45% inhibitory populations, but these occurrence rates were low varying form 1-7%.  
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4. Discussion 
 

4.1 Results  

In silico results 
From the in silico model it was predicted that many factors affected critical emergence. The 

critical readings of the model varied from iteration to iteration, this is probably due to 

differences in inhibitory placement, suggesting that the placement of the inhibitory nodes 

plays a large role for critical emergence. Assessing the results from the model, four factors 

seemed to tune critical occurrence rates: topology (both single parameter and overarching 

topology), E/I ratio, inhibitory placement, and synaptic weights. From our simple comparison, 

small-world topology seemed to have a better emergence rate than random topologies, both in 

highest occurrence rate and area of E/I population ratios in which critical configurations could 

occur in. This complements previous works stating that small-world topologies are better 

suited for critical emergence (14, 69). These results supports earlier observations of factors 

altering occurrence rates (14, 58, 103). In contrast to our model, other models with Small-

world topology have found that 20-30% inhibitory neurons promotes criticality, although 

these results were produced from other firing model type than the Izhikevich firing model and 

each neuron was connected with only 4 other neurons and plasticity rules were in place (104). 

Electrophysiological Data 
The different E/I population ratio networks differed in many ways. From the 

electrophysiological data no significant difference was found between the different inhibitory 

networks, however, 24% inhibitory networks did have a mean highest rating on all 

electrophysiological parameters, and 15% had higher mean electrophysiological readings than 

8% in every category other than synchrony. The firing rate of the different inhibitory 

population networks interestingly had a trend of increased firing with increased inhibitory 

populations, contradictory to what was expected given the effect if GABAergic firing. Put in 

context with Appendix D Table D-11, it is seen that both 15% and 24% inhibitory networks 

have 10% more active networks then 8% inhibitory networks. This increase in spiking activity 

and active networks might suggest that these networks with higher inhibitory populations can 

be considered healthier, as they show more activity and have higher survivability. 

Synchronous activity was expected to be different for the different networks, as the 

interaction of excitatory to inhibitory input have been known to produce synchrony in spiking 

data (62, 64, 65).  
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However, increased inhibitory populations caused no significant differences in synchrony 

measurements. One possibility for this statistical insignificance might be due to the innate 

self-organizational abilities of neurons. Networks might have organized into similar E/I firing 

balances despite the different E/I populations, viewing as the different network types all had 

similar functional topologies. However, examining Appendix D Table D-5, there were trends 

of increased firing, synchrony and NB activity with increasing inhibitory population.  

Following the trend of the other electrophysiological data, it is not unreasonable to speculate 

that similarly to the in silico model, the discrepancy in synchronous activity between 8% and 

15% inhibitory networks is reasoned the inhibitory distributions in the networks, and that with 

more samples, the same increasing trend would occur between 8% and 15% inhibitory 

networks. These trends further suggest that a significant difference between synchronous 

activity and NBs in the different inhibitory networks might be found with larger sample sizes. 

Topology data  

Although the 25% connection persistent method was tried, it was deemed unsuitable for use, 

as this way of filtering left a larger mean degree than there were active electrodes for some 

recordings. Because of this, the hard threshold method was used. As previously mentioned, it 

is hard to predict the right filtering threshold for the adjacency matrix. Visual inspection of 

the hard threshold showed that the data at least intuitively made sense as, i) mean degree 

distributions were lower than the number of electrodes active during each recording, and ii) 

an abundance of fully connected networks was lacking, iii) there were nuances in the 

remaining data with different electrodes both containing relatively low and high correlations 

with other electrodes, iv. the correlations are so high that we can be confident that it is an 

actual functional relationship between electrodes. Still, these results suggest a higher average 

path length and lower mean degree than predicted by the model. This was not surprising, 

given that the Izhikevich firing model is fitted with a static small-world topology. Even if the 

Izhikevich firing model reproduce biological spiking behavior (80), the symmetric equally 

spaced connections will affect the firing dynamics, which in turn alters the graph theory 

measurement which cause critical topologies to emerge. This argument is further elaborated 

on in section 4.2, in silico model. 

As seen, the different E/I population networks slightly differed in all graph theory 

measurement with increased clustering, decreased average pathlength, and larger negative 

values of the ω metric with increased inhibitory populations. One would expect different 
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molecular profiles between inhibitory and excitatory neurons, and on this basis is it not 

unthinkable that these differences in profiles cause the developmental differences, which 

would be magnified with increased E/I populations. One such factor may be the increased 

GABA transmitters concentrations, as GABA transmitters have been observed to be a trophic 

(growth promoting) agent during neural development, promoting synapse and neurite 

formation (105-107). This may explain why there is a trend of increased clustering, decreased 

average pathlength and a trend of larger negative ω values with increased inhibitory 

populations, as this would cause networks to be more interconnected. It was also seen that 

networks with more inhibitory populations had more strongly cross-correlated electrodes 

(Appendix D Fig D-10), this supplements our previous observation that the synchronous 

activity in a network increases with inhibitory population. The observation of more clustering 

and increase in cross-correlated data following higher inhibitory populations coincides with 

the observation of increased bursting activity with the increased inhibitory populations, as 

synchronous activity in highly interconnected network will lead to NBs.  

Critical Data 
Is the observed data critical? 

As of now, we find that there has yet to come any evidence definitely proving that the 

behavior found originated from critical state dynamics and not other neural mechanisms. 

Power laws can commonly be observed in nature, independent of phase transitions or critical 

dynamics. As stated, power laws are indications of a network being in a critical or close to a 

critical state. However, since power laws can occur from other mechanisms, supplementary 

evidence is required to prove the presence of critical dynamics (17). In true critical systems 

one should be able to observe power laws emerging from networks that can undergo phase 

transitions from sub- to super-critical phases (42, 48), have the predicted power law 

relationships (size, durations, branching ratios) (1, 9), and scale invariance should be shown 

with data collapse (9, 17, 37, 38, 92); meaning that one can take the multivariable data and 

make it into a one variable function through scaling (108). 

For some of the networks all the aforementioned factors were found, as seen by networks 

going through all critical phases during the 65-day period (Appendix D Fig D-14), and 

through the criticality analysis. This indicates that some networks operate with critical 

dynamics or to some degree, at least are similar to critical dynamics. It is possible that some 

networks were in a critical state in the unobserved time span between 21-41 DIV and since 

transitioned into a different state. This speculation is strengthened by other studies which have 
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observed critical readings in the 20-35 DIV (1, 48, 61, 78), although this period seems to vary 

with the experimental specifics (42).  

Variability in data 

Due to self-organization attractor dynamics, critical networks are ever evolving systems. 

Because of this, some day-to-day variation was expected. However, the data observed might 

be beyond what would be expected of such daily variations. Many factors seem to cause 

variability in the data. Recording on different days away from media change had a significant 

effect on many electrophysiological factors. The ageing is another cause of variation, 

especially under the developing stages and after 60 DIV. Differences in topology might have 

been another source of variation, filtering by similar topologies reduced the variance of the 

scaling constant and critical exponents. However, the variability caused by each individual 

network might have made it so that the variance would be decreased no matter which 

networks were excluded as seen in Appendix D Figure D-15.  

 

Furthermore, some unknown event caused sharp increase in synchrony on 44 DIV, on this day 

the network bursting rate was also increased and firing rates went down. The functional 

topology was also affected by this event (Appendix D Figure D-7). This might have been 

caused by human error or seeing as 41 DIV is the last day any networks were considered 

critical, the 44 DIV results might be a transition period where the networks evolve towards a 

super-critical state, as every network from 44 DIV and onward were considered super critical. 

Further research would be required to confirm whether transitions from critical or critical-like 

states to super-critical states are associated with such dramatic changes in activity. 

 

Networks with different dynamics and topologies seem to produce different attractor points 

with different ‘proximities’ to criticality (37, 40). As seen in Appendix D Fig D-15 A, C and 

E (although our data is considered super-critical) different networks of the same E/I 

population seem to produce different critical exponents. This might be because some 

networks develop into different attractor states, as illustrated in Figure 26. Hypothetically, this 

should give different nuances in the computational gain associated with critical dynamics. In 

fact, this is speculated to be the case with different superficial brain areas; each area operating 

at different near-critical configurations best suited for their particular function, hence 

balancing and optimizing their individual appropriate processing properties (13, 55). If indeed 
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our networks operate with different attractor stats, this could represent another potential 

source of variance. 

 

Figure 26: Conceptual illustration of three different networks which have developed different attractor 

states. The blue ball represents the current dynamics of a system while the black line represents different 

dynamical system configurations as an attractor filed. The red line represents the system configuration which 

causes optimal critical dynamics (where gained processing abilities peaks). 

 

Factors which might affect critical dynamics 

Four factors were tested for associations to critical emergence, but associations were only 

found for half of them. High levels of NB is observed to be associated with critical dynamics, 

but low values of NB frequency and NB/S did not cause any significant effects on the critical 

exponents and scaling constants compared with data with higher NB or NB/S ratio values. 

Considering, that the critical exponent was calculated from size distribution of avalanches and 

that our measurement of NB is a direct measurement of the frequency of widespread activity. 

It was unexpected that the low and high NB levels did not cause differences in critical 

exponents. This is most likely due to the data being in a super-critical state, which would 

make the NB and NB/S values tested comparatively low to what would have been observed if 

the networks were not super-critical state. High levels of NB and Intermediate levels of NB/S 

might still be associated with critical dynamics and bursting activity might still affect critical 

dynamics, but this is not captured in the data. 

Synchronous activity was shown to alter the critical exponent and scaling constant. 

Incidentally, the data from the model indicates that criticality emerges at intermediate levels 

of synchrony to asynchrony (Appendix D Fig D-19), which is similar to other research (41, 

57, 61). An independent critical state have been associated with synchronous dynamics (14, 

44, 57), this might mean that the observed dynamics from neural networks may be a mix of 

several critical dynamics, hence why synchronous activity affects the critical dynamics. 

However, uncovering the nature of critical dynamics is beyond the scope of this thesis. 
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The media change also looked to affect the critical dynamics. The media used to culture the 

networks was a combination of metabolites, survival factors, and pH regulating components. 

As networks goes without a change in media, these components become less available due to 

depletions from use. Li et al. stated that strong synaptic connections (plastically enforced) are 

more metabolically taxing to maintain (57). Considering this, it is possible that the changes in 

critical exponents are due to changes in synaptic weights, as a result of inadequate amounts of 

energy. However, the media also altered synchrony, which appeared to affect the critical 

exponent and scaling constant. With the current data it is not possible to distinguish if these 

are independent events both causing an effect or if only the change in synchrony caused an 

effect. Synaptic weights, and modulatory mechanisms such as Hebbian plasticity are other 

factors linked to critical emergence (14, 41, 103), however, none of these are directly 

explored in this thesis. An alternate explanation might be that changes in pH could cause 

slight alterations in some proteins and thus affect the critical exponent (109, 110). Still, for all 

these significant correlations found between the factors explored in this section and changes 

in critical exponents and scaling constants one must bear in mind that correlations are a far 

step away from causations.  

 

Critical emergence and E/I population ratios 

Most of the recorded data was considered super-critical, however, from the recordings 

considered critical, 24% inhibitory networks had the most critical readings. This data hints to 

increased inhibitory populations being better for emergence of critical dynamics. However, 

the nature of why this is remains unknown. Higher inhibitory populations may increase the 

synchronous activity, which our data suggest affecting critical dynamics though altering the 

critical exponent and scaling constant. Increased inhibitory populations also change topology, 

but it did not create networks with the best small-worldness (ω metric closest to 0). Based on 

these observations, one possible explanation for increased critical emergence with higher 

inhibitory populations is that higher inhibitory populations creates different tuning 

combinations of tuning parameters, based on alterations of many different factors (for 

instance, topology, firing dynamics, molecular environment), which together is better for 

critical emergence. Increased inhibitory populations cause complex alterations in many 

aspects, which cannot be captured as a single parameter.   
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Resilience data  

From the activity of lower inhibitory networks were less affected by GABA then higher 

percentage ones, and a case can be made for 15% networks resisting changes in firing rates 

better than 24% networks, both to GABA and low amounts of NMDA (Appendix D Table D-

18). This could mean that inhibitory neurons contribute more to maintaining critical dynamics 

than just balancing firing. If true, this may be related to the topological changes it encourages 

during development or some innate cellular mechanisms.  

From the samples eligible for use we could see a slight trend of 24% inhibitory networks 

having better resilience than the other networks, being better at restabilizing critical exponent 

and scaling constant values after perturbation. 24% network were also best in NMDA 

perturbation trials and even preformed best in one of the GABA perturbation trial. This data 

hints to larger inhibitory populations promoting better critical resilience. From the functional 

topology it was seen that some graph theory measurements trended with increased inhibitory 

populations, hinting to inhibitory population affecting development of networks or the 

functional topology of networks. Viewed together, larger E/I population ratios may cause 

better critical resilience both due to the alteration it causes to the functional (and physical) 

network topology and because of inhibitory firing interactions. One potential way increased 

inhibitory populations may help a network self-organize back to its attractor state after 

perturbation can be through the increase of available options for modulating firing dynamics. 

Critical dynamics can re-stabilize either through synaptic scaling or by balancing enhanced 

firing of one neuronal type with enhanced firing in the other, causing a counterbalance. For 

networks with small inhibitory populations, the option of counterbalancing firing may not be 

an available option in all areas of the network, simply due to the shortage of inhibitory 

neurons. Further speculating on this, possible ways inhibitory firing interactions may cause 

acute resilience are: 1. with increased inhibitory neuron populations there is more inhibitory 

firing, quenching the spreading of signals, which negates incoming excitatory signals. 2. For 

any percentage of inhibitory neuron populations there will be small concentrations of 

inhibition which will cause inhibition of inhibitory neurons, leading to a net positive effect on 

activity in the network. For some networks with high inhibitory populations will the effect of 

inhibiting the network, and thereby also inhibiting GABAergic neuron activity, lead to a less 

depressed networks then when the GABAergic neurons operated at full capacity. The GABA 

concentrations which cause this reaction to inhibition will increase with inhibitory population.  
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This trend of increased resilience following increased inhibitory populations will presumably 

have a gaussian distribution with a peak inhibitory population for resilience, as an abundance 

of inhibitory neurons presumably will cause an affinity towards silencing signals (negative 

feedback signaling). Regarding this, the trend of increased resilience will probably revert 

passing certain E/I population levels. However, as stated these results are in need of further 

exploration, considering that the networks were in a super-critical state which might alter the 

networks’ ability to counteract perturbation and self-organize back to their attractor point. 

 

Model improvement 
The topological measurements of the in vitro networks were the basis for the model update, 

which might be why the model could not produce any critical readings. The Izhikevich model 

operates with single neurons and the in vitro measurements were taken from multiple neurons 

(i.e. there is a difference of scales). The model with the in vitro data only managed to create 

sub-critical readings., however, when increasing the size of the network without changing any 

other measurements the model produced critical readings. The range of E/I population ratios 

from which critical networks could emerge over was comparable to the standard model, but 

the ratios shifted from 8.3-24% to 25-40%. However, the occurrence rates were significantly 

lower than the initial model. The reason why size differences made the model go from sub-

critical to critical may be because the driving force of the network is externally driven, and 

with smaller networks there is a higher probability for inhibitory nodes to be distributed to ill-

favored positions stopping signal propagation. This change in size allow for more distribution 

configurations and the increased excitability probably made the difference when tuning the 

networks. Only topology was changed when updating the model, as the model parameters of 

the Izhikevich model are tuned to best mimic cortical behavior (79), additionally the 

parameters have no direct biophysical meaning (79), which also means that we have no 

comparable data to use to update these parameters.   

Comparing model and in vitro data   

Our model produced different emergence results compared to the in vitro data observed. 

These differences are probably due to the differences between the in silico model and 

biological networks. These differences can be divided into four main camps: extracellular 

dynamics, neural mechanisms, dynamical topology, and self-organization. The in silico 

models shortcomings regarding extracellular dynamics includes the lack of diffusion 

associated dynamics, neurotransmitter removal mechanics, environmental differences in 
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networks such as different local ion concentrations, astrocytes and pan glia networks, and 

upstate and down states created by local LFPs. Some of the neuronal mechanisms missing in 

the in silico model includes retrograde signaling, plasticity, no metabotropic signaling, back 

propagation of signals, no dynamics associated with firing depletions and different quantal 

releases, no auto receptors, nor any signaling pathways leading to changes in the gene 

expressions or protein profiles.  

In contrast to the in silico model, biological networks have the ability to dynamically change 

and move. This gives biological networks the ability to modulate synapses, create new 

synapses and grow neurites. Furthermore, neuronal critical dynamics are predicted to be, to 

some degree, an innate behavior, emerging without the need of tuning of single parameters. 

While our rigid model, in the sense that it is not self-organizing, very much depends on 

singular parameter tuning when gathering data of critical emergence. These are probably 

some of the reasons why the model showed differences compared to the in vitro data. This is 

further discussed in 4.2 in silico model. 

The updated model also showed critical emergence data different from the initial model. 

Viewing the data of the two models together suggests that critical dynamics can emerge with 

different E/I ratios depending on different topologies tuned by different synaptic strength. The 

model data with the in vitro parameters predicted higher inhibitory population values for 

critical emergence than what was tested in the experiments. Interestingly, the range at which 

we observed critical recordings was outside 15-30% inhibitory population ratios of the human 

brain (53) and the 10-15% in rodents (72). This might indicate that critical dynamics can 

emerge in other E/I ratios than what is observed in the brain, human or otherwise (9, 35). As 

critical dynamics emerge in 8% inhibitory networks and is predicted to occur up to 40% 

inhibitory populations, over and under the reported observations in the brain, this might give 

room for emergence of critical dynamics in other areas then just the superficial layers 2/3 of 

the brain.  

 

4.2 Methodology  

in silico model 
This in silico model was chosen for its simplicity, but the model might have been too simple. 

The model’s first weakness is its symmetric connections, this connection regime is considered 

biologically improbable. Reciprocal connections between neurons are not common, and these 

are not expected to have the same synaptic strengths. All nodes coupled together in the model 
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are wired this way. Additionally, the model is a time-step model, where every connected node 

is spaced an equal distance apart. This causes a loss of temporal dynamics. When the model 

updates from time step t to t+1, the signal will be transduced at the same time to every other 

neuron the initial neurons are coupled to. Unlike biological networks all directly coupled 

neurons are equally spaced away from each other, disregarding the aspect of distance 

differences. This means that the model is to some degree primed towards synchronic 

interactions, due to the lacking diversity in temporal signaling. 

Synaptic weight distribution were not studied in this model, as it was seen to produce 

comparable results to static weight distributions. There are no modulatory mechanisms 

introduced e.g. Hebbian plasticity, as this has been shown to not produce different results 

from the standard model (81). However, these aspects are still different when compared to 

biological networks. 

Cell cultures  
When growing the networks, there were much cell debris as depicted in Figure 27. The cells 

looked to grow uninhibited, but the potential Damage-associated molecular patterns (DAMPs) 

in the networks can potentially have slightly altered to ratios of E/I cells or altered the 

topology under development. But these effects would probably be small as most of the free 

cytoplasmic spill probably was rinsed away quickly due to the solution change after the 

centrifugation in the seeding, and the media changes.   

 
Figure 27: cell debris in networks, networks from 7, 18 and 51 DIV. 
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One of the weaknesses of culturing networks on MEAs is the inability to do ICC on the 

networks. Without any ways to visualize inhibitory neurons in the networks, it was impossible 

to know if the actual percentage of inhibitory neurons in the mature networks equaled the 

percentages mixed under cell seeding, nor was it possible to see if the inhibitory neurons 

clustered to such a degree that the functional effect would be less than the effect of an 

equivalent inhibitory population brain circuit with a more precise distributions of inhibitory 

neurons. Ideally the networks in question be examined for the distribution of inhibitory 

neurons in the networks.      

 

For all their positive attributes, in vitro systems also have some limitations compared to in 

vivo models. For instance, we are restricted to 2D topologies compared to the normal 3D 

topologies of circuits in the brain. Besides, our in vitro networks are single compartment 

networks where all activity is internally driven and the networks develop without any external 

guidance, meaning that the networks develop with no purpose regarding 

functional/meaningful processing. These factors mentioned above may cause notable 

differences in the effects of increased inhibitory populations on electrophysiological data 

compared to cortical networks.  

 

One of the biggest weaknesses of this thesis is the sample size used for the analysis, as only 6 

networks for each inhibitory ratio were tested. This means that the data of each network has a 

large effect on the analysis. This bias can create results not representative of the true statistics, 

and it makes it hard to capture subtle effects in the data. Because of this small sample size 

together with variance in the data it is difficult to draw strong conclusions from the data. 

 

Pharmacological Perturbation 
Concerning the methodology and choice of pharmacological reactants, GABAA-receptor and 

NMDA-receptor agonists were chosen for use over the antagonist for the pharmacological 

perturbation. As antagonists effectively alter both the E/I ratio in the networks and also the 

functional topology by blocking the receptors efficiently making the neurons void of function, 

this would make it even harder to draw out information specific to the different inhibitory 

population networks.    
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Many factors might contribute to the indifference between control and NMDA effects on 

networks. One of the factors that might have made it hard to differentiate neurotransmitters 

effects compared to the controls, could have been the concentrations used. The dissociation 

constants used were predicted to be withing a range, the middle value of this range was used 

for the calculations. This gives a lot of room for modification as small changes in dissociation 

constants give large variations in predicted concentrations as seen in appendix D Fig D-2. 

Previous work using NMDA treatment demonstrated noticeable effect with similar 

concentrations (95) to what was used in this thesis. However, the GABA concentrations might 

have been too small and any effect may been too subtle to differentiate from control values. 

Some variance in control and samples might be a result of the way the perturbation agents 

were added to the networks. To add perturbation agents to the networks, the networks needed 

to be moved, and networks were not rested after movement to capture perturbation effects. 

Additionally, the neurotransmitters were diluted in water and added while cold. Preferably, 

the neurotransmitter should have been diluted in neuronal growth media tempered to 37°C to 

prevent inadvertent change in activity as a result of changes in media composition.  

The perturbation experiment was also done when the cells were old and started showing 

increased variance in the behavior of the electrophysiological measurements, this led to much 

data being filtered away by the standard filtering. Some of the data that made it through the 

filtering had low firing rates, which made the percentage difference from baseline very 

sensitive to changes. This may have made changes look bigger than they might have been.  

 

Critical analysis 
As mentioned in section 2. Avalanche detection, subsampling is an issue when examining 

critical dynamics as current technology is not able to fully capture the entirety of neural signal 

transmissions. Although measures such as the MLE is used to make up for the loss of data, 

there is still room for error. Due to this lack of sampling can we not fully claim to observe 

avalanches predicted by critical dynamics. Researchers around 2009 observed that 

exponential distributions described the distribution of their neural data better then power laws 

(8). This was later shown to be bias formed from too few electrodes used in the 

electrophysiological recordings (i.e subsampling). Later studies with larger sets of electrodes 

all showed the predicted power laws in their data sets (15). With every new generation of 

recording equipment, resolution increases and we can observe an increasingly more complete 
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signaling transmission. But, even if we cannot fully claim to have observed power law 

distributions, the data gathered in this thesis can be approximated by power law distributions. 

 

 

 

Analysis Bias  

The way avalanches are detected from spiking data leaves room for some bias to form. In our 

analysis it is impossible to differentiate if the observed data is part of the same avalanche or if 

the spatial spreading of signals is a product of two independent avalanches happening at the 

same time. These are counted as one and the same avalanche in the analysis. Another 

potential form of bias in the data might come from electrode noise, as seen in appendix D Fig 

D-13. Electrode noise may arise from damaged electrodes or MEAs not properly connected to 

the Maestro Pro reader. Oppositely, rough handling of cells or improper maturation can lead 

to neurons not properly attaching to certain electrodes, which would reduce the activity 

recorded in some areas, affecting the critical analysis and the calculation of the functional 

topology.  

 

The choice of bin sizes is a crucial point in the analysis process as too small ∆t leads to 

datapoints becoming separated, favoring sub-critical observations, if ∆t is too big, datapoints 

will be combined, favoring super-critical observations.  By choosing the median of ISI instead 

of the mean (which is commonly used), the analysis favors a sub-critical regime as the median 

of our data was smaller than the mean. However, this was done to reduce the effects of 

outliers, as the mean was large due to long periods of inactivity followed by brief highly 

active periods. These activity patters are hard to account for, but in such cases can it be argued 

that the ISI median captures avalanche silence periods better, and thereby separate avalanches 

better, compared to the mean ISI. Lastly, some data might have been affected by electrode 

noise, and some avalanches could have prolonged tails due to single, highly active electrodes. 

Spike trains of the noisy electrodes might thus increase avalanche sizes and durations. This 

will cause longer avalanches and higher firing rates and thereby ISI, thus affecting the 

criticality analysis in two ways. However, the extent of these effects is unknown.     

 

Topological analysis 
The functional topology of mature networks was observed to change in the 41 to 55 DIV 

period (appendix D Fig D-7). Since the topology measurements were not stable it was decided 
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to look at the collective average of the graph theory measurements over this period for each 

network. Some core nodes of the functional topology stayed the same throughout the 

maturation, but many nodes differed. Other articles predict that the network maturation should 

be more stable (68). This might be caused by differences in electrode numbers and 

dimensions, where bigger electrodes (such as the ones used in this thesis) cover more neurons 

and hence correlates signal more collectively, which would cause larger variations in the 

functional topology following the daily changes in firing rates.   

 

Graph theory measurements 

The threshold set on the correlations in the adjacency matrix was a hard threshold but there 

exist other ways of doing this. The correlations between electrodes also depend on the firing 

rate in the network, although the methods used in this thesis did not take this into 

consideration. Alternately, a link-persistence threshold could be computed for each individual 

network instead of from the total population data. The filtering greatly influences alle 

topological measurements, and too low filtering (and certain intermediary filtering) thresholds 

created fully connected networks. NetworkX graph theory analysis functions treat correlations 

between electrodes as binary edges, which was an issue as the code used for temporal 

correlations computes relative correlations, meaning that even inactive electrodes can be 

correlated with other electrodes. These weak correlations are small in comparison to real 

correlations, so big thresholds remove most of these non-existing correlations. However, there 

is no way to tell if all false connections were fully removed. This was the reason why a 

second threshold was used to make sure that at least the mean degree of electrode connections 

did not surpass the number of active electrodes from the recording. Additionally, the common 

input problem may have affected the functional topology. The functional connections with 

indirect signaling gets partially captured in our connectivity since the correlation between the 

start and the end is captured, but the common input problem may still cause a bias in 

representation of correlations between two electrodes.    

 

Small-world metric omega and bias in SW measures  

Small-world metric ω was chosen over other Small-world measurements methods because 

NetworkX’s current available methods for small-world measurements only include the sigma 

and ω measurement methods, and the sigma measuring method has been shown to be heavily 

influenced by the size of the network in question (66). Further, one issue regarding the use of 

NetworkX functions for computing small-worldness (named omega) was to converted graphs 
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from external formats to NetworkX’s class graph. The data class graph is the class networkx 

uses for all its computations, but this data class only works with quadratic matrices in which 

each row could not consist of only zero values. If the matrix had a row of only zeroes the 

graph was counted as a disconnected graph and the omega function could not be applied, 

however, the other graph theory measurements could be still computed from such matrices. 

To compute ω from none-quadratic matrices, extra rows with values were added to fully 

square the adjacency matrices before it was converted to the networkx class graph. For data in 

which ω was computable, the ω value was compared to the ω values with and without the 

aforementioned treatment, the standard deviation was found for differences between these 

measurements. The values computed this way had an SD of 0.13 compared to none treated 

data, but all data was still within the limits of being counted as SW networks even with 

addition of the variation.   

 

5. Conclusion 
One of the aims of this thesis was to explore E/I balance, and E/I related factors which might 

affect critical emergence, stability, and resilience. The majority of our data was considered 

super-critical, still, some networks showed all expected traits of critical dynamics. From these 

results it is suggested that networks with 24% inhibitory neurons have an increased a chance 

to develop critical regimes comparatively to networks with lower inhibitory populations. 

With increased inhibitory populations firing activity, synchronous activity and bursting 

activity trend to increase. Additionally, the functional topology does seem to change with 

increasing inhibitory populations. These factors were also found to be associated with the 

stability of critical exponents and scaling constants. Our data suggested that the degree of 

synchronous activity in networks, networks topology, and media changes were the main 

factors which affected critical stability. Regarding the synchronous activity, it was observed 

from the model that critical readings appeared in intermediate states of synchrony to 

asynchrony, similar to previously established data, and variations in the synchronous activity 

had a significant effect on alterations in the critical exponent and scaling constant. Changes in 

the bursting activity and NB/S were tested in the context of changes in critical exponent and 

scaling constant but no significant difference was found, this is believed to be caused by bias 

from the analysis. Our in silico model predicts that SW topologies supports critical emergence 

better then random topologies, and from our functional topology analysis all networks were 

considered to have SW features. Furthermore, similar topological descriptions could explain 
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some of the variance in the data, suggesting that topology also affects critical dynamics. The 

addition of cell media (metabolites and pH regulating agents) also seemed to have a 

significant effect on firing rates, synchrony and critical stability. However, since synchrony 

seemed to affect criticality it is not known if media changes effect on criticality is 

independent of the changes it causes in synchronous activity.  

The in silico model predicted that E/I ratios were important for critical emergence, and that 

criticality emerged at different E/I firing ratios within different E/I population networks, 

which was supported by the in vitro data. Additionally, it was indicated that the placement of 

the inhibitory neurons, small-world topology, and synaptic weights played an important role 

in the emergence rates in the model. There were slight trends showing that the 24% inhibitory 

networks were better at both promoting critical emergence and resilience compared to the 

networks with lower inhibitory neuron populations. Higher inhibitory networks trended to be 

better in both self-organizing back to initial values and momentary resistance to NMDA 

perturbation. In addition, 24% and 15% inhibitory networks produced higher neural activity, 

and had better survivability then 8% networks, suggesting that networks with moderate 

inhibitory populations might promote survival better than lower percentages. However, 

further research is needed.  

As expected, critical emergence differed from the model and in vitro. The model estimated 

that criticality could only emerge between 8.3-24% inhibitory networks and 25-40% 

inhibitory networks, which in vitro data indicated to be wrong, as readings considered critical 

were found in both 8% and 24% inhibitory networks. Neither of these model ranges fully 

overlapped with the inhibitory estimations in the brain 15-30% (53). However, given the 

indications of our data it looks like criticality can emerge even outside of these ranges, 

suggesting that critical dynamics can emerge in more brain regions than just layer 2/3. 

Viewed together, our data suggests that criticality can emerge in a large variation of 

combinations of different tuning parameters. It appears that tuning of single factors alone 

cannot guarantee that networks develop and stay in critical regimes but increase the chances 

of these events instead. Higher inhibitory populations seem to tune many factors 

simultaneously, causing changes in both topology and firing interactions. Collectively these 

changes may cause more eligible circumstances for emergences of critical dynamics.  
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6. Recommendations and future work 
 

It would be of interest to further confirm these results and grow new networks with the new 

predicted inhibitory populations to examine if emergence of critical dynamics in these 

network configurations would be possible. With these new networks the new trial of 

perturbation should be tried with optogenetics to prevent and avoid the previously 

encountered complications. It would also be interesting to test same experimental setup 

utilizing sensory and motor neurons. A 2015 meta study on neuronal proteomics found that 

the proteome of cortical neurons were fairly similar while neurons from the cerebellum, 

brainstem and optical nerve (essentially those bordering sensory and motor neurons) deviated 

the most in protein expression (especially membrane proteins) (111). Repeating the 

experiment with motor and sensory neurons might give insight on the generality of neurons 

innate ability to self-organize into critical dynamics, if it holds true for the most varied neuron 

types one might assume the same holds true for less variable neuronal types.  

It would be of interest to further explore the perturbation experiment to see if there are 

differences in resilience (critical and firing) to perturbation with increasing inhibitory 

populations. A more detailed test could try to find exact concentrations which push different 

inhibitory networks out of critical dynamics and compare these concentration ranges. In vivo 

models could even test electrical stimulations of brain areas with different E/I ratios in animal 

models, to test if some areas are more resilient to perturbation. Furthermore, E/I resilience 

could be investigated in the context of disease, if e.g. epileptic activity is prone to start in low 

inhibitory areas compared to high inhibitory areas. 

Lastly, from our data it would be meaningful to examine the distributions of inhibitory 

neurons in different E/I network to see if the cells organize in similar patterns, or if there are 

reoccurring differences in the wiring distributions. 
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Appendices 

Appendix A: Material  
 

For the chemicals used in this thesis, could not all lot numbers be found e.g. for the 

astrocytes. And the lot number is neither show for chemical for which it is deemed irrelevant.  

Table A-1: Laminin coating. This table shows all chemical and procurers of the reactants 

used in the laminin coating protocol.   
Name  Producer Catalogue nr Lot nr 
Polyetylenene (PEI) PolySciences  24765-1 MKCJ3787 

HEPES Gibco 15630-080 1837669 

Natural mouse Laminin 

(NML) 

Gibco 23017-015 2175110 

 

Table A-2: Astrocytes. This table shows the astrocyte types used in the project and the 

supplier of these cells. 

Name Producer Catalogue nr Lot nr 
Gibco® Human Astrocyte 

Kit 

Gibco® N7805‐200 -- 

Gibco® Human Astrocytes Gibco® K1884 -- 

Gibco® Astrocyte 

Medium 

Gibco® A1261301 -- 

    

N‐2 Supplement, 100X Gibco® 17502‐048 -- 

Dulbeccoʹs Modified 

Eagle Medium (DMEM) 

(1X) 

Gibco® 10569‐010 or 31966‐021 

(Europe only) 

-- 

One Shot™ Fetal Bovine 

Serum (FBS), Certified 

Gibco® 16000‐077 -- 

 

Table A-3: Culturing kit. This table shows the neuron types used in the project and the 

supplier of these cells. 
Name  producer Catalogue nr Lot Nr 
Human Glutamatergic 

Neurons (BX-0300) 

BrainXell BX-0300 200107 

Human GABAergic 

Neurons (BX-0400) 

BrainXell BX-0400 190116 

Neuron Seeding 

Supplement at 1000X 

BrainXell BX-0300 200625 

Neuron Day 4 Supplement 

at 1000X 

BrainXell BX-0300 200522 
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Table A-4: Culturing reactant. This table shows the reactants used in the cell culturing 

medias. 
Name  producer Catalogue nr Lot nr 
DMEM/F12 Medium Gibco 21331-020 2124980 

Neurobasal Medium Gibco A24775-01 500ml 2074220 

B27 Supplement Life Technologies 17504-044 -- 

N2 Supplement Thermo Fisher Scientific 17502-048 -- 

GlutaMAX Ginco 35050-061 2088878 

Geltrex Thermo Fisher Scientific A1413202 -- 

BDNF R D SYSTEMS 248-BD/CF VQ2215082 

GDNF R D SYSTEMS 212-GD/CF  NGG515031 

TGF-β1 Peprotech 100-21C 1218209 

BrainPhys Medium STEMCELL Technologies 05790 1000014709 

Trypan blue Sigma-Aldrich T6146-5G 02596LH 

 

Table A-5 Immuno-Staining. This table shows the reactants used in the staining protocol 

and the supplier of these chemical. 
Name  producer Catalogue nr Lot nr 
Goat Serum (GS) Merck G9023 -- 

Primary antibody Table A-6 Table A-6 -- 

PBS Sigma-Aldrich D8537-500mL RNBG6525 

Triton-X Sigma-Aldrich T8787-60ML SLBH4329V 

4 % paraformaldehyde (PFA) Merck P6148 -- 

Secondary antibodies Table A-6 Table A-6 -- 

Hoescht Merck 94403 -- 

Mounting media (Fluoroshield) abcam ab104135 -- 

Kim wipes Merck Z188956 -- 

Distilled H20 In-house -- -- 
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Table A-6: Antibodies. This table depicts the antibodies used in this thesis and their 

suppliers, catalogue number and binding specificity. 
Antibody producer Catalogue nr Binding site Fluorescents  

Rabbit monoclonal 

Anti-GluA 

receptor-1 IgG 

antibody 

abcam ab109450 AMPA-R1 -- 

Mouse polyclonal 

Anti-GABA B 

receptor-1 IgG 

antibody 

abcam ab55051 GABA β-R1 -- 

Mouse 

monoclonal Anti-

GABA IgG 

antibody 

abcam Ab86186 GABA -- 

Chicken 

polyclonal Anti-

Beta III tubulin 

IgG antibody 

abcam Ab41489 βIII-tubulin -- 

Mouse 

monoclonal Anti-

NeuN IgG 

antibody 

abcam Ab104224 NeuN -- 

Rabbit polyclonal 

Anti-GFAP IgG 

antibody 

abcam Ab7260 GFAP -- 

Chicken 

monoclonal Anti-

NeuN IgY 

antibody 

abcam  Ab134014 NeuN -- 

Rabbit monoclonal 

Anti-TBR IgG 

antibody 

abcam Ab183032 TBR-1 -- 

Goat polyclonal 

Anti-mouse IgG 

antibody 

Thermo Fisher 

Scientific 

A-11001 Mouse- IgG 

antibody 

488 nm 

Goat Anti-chicken 

IgY antibody 

Thermo Fisher 

Scientific 

A-11040 Chicken- IgG 

antibody 

546 nm 

Goat polyclonal 

Anti-rabbit IgG 

antibody 

Thermo Fisher 

Scientific 

A-21244 Rabbit- IgG 

antibody 

647 nm 

 

Table A-7: Neurotransmitters. Shows the neurotransmitters, catalogue nr and suppliers 

used for the pharmacological perturbation  

Name Producer Catalogue nr 

GABA Sigma-Aldrich A2129-10G 

NMDA Sigma-Aldrich M3262-25MG 
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Appendix B: Media formulas  
 

 
Figure B-1: Astrocyte media. This figure shows the 

components and mixing ratios of the solutions used 

in the astrocyte seeding media. 

 

Culturing media 

 

 
Figure B-2: Seeding medium. This figure shows the components and mixing ratios of the 

solutions used in the seeding media 

 

 
Figure B-3: Day 4 medium. This figure shows the components and mixing ratios of the 

solutions used in the day 4 media. 
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Figure B-4: Day 10 and onward medium. This figure shows the components and mixing ratios of 

the solutions used in the day 10 media. 
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Appendix C: Protocols  
 

 

 
Fig C-1: in-house protocol of laminin coating of MEA plates. 
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The second part of appendix C-2 is continued below 
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Fig C-2: Brainxell’s protocol for seeding and cell culturing. 
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Fig C-3: In-house protocol for ICC staining 
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Appendix D: Supplementary Results  

 

  

  
Fig D-1: Saturation curves. Calculated from the Hill–Langmuir equation, Proportion of ligand-bound 

receptors. Hill constant(n) = 1  (112, 113). 

 

 

 

 

 

 

 

 

 



Appendices 

Page 91 of 101 
 

  

  
Fig D-2: Different ranges of receptor ligand dissociation coefficient (Kd) for GABAA and NMDA receptors  

(112, 113). This figure shows the saturation curve and the semi-log saturation curve of GABAA receptor with 

GABA in the upper and lower left respectfully. The saturation curve and the semi-log saturation curve of 

NMDA receptor with NMDA is shown the upper and lower right respectfully. 

 

 
Table D-3: Theis tables shows the excitatory to inhibitory firing ratios at which critical readings emerge in 

the Izhikevich model. This table also shows the predicted increase and decrease in activity which cause the 

model to fall out of critical dynamics, and the baseline values of neurotransmitter concentrations used for the 

calculations. 
Inhibitory 

percentage 

E/I firing rate  Reduction in firing 

needed to push E/I 

passed predicted 

minimum value 

Increase in firing 

needed to push E/I 

passed predicted 

maximum value 

Baseline values   

8% 35 ± 2.00 449% 105% NMDA:  25nM 

(114) 

 

GABA: 0.06µM 

(115) 

15% 15.75 ± 1.25  202% 235% 

24% 8.28 ± 0.49  106% 445% 
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A)

 

B)

 
C)

 

D) 

 
Fig D-4: Negative controls from the immune staining. A) Secondary antibodies and Hoescht only for 

Glutaminergic neurons, GABAB-R1, AMPA-R1, beta III tubulin staining. B) Secondary antibodies and 

Hoescht only for Glutaminergic neurons, NeuN, TBR1, βIII-tubulin staining. C) Secondary antibodies and 

Hoescht only for GABAergic neurons, GABAB-R1, AMPA-R1, beta III tubulin staining. D) Secondary 

antibodies and Hoescht only for GABAergic neurons, GABA, GFAP, NeuN staining. 
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Table D-5: Different E/I population networks effect on electrophysiology. The p-value is 

found trough testing data on high readings of each electrophysiological measurement 

against data from day of low recorded electrophysiological values. The mean values of each 

electrophysiological measurement from 41-55 DIV is also shown along side the standard 

deviation. Lastly, average mean changed and change in SD between all samples shown, 

alongside the growth trend for measurement values and SD in percentage over all samples. 

IN is an abbreviation of inhibitory neurons.   

Parameter p-value Mean values and SD Mean changes between 

samples 

Firing rate 0.05 

 

8%   IN: 22 ± 11 

15% IN: 34 ± 26 

24% IN: 41 ± 44 

Increased mean + 9.5  

Increase SD + 16.5 

Trend mean: +37% 

Trend SD: +102% 

Synchrony 0.34 

 

8%   IN:  9.7±5.9 

15% IN:  8.2±4.1 

24% IN:  12.0±9.8 

Increased mean + 2.2  

Increase SD + 3.9  

Trend mean: +15% 

Trend SD: +54% 

Network burst 0.26 

 

8%   IN:  0.22±0.09 

15% IN:  0.24±0.11 

24% IN:  0.27±0.12 

Increased mean + 0.025 

Increase SD + 0.0015  

Trend mean: +10% 

Trend SD: +15% 

Bursts/Synchrony 0.38 

 

8%   IN:  0.035±0.015 

15% IN:  0.037±0.016 

24% IN:  0.043±0.019 

Increased mean + 0.004   

Increase SD + 0.002 

Trend mean: +10% 

Trend SD: +12% 

 

 
Table D-6: media changes effect on electrophysiology. The p-value was found by looking 

at the collective data for all recordings recorded the same day away from last media 

changes for each electrophysiological measurement. The p-value with data from 44 DIV 

removed is showed in the parenthesis. The mean values of each measurement from 41-55 

DIV is also shown alongside the standard deviation. Lastly, average mean changed and 

change in SD between all samples shown, alongside the growth trend for measurement 

values and SD in percentage over all samples. with trend is it meant the average changed 

counted from one sample to the next over all samples. The number in the Mean section 

indicates the number of days away from last media change. 

Parameter p-value Mean values and SD Change between samples 

Firing rate 0.00041 

(0.0004) 

1 : 34±34 

2 : 34±45 

3 : 64±56 

4 : 32±15 

5 : 21±39 

Decreased mean – 3.2 

Increase SD: + 1.25 

Trend mean: -25% 

Trend SD: +35% 

Synchrony 0.00013 

(0.0005) 

1 : 10±12 

2 : 7±3 

3 : 7±4 

4 : 5±2 

5 : 17±15 

Increased mean + 3.0 

Increase SD: + 4.7 

Trend mean: +10 % 

Trend SD: +140% 

Network burst 

frequency 

0.092 

(0.05) 

1 : 0.028±0.027 

2 : 0.020±0.028 

3 : 0.034±0.031 

4 : 0.028±0.023 

5 : 0.017±0.026 

Decreased mean -0.027 

Decrease SD -0.003 

Trend mean: -4% 

Trend SD: +0.5% 

Bursts/Synchrony 0.0088 

(0.004) 

1 : 0.005±0.006 

2 : 0.003±0.006 

3 : 0.008±0.008 

4 : 0.005±0.005 

5 : 0.002±0.005 

Decreased mean -0.003 

Increase SD + 0 

Trend mean: +7% 

Trend SD: -1% 
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Fig D-7: Maturation of functional topology from 20-48 DIV for network 13-A1. DIV is increasing right to left 

and from top to bottom. 
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Table D-8: The mean topological measurements of all networks. AP is the 

average pathlength, C is the clustering, SW is the small-world metric ω, and MD 

is the mean degree distribution. This is shown for all 18 networks. The % 

category indicates which inhibitory population category the network belonged to. 

IN is an abbreviation of inhibitory neurons.  

Network % AP C SW MD 

4708 wA3 8% IN 1.69 0.30 0.04917  16.9 (26 %) 

4708 wB1 8% IN 1.72 0.38 0.01261 16.3 (25 %) 

4713 wA2 8% IN 1.73 0.27 0.01633 10.0 (15 %) 

4713 wB3 8% IN 1.89 0.48 0.00329 11.8 (18 %) 

4719 wA1 8% IN 1.84 0.41 0.01053  17.0 (26 %) 

4719 wB2 8% IN 1.74 0.40 0.00647 16.1 (25 %) 

4708 wA2 15% IN 1.66 0.40 0.02743 18.6 (29 %) 

4708 wB3 15% IN 1.62 0.41 0.02319 20.0 (31 %) 

4713 wA1 15% IN 1.76 0.46 - 0.0233 15.3 (24 %) 

4713 wB2 15% IN 1.86 0.59 - 0.12004 18.9 (29 %) 

4719 wA3 15% IN 1.73 0.39 0.0291 16.4 (25 %) 

4719 wB1 15% IN 1.73 0.40 0.00981 16.3 (25 %) 

4708 wA1 24% IN 1.63 0.53 - 0.03933 23.9 (37 %) 

4708 wB2 24% IN 1.61 0.64 - 0.12533 26.0 (40 %) 

4713 wA3 24% IN 1.73 0.31 0.0074 11.8 (18 %) 

4713 wB1 24% IN 1.77 0.34 - 0.01677  12.1 (19 %) 

4719 wA2 24% IN 2.00 0.75 - 0.37357 22.6 (35 %) 

4719 wB3 24% IN 1.74 0.41 0.00443  16.4 (25 %) 
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Table D-9: topological classification of all networks. The networks 

were classified binary based on if the value was closest to the highest 

recoded value or the lowest. AP is the average pathlength, C is the 

clustering, SW id the small-world metric ω, and MD is the mean degree 

distribution This is shown for all 18 networks. The % indicates which 

inhibitory population category the network belonged to. IN is an 

abbreviation of inhibitory neurons. 

Network binary classification 

Network % AP C SW MD 

4708 wA3 8% IN 1 1 2 1 

4708 wB1 8% IN 1 1 2 1 

4713 wA2 8% IN 1 1 2 1 

4713 wB3 8% IN 2 1 2 1 

4719 wA1 8% IN 2 1 2 1 

4719 wB2 8% IN 1 1 2 1 

4708 wA2 15% IN 1 1 2 1 

4708 wB3 15% IN 1 1 2 2 

4713 wA1 15% IN 1 1 1 1 

4713 wB2 15% IN 2 1 1 1 

4719 wA3 15% IN 1 1 2 1 

4719 wB1 15% IN 1 1 2 1 

4708 wA1 24% IN 1 1 1 2 

4708 wB2 24% IN 1 2 1 2 

4713 wA3 24% IN 1 1 2 1 

4713 wB1 24% IN 1 1 1 1 

4719 wA2 24% IN 2 2 1 2 

4719 wB3 24% IN 1 1 2 1 

 

 
Fig D-10: This figure shows the distribution of cross-correlation strength from the 

three different inhibitory population networks after filtering with 0.25 cross-

correlation hard threshold.  
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Table D-11: Total active readings for all 

different inhibitory population networks. 

Survivability 

Inhibitory ratios 8% 15% 24% 

Active networks 70 81 78 

 

 

Table D-12: Comparison of in vitro data filtered with 25% link-persistence and with a hard threshold 

of 0.25 in correlations. Here the graph measurements: average clustering, average pathlength, ω, and 

mean degree are shown. 

Model Average clustering Average 

Pathlength 

Small-world 

metric ω 

Mean Degree 

In Vitro (25% 

persistence) Collective 

median 

0.869 1.43 -0.22 33(51%) 

In Vitro (MD < active 

electrodes) Collective 

median 

0.410 1.75 0.01 16(25%) 

 

 

 
Fig D-13: picture of all avalanches from networks 13-A3, 44 DIV. 

Avalanches are seen with prolonged single electrode tails.  
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Fig D-14: This figure shows sub-critical, critical and super-critical avalanche size probability distributions 

from both in silico and in vitro data. A) depicts the sub-critical, critical and super critical avalanche size 

probability distributions from the in silico model. B) depicts the sub-critical, critical and super critical 

avalanche size probability distributions from the in vitro data 
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A) 

 

B) 

 
C) 

 
 

D) 

 

E) 

 

F) 

 
Fig D-15: Critical and scaling constant data from div 41-55 for all different inhibitory ratio networks. A) is 

the critical exponent of 24% inhibitory networks. B) The scaling constant of 24% inhibitory networks. C) is 

the critical exponent of 15% inhibitory networks. D) is the scaling constant of 15% inhibitory networks. E) is 

the critical exponent of 8% inhibitory networks. F) is the scaling constant of 8% inhibitory networks. 
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Fig D-16: Non collapsible data (left)( 75-4713_A3 DIV 21) and collapsible none-critical data DIV41 (right). 

 
 

 

Table D-17: Statistical data from different factors effect on critical exponent and scaling 

constant. The p-value for the electrophysiological measurements was found through 

comparing the critical exponent and scaling constant values of days with high recorded 

electrophysiological values against critical exponent and scaling constant data from days 

of low recorded electrophysiological values of the same measurement with one-way 

ANOVA. While the p-value for media change was found through looking at the collective 

critical exponent and scaling constant data from different days away from last media 

change. The mean and SD is also shown, for the media change is it shown for each day 

away form last media change, while for the electrophysiological data is it show mean and 

SD values for days with recorded high and low values. 

Name P-Value: 

Critical 

exponent 

Mean Critical 

exponent 

P-value: 

scaling 

constant 

Mean Scaling 

constant 

Media changes effect 

on Critical exponent 

0.015 1: -2.8 ± 1.3 

2: -2.6 ± 0.9 

3: -2.6 ± 1.0 

4: -3.2 ± 1.2 

5: -3.2 ± 1.3 

0.018 1:  1.8 ± 1.9 

2:  0.6 ± 2.5  

3:  2.0 ± 2.3  

4:  1.5 ± 3.1 

5:  2.2 ± 2.8 

Bursts effect on 

Critical exponent 

0.5 Low :  -3.3 ±0.8 

High : -3.2 ±1.2 

0.26 Low : 3.0 ±3.4 

High: 2.0 ±3.0 

Synchrony effect on 

Critical exponent 

0.012 Low  : -2.5 ± 1.1 

High : -1.5 ± 0.6 

0.042 Low : 2.7 ± 3.2 

High: 0.6 ± 0.7 

Intermediate 

Burst/synch level effect 

on Critical exponent 

0.21 Low :  -3.3 ±1.2 

High : -3.0 ±0.9 

0.051 Low :  0.8 ±6.1 

High:  3.1 ±2.1 
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Table D-18: A table depicting the percental change 

in firing rates to different volumes of GABA and 

NMDA in different inhibitory population networks. 

Additionally, is percental changes in firing from 

control shown at the bottom of the table   

Reactant  Inhibitory 

Ratio 

% effect on Firing  

GABA  

0.1µM 24% - 55 % ± 1% 

0.15µM 8% - 29 % 

0.15µM 24% - 40 % 

0.2µM 8% - 74 % 

0.2µM 15% - 93 % 

0.2µM 24% - 99 % 

NMDA  

6µM 15% - 50 % 

6µM 24% - 78 % 

18µM 8% + 20% ± 170 

18µM 15% + 1100% ±2000 

18µM 24% - 71 % 

Control 

 8% - 38 %  

 15% + 65 % ± 12 

 24% - 11 % ± 75 

 

 

 

 
Super-Critical 

 
Critical 

 
Sub-Critical 

   
Fig D-19: Figure of the updated model with increased size. Model differs in critical dynamics by size. Over 

each critical stat is a raster plot showing the firing acticity which varies with synchronys relationshipt to 

critical stats. The left (super-critical state) picture illustates the updated model with 1250 neurons, the middel  

(Critical state) show 1100 neuron, and the left (sub-critical) shows the network with 900 neurons. From each 

state can one see that the synchrony is distinct in different critical phases. 
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