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ABSTRACT 

Despite being different species with different life histories, anadromous Atlantic salmon (Salmo 

salar L.) and brown trout (Salmo trutta L.) are often subjected to the same conservation 

strategies. Implementation of species-specific management will require extensive knowledge 

about the marine migration of the two species, and how they differ from each other. In order to 

investigate early marine migration pathways and progression rates through a fjord system, 38 

Atlantic salmon post-spawners and 34 brown trout veterans migrating to sea in spring were 

tagged with acoustic transmitters in a northern Norwegian river. The tagged fish were registered 

by listening stations, strategically placed in lines throughout the study area. Correlations 

between individual biological characteristics (body length, condition factor and estuary exit 

date) and progression rate were investigated in the inner- and outer fjord systems. 

The fjord system had two exits towards the open ocean, where one exit was far more popular 

than the other for both species. Despite choosing mainly the same migration route, there was a 

large variation in the temporal habitat use between the two species. From the estuary exit, the 

Atlantic salmon had a fast, continuous progression, spending on average 37 hours in reaching 

the fjord system exit. The brown trout on the other hand, had larger intraspecific differences in 

progression rate, where some individuals migrated through the fjord in just a couple of days, 

some spent several weeks, and some never reached the fjord system exits at all (29%). The 

brown trout leaving the fjord system spent on average 546 hours from the estuary to the fjord 

system exit. Both species were mainly found to start their marine migration from the estuary at 

falling tide. For Atlantic salmon, no correlation was detected between body length and 

progression rate in in any of the fjord sections. Estuary exit date and condition factor was found 

to be correlated with progression rate of Atlantic salmon in the outer fjord system, where a later 

estuary exit date and a lower condition factor indicated a higher progression rate. For brown 

trout, body length was positively correlated with progression rate in the outer fjord system, 

condition factor positively correlated with progression rate in the inner fjord system, and estuary 

exit date was positively correlated with progression rate for the total distance.  

This study found that the early marine migration of Atlantic salmon post-spawners and brown 

trout veteran migrants from the river Beiarelva overlapped in space, but not to a large degree in 

time. The higher time usage of brown trout within the fjord system likely resulted in a higher 

exposure to negative anthropogenic impacts in coastal areas compared to Atlantic salmon. The 

differences in how individual biological characteristics were correlated with progression rate, 

illustrates how population dynamics in Atlantic salmon and brown trout could change in similar 

ways, while still influence temporal habitat use differently. The findings in this study underline 

the importance of conceiving more focused conservation strategies, better aimed at protecting 

each individual species and not treating them as a single unit. 
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SAMMENDRAG 

Til tross for å være forskjellige arter med forskjellige livshistorier, er anadrom Atlanterhavslaks 

(Salmo salar L.) og brunørret (Salmo trutta L.) som regel underlagt den samme 

forvaltningsstrategien. Implementering av artsspesifikk forvaltning krever omfattende 

kunnskap om den marine migrasjonen til de to artene, og om hvordan de skiller seg fra 

hverandre. For å undersøke marin migrasjonsadferd og progresjonsrate ble 38 utmigrerende 

laksestøinger og 34 utmigrerende ørretveteraner merket med akustiske merker i en nordnorsk 

elv. Den merkede fisken ble registrert på lyttestasjoner, strategisk plassert i linjer ut over 

studieområdet. Korrelasjoner mellom individuelle biologiske karakteristikker (kroppslengde, 

kondisjonsfaktor og utgangsdato fra estuariet) og progresjonsrate ble undersøkt i det indre- og 

det ytre fjordsystemet. 

Fjordsystemet hadde to ruter ut mot åpent hav, der den ene ruten var langt mer populær enn den 

andre hos begge arter. Til tross for å velge samme migrasjonsrute, var det stor variasjon i hvor 

lang tid hver art brukte i ulike deler av fjordsystemet. Fra estuariet hadde Atlanterhavslaksen 

en rask, kontinuerlig progresjon, og brukte gjennomsnittlig 37 timer på å nå utgangen av 

fjordsystemet. Brunørreten derimot, hadde langt større intraspesifikke forskjeller i 

progresjonsrate, der noen individer migrerte gjennom fjordsystemet på et par dager, noen brukte 

flere uker, mens andre forlot aldri fjordsystemet i det hele tatt (29 %). De individene som forlot 

fjordsystemet, brukte i gjennomsnitt 546 timer fra estuariet til utgangen. Ingen korrelasjon ble 

funnet mellom kroppslengde og progresjonsrate hos Atlanterhavslaks i hverken indre- eller ytre 

fjord. Utgangsdato fra estuariet og kondisjonsfaktor derimot, var korrelert med progresjonsrate 

hos Atlanterhavslaks i det ytre fjordsystemet, hvor en senere utgangsdato fra estuariet og en 

lavere kondisjonsfaktor betydde en høyere progresjonsrate. For brunørret var kroppslengde 

positivt korrelert med progresjonsrate i det ytre fjordsystemet, kondisjonsfaktor var positivt 

korrelert med progresjonsrate i det indre fjordsystemet, og utgangsdato fra estuariet var positivt 

korrelert med progresjonsrate for fjordsystemets totale distanse.  

Denne studien fant en stor overlapp i arealbruk hos laksestøinger og ørretveteraner fra Beiarelva 

i tidlig marin migrasjonsfase, men at tiden de brukte inne i fjordsystemet var svært forskjellig. 

Den høyere tidsbruken hos brunørret inne i fjordsystemet vil sannsynligvis gi en høyere 

eksponering for negative menneskeskapte påvirkninger i kystnære strøk. Forskjellene i hvordan 

individuelle biologiske karakteristikker var korrelert med progresjonsrate, illustrerer hvordan 

populasjonsdynamikk hos Atlanterhavslaks og brunørret kan gjennomgå liknende endringer, 

mens den temporale habitatbruken samtidig endrer seg i svært forskjellig retning. Funnene i 

denne studien understreker viktigheten av å vedta fokuserte forvaltningsstrategier myntet på 

hver enkelt art, og å ikke behandle dem som én enhet. 
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INTRODUCTION 

Wild Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) have a profound social, 

cultural and economic importance in numerous communities along the entire Northern-

European coastline (Pennell & Prouzet, 2009; Liu et al., 2019). Some of the fascination with 

the salmonid species springs from their ability to migrate from freshwater to saltwater 

(anadromy), making them accessible to both people living inland and along the coast. Atlantic 

salmon and brown trout spawn in freshwater, and anadromous populations around the North 

Atlantic basin regularly coexist in the same rivers and streams (Klemetsen et al., 2003). 

Anadromy in salmonids developed in response to better feeding opportunities in saltwater 

compared to in their native freshwater habitats (Gross et al., 1988). Anadromy is advantageous 

for a fish when the benefits of higher food availability exceed the increased energy use and/or 

risk of mortality (Klemetsen et al., 2003). River migration in Atlantic salmon and brown trout 

has been extensively studied. What governs the behaviour when the fish arrive in saltwater, 

however, remains largely unknown. More knowledge about marine migration pathways, and 

what underlying mechanisms that are driving migratory behaviour, is therefore needed (Drenner 

et al., 2012; Birnie-Gauvin et al., 2019). 

Although closely related phylogenetically, Atlantic salmon and brown trout are different 

species with different life histories. Compared to Atlantic salmon, brown trout is more flexible 

with regards to migration strategies and has a weaker tendency towards anadromy. The decision 

of whether to migrate or remain stationary is partly governed by genetics and partly by the 

individual’s phenotypic plasticity (Jonsson & Jonsson, 1993; Ferguson et al., 2019). Brown 

trout have an extraordinary ability to adapt to different environments, allowing them to inhabit 

a far greater range of habitats than Atlantic salmon (Baglinière, 1999; Klemetsen et al., 2003). 

Most anadromous Atlantic salmon migrate to the open ocean, while the brown trout mostly stay 

in coastal areas during the full course of their marine migration (Klemetsen et al., 2003). 

Atlantic salmon is highly adapted to a life at sea. A high growth rate, well-developed 

osmoregulatory ability, and a morphology adapted to swimming large distances, helps salmon 

to take advantage of prey species in open ocean areas (Klemetsen et al., 2003; Aas et al., 2010). 

Atlantic salmon post-spawners and brown trout veteran migrants (i.e., brown trout which have 

previously completed one or more sea-migrations) are far less studied than their smolt and post-

smolt conspecifics, despite the importance of these individuals in maintaining a healthy 

population through high reproductive contribution and genetic variation. A larger body size, 

especially in females, gives a higher reproductive yield by enabling production of larger, more 

numerous gametes (Ducharme, 1969; Jensen et al., 2012). Better growth conditions at sea 

makes it more beneficial for females to migrate, due to production of eggs having a higher 

investment cost compared to production of sperm (Thorstad et al., 2016; Jensen et al., 2019). 

The proportion of anadromous individuals is not only dependent on sex, but might also depend 

on growth rate. Fish with higher growth rates will generally have a higher probability of 

migrating to sea and migrate at a younger age and smaller body size, compared to slow growing 

individuals (Økland et al., 1993; Forseth et al., 1999; Theriault & Dodson, 2003; Hendry et al., 

2004). 
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The early marine migration is a critical phase with a high mortality in the life of an Atlantic 

salmon post-smolt (Thorstad et al., 2012). For a post-spawner however, this phase has been 

shown to have low mortality rates, and is not considered critical, despite the poor nutritional 

condition of salmon migrating in spring (Hubley et al., 2008; Hedger et al., 2009; Halttunen, 

2011). The difference in mortality between post-smolts and post-spawners indicates an 

importance of body size in the early phase of Atlantic salmon marine migration. 

Some brown trout migrants have been shown to regularly take advantage of outer fjord areas. 

The individuals reaching and utilizing these areas tend to have a longer body and a lower 

condition factor compared to those staying closer to the river mouth (Eldøy et al., 2015; 

Bordeleau et al., 2018; Eldøy et al., 2021). Pelagic fish with high energy-content are often found 

in the outer parts of fjord systems and have been shown to be a considerable part of the diet of 

large anadromous brown trout (Rikardsen & Amundsen, 2005; Rikardsen et al., 2006).  

In areas with large differences in sea level with changing tide, strong tidal currents can arise. 

Atlantic salmon smolts have been shown to use tidal transport to assist seaward migration 

(Lacroix & McCurdy, 1996; Moore et al., 1998; Bendall et al., 2005). Moreover, the timing of 

movement from the river mouth of both Atlantic salmon post-spawners and brown trout veteran 

migrants have been observed to be influenced by the tidal cycle (Bendall et al., 2005; Hubley 

et al., 2008; Hedger et al., 2009; Aarestrup et al., 2015). 

A previous study concluded that differences in age, body size and timing of smolt migration 

between Atlantic salmon and brown trout have been shaped by different habitat preferences in 

the sea (Jensen et al., 2012). This suggests that these individual biological characteristics play 

a crucial role in how the fish survive and thrive in their respective marine habitats. Much work 

remains, however, in understanding what drives migration in the adult life stage, and the 

individual differences leading to success or failure (Horodysky et al., 2015; Birnie-Gauvin et 

al., 2019). Lennox et al. (2019) suggested the following question as one of the 100 most 

pressing regarding the future of global fish migration science, conservation, and policy: “What 

are the main physical, behavioral, and ecological drivers of swimming performance”. By 

investigating the effect of biological characteristics on progression rates we can help answer 

this question and hence contribute towards bridging the knowledge gap existing between 

behavior and the individual physiology of each fish. 

Variability among Atlantic salmon and brown trout when it comes to marine migration behavior 

should be reflected through the protective measures in place. Despite their different life 

histories, Atlantic salmon and brown trout are often treated as a single unit and subjected to the 

same legislation and conservation strategies (Lakse- og innlandsfiskloven, 1992). 

Implementation of species-specific management limited by season and geographic boundaries 

will require extensive knowledge about the two species, and how they differ from each other. 

A comparison of swimming route and progression rate of reproductively important individuals 

of Atlantic salmon and brown trout from the same river, during the same year, has to my 

knowledge not been done before. 
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In this thesis, I investigated the early marine migration behaviour of Atlantic salmon post-

spawners and brown trout veteran migrants migrating from the same river in spring, and to what 

extent the behaviour was correlated with individual biological characteristics. Using acoustic 

telemetry, spatial and temporal data was collected throughout 2019 in a fjord system in Northern 

Norway. The main aim of the thesis was to investigate and compare the swimming routes and 

progression rates of the two species in the inner and outer parts of the fjord system. Body length, 

condition factor and the estuary exit date were used to explain possible intraspecific and 

interspecific differences in progression rate, as well as differences in how far each brown trout 

migrated from the river. In addition, the potential influence of tidal cycles on the timing of 

marine migration from the estuary was investigated. 
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MATERIALS AND METHODS 

Study area 

The study was conducted from April to December 2019 in the fjord Beiarfjorden (figure 1, 

receiver line T2-T4), and the connecting fjord system consisting of the fjord arm Nordfjorden 

(receiver line T4-T9), the fjord arm Holmsundsfjorden (receiver line T4-T6), and the fjord arm 

Morsdalsfjorden (receiver line T6-T7). The study area covers 57 km of waterway from the 

mouth of the river Beiarelva to the two fjord system exits, in addition to 7 km of the lower river 

stretch.  

Beiarelva 

Beiarelva has a high influx of glacial water, resulting in low water temperature throughout the 

year. This creates a large temperature difference relative to the sea in summer. The annual 

discharge of the river is 1.5 109 m3/yr (Skarbøvik et al., 2017). Due to storage of water in 

reservoirs for hydropower production, the water temperature is frequently higher than natural 

levels in the period June-November. In 1994, the river was treated with rotenone due to an 

infestation of the ectoparasite Gyrodactulus salaris, which had caused high mortality in the 

Atlantic salmon population. Officially recovered after rotenone treatment in 2001, the river now 

supports populations of anadromous Atlantic salmon and brown trout. The anadromous 

population of Arctic charr (Salvelinus alpinus L.) never managed to fully recolonize the river 

after the rotenone treatment, and is today considered close to extinction (Davidsen et al., 2019). 

The most prominent harmful factors on the populations of anadromous Atlantic salmon and 

brown trout spawning in Beiarelva, are most likely hydropower regulation and the ectoparasite 

Lepeophtheirus salmonis K. (salmon lice) (Vitenskapelig råd for lakseforvaltning, 2018; 2019). 

Beiarfjorden 

Beiarfjorden makes up an 18 km stretch from the mouth of Beiarelva (figure 1, line T2) to 

Kjellingstraumen bridge (line T4). Beiarfjorden has since 2007 been a national salmon fjord. 

The national salmon fjord program is a series of protective measures put in place to limit 

interventions and activities that may harm important populations of Atlantic salmon in Norway 

(Anon, 2006-2007). As a result of these measures, no fish farming facilities are situated within 

Beiarfjorden. Beiarfjorden is a deep, narrow fjord surrounded by steep cliffs on both sides. The 

steep cliffs allow fall-winds to pick up high speeds before reaching the water surface. The upper 

water-layer is therefore highly influenced by unpredictable wind-patterns. The maximum depth 

of the fjord is 165 m, and most of its area is deeper than 100 m. The only two large shallow 

areas in the fjord are in the estuary and at the fjord exit close to Kjellingstraumen bridge. The 

narrow structure of Beiarfjorden causes tidal cycles to have a large influence on currents. With 

large seasonal differences in influx of freshwater the salinity varies greatly throughout the year. 

Large parts of Beiarfjorden remain ice-covered throughout the winter, often resulting in large 

ice movements towards the fjord exit during the spring thaw.  
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Nordfjorden and the northern exit of the fjord system 

Nordfjorden is the approximately 13 km stretch from Kjellingstraumen bridge (figure 1, line 

T4) and to the northernmost line of receivers at the north exit of the fjord system (line T9). It is 

the deepest part of the fjord system, with a maximum depth of 398 m and most of the area 

deeper than 200 m. It is also on average the widest part of the fjord system with a width range 

of 1.1-2.6 km. The steep cliffs on the eastern side of Sandhornøya cause fall-winds to have high 

speeds also in Nordfjorden. Two fish farming facilities are located in Nordfjorden, where only 

one operated during the 2019 season.  

Holmsundsfjorden, Morsdalsfjorden and the south-western exit of the fjord system 

Holmsundsfjorden is the approximately 11 km stretch from the Kjellingstraumen bridge (figure 

1, line T4) and to the southernmost line of receivers at Sandvikneset (line T6). The northern 

part of Holmsundsfjorden is narrow and shallow, with little water movement, which causes this 

part of the fjord system to be ice-covered during the winter months. The maximum depth in 

Holmsundsfjorden is 50 m, with most of its area shallower than 30 m, making it the shallowest 

part of the fjord system. Like Beiarfjorden, Holmsundsfjorden is part of the area protected by 

the national salmon fjord program, and therefore has no fish-farming facilities. 

Morsdalsfjorden is the approximately 14 km stretch from the Sandvikneset (figure 1, line T6) 

and to the line of receivers at the south-western exit of the fjord system (line T7). With a 

maximum depth of 148 m, Morsdalsfjorden is considerably deeper than the connected 

Holmsundsfjorden. It is also outside the national salmon fjord area and has two fish farming 

facilities and a ferry-line from Sund to Sandhornøya. The ferry-line and vessels used in 

surrounding aquaculture facilities results in the fjord-arm having more ship-traffic compared to 

other parts of the study site. Morsdalsfjorden contains the south-western exit of the fjord system, 

which is an exposed area subject to weather systems coming in from the Norwegian sea. 
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Figure 1. Map over the study site in Nordland, Norway. Black dots represent the position of acoustic receivers. Red dots show the location of fish farms. The receivers 

labelled “TS” are equipped with a data storage tag recording temperature and salinity. Receiver are labelled with “T” and a number. Sections between receiver lines are 

labelled with a letter from A to G. The area marked as yellow is protected under the National salmon fjord regulations. Beiarfjorden includes the area between line T2 and 

T4 (sections B and C). Nordfjorden includes the area between line T4 and T9 (sections D and G). Holmsundsfjorden is the area between line T4 and T6 (sections D and E). 

Morsdalsfjorden is the area between line T6 and T7 (section F). Red triangles show data storage tags (datalog) recording water temperature and salinity. 
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Environmental variables 

Salinity and water temperature at three different locations during 2019 

Water temperature and salinity were monitored at three different locations in the fjord system 

by data loggers (DST Milli-CT, Star-Oddi Ltd., Reykjavík, Iceland) in the period between 

15.04.2019 and 31.12.2019. The three locations were: at line T2 in the inner part of Beiarfjorden 

(Tverrvika), at receiver 39 close to the exit of Beiarfjorden (Handelsstedet), and at line T7 at 

the south-western exit of the fjord system (Sund). The data logger (DST) at Sund was attached 

to the mooring system of a receiver, close to the sea surface (1 m depth). Data loggers in 

Tverrvika and at Handelsstedet were attached to piers, and the measuring depth therefore varied 

during the tidal cycle (1-4 m depth). The DST-data were downloaded using the SeaStar software 

version 8.55 provided by Star-Oddi systems (Reykjavík, Iceland). 

There was a difference in mean salinity between Tverrvika (mean = 23‰, SD = 5‰), 

Handelsstedet (mean = 12‰, SD = 10‰) and Sund (mean = 24‰, SD = 6‰) throughout the 

2019 season (ANOVA, p < 0.001). Due to a measurement error at Handelsstedet, the salinity 

measurements between 17.05.2019 and 01.10.2019 were not included. Sund and Tverrvika had 

similar average salinity but had different patterns throughout the year of 2019 (figure 2). The 

average salinity in Tverrvika was lower compared to Sund, with larger variations. There was 

also a difference in water temperature between the three locations throughout 2019 (ANOVA, 

p < 0.001). The water temperature in Tverrvika had the largest variations from May (mean = 

6.5 °C) to June (mean = 8.5 °C), and the lowest mean temperature throughout the year (mean = 

9 °C, SD = 2 °C). At Handelsstedet, the mean water temperature in 2019 (mean = 9 °C, SD = 2 

°C) was similar to that in Tverrvika, but higher in the period from August to November. In both 

Tverrvika and at Handelsstedet, the water temperature never exceeded 12.5 °C. The mean water 

temperature at Sund (mean = 10 °C, SD = 3 °C) was higher compared to the other two locations 

throughout the whole year. 
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Figure 2. Mean daily water temperature and salinity in the inner part of Beiarfjorden (Tverrvika, line T2), in the 

Beiarfjorden exit area (Handelsstedet, receiver 39) and at the outer south-western part of the fjord-system (Sund, 

line T7). The figure shows records from the period between 15.04.2019 and 31.12.2019. Salinity measurements at 

Handelsstedet between 17.05.2019 and 01.10.2019 were excluded due to a measurement error.  

Conductivity and temperature at different depths 

Conductivity and temperature at different depths (CTD) were measured at seven different 

receiver locations at three different dates during 2019. Maximum measurement depth varied 

between 20 m and 5 m due to different depths, current and weather conditions at the sampling 

locations (figure 3). The sampling instrument used was STD/CTD model SD204 produced by 

SAIV A/S (Bergen, Norway). Conductivity was transformed to salinity values using the 

sampling instrument’s onboard software. Salinity increased with increasing depth on all 

locations, and on average stabilized below 5 m depth at salinities between 32‰ and 34‰. 

Recordings at locations close to inner lines/receivers (T2, T3, T4) showed increasing 

temperature with increasing depth, while recordings at outer lines (T5, T7, T8, T9) showed 

decreasing temperature with increasing depth. Measurements at locations near outer lines were 

done during summer while inner line measurements were done during spring and autumn. Both 

salinity and temperature indicate a strong influence on the Beiarfjorden surface waters (< 5 m 

depth) by influx of cold freshwater from Beiarelva in spring (figure 3).
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Figure 3. Salinity and water temperature as a function of depth at seven locations in the fjord system, and their 

respective sampling dates. Locations where measurements were taken can be seen in the map (figure 1).  

Differences in water level with changing tide 

Tidal data were imported from karverket.no and used under a creative common license (CC BY 

4.0). Water level was recorded every 10 mins at the permanent water level gauge in Bodø. The 

water-level had been adjusted based on weather patterns in the area by Kartverket’s own 

algorithms. The adjusted water level varied with 320 cm between maximum high tide and 

maximum low tide during 2019. The water level data were organized into the four categories 

high tide, low tide, rising tide and falling tide. High tide/low tide was defined as the time during 

a tidal cycle with the highest/lowest water level ± 1.5 hours. With two tidal cycles every 24 

hours, each of the four categories were divided in-to 6-hour intervals (3 hours per tidal cycle).  
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Collecting data using acoustic telemetry 

Receiver array 

Tagged fish were recorded by 40 acoustic receivers deployed in Beiarelva and the connecting 

fjord system. Of the 40 receivers, 28 were deployed in line transects (receiver lines T1-T9) with 

200 m between each receiver in the estuary and 400 m between each receiver in the rest of the 

fjord system. Ten receivers were positioned outside the receiver lines to serve as backup in case 

some tagged fish passed the lines undetected. The remaining two receivers were placed in the 

river. These two receivers were removed during winter due to the large amount of drift-ice in 

the river after the spring thaw, and then redeployed the following spring. Detection range of the 

receivers varied based on hydrographical- and weather conditions. Equipment loss made the 

number of operational receivers variable throughout the study. A minimum of 90% of receivers 

were operational at any given time during the study period. An overview of receiver loss and 

deployment of replacement receivers is given in appendix 1. 

The acoustic receivers were made by Vemco Inc. (Halifax, Canada). The two models used were 

the 69 kHz VR2W standard receiver (23/40), and the 69 kHz VR2AR (17/40). Of the 40 

receivers, ten were mounted on a rope approximately 5 m below the sea surface. The rope was 

attached to an anchor on the seafloor and a floater on the sea surface. These ten receivers were 

deployed close to the shoreline to reduce the chance of entanglement in boat propellers and 

fishing lines. The two receivers in the river were mounted on a concrete block placed in the 

middle of the river, with a chain running from the block to the shoreline. The remaining 28 

receivers were equipped with an acoustic release system. These receivers were used in deep 

water, or areas with frequent ship traffic and/or ice movement (e.g., estuary area). Receivers 

with an acoustic release system can prevent equipment loss, as they do not require a surface 

attachment or to be retrieved by divers. When receiving a release signal from a transponder, the 

acoustic release link detaches from the receiver, and the receiver surfaces with the help of an 

attached float. The acoustic release link and the attached anchor are left on the seafloor. In 

depths above 112 m, VR2AR receivers with an integrated acoustic release system were used. 

At depths below 112 m, VR2W receivers were equipped with one of two different acoustic 

release systems (Subsonic-AR60 release systems, Sub Sea Systems inc., Diamond springs, USA 

or Vemco Ascent Acoustic Release, Vemco inc., Halifax, Canada). With a rope attached to the 

release system at the sea floor, the receivers were positioned in the water column 30 m below 

the sea surface. The main reason all receivers were not equipped with an acoustic release system 

was a limitation of available equipment. All acoustic data were uploaded to the Ocean Tracking 

Network (OTN) data warehouse. The OTN data warehouse is a global collection of tracking 

data from aquatic animals (https://members.oceantrack.org/projects).  
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Receiver performance 

Tagged fish were only recorded when they were within range of a receiver. Hence, the 

detectability of tagged fish on receivers in receiver lines T2, T3, T4, T5 and T6 (figure 1) was 

investigated using pinger-tag systems in the VR2AR receivers. The pinger-tag transmits a 

unique signal, similar to that of a fish tag. If detected on the closest receiver(s) on the same line, 

the receivers can be assumed to have overlapping detection ranges. The receivers on lines 

equipped with pinger-tag systems were found to have overlapping detection ranges during 2019. 

Detectability on receiver lines T1, T7, T8 and T9 was checked by comparing fish registrations 

on these lines to registrations on lines closer to the river mouth. No fish registered on lines T7, 

T8 and T9 had passed any of the previous lines without being registered when progressing 

through the fjord system, showing good receiver performance. The only receiver line with poor 

receiver performance was line T1, where four fish (6%) swam past undetected. The receivers 

39, 40, 41, 42, 43, 44, 45 and 46 were located between lines (figure 1), providing a backup in 

case of fish swimming past a receiver line without being registered. 

Capture, sampling and tagging of fish 

In the spring of 2019, 38 Atlantic salmon and 34 brown were caught, sampled, and tagged with 

internal acoustic transmitters. Capture took place in the lower parts of Beiarelva from 

04.04.2019 to 06.05.2019. The fish were caught using rod and reel with lures/flies. The tackle 

was selected to target post-spawners and veteran migrants, which were distinguished from 

smolts in the field based on body size. Confirmation of sex and species were done in the lab 

through molecular analysis of DNA from adipose fin samples. 

The fish were anesthetized using Benzoac Vet with a dilution of 15-20 ml per 100 L water 

(ACD Pharmaceuticals AS, Batch Nr. 18K07) for 3-5 min. Acoustic transmitters from Thelma 

Biotel (Trondheim, Norway) with a nominal delay of 30-90 sec were surgically implanted into 

the abdominal cavity of the fish in accordance with the procedure described in Halttunen et al. 

(2010). A 1.5-2 cm long incision was made into the abdominal cavity, anterior to the pelvic 

girdle. After insertion of the tag, the incision was closed using two separate non-biodegradable 

sutures (RESORBA Wundversorgung GmbH & Co; 3,0 Resolon). Two different sizes of 

cylindrically shaped tags from Thelma Biotel were used (ID-MP9L, 69 kHz, length: 29.4 mm, 

diameter: 9 mm weigh air: 5.2 g and ID-MP13, 69 kHz, length: 33.3 mm, diameter: 12.7 mm, 

weight air: 11.5 g). Ten ID-MP9L tags were used to tag the smallest fish (body length, 340-430 

m, tag burden range: 0.8-2.2%), and ID-MP13 tags were used to tag the remaining 62 fish (body 

length, 415-1120 mm, tag burden range: 0.1-2.9%). Estimated battery life for the ID-MP9L- 

and ID-MP13 tags were 13.4 months and 25.9 months, respectively. 

Shortly after tagging, non-lethal adipose fin and scale samples were collected. A total of 2 mm2 

of adipose fin was sampled from each fish using sterile iris scissors and stored in RNAlater 

solution. Scales (15-20) were sampled from an area around the lateral line close to the caudal 

fin, using haemostatic forceps. The scales were stored in scale envelopes marked with fish 

identification (ID-number, species, sex, length, and mass) and capture information (date, 

location, and method of capture). Prior to recovery, the fish were measured and weighed. Total 

body length was measured from the tip of the snout to the tip of the caudal fin. After sampling, 
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the fish were placed in recovery tanks for approximately 10 mins. After recovery, the fish were 

released at the capture site. All capture, sampling and tagging were done in accordance with the 

regulations set by the Norwegian Food and Safety Authority (permit 19/23443). 

Scale sample analysis to determine life stage 

Prior to analysis, 5-10 of the most readable scales from each individual fish were selected using 

a light-microscope. An imprint of the scale structure was made by pressing the scales onto 1 

mm polycarbonate Lexan plates. Using a computer-stereoscope equipped with a camera (Leica 

M165C, camera: Leica MC170 HD, software: LAS V4.5, Leica systems, Sankt Gallen, 

Switzerland) the imprint was analysed to determine the age and previously performed sea 

migrations of each individual fish. Age determination was not possible for one Atlantic salmon 

due to the scales not being readable. All fish with readable scales were found to previously 

having completed one or more migrations (i.e., Atlantic salmon post-spawners and brown trout 

veteran migrants). 

Genetic sex- and species determination 

Morphological identification of fish species and sex is vulnerable to human error. Both sex and 

species of the fish in this thesis were therefore determined genetically. The process began by 

extracting genomic DNA from adipose fin samples using DNeasy Blood & Tissue Kits 

(Qiagen). For determining species, the Salmo_Mito-951 locus with forward Salmo_Mito-951F 

(ACCCCTAAACCAGGAAGTCT) and reverse Salmo_Mito-951R 

(TGCTTTAGTTAAGCTACGCCAACT) primers were used (Karlsson et al., 2013). For sex 

determination, the Salmo-SdY locus with Salmo-sdY-F (GGGCCTATGAATTTCTGATG) 

and Salmo-sdY-R (ACAGATTTGCGACATGAACA) were used (Quemere et al., 2014). The 

5' end of forward primers were fluorescently labeled with “Hex” for Salmo-Mito-951 and 

“FAM ATTO565” for Salmo-SdY loci. To amplify the DNA-fragments, a multiplex PCR was 

conducted in a 5 µl reaction, including 2.5 µl 2x Multiplex PCR Master Mix, 1 µl of primer mix 

(0.2 µM for each primer), and 1 µl of the extracted genomic DNA. The PCR thermal program 

(conducted on a MiniAmp thermal cycler, Applied Biosystems, Foster City, USA) was set to 5 

min at 95 ºC initial denaturation, 10 cycles as touchdown PCR for 30 sec at 95 ºC, 1 min at 62 

ºC to -52 ºC (decreasing temperature 1 ºC each cycle), and 1 min at 72 ºC. The procedure was 

followed by 25 cycles at 95 ºC for 30 sec, 52 ºC for 1 min and 72 ºC for 1 min, with a final 

extension of 10 mins at 72 ºC. After ensuring the amplification of loci on Agarose gel, 1 µl of 

diluted PCR products (1:15 dilution) was mixed with 8.85 µl of Formamide and 0.15 µl of LIZ 

600 size standard (Applied Biosystems). The fragment analysis was conducted with 3130xl 

Genetic Analyzer (Applied Biosystems). Size of alleles at each locus was determined with the 

Gene Mapper V4 program (Applied biosystems). All DNA-analysis were conducted at the 

Department of Biology, NTNU, Trondheim. 
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Table 1. Species, sex, number of tagged fish, body length, body mass and Fulton’s condition factor of all fish 

tagged in the spring of 2019. The range is given in parenthesis underneath the mean value. 

Species Sex 
Number of 

tagged fish (n) 

Mean body 

length (mm) 

Mean age 

(years) 

Mean body 

mass (g) 

Mean condition 

factor (k) 

Atlantic 

salmon 

Female 30 
877 

(610-1120) 

8.0 

(6-10) 

4259 

(1280-9000) 

0.60 

(0.45-0.68) 

Male 8 
708 

(580-1020) 

6.6 

(5-10) 

2528 

(1100-6800) 

0.60 

(0.54-0.67) 

Both 

sexes 
38 

756 

(580-1120) 

7.7 

(5-10) 

3885 

(1100-9000) 

0.60 

(0.45-0.68) 

Brown 

trout 

Female 9 
513 

(390-670) 

8.9 

(7-12) 

1163 

(450-2680) 

0.73 

(0.60-0.93) 

Male 25 
521 

(340-730) 

8.2 

(6-14) 

1328 

(240-3320) 

0.81 

(0.47-0.98) 

Both 

sexes 
34 

516 

(340-730) 

8.4 

(6-14) 

1261 

(240-3320) 

0.79 

(0.47-0.98) 

 

Data analysis 

Telemetry data were downloaded from the receivers using the VUE software version 2.6.1 

provided by AMIRIX systems. Data filtration and statistical analysis were done using R version 

3.6.1 and R-studio version 1.2.1335 (R core team, 2019). The significance level chosen for 

statistical analysis (models not included) was p < 0.05.  

Filtration of tracking data 

When using acoustic telemetry data, there is a high probability of having false detections 

included in the dataset. Identification of acoustic signals is vulnerable to signal collisions. When 

two acoustic signals collide, a third signal that corresponds with a detectable code can be 

generated, thus creating a false detection. The likelihood of false detections increases with the 

number of fish staying within the detection range at the same time (Pincock, 2012). Some areas, 

like estuaries, will therefore likely have a higher proportion of false detections. False detections 

can also be created when noise in the environment is registered by the receivers. It is unrealistic 

to completely remove all false detections from a dataset, but it can be adequately accounted for 

through analyses (Simpfendorfer et al., 2015). 

The total number of registrations in 2019 were 671079. The total number excludes a known set 

of pingertag ID’s (A69-1601-) that were removed prior to filtration. It was decided that a 30-

minute filter would considerably reduce the probability of including false registrations while 

not excluding too many true registrations. The 30-minute filter requires two registrations within 

an interval of 30 minutes on the same receiver for a registration to be labelled as true. The filter 

removed 0.4% of registrations. After removal of duplicates and false fish ID’s, the remaining 

proportion of registrations was 99.5%. All registration dates and times used in calculation of 

progression rate were checked by manually comparing post-filtration registrations to raw data 

in the VUE software. 



Page | 14  
 

Investigating the effect of tidal cycles on marine migration timing 

Date and time (D:M:Y h:m:s) for water-level measurements were matched with the first 

registration on the lines T2 (estuary exit), T4 (Beiarfjorden exit), and T9 (Nordfjorden exit), for 

each individual fish of both species. These lines were chosen because they covered the route 

where most of the Atlantic salmon and brown trout progressed through the fjord system. The 

number of minutes from high tide for each registration was calculated, and then converted to 

degrees (where hightide is 0° and 360°). The data were plotted in a circular fashion and tested 

using a Rayleigh’s test of uniformity. The test was performed using the “r.test” function in the 

CircStats package (Jammalamadaka & Sen Gupta, 2001). A Rayleigh’s test of uniformity 

analyses circular data with the alternative hypothesis being that a unimodal distribution exists 

in the circular data. In this thesis, a unimodal distribution would mean a significant clustering 

of registrations in one section of the tidal cycle. In the plots, an arrow was used to indicate the 

mean direction of clustering in the case of a significant result. 

Testing differences between groups 

All comparisons of biological characteristics in two independent, normally distributed groups 

were done using Welch two sample t-tests (“t.test” function in base R-studio), assuming unequal 

variance between groups. Assumption of normality was checked prior to testing using the 

Shapiro-Wilk’s method with the “shapiro.test” function in base R-studio. Differences between 

non-normally distributed groups where one group had a low sample size (short-distance brown 

trout migrants, n = 7), were tested using a non-parametric Wilcoxon Rank Sum test with the 

“wilcox.test” function in base R-studio. When testing differences between non-normally 

distributed paired samples (intraspecific differences in progression rate), a paired two-sample 

Wilcoxon Rank Sum test was used. Comparisons of temperature and salinity at different 

sampling locations were done using one-way analysis of variance tests (ANOVA) with the 

“aov” function in base R-studio. The samples were found to have normal distribution due to the 

large sample size, in accordance with the central limit theorem. 

Calculating progression rate and investigating continuity of progression 

Migration progression rate is not the same as migration speed due to progression rate assuming 

the fish migrating the shortest possible swimming distance between two points, which is most 

likely not the case (Thorstad et al., 2012). In the present study, distances in the fjord system 

were measured as the shortest possible swimming distances between receiver lines, using the 

measuring tool in https://kart.gulesider.no/yellow. Progression rate was calculated as the 

distance between two lines over the time difference between the first registration on the first 

line and the first registration on the last line. The progression rate of each fish was calculated 

in both km/h and in body lengths/sec (bl/sec). Bl/sec was calculated in order to compare with 

other papers, but not included in the models. Modelling progression rate in km/h instead of 

bl/sec was chosen due to bl/sec including body length in the calculation. If chosen, body length 

would be represented in both the response and explanatory variable when running the model.  
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Progression rate was calculated for Beiarfjorden, Nordfjorden and for the total distance of these 

two combined. As the progression rate had to be calculated between two set points, a single 

route had to be chosen when calculating progression rate outside of Beiarfjorden. The route 

through Nordfjorden was chosen due to it being the preferred route for both species. To 

investigate how continuous the progression of each species was between different lines in 

Beiarfjorden and Nordfjorden, the dates corresponding to when 25%, 50%, 75% and 100% of 

the fish of each species had been detected on lines T2, T4 and T9 were inspected. An even 

interval between lines would indicate a continuous progression (e.g., if the amount of time 

between when 50% and 75% of the fish were registered on line T2 was equal to the time on T4, 

it would indicate a continuous progression between the lines). 

Calculating condition factor and checking linear dependence between biological 

characteristics 

Fulton’s condition factor (K) (hereafter condition factor) was used as an estimate for the 

physical condition of a fish. The condition factor was calculated using the formula (Ricker, 

1975): 

𝐾 =
wet body mass (g)  ∗  100

𝑏𝑜𝑑𝑦 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)3
 

All individual biological characteristics were tested for linear dependence (Pearson correlation) 

using the “cor” function in base R-studio. Condition factor was not correlated with any of the 

other biological characteristics (body length, estuary exit date) for neither of the species 

(Pearson correlation, p > 0.05).  

Modelling influence of body length, condition factor and estuary exit date on 

progression rate 

The influence of body length, condition factor and estuary exit date (explanatory variables) on 

the progression rate (response variable) was investigated using parametric regression models. 

Generalized linear models (GLM) were chosen to avoid problems with extreme values in non-

normally distributed data. A gaussian distribution was assumed in the GLMs as all explanatory 

variables were continuous. The GLM combines the explanatory variables to best explain the 

response and then determines how much each of them contributes to the model. Due to the low 

sample sizes in the dataset (Atlantic salmon: n = 37, brown trout: n = 21), the number of 

explanatory variables and fixed effects was kept low to increase model accuracy. Different 

models were made for the influence of biological characteristics on the progression rate in 

Beiarfjorden, in Nordfjorden and for the total distance. All three models were run independently 

for each species. The fjord sections Beiarfjorden and Nordfjorden were chosen due to these two 

areas having a high proportion of tagged fish detected, and being geographically different from 

each other. The reason for not including the estuary area (figure 1, section A) was, in addition 

to inadequate receiver performance, that several fish of both species were caught and tagged 

close to receiver 30. If including progression rate from line T1 to T2, observed differences in 

progression rate could be difficult to separate from tagging effects. 
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All response- and explanatory model variables were standardised using the “scale” function in 

base R-studio. The standardization was done prior to modelling in order to compare their 

different effects on the progression rate (Atchley, 1978). Due to the calculation of condition 

factor depending on body length, the condition factor had to be adjusted prior to modelling. 

Condition factor was adjusted using the regression coefficient for the linear relationship 

between log(body mass) and log(body length) (relative condition factor). The regression 

coefficient was calculated individually for each species (Atlantic salmon = 3.155, brown trout 

= 3.194). The relative condition factor is a ratio between measured body mass and the expected 

body mass, as calculated using the logarithmic regression relationship between the two (Lecren, 

1951). The relative condition factor renders condition factor independent of body length, and 

the two variables can therefore be used in the same model. Estuary exit date (the date when 

each fish was first detected by one of the receivers in line T2) was converted to Julian date 

before modelling to get a comparable numeric value. Due to the low sample size of Atlantic 

salmon males and brown trout females (brown trout females recorded in Nordfjorden, n = 6), 

sex was not included as a model parameter. The sample size was too low to get reliable results 

from testing differences in biological characteristics between the sexes, even with a non-

parametric test. Without accurate results from testing differences in biological characteristics, 

the potential effects of sex would be impossible to differentiate from other effects. 

Multicollinearity between explanatory variables was checked in all models to establish 

sufficiently low dependencies. A high multicollinearity weakens the precision of parameter 

coefficients by inflating standard errors and consequently reduces statistical power 

(McClendon, 2002). The multicollinearity was checked (variance inflation factors (VIF) as a 

measure) using the “check_colinearity” function in the “performance” R-studio package 

(Lüdecke et al., 2021). When modelling the effect of body length, adjusted condition factor and 

estuary exit date on progression rate in the same model, multicollinearity was found to be low 

for all parameters in all models including Atlantic salmon (VIF ≤ 1.44), and for all parameters 

in models including brown trout (VIF ≤ 1.29). The multicollinearity was sufficiently low in all 

explanatory variables to include all in a single model. 

Model selection was based on the second order Akaike’s information criteria (AICc) using the 

“dredge” function in the MuMIn R-studio package (Barton, 2020). AICc differs from the more 

commonly used AIC by correcting for low sample sizes in models where the number of 

observations is lower than 40 times the number of explanatory variables (Hurvich & Tsai, 

1989). AICc testing ranks different models based on how well they explain variation in the data 

and the number of explanatory variables included in the model, and thus provides an evidence 

ratio. Δ AICc is the difference in AICc score between the best fitted model (lowest AICc value) 

and the model it is being compared to. When the function returned several models with Δ AICc 

< 2, the models were deemed to be of equal fit and conditional model averaging was applied to 

all alternative models (Δ AICc < 4) in accordance with the recommendations in Burnham and 

Anderson (2002). Conditional model averaging calculates the average of a parameter 

coefficient only from the models where that parameter coefficient is included. This means that 

the result will depend on the number of models where the parameter is included.  
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When using an information-theoretic approach such as AICc model selection, the p-values 

cannot explain significance of each explanatory variable (Anderson et al., 2001). P-values are 

probabilities of the test statistic, and not evidence (Royall, 1997). Therefore, a strength of 

evidence approach was adapted (i.e., the model output does not determine if the influence of a 

biological characteristic is “rejected or not”, but instead provides evidence of the predictive 

value). Using a combination of the standard errors from conditional model averaging (model 

probability) and the number of models where each biological characteristic was included (model 

likelihood), empirical support for the influence of each model parameter on progression rate 

was assessed (Burnham et al., 2011). The sign of each coefficient showed the effect-direction, 

where a positive value suggested a positive relationship with progression rate. The coefficients 

from either the best fitted model or conditional model averaging were used in graphic 

representations, where the parameter coefficient (model intercept as zero-value) and standard 

error from each of the independent variables were shown. 

Categorizing tagged brown trout as long distance- or short distance migrants 

All the tagged brown trout were categorized as either long-distance or short-distance migrants 

based on the distance travelled from the estuary (line T2) during the 2019 season. Long-distance 

migrants were defined as individuals registered on lines T6, T7, T8 or T9 (figure 1). Short-

distance migrants were defined as individuals not registered on any of the lines T6, T7, T8 or 

T9. The relatively long distance chosen as range for short distance migrants (16.7 km from the 

river mouth) was chosen to get a high enough sample size in order to compare biological 

characteristics between groups.
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RESULTS 

Swimming route through the fjord system 

Atlantic salmon 

Of the 38 tagged Atlantic salmon, 37 exited the estuary area and were registered on lines T2, 

T3, and T4 (figure 4). The one remaining fish was never registered on any receivers. After 

passing line T4 and exiting Beiarfjorden, 33 (87%) of the salmon migrated directly northwards 

and were registered on line T8, while four (11%) migrated southwards and were registered on 

line T5. All of the four salmon that initially chose the southern route, migrated back north 

towards line T8 after first having been registered on line T5 or T6. Hence, all the tagged Atlantic 

salmon finally chose the northern route through Nordfjorden when migrating through the fjord 

system. 

Brown trout 

Of 34 tagged brown trout, 33 exited the estuary area and were registered on lines T2 and T3 

(figure 4). The one remaining fish was never registered on any receivers. At line T4, 27 of the 

trout were registered, showing that six of the fish never left Beiarfjorden during the 2019 season 

(table 2). Of the fish migrating to either of the fjord system exits (24/34, 71%), only four initially 

migrated southwards through Holmsundsfjorden and Morsdalsfjorden. The remaining 21 trout 

migrated northwards through Nordfjorden. Overall, the majority of tagged brown trout exited 

Beiarfjorden (27/34, 79%) and chose the northern route (21/34, 62%) when migrating through 

the fjord system.  

Of the 33 brown trout registered, 26 were defined as long-distance migrants (registered outside 

of line T4) and seven as short-distance migrants (not registered outside of line T4). When 

comparing body length, long-distance migrants were found to have longer bodies than short 

distance migrants (Wilcoxon rank sum test, p < 0.05). There was no difference in condition factor 

or estuary exit date between the two groups (Wilcoxon rank sum test, p > 0.05). 

 

Table 2. Number (n) and proportion (%) of tagged Atlantic salmon and brown trout registered on the different 

receiver lines during the study period. Beiarfjorden = T1, T2, T3, T4, Nordfjorden = T8, T9, Holmsundsfjorden = 

T5, T6, Morsdalsfjorden = T7. 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 

Atlantic 

salmon 

Number of fish 

registered 
 n = 33 n = 37 n = 37 n = 37 n = 4 n = 1 n = 0 n = 37 n = 37 

Percentage of all 

tagged fish registered 
87% 97% 97% 97% 11% 3% 0% 97% 97% 

Brown 

trout 

Number of fish 

registered 
n = 33 n = 33 n = 33 n = 27 n = 8 n = 7 n = 6 n = 24 n = 23 

Percentage of all 

tagged fish registered 
97% 97% 97% 79% 24% 21% 18% 71% 68% 
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Figure 4. Swimming direction of Atlantic salmon (a) and brown trout (b) registered in 2019. The figures show a 

schematic layout of the fjord system. Large arrows show the routes most fish took to the outermost lines (T7 or 

T9). (n) is the number of fish. Red lines on the map shown between a) and b) correspond to the receiver lines T1-

T9. For the brown trout, several fish turned around and was registered on new lines after being registered on T7 

or T9 resulting in the proportions seen in table 2, but these registrations are not included in this figure. Route 

between T6 and T8 is where the fish turned around and moved back north passing line T5.  
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Continuity of migration from the estuary exit and through the fjord system 

Atlantic salmon 

For the 37 Atlantic salmon registered, there were 51 days between the first (09.05.2019) and 

the last (29.06.2019) estuary exit dates (figure 5). Estuary exit date was not correlated with any 

of the other biological characteristics (body length, condition factor) (Pearson correlation, p > 

0.05). There were 52 days between the first estuary exit date and the date when the last Atlantic 

salmon had been registered on line T9. The time between dates where 25%, 50%, 70% and 

100% of the fish had been registered were similar on all lines, indicating a continuous, 

directional migration through the fjord system by most individuals both in Beiarfjorden and in 

Nordfjorden (figure 6).  

Brown trout 

Of the 33 brown trout registered, there were 35 days between the first (02.05.2019) and the last 

(06.06.2019) estuary exit dates (figure 5). Estuary exit date was not correlated with any of the 

other biological characteristics (body length, condition factor) (Pearson correlation, p > 0.05). 

There were 92 days between the first estuary exit date and the date when the last brown trout 

had been registered on line T9. The shorter amount of time between registrations on T4 and T9 

compared to between T2 and T4, shows a more continuous progression of in Nordfjorden 

compared to Beiarfjorden (figure 6). Uneven intervals between T2 and T4 show that some 

individuals of brown trout spent long periods of time within Beiarfjorden while others had a 

fast, continuous progression out of the fjord system. The migration of brown trout inside of 

Beiarfjorden (line T2-T4) was less continuous compared to the migration of Atlantic salmon. 

The migration of brown trout in Nordfjorden (T4-T9), however, appeared to be continuous, 

similar to that of Atlantic salmon. 
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Figure 5. Estuary exit dates of Atlantic salmon (a) and brown trout (b) tagged and recorded in 2019. Bars show 

the number of fish (n) leaving the estuary on the date in question. 
 

 

 

 

Figure 6. Continuity of progression during the early marine migration of all tagged Atlantic salmon (a) and brown 

trout (b). Dates shows when 25% (smallest, lightest grey dot), 50%, 75% and 100% (largest, black dot) of all 

tagged fish had been registered on the line in question. 
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The effect of tidal cycles on the timing of marine migration and progression 

Atlantic salmon 

For Atlantic salmon, there was a significant clustering of registrations at the estuary exit (T2) 

during falling tide (figure  , Rayleigh’s test of uniformity, p < 0.001). A clustering was also 

observed in the transition between hightide and falling tide at the exit of Beiarfjorden (T4, p > 

0.01), and during lowtide at the exit of Nordfjorden (T9, p < 0.001). When comparing the time 

spent between registrations on lines T2, T4 and T9 to recurring tidal cycles, the observed 

clustering patterns were predictable. I.e., the clusterings of Atlantic salmon registrations at the 

exit of Beiarfjorden and Nordfjorden appear to be a result of continuous progression after 

leaving the estuary area, and not necessarily the tidal cycle. 

Brown trout 

At the estuary exit (T2), brown trout had two significant clusterings of registrations, where one 

was at late high tide, and one at falling tide, giving a mean direction of clustering during early 

falling tide (figure  , Rayleigh’s test of uniformity, p < 0.01). No clusterings of registrations 

were observed at the exit of Beiarfjorden (T4) or Nordfjorden (T9), showing a random 

distribution of registrations throughout the tidal cycle on these lines (p > 0.05).  

 

Figure 7. Timing of estuary exit (line T2), Beiarfjorden exit (line T4) and Nordfjorden exit (line T9) of tagged 

Atlantic salmon (a) and brown trout (b) in relation to the tidal cycle. The arrows indicate the mean direction 

of a significant clustering of registrations. 
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Progression rate 

Atlantic salmon had a higher average progression rate than brown trout for the total distance 

(figure 8, Wilcoxon rank sum test, p < 0.001), in Beiarfjorden (p < 0.001) and in Nordfjorden 

(p < 0.001). There was a significantly higher progression rate (km/h) in Nordfjorden compared 

to Beiarfjorden for both Atlantic salmon (paired sample t-test, n = 37, p < 0.001) and brown 

trout (paired sample t-test, n = 21, p < 0.01). 

 

 

Figure 8. Progression rate (km/h) in Beiarfjorden and Nordfjorden for Atlantic salmon and brown trout 

tagged in 2019. Only individuals registered in both areas were compared in this figure (Atlantic salmon, 

n = 37, brown trout n = 21). The boxplots show median values and interquartile range, while vertical 

lines represent 95th percentile. Dots outside the boxplots represent outliers.  

 

 

 

 

 

P
ro

g
re

ss
io

n
 r

at
e 

(k
m

/h
) 

n = 37 n = 21 

Atlantic salmon Brown trout 



Page | 24  
 

Atlantic salmon 

On average, the 37 Atlantic salmon post-spawners spent a total of 37 hours in progressing the 

total distance from line T2 to T9 (n = 37, distance = 29.9 km, range = 13-92 hours). The salmon 

spent on average 24 hours on progressing through Beiarfjorden (n = 37, distance = 16.7 km, 

range = 7-84 hours) and 13 hours through Nordfjorden (n = 37, distance = 13.2 km, range = 5-

40 hours). The average progression rate was 1.0 km/h (range = 0.3-2.3 km/h) for the total 

distance, 0.95 km/h (range = 0.2-2.4 km/h) in Beiarfjorden, and 1.5 km/h (range = 0.3-2.6 km/h) 

in Nordfjorden. The average progression rate in bl/sec was 0.4 bl/sec (range = 0.09-0.7 bl/sec) 

for the total distance, 0.3 bl/sec (range = 0.06-0.7 bl/sec) in Beiarfjorden, and 0.5 bl/sec (range 

= 0.09-1.0 bl/sec) in Nordfjorden. 

 

 Effect of biological characteristics on progression rate for the total distance  

There were five equally well fitted models (Δ AICc < 2) for the progression rate for the total 

distance (line T2-T9) where the null-model was included. Body length was included in two 

models, condition factor in one model and estuary exit date in two models. Conditional model 

averaging showed that all the biological characteristics had standard errors exceeding the 

coefficient (figure 9). No evidence was therefore found for the influence of any biological 

characteristics on Atlantic salmon progression rate for the total distance.  

 

 Effect of biological characteristics on progression rate in Beiarfjorden 

There were two equally well fitted models (Δ AICc < 2) for the progression rate in Beiarfjorden 

(line T2-T4) where the null-model was included. Body length was included in one of the 

models, condition factor in none of the models and estuary exit date in none of the models. 

Conditional model averaging showed that all the biological characteristics had standard errors 

exceeding the coefficient (figure 9). No evidence was therefore found for the influence of any 

biological characteristics on Atlantic salmon progression rate in Beiarfjorden. 

 

 Effect of biological characteristics on progression rate in Nordfjorden 

There were six equally well fitted models (Δ AICc < 2) for the progression rate in Nordfjorden 

(line T4-T9) where the null-model was included. Body length was included in two models, 

condition factor in two models and estuary exit date in three models. Conditional model 

averaging showed that body length had standard errors exceeding the coefficient (figure 9). The 

standard error for condition factor and estuary exit date did not exceed the parameter coefficient. 

Due to condition factor only being included in two of the six models, the effect appeared to be 

small. Estuary exit date was found to have the strongest effect on progression rate, followed by 

condition factor. The positive coefficient suggests that a later estuary exit date and a lower 

condition factor resulted in a higher progression rate for Atlantic salmon in Nordfjorden.  
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Brown trout 

On average, the 21 brown trout veterans migrating to the outer parts of the fjord system spent a 

total of 546 hours in progressing the total distance from line T2 to T9 (n = 21, distance = 29.9 

km, range = 59-1883 hours). The trout spent on average 417 hours on progression through 

Beiarfjorden (n = 27, distance = 16.7 km, range = 11-1260 hours) and 127 hours through 

Nordfjorden (n = 21, distance = 13.2 km, range = 7-1076 hours). The average progression rate 

was 0.15 km/h (range = 0.02-0.5 km/h) for the total distance, 0.2 km/h (range = 0.01-1.6 km/h) 

in Beiarfjorden, and 0.8 km/h (range = 0.01-2.0 km/h) in Nordfjorden. The average progression 

rate in bl/sec was 0.06 bl/sec (range = 0.01-0.2 bl/sec) for the total distance, 0.07 bl/sec (range 

= 0.007-0.7 bl/sec) in Beiarfjorden, and 0.4 bl/sec (range = 0.009-0.9 bl/sec) in Nordfjorden. 

 

Effect of biological characteristics on progression rate for the total distance  

There were two equally well fitted models (Δ AICc < 2) for the progression rate for the total 

distance (line T2-T9). Body length was included in both models, condition factor in none of the 

models and estuary exit date in one of the models. Conditional model averaging showed that 

neither body length nor estuary exit date had standard errors exceeding the coefficient. Body 

length had the strongest influence on progression rate, followed by estuary exit date (figure 9). 

The positive coefficients suggests that a longer body length and a later estuary exit date resulted 

in a higher progression rate for brown trout for the total distance.  

 

 Effect of biological characteristics on progression rate in Beiarfjorden 

There were two equally well fitted models (Δ AICc < 2) for the progression rate in Beiarfjorden 

(line T2-T4). Body length was included in none of the models, condition factor in three models 

and estuary exit date in two models. Conditional model averaging showed that both body length 

and estuary exit date had standard errors exceeding the coefficient. For condition factor, the 

standard errors did not exceed the coefficients (figure 9). The positive coefficient suggests that 

a higher condition factor resulted in a higher progression rate for brown trout in Beiarfjorden.  

 

 Effect of biological characteristics on progression rate in Nordfjorden 

There was one single model only including body length (AICc = 59.5) that was the best fit for 

predicting progression rate in Nordfjorden (line T4-T9). The standard errors for body length did 

not exceed the coefficient (figure 9). Body length was therefore found to have a strong influence 

on progression rate. The positive coefficient suggests that a longer body length resulted in a 

higher progression rate for brown trout in Nordfjorden.
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Figure 9. Estimated influence of body length, relative condition factor (cond.adj) and estuary exit date on the 

progression rate of Atlantic salmon (a) and brown trout (b) in Beiarfjorden, in Nordfjorden and for the total 

distance. Dark grey bars show Beiarfjorden (T2-T4), light grey bar show Nordfjorden (T4-T9), and white bar 

show the total distance (T2-T9). A positive coefficient means that the parameter in question has a positive 

relationship with progression rate. Dotted lines show the standard error of each coefficient. Parameters with a 

zero-value was not found to be included in any models or in conditional model averaging for the fjord section 

in question. 
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DISCUSSION 

This study investigated the early marine migration behaviour of Atlantic salmon post-spawners 

and brown trout veteran migrants as they migrated from the same river in spring. Despite 

choosing mainly the same migration route, brown trout spent on average far more time within 

the fjord system compared to Atlantic salmon. Both species were found to start their marine 

migration from the estuary exit mainly at falling tide. From the estuary exit, the salmon had a 

fast, continuous progression through the fjord system as they headed towards the open ocean. 

Brown trout on the other hand, had larger intraspecific differences in progression rate, where 

some individuals migrated through the fjord in just a couple of days, some spent several weeks, 

and some never reached the fjord system exits at all. For Atlantic salmon, no correlation was 

detected between body length and progression rate. Estuary exit date and condition factor was 

found to be correlated with the progression rate of Atlantic salmon in just the outer fjord system. 

For brown trout, body length was correlated with the progression rate in the outer fjord system, 

condition factor in the inner fjord system, and estuary exit date for the total distance. 

The fjord system had two exits towards the open ocean, where one exit was far more popular 

than the other. All the tagged Atlantic salmon exited the fjord system and took the northern 

route through Nordfjorden. Most brown trout that exited Beiarfjorden chose, like Atlantic 

salmon, mainly the northern route. Adult Atlantic salmon are thought to navigate back to their 

home river based on learning cues of area-characteristics imprinted during outward migration 

as smolts (Hansen et al., 1993). During outward migration, Atlantic salmon smolts have been 

observed to actively use preferred migration routes, not necessarily aligning with the most direct 

routes to their ultimate destination (Newton et al., 2021). If the northern route has area 

characteristics making it preferable to a migrating salmon smolt, the fish might later have used 

this same route as a post-spawner. An exclusive route preference in a fjord with two exits has 

been observed for both brown trout smolts and veteran migrants in a Danish fjord system 

(Kristensen et al., 2018a; 2019). They suggested an inherited preference due to a historical lack 

of a secondary exit. The fjord system in the present study has historically always had two exits, 

suggesting that other factors influence the choice of route. A possible explanation for the 

preference of the northern route of the brown trout veterans might instead be unfavourable 

conditions in the south. Healy et al. (2017) observed route-specific survival in rainbow trout 

smolts, where fish that chose some specific routes had higher survival and migration rates than 

others. The southern fjord section in the present study could have ingoing surface currents, high 

densities of predators and parasites, and/or low densities of prey species, making the northern 

areas around Nordfjorden preferable. Route preference might also shift from one year to 

another, as was observed by Aldven et al. (2015), suggesting that preference could change with 

changing conditions. 

The migration of Atlantic salmon post-spawners and brown trout veteran migrants overlapped 

in space, but not to a large degree in time. The reason for a large overlap in space was the 

preference of both species towards a single fjord system exit, along with the high proportion of 

brown trout migrating long distances from the river. The proportion of brown trout long-

distance migrants was higher in this study compared to previous studies (Eldøy et al., 2015; 

Bordeleau et al., 2018; Atencio et al., 2021). The optimal temperature for growth in brown trout 
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is reported to be between 12 °C and 17 °C (Elliott & Hurley, 2000; Larsson, 2005). The 

temperature-measurements in the inner- and middle fjord system revealed temperatures staying 

below 12.5 °C during the full course of 2019, and rarely exceeding 11 °C in the inner part of 

Beiarfjorden. The long-migrating trout could therefore have been moving towards higher water 

temperatures favourable for growth (Jensen et al., 2014). The brown trout spent on average 

more than 20 times the number of hours in progressing the total distance from the estuary to the 

fjord system exit compared to Atlantic salmon. Despite the two species having overlapping 

estuary exit dates, the time they spent together in the fjord was short. To my knowledge, this is 

the first study investigating overlap in time and space between Atlantic salmon post-spawners 

and brown trout veteran migrants. The result of overlapping migrations in space but not in time 

suggests a limited competition between the two species in the adult life stage during early 

marine migration from Beiarelva. 

Most Atlantic salmon and brown trout left the estuary at falling tide. A preference for migrating 

from the estuary area at falling tide aligns with the findings of previous studies for both Atlantic 

salmon post-spawners (Hubley et al., 2008; Hedger et al., 2009) and brown trout veteran 

migrants (Bendall et al., 2005; Aarestrup et al., 2015). Leaving the estuary at falling tide would 

enable the fish to use outflowing tidal currents to assist migration. A fast progression upon 

leaving the river would help the fish to quickly escape the estuary, an area often characterized 

by salmonid predators such as harbour seals (Phoca vitulina) (Carter et al., 2001; Middlemas 

et al., 2006; Wright et al., 2007). Previous studies have explained intraspecific variation in 

progression rate with different exploitation of tidal currents (Hansen et al., 1993; Halttunen et 

al., 2009). However, if this were the case in this study, it would be reasonable to expect the 

effect to be most profound in Beiarfjorden, closer to the river mouth. Instead, the progression 

rate of both species was higher in Nordfjorden than in Beiarfjorden. Moreover, progression rate 

measures the pace of a fish relative to the ground. Without measuring the effects of water 

transport, it is difficult to say to what extent tidal cycles contributed to differences in progression 

rate. I therefore suggest future studies consider the effects of water transport in the upper water 

layer when investigating the influence of tidal cycles on progression rate. One could, for 

instance, use current meters at different locations in the study area to measure how water 

velocity changes with different geography, wind patterns, and proximity to the river. 

The Atlantic salmon spent on average 37 hours progressing through the fjord system. The 

average progression rate observed in the present study aligned with the findings of Hedger et 

al. (2009) from Gaspe Bay, was lower than in Halttunen et al. (2009) in the Alta fjord, and 

higher than the progression rates observed by Hubley et al. (2008) in Moshers Bay. These 

comparisons show varying progression rates between different populations of Atlantic salmon 

post-spawners. A possible explanation for these differences might be the geography and 

environment of the study sites. Higher salinities have been associated with accelerated 

migration in Atlantic salmon smolts (Hedger et al., 2008; Martin et al., 2009; Thorstad et al., 

2012). The higher salinities in the Alta fjord compared to the other studies, including the present 

study, might explain the higher progression rates. Moreover, different geography and depth 

between the systems will likely result in differences in surface currents and consequently 

movement speed in the upper water layer. 
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A later estuary exit date and a lower condition factor indicated in a higher progression rate of 

Atlantic salmon in the outer fjord system. Hedger et al. (2009) similarly concluded that 

migration speed in Atlantic salmon post-spawners was dependent on the departure time from 

the estuary area. A positive relationship between a later departure time from the estuary and 

progression rate could be explained by an extended stay in the estuary area, a phenomenon 

found among several other Atlantic salmon populations (Cunjak et al., 1998; Hubley et al., 

2008; Lacroix, 2013; Bordeleau et al., 2019). An extended period spent foraging in the estuary 

area might allow the salmon to improve their physical condition and consequently undertake 

rapid migration upon sea entry. Moreover, low-conditioned Atlantic salmon could have been 

feeding within Beiarfjorden after leaving the estuary. Extensive feeding of Atlantic salmon 

post-smolts immediately after sea entry has been observed in Northern Norwegian populations 

(Rikardsen et al., 2004). With a difference in feeding opportunities between fjord sections, the 

low-conditioned fish might have been delayed in Beiarfjorden because of foraging activity, 

while using Nordfjorden more as a transport stage. A delay in in Beiarfjorden due to foraging 

activity could explain the lower average progression rate of Atlantic salmon observed in 

Beiarfjorden compared to Nordfjorden. 

Body length did not seem to influence Atlantic salmon progression rate in either of the fjord 

sections. Longer fish have a higher swimming capacity than shorter fish, using less energy at 

swimming the same distance in the same amount of time (Schmidt-Nielsen, 1972; Booth et al., 

1997). With an active migration of the post-spawning Atlantic salmon through the fjord system, 

and short- and long individuals having the same progression rate, the shorter fish would have 

to spend more energy to travel at the same pace. In this respect, it is important to consider that 

progression is not fully comparable to migration speed, as the fish is unlikely to swim the 

shortest possible distance between receiver lines (Thorstad et al., 2012). Like in the present 

study, Hedger et al. (2009) found progression rate to be independent of body length in Atlantic 

salmon post-spawners. There could be unfavourable conditions within the fjord system such as 

predators and/or parasites that give an incentive to smaller fish to quickly head towards the open 

ocean, but this remains speculative. 

The brown trout had a lower average progression rate compared to Atlantic salmon, but some 

individuals were much faster than others. The average progression rate of brown trout veteran 

migrants in the present study was slightly higher than the progression rates observed by Aldven 

et al. (2015) in Himleån, but far higher than the ones found by Aarestrup et al. (2015) in the 

Randers fjord. The higher progression rates in the present study compared to the other studies 

can be largely attributed to the fast migration of long-distance migrants in Nordfjorden, where 

some individuals had progression rates comparable to those of Atlantic salmon. A fast, 

continuous progression with increased proximity to the sea has also been observed in brown 

trout veterans in two Danish rivers (Kristensen et al., 2019). Danish brown trout veterans have 

previously been proposed to adapt foraging patterns similar to Atlantic salmon in order to 

optimize growth (Kristensen et al., 2018b). A similar migration pattern would mean a fast, 

continuous progression to an area outside the fjord system. The fast, long-distance migrating 

brown trout in the present study could, like the Danish trout, be using the outer fjord system 

more as a transport stage towards areas with higher water temperatures and preferable feeding 

grounds. 
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The long-distance brown trout migrants were found to be larger than short-distance migrants. 

The phenomena of brown trout having longer migration distances with increasing body size has 

been observed in other fjord systems (Jensen et al., 2014; Jonsson & Jonsson, 2014; Eldøy et 

al., 2021). Brown trout is a gape-limited predator, where larger fish often become mainly 

piscivorous (Klemetsen et al., 2003; Davidsen et al., 2017). Larger, pelagic fish are most often 

found in the outer parts of fjord systems and have been shown to be a considerable part of the 

diet of large anadromous brown trout (Knutsen et al., 2001; Rikardsen & Amundsen, 2005; 

Rikardsen et al., 2006). The outer-fjord system might therefore have been more attractive to 

larger fish. The low sample size of short-distance migrants (n = 7) might, however, have inflated 

the effect-size estimation when comparing biological characteristics between groups. 

Even though the smallest individuals stayed in the inner fjord, larger long-distance migrants 

had higher progression rates than smaller ones. The positive correlation between body length 

and progression rate was only detected in Nordfjorden and for the total distance, suggesting that 

body length mostly affected long-distance migrants. Body length has been observed to be 

positively correlated with both stamina and burst speed in brown trout (Ojanguren & Brana, 

2003). Better stamina in fish with longer bodies could potentially result in faster progression. 

Furthermore, survival in seawater of brown trout is size-dependent due to a larger fish having 

lower risk of being eaten by predators (Wagner et al., 1969; Finstad & Ugedal, 1998; Ugedal et 

al., 1998; Klemetsen et al., 2003; Jonsson & Jonsson, 2006). A lower predation risk might 

enable large brown trout to engage in less predator avoidance behaviour compared to smaller 

individuals, and consequently progress faster to preferred areas. 

Condition factor was positively correlated the progression rate of brown trout in the inner fjord 

system, but had no influence on migration distance. The 27 individuals that reached the exit of 

Beiarfjorden consisted mostly of long-distance migrants (26/27). Winter-depleted brown trout 

can have a period of compensatory growth when starting to feed upon entering the sea (Johnsson 

& Bohlin, 2005). The best-conditioned trout among long-distance migrants in the present study 

may not have needed to recondition right away, and instead progressed faster to the outer fjord 

system compared to low-conditioned individuals. Previous studies have found that brown trout 

with poor body condition ventured further from the river compared to their better conditioned 

congeners (Eldøy et al., 2015; Bordeleau et al., 2018; Eldøy et al., 2021). This correlation was 

not found among the fish in this study. Eldøy et al. (2021) observed that brown trout with lower 

condition factor tended to have riskier migration behaviour in terms of migrating further and 

spending more time at sea. They hypothesized that low-conditioned individuals would have 

more to gain from migrating longer distances. The results from the present study suggests that 

the risk-reward ratio of brown trout from Beiarelva looks different from that of Eldøy et al. 

(2021). Risk factors such as a high density of predators and/or parasites in the outer fjord-

system, might have made the risk of migrating outside of Beiarfjorden for low-conditioned 

individuals high. 

In a northern Norwegian fjord, the environmental conditions are likely to change considerably 

during May and June. During these two months, the estuary exit dates in the present study varied 

with 51 days for Atlantic salmon and 35 days for brown trout. The mean water temperature in 

the estuary during the first week of May was 2 °C higher compared to the last week of June. In 
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several poikilothermic fish species, white muscles have been found to be recruited at lower 

swimming speeds in lower water temperatures, resulting in reduced maximum sustainable 

swimming speeds (Rome et al., 1990; Taylor et al., 1996; Hvas et al., 2017). The positive 

correlation between estuary exit date and progression rate in both species might therefore have 

been a result of higher temperatures at later dates causing higher swimming speeds, and 

consequently higher progression rates. It is also possible that changes in water temperature over 

time brought changes in prey-composition at different locations, and therefore differences in 

time spent feeding between different fjord sections (e.g., Jensen et al., 2014). 

The example of water temperature being a possible cause of the detected correlation between 

estuary exit date and condition factor illustrates an important point. A correlation found in a 

model is not necessarily the same as a direct effect. Using parametric regression models with 

low sample sizes to explain a biological phenomenon is a simplification of reality, and must be 

treated as such. Hence, correlations between migration behaviour and biological characteristics 

should be investigated and discussed alongside environmental variables. The present study 

discussed correlations between migration behaviour and biological characteristics alongside 

water temperature, salinity and tidal currents. Previous studies have found correlations between 

migration behaviour and photoperiod in Atlantic salmon and brown trout smolts (Hedger et al., 

2008; Aldven et al., 2015; Vollset et al., 2017). Photoperiod was not included in this study due 

to there being midnight-sun during June, July, and August. Without measuring the actual light 

intensity, it was difficult to categorize fish registrations in relation to the photoperiod. I therefore 

suggest measuring light intensity in future studies investigating marine migration behaviour of 

Atlantic salmon post-spawners and brown trout veterans. 

Norwegian legislation regarding management of anadrome salmonids addresses Atlantic 

salmon and brown trout as a single unit, and does not reflecting their different population 

dynamics and life histories (Lakse- og innlandsfiskloven, 1992; Birnie-Gauvin et al., 2019). 

Norway holds approximately 25% of the world’s healthy Atlantic salmon populations, giving 

the Norwegian government a particular responsibility in protecting the species (Anon, 2006-

2007; Hindar et al., 2011). Consequently, the salmon tends to be prioritized in management 

over other anadrome salmonid species. For instance, one of the major efforts to combat negative 

anthropogenic impacts on Norwegian salmonid populations, the national salmon fjord program, 

is designed specifically for Atlantic salmon (Anon, 2006-2007). This study found that Atlantic 

salmon post-spawners from Beiarelva spent on average 37 hours in the fjord system. 

Consequently, conservation efforts in the coastal area would need to be effective in protecting 

each individual for a few days. The brown trout veterans, however, used on average several 

weeks in reaching the fjord system exit, and some never left the fjord system at all. Spending 

more time within the fjord system likely gives the brown trout population a higher exposure to 

negative anthropogenic impacts in coastal areas compared to Atlantic salmon. Specific 

examples include recreational fishing and exposure to pathogens from open-cage aquaculture, 

where the latter have been shown to pose a higher risk for anadromous brown trout than for 

Atlantic salmon (Grefsrud et al., 2018). The brown trout in this study, however, spent far more 

time in progressing through the inner fjord compared to the outer fjord. No fish-farming 

facilities are located within the inner fjord, potentially limiting the negative impacts from 

aquaculture on brown trout veterans from Beiarelva. 
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Individual biological characteristics affected early migration behaviour in terms of progression 

rate differently in Atlantic salmon post-spawners and brown trout veteran migrants. Horodysky 

et al. (2015) stated that a species-specific understanding of the link between behavior and 

physiological abilities in fish could help improve stock assessments and describe essential 

habitats. This thesis has taken an important step in that direction by describing migration 

behavior in two salmonid species and identifying underlying mechanisms worthy of further 

investigation. When we delve into the drivers behind migration behavior, we begin to realize 

how changes in the biology of each species may result in very different outcomes. In 

management terms, negative anthropogenic impacts might change the population dynamics of 

Atlantic salmon post-spawners and brown trout veterans from Beiarelva in similar ways, while 

still influence temporal habitat use differently. To exemplify, a change in body size composition 

of the two salmonid populations in Beiarelva, due to size selective fishing, could potentially 

alter the marine area use of the brown trout population entirely, while not affecting the Atlantic 

salmon at all. 

In conclusion, the present study found that the early marine migration of Atlantic salmon post-

spawners and brown trout veterans from the river Beiarelva overlapped in space, but not to a 

large degree in time. Brown trout had larger intraspecific differences in progression rate and 

spent more time in the fjord system compared to Atlantic salmon. The short temporal overlap 

during early marine migration from Beiarelva, suggested a limited competition between the two 

species in this migration phase. Using more time within the fjord system likely gives the brown 

trout a higher exposure to negative anthropogenic impacts in coastal areas compared to Atlantic 

salmon. Body length, condition factor and estuary exit date was found to influence progression 

rate differently in Atlantic salmon post-spawners and brown trout veteran migrants. The 

differences in how individual biological characteristics were correlated with progression rate, 

illustrates how population dynamics in Atlantic salmon post-spawners and brown trout veterans 

could change in similar ways, while still influence temporal habitat use differently. The findings 

in this study underline the importance of conceiving more focused conservation strategies, 

better aimed at protecting each individual species and not treating them as a single unit. 
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APPENDIX 1 
 

Table A1. Biological characteristics of Atlantic salmon tagged in the spring of 2019. Sex and species were DNA-

confirmed using adipose fin samples.  

Transmitter ID Condition factor (k) Sex Body length (mm) Age (yrs.) Body mass (g) 

A69-1303-5763 0.67 F 820 8 3700 

A69-1303-5767 0.61 M 600 5 1320 

A69-1303-5768 0.60 F 800 9 3050 

A69-1303-5769 0.55 F 880 8 3760 

A69-1303-5770 0.64 F 1120 9 9000 

A69-1303-5771 0.63 F 990 9 6140 

A69-1303-5772 0.61 F 890 8 4280 

A69-1303-5773 0.53 F 670 6 1600 

A69-1303-5776 0.68 F 800 7 3500 

A69-1303-5778 0.68 F 1020 10 7200 

A69-1303-5780 0.45 F 820 8 2500 

A69-1303-5781 0.56 M 580 5 1100 

A69-1303-5807 0.61 M 650 6 1720 

A69-1303-5809 0.60 M 640 6 1580 

A69-1303-5811 0.54 M 640 6 1420 

A69-1303-5815 0.54 F 920 8 4200 

A69-1303-5816 0.67 M 887 9 4700 

A69-1303-5817 0.60 F 890 10 4260 

A69-1303-5818 0.63 F 830 9 3600 

A69-1303-5819 0.55 F 850 8 3380 

A69-1303-5820 0.62 F 840 6 3690 

A69-1303-5821 0.67 F 900 8 4900 

A69-1303-5822 0.60 F 830 7 3400 

A69-1303-5823 0.55 F 960 9 4840 

A69-1303-5824 0.60 F 800 8 3080 

A69-1303-5825 0.66 F 890 8 4640 

A69-1303-5826 0.63 F 995 NA 6220 

A69-1303-5827 0.55 F 820 7 3020 

A69-1303-5828 0.56 F 610 7 1280 

A69-1303-5829 0.61 F 880 8 4160 

A69-1303-5830 0.56 F 1010 8 5760 

A69-1303-5831 0.60 F 850 8 3680 

A69-1303-5832 0.61 F 830 7 3500 

A69-1303-5833 0.63 F 960 8 5580 

A69-1303-5834 0.58 M 650 6 1580 

A69-1303-5836 0.63 F 960 8 5600 

A69-1303-5837 0.64 M 1020 10 6800 
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Table A2. Biological characteristics of brown trout tagged in the spring of 2019. Sex and species were DNA-

confirmed using adipose fin samples.  

Transmitter ID Condition factor (k) Sex Body length (mm) Age (yrs.) Body mass (g) Distance group 

A69-1303-5748 0.76 F 430 7 600 short 

A69-1303-5749 0.68 F 420 9 500 short 

A69-1303-5750 0.80 M 390 6 450 short 

A69-1303-5751 0.76 F 390 8 450 long 

A69-1303-5756 0.61 M 340 7 240 long 

A69-1303-5757 0.73 M 380 7 400 long 

A69-1303-5758 0.70 F 420 8 520 long 

A69-1303-5759 0.84 M 350 8 360 short 

A69-1303-5760 0.97 M 340 7 680 short 

A69-1303-5761 0.80 M 410 6 550 long 

A69-1303-5764 0.96 M 630 9 2400 long 

A69-1303-5765 0.75 M 520 9 1060 long 

A69-1303-5774 0.80 M 500 6 1000 long 

A69-1303-5777 0.47 M 440 8 400 long 

A69-1303-5782 0.75 M 650 9 2060 long 

A69-1303-5784 0.74 M 560 7 1300 short 

A69-1303-5785 0.83 M 510 7 1100 long 

A69-1303-5795 0.85 M 730 9 3320 long 

A69-1303-5796 0.60 F 670 10 1800 long 

A69-1303-5797 0.79 M 590 7 1620 long 

A69-1303-5798 0.87 M 530 8 1300 long 

A69-1303-5799 0.71 F 540 8 1120 long 

A69-1303-5800 0.98 M 680 14 3080 long 

A69-1303-5801 0.82 M 550 10 1360 long 

A69-1303-5802 0.91 M 500 9 1140 short 

A69-1303-5804 0.83 M 640 8 2180 long 

A69-1303-5805 0.93 F 660 10 2680 long 

A69-1303-5806 0.77 M 660 12 2220 long 

A69-1303-5808 0.82 F 650 12 2240 long 

A69-1303-5810 0.83 M 540 7 1300 long 

A69-1303-5812 0.66 F 440 8 560 long 

A69-1303-5814 0.91 M 540 8 1440 long 

A69-1303-5835 0.81 M 530 8 1200 long 
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Table A3. Deployed receivers in the Beiarn fjord system and in the Beiarn river. Receivers marked in grey was lost. If 

replaced, the replacement receivers are listed underneath the lost receiver with new deployment date and same position. 

VR2AR receivers were equipped with an integrated acoustic release system. VR2W* receivers were equipped with an 

external acoustic release system 

Station 

no. 
Deployment date  

Deployment 

lat. 

Deployment 

long. 

Bottom 

depth 

(m) 

Rope 

length 

(m) 

Instrument 

depth (m) 
Model Serial no. 

1 26.03.2019 67.08899 14.04654 40 35 5 VR2W 119128 

2 26.03.2019 67.08606 14.04690 50 5 45 VR2AR 548213 

3 26.03.2019 67.08291 14.04828 35 30 5 VR2W 119137 

4 26.03.2019 67.01849 14.22641 20 5 15 VR2AR 548214 

5 26.03.2019 67.01730 14.23351 48 5 43 VR2AR 548215 

6 26.03.2019 67.01641 14.23922 22 5 17 VR2AR 548211 

7 26.03.2019 67.05934 14.25210 35 5 30 VR2AR 548216 

8 26.03.2019 67.05782 14.24532 30 5 25 VR2AR 548218 

9 27.03.2019 67.11172 14.27573 27 22 5 VR2W 119119 

9 25.02.2020 67.11172 14.27573 35 5 30 VR2AR 547127 

10 27.03.2019 67.11449 14.26887 211 181 30 VR2W* 119090 

11 27.03.2019 67.11723 14.26330 350 320 30 VR2W* 119139 

12 27.03.2019 67.11704 14.25364 225 195 30 VR2W* 119133 

13 27.03.2019 67.11768 14.24712 65 60 5 VR2W 119140 

13 25.02.2020 67.11768 14.24712 30 5 25 VR2AR 547128 

14 27.03.2019 67.16911 14.32802 19 14 5 VR2W 119129 

15 06.05.2019 67.17093 14.32141 117 87 30 VR2W* 119130 

16 06.05.2019 67.17216 14.31275 117 87 30 VR2W* 119132 

17 06.05.2019 67.17275 14.30366 120 90 30 VR2W* 119125 

19 27.03.2019 67.17174 14.29448 112 107 5 VR2W 119123 

20 27.03.2019 67.17210 14.28522 50 45 5 VR2W 119149 

21 27.03.2019 67.07649 14.30353 28 5 23 VR2AR 548212 

22 27.03.2019 67.07690 14.30611 26 5 21 VR2AR 548217 

23 01.05.2019 67.06757 14.52788 55 5 50 VR2AR 547923 

24 01.05.2019 67.06969 14.52972 105 5 5 VR2AR 547922 

25 01.05.2019 67.04239 14.58405 25 5 20 VR2AR 547126 

26 01.05.2019 67.04322 14.58713 27 5 23 VR2AR 547122 

27 01.05.2019 67.04403 14.59172 21 5 30 VR2AR 547125 

28 01.05.2019 67.04528 14.59680 25 5 20 VR2AR 547123 

29 01.05.2019 67.04552 14.60157 22 5 17 VR2AR 547124 

30 01.05.2019 67.03050 14.57294 3 1 2 VR2W 119078 

31 01.05.2019 67.00123 14.62489 3 1 2 VR2W 119136 

39 28.03.2019 67.09359 14.24049 10 5 5 VR2W 119077 

40 26.03.2019 67.06882 14.07683 108 103 5 VR2W 119124 

41 26.03.2019 67.06403 14.09761 96 91 5 VR2W 119121 

42 26.03.2019 67.02715 14.12420 111 5 5 VR2W 119135 

43 26.03.2019 67.03683 14.12342 70 65 5 VR2W 119151 

44 26.03.2019 67.07355 14.06351 10 5 5 VR2W 119079 

45 27.03.2019 67.14435 14.27891 196 5 5 VR2W 119081 

46 27.03.2019 67.13739 14.26586 196 191 5 VR2W 119134 

47 27.03.2019 67.10777 14.26984 355 5 5 VR2W 119114 

49 27.03.2019 67.18774 14.39462 79 5 5 VR2W 119127 


