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DECAY RATES FOR APPROXIMATION NUMBERS OF

COMPOSITION OPERATORS

HERVÉ QUEFFÉLEC AND KRISTIAN SEIP

Abstract. A general method for estimating the approximation numbers of composition
operators on H

2, using finite-dimensional model subspaces, is studied and applied in the
case when the symbol of the operator maps the unit disc to a domain whose boundary
meets the unit circle at just one point. The exact rate of decay of the approximation
numbers is identified when this map is sufficiently smooth at the point of tangency; it
follows that a composition operator with any prescribed slow decay of its approximation
numbers can be explicitly constructed. Similarly, an asymptotic expression for the ap-
proximation numbers is found when the mapping has a sharp cusp at the distinguished
boundary point. Precise asymptotic estimates in the intermediate cases, including that of
maps with a corner at the distinguished boundary point, are also established.

1. Introduction

This paper studies a general method for estimating the approximation numbers of com-
pact composition operators Cϕ on the Hardy space H2, where as usual Cϕ is defined by
the relation Cϕf = f ◦ ϕ and the symbol of the operator ϕ is an analytic function map-
ping the unit disc D into itself. Our main application will be to identify as precisely as
possible the rate of decay for the approximation numbers an(Cϕ) when ϕ(D) touches the
unit circle T at just one point. We will simplify matters by considering symbols of the
form ϕ = exp(−u− iũ), where the real valued function u is in C(T), satisfies u(z) = u(z),
and is smooth except possibly at z = 1. Moreover, we will assume that the even function
U(t) := u(eit) is increasing on [0, π] and that U(0) = 0. The associated composition oper-
ator will be compact on H2 if and only if U(x)/x2 is non-integrable or, in other words, if
the function

hU(t) :=

∫ π

t

U(x)

x2
dx

is unbounded for 0 < t ≤ π. The functions U that satisfy these conditions, including
hU(t) → ∞ when t→ 0+, will be said to belong to the class U .

We obtain the most precise results if either hU grows slowly or U tends slowly to 0 at
0. To deal with the latter situation, we introduce two other auxiliary functions, defined in
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the following way. We write
U(t) = e−ηU (| log t|)

whenever 0 < t ≤ 1 and U(t) ≤ e−1, and define ωU by the implicit relation

ηU (x/ωU(x)) = ωU(x)

for those x ≥ 0 such that ηU(x) ≥ 1. The monotonicity of ηU implies that ωU is an
increasing function.

We use the notation an(T ) for the nth approximation number of a bounded operator
on a Hilbert space. This is the distance in the operator norm from T to the operators of
rank < n. With every function U in U we associate the symbol ϕU := exp(−u− iv), where
u(eit) = U(t) and v is the harmonic conjugate of u.

The two extreme cases alluded to above are covered by the following theorem.

Theorem 1.1. Suppose that U belongs to U .
(a) If tU ′(t)/U(t) ≤ 1 + c/| log t| and U(t)/(thU (t)) ≤ C(| log t| log | log t|)−1 for c > 1,

C > 0, and t > 0 sufficiently small, then

an(CϕU
) = eO(1)/

√

hU(e−
√
n)

when n→ ∞.
(b) If η′U(x)/ηU(x) = o(1/x) when x→ ∞, then

an(CϕU
) = exp(−(π2/2 + o(1))n/ωU(n))

when n→ ∞.

Here part (a) corresponds to smooth tangency at 1, while part (b) deals with the case of
a sharp cusp at 1. In (a), one may think of hU(1/x) as a power of log log x or any function
growing more slowly than this; in (b), a typical case is U(t) = 1/| log t| for small t > 0.

Part (a) of Theorem 1.1 has the following corollary.

Corollary 1.1. Let g be a function on R
+ such that g(x) ց 0 when x→ ∞ and g(x2)/g(x)

is bounded below. Then there exists a compact composition operator Cϕ on H2 with the
two-sided estimate

an(Cϕ) = eO(1)g(n)

when n→ ∞.

Observing that the boundedness condition on g(x2)/g(x) allows us to assume that
|g′(x)|/g(x) ≤ C/(x log x) and g′′(x)/|g′(x)| ≤ C/x for large x, we obtain the corollary
from part (a) of Theorem 1.1 by simply setting

hU(t) = [g((log t)2)]−2

for small t.
Corollary 1.1 says that we may prescribe any slow rate of decay (a negative power of

log n or slower) and find a function U in U such that the approximation numbers an(CϕU
)

descend accordingly. This result can be seen to originate in a question raised by Sarason
in 1988 [7]: Do there exist compact composition operators on H2 that do not not belong
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to any Schatten class Sp? Carroll and Cowen [6] gave an affirmative answer three years
later, and three alternate proofs, relying on criteria for membership in the Schatten class
Sp due to Luecking and K. Zhu [14], were given in respectively [22], [9], [10]. A fourth proof
was given in [1, Remark 2.7], which avoids the use of the Luecking–Zhu criterion. It was
finally shown in [12] that Carroll and Cowen’s method allows the construction of compact
composition operators with approximation numbers descending arbitrarily slowly.

In spite of its flexibility, a drawback of the Carroll–Cowen construction is that it does
not give any clue about the behavior of the curve t 7→ ϕ(eit), and hence one can not
use the MacCluer criterion [15] to give an upper bound for the approximation numbers.
Indeed, compactness is ensured by the Julia-Carathéodory theorem which gives no extra
quantitative information, and in particular no upper bound. The desire to obtain a more
explicit example in which one has control of the curve t 7→ ϕ(eit), through a systematic
use of conjugate functions, was an initial motivation for the present work.

We will deal with the whole range of possible behaviors that may occur “between” the
two extremes described by Theorem 1.1, but then the results are a little less precise. The
case corresponding to maps with a corner at one point is illustrative, as it sits on the edge
between the two different kinds of asymptotics exhibited in Theorem 1.1:

Theorem 1.2. Suppose that ϕ(z) = (1 + (1− z)α)−1 for some 0 < α < 1. Then

exp
(

−π(1− α)
√

2n/α
)

≪ an(Cϕ) ≪ exp
(

−π(1− α)
√

n/(2α)
)

.

Here the notation f(n) ≪ g(n) (or equivalently g(n) ≫ f(n)) means that f(n) ≤ Cg(n)
for all n. We observe that the symbols in Theorem 1.2 can be written as ϕ = ϕU with
U(t) = Re log(1 + (1− eit)α) and that the corresponding auxiliary function hU(t) behaves,
up to a constant factor, as tα−1 for small t. If we extrapolate from part (a) of Theorem 1.1,
then this suggests why we have the factor 1 − α in the exponential in Theorem 1.2. On
the other hand, we observe that now

ωU(x) = (1 + o(1))
√
αx

when x → ∞, which shows that Theorem 1.2 also agrees with part (b) of Theorem 1.1.
In Section 4, we will present a general theorem displaying the two types of asymptotics,
based on a division of U into functions corresponding, roughly speaking, to smooth maps
and maps with a cusp; the functions U covered by Theorem 1.2 lie in the interface between
these two subclasses of U .

Note that in Theorem 1.2, we could just as well have considered so-called lens maps
which have corners at two opposite points on T. See [11] and [12] for similar but somewhat
less precise estimates for such maps. Indeed, our method allows us to consider symbols
ϕ such that ϕ(D) touches the unit circle at a finite number of points (that case was also
considered in [13]) and ϕ behaves similarly as described above around each of these points.

Our results rest on certain techniques for estimating approximation numbers that already
appeared in the proofs of Proposition 6.3 in [12] (lower bounds) and in Theorem 2.3 and
Theorem 3.2 in [13] (respectively upper and lower bounds). We wish to underline the gen-
erality of these ideas and stress that they lie entirely within the realm of finite-dimensional
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model subspaces, i.e., subspaces of H2 of the form

K2
B := H2 ⊖BH2,

where B is a finite Blaschke product. For the bounds from above, we use CϕPB as the
approximating operator, where PB denotes orthogonal projection from H2 onto K2

B. The
bounds from below rest on the fact that C∗

ϕ maps reproducing kernels to reproducing

kernels and in particular K2
B onto another model subspace when each zero of B has multi-

plicity one. This approach leads to explicit lower and upper bounds for the approximation
numbers in terms of estimates for Blaschke products, constants of interpolation, and Car-
leson measures; these bounds are stated in Section 3 in the form of a general theorem.
Our result gives somewhat stronger general estimates than the ones that can be extracted
directly from the proofs in [12] and [13], especially because we have two-sided estimates in
the case of slow decay.

In Section 3, which presents this general method, we have also found it natural to display
some generic choices for the finite Blaschke products that go into the respective bounds.
This part is mainly about how one may employ the Poincaré metric of the disc in this
context. We do not pretend that these ideas are exhaustive; more complex symbols ϕ may
very well require more delicate constructions.

After the generalities of Section 3, we turn in Section 4 to a general theorem for two
natural subclasses of U exhibiting the same type of division as we already saw in The-
orem 1.1. Our three theorems (including Corollary 1.1) concerning the class U are then
proved in the two remaining sections of the paper. Here we rely on the general scheme of
Section 3 and a number of concrete estimates for the different kinds of harmonic conjugate
functions that appear in the respective symbols ϕU .

The idea of using finite-dimensional spaces spanned by reproducing kernels clearly makes
sense in a wider context. In a closely related paper [17], we have studied the decay rates
for the approximation numbers of certain composition operators on the H2 space of square
summable Dirichlet series. Here the basic scheme is the same, but the technical challenges
are of a quite different nature.

2. Preliminaries

2.1. Hyperbolic length and the hyperbolic metric. We use the convention that the
hyperbolic length of a curve Γ in the Poincaré metric of D is given by the integral

ℓP (Γ) = 2

∫

Γ

|dz|
1− |z|2 .

The geodesics of the hyperbolic metric are straight lines through 0 or circles having perpen-
dicular intersections with the unit circle T. The hyperbolic distance between two points
z and w in D is denoted by d(z, w). As in [8, p. 4], we have chosen to normalize the
hyperbolic metric so that

(1) ̺(z, w) :=

∣

∣

∣

∣

z − w

1− wz

∣

∣

∣

∣

=
1− e−d(z,w)

1 + e−d(z,w)
;
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here ̺(z, w) is the pseudohyperbolic distance between z and w. We will use the notation

D(z, R) := {w ∈ D : d(z, w) < R}.

2.2. Carleson measures and interpolating sequences. We will use two well known
results about Carleson measures and interpolating sequences. We state them here in the
form of two theorems; we have added two lemmas which give dual statements in terms of
reproducing kernels.

We begin with a classical result of Carleson. A nonnegative Borel measure µ on D is a
Carleson measure for H2 if there exists a positive constant K such that

∫

Ω

|f(z)|2dµ(z) ≤ K‖f‖2H2

for every f in H2. The smallest possible K in this inequality is called the “Carleson norm”
of µ. We denote it by ‖µ‖C and put ‖µ‖C = ∞ if µ fails to be a Carleson measure.

We will need Carleson’s characterization of Carleson measures for H2 [5]. A set of the
form

Q(r0, t0) := {z = reit ∈ D : r ≥ r0, |t− t0| ≤ (1− r0)π},
where 0 < r0 < 1, is declared to be a Carleson square in D, and we set ℓ(Q(r0, t0)) := 1−r0.

Theorem 2.1 (Carleson’s theorem). Let µ be a nonnegative Borel measure on D and let
‖µ‖C be the Carleson norm of µ with respect to H2. There exists an absolute constant C
such that

‖µ‖C ≤ C sup
Q
µ(Q)/ℓ(Q),

where the supremum is taken over all Carleson squares Q in D.

A sequence Z = (zj) in D is said to be a Carleson sequence for H2 if the measure

υZ :=
∑

j

(1− |zj|2)δzj

is a Carleson measure for H2. We will now give a dual statement about Carleson sequences
in terms of the reproducing kernel

kw(z) :=
1

1− wz

for H2. The proof is straightforward and can be found in [17].

Lemma 2.1. If Z = (zj) is a Carleson sequence for H2, then
∥

∥

∥

∑

j

bjkzj

∥

∥

∥

2

H2

≤ ‖υZ‖C
∑

j

|bj |2(1− |zj|2)−1

for every finite sequence of complex numbers (bj).
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We will say that a sequence Z = (zj) in D is an interpolating sequence for H2 if the
interpolation problem f(zj) = aj has a solution f in H2 whenever the admissibility condi-
tion

(2)
∑

j

|aj|2(1− |zj|2) <∞

holds. If Z is an interpolating sequence for H2, then the open mapping theorem shows
that there is a constant C such that we can solve f(zj) = aj with the estimate

‖f‖H2 ≤ C

(

∑

j

|aj |2(1− |zj |2)
)1/2

whenever (2) holds. The smallest C with this property is denoted by M(Z), and we call
it the constant of interpolation.

The sequence Z is said to be separated if infj 6=k ̺(zj , zk) > 0. A more severe notion of
separation can be defined by means of the quantity

δ(Z) := inf
j

∏

k:k 6=j

̺(zj , zk).

The following theorem was obtained from Carleson’s work [4] by Shapiro and Shields [21].

Theorem 2.2 (Shapiro–Shields’s theorem). A sequence Z of distinct points in D is an
interpolating sequence for H2 if and only if δ(Z) > 0. Moreover,

M(Z) ≤ ‖µZ‖1/2C /δ(Z).

The estimate given above for M(Z) is obtained from a duality argument that can be
found in [18, p. 227]. We will need the following dual version of Theorem 2.2.

Lemma 2.2. If Z = (zj) is an interpolating sequence for H2, then

∥

∥

∥

∑

j

bjkzj

∥

∥

∥

2

H2

≥ [M(Z)]−2
∑

j

|bj |2(1− |zj |2)−1

for every finite sequence of complex numbers (bj).

This reformulation is classical and seems to have been observed first by Boas [2].

2.3. Bernstein numbers. We will make use of the following general characterization of
nth approximation numbers.

Lemma 2.3. Let T be a bounded operator on a Hilbert space H. Then

(3) an(T ) = sup
dimE=n

[

inf
x∈E,‖x‖=1

‖Tx‖
]

.
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The proof is elementary and can be found in [16]. The number defined by the right-hand
side of (3) is called the nth Bernstein number of T .

One may use Lemma 2.3 to establish lower bounds for an(T ). The efficiency of this
method depends on whether a good choice of E can be made. In our case, when T = C∗

ϕ,
we will take advantage of the relation

(4) C∗
ϕ(ka) = kϕ(a)

which holds for every point a in D. We will choose E as a linear span of a suitable finite
sequence of reproducing kernels.

3. The general method

3.1. A general theorem. To state our result for general composition operators, we in-
troduce the following standard pullback measure, which may be associated with any com-
position operator Cϕ. Let σ denote normalized Lebesgue measure on the unit circle T and

set µϕ := ϕ(σ). For 0 < r < 1, µϕ,r is the nonnegative Borel measure on D carried by the
annulus {w : r < |w| ≤ 1}, defined by the requirement that

(5) µϕ,r(E) := σ({z : |ϕ(z)| > r and ϕ(z) ∈ E}) = σ
(

ϕ−1(E) ∩ {|ϕ(z)| > r}
)

.

Equivalently, we may write µϕ,r(E) = µϕ

(

E ∩ (D \ rD)
)

. A finite Blaschke product B of
degree n− 1 is a function of the form

B(z) = zm
n−m−1
∏

j=1

zj − z

1− zjz
,

where 0 ≤ m ≤ n− 1 and (zj) is a sequence of not necessarily distinct points in D \ {0}.
Theorem 3.1. Let Cϕ be a composition operator on H2.

(a) Let B be an arbitrary Blaschke product of degree n− 1 and 0 < r < 1. Then

an(Cϕ) ≤
(

sup
z∈T:|ϕ(z)|≤r

|B(ϕ(z))|2‖Cϕ‖2 + ‖µϕ,r‖C
)1/2

.

(b) Let Z = (zj) be a finite sequence consisting of n distinct points in D, as well as the
sequence ϕ(Z) of their images. Then

an(Cϕ) ≥ [M(ϕ(Z))]−1‖υZ‖−1/2
C inf

1≤j≤n

(

1− |zj |2
1− |ϕ(zj)|2

)1/2

.

Proof. We begin with part (a). Starting from the definition of the nth approximation
number an(Cϕ), we see that if Rn−1 is an arbitrary operator of rank n− 1, then

(6) an(Cϕ) ≤ ‖Cϕ − Rn−1‖.
We now use the following rank n − 1 operator. Let B be an arbitrary finite Blaschke
product of degree n− 1. With B we associate the model subspace K2

B which we defined in
the introduction, and we let PB denote the orthogonal projection from H2 onto K2

B. We
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then set Rn−1 := Cϕ ◦ PB and note that both PB and Rn−1 are operators of rank n− 1. If
f is an arbitrary function in H2 with norm one, then we have

(7) ‖(Cϕ − Rn−1)f‖2H2 =

∫

T

|G(z)|2dσ(z),

where

G(z) := f(ϕ(z))− PBf(ϕ(z)) = B(ϕ(z))F (ϕ(z))

and ‖F‖H2 ≤ ‖f‖H2 = 1. Here G(z) is the radial limit of (Cϕ − Rn−1)f which exists for
almost every point z in T. It follows from (7) that, for any 0 < r < 1, we have

(8) ‖(Cϕ − Rn−1)f‖2H2 ≤ sup
z∈T:|ϕ(z)|≤r

|B(ϕ(z)|2‖Cϕ‖2 +
∫

z∈T:|ϕ(z)|>r

|F (ϕ(z))|2dσ(z).

Returning to (6) and using the definition of µϕ,r, we obtain part (a) of the theorem.
We now turn to part (b). For an arbitrary finite sequence Z = (z1, . . . , zn) of n distinct

points in D, we set

E(Z) := span{kz1, . . . , kzn}
or in other words E(Z) = K2

B, where B is the finite Blaschke product with zeros z1, . . . , zn.
We assume that both Z and ϕ(Z) consist of n distinct points in D. By (4), C∗

ϕ is a bijection
from E(Z) onto E(ϕ(Z)). According to Lemma 2.3, we have

an(Cϕ) ≥ inf
f∈E(Z),‖f‖=1

‖C∗
ϕf‖.

Using the two bounds (see also [13], Lemma 3.3)
∥

∥

∥

∑

j

bjkzj

∥

∥

∥

2

H2

≤ ‖υZ‖C
∑

j

|bj |2(1− |zj|2)−1

and
∥

∥

∥

∑

j

bjkϕ(zj)

∥

∥

∥

2

H2

≥ [M(ϕ(Z))]−2
∑

j

|bj |2(1− |ϕ(zj)|2)−1

from respectively Lemma 2.1 and Lemma 2.2, we therefore arrive at part (b). �

Thus our method for finding an upper bound consists in finding suitable Blaschke prod-
ucts B, estimating the Carleson norm ‖µϕ,r‖C, and in combining our choices for B and
r in order to minimize the right-hand side in part (a) of Theorem 3.1. To find a lower
bound for an(Cϕ), we would like to have a sequence Z such that each of the three factors
on the right-hand side in part (b) becomes large. Clearly, the third factor becomes large if
the distances 1− |zj | are large, but then the two first factors will be small, and again the
matter is to find a reasonable tradeoff.

It should be noted that part (b) of Theorem 3.1 can be refined when ϕ fails to be
injective; then we may replace each reproducing kernel kzj by a suitable linear combination
of reproducing kernels kzj,ℓ such that ϕ(zj,ℓ) has the same value for all ℓ. This idea is
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elaborated in [17, Theorem 4.1] to obtain sharp results in a multi-dimensional context. To
illustrate the potential improvement in the present situation, we introduce the function

(9) N∗
ϕ(w) :=

∑

z∈ϕ−1(w)

(1− |z|2)

which is a version of the classical Nevanlinna counting function, adapted to our setting.
Then, given a sequence W = (wj)

n
j=1, we may set

gj(w) = [N∗
ϕ(w)]

−1
∑

z∈ϕ−1(wj)

(1− |z|2)kz(w)

and use, instead of E(Z) from the preceding proof, the n-dimensional space

E = span{g1, . . . , gn}.
With this replacement in our proof of part (b) of Theorem 3.1 we then obtain

(10) an(Cϕ) ≥ [M(W )]−1‖υϕ−1(W )‖−1/2
C inf

1≤j≤n

(

N∗
ϕ(wj)

1− |wj|2
)1/2

.

This inequality has the advantage that the last factor on the right-hand side is the quantity
used in Shapiro’s formula for the essential norm of a composition operator [19]. But to
apply (10), one would need to find a way to control the Carleson norms ‖υϕ−1(W )‖C, which
appears to be a nontrivial problem. Note, however, that it would suffice to pick a subset of
ϕ−1(wj) whose contribution to the sum in (9) is bounded below by N∗(wj) times a constant
independent of j.

Returning to part (a) of Theorem 3.1, we note that the simplest possible choice we can
make for B is to set B(z) = zn−1. This gives

[an(Cϕ)]
2 ≤ inf

0<r<1
(rn−1‖Cϕ‖2 + ‖µϕ,r‖C),

which in particular yields the well-known fact that Cϕ is compact if ‖µϕ,r‖C → 0 when
r → 1, which is easily seen to be equivalent to the MacCluer condition that the pullback
measure σ ◦ ϕ−1 is a vanishing Carleson measure. If no additional information is available
about Cϕ, or it is known that ϕ(T) has in some sense a bad localization in D, then it is
reasonable to set B(z) = zn−1. But in our situation, we will make two different choices
that will give much better estimates.

3.2. First example of choice for a Blaschke product B in Theorem 3.1. We will
now describe the choice that we will later make when ϕU(T) is smooth. The approach is
completely general and should therefore be viewed as part of the general method.

Let us for convenience set Er = {z ∈ T : |ϕ(z)| ≤ r} and Ωr := ϕ(Er). We assume that
ϕ is differentiable on Er and that the curve Ωr is connected for every 0 < r < 1. This
means in particular that the curve has two end-points z0 and z1. We assume that n grows
with r so that ℓP (Ωr)/n = o(1) when r → 1. Choose accordingly, for every r, an integer
m such that m = o(n) and mℓP (Ωr)/n → ∞ when r → 1. This is clearly possible since
ℓP (Ωr) → ∞ when r → 1. We now choose n − 2m − 2 points z2, . . . , zn−2m−1 along the
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curve Ωr such that the hyperbolic length of the curve between any two points zj and zj+1

is ℓP (Ωr)/(n − 2m − 2), where we for convenience have declared that zn−2m−1 := z0. We
require B to have double zeros at z1, . . . , zm and zn−2m−1, . . . , zn−3m and simple zeros at
zm+1, . . . , zn−3m−1. We observe that the degree of B is 2m+ 2m+ n− 4m− 1 = n− 1.

Lemma 3.1. Let ϕ and B be as above. Then

sup
z∈Er

|B(ϕ(z))| ≤ exp
(

−(π2/2 + o(1))n/ℓP (Ωr)
)

when r → 1.

Proof. Set ξ := ℓP (Ωr)/(n− 2m− 2), and pick an arbitrary point z in Ωr. We use the fact
that

(11) ̺(w, w̃) =
1− e−d(w,w̃)

1 + e−d(w,w̃)
,

the construction of B, and the triangle inequality for the hyperbolic metric to deduce that

|B(ϕ(z))| ≤
m
∏

j=1

(

1− e−ξj

1 + e−ξj

)2

.

By a Riemann sum argument, this means that

|B(ϕ(z))| ≤ exp
(

− 2ξ−1e−ξ

∫ e−ξ

e−ξm

1

x
log

1 + x

1− x
dx
)

.

Since
∫ 1

0

1

x
log

1 + x

1− x
dx =

∞
∑

j=0

2

(2j + 1)2
= π2/4

and we have that ξ → 0, mξ → ∞, and m = o(n) when r → 1, the result follows. �

3.3. Second example of choice of a Blaschke product B in Theorem 3.1. When
we have a cusp, it seems more natural to place the zeros of B on a radius. We will now
assume that

(12) sup
z∈ϕ(T)

d(z, [0, 1)) <∞.

We retain the notation from the preceding subsection and assume again that n grows
with r such that ℓP ([0, r])/n = o(1) when r → 1. Choose accordingly, for every r, an
integer m such that m = o(n) and mℓP ([0, r])/n → ∞ when r → 1. We now choose
n− 3m points on the segment [0, 1] such that 0 = z0 < · · · < zn−3m−1 and the hyperbolic
distance between any two points zj and zj+1 is ℓP ([0, r])/(n− 3m − 1). We require B to
have a zero of order m at 0, double zeros at z1, . . . , zm and zn−3m−1, . . . , zn−4m and simple
zeros at zm+1, . . . , zn−4m−1. The degree of B is then 5m+ (n− 5m− 1) = n− 1. We set

ρ := exp(−π2n/(4mℓP ([0, r])))
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and note that, by our assumption on m, ρ→ 1 when r → 1. Finally, we set

λ := inf
z∈Ωr:|ϕ(z)|≥ρ

exp(−d(ϕ(z), (zj))

and introduce the constant

(13) β := 4

∞
∑

j=0

λ2j+1

(2j + 1)2
.

When we have a cusp at 1, we will have that λ→ 1 and hence β → π2/2 when ρ→ 1.

Lemma 3.2. Let B be as above, and assume that (12) holds. Then

sup
z∈Ωr

|B(ϕ(z))| ≤ exp (−(β + o(1))n/ℓP ([0, r))) ,

when r → 1.

Proof. We argue similarly as in the preceding case. Hence we set ξ := ℓP ([0, r])/(n−3m−1)
and consider an arbitrary z in Ωr. Set λ := exp(−d(ϕ(z), (zj))). Then, using again (11)
and the triangle inequality for the hyperbolic metric, we get

|B(ϕ(z))| ≤ |ϕ(z)|m
m
∏

j=1

(

1− λe−ξj

1 + λe−ξj

)2

.

If |ϕ(z)| ≤ ρ, then the first factor on the right-hand side gives the desired estimate. If, on
the other hand, |ϕ(z)| > ρ, then we get similarly

|B(ϕ(z))| ≤ exp
(

− 2ξ−1e−ξ

∫ e−ξ

e−ξm

1

x
log

1 + λx

1− λx
dx
)

and therefore

|B(ϕ(z))| ≤ exp
(

− (β + o(1)) ξ−1
)

when r → 1. �

3.4. Estimates of constants of interpolation. We describe now a generic choice of
sequence to get a suitable estimate from part (b) of Theorem 3.1. The rectifiable curve
Γ : (0, 2π) → D in the next lemma should be thought of as the image under ϕ of another
suitable curve in D. We use the notation

Γr := Γ((0, 2π)) ∩ {|z| ≤ r}.

Lemma 3.3. Suppose that Γ : (0, 2π) → D is a rectifiable curve in D such that arclength
sΓ on Γ is a Carleson measure for H2 and ℓP (Γ) = ∞. Then there exists a constant C
such that for every n ≥ ℓP (Γr) and 0 < r < 1 there is a sequence Z = (zj) of n points on
Γ(r+1)/2 satisfying

M(Z) ≤ exp(Cn/ℓP (Γr)).
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Proof. We begin by choosing inductively a sequence of points on Γr. Pick a point on Γr,
say γ1, of minimal modulus. Assuming γ1, . . . , γj have been chosen, we next select a point

γj+1 on Γr of minimal modulus in the complement of
⋃j

i=1D(γi, 1), as long as such a point
can be found. When this process terminates, we have covered Γr with the union of say m
discs

⋃m
i=1D(γi, 1). Since the assumption that sΓ is a Carleson measure implies that there

is a positive constant C such that

ℓP (Γ ∩D(γ, 1)) ≤ C

for any point γ on Γ, we will have ℓP (Γr) ≤ Cm. In addition, we have by construction
d(γi, γj) ≥ 1 whenever i 6= j.

We set next ξ = (2C)−1ℓP (Γr)/n and ν = [1/(2ξ)]. For each 1 ≤ j ≤ m, we pick zj,ℓ on
Γ(1+r)/2 for 0 ≤ ℓ ≤ ν by the following recipe: zj,0 = γj and then we pick zj,ℓ such that
d(zj,ℓ, zj,0) = ℓξ. This gives us a sequence of m(ν + 1) points, where

m(ν + 1) ≥ (C−1ℓP (Γr))× (Cn/ℓP (Γr)) ≥ n.

Since |γj| ≤ r and d(γj, zj,ℓ) ≤ 1/2, all the points zj,ℓ will belong to the set Γ(r+1)/2.
The rest of the proof is plain. We pick n of the points zj,ℓ and call them just z1, . . . , zn.

We write
∏

j 6=j′

̺(zj , zj′) =
∏

j:d(zj ,z′j)≤1/2

̺(zj , zj′)
∏

j:d(zj ,z′j)>1/2

̺(zj , zj′) =: Π1 × Π2.

By the construction of the points zj,ℓ and the triangle inequality for the hyperbolic metric,
we get

Π1 ≥
[ν/2]
∏

j=1

(

1− e−ξj

1 + e−ξj

)2

,

using again (11). By the inequality (1− e−a)/(1 + e−a) ≥ a2 which holds for 0 ≤ a < 1/2,
this yields

Π1 ≥ exp(−4
∑

1≤j≤ν

| log(ξj)|).

A Riemann sum argument then gives

Π1 ≥ exp(−4ξ−1) = exp(−Cn/ℓP (Γr)).

On the other hand, we find that

Π2
2 ≥ exp

(

−(1 + 2 log 2)
∑

j

(1− |zj|2)(1− |zj′|2)
|1− zjzj′|2

)

.

Thus if we set µ :=
∑

j(1− |zj|2)δzj , then we get

Π2
2 ≥ exp (−(1 + 2 log 2)‖µ‖C) .

The result follows since ‖µ‖C ≤ Cn/ℓP (Γr). �
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4. General bounds for an(CϕU
) when U is in U

We begin by defining two subclasses of U , corresponding respectively to smooth maps
and maps with a cusp.

We let Us denote the collection of those functions U in U such that U restricted to (0, π]
is in C2, with U ′(π) = 0, and

(14) U(t)/t = o(log hU(t)) when t→ 0

and

(15) U ′(t)/U(t) ≤ C/t and |U ′′(t)|/U(t) ≤ C/t2, 0 < t ≤ π/2,

for some constant C > 0. We have assumed less smoothness in part (a) of Theorem 1.1,
but this is just because then the relatively rapid growth of U for small t > 0 makes the
assumption on the second derivative superfluous.

We let next Uc denote the class of functions U in U such that

(16) U ′(t)/U(t) ≤ α/t

for 0 < t ≤ π/2 and some 0 < α < 1 depending on U . The latter condition means
that U(t) is bounded below by a constant times |t|α. A calculus argument shows that if
η′U/x)/ηU(x) = o(1/x) when x→ ∞, then

(17) U ′(t)/U(t) = o(1/t)

when t → 0, and this means that the condition on U in part (b) of Theorem 1.1 implies
that U is in Uc.

The indices in our notations Us and Uc stand for respectively “smooth” and “cusp”.
The functions appearing in Theorem 1.2 belong to Uc and are not in Us, but, as already
mentioned, one should think of them as sitting on the edge between the two classes. In
fact, we will use the the same techniques in the proof of Theorem 1.2 as those we employ
when dealing with functions in Us.

The function hU defined in the introduction will be essential in our study of an(CϕU
)

when U is in Us. It can be viewed as an approximate representative both for −1/t times
the conjugate function of U and for 1/(1 − r) times the Poisson integral of U , taken at a
point reiθ, where t = max(|θ|, 1 − r); the latter interpretation explains why hU(t) → ∞
when t→ 0 is the right condition for compactness.

We now introduce an additional auxiliary function γU to be used along with hU :

γU(t) :=

∫ 1

t

hU(x)

U(x)
dx× (log hU(t)− log hU(1)).

This function is a strictly decreasing, unbounded function on (0, 1], which implies that the
inverse function γ−1

U : [0,∞) :→ (0, 1] is well defined. We have γU(t) ≥ (log t)2 because

(log t)2 =
(

∫ 1

t

dx

x

)2

≤
∫ 1

t

hU (x)

|h′U(x)|
dx

x2
×
∫ 1

t

|h′U(x)|
hU(x)

dx = γU(t)

by the Cauchy–Schwarz inequality; this means in particular that γ−1
U (x) ≥ exp(−√

x).
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Theorem 4.1. Suppose that U belongs to U .
(a) If U is in Us, then

[hU(e
−√

n)]−
1

2
−cn/γU (e−

√
n) ≪ an(CϕU

) ≪ [hU(γ
−1
U (Cn))]−1/2,

for two positive constants c and C.
(b) If U is in Uc with U

′(t)/U(t) ≤ α/t for 0 < t ≤ π/2 and 0 < α < 1, then

exp(−(π2 + 1)/2 + ε)n/ωU(n)) ≪ an(Cϕ) ≪ exp(−κ(α)n/ωU(n))

for every ε > 0 and a positive constant κ(α) satisfying κ(α) = 1− α for α close to 0.

Note that n/γU(e
−√

n) ≤ 1, and hence the exponent on the left-hand side in part (a) can
be replaced by −1/2− c. However, if

(18) γU(x) ≥ c(log x)2 log hU (x)

for some constant c, then we just have

[hU(e
−√

n)]−1/2 ≪ an(CϕU
) ≪ [hU(γ

−1
U (Cn))]−1/2.

The bound in (18) holds if U(t)/(thU (t)) ≤ C| log t|−1, which for instance is satisfied when
U(t) = t| log t|c for small t and c ≥ −1. Inequality (18) is in particular valid under the
more severe hypothesis on U(t)/(thU (t)) assumed in part (a) of Theorem 1.1.

We will in the next section prove Theorem 1.2 and part (a) of respectively Theorem 4.1
and Theorem 1.1 (the “smooth” case), while part (b) of Theorem 4.1 and Theorem 1.1 will
be established in Section 6.

In what follows, we will use the notation V (t) = v(eit), where v is the harmonic conjugate
of u and u(eit) = U(t). Both u and v will be viewed as functions in the closed disc D.

5. Proofs in the “smooth” case

5.1. Estimates for Poisson integrals and partial derivatives. In our proof of the
bound from below in part (b) of Theorem 1.1, we will need the following lemma. To
simplify the notation, we let U∗

s denote the union of Us and the set of those U for which
the hypotheses of part (a) of Theorem 1.1 are satisfied. For a smooth function u of z = reiθ,
we let u′r and u

′
θ denote the partial derivatives with respect to r and θ.

Lemma 5.1. Suppose that U belongs to U and let u(reiθ) be the positive harmonic function
in D with radial limit function u(eit) := U(t). Then

(19) u(reiθ) ≥ π−1(1− r)hU(max(2|θ|, 1− r)).

If U belongs to U∗
s , then there exist positive constants c and C such that for sufficiently

small θ > 0 and 1− r ≤ θ/4, the following holds:

chU(θ) ≤ −u′r(reiθ) ≤ ChU(θ)(20)

|u′θ(reiθ)| ≤ ChU(θ).(21)
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Proof. We start from the Poisson representation

(22) u(reiθ) =
(1− r2)

2π

∫ π

−π

U(x)

(1− r)2 + 2r(1− cos(θ − x))
dx,

which immediately gives (19) if we restrict the integration to |x| ≥ max(2|θ|, (1− r)). By
the symmetry of the Poisson kernel, it also gives

−u′r(reiθ) =
1

π

∫ π

−π

Kr(θ, x)(U(x)− U(θ))dx,

where

Kr(θ, x) :=
(1 + r2)(1− cos(θ − x))− (1− r)2

[(1− r)2 + 2r(1− cos(θ − x))]2
.

If U is in Us, then we use the assumption on U ′ and the symmetry of the kernel Kr to
deduce that

∣

∣

∣

∣

∫

|x−θ|≤θ/2

Kr(θ, x)(U(x) − U(θ))dx

∣

∣

∣

∣

≤ CU(θ)/θ.

The integration over −θ < x < θ/2 is trivially bounded by the same quantity. A compu-
tation using these facts now shows that

chU (θ)− CU(θ)/θ ≤ −u′r(reiθ) ≤ C ′hU(θ) + CU(θ)/θ.

By the definition of hU , we have U(θ)/θ = o(hU(θ)) by (14), and therefore the desired
result (20) follows. If U satisfies the hypotheses in part (a) of Theorem 1.1, then we can
only use that U(x)− U(θ) = U ′(ξ)(x− θ). In this case, we obtain instead

∣

∣

∣

∣

∫ 2θ

−θ

Kr(θ, x)(U(x)− U(θ))dx

∣

∣

∣

∣

≤ CU(θ)| log θ|/θ.

But, by assumption, the right-hand side of the latter inequality is o(hU(θ)) when θ → 0,
whence we arrive again at (20).

Starting once more from (22), we get

u′θ(re
iθ) = −(1− r2)

π

∫ π

−π

sin(θ − x)U(x)

[(1− r)2 + 2r(1− cos(θ − x))]2
dx.

By the symmetry of the kernel, we may replace U(x) by U(x)−U(θ) = U ′(ξ)(x− θ) in the
interval |x− θ| ≤ θ/2 and obtain a contribution of order U(θ)/θ; in the remaining part of
the interval [−π, π], we just do a rough estimation, and the result follows. �

By the Cauchy–Riemann equations in polar coordinates, (20) implies that

(23) chU(t) ≤ |V ′(t)| ≤ ChU (t),

a fact that will be needed later.
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5.2. Estimates associated with two curves. Set Iε := {eit : |t| ≤ ε}. In order to
apply Lemma 3.1, we need to estimate ℓP (ϕ(T \ Iε)) from above.

Lemma 5.2. Suppose that U is in U∗
s . Then

ℓP (ϕU(T \ Iε)) ≤ C

∫ π

ε

hU(t)

U(t)
dt.

for some positive constant C.

Proof. For the map z(t) := exp(−U(t)− iV (t)), we have

|z′(t)| = |z(t)|
(

[U ′(t)]2 + [V ′(t)]2
)1/2

.

We use the right inequality in (23) and the bound U ′(t) ≤ ChU(t), which is either inferred
from (14) and (15) or from the hypothesis of part (a) of Theorem 1.1. We may therefore
conclude that

ℓP (ϕU(T \ Iε)) := 2

∫

ϕU (T\Iε)

|dz|
1− |z|2 ≤ C

∫ π

ε

hU(t)

U(t)
dt

for a positive constant C. �

We also need a suitable curve Γ so that Lemma 3.3 applies. To this end, we introduce
the curve ψU (e

it) := exp(−U(t)/hU (t) + it).

Lemma 5.3. Suppose that U is in U∗
s .

(a) There exist constants c and C such that

chU(t) ≤ |ϕ′
U(ψU (t))||ψ′

U(t)| ≤ ChU(t)

whenever t is sufficiently small.
(b) Arclength on ϕU ◦ ψU (T) is a Carleson measure for H2.
(c) There exists a positive constant c such that

ℓP (ϕU ◦ ψU (T \ Iε)) ≥ c

∫ π

ε

hU(t)

U(t)
dt

whenever ε > 0.

Proof. We simplify the notation by setting ϕ = ϕU and ψ = ψU . We begin by writing

z(t) = ρ(t)eiτ(t) := ϕ(ψ(t))

and compute derivatives:

τ ′(t) = v′r(ψ(t))|ψ(t)|(U(t)/hU(t))′ − v′θ(ψ(t)),(24)

ρ′(t) = ρ(t)(u′r(ψ(t))|ψ(t)|(U(t)/hU(t))′ − u′θ(ψ(t)).(25)

Since U is in U∗
s , we have

(

U(t)

hU(t)

)′
=
U ′(t)

hU(t)
+

(

U(t)

thU (t

)2

= o(1)
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when t → 0. Hence, by (20) and (21) of Lemma 5.1 and the Cauchy–Riemann equations
in polar coordinates, (24) and (25) lead respectively to the estimates

chU (t) ≤ τ ′(t) ≤ ChU(t),(26)

|ρ′(t)| ≤ C ′hU(t)(27)

for sufficiently small t.
Part (a) is immediate from (26) and (27). Since (26) and (27) also imply that |ρ′(t)| ≤

Cτ ′(t), it follows that
∫

z(t)∈Q
|dz| ≤ Cℓ(Q)

when Q is a Carleson square, and therefore arclength on ϕ ◦ ψ(T) is a Carleson measure.
Finally, since 1− |z(t)|2 ≤ CU(t), we can use the left inequality in (26) to infer that

ℓP (ϕ ◦ ψ(T \ Iε)) = 2

∫

ϕ(T\Iε)

|dz|
1− |z|2 ≥ c

∫ π

ε

hU(t)

U(t)
dt

for some constant c. �

5.3. Proofs of the bounds from above. The following lemma yields the desired estimate
for ‖µϕU ,r‖C.
Lemma 5.4. Suppose that U belongs to U and that there exists a constant c such that
chU(t) ≤ |V ′(t)|. If Q is a Carleson square in D of side length δ ≤ U(ε), then

µϕU ,r(Q) ≤ (C/hU(ε))δ

when ε→ 0, where the constant C depends on U but not on Q or r.

Proof. We observe that it suffices to estimate the normalized Lebesgue measure of the set

Aδ(t) := {τ : |V (t)− V (t+ τ)| ≤ δ, 1− exp(−U(τ)) ≤ δ}
for every fixed t such that 1−exp(−U(t)) ≤ δ. If τ belongs to Aδ(t), then 1−exp(−U(ξ)) ≤
δ for every ξ between t and τ . Such ξ will satisfy the inequality ξ ≤ 2ε if ε is small enough.
By the mean value theorem and the assumption on U ,

|V (t)− V (t+ τ)| = |V ′(ξ)||τ | ≥ chU(ξ)|τ | ≥ c′hU(2ε)|τ |,
which gives the desired result. �

In view of the left inequality in (23), this lemma applies when U is in U∗
s . Plainly, it can

also be used when U is as in Theorem 1.2. Although the estimate is independent of r, the
main point is that ‖µϕU ,r‖C ≤ C/hU(ε) when r = exp(−U(ξ)).
Proof of the bound from above in part (a) of Theorem 4.1. We choose B as in Subsection 3.2.
Then Lemma 3.1 and Lemma 5.2 give that

sup
z∈T\Iε

|B(ϕU(z))| ≤ exp

[

−cn
(
∫ 1

ε

hU(t)

U(t)
dt

)−1
]
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for some constant c if, say, ε < 1/2. Using also Lemma 5.4 and part (a) of Theorem 3.1,
we therefore obtain the bound

an(C(ϕU)) ≪ max

{

[hU(ε)]
−1/2, exp

[

−cn
2

(
∫ 1

ε

hU(t)

U(t)
dt

)−1
]}

.

If we now choose ε = γ−1
U (cn), then

cn =

∫ 1

ε

hU (t)

U(t)
dt× (log hU(ε)− log hU(1))

by the definition of γU , and the result follows. �

Proof of the bound from above in part (a) of Theorem 1.1. In view of the preceding proof,
it is sufficient to show that

(28) hU (γ
−1
U (Cn)) ≫ hU(e

−√
n)

when U satisfies the hypotheses in part (a) of Theorem 1.1. Our assumption on U ′/U
implies that

logU(1/2)− logU(t) ≤ − log(2t)− c(log | log 2| − log | log t|),
while our hypothesis on U/hU gives that log hU (t) ≤ C log log | log t| for, say, t ≤ e−2.
Inserting these estimates into the definition of γU , we get that

γU(t) ≤ | log t|c

for some c > 2 and sufficiently small t. This may be rephrased as the statement that
γ−1
U (x) ≤ exp(−x1/c) for sufficiently large x. Since

hU (e
−√

n)

hU(e−(Cn)1/c)
≪ 1

by our boundedness condition on |h′U(t)|/hU(t)|, we arrive at (28). �

Proof of the bound from above in Theorem 1.2. The proof follows the same pattern as above.
Since ϕU(e

it) = (1 + (1− eit)α)−1, an explicit computation gives

ℓP (ϕU)(T \ Iε) =
α

cos(απ/2)
(1 + o(1))| log ε|

when ε→ 0. Hence, by Lemma 3.1, we have

sup
|t|>ε

|B(ϕ(eit)| ≤ exp(−(1 − α)π2n/(2α)) | log ε|

for sufficiently small ε. We use again Lemma 5.4 and part (a) of Theorem 3.1; since hU(ε)
behaves as εα−1, we finish the proof by choosing ε such that

| log ε| = π
√

n/(2α).

�
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5.4. Proof of the bounds from below. In the two first of the following proofs, we set
ε = e−

√
n.

Proof of the bound from below in part (a) of Theorem 4.1. We set Z = (zj), where

zj := ψU (e
iθj ) = exp(−U(θj)/hU(θj) + iθj)

is determined by the requirement that ϕU(Z) be a sequence of points on Γ := ϕU ◦ψU(T\Iε)
as constructed in the proof of Lemma 3.3. This implies that we have

M(ϕU (Z)) ≤ exp(cn/ℓP (ϕU ◦ ψU(T \ Iε)))
for some constant c. Since

|θj − θj′ | =
∣

∣

∣

∣

∣

∫ θj′

θj

dt

∣

∣

∣

∣

∣

=

∫ θj′

θj

|dz(t)|
|ϕ′

U(ψU(t))||ψ′
U(t)|

the right inequality in part (a) of Lemma 5.3 gives

|θj − θj′| ≥
c

hU(θj)

∫ ϕU (zj′ )

ϕU (zj)

ds,

where the integration is along the curve Γ and we have assumed that θj < θj′. Since
d(ϕU(zj), ϕU(zj′) ≥ cℓP (Γ)/n for two distinct points zj and zj′ from Z, we therefore get

|θj − θj′ | ≥
cu(zj)

hU(θj)
ℓP (Γ)/n ≥ c′(1− |zj |)ℓP (Γ)/n,

where we in the last step used (19). It follows from this that

υZ(Q)/ℓ(Q) ≤ c n/ℓP (ϕU ◦ ψU (T \ Iε))
for every Carleson square Q. By part (b) of Theorem 3.1, we therefore have

an(Cϕ) ≥ c exp(−cn/ℓP (ϕU ◦ ψU (T \ Iε))− 1/2 loghU(ε)),

where we also used that (1− |zj|2)/(1− |ϕU(zj)|2) ≥ chU(θj) holds in view of (19). Since

ℓP (ϕU ◦ ψU(T \ Iε)) ≥ cγU(ε)/(log hU(ε)− log hU(1))

for small ε, the desired estimate follows. �

Proof of the bound from below in part (a) of Theorem 1.1. In view of the bound from be-
low in part (a) of Theorem 4.1, we only need to prove that (18) holds, but as already noted,
this is a consequence of our assumption on U(t)/(thU (t)). �

Proof of the bound from below in Theorem 1.2. We start with a computation in the upper
half-plane, where the pseudohyperbolic distance is defined as

̺(z, w) :=

∣

∣

∣

∣

z − w

z − w

∣

∣

∣

∣

.
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Set W = (eiθλj)j∈Z, where 0 < θ < π/2 and 0 < λ =: e−ε < 1 are parameters to be chosen
later. A computation shows that

δ(W ) = exp

[

2
∞
∑

j=1

(log(1− λj)− log |1− ei2θλj|)
]

=: exp[S].

By expanding the logarithms as power series and permuting sums, we get

S = −2

∞
∑

n=1

(1− cos 2nθ)

n

λn

1− λn
= −2

∞
∑

n=1

(1− cos 2nθ)

n2(1− λ)
+ o

(

1

1− λ

)

,

which implies that

δ(W ) = exp

[

−(2 + o(1))ε−1

∞
∑

n=1

(1− cos 2nθ)

n2

]

when ε → 0. Since the function f(x) = (x2 − π2/3)/4 has Fourier series expansion
∑∞

n=1(−1)nn−2 cosnx on [−π, π], this gives
δ(W ) = exp

[

−(2 + o(1))ε−1(f(π)− f((π − 2θ))
]

,

or, in other words, by the definition of f ,

(29) δ(W ) = exp
[

−2(πθ − θ2 + o(1))ε−1
]

when ε→ 0.
We now assume that θ > (1− α)π/2 =: θ0. This means that for sufficiently large j, we

may choose zj such that

(30) ϕ(zj) =
i− λjeiθ

i+ λjeiθ
=

1− λjei(θ−π/2)

1 + λjei(θ−π/2)
.

Indeed, inverting the explicit expression ϕ(z) = (1 + (1− z)α)−1, we get

(31) zj = 1− 21/αλj/αei(θ−π/2)/α(1 +O(λj))

when j → ∞, and hence

(32)
1− |zj|2

1− |ϕ(zj)|2
≥ cλ(1−α)j/α

for sufficiently large j, where c depends on θ. We fix j0 such that (32) holds for all j > j0
and set Z = (zj)

j0+n
j=j0+1. Note that δ(ϕ(Z)) ≥ δ(W ) by conformal invariance. From the

explicit expressions (30) and (31), we get that both ‖υϕ(Z)‖C and ‖υZ‖C are bounded by a
constant times (1− λ)−1 and in particular

M(ϕ(Z)) ≤ exp
[

−2(πθ − θ2 + o(1))ε−1
]

in view of (29) and Theorem 2.2. Therefore, by part (b) of Theorem 3.1 and (32), we
obtain

(33) an(Cϕ) ≥ exp
[

−2(πθ − θ2 + o(1))ε−1)− (1− α +O(ε))nε/(2α)
]
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when ε→ 0. We now choose θ so that πθ− θ2 < (1−α)π2/2. This is compatible with the
previous requirement on θ since

πθ0 − θ20 =
(

1− α
)(1 + α

2

)

π2/2 < (1− α)π2/2.

Then, in view of (33), we get

an(Cϕ) ≥ c exp
[

− (1− α)(π2ε−1 + εn/(2α))
]

.

The optimal choice ε = π
√

2α/n gives the desired bound from below in Theorem 1.2. �

6. Proofs when U is in Uc

6.1. Estimates for conjugate functions. In our proof of the bound from below in part
(b) of Theorem 1.1, we will need the following estimate.

Lemma 6.1. Suppose that U belongs to Uc.

(a) If U ′(t)/U(t) ≤ α/t for 0 < α < 1, then

|V (t)|/U(t) ≤ C
√
α/(1− α)

for some constant C.
(b) If U ′(t)/U(t) = o(1/t) when t→ 0, then

V (t)/U(t) → 0

when t→ 0.

Proof. We start from the formula

V (t) =

∫ π

−π

U(x) cot

(

t− x

2

)

dx

2π
,

where the integral is to be understood in the principal value sense. We may write this as

V (t) =

∫ t

0

(U(t− x)− U(t + x)) cot
(x

2

) dx

2π
−
∫ π

t

(U(x+ t)− U(x− t)) cot
(x

2

) dx

2π
.

We have
∣

∣

∣

∣

∫ t

0

(U(t− x)− U(t + x)) cot
(x

2

) dx

2π

∣

∣

∣

∣

≤ C

(

t max
ε≤x≤2t

U ′(x) +
εU(2t)

t

)

and
∣

∣

∣

∣

∫ π

t

(U(x+ t)− U(x− t)) cot
(x

2

) dx

2π

∣

∣

∣

∣

≤ C

(

εU(2t+ ε)

t
+ t

∫ π

t+ε

max
|x−ξ|≤t

U ′(ξ)
dx

x

)

,

where in both cases 0 < ε ≤ t/2. The result now follows if we use the respective assump-
tions on U ′/U ; in part (a), we choose ε = min(t/2, t

√
α), while in part (b), we may choose

ε arbitrarily small if t is sufficiently small. �
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6.2. Proof of the bounds from above. We have two cases to consider: the bound from
above in respectively parts (b) and (a) of Theorem 4.1 and Theorem 1.1. We will apply
part (a) of Theorem 3.1 and in each case choose r = 1 − exp(−τωU (n)) for a suitable
constant τ and B as in Lemma 3.2. Since

ℓP ([0, r]) = (1 + o(1))| log(1− r)| = (τ + o(1))ωU(n),

we will have

sup
z∈Ωr

|B(ϕ(z))| ≤ exp (−(β + o(1))n/(τωU(n))) ,

where β is as in (13). We observe that part (a) of Lemma 6.1 gives the desired estimate
in part (b) of Theorem 4.1. If we choose τ = 1 + o(1) when n → ∞, then part (b) of
Lemma 6.1 gives β = π2/2 + o(1) because then λ→ 1.

It remains to determine the contribution from the Carleson norm on the right-hand
side of the bound in part (b) of Theorem 4.1. The following lemma yields the required
estimates.

Lemma 6.2. Suppose that U belongs to Uc and that τ > 1.

(a) If U ′(t)/U(t) ≤ (1− δ)/t and n is sufficiently large, then for every Carleson square
Q in D of side length ε ≤ e−τωU (n), we have

µϕU ,r(Q) ≤ e−δn/ωU (n)ε.

(b) If η′U(x)/ηU(x) = o(1/x) when x → ∞ and n is sufficiently large, then for every
Carleson square Q in D of side length ε ≤ e−τωU (n), we have

µϕU ,r(Q) ≤ e−8n/ωU (n)ε.

Here the constant 8 in the exponent in part (b) is somewhat arbitrary; the point is
just that we have a constant that is larger than the sharp constant π2/2 appearing on the
left-hand side of (b) in Theorem 4.1.

Proof of Lemma 6.2. The first part of the proof is the same in both cases. We need to
estimate the normalized Lebesgue measure of the set

Aε := {t : |ϕU(e
it)| ≥ 1− ε}.

Since |ϕU | = e−u, we have Aε ⊂ {t : U(t) ≤ ε+ ξε2} for some constant ξ. Hence

σ(Aε) ≤ π−1e−η−1

U (| log(ε+ξε2)|)

by the definition of the function η. Writing

e−η−1

U (| log(ε+ξε2)|) = e−(1−δ)η−1

U (| log(ε+ξε2)|) × e−δη−1

U (| log(ε+ξε2)|)

and using that η−1
U (x) ≥ (1− δ)−1x, we get

σ(Aε) ≤ π−1(ε+ ξε2)e−δη−1

U (| log(ε+ξε2)|).

Taking into account that ε+ ξε2 ≤ e−ωU (n) for sufficiently large n, the proof of part (a) is
complete if we in the final step use the definition of ωU .
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As to part (b), we note we have ε+ ξε2 ≤ e−τ ′ωU (n) for 1 < τ ′ < τ and sufficiently large
n. This means that we have

σ(Aε) ≤ π−1(ε+ ξε2)e−δη−1

U (τ ′ωU (n)).

We observe that the condition on ηU implies that

η−1
U (x) = o(η−1

U (τ ′x))

when x→ ∞ for every τ ′ > 1, and use again in the final step the definition of ωU . �

In view of Theorem 3.1, part (a) finishes the proof of the estimate from above in The-
orem 4.1 since we may choose any τ > 1 and thus κ(δ) = min(δ, β − ε) for an arbitrary
ε > 0. Here κ(δ) = δ for δ close to 1 because β → π2/4 when δ → 1 by part (a) of
Lemma 6.1. Part (b) of Lemma 6.2, on the other hand, justifies the choice τ = 1 + o(1)
when U satisfies the hypothesis in part (b) of Theorem 1.1, and we obtain therefore the
desired estimate an(CϕU

) ≪ exp(−(π2/2 + o(1))n/ωU(n)) when n→ ∞.

6.3. Proof of the bounds from below. The main estimate required in this case, is
contained in the following lemma. Here

Z(λ) :=

{

1− λj

1 + λj
: j = 1, 2, . . .

}

for 0 < λ < 1.

Lemma 6.3. We have

δ(Z(λ)) ≥ e−(π2/2)/(1−λ).

Proof. Since

ρ

(

1− λj

1 + λj
,
1− λk

1 + λk

)

=

∣

∣

∣

∣

λk − λj

λk + λj

∣

∣

∣

∣

,

we find first that

(34) δ(Z(λ)) ≥
∞
∏

j=1

(

1− λj

1 + λj

)2

= exp
(

− 2

∞
∑

j=1

(

log(1 + λj)− log(1− λj)
)

)

.

We have

2
∞
∑

j=1

(

log(1 + λj)− log(1− λj)
)

= 4
∞
∑

n=0

∞
∑

j=1

λj(2n+1)

2n+ 1
= 4

∞
∑

n=1

λ2n+1

(2n+ 1)(1− λ2n+1)

≤ 4

(1− λ)

∞
∑

n=0

1

(2n+ 1)2
=

π2

2(1− λ)
,

where we used that 1− λ2n+1 ≥ (2n+ 1)(1− λ)λ2n+1. Returning to (34), we arrive at the
desired estimate. �
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It should be noted that the computation in the preceding proof was also used in [12],
Lemma 6.4, and in the present paper, under a more elaborate form, for getting the lower
bound in Theorem 1.2.

Since

υZ(λ)(Q)/ℓ(Q) ≤ 2(1− λ)−1,

Lemma 6.3 gives immediately

(35) M(Z(λ)) ≤ exp((π2/2 + o(1))/(1− λ))

when λ→ 1.
Before turning to the proof of the remaining bounds from below, we establish the fol-

lowing estimate.

Lemma 6.4. Suppose that U is in Uc and that η′U(x)/ηU(x) = o(1/x) when x→ ∞. Then

ω′
U(x)/ωU(x) ≤ o(1/x)

when x→ ∞.

Proof. We compute the derivative

ω′
U(x) = η′U

(

x

ωU(x)

)[

1

ωU(x)
− ω′

U(x)x

[ωU(x)]2

]

≤ η′U

(

x

ωU(x)

)

/ωU(x).

We obtain the desired result from this formula by using the defining identity ωU(x) =
η(x/ωU(x)). �

Proof of the bound from below in part (b) of Theorem 4.1. We set

zj = ϕ−1((1− λj)/(1 + λj))

and choose Z = (zj)
j0+n
j=j0+1, where j0 is the smallest positive integer such that we have

(1− λj)/(1 + λj) in ϕU(D) for every j > j0. Since

log
U(t)

U(τ)
≤ α log

t

τ

when t > τ , we get

υ(zj)(Q)/ℓ(Q) ≤ 2(1− λ)−1

so that

(36) ‖υ(zj)‖C ≤ C(1− λ)−1.

We now choose λ such that

(37)
1− λj0+n

1 + λj0+n
= ϕ(1− e−νn/ωU (νn)),

where ν is a parameter to be determined below. Then it follows from the definition of zn
that

(38) 1− zn+j0 = e−νn/ωU (νn).
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Moreover, since

ϕ(1− x) = 1− eO(1)U(x)

when x→ 0, we may use (37) and the definition of ω to infer that

λn+j0 = e−ωU (νn)+O(1).

Thus we get | log λ| = ωU(νn)/n + O(n−1) and deduce from part (b) of Theorem 3.1 and
our three estimates (35), (36), and (38) that

(39) an(CϕU
) ≥ exp[−(π2/2 + ν/2 + o(1))n/ωU(νn)].

The proof is complete if we choose ν = 1. �

Proof of the bound from below in part (b) of Theorem 1.1. The proof is identical to the pre-
ceding one up to (39). In view of Lemma 6.4, we may now in the final step choose ν = o(1)
when ε→ 0. �

Acknowledgement

The authors are grateful to the anonymous referee for a careful review leading to a
clarification of several technical details.

References

[1] J.R. Akeroyd, On Shapiro’s compactness criterion for composition operators, J. Math. Anal.
Appl. 379 (2011), 1–7.

[2] R. P. Boas, A general moment problem, Amer. J. Math. 63 (1941), 361–370.
[3] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cam-

bridge Tracts in Mathematics 98, Cambridge University Press, Cambridge, 1990.
[4] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80

(1958), 921–930.
[5] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of

Math. (2) 76 (1962), 547–559.
[6] T. Carroll and C. C. Cowen, Compact composition operators not in the Schatten classes, J.

Oper. Theory 26 (1991), 109–120.
[7] C. C. Cowen, Composition operators on Hilbert spaces of analytic functions: A status report,

Proceedings of Symposia in Pure Mathematics, American Math. Soc., Providence, R.I., 51
(1990), part I, 131–145.

[8] J. B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics 236, Springer,
New York, 2007.

[9] M. Jones, Compact composition operators not in the Schatten classes, Proc. Amer. Math. Soc.
134 (2006), 1947–1953.
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