
Ba
ch

el
or

’s
 th

es
is E-commerce in a distributed system of

warehouses

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sigurd Espedalen Strøm
Sigurður Hallur Jónsson
Samuel Hardeberg

Bachelor’s thesis
2021

Bachelor’s thesis

E-commerce in a distributed system of
warehouses

May 2021

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sigurd Espedalen Strøm
Sigurður Hallur Jónsson
Samuel Hardeberg

i

Abstract

E-commerce is the process of selling and buying goods or services online. The main goal of

this thesis is to create an e-commerce storefront that is able to communicate with a series of

distributed warehouses. The storefront is to be made in Vue while the backend and database

is made using Spring Boot and Postgres. To make the webpage and backend system

communicate an API layer will also be created, which makes it possible to communicate

solely through HTTP requests. The result of this thesis includes a distributed warehouse

database system, along with an e-commerce storefront that will communicate through

HTTP.

ii

Sammendrag

E-handel er prosessen av å selge eller kjøpe varer eller tjenester over internett. Hovedmålet

med denne oppgaven er å lage en e-handel nettside som kan snakke sammen med andre

distribuerte varehus. Selve nettbutikken skal bli laget i Vue, og backend systemet skal bli

laget i Spring Boot og Postgres. For at nettsiden og backend systemet skal kunne snakke

sammen lages også en API-tjeneste, noe som muliggjør kommunikasjon gjennom HTTP

forespørsler. Resultatet av denne oppgaven inkluderer et distribuert varehus database

system, i tillegg til en nettbutikk som vil kommunisere ved bruk av HTTP.

iii

Acknowledgements

We would like to express our deepest gratitude to our advisor Ricardo Da Silva Torres for

all the guidance throughout the project and writing.

We would also like to thank Marius Lundbø for all the help and guidance with regard to the

project and for setting up a meeting with Olaf Nykrem. The meeting with Olaf gave us a lot

of insights, new ideas, and inspiration for developing our project and we would like to thank

you for taking your time to help and inspire us. Thank you all.

iv

Table of Contents

List of figures ...x

Terminology... xiii

Glossary ... xiii

Abbreviations ... xiii

1 Introduction ...1

1.1 Background ... 1

1.1.1 Why we chose this project ... 1

1.1.2 E-commerce storefront... 1

1.1.3 Distributed warehouse database ... 1

1.2 The problem to be solved .. 2

1.3 Project group ... 2

1.4 Goals.. 3

1.4.1 Effect goals .. 3

1.4.2 Result goals .. 3

1.4.3 Process goals .. 3

2 Theory ..4

2.1 Agile development .. 4

2.2 The Scrum framework ... 4

2.2.1 Backlog .. 5

2.2.2 Sprint .. 6

2.2.3 Daily scrum .. 6

2.2.4 Story points .. 6

2.3 Git and version control .. 6

2.3.1 GitHub.. 6

2.4 Web development languages ... 7

2.4.1 Hyper Text Markup Language (HTML) .. 7

2.4.2 Cascading Style Sheets (CSS) ... 7

v

2.4.3 JavaScript (JS) ... 7

2.4.4 JavaScript Object Notation (JSON) ... 7

2.4.5 PostgreSQL .. 8

2.5 Vue.js... 8

2.5.1 Vue components... 8

2.5.2 Vue options .. 9

2.5.3 Vuex ... 10

2.5.4 Vue router .. 10

2.5.5 Node Package Manager (NPM) ... 10

2.5.6 Axios .. 10

2.6 Spring framework .. 11

2.6.1 Spring boot ... 11

2.6.2 Spring initializr .. 11

2.6.3 Monolithic architecture pattern .. 12

2.6.4 Microservice architecture pattern .. 12

2.6.5 RESTful API .. 13

3 Method ...14

3.1 Scrum Agile development ... 14

3.1.1 Daily scrum .. 14

3.1.2 Sprints .. 14

3.1.3 Jira .. 14

3.2 Git .. 14

3.2.1 Repositories.. 15

3.2.2 Git features used .. 20

3.2.3 Merge errors ... 20

3.3 Vue.js... 21

3.3.1 Vuex ... 21

vi

3.3.2 Vue router .. 21

3.3.3 Vue Devtools ... 22

3.4 Maven .. 22

3.5 Spring .. 23

3.5.1 Spring Framework ... 23

3.5.2 Spring Boot .. 24

3.5.3 Spring Data JPA ... 24

3.5.4 Spring Web .. 25

3.6 Java .. 26

3.6.1 Java programming language .. 26

3.6.2 List and ArrayList .. 26

3.6.3 LocalDateTime .. 26

3.6.4 CommandLineRunner .. 26

3.6.5 Faker .. 26

3.7 Postman ... 27

3.8 Integrated Development environments ... 27

3.8.1 IntelliJ .. 27

3.8.2 WebStorm .. 27

4 Development process ..28

4.1 Project timeline ... 28

4.2 Sprint overview ... 28

4.2.1 A1 ... 28

4.2.2 A2 ... 29

4.2.3 A3 ... 30

4.2.4 A4 ... 31

4.2.5 A5 ... 31

4.2.6 A6 ... 32

vii

4.2.7 A7 ... 33

4.3 Development model .. 33

4.3.1 Project tools ... 33

4.3.2 Management tools .. 33

4.3.3 Development tools ... 34

4.4 Project meetings .. 34

5 System architecture & implementation ..35

5.1 Backend design ... 35

5.1.1 Warehouse implementation ... 36

5.1.2 Store implementation ... 37

5.2 Entity of the store .. 38

5.2.1 Inventory .. 38

5.3 Entities of the warehouse .. 38

5.3.1 Customer .. 39

5.3.2 Category ... 39

5.3.3 Product ... 40

5.3.4 Tech product .. 40

5.3.5 Specific products .. 40

5.3.6 Review ... 42

5.3.7 Orders ... 42

5.3.8 Warehouse.. 43

5.4 RESTful API for the warehouse and stores .. 44

5.4.1 Application properties .. 45

5.4.2 Entity classes .. 45

5.4.3 REST API control layer @RestController ... 47

5.4.4 The service layer @Service, and Data access layer @Repository..................... 50

5.4.5 Full API list for the warehouse and the stores ... 52

viii

5.5 Frontend .. 54

5.5.1 Frontend Design ... 54

5.5.2 Components ... 55

5.5.3 Vuex Store ... 56

5.5.4 Routing and views.. 58

5.5.5 Information gathering .. 59

6 Results ..61

6.1 Requirement specification ... 61

6.2 Features implemented ... 61

6.2.1 Search bar... 62

6.2.2 Product browsing ... 62

6.2.3 Product pages ... 64

6.2.4 Cart ... 65

6.2.5 Checkout .. 65

6.2.6 User account... 66

6.2.7 Warehouse.. 67

6.2.8 Non-functional requirements ... 67

6.3 Partly finished features .. 68

6.3.1 Rating system ... 68

6.3.2 Other features ... 69

6.4 Deprioritized features .. 69

7 Discussion...70

7.1 Challenges and limitations .. 70

7.1.1 Time management .. 70

7.1.2 Vue and Vuex .. 70

7.2 Future work ... 70

7.2.1 Administrator system ... 71

ix

7.2.2 Web design... 71

7.3 Testing ... 72

8 Conclusion ...73

9 Bibliography ..74

10 Appendix ..76

10.1 Jira Issues Log starting from sprint 1 → 6: ... 76

10.2 Git Log ... 82

10.2.1 E-commerce Storefront (The final repository for frontend) 82

10.2.2 Warehouse App repository for backend system .. 84

10.2.3 Warehouse Aalesund ... 86

10.2.4 E-commerce in a distributed system of warehouses (Old testing repository) ... 87

x

List of figures

Figure 1: The Scrum Framework diagram (https://www.scrum.org/resource/scrum-

framework-poster - As of May 2021). .. 5

Figure 2: Spring initializr (https://start.spring.io - As of May 2021). 11

Figure 3: REST API Design (https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-

understanding-restful-api – As of May 2021). ... 13

Figure 4: E-commerce-in-a-distributed-system-of-warehouses (part 1).................................. 15

Figure 5: E-commerce-in-a-distributed-system-of-warehouses (part 2).................................. 16

Figure 6: E-commerce_Storefront repository (part 1) ... 17

Figure 7: E-commerce_Storefront repository (part 2) ... 18

Figure 8: WarehouseApp Repository (part 1) .. 19

Figure 9: WarehouseApp repository (part 2) ... 20

Figure 10: Vuex Store modules ... 21

Figure 11: Vue devtools ... 22

Figure 12: Sprint A1 .. 29

Figure 13: Cumulative flow progress report for Sprint A2.. 29

Figure 14: Cumulative flow progress report for Sprint A3.. 30

Figure 15: Cumulative flow progress report for Sprint A4.. 31

Figure 16: Cumulative flow progress report for Sprint A5.. 32

Figure 17: Cumulative flow progress report for Sprint A6.. 32

Figure 18: Cumulative flow progress report for Sprint A7. All issues are now listed as

complete ... 33

Figure 19: Microservice backend architecture. .. 36

Figure 20: Warehouse database diagram ... 37

Figure 21: Inventory entity .. 38

Figure 22: Class diagram showing product hierarchy ... 38

Figure 23: customer entity ... 39

Figure 24: encoded password in database .. 39

Figure 25: Category entity ... 39

Figure 26: Category table ... 39

Figure 27: Product entity ... 40

Figure 28: Tech product entity ... 40

xi

Figure 29: Book entity ... 41

Figure 30: computer entity ... 41

Figure 31: camera entity .. 41

Figure 32: Tv entity ... 41

Figure 33: Review entity .. 42

Figure 34: Orders entity ... 42

Figure 35: Orders in postgres database .. 43

Figure 36: Warehouse entity .. 43

Figure 37: product package with its classes and interface ... 44

Figure 38: Properties configure for warehouse .. 45

Figure 39: orders entity class ... 46

Figure 40: ProductController class .. 47

Figure 41: @RequestMapping ... 48

Figure 42: @GetMapping .. 48

Figure 43: JSON response from customer GET method with customer id of 51 48

Figure 44: @PostMapping ... 48

Figure 45: JSON data object sent to warehouse server as Request body in POST method. ... 48

Figure 46: Customer with id @PathVariable. .. 49

Figure 47: confirmOrder method with three @PathVariables and a @RequestBody. 49

Figure 48: decrease Quantity method with two @RequestParam. .. 49

Figure 49: Inventory repository ... 50

Figure 50: Get product by search query, from control layer.. 50

Figure 51: Get product by search query, from service layer. ... 51

Figure 52: confirm order method of service layer. .. 51

Figure 53: Orders in database. ... 51

Figure 54: Diagram for views and components ... 54

Figure 55: Components in the storefront ... 55

Figure 56: Footer component ... 55

Figure 57: Code snippet from header component .. 56

Figure 58: Visualization of Vuex functions ... 57

Figure 59: Vuex Store Modules ... 57

Figure 60: States of products module .. 58

Figure 61: Snippet of categories.vue component. .. 58

xii

Figure 62: Routing example... 59

Figure 63: Vuex search module ... 60

Figure 64: Header with search bar ... 62

Figure 65: Browsing products .. 63

Figure 66: Product details .. 64

Figure 67: Cart with items ... 65

Figure 68: Checkout page .. 66

Figure 69: Login for users.. 66

Figure 70: Register new user ... 66

Figure 71: Jira log sprint 1 ... 76

Figure 72: Jira log sprint 2 ... 77

Figure 73: Jira log sprint 3 ... 78

Figure 74: Jira log sprint 4 ... 79

Figure 75: Jira log sprint 5 ... 80

Figure 76: Jira log sprint 6 ... 81

Figure 77: E-commerce Storefront (part 1) ... 82

Figure 78: E-commerce Storefront (part 2) ... 83

Figure 79: Warehouse App repository (part 1) .. 84

Figure 80: Warehouse App repository (part 2) .. 85

Figure 81: Warehouse App repository (part 3) .. 85

Figure 82: Warehouse Aalesund repository ... 86

Figure 83: E-commerce in a distributed system of warehouses (part 1).................................. 87

Figure 84: E-commerce in a distributed system of warehouses (part 2).................................. 88

Figure 85: E-commerce in a distributed system of warehouses (part 3).................................. 89

xiii

Terminology

Glossary

E-commerce: Buying/Selling products and/or services electronically.

Warehouse: A location that stores goods to be distributed or sold later.

Full-Stack developer: Is a person who can develop both client and server side of a software.

Storefront: A storefront webpage is a webpage that displays products to potential customers.

Database: Collection of \structured data.

Abbreviations

HTML Hypertext Markup Language

CSS Cascading Style Sheets

JS JavaScript

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

XML Extensible Markup Language

NPM Node Package Manager

JSON JavaScript Object Notation

VUE Virtual-User Environment

IDE Integrated Development Environment

API Application Programming Interface

REST Representational State Transfer

MVC Model View Controller

JPA Java Persistence API

1

1 Introduction

1.1 Background

This e-commerce project was defined by DRIW AS. It focuses on the interaction between

multiple warehouse applications and a storefront website. The project consists of warehouses

with e-commerce and a storefront that allows users to shop goods on the website independently

of where they are located. The main goal of this project is to make the storefront able to receive

data from all the warehouses and keep stock updated, while showing the available stock on a

per warehouse basis.

1.1.1 Why we chose this project

We chose this task since we wanted a project whose development would provide us the

opportunity to use existing knowledge and skills, while also learn something new during its

development. Everyone in the group is familiar with front-end web design and database

programming, but we were still interested in learning and becoming aware of existing and new

technologies the project requires, such as Postgres, Vue JS, and Spring Boot.

1.1.2 E-commerce storefront

The storefront can communicate with all the warehouses independently and to provide

information about the stock on a per warehouse basis. The storefront also allows the end user

to select which warehouse they want to purchase a product from. In the example databases we

have created, we consider warehouses from Ålesund, Oslo, and Trondheim. The developed e-

commerce system allows the user to add the products they want to a cart and choose between

the three warehouses the items will be shipped from, depending on their availability.

1.1.3 Distributed warehouse database

The databases communicate using HTTP requests and the storefront “asks” the databases for

the available stock on each item. After items have been added to the cart in the storefront and

bought, the stock is decreased in the databases depending on which warehouses the user chose

as the shipping points. The user is also able to put multiple items in a cart and set different

shipping points per item. For instance, buying two products and choosing Ålesund for one of

them and Trondheim for the other.

2

1.2 The problem to be solved

The main problem to be solved in this project is the communication and stock handling of the

databases and storefront. We had to create an API layer that let all the communication happen

through HTTP requests and let the warehouses work independently of each other. By doing it

this way, we can easily add multiple warehouses with minimal effort. Each warehouse will

hold its own stock and product catalog. This would also mean that if, for instance, the

warehouse in Oslo is down for maintenance the other warehouses can keep working and take

in orders as per usual.

1.3 Project group

Student # Name Phone # E-mail

494669

507877

494679

Sigurdur Hallur Jonsson

Samuel Hardeberg

Sigurd Strøm

98061047

47224458

97503611

Sigurdur.h.jonsson@ntnu.no

Samuel.hardeberg@ntnu.no

Snstrom@ntnu.no

mailto:sigurdur.h.jonsson@ntnu.no
mailto:samuel.hardeberg@ntnu.no
mailto:Snstrom@ntnu.no

3

1.4 Goals

In this project, we are expected to design, implement, and validate an e-commerce system. This

system consists of a backend database system and a commercial webstore front end.

1.4.1 Effect goals

The effect goal of this project is to design and implement an e-commerce website and

distributed system of warehouses that solves the issue of communicating with multiple

warehouses simultaneously while keeping stock up to date. Moreover, it should enable users

to buy products online and choose which warehouse each of the products should be sent from.

And check the stock for each warehouse.

1.4.2 Result goals

At the end of the semester, we will have a product consisting of a storefront website and a main

backend warehouse application and API Layer. And secondary warehouse databases which

holds inventory information. The storefront will be able to communicate will all the

warehouses, while the warehouses themselves cannot communicate with each other. Thus, the

website works as a storefront for all the warehouses. On the website, customers can browse

products and get detailed information about them. Furthermore, registered and logged in users

can add items to shopping cart to buy and choose which warehouse the item should be bought

from.

1.4.3 Process goals

As developers, we expect to experience opportunities about how to work on a larger and more

complex project. We also expect to develop our skills to work in an agile way. We expect to

learn how to use frameworks like Spring Boot and Vue. Also, we will deepen our understanding

of database systems.

4

2 Theory

2.1 Agile development

Agile development is a very broad term for a set of frameworks based on the values and

principles of the agile manifesto. Summarized, the manifesto states several prioritizations in a

software development context:

“Individuals and interactions over processes and tools,

Working software over comprehensive documentation,

Customer collaboration over contract negotiation,

Responding to change over following a plan”

(Agile Manifesto Authors, 2021)

The principles and values of the agile manifesto ensures a streamlined and effective software

development project. Continuous development, close customer communication and

collaboration, and a sustainable development process are some of the agile principles that we

have incorporated as a central component into our workflow. As previously mentioned, Agile

development is realized through agile frameworks. For our project, we used the core elements

of the Scrum framework.1

2.2 The Scrum framework

The scrum framework helps create an agile workflow, with emphasis on a high responsibility

to change. Simply put, scrum ensures that the product adapts and perseveres trough unforeseen

changes and circumstances. The scrum framework is structured around the scrum events, as

illustrated in Figure 1 below.

1 https://www.agilealliance.org/agile101/ as of May 2021

https://www.agilealliance.org/agile101/

5

Figure 1: The Scrum Framework diagram (https://www.scrum.org/resource/scrum-framework-poster - As of May 2021).

The process starts by collecting a backlog of tasks/features in the product backlog. During a

sprint planning session, a set number of tasks are added to a sprint backlog. This is the tasks

that are implemented during the sprint. During the sprint, the Scrum team has daily scrum

meetings every day. To visualize the progress, each task is given story points in relation to its

difficulty, estimated time to complete and importance to the project. In our project, there has

been a focus on 4 core scrum events: The backlog(s), sprints, daily scrum, and story points.

2.2.1 Backlog

The product backlog is the list of all tasks that need to be performed in the product

development. The product backlog tasks are not associated with a time specification nor a

particular order. This list can be changed throughout the development of the project. During

sprint planning session, a number of these tasks is added to a sprint backlog. The number of

tasks depends on how much the team members think they can finish during the 2-week sprint

duration.

6

2.2.2 Sprint

During the sprints, the group completed the tasks in which we have added to the scope of the

sprint. For instance, we could set a goal for each sprint and add the related tasks from the

backlog in Jira, which is our platform for keeping track of issues, tasks, and bugs, as well as

also for creating an overview of the progress.

2.2.3 Daily scrum

The group met every day at 09.00 - 14.00 and at the start of the day we used to discuss which

task or issue the group member would work on. By having a small meeting each day, we could

work seamlessly without overlap of the work that had been done.

2.2.4 Story points

Story points indicate what work has been done in the sprints in terms of the programming

project. Our definition for story points is meaningful changes that the end user will make use

of or are visual for the end user.

2.3 Git and version control

Version control systems help track and log changes in a project. This is particularly helpful in

systems development, as trial, error, and correction are an integral part of the workflow.

The most common version control system, and the one we have used for our project, is GIT.

GIT has the added feature of allowing the members of our team to diverge from the “master”

version of the project, i.e., creating branches. This means that we can work simultaneously on

the same project, as everyone is working only a local version of the project. Only when a project

member is finished with a specific task, it is “merged” back to the master branch. GIT works

locally, so for the GIT repository to be available to every project member it needs a web hosting

service.

2.3.1 GitHub

GitHub is a GIT repository web hosting service we have used for our project. GitHub is

exclusively cloud-based and specializes in shared projects. It has an intuitive graphical user

interface which provides management tools.

7

2.4 Web development languages

2.4.1 Hyper Text Markup Language (HTML)

HTML is the standard markup language for web development, for formatting the text to be

displayed in a webpage.2 It is structured around layers of nested elements, where different

elements represent different text types, such as a heading, paragraph, link, etc. Each element

can also hold an attribute, which connects the element to a specific styling (CSS) and behavior

(JS). HTML markup is stored in .html files.

2.4.2 Cascading Style Sheets (CSS)

CSS is used to define how HTML elements are displayed on a webpage.3 It is used to create

styling and layout for specific elements, trough HTML attribute tags. CSS is stored in .css files,

referred to as stylesheets.

2.4.3 JavaScript (JS)

JavaScript is a programming language specified for web development.4 JavaScript code is used

to create behavior in the webpage, such as user interactions and animations. JavaScript code

can also alter HTML element attributes and CSS styling. This functionality allows for a more

dynamic website.

2.4.4 JavaScript Object Notation (JSON)

Only pure text (strings) can be delivered from a web server to a browser and vice versa. JSON

is a syntax for storing JavaScript objects in pure a string for the main purpose of server-browser

data exchange.5

The JavaScript object is “stringified” with “JSON.stringify()”, thus creating a JSON string.

The JSON string is then sent to its destination. It is then parsed back to a JavaScript object with

“JSON.parse()”.

2 https://www.w3schools.com/html/html_intro.asp as of May 2021
3 https://www.w3schools.com/css/css_intro.asp as of May 2021
4 https://www.w3schools.com/js/js_intro.asp as of May 2021
5 https://www.w3schools.com/js/js_json_intro.asp as of May 2021

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/css/css_intro.asp
https://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_json_intro.asp

8

2.4.5 PostgreSQL

PostgreSQL (also called Postgres) is a relational database management system that extends the

SQL database language.6 It is an open-source project. PostgreSQL has support for many

popular programming languages, including java and JavaScript. It is classified as a “General

purpose Transaction database”7 which means that it is optimized to work with transactional

data (purchasing orders, sales, shipping documents etc.), and fit with as many applications as

possible.

2.5 Vue.js

Vue.js is a JavaScript framework used for building front-end user interfaces. 8 Vue differs from

its competitors such as Angular9 and React10 in that it is much more lightweight and focuses

on the development of user interfaces on only the view layer. Its simplicity is not a limitation,

as there is a multitude of extensions and libraries for vue.js tailoring it to specific development

cases. Vue.js is optimized for single-page applications.

2.5.1 Vue components

Vue components are nameable, reusable Vue instances – encapsulated html, CSS, and

JavaScript to be used as custom html elements. Vue components are stored on “.Vue” files.

Each Vue component is divided into three sections, <template>, <script>, and <style>:

<template> (HTML) </template>

<script> (JS) </script>

<style> (CSS) </style>

Template contains the HTML syntax of the Vue component, style holds the CSS styling of the

component, and script holds the JavaScript code to be used in the template. It is in the script

section that the options for the Vue instance are specified.

6 https://www.postgresql.org/about/ As of May 2021
7 https://www.postgresqltutorial.com/what-is-postgresql/ As of May 2021
8 https://vuejs.org/v2/guide/ As of May 2021
9 https://angular.io/ As of May 2021
10 https://reactjs.org/ As of May 2021

https://www.postgresql.org/about/
https://www.postgresqltutorial.com/what-is-postgresql/
https://vuejs.org/v2/guide/
https://angular.io/
https://reactjs.org/

9

2.5.2 Vue options

Name specifies the name of the Vue component. This must be the same as the filename.

Data contains the function which returns data objects. The data object returned will trigger

updates in the markup. This is a core part of what makes Vue reactive. Its syntax is as following:

data: function() {

 return {

 data: "Some string"

 }}

This can also be written without “function()”. The relevant detail here is that whatever data is

outputted, the html syntax needs to be explicitly stated in “return{}”.

Methods is where the functionality of the Vue component is defined. Methods can hold several

functions in the following syntax:

 methods: {

 function1() {

 //Functionality 1

 }

 Function2() {

 //Functionality 2

 }

}

In order for these functions to output data to the html syntax, and thus be part of the Vue

reactive system, the data to be outputted must be returned in the data function.

As previously mentioned, Vue operates through Vue instances. Each of these instances has a

set lifetime, and a list of events that transpire during this lifetime. This is where the Lifecycle

hooks Vue component option comes in. There are many lifecycle hooks attached to a complex

lifecycle. Grossly simplified, there is a creation event, a mounting event, several update events

(whenever data changes), and a destruction event. The hooks relate to these events by means

of corresponding titles: beforecreated, created, beforemount, mounted, beforeupdate, updated,

beforedestroy, and destroyed. Since the hooks are triggered at distinct stages, they can be used

to execute code at different stages of the instance.

Props are custom attributes that are used to pass data to child components. They can also be

used internally similarly to return{}, in the following syntax:

Vue.component(‘testComponent', {

 props: ['prop'],

 template: '<h1>{{ prop }}</h1>'

})

10

2.5.3 Vuex

Vuex is a state Management pattern and a library for Vue.11 It enables the user to make a

centralized store in which the user makes states, getters, actions, and mutations. This allows

the user to call these functions and save the states from any component by using “this.$store”

notation. As an example, we could make a state, which in this case will be an array, called

products and make getters, actions, and mutations that would allow us to change the state

“products” and add all the products in the store. In this case “axios.get” was used to make an

API call to the database and fetch all the products and add them into the state “products.” Thus,

we can make states that hold information, such as Cart, Products, User, searchProducts, and so

on.

2.5.4 Vue router

Vue router is a way to traverse the website. Upon installation it will create a router folder with

a routing index JavaScript file. In the routing file the user will specify which paths and one

folder for “views.” Due to Vue being a single page application, the Vue router creates a “views”

folder that represents pages in a traditional html structure. As an example, the login page and

cart are views, and their path are defined in the router index file. When pressing on the user

icon it will then route you to */login and swap out the view files to login page.

2.5.5 Node Package Manager (NPM)

NPM is a software registry that the user can use to keep track of dependencies and keep them

up to date. The benefit of NPM is giving the user the ability to update the dependencies and

letting a group work on the same project while downloading the same version of dependencies

for all users.

2.5.6 Axios

Axios is a library that allows the user to create API calls using URLs. It is a simple to install

JavaScript library that works seamlessly with Vue. It has some benefits over other JavaScript

libraries, such as fetch, as Axios has some quality-of-life improvements, such as better error

handling, and automatic transforms of JSON data.

11 https://vuex.vuejs.org/ As of May 2021

https://vuex.vuejs.org/

11

2.6 Spring framework

Spring framework is a popular open-source java application framework. Most integral to the

framework, is its Inversion of Control (IoC) container, and Dependency Injection (DI). These

technologies allow Spring framework to detach dependencies from the code, further abstracting

it.12

2.6.1 Spring boot

Spring boot is a tool to create Spring applications, with an emphasis on simplicity. It

automatically configures third party libraries, eliminates the need for any XML configuration,

and provides some lesser features such as health checks and metrics.

2.6.2 Spring initializr

Spring initializr is a web tool that can generate a spring boot project structure.

Figure 2: Spring initializr (https://start.spring.io - As of May 2021).

12 https://spring.io/projects/spring-framework (As of May 2021).

https://spring.io/projects/spring-framework

12

It provides a graphical interface that lets you choose between a Maven and Gradle build

specification and a choice between Java, Kotlin, and Groovy as the programming language.

The app has a list of Spring and third-party dependencies that can be added. The web tool also

allows the specification of the version of spring boot and the project metadata.

2.6.3 Monolithic architecture pattern

Monolithic architecture is when one executable application is created. An independent software

that is responsible for all functionality and user interface are intertwined in one. One advantage

of this implementation is shared resources. For example, it is hosted on one server and shares

data via function call instead of http request. However, it can be difficult to maintain as the

software scales up and gets more complex.

2.6.4 Microservice architecture pattern

Microservice architecture is when monolithic software is divided into smaller more

manageable executables. Those smaller programs should have single responsibility. They are

not dependent on languages, as they exchange messages via JSON or XML response.

13

2.6.5 RESTful API

API is an abbreviation for application programming interface. It is a set of rules allowing

application to interact with each other. It will send data in a convenient format like JSON or

XML. REST is also an abbreviation and stands for representational state transfer. REST is an

architectural style that aims to make data presentation in a convenient way for the client.

Figure 3: REST API Design (https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api – As of May

2021).

Four basic operations that RESTful API are to receive data in a convenient format, create new

data, update data, and delete data.13 As shown in Figure 3 client will send request to RESTful

API that will then perform one of its operation.

13 https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api – As of May 2021)

https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api

14

3 Method

3.1 Scrum Agile development

In the project, it was used some elements of scrum in our workflow rather than following scrum

fully. This was a conscious decision, as scrum is optimized for larger project teams, which

allows for more specialization. According to the scrum methodology, there should be a scrum

master external to the project itself. Given that our project team consists of three members, this

did not make sense to implement. We all collectively oversaw the use of the core scrum events.

3.1.1 Daily scrum

Every weekday morning at around 09:00, we held a daily scrum meeting remotely, where we

delegated tasks for the day. This was very helpful to the project as it gave us a more structured

workflow, and a specific time to start the workday.

3.1.2 Sprints

Our project timeline was divided into 2-week sprints in the proper scrum fashion, with a sprint

meeting at the end of each sprint with the client to conclude the ongoing sprint, compare the

projected progress with the actual progress, and plan the next sprint accordingly.

3.1.3 Jira

Jira, a scrum management tool, helped us get a clear overview of these scrum events. It allows

us to make a board with split in three columns: “To Do”, “In Progress” and “Done”. By using

Jira, we can also create a backlog of issues or tasks that needs to be done and have an overview

of who reported it, and who is working on it. This makes it easier as a group to know what

everyone else is working on and the overall progress being made on the project. Furthermore,

we are able to get progress reports directly from Jira which makes it a very useful management

tool.

3.2 Git

For the project, we mainly used two git repositories, one for the storefront and one for the

warehouse database system. We used the Git graphical user interface GitKraken for our

repositories.

15

3.2.1 Repositories

We started with the repository “E-commerce-in-a-distributed-system-of-warehouses” Where

we started developing the storefront:

Figure 4: E-commerce-in-a-distributed-system-of-warehouses (part 1)

16

Figure 5: E-commerce-in-a-distributed-system-of-warehouses (part 2)

This repository has a large amount of test branches, which reflect the fact that the first two

sprints were to a large degree used for testing.

The storefront needed a ground-up rework with the website skeleton created in Vuex. The

development with Vuex started on a new repository, “E-commerce_Storefront”:

17

Figure 6: E-commerce_Storefront repository (part 1)

18

Figure 7: E-commerce_Storefront repository (part 2)

19

The warehouse database system was developed on the repository “WarehouseApp”:

Figure 8: WarehouseApp Repository (part 1)

20

Figure 9: WarehouseApp repository (part 2)

3.2.2 Git features used

As a principle, every feature that was developed was developed on a branch, and not merged

until it was fully functional. Therefore, one would commit the changes to a branch, test it and

then merge if everything is operational.

3.2.3 Merge errors

We used Gitkraken and as such we can use the merge tool included in the program. It allows

us to see if there are merge conflicts and visualize the code where the merge conflict is located

and shows how the output will look like.

21

3.3 Vue.js

Vue enables us to make as single page application with components that we can change. This

makes it quite reactive and enables us to make a scalable platform to create our website on.

Because Vue has template section for HTML, script section for JavaScript and style section for

CSS in each component, it makes it easy to create a more global styling in the “app.vue” file

and specific styling in each of the component. The biggest advantage for us is the availability

of libraries such as Vuex, Vue router and Axios.

3.3.1 Vuex

In this project, Vuex was used to introduce a state-based management system that allows us to

store arrays of information such as products, product by category, search products, and so on.

It also allows us to have states for an object such as a user.

Figure 10: Vuex Store modules

From Figure 10 we can clearly see the modular structure that we have used for the project. By

splitting the store up into modules, it makes it easier for others to read and understand the code,

while also maintaining better understanding and control of which stores are being used and

which states are being changed.

3.3.2 Vue router

As previously stated, Vue is a single paged application which is not directly suitable for an e-

commerce website. Therefore, we included the Vue router to be able to traverse the website

and create a better user experience.

22

3.3.3 Vue Devtools

The Vue devtools is a valuable tool as it allows developers to see which value is currently

assigned to any given variable or which input or value a method is holding. The Figure 11

below shows how this can be used as a debugging tool and tester. Here we can see that the

categories state is an array with 4 objects, whereas the first object is “Computers”.

Figure 11: Vue devtools

3.4 Maven

Maven is a project management tool, used primarily for Java projects. Maven makes it easier

for developers to build and managing projects. This is done with XML file called POM holding

on to configurations of the project. In that file for example, dependencies are added that are

used in the project.

23

3.5 Spring

3.5.1 Spring Framework

The Spring Framework is open-source Java application developing platform. Spring handles

the inner workings of the application or the low-level functionality. Enabling developing teams

to focus on high-level or application-level business logic and allowing the development to be

untied to specific deployment environments.14 The first version of the framework was released

in June 2003 and was written by Rod Johnson.15 From version 2.5 on, Spring Framework

started using annotations to control its behavior. Annotations provide meta data for the Java

compiler instruction, build-time instruction, and runtime instruction. It is used, for example,

for packaging compiled code into a JAR file. Prior to annotations XML configurations were

used. In this project, there are numerous annotations.

For instance, following annotations are used for this project:

@SpringBootApplication

- Is used instead of using three other annotations, (@Configuration,

@EnableAutoConfiguration and @ComponentScan), with their default attributes.

[https://docs.spring.io/spring-boot/docs/2.0.x/reference/html/using-boot-using-

springbootapplication-annotation.html]

@Bean

- A bean is another name for object. Instantiated and managed by Spring IoC (Inversion

of Control) container. It is a process where object define their dependencies without

constructing them.

@Autowired

- Is used to inject object dependency.

@Service

- Is used to annotate the service layer. This spring bean is where the business logic is

kept.

14 https://spring.io/projects/spring-framework

15 https://en.wikipedia.org/wiki/Spring_Framework As of May 2021

https://spring.io/projects/spring-framework
https://en.wikipedia.org/wiki/Spring_Framework

24

3.5.2 Spring Boot

Spring boot is an extension of Spring framework. It eliminates the common configurations

needed for Spring application setup. For example, Spring Boot comes with an embedded

server, in which facilitates the application deployment. Spring Boot also has a variety of

dependencies. Some of the frequently used are spring-boot-starter-data-jpa, spring-boot-

starter-web, and spring-boot-starter-security. Those are also the ones that are used in this

project.16

3.5.3 Spring Data JPA

Spring Data JPA (Java Persistence API) is a member of Spring Data family. Spring Data family

is a group of technologies which is explored to easy the use of data access technologies, such

as relational databases. With Data JPA developers write their own methods in a repository

interface and Spring will automatically implement them. The JPA repository comes with

create, read, update, and delete methods built in. This means that instead of writing SQL

queries developers map class objects to a table in the database with annotations. In the

following, we present some of the most used annotations used in this project.

@Repository

- Is used to indicate the class will provide operations for create, reading updating, and

deleting objects.

@Query

- This annotation allows for custom made query in a repository. Here developers can

write a normal SQL query.

@Transactional

- Is used to define the scope of each unique database transaction.

@Entity

- Is used to map a java class to a table in database. Each instance variables in a class are

mapped to a column in a database table.

@Table

- Is used to configure table settings; for example, to change the name of the table and

setting unique constraints.

16 https://www.baeldung.com/spring-vs-spring-boot – As of May 2021

https://www.baeldung.com/spring-vs-spring-boot

25

@UniqueConstraint

- Is used to configure unique constraints on a column. It is used with the @Table

annotations unique constraint setting.

@Inheritance

- Is used to map together or join inherited subclasses in java into a table in a database.

@Id

- Is used to declare the primary key. Each @Entity must have an @Id annotation like

each table in relational database must have a primary key. For generating unique values

for the primary key, the @SequenceGenerator and @GeneratedValue annotations are

used in conjunctions with the @Id annotation.

@Column

- Is used to configure the instance variables in java class. For example, setting name of

the column in the database and to set constraints like if column allows any null values.

@ManyToOne

- Is used to indicate relations to another table in a relational database. It is used on

instance variable that is itself an @Entity. Usually, it is used with @JoinColumn

annotation as a configuration method to a foreign key.

3.5.4 Spring Web

With Spring Web starter pack, developers have access to all the tools needed to make a web

application. In the spring web pack, there are for example, Spring MVC, REST, and a Tomcat

server. The Spring MVC is a Java Framework that is based on the *Model View Controller

design pattern. REST stands for Representational State Transfer and is an architectural style

for an API. This API uses HTTP request to access data. Tomcat server is an open source where

Java code can use HTTP environment. Like other spring boot dependencies annotations are

used. In this project, the following annotations were used:

@RestController

- Is used to create RESTful web service. It maps request data to a service that will handle

the request and then returns a JSON response.

@RequestMapping

- Is used to map request from client to control method. The annotations come with a value

that is the path needed to get a response and method which tells what kind of response

is requested. The methods can be GET, POST, DELETE, and PUT.

26

@RequestBody

- Is a JSON object that is sent as a respond to client request.

@RequestParam and @PathVariable

- Are used to get specific values from client request.

3.6 Java

3.6.1 Java programming language

Java is a high-level object-oriented programming language. Java was designed to run on any

platform with Java virtual machine despite underlying computer architecture. Its first version

was released in May 1995 and is today one of the most popular and most used programming

languages in the world. Java is class based and comes with large library of class-interfaces,

classes, and methods. Additionally, there are many 3rd-party libraries that can be used. This

project uses a few built-in classes, as well as one 3rd-party class.

3.6.2 List and ArrayList

The List interface is a set of instructions on how to work with collections of objects in Java. It

provides algorithms that handle for example adding and removing objects from collections.

ArrayList implements the List interface. ArrayList is a resizable array that inherits the methods

from List interface. The main difference between ArrayList and array in Java is that ArrayList

can change its size dynamically versus a fixed size of array.

3.6.3 LocalDateTime

LocalDateTime class is used to represent date and time in the ISO-8601 calendar system. From

this class comes timestamp of the date and time in this default format, yyyy-MM-ddTHH-mm-

ss.zzz or like this 2021-05-01T10:21:55321.

3.6.4 CommandLineRunner

CommandLineRunner is a part of Spring framework. It is an interface that is used to run code

immediately after a Spring application has started.

3.6.5 Faker

JavaFaker is a library that is used to generate variety of fake data. It is very useful when

developing project and large amount of data is needed for testing.

27

3.7 Postman

Postman is API development tool. It is used, for example, to test API by creating and sending

any kind HTTP request and reading their response. It is very useful, quick, and simple to use

when trying out new API calls.

3.8 Integrated Development environments

3.8.1 IntelliJ

IntelliJ is a java IDE from the JetBrains IDE collection. It was used to develop the back-end

warehouse application in Java for the project. IntelliJ was chosen because of its familiarity to

the group, as all members have used the IDE in previous projects. It has several features that

was helpful to the project:

• It has a code completion feature that give code recommendations based on the context

of the code. This made the developing process more efficient.

• The IDE layout contains several tabs: Text editor, project file structure, local console,

etc. Among these tabs, there is the Database tab. The database tab gives an overview of

the database hierarchy, as well as a query console.

3.8.2 WebStorm

WebStorm is another IDE from JetBrains that is specifically designed for web development.

The graphical user interface proved to be very consistent across the various JetBrains IDE’s.

Layout-wise, WebStorm was almost indistinguishable from IntelliJ, but different in terms of

functionality.

This IDE was chosen for this project as it had native support for vue.js development and was

thus very suitable for the development of the storefront. This IDE also provided a useful

feature: by writing “npm install” in the local terminal, WebStorm scans through the project

files and detects any npm dependencies and installs them. This feature helped synchronize

dependencies across all local instances of the project and meant that we could work without an

OS-level virtualization software such as Docker.

28

4 Development process

4.1 Project timeline

Sprint # Task Time started Time finished

A1 Research of platform and setup of dev area 15.01 29.01

A2 Created testing application 1.02 15.02

A3 Created database and Vue components 12.02 26.02

A4 Created new abstract database & API requests

while making new Vuex storefront

26.02 12.03

A5 Created data driven categories, implemented

product generator & finalizing API layer

26.03 09.04

A6 Created the register and login for user, order

confirmation & display stock for each

warehouse

09.04 23.04

A7 Administrative work (logs and weekly reports)

& Bachelor Report writing

23.04

20.05

4.2 Sprint overview

4.2.1 A1

In our first sprint, we familiarized ourselves with Vue.js and Spring Boot. This sprint was used

to work on the pre-project plan and learning how to use and setup the project. Therefore, this

sprint was mainly focused on gathering information, getting familiar with the platform, and

creating a backlog of the first steps. Figure 12 illustrates how we started the project by outlining

tasks that needs be done. We often discussed in group what is the basic steps needed to start

the project and write them all up in Jira.

29

Figure 12: Sprint A1

In Figure 12, we can see the start of Sprint A1 from Jan 15 – Jan 29. The Color coding is purple

for “To Do”, Cyan for “In Progress” and lastly Green for “Done”. The Y axis represents issues

in Jira and the X axis is time (By date). The following figures in Chapter 4 will have the same

layout.

4.2.2 A2

Sprint 2 started 1st of February and had the main focus on testing spring boot and Vue while

using tutorials to gain more knowledge. In this stage, we set up a test database and got a json

file with test products from DRIW. This file was not directly used but served as a reference

point for what kind of information we might need to add and which to omit. For instance, we

found that storing which package size should be used for each product was out of the scope of

this project. Furthermore, we created the first test application that communicated with the

database and did further research on the API layer in spring boot that we would use to make

requests from the website later.

Figure 13: Cumulative flow progress report for Sprint A2.

30

4.2.3 A3

In Sprint 3, we created “TV” and “book” classes for the database application where we defined

each product type. However, we soon found this to go against the “data-driven” goal for the

project, as this would require us to create classes in backend for each product, which would

also require the need to add classes in backend each time a new product type would be added.

We asked for advice from our advisor which guided us towards NoSQL databases. However,

it took longer than initially expected to learn Spring Boot and Vue, which put us behind

schedule. After discussing the use of NoSQL database with DRIW they advised us to still use

Postgres but to create a more abstract class, which our advisor also agreed it was a promising

idea for the group.

Early in the sprint, our client at DRIW offered us a meeting with Olaf Nykrem, who has a lot

of experience in the e-commerce field and previously was a leader in the digital department of

“Byggmakker” for 3 years and also developed trading solutions and the e-commerce

department for Malorama from 2016 to 2020. This was a big opportunity for the group to obtain

valuable information and inspiration for the project. Olaf Nykrem gave us insights into how

the websites function and the design decisions were made. This definitely helped us and gave

us another point of view that we could use as a reference for our own project. We are very

grateful to Olaf for taking his time to help us, and to Marius for making the meeting possible.

Figure 14: Cumulative flow progress report for Sprint A3.

31

4.2.4 A4

In this sprint, we experienced the biggest progress in the project so far. We had created an

abstract database which allowed us to implement a more data-driven website and implemented

Vuex which allows a centralized store file with state-based management. We found this to be

a perfect fit for the project. This allowed us to instead of passing props from one component to

another, we could store in it states. Not only did this decrease the chances of bugs but also

decreased the complexity of the project and allowed us to focus more on new features. For

instance, we could now make state arrays like cart and products that would hold on all the

information in the cart and all the products in the database, while also making simple calls to

them when needed. The feature created during this sprint was the routing for all the categories,

login page, a hero component showing new products and displaying all products.

Figure 15: Cumulative flow progress report for Sprint A4.

 Note that the end of this sprint 12th of march and the start of the next sprint is moved forward

to 26th of march. This is due to the system subject exam preparation.

4.2.5 A5

In Sprint 5, we implemented a product generator that can make “fake” products to be able to

test our features and that they are functioning properly. We created all the API calls and made

a list all the calls that are available. Furthermore, we created the search logic in the Vuex Store

JS that was connected to the search bar and implemented data-driven categories that will get

the name of all the categories in the database and create a spot for them on the header with

routing to a page that will show all products associated with the category. Lastly the backend

system for handling and storing reviews was completed.

32

Figure 16: Cumulative flow progress report for Sprint A5.

4.2.6 A6

Sprint 6 was close to the ending of the project as the group has now moved one of three group

members on writing the report while the last two are finishing up the last of the work on the

project. In this Sprint, the Store JS was split into modules to decrease the complexity and also

make it easier for others to understand and easily locate the Store calls in the code. This was

important as it makes the code more readable and decreases the time needed to debug as it is

more transparent which methods are being used at a given time. Moreover, a couple of bug

fixes were completed and the features, such as user registration and login were finalized. Lastly,

in this Sprint, the group was able to create all the checkout functionality before starting the

writing process.

Figure 17: Cumulative flow progress report for Sprint A6.

33

4.2.7 A7

The last Sprint is being used to write the report and finishing some CSS styling for the website.

This Sprint is reserved to finish the report and make sure that all resources are available and

finalized.

Figure 18: Cumulative flow progress report for Sprint A7. All issues are now listed as complete

4.3 Development model

4.3.1 Project tools

To make sure that all the changes being made to the program are being handled properly,

without merge conflicts, we decided to use Gitkraken. This is due to the fact it is a simple

graphical interface, which makes it easy to keep track of all the changes and branches being

made, and the ability to visually compare the difference between to commits in the case that a

merge conflict arises.

4.3.2 Management tools

We are using Jira as a way to guide the project and workflow. This is done by delegating issues

or tasks that need to be done. We are also able to create multiple charts that will be used to

improve our awareness about our progress and workflow, possibly contributing to the decision-

making along the project development.

34

4.3.3 Development tools

We use:

• GITHUB to host our git repositories.

• IntelliJ IDE for making backend system.

• WebStorm for making the website storefront.

• Vue Devtools for debugging and testing

• DataGrip to manage the databases

• Postman to push information to the databases.

• Gitkraken GUI for GIT

4.4 Project meetings

Meetings with advisor: After every 2-week sprint, we met with both our advisor and our contact

in DRIW AS. The exact date and time may vary and were scheduled some days prior to the

meeting. We chose to have meetings like this because we could then give a report on the

previous sprint and receive guidance for the next sprint.

Group meetings: Every weekday morning at 09:00 we had a SCRUM meeting planning out the

day. After the meeting, we used to work together in discord or physical meetings until 14.00.

Work log: We created a sprint chart and rapport using Jira. This gave us opportunity to have

access to all the information about the issues in each sprint. This report showed the number of

issues that are finished and the number of issues that are still under progress and needs to be

continued in the next sprint.

Progress reports: After every sprint, we created progress reports using Jira. By using this

platform, we were able to create Burnup charts, velocity charts, and normal sprint reports to

visualize the progress and remaining work for the project. This was utilized to support decision

making in the group.

35

5 System architecture & implementation

In this section, we explain how we designed the system and how we implemented it. The system

is divided into RESTful API backend system and data driven frontend website. The backend

system is implemented with Spring Boot framework and Microservice architecture. The

frontend is implemented with VUE.JS framework. HTTP requests are used for communicating

between the systems.

5.1 Backend design

The backend system is divided into four main components. The warehouse application and

three store applications. The warehouse has its own database and is running on its own server.

The warehouse is responsible for all information about products, users, and orders. Each store

is its own application with its own database and are running on different servers. The stores are

responsible for their individual inventory. With minimum effort, a new store can be added to

the system.

36

Figure 19: Microservice backend architecture.

Figure 19 shows the design of the system. It follows a Microservice architecture. On the top

right, there is the Warehouse service. Below, there are three stores, A, B, and C. Further down,

we show that more stores will have the same setup as A, B and C. The stores get product ids

from the warehouse via http request. On the left, there is the StoreFront Website and the client

browser. The store front communicates with the warehouse and each store via http requests.

5.1.1 Warehouse implementation

The warehouse system is made with the Java Spring Boot Web framework and PostgreSQL

relational database system. It is responsible for all customer, product, and order data, as well

as for making test data used for this project. Figure 20 illustrates the warehouse database

diagram, indicating the entities and their relationships.

37

Figure 20: Warehouse database diagram

5.1.2 Store implementation

The stores are also made with Spring Boot Framework and use a PostgreSQL database. Each

store gets product ids from the warehouse vie API call and is responsible for keeping inventory

list of products available in that store. The store has only one entity and that is the inventory

entity.

38

5.2 Entity of the store

5.2.1 Inventory

The inventory entity has four properties. The id property is the primary key and is of type big

integer. Then there is the product id that also is of type big integer. Stock property is Boolean,

while and quantity property is of type numeric.

Figure 21: Inventory entity

5.3 Entities of the warehouse

In the database, we ended up with six main entities. Customer, product, category, review,

warehouse, and orders. There are five other entities in the database that all inherit from the

product entity. Figure 22 shows the class diagram for product and children classes of product.

Figure 22: Class diagram showing product hierarchy

39

5.3.1 Customer

The customer entity represents users in the database. It contains eight properties. The primary

key is the Id property that is auto incremented big integer type. Another attribute is a unique

email (text type). Other attributes are first name, last name, telephone, and address, that are all

varchar types or text. The timestamp type is used for registering date and the varchar or text

type for password. The password is encoded in the database. Figure 23 shows the customer

table, while Figure 24 shows the encoded password as it is stored in the database row.

Figure 23: customer entity

Figure 24: encoded password in database

5.3.2 Category

The category entity is a small table only with Id and name properties. The id is auto incremented

and unique primary key of type big integer. Name is of type text or varchar.

Figure 26: Category table

Figure 25: Category entity

40

5.3.3 Product

The product entity represents what is in common with the all the products. It contains six

properties. Primary key is the Id property which is big integer type and is auto incremented and

unique. Then there are three text properties: description, images, and name. Image property

keeps the URL of an image associated with the product. Also, there is the price property that

is of type double. Category id property is a Foreign Key to the id property in category (section

5.3.2) entity.

Figure 27: Product entity

5.3.4 Tech product

Tech product entity is a child entity to the product entity. It has three properties. Model and

producer are both text type properties. The id property is a Foreign Key to the id in product

entity.

Figure 28: Tech product entity

5.3.5 Specific products

In our project, we use four types of products: book, computer, camera, and TV. Four each of

those we have an entity in the database. The book entity is child to the product entity. Computer,

camera, and TV are child entity to the tech product entity. The book entity has five properties:

ISBN, author, and publisher are all the text type. Edition is of type integer and the id is an

41

integer and foreign key to the product entity. Computer has three properties: CPU, RAM, and

Id. CPU and ram properties are both of type text. The Id is of type integer and is a foreign key

to the tech product entity. The camera entity has also three properties. Megapixel’s property is

of type numeric and holds floating number; Zoom is of type integer; and the id of camera entity

is like the id of computer entity. The TV entity has the same kind of id as camera entity and

computer entity. It also has an attribute named smart (Boolean type) and screen (text type).

Figure 29: Book entity

Figure 30: computer entity

Figure 31: camera entity

Figure 32: Tv entity

42

5.3.6 Review

The review entity has four properties: The id is a Primary key and of the data type big integer;

The comment property of type text and rating property of type integer; and finally, the product

id property, a foreign key of type big integer referring to the id of the product entity.

Figure 33: Review entity

5.3.7 Orders

The orders entity represents an order in the database. It contains seven properties. Id is of “big

integer” datatype; it is the primary key of the table. Another attribute, the order date is of type

timestamp. Order date gets its value from the LocalDateTime(link) method. Quantity is of type

integer and total price is of type double. The table also contains three foreign keys, all of which

are of type big integer. Fk customer refers to the id of customer entity (5.3.1). Fk product refers

to the id of the product entity (5.3.3). And at last, the fk warehouse that refers to id of the

warehouse entity (5.3.8).

Figure 34: Orders entity

43

Figure 35: Orders in postgres database

5.3.8 Warehouse

The warehouse entity has three properties. Id is of type big integer and is the primary key of

the table. Name property is of type text and port property is of type integer.

Figure 36: Warehouse entity

44

5.4 RESTful API for the warehouse and stores

The warehouse system is a Java @SpringBootApplication. It is run from the main class of the

system the WarehouseappApplication class. The first thing that happens when the application

runs is CORS configuring. This configuration allows for the system to run on localhost as a

server. Next the CommandLineRunner runs code that generates and loads the localhosted

postgres database with dummy data. Then the RESTful API of the warehouse application is up

and running on localhost port 8090. The store system is also a Java @SpringBootApplication

like the warehouse. We use CORS configuration as well in the store application to allow the

warehouse server to be accessed securely. In this project, we have three store applications.

They are all exactly alike only with the application properties configuration of the database

different as well as the port they are running on. When store application runs the first thing it

does is to get product ids from the warehouse. Next it randomly generates inventory list

associated with the ids. Then the store server is running and ready to handle http request from

the storefront. We use localhost port 8091, 8092 and 8093 for the three stores. New stores can

be added only be setting up new databases and new ports. The client will send http request to

the RESTful API controller located in @RestController class. The @Servie class will handle

the business logic of the request and communicate with the dataservice (postgres database) via

the jpa repository. The client will then get response from the API whether it was and successful

request or not. For each of the entities in the warehouse system is a RESTful API. Each entity

has its own @Entity class, @RestController class, @Service class and a @Repository

interface. For example, as shown in Figure 37 the product package in warehouse application

has the following classes. Product is the @Entity class. ProductController is the

@RestController. ProductRepository is the JPA-repository interface. And ProductService is

the @Service class.

Figure 37: product package with its classes and interface

45

5.4.1 Application properties

The application properties file of the warehouse system is used for configuring the system. The

main purpose is to setup the connection to database server and the JPA handling of that

database. Also, is it possible to reconfigure the server port that is set as default 8080.

Figure 38: Properties configure for warehouse

5.4.2 Entity classes

The entity class is the class that is mapped to a table in the database. It is a normal Java class

annotated with @Entity at the top. It requires an @Id instance variable that becomes the

primary key in the database table. In the following, there is a code snippet that is an example

of a basic entity class.

@Entity

@Table (name = “category”)

public class Category {

 @Id

 private Long id;

 @Column

 private String name;

 // other variables

 // empty constructor

 public Category () {}

 // getters and setters omitted.

}

The instance variables of the class will become property of the database tables mapped with

the class. The @Column annotation is used to configure the property. Some of the

configurations are used to define the type and name of the property and if it allows null value

46

in the table column. In this project, we used @SequenceGenerator and @GenerateValue with

the @Id to auto generate unique ids for all the products, orders, customers, reviews, and

categories.

To make a relation between tables, we used @ManyToOne and @JoinColumn with the

instance variable that is itself another entity class. Example of this is showed in following code

snippet.

@ManyToOne

@JoinColumn (name = “category_id”)

private Category category;

Here the category variable is a foreign key to the id in category table of the database. Another

example of this is in the orders class, shown in Figure 39. In that class there are three foreign

keys relating orders to the customer table, the product table, and the warehouse table.

Figure 39: orders entity class

47

5.4.3 REST API control layer @RestController

Figure 40: ProductController class

The @RestController class acts as a control layer between the client and the service it requests.

The class contains the API request methods. Each method is annotated with @RequestMapping

and in this project with @CrossOrigin annotation. Cross origin or CORS stands for Cross

Origin Resource Sharing. It defines a way for client and server to determine if it safe to allow

cross origin request.17 Figure 40 shows how @CrossOrigin sets origin at localhost with port

8080 as a secure origin for request.

@RequestMapping annotation is used to map the http request to the method. Figure 41 shows

how the top method @RequestMapping is configured to the path “/products” with cross origin

set to “http/localhost:8080”. This means that sending the http GET request to

“http/localhost:8080/products” will invoke the getProducts method and return JSON response

of all products of the warehouse application.

@RequestMapping default configuration is a GET request. With the method configuration in

the request mapping one can choose which type of request the method responds to. The most

common are GET, POST, DELETE and PUT. Instead of configuring the request mapping it is

possible to use directly for example, @GetMapping for GET methods and @PostMapping for

POST methods.

17 https://www.w3schools.com/tags/att_script_crossorigin.asp As of May 2021

https://www.w3schools.com/tags/att_script_crossorigin.asp

48

Figure 41: @RequestMapping

Figure 42: @GetMapping

Figure 43: JSON response from customer GET method with customer id of 51

Figure 44: @PostMapping

Figure 45: JSON data object sent to warehouse server as Request body in POST method.

By means of POST methods, data is sent to the server. That is done by using @RequestBody

annotation. The request body is an JSON object representing the variables needed to instantiate

an object on the server. This JSON data is sent as a parameter to the method. Also, as a

parameter can be path variable and or request parameter, annotated with @PathVariable and

@RequestParam. Both are parameters that come from the request string. One of the ways we

49

use @PathVariable in our project is to get ids. For example, the request string in the controller

is “/customer/{customerId}”. The {customerId} is the path variable there. Request call to

“http:/localhost:8080/customer/22” will return customer with id 22. @PathVariable can be

optional parameter with default setting.

Figure 46: Customer with id @PathVariable.

Figure 47: confirmOrder method with three @PathVariables and a @RequestBody.

Request parameter annotated with @Requestparam is also a parameter taken from the request

string. Opposed to @PathVariable, request parameter is a required parameter. As shown in

Figure 48, the set request string in the controller is “inventory/purchase” but the request from

client is on the form “http:localhost8091/inventory/purchase?product_id=9&qty=1”. Here the

request parameters product_id and qty have value associated with them as parameters of the

method.

Figure 48: decrease Quantity method with two @RequestParam.

Each of the @RestController class depends on @Service class to handle the business logic of

the request.

50

5.4.4 The service layer @Service, and Data access layer @Repository

The @Service class handles the business logic of the warehouse application. The class depends

on a JPA interface repository or the data access layer. Annotated with @Repository. The JPA

is the standard way to save Java object to database as well as retrieve Java objects from

database.18

Figure 49: Inventory repository

Every method in the control layer is serviced by a method in the service layer. In our project,

they have the same method declaration. The service layer methods get request, or method call,

from control layer methods. The service method then will use its data access layer to store or

retrieve data in the database.

Figure 50: Get product by search query, from control layer.

18 https://www.oreilly.com/library/view/spring-data/9781449331863/ch04.html as of May 21

https://www.oreilly.com/library/view/spring-data/9781449331863/ch04.html

51

Figure 51: Get product by search query, from service layer.

As shown in Figure 51 the method “getProductBySearchString” in service layer gets a search

query string from getProductBySearchString method (see Figure 50), in the control layer. The

service layer method then gets list of all products from the data access layer. Furthermore, the

service layer method instantiates new empty list. It then goes through the product list and

matches the string it got and adds to the empty list if it matches. Then it returns this new list

with products based on the query string to the control layer and back to the client.

Another example of the service layer is the confirmOrder method. This method takes parameter

of type Orders. Java Orders object is generated from JSON data from the @RestController

layer and sent to the JPA @Repository layer where it is persisted into the database (see Figure

52). And then the object instance become a row in the database (see Figure 53).

Figure 52: confirm order method of service layer.

Figure 53: Orders in database.

52

5.4.5 Full API list for the warehouse and the stores

We use @RestController for each entity in our warehouse application. There are in total seven

controller classes with twenty-nine request mappings.

http://localhost:8090/products

Returns all products in database.

http://localhost:8090/products/{categoryId}http://localhost:8090/pro

ducts/{categoryId}

Returns all products by category.

http://localhost:8090/product/{productId}

Returns product by its id.

http://localhost:8090/getProductsIds

Returns all products ids. Used by the stores to get the ids.

http://localhost:8090/search/{query}http://localhost:8090/search/{qu

ery}

Returns list of products based on search string or query.

http://localhost:8090/products/{categoryId}/addhttp://localhost:8090

/products/{categoryId}/add

Adds new product based on category.

http://localhost:8090/products/{categoryId}/addManyhttp://localhost:

8090/products/{categoryId}/addMany

Adds list of products based on category.

http://localhost:8090/products/{productId}/removehttp://localhost:80

90/products/{productId}/remove

Deletes product by its id.

http://localhost:8090/products/review

Returns reviews for all products.

http://localhost:8090/products/{productId}/review

Returns review for product based on the product id.

http://localhost:8090/products/{productId}/addReviewhttp://localhost

:8090/products/{productId}/addReview

Adds review based on product id.

http://localhost:8090/products/{categoryId}/addComputer

Adds new computer product.

http://localhost:8090/products/{categoryId}/addCamera

Adds new camera product.

http://localhost:8090/products/{categoryId}/addBook

http://localhost:8090/products
http://localhost:8090/products/%7bcategoryId%7d
http://localhost:8090/products/%7bcategoryId%7d
http://localhost:8090/products/%7bcategoryId%7d
http://localhost:8090/product
http://localhost:8090/getProductsIds
http://localhost:8090/search/%7bquery%7d
http://localhost:8090/search/%7bquery%7d
http://localhost:8090/search/%7bquery%7d
http://localhost:8090/products/%7bcategoryId%7d/add
http://localhost:8090/products/%7bcategoryId%7d/add
http://localhost:8090/products/%7bcategoryId%7d/add
http://localhost:8090/products/%7bcategoryId%7d/addMany
http://localhost:8090/products/%7bcategoryId%7d/addMany
http://localhost:8090/products/%7bcategoryId%7d/addMany
http://localhost:8090/products/%7bproductId%7d/remove
http://localhost:8090/products/%7bproductId%7d/remove
http://localhost:8090/products/%7bproductId%7d/remove
http://localhost:8090/products/review
http://localhost:8090/products/%7bproductId%7d/addReview
http://localhost:8090/products/%7bproductId%7d/addReview
http://localhost:8090/products/%7bproductId%7d/addReview

53

Adds new book product.

http://localhost:8090/products/{categoryId}/addTVhttp://localhost:80

90/products/{categoryId}/addTV

Adds new tv product.

http://localhost:8090/categories

Returns all categories.

http://localhost:8090/categories/add

Adds new category.

http://localhost:8090/customer

Returns all customers.

http://localhost:8090/customer/{customerId}http://localhost:8090/cus

tomer/{customerId}

Returns customer by its id.

http://localhost:8090/customer/addUser

Adds new customer.

http://localhost:8090/customer/login

Returns customer if password is valid.

http://localhost:8090/orders

Returns all orders.

http://localhost:8090/customers/{customerId}/orders

Returns all orders based on customer id.

http://localhost:8090/products/{productId}/ordersByProductId

Returns all orders based on product id.

http://localhost:8090/customers/{customerId}/orders/{productId}/ware

house/{warehouseId}

Adds new order to orders based on custormer id, product id and warehouse id.

http://localhost:8090/warehouse

Returns list of warehouses.

http://localhost:8090/products/%7bcategoryId%7d/addTV
http://localhost:8090/products/%7bcategoryId%7d/addTV
http://localhost:8090/products/%7bcategoryId%7d/addTV
http://localhost:8090/customer/%7bcustomerId%7d
http://localhost:8090/customer/%7bcustomerId%7d
http://localhost:8090/customer/%7bcustomerId%7d
http://localhost:8090/customer/addUser
http://localhost:8090/customer/login

54

5.5 Frontend

5.5.1 Frontend Design

We wanted to make a website that will be reactive and also data driven. Therefore, the design

needs to be integrated with the warehouse application and have components that will change

based on the data it will receive from the warehouses. For instance, the header of the website

makes a call to the warehouse to get all the registered categories for the products and will make

a spot on the header and a routing to a product component where we will pass the information

on which category was selected by the user. By making the design this way, it would make it

possible for potential shop owners to simply drop in a new category in the database and the

website will show all products related to that category.

Figure 54: Diagram for views and components

Moreover, it is important to distinguish the difference between a component and a view. The

components are swappable, meaning we can reuse them and simply put them into other areas.

For instance, the add to cart button is a component in which we can put on a product card or in

product information page. Whereas a view can be considered more as a page. An example of

this would be login page or the cart.

55

5.5.2 Components

Since Vue is mainly a single paged application, it is important to create components that can

swapped in and out of the page when needed. In this project, we have components like: Product

card, Categories, search bar, and so on. These can easily be moved and placed in other areas of

the website. This makes it very modular and makes it easy to change the layout of the website

if needed.

Figure 55: Components in the storefront

In Figure 55 we see all the components that make up the storefront. The main function of the

footer is to add a couple of “About us” fields where we have some information about the team.

(see Figure 56 below)

Figure 56: Footer component

56

The Header component is more complex as it contains multiple smaller modular components.

By looking at Figure 55, we can see the components included in the header folder is: CartIcon,

Header, HeaderIcons, LoggedIn, LoginIcon, and lastly SearchBar. Thus, there are icons for the

Cart, Login button and also a changeable icon for LoggedIn. This is because we want to give

feedback to the user when they have logged in. Therefore, we change out the normal Icon with

a new green logged in icon which gives positive feedback to the users that they are currently

logged in. Furthermore, we have small counter on the cart icon that displays the number of

products added to cart.

Figure 57: Code snippet from header component

Figure 57 above shows the code from the header component. From this we can clearly see the

benefit of defining everything in its own component. As in the header all we need to do it call

the components we need using, for instance <SearchBar/>, and importing it in the script

section. This adds the search bar inside the header component and makes it very modular and

easily changeable.

5.5.3 Vuex Store

The Vuex Store is modular and holds all the states, getters, mutations, and actions that were

used in this project. Firstly, I will explain how the states, getters, mutations, and actions operate

and tie together. Secondly, the explanation of the modules using an example of category store

module.

57

Figure 58: Visualization of Vuex functions

Figure 58 above shows how Vuex functions. We never want to change a state directly,

therefore, we make an action that commits its changes to a mutation. An action and mutation

are quite similar; however, an action will not change a state directly but instead commit a

mutation that will use the payload of the action to change the state. Therefore, only actions and

getters will be used in the components of the code as none of this directly change the states’

information.

Figure 59: Vuex Store Modules

Figure 59 shows all the modules that we have split the store into. Each of these folders contains

an index.js file that keeps the relevant states, getters, mutations, and actions. In Figure 60

below, we see the states listed in products module. From the figure, we can see that the module

products hold 3 states: Products (Array), Cart (Array), and lastly Product (Object). Each of

these states play a valuable role in the storefront. As the products array hold the information of

all the products, we will receive from the backend system. Cart will hold all products added to

58

cart and product object holds a single product. The goal of this state is to hold a single product

when you click on a product card and want more information on the product.

Figure 60: States of products module

The other modules, such as category, hold states that are relevant to obtain categories and

displaying them on the website. Therefore, we have category state and category products. The

category state will hold the information of all the categories which exists in the database. This

state is what we use to display all the categories on the header.

Figure 61: Snippet of categories.vue component.

From figure 61 we can see how it will use the Vuex store getter “getAllCategories”, which

returns the categories state, to find all categories and create a router link and displays the name

for each of the iterated categories. It also includes a method “getCategoryProducts” which will

use the category id to find products that are included in the given category.

5.5.4 Routing and views

The routes are defined in a router.js file in the project. This file includes the URL pathing, name

and the component that will be shown. In Section 5.5.3, we explained how the categories will

be displayed on the website. To continue this example, we will look at what happens once a

category has been pressed on the header. From figure 61, we could see the router link leads to

“/product”.

59

Figure 62: Routing example

Figure 62 essentially shows us that once the router link has been pressed (/product) we will

show the “ProductByCategoryView”. The view files are components, but it is easier to think

of them as pages. Thus, we move from the page we are currently on and move to the page

where the products related to the category will be shown.

5.5.5 Information gathering

For the information gathering the Axios library is used in Vue. Axios allows us to send request

to the Restful API. The Axios get requests are stored in the Vuex Store files. When the get

requests are called, they will receive the data from the database and put the information into

the states. Thus, when we need to display the information we have stored, we will make a call

to the store getter and then display it.

60

Figure 63: Vuex search module

In Figure 63 above we can see how the search bar follows these instructions. When the text has

been written in the search bar it will be saved as the variable text under actions. Thus, we can

see from this example that the action will use text in an Axios get request and send the payload

(response data) to the mutation which will change the state. Lastly the getter will simply display

the information currently stored in the state “searchProducts”.

61

6 Results

6.1 Requirement specification

We received a requirement specification from our DRIW AS contact, containing a list of

requirements structured into three tiers based on priority:

• P1 – MVP: Minimum Viable Product (MVP) is the minimum requirements for a

working product. The main priority of the project was to ensure that the MVP features

were completed.

• P2 – Wants: After ensuring that the MVP features were in place, some of these features

were implemented. Many of the p2 features were closely linked to the development of

p1 features.

• P3 - Nice-to-haves: Most of these features were deprioritized and thus not implemented,

although some of the p3 features were similarly to the p2 features in that they were

linked to the development of p1 features.

6.2 Features implemented

All, except for one, P1 (MVP) features were implemented. Most of the P2 features and some

of the P3 features were implemented as well. Most of the requirements related to a number of

core features:

• Search bar

• Home page with product browsing

• Product pages

• Cart

• Checkout

• User account system

• Warehouse system

• Administrator system

• Rating system

These core features were implemented as following:

62

6.2.1 Search bar

Requirements:

• P1: The system should allow customers to enter a search query and give back relevant

products.

• P3: The system should allow customers to search for properties in a product where

name weighs most for relevance.

Implementation:

Figure 64: Header with search bar

The navigation bar contains a search bar that sends search queries trough Axios request to the

database. The search query is applied to various data entry attributes such as the product

descriptions and other features, not just the product name.

6.2.2 Product browsing

Requirements:

• P1: The system should display suggested products in the start page.

• P3: The system should display suggested products based on products reviewed.

• P1: The system should build the product categories in the store based on all registered

categories in the database.

63

Implementation:

Figure 65: Browsing products

The storefront shows the product categories that are stored in the database. The backend review

system determines which products are displayed on the home page.

64

6.2.3 Product pages

Requirements:

• P1: The system should display product information to customers such as physical

properties, name, and description.

• P1: The system should allow customers to check the total available stock available for

purchase.

Implementation:

Figure 66: Product details

Each product from the database(s) are generated a product page for that product. The product

page displays:

• Picture of the product

• Name of the product

• Description

• Add to cart button

65

6.2.4 Cart

Requirements:

• P1: The system should allow customers to add products to a shopping cart if it is

available.

• P1: The system should allow customers to remove products from a shopping cart.

• P1: The system should allow customers to check the stock available for purchase in

each warehouse.

Implementation:

Figure 67: Cart with items

The shopping cart is accessed through an icon of a physical shopping cart in the navigation bar.

You can add more of a product or remove products from the shopping cart by clicking the (+)

and the (-) on the cart page. You can also choose the warehouse to ship from certain warehouse

locations and see the stock in each warehouse.

6.2.5 Checkout

Requirements:

• P1: The system should bring the customer to a checkout page listing the name, price,

and quantity selected of each item.

• P1: The system should give the customer an order confirmation after confirming the

purchase, this is also stored in the database.

• P1: The system should display to the customer which warehouse each product is sent

from after confirming the order.

66

Implementation:

Figure 68: Checkout page

The checkout page shows each product with its corresponding quantity. The page displays a

personalized message to the user asking for confirmation to checkout.

6.2.6 User account

• P1: The system should allow the customer to register a user account by providing a

username and password.

• P1: The system should allow the customer to log in to the page.

Implementation:

The navigation bar contains an icon that links to the login page. The login page has two input

text boxes, email, and password. It also has a registering page, which is accessed through the

link below the login interface.

Figure 70: Register new user

Figure 69: Login for users

67

6.2.7 Warehouse

Requirements:

• P1: The system should have its own database (cannot share with other instances) and

be its own application instance.

• P1: The system should only be able to communicate with other applications through

HTTP(S) and it is not allowed to access other warehouse databases directly.

• P2: The system should have a way of automatically generating test products at scale.

• P1: The system should allow reading product information without authentication.

Implementation:

All the requirements of the warehouse where fulfilled. The warehouse is its own application

with database. Each of the stores are its own application with database. The communicate with

each other and with the storefront via http requests. We made script within both the warehouse

and the stores to auto generate test data. No authentications are needed to read product

information.

6.2.8 Non-functional requirements

These requirements are not part of the core features of the system.

Requirements Implementation

P1: The user should only have to

visit one URL to reach the store.

The website is accessed through a single URL that links

to the storefront’s homepage.

P2: The user should always

know the content of the

shopping cart.

The cart shows a number for each product in the cart,

showing how many of that product is in the cart.

P2: The user should know if

he/she is logged in.

There is a login-icon that is green when logged in, red

when not logged in.

P2: Any user interaction should

take no longer than 2 seconds to

give feedback to the user

Every action happens virtually instantaneously. (the

website is only running locally, as agreed upon by our

client)

68

P1: User credentials must be

secured when in storage.

User credentials are encoded before it is stored using

the Spring framework dependency

“BCryptPasswordEncoder”19.

P1: The system should have at

least 3 warehouses.

The system has 3 warehouses, for three different

physical warehouse locations.

6.3 Partly finished features

These features were implemented but remains incomplete.

6.3.1 Rating system

Requirements:

• P2: The system should allow customers to check a total rating for a product of 1-5 stars

where half stars are allowed.

• P3: The system should allow customers to read individual reviews with their star rating

included.

• P2: The system should let a logged in user submit a review with a rating (1-5) and

comment of a product.

Implementation:

The rating system was fully implemented backend-wise, as the products stored has a rating

attribute - but the rating is not displayed on the website. There is also no interface to add ratings

to products from the user. However, the website uses the stored ratings for each product to

determine which ware is displayed on the home page.

19 https://docs.spring.io/spring-

security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEnco

der.html as of May 2021

https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html

69

6.3.2 Other features

Requirements Implementation

P2: The system should display

all completed orders for a

customer

The database stores every completed order for the user.

But this information is not displayed on the website.

P2: The system should be able

have more warehouses with

minimal work.

It is simple to add new warehouses by programming the

backend system, but there is no frontend interface to

add new warehouses.

P1: The system should tell the

store its stock on start and as it

updates.

The stock updates as the user launches the website, but

there is no update interval.

6.4 Deprioritized features

Among the P2 and P3 features, there were features that were not implemented:

• P3: The system should display and take into account tax (here 25%) in the total price.

• P2: The system should allow the customer to cancel their order if done within a given

timeframe.

• P3: The system should allow the customer to change their password.

• P3: The user should reach the order history page using maximum 2 clicks.

• P3: User credentials must be secured at transport.

• P2: The stock in the store should not be out of sync longer than 5 seconds.

The features were not implemented due to the projects time constraint. (see 7.1.1) The

reasoning for deprioritizing these features, were the prioritization hierarchy of the requirement

specification from our client, DRIW AS. The features not implemented were all p2 and p3

requirements. Furthermore, most of them were classified as non-functional. The p2 and p3

requirements related to creating an administrator system was not deprioritized, but rather

excluded due to time constraints; This could be implemented in future work. (See 7.2.1)

70

7 Discussion

7.1 Challenges and limitations

7.1.1 Time management

A challenge to our project was managing our time for the duration of the product. In our original

project plan, we made a poor estimate of the time needed on some parts of the project. This

became most evident during the first and second sprint, when we were learning about the spring

framework and vue.js framework for the warehouse management system and storefront,

respectively. The two frameworks proved to be much more time consuming to learn than

previously estimated.

7.1.2 Vue and Vuex

When we were learning about the Vue framework, we were simultaneously developing the

project with Vue. The development of the frontpage were, particularly in focus. However,

during the fourth sprint the group discovered more limitations with the vue.js framework. In

particular, implementing the cart system in Vue was a challenge. This was because the cart

system among other features heavily relied on Vue’s prop system, the more complex the Vue

system there is, the more flow of data there is. As we reached more complex features that relied

on more data transfer, such as the cart system, it was evident that we needed a better foundation

for the storefront.

The solution was to re-implement the storefront in Vuex. Vuex’s state management pattern

meant that the reworked storefront was now state based. In addition to the system becoming

much more scalable and data-driven, implementing the product information pages and cart

system was much easier.

7.2 Future work

Although the project was finished, there was certain features that could be added, and room for

improving existing features:

71

7.2.1 Administrator system

Among the P2 “wants” category of requirements, there were several requirements relating to

the implementation of an administrator system. The requirements were as following:

• P2: The system should allow an administrator to log into administration pages.

• P2: The system should allow an administrator to add, remove, and update product

information in any warehouse.

• P2: The system should only allow writing to production data by an authenticated

administrator.

Given that they were a P2 requirement, they were not integral to creating a functioning system.

However, having an administrator back-door is very helpful for scalability. If the storefront

were going to have real clients, it would need administrators to add, remove, and update product

information. And for those hypothetical administrators, having access to an administrator page

would be a great tool.

In potential future work, an administrator system would be implemented as following:

Admin page made with VUE where admin logs in. From there admin will fill out form with

new product to add to the warehouse application. Filled out form will be sent via http request

to the RESTful API. Admin will be able to retrieve information about all products and full

inventory list from all stores in the system. Furthermore, admin will be able to adjust stock in

each store. Some of the backend implementation is already in place.

7.2.2 Web design

Our storefront website was implemented with a purposeful design; It is made clear to the user

that the website is a storefront. It also has an inherent simplicity as the styling is minimal. Other

than its purposeful design and simplicity, there has not been any explicit development on the

design of the website during the project. This was a conscious decision, as there was not a

single requirement from DRIW AS related to web design. It was made clear that the aim was

for the project to be centered around developing a functional storefront and warehouse system

rather than making an attractive website. However, we still recognize the principles of good

web design as relevant to any web development project and have made some ideas for potential

improvements for future work.

72

7.2.2.1 Consistent styling

For a more visually appealing website, there should be few colors, less than 5. These colors

must also complement each other. Furthermore, there are some colors that are strongly

associated with certain actions. For example, red is associated with deletion, warnings, and

otherwise negative messages. Green is associated with addition and otherwise positive

messages. Typography also needs to be appealing and consistent. There are a multitude of fonts

available, and each one of them affect the user experience differently. Images as well play a

role in the visual aesthetics of the website. All of these visual elements also need to complement

each other. Given more time, there would have been some focus on styling the website.

7.2.2.2 Responsive web design

As stated, there were no requirements related to web design. As such, there were no

requirements in implementing responsive web design with mobile devices in mind. But, with

mobile browsing being mainstream and increasingly so, responsive web design and mobile

web design is somewhat expected.

7.3 Testing

Testing of the Vue program was done using Vue’s own “DevTool” in the browser. This tool

allows us to see all information being stored in the browser and the current value of all methods

and states. By using this tool, we could test methods and make sure that the values are the same

as expected. Serving as a double check but also as a debug tool when bugs were found. If the

values were not matching our expectations, we could trace the values and figure out the root of

the issue.

73

8 Conclusion

The main objective of this bachelor’s thesis was to create an e-commerce storefront which will

be able to communicate with multiple warehouses through HTTP and keep stock information

of each warehouse. We managed to do all but one of the P1 Requirements and quite a few of

the P2 requirements as well. There were two quite big hurdles in our progress, namely the

discussion about using NoSQL and the change of project structure to fit with Vuex. Whereas

the biggest change was switching to Vuex, as we created a new repository for the project and

had to rebuild the foundation and main functions of the project. After changing it to work with

Vuex we had great progress as most of the main problems we faced without Vuex could now

be solved using the Vuex store states. Furthermore, focus could now be put on implementing

new features instead of testing and bug fixing. Despite being behind schedule we managed to

solve the task and create a feature rich storefront which communicates to the three warehouses

through HTTP. Moreover, all but one P1 requirement was completed and quite a few P2

requirements. The main constraint for not finishing all the P1, P2 and P3 requirements was

time. Nonetheless, we consider the project a success as it is fully functional, is feature rich and

mostly lack visual styling as this was not a requirement and focused on how we would solve

the communication between multiple warehouses and not the aesthetical design.

To summarize, we have created an e-commerce storefront with the addition of being able to

check stock information per warehouse. Created a platform where it can take in data such as

categories in the database and display and create buttons for it automatically. And furthermore,

the ability to choose which warehouse the items added to cart would be shipped or bought

from.

74

9 Bibliography

[1] Agile Manifesto Authors,“ Agile 101”. https://www.agilealliance.org/agile101/

(visited April 2021)

[2] Refsnes data, ”HTML Introduction”. https://www.w3schools.com/html/html_intro.asp

(visited April 2021)

[3] Refsnes data, “CSS Introduction”. https://www.w3schools.com/css/css_intro.asp

(visited April 2021)

[4] Refsnes data, ”JavaScript Introduction”. https://www.w3schools.com/js/js_intro.asp

(visited April 2021)

[5] Refsnes data, “JSON Introduction”. https://www.w3schools.com/js/js_json_intro.asp

(visited April 2021)

[6] The PostgreSQL Global Development Group, “About”.

https://www.postgresql.org/about/ (visited May 2021)

[7] The PostgreSQL Global Development Group, “What is PostgreSQL”.

https://www.postgresqltutorial.com/what-is-postgresql/ (visited May 2021)

[8] Evan You, “Introduction”. https://vuejs.org/v2/guide/ (visited May 2021)

[9] Google, “Angular.io”. https://angular.io/ (visited May 2021)

[10] Facebook, “React”. https://reactjs.org/ (visited May 2021)

[11] Evan You, “VueX”. https://vuex.vuejs.org/ (visited May 2021)

[12] Vmware, “Spring Framework”. https://spring.io/projects/spring-framework (visited

May 2021)

[13] Vasyl Redka, “A Beginner’s Tutorial for Understanding RESTful API”.

https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api (visited

May 2021)

[14] Wikipedia, “Spring Framework”. https://en.wikipedia.org/wiki/Spring_Framework

(visited May 2021)

[15] Baeldung, “A Comparison Between Spring and Spring Boot”.

https://www.baeldung.com/spring-vs-spring-boot (visited May 2021)

[16] Refsnes data, “HTML <script> crossorigin Attribute”.

https://www.w3schools.com/tags/att_script_crossorigin.asp (visited May 2021)

https://www.agilealliance.org/agile101/
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/css/css_intro.asp
https://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_json_intro.asp
https://www.postgresql.org/about/
https://www.postgresqltutorial.com/what-is-postgresql/
https://vuejs.org/v2/guide/
https://angular.io/
https://reactjs.org/
https://vuex.vuejs.org/
https://spring.io/projects/spring-framework
https://mlsdev.com/blog/81-a-beginner-s-tutorial-for-understanding-restful-api
https://en.wikipedia.org/wiki/Spring_Framework%20As%20of%20May%202021
https://www.baeldung.com/spring-vs-spring-boot
https://www.w3schools.com/tags/att_script_crossorigin.asp

75

[17] O’Reilly Media, Inc, “Chapter 4. JPA Repositories”.

https://www.oreilly.com/library/view/spring-data/9781449331863/ch04.html (visited

May 2021)

[18] Vmware, “Class BCryptPasswordEncoder”. https://docs.spring.io/spring-

security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/

BCryptPasswordEncoder.html (visited May 2021)

https://www.oreilly.com/library/view/spring-data/9781449331863/ch04.html
https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/4.2.20.RELEASE/apidocs/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html

76

10 Appendix

10.1 Jira Issues Log starting from sprint 1 → 6:

Sprint 1:

Figure 71: Jira log sprint 1

77

Sprint 2:

Figure 72: Jira log sprint 2

78

Sprint 3:

Figure 73: Jira log sprint 3

79

Sprint 4:

Figure 74: Jira log sprint 4

80

Sprint 5:

Figure 75: Jira log sprint 5

81

Sprint 6:

Figure 76: Jira log sprint 6

82

10.2 Git Log

10.2.1 E-commerce Storefront (The final repository for frontend)

Figure 77: E-commerce Storefront (part 1)

83

Figure 78: E-commerce Storefront (part 2)

84

10.2.2 Warehouse App repository for backend system

Figure 79: Warehouse App repository (part 1)

85

Figure 80: Warehouse App repository (part 2)

Figure 81: Warehouse App repository (part 3)

86

10.2.3 Warehouse Aalesund

Figure 82: Warehouse Aalesund repository

87

10.2.4 E-commerce in a distributed system of warehouses (Old testing repository)

Figure 83: E-commerce in a distributed system of warehouses (part 1)

88

Figure 84: E-commerce in a distributed system of warehouses (part 2)

89

Figure 85: E-commerce in a distributed system of warehouses (part 3)

