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Summary

Background : Electric energy is one of the most value that economic growth in the
modern societies, industries and economies depends on'. Nowadays, everything depends
on electricity to run (e.g. services, productions, entertainment, ... , etc). Therefore, finding
cheap, clean and continuous energy sources to meet the increasing demand is very important.
The demand of energy is increasing constantly, and it is expected to increase by 50 percent
by 2050 2. Electric load forecasting is an important tool which has been used to ensure
that power utilities meet the consumers’ need. The use of advanced technology, such as
Advanced Meter System (AMS) and Internet of Things (IoT), provides the power utilities
with a huge amount of data which can be used to design and implement intelligent energy
management systems. The proper use of electricity consumption data better services and
opportunities to engage consumers in demand response. Good time series forecasting in
turn accuracy helps in building robust and smart energy management systems.

Objectives : The main objective of this study is to build a time series forecasting model
which performs best on the electricity consumption data, and propose methods to integrate
the forecasting model in smart energy management systems. Energy management systems
are important to maintain energy sustainability in heterogeneous energy systems.

M ethods : Statistical analysis was performed to understand the electricity consumption
data of consumers from Aalesund, and to find the time series components. Different
methods were applied to the time series of the total electricity consumption in the purpose
of forecasting (short-term and mid-term). The methods are divided into classical statistical
methods for time series forecasting (auto regressive integrated moving average (ARIMA)
and exponential smoothing (ES)), and machine learning methods (linear regression, recurrent
neural network (RNN), long short term memory (LSTM), convolution neural network
(CNN), support vector machine (SVM), and K-nearest neighbor (K-NN)). A comparison
study of the models’ performance was done to find the best model. Also, there are two
cases where we proposed conceptual models to integrate the forecasting model in energy
management systems.

Results : Data analysis showed that the electricity consumption data has trend, seasonality,
and noise. The evaluation of different statistical and machine learning methods indicates that
machine learning models performed generally better than statistical methods on the given
data. Statistical methods required much involvement from the user during the experiments,
but this did not help in achieving best performance. Among the statistical methods, seasonal
auto regressive integrated moving average (SARIMA) achieved the best performance for
both short-term and mid-term load forecasting. CNN wavenet outperforms all the tried

ICorrelation of energy consumption and GDP per person, https://www.eea.europa.eu/
data-and-maps/figures/correlation-of-per-capita—-energy (As of 27.06.2020)

2EIA projects, International Energy Outlook 2019 with projections to 2050 U.S. (Energy Information),
https://www.eia.gov/outlooks/ieo// (As of 27.06.2020)
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methods (i.e., statistical and machine learning methods) in both short-term and mid-term
load forecasting.

The simulation results from the proposed model of an intelligent energy management
system showed the importance of load forecasting in such smart systems. The results
showed how the energy in micro-grid systems can be managed efficiently depending on the
forecasting values. Also, the simulation results form the scheduling of shiftable appliances
case, showed that the consumer can save up to 300 NOK monthly by using shiftable
appliances on optimal times.

Conclusion : Load forecasting is an important topic for different smart solutions such
as smart micro-grids, and smart, green and sustainable cities. This work provides a
methodology to design a good time series load forecasting model which depends on the
available data, and illustrates the effectiveness in applying the forecasting model in different
domains.

Also, we conclude that the machine learning methods outperform statistical methods, and

CNN wavenet performed best on our data.

Keywords : Advanced metering system, time series data, load forecasting, statistical
analysis, machine learning, smart grids, smart cities.
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Chapter 1

Introduction

In recent years, there is a huge increase in the energy consumption remarkably in the
development countries. It is expected that the global energy consumption will increase
by nearly 50 percent by 2050", and this leads to an increase in the energy demand. Using
smart meters (i.e., Advanced metering system (AMS)) and IoT provides the power utilities
with huge amount of data of electricity load at different scales (e.g., individual, group,
and region). The data can be used for analysis, planning, and optimization. Efficient
management of energy consumption is essential and important in several domains, such as
smart grids, sustainable and smart cities, and CO2 emission reduction.

The energy consumed from local grid needs to be adjusted and predicted efficiently to reduce
the consumption cost and the impact on the environment. Therefore, precise prediction of
energy consumption at different scales and horizons has become a crucial topic and it is
necessary to develop a reliable predictive model, to reduce energy costs, improve services,
and reduce emissions.

An intelligent micro-grid is a recent power scenario that means using renewable resources
to generate the power which consumer can use (e.g., solar cell, wind energy, and energy
storage). In this scenario, the power will be cheaper and cleaner, and the power utilities can
meet the increase in the energy demand and generate energy which is in balance with the
demands (i.e., balance in generating and demand process).

Norway is undergoing a formidable adjustment to cut emissions of harmful greenhouse
gases. Electrification in different sectors, such as the transport sector, both on land and at
sea, is one of the most important measures. Energy calculations in Norway show that this
will contribute to 30 percent lower energy costs for an ordinary family, simply because
electric cars require significantly less energy than diesel and petrol cars. This amounts to
around NOK 8,000 in annual savings for the family. In March this year, more new electric
cars were sold than fossil cars in Norway (morenett .no). However, if everyone is to

EIA projects, International Energy Outlook 2019 with projections to 2050 U.S. (Energy Information),
https://www.eia.gov/outlooks/ieo// (As of 27.06.2020).
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charge the electric car at the same time, we will have trouble with the capacity of the power
grid. The smartest solution is to distribute consumption over several hours of the day. This
avoids costly investments in the electricity grid that consumers have to pay for. It is a bit
like our roads: It is sub-optimal to build a four-lane highway to take away a couple of hours
of rush hour traffic, if you can better distribute traffic throughout the day.

According to the Norwegian Water Resources and Energy Directorate (NVE), NOK 11
billion can be saved in the electricity grid by charging the electric cars at times of the
day when electricity consumption is generally low. In the same context, if we build smart
solutions at different levels (i.e., house, neighborhood, city), we can save a lot by reducing
the electricity cost. These savings may benefit electricity customers through lower grid
rents.

1.1 Background

Accurate electrical load forecasting by using historical time series data gathered by Advance
smart meter (AMS) helps us in designing better systems with minimum energy losses.
Designing a good predictor depends on the method and data. The data amount and accuracy
are important in the case of generalization. Finding the best method that gives the best
prediction results for the given data is the first step in designing a good forecasting model
to use it in different domains and applications, such as:

e Demand side management;

Sustainable, green, smart cities;

Reducing CO2;

Integrating emergent demands (e.g., electrical vehicles (EV) and electrical public
transportation);

o Integrating renewable energy, loT devices, clouds.

Recently, electrification in all aspects of our life such as transport leads to high need of
energy. Then energy management at different scales become an important topic because it
benefits in saving energy resources and reducing associated prices. Energy management is
a cyclic process which starts from defining the demand, then makes response and optimizes
the process. Figure 1.1. shows the main parts of an intelligent energy management system
(IEMS). As we know, the demand by predicting it from the historical data and gathered
real-time data, we make response to fulfil the demand [3, 4, 5, 6, 7, 8]. We optimize the
process by utilizing the distributed energy sources by using efficient and smart energy
management system.




1.2 Objectives

Optimization

Response DETENT

Figure 1.1: Intelligent energy management system concept.

1.2 Objectives

The main aim of the master thesis is to build a load forecaster which can be used by different
actors (e.g., power utilities, power generators, and consumers) for their needs as following:
The power utilities will use the load forecasting model to sustain a balance between supply
and demand, build good grid structure, planning (e.g., maintenance) and provide good
services. The power generators will use the predictor to meet the load demand, find power
sources, and reduce the generating price. The consumers can use such predictor to reduce
the consumption cost by scheduling shiftable loads. The overall goal can be divided to
sub-goals and numerated in the following research questions:

e Evaluate different prediction methods, such as statistical methods and machine
learning methods to find the best method which gives the best performance on the
given data. There are many methods that can be used to build forecasting models.

These methods can be divided into two categories: statistical and machine learning
methods. We will assess well-known methods from different categories to find the
best promising one. From literature which presents in chapter 3, we can conclude that
there is no guideline to guide us to which methods give a better result to a specific
problem [5, 8]. There are few papers that evaluate different methods on standard data
sets only [5, 7, 9, 10], but we aim to find the best model depending on our data.

e Investigate how available data should be pre-processed to improve the prediction
accuracy.

We analyze the historical load data to find patterns that can help in predictions (such
as trend and seasonality) and find the correlation between the energy consumption
and other factors such as weather data and time events (e.g., holidays).




Chapter 1. Introduction

e Investigate how the results form the energy consumption prediction model can be
used to build smart grids; for example integrate the renewable energy, increase the
user’s awareness, reduce CO2 emission , ... etc.

1.3 Scope

The scope of this master thesis is to explore different statistical and machine learning
methods to perform time series energy consumption forecasting on real data gathered
hourly from the 1112 units from Aalesund region for 53 weeks. In order to find the best
method, we will evaluate different forecasting methods. The scope lay within the boundaries
of energy consumption at different scales, energy management systems, forecasting methods
(statistical and machine learning methods) and application domains such as smart grids and
smart cities. Figure 1.2 shows where the research area in this thesis is.

Figure 1.2: Research area.

1.4 Research methodology

In order to answer the research questions, I have followed the methodology that is illustrated
in Figure 1.3. I started by reading about the energy efficiency in the last semester when
I was doing the specialization project. In the specialization project course, I developed
a smart energy consumption system where the residential households can do appliance
scheduling to reduce energy consumption and the bill cost while keeping resident’s comfort.
In order to design intelligent energy management systems (IEMS) in different levels such as
micro-grid, we have to build predictive models based on the available data. I got electricity
consumption data, which is measured by advanced metering system (AMS) for the area
in Aalesund? from Mgrenet AS (morenett .no). In the master thesis, I am starting the
project by reading about the basic theory and related works to my thesis topic (Chapter 2 -
Background Concepts and Chapter 3 - Related work). Then, I will analyse the data, find

2 Aalesund is the largest municipality in the Mgre and Romsdal county in in the northernmost part of Western
Norway

4
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1.5 Thesis structure

the correlation to other available data, and find the tools and libraries that will be used in
the thesis project (Chapter 4 - Methodology). The forecasting model will be designed by
evaluating different time series forecasting methods (Chapter 5 - load forecasting results),
then the results will be applied in the designing DSM and IEMS (Chapter 6 - Case study
A,B). Finally I will discuss my results, and how to apply them in different domains (Chapter
7 - Discussion).

1.5

Case study
Analysis IEMS /DSM

Analysis and find

the properties for

<> the data
Research

literature review

&

Results

il Prediction
_____ Data Study modal
Collect data

Figure 1.3: Methodology

Thesis structure

The layout of the thesis is as follows:

Chapter 2 - Background Concepts: Provides an overview of background concepts
relevant for our work. This includes theory about time series statistic and machine
learning methods.

Chapter 3 - Related work: Explores researches relevant to this thesis. The chapter
gives a summary of time series prediction with traditional methods.

Chapter 4 - Methodology: Presents the scientific method used in this thesis. This
includes data collection, data analysis, implementation details and tools.

Chapter 5 - load forecasting results: Presents the forecasting models and the
evaluation of them.

Chapter 6 - Case study A,B: Gives an overview of the two cases studied in this
thesis.

Chapter 7 - Discussion: Discuss the results from the time series forecasting model
implementations, and the results from the case studies.
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e Chapter 8 - Conclusion and future work: Contains the conclusion by answering
research questions, stating the contributions from this thesis, and presenting possible
venues for future work.

e Chapter 9 - Legal and ethical considerations: Contains the legal and ethical
aspects related to the used of data and results.




Chapter 2

Background concepts

This chapter provides an overview of the main concepts related to time series and time
series forecasting, as well as the challenges in time series forecasting in Section 2.1. Time
series forecasting methods are introduced in Section 2.2. Next, Sections 2.3 and 2.4 present
statistical and machine learning approaches, respectively, which are considered in our study.
Finally, section 2.5 introduces different evaluation performance measures.

2.1 Time series

A time series Y of size m is a sequential set of data points, i.e, Y = (Y7,Y53,....Y,, ),where
Y; € R measured typically over successive times ¢ [11]. If the time series values are
synthesized by a function Y = f(¢), the time series is deterministic. On the other hand,
when the time series has a random term €, Y = f(time, €), then the series is stochastic or
non-deterministic in addition to time function. Another relevant feature of a time series
refers to its stationariness properties. In statistical terms, a stationary process is assumed to
be in a particular state of statistical equilibrium, i.e., the mean and variance remain constant
over time [12]. In other words, the time series develops randomly in constant average. This
property is essential for some methods that assume the stationary condition. We can change
the time series from non-stationary to stationary by taking the first difference defined as
AY =Y, — Y;_1. This process is enough in most times, although we may need the second
difference also to make time series stationary in some cases.

Time series can be divided into three components [13]:

1. Trend (T'): is a gradual shift or movement to relatively higher or lower values over
a long period of time (e.g., linear, exponential, damped, and polynomial long-term
increase or decrease).

2. Seasonality (S): This is the periodic fluctuation of the variable subjected to analysis.
It consists of effects that are stable along with time, magnitude and direction.
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3. Residual (R): This is the remaining, mostly related to un-explainable part of the
time series. This component can be sometimes high enough to mask the trend and
seasonality.

A time series is usually modelled through a stochastic process Y(;), i.e. a sequence of
random variables. In a forecasting setting we find ourselves at time ¢ and we are interested
in estimating Y(;; 1,), using only information available at time .

According to Equations 2.1 and 2.2, we can reformulate the time series Y; by using the
components by using either an additive (Equation 2.1) or a multiplicative (Equation 2.2)
approach.

Yi =T, + S+ Ry 2.1

Y, =T x Sy x Ry (2.2)

In the additive model (Equation 2.1), the components are added together. The additive
model is linear, where changes over time are consistently made by the same amount. The
trend is a straight line while the seasonality has the same frequency (width and amplitude
of the cycle over time).

In the multiplicative model, the components are multiplied together (Equation 2.2). The
model is a non-linear, and it is used when the trend seasonal variation increases or decreases
in magnitude over time. The trend is non-linear (e.g., exponential or polynomial), and the
seasonal variation increases or decreases over time (i.e., width and amplitude of the cycle
varies over time).

Time series forecasting

Forecasting can be defined as making a prediction about the future [14]. Forecasting is often
associated with tasks related to the construction of models that fit on historical data and
their use to predict future observations. In forecasting, the future is completely unknown
and we can predict it by performing estimation based on what has already happened. The
concept of forecasting model is illustrated in Figure 2.1.




2.2 Time series forecasting methods

Historical data

|M Prediction model

Figure 2.1: Concept of forecasting model.

In general, predictive modeling is a technique that uses mathematical and computational
methods to predict future values based on the patterns and features which are extracted
from the historical data.

2.1.1 Challenges in time series forecasting

When predicting time series values, there is a number of challenges that need to be addressed.
Some examples include:

e Dependency: In time series, the observations for an input variable depend upon one
another. For example, an observation at time ¢ depends upon the observation at t — 1,
and ¢ — 1 may depend on ¢ — 2, and so on. We call such variables endogenous because
they are affected by other variables in the system and the output variable depends on.
Although time series might also have exogenous variables (e.g., weather data and
holidays), it is usually the endogenous properties of variables that distinguish them
across different problems.

Time series may have obvious patterns, such as a trend or seasonal cycles.

In simpler prediction problems, we may just want to predict the value of the next
time step. In several problems, however, we might want to predict multiple steps,
which makes the prediction problem harder.

Some models are “static” and are not expected to be updated, while others are
dynamic, i.e., models are expected to be retrained from time to time.

Sometimes we have to handle contiguous data that have uniform observations over
time; but also we may have to deal with discontinuous data, where observations are
not uniform over time and so data need additional preparation.

2.2 Time series forecasting methods

There are many models available in the literature that can be used for time series forecasting.
These models can be dived into two main categories, statistical methods and machine
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learning methods, as illustrated in Figure 2.2 [15].

Time series forecasting models
1

l l
][RI

Figure 2.2: Time series forecasting models and their categories.

Generally, the forecasting methods can be divided into three main categories [13]:
e Time series methods: make use of the past data to compute future estimates.

e (Causal methods (explanatory): analyse the data from the viewpoint of a cause-effect
relationships.

e Qualitative methods: rely on experts’ opinion.

2.3 Statistical methods

This section introduces some concepts related to the time series prediction based on
statistical methods. Also, it describes some of the statistical methods used in forecasting
tasks such as: Naive model, moving average model, autoregressive integrated moving
average (ARIMA), and exponential smoothing models. Both ARIMA and exponential
smoothing models are considered as the baseline among systems for time series prediction
for many years [16].

The statistical methods need information about the data distribution in order to build
predictive models. This assumption makes the accuracy model dependent on its parameters
in making the prediction.

2.3.1 Naive method

Naive forecasting, also it is called a random walk model, is a simple technique which
predicts the value of a future observation by expecting it as the last observation, as shown

10



2.3 Statistical methods

in Equation 2.3. This makes the expected value of a future observation the same as the last
observed [13].

Jepn |t =11 (2.3)

This method works remarkably well if the time series has stochastic pattern which is difficult
to predict as in many economic and financial time series [13]. The seasonal naive method
expects the future value to be equal to the value from the last season (e.g., same time in the
previous year). This method works better than standard naive method when the time series
has seasonality. In general, the naive method is used only for comparison with the forecasts
generated by the better (sophisticated) techniques.

2.3.2 Moving average (MA)

Moving averages are developed based on an average of weighted observations, which tends
to smooth out short-term irregularity in the data series. They are useful if the data series
remains fairly steady over time [17]. Y;, 1, the forecast value at time ¢ + 1, is simply the
moving average at time ¢ as defined in Equation 2.4:

Yipn = M, (2.4)

A MA is obtained by calculating the mean for a specified set of values and then using it to
forecast the next period. The MA at time ¢ for n number of observations is calculated as:

Yi+Yii+- -+ Y1)
n

M, =

(2.5)

where 7 is the number of observation included in the average. The higher the value of n,
the more smoothed will be the predicted data behaviour. The MA at time ¢ can be measured
by using the MA at time ¢ — 1.

Yici+Yio+---+Y )

My = (2.6)
n
By subtracting Equation 2.6 from Equation 2.5 we obtain:
Y, —Yi
M, = My 4 B Yien) 2.7)

n
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This equation states that the moving average can be updated by using a previous moving
average plus the average changes in actual value from time ¢ to ¢ — n. Using either
Equation 2.5 or Equation ?? leads to the same result.

The moving average method provides an efficient mechanism for obtaining a value for
forecasting stationary time series. The technique is simply an arithmetic average of the last
n values to predict the next value. The difficulty in using moving averages is their inability
to capture the peaks and troughs of the series. When the (actual) data are moving down
persistently, the MA forecast trends to produce over-predicted valued; while when the data
is moving up continually, the MA forecast will lead to an under-prediction.

The MA process relies on providing equal weights for different observations; this approach
fails to reflect the importance of time ordering with respect to observations. The MA can be
modified to weighted moving averages, where the observations are multiplied by different
weights [13].

2.3.3 Autoregressive Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) is a statistical method and it is one
of the most important linear models used for forecasting [18]. There are two types of
ARIMA models: i) non-seasonal ARIMA, and ii) seasonal ARIMA (SARIMA). We will
first explain the non-seasonal ARIMA, then will move to describe SARIMA. Non-seosonal
ARIMA models predict future values based upon the construction of threes components:
i) Autoregressive (AR), ii) Integrated (I), and ii) Moving Average (MA). The model is
displayed as ARIMA(p, d, q). The p,d, and g values represent the amount of periods to lag
for in the ARIMA model calculations.

We have to discuss the concepts of stationarity and autocorrelation before we introduce
ARIMA models.

Stationarity

The stationary time series is a series of constant mean and variance over time. A stationarized
series is easy to predict by ARIMA models. It simply predicts that the mean and variance
will be the same in the future as they have been in the past. A stationary time series allowed
us to obtain meaningful statistics, such as means, variances and correlations with other
variable.

Differencing is used to transform a non-stationary time series to a stationary one. This is an
important step in preparing data to be used in an ARIMA model.

Autocorrelation and Partial Autocorrelation Functions (ACF and PACF)

Autocorrelation (ACF) and partial autocorrelation (PACF) plots are most used in time series
analysis and forecasting. To determine a proper model for a given time series data, it is
necessary to carry out the ACF and PACF analysis. These statistical measures reflect how
the observations in a time series are related to each other (i.e., correlated). For modeling
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and forecasting purpose, it is often useful to plot the ACF and PACF against consecutive
time lags. These plots help in determining the order of AR and MA terms (i.e, p, q).

In general, ACF functions are used to find the relations between time series and the shifted
lags of time series at different time step ¢. The investigation of the relationship between
lags enables us to detect important dependencies in time series data. Figure 2.3a illustrates
the correlation between lags.

The partial autocorrelation is the correlation between two variables controlling for the
values of another set of variables. In time series, the lag (¢) is correlated with lag (¢ — 1),
and lag (¢ — 1) is correlated with lag (¢ — 2), and so on. Then, lag (¢) is also partially
correlated to lag (¢ — 2). The partial correlation of a time series with its own lagged values
is given by the PACF. Figure 2.3b illustrates the partial correlation in a time series.

Autocorrelation Partial Autocorrelation
10 10

A

0o 0.4

0 1 0 2 @ 50 0 1 0 2 @ 50

(a) Autocorrelation in the electricity energy (b) Partial autocorrelation in the electricity energy
consumption dataset. consumption dataset.

Autoregressive Models (AR)

AR is a linear regression model that performs prediction according to the relationship
between the observation and past observations in series called lags. In other words, AR
model use lagged variable as input to make prediction. The idea is to explain the present
value of series Y; by function of p past values: Y;_1), Y(;_2) ... Yi_p)-

AR model with order p can written as:
Yi=c+ P 1Y 1+ P 2Y; 2.+ P pY; pt+ e (2.8)

where c is a constant, Y; is the forecast random variable, ® p is an explanatory random
value, p is the number of lags (i.e., model parameter to be estimated), and €; is a white
noise.

We can re-write Equation 2.8 as:

P
Yi=) ®Yiitea=ct® 1Y+ & Yo+ @ pYptea (29
i=1
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White noise found if the variables are independent and identically distributed with a mean
of zero. This means all variables have the same variance (and each value has a zero
correlation with all other values in the series) [11].

Equation 2.9 illustrated that the order of the model p is fixed, while the parameters are
adapted on the data at hand [19].

AR(p) mode is computed by determining lag p, by following the characteristics of the ACF,
and PACF. The AR model is suitable to be used if the plots of the ACF and PACF following
this:

e ACF of an AR(p) process has a geometrical decline (tails off).
e PACF of an AR(p) process cuts off at lag p.

Moving average (MA)

Moving average is a linear relationship uses past forecast errors in a regression €;_1, €;_o
, .., €.—q rather than AR (Auto aggressive). In another word, the moving average model
is a linear regression model of the current value of the series against current and previous
(observed) white error. We can see the MA process in Figure. 2.4.

N

Figure 2.4: Moving average process model.

Moving average process of order ¢ is displayed as MA(g), and it calculated as:

}/t:B+(I)1€t—1+(I)2€t—2...+¢’q€t—q+€t (2]0)

where C is a constant, Y; is the forecast random variable, ®, is an explanatory random
value, ¢ is the number of lags (i.e. model parameter to be estimated), and ¢, is the white
noise.

MA(q) model is identified by determining lag ¢, by following the characteristics of the
ACF and PACF. The MA model is suitable to be used if the plots of the ACF, and PACF
following this:

e ACF of an AR(p) process has a geometrical decline (tails off).
e PACF of an AR(p) process cuts off at lag q.
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Autoregressive Moving Average (ARMA)

Autoregressive (AR) and moving average (MA) models can be effectively combined
together to form ARMA models, the time series is assumed to have no trend and stationary.
ARMA model is used often in short term load forecasting task. ARMA model with order
p,q can be written as:

p q
Vi=ct+ Y &Y+ UYii+e 2.11)

i=1 j=1

ARMA(p,q) process is AR(p) plus MA(q). From Equation 2.11, we can see that MA(q)
= ARMA(0,q), and AR(p) = ARMA(p,0). Finding appropriate values of p and ¢ in
ARMA(p,q) model can be facilitated by plotting PACF for an estimate of p, and plotting
ACEF for an estimate of g. Further information can be extracted by considering the same
functions for the residuals of a model fitted with an initial selection of p and q.

Brockwell & Davis recommend using Akaike information criterion (AIC) for finding p and
q [20]. In general, both ACF and PACEF tail off in case of ARMA. Table 2.1 summarizes
the behaviour of ACF and PACF in AR, MA, and ARMA.

Table 2.1: ACF and PACF behavior for AR, MA and ARMA.

AR(p) MA(9) ARMA(p,q9)
ACF | Tails off Cuts off after lag ¢ | Tails off
PCF | Cuts off after lag p | Tails off Tails off

Autoregressive Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) is a combination of differencing with
autoregression and moving average model, ARIMA(p,d,q) [18]. Where p denoted the AR
order, d is the integration order, and g is the MA order.

The ARIMA components are summarized as:

o Autoregressive (AR): A model uses the dependent relationship between an observation
and some number of lagged observations (i.e., p).

o Integrated (I): The use of subtractions (i.e.,d) of raw observations in order to make
the time series stationary.

e Moving Average (MA): A model that uses the dependency between a previous value
(observed value) and a white error from a moving average model applied to lagged
observations.

If the actual data Y is not stationary, we should perform a stationary process by computing
the first order difference (d) as following:
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AY, =Y, =Y (2.12)

Sometimes, we need to find the second order difference also:

A=Y, =2V, 1 =Y, (2.13)

If the time series is stationary (i.e., d = 0), then we attempt to fit an ARMA model (i.e.,
ARIMA (p, 0, ¢) to it.

Seasonal Autoregressive Integrated Moving Average (SARIMA)

A seasonal ARIMA model is an extension of ARIMA model to use when the time series
exhibits sign of seasonality. SARIMA model is similar to ARIMA model, but it includes
more terms to adjust for the seasonal components. The SARIMA model is formed by
including a seasonal term to the ARIMA model as: SARIMA (p, d, q),(P, D, Q),, where p
is the number of the autoregressive, d is the degree of differencing, and ¢ is the number of
moving average terms, and (P, D, Q) are refer to auto regressive, differencing, and moving
average term for the seasonal part of the ARIMA model, and m is the number of periods in
each season.

In order to select between different ARIMA models, Akaike’s Information Criterion (AIC)
is usually used. AIC is a score we use, to determine the best model fit for given data set.
AIC can be computed as define in Equation 2.14:

AIC = —21In (L) + 2(K) (2.14)

where L is the likelihood of data, and K is the number of parameters (e.g., p,q).

The AIC values determine the best combination of parameters, i.e., the combination of
parameters that give the lowest AIC score.

2.3.4 Exponential smoothing (ES)

The exponential smoothing methods are weighted averages of past observations, with the
weights decaying exponentially as the observations get older. In other words, the more
recent the observation, the higher the associated weight [12].

In the following, I will introduce different exponential smoothing methods which are used
in the implementation in this thesis. These methods are shown in Figure 2.5. Furthermore,
Figure 2.5 indicates which suitable prediction method could be used according to different
properties of the time series dataset.
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Linear
NO trend and NO

Exponential
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Smoothing method

Holt's Winter
methods

Figure 2.5: Exponential smoothing: Data vs method.

Simple exponential smoothing (SES)

The simple exponential smoothing method is equivalent to MA, except that each series
value has a different weight. The weights decrease exponentially as observations come
further from the past. The smallest weights are associated with the oldest observations [21].
SES is suitable method for time series when there is no trend or seasonal pattern in the data,
but the mean (or level) of the time series Y; changes slowly over time.

Simple exponential smoothing can be written as:

Y1 =aY; +a(l —a)Y,_, (2.15)
where 5},{4'_1 is the forecast value for period ¢+ 1 on the time ¢, Y; is the actual value in period

t, av is the smoothing constant or the weight assigned to historical values (0 < o < 1).

By continuing to substitute previous forecasting values back to the starting point of the data
as:

Yip1 = aY; + ol — )Y+, ,,+a(l — )71V + a(l — a)'Y, (2.16)

Then Equation 2.16 can be re-written in a compact form as:

t—1
Vi =ad (1= )Y+ (1- )% @17)
K=0
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From Equation 2.16, we see obviously that SES in this equation is exponentially declining.

The model’s capability to adapt to the time series fluctuations depends on .. A greater «
will be able to follow the series behaviour well while a low a will result in a more smoothed
signal. Equation 2.18 defines the smoothing operation [22]:

ft = aY} + (1 — O[)Etfl (218)

And Equation 2.22 defines the forecasting operation:

Jeen | =Ly, (2.19)

where ¢; denotes the level (or the smoothed value) of the time series at time ¢, and h €
{1, 2, 3} is the number of forecast steps at time .

In general, it is assumed that the first forecast value is equal to the first time series value
at the beginning of the forecasting process, i.e., ; = Y;. So the modification starts from
the second observation value of the time series. The prediction at time ¢ + 1 is equal to the
exponential smoothing for the last observed value (Y;41 = ¢;). This strategy is called one
step ahead.

This method is mathematically simple and it is flexible to apply for forecasting. The
algorithm needs recent observations, the last prediction value and « in order to make
forecasting. The disadvantage of this methods is the difficulty in finding an appropriate
value for o [21].

Holt’s exponential smoothing (HES)

Holt’s exponential smoothing is an extension of the simple exponential smoothing method
to time series that display a linear trend. The forecasting by the SES method on such time
series will give overestimated or underestimated values. The Holt’s exponential smoothing
model was proposed to avoid this systematic error [23].

The HES model structure is similar to the SES model structure. It defined by Equations 2.20
and 2.21. But, in addition to the parameter «, which is used to soften the level component,
the Holt’s exponential smoothing algorithm uses also another smoothing constant (3) for
modelling the trend component in the time series.

Equation 2.20 is the level operation:

ét = C%}/t + (1 — Oé)(&f*l#»bt,l) (220)

Equation 2.21 refers to the trend component:
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by =Bl —ly—1) + (1 = B)b—1 (2.21)

Both values of the smoothing constants « and /3 are determined in the range of [0, 1], such
as (0 <a <1)and (0 < 8 <1). Equations 2.20 and 2.21 estimate the level of the series
at time ¢, and trend components, respectively. The previous estimates will be modified
when a new observation is calculated.

Equation 2.22 refers to the forecasting operation:

Utvn | t =€y + hby (2.22)

Equation 2.22, y; , denotes the forecasting value of Y at time ¢ + h, and h represents the
prediction horizon.

The algorithm recurrence relation is implemented by providing its initial values. In general,
L; =Y and by = (Y2 — Y1) are widely accepted [10]. The initial values do not affect the
forecasting, because the method depends on the self-learning concept. But, this fact can not
apply to the smoothing constant, which is difficult to set and bad choices may degrade the
forecasting performance of the algorithm. To perform the algorithm recurrence relation,
first, we need to compute the initial values. The most used approach in the literature is to
assume the Ly = Y7 and b; = (Y2 — Y7). The initial values do not affect the forecasting
when the method is based on the self-learning concept. But, this fact can not apply to the
smoothing constant, which is difficult to select. Bad forecasting accuracy can be obtained
with bad selection of the smoothing parameters.

Holt-winters seasonal exponential smoothing method

The Holt-winters seasonal exponential smoothing method consists of three-smoothing
equations: level equation (¢;), trend equation (b;), and the seasonal component (s;). There
are two versions of the single-seasonal Holt-winters method that differ from the seasonal
components [24]: (i) the Additive version, and (ii) the Multiplicative.

The choice of methods depends on the seasonal pattern of the time series. The additive
method is used when any big change in the highest and lowest-demand value is noticed,
i.e., the seasonal variation is almost constant through the series. The multiplicative method
is used when the trend and seasonal variation increases or decreases in magnitude overtime.
In other words, the seasonal version is proportional to the level of time series.

Additive Holt-winter method (AHW)

The dditive Holt—winter method is implemented according to the following equation:

Y, =T, + S, + R, (2.23)
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The three equations used in implementing the algorithm are:

e Equation 2.24 refers to the level equation:

& = CV(}/; — Stfm) + (1 — O[)(Et,1 + btfl) (224)

e Equation 2.25 is the trend equation:

be = B(ly — l—1) + (1 — B)bs—1 (2.25)

e Equation 2.26 is the seasonal equation

se=9(Ye = b1 —bi—1) + (1 —74)St—m (2.26)

e The the forecasting is:

Upgn |t =0 + hby + St—min (2.27)

In these equations, -y, 3, and « are smoothing parameters in the range [0, 1], and m denotes
the frequency of the seasonality. y,, denotes the forecasting value of the Y at time ¢ + h,
h represents the prediction horizon.

Similar to simple exponential smoothing and Holt’s exponential smoothing methods, the
additive Holt-winters method receives the time series as an input, and then apply the three
additive equations recursively. We have to start at time in the past, where the values of b,s,
and / are already estimated. The initialization of trend and and trend in the same period
m gives this approximation. Then, the level can be computed from the average of the first
station as in Equation 2.28:

1
:E(Yl +Yo+ - 4+Y,) (2.28)

b,

The trend can be initialized with using two complete stations, as following:

1Y, - Y Y, - Y5 Y, -Y,
7( m—41 1 + m—+2 2 4t m—+m m) (229)
m m m m

b =

The seasonal indexes are defined by Equation 2.30:

$1=Y1 — b, 80 =Y — by e = Y — b (2.30)

20



2.3 Statistical methods

Multiplicative Holt-winters method (MHW)

The Holt-Winter’s multiplicative seasonal method is implemented through Equation 2.31:

Y, =T, x S; x R 2.31)

The component form of the multiplicative seasonal methods is defined according to the
following equations:

e Equation 2.32 is the level equation:

Yy

by = « + (1 — Oé)(et_l + bt—l) (2.32)

St—m

e Equation 2.33 is the trend equation:

be = B(le — Le1) + (1 = Bbe—1 (2.33)

e Equation 2.34 is the seasonal equation:

Y,
¢ = 775 + (1= 9)St—m (2.34)

e Equation 2.35 is the forecasting equation:

Gean | t = (b + hby) X St—men (2.35)

Equation 2.25 in additive Holt’s winter is equal to Equation 2.33 of multiplicative Holt’s
winter. The differences between such methods are in the other equations, where the seasonal
indexes are multiplied and divided instead of summed and subtracted in the additive model.
Those variables are initialized by using the same equation of additive Holt’s winter, but the
seasonal indexes are calculated according to equation 2.36:

Yi Y, Yo

21 g = il 2.
b2 T b (2.36)

S1 = ey Sm =

The proper selection of the Holt’s winter model is related to the seasonal fluctuation in the
time series, regardless of the trend component existence in time series. In these models
(Additive and Multiplicative Holt’s winter), if v = 0, this does not mean at time series is
empty of seasonality, but this means seasonal rates have been initialized with values that do
not need to be fixed along with the prediction.
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2.4 Machine learning methods

This section introduces the basic terminology used in machine learning (ML) and describes
different machine learning methods to the time series forecasting, such as linear regression
(LR), multi-layer perception (MLP), recurrent neural network (RNN), long short term
memory model (LSTM), convolutional neural network (CNN), support vector machine
(SVM), and K-nearest neighbor (K-NN).

Different from statistical methods, machine learning methods do not need prior knowledge
of the distribution of data to describe the data properties. Furthermore, ML approaches
do not depend directly on parameters to model the phenomenon’s behaviour. Also, these
methods are easy to modify and show reliable performance even if we applied them on
complex and highly nonlinear time series [25].

Machine learning, as a definition, aims at turning data to information [26] by using
an adaptive model, to help computers to learn to find the pattern in the data based on
examples [27]. These adaptive models have a learning capability that makes them able
to improve performance over time. ML is like a function that can find and learn the
relationship between descriptive features and a target feature in a dataset. This allows the
algorithm to make a predictions or decision by transforming a set of inputs X into output
Y) [14].

The machine learning methods have been applied successfully in many problems, for
instance language translation [28], face recognition [29], predict the amount energy used in
building [30].

ML problems can be divided into three categories based on the type of data that the system
learns from: (i) Supervised learning, (ii) Unsupervised learning, and (ii) Reinforcement
learning.

e Supervised learning: In this case, a labeled dataset is used to define models.
Based on the traninig dataset, the model can learn to generalize and make a correct
prediction.

e Unsupervised learning: In this case, the data are not labeled but the model tries to
draw inferences from datasets. Unsupervised learning method is used to find hidden
patterns for exploratory analysis or to find similarities in data for clustering.

e Reinforcement This is somewhere between supervised and unsupervised learning.
The algorithm is informed when the answer is wrong but no information is provided
on how to correct it. It has to explore and try out different possibilities until it works
out how to get the answer right. Reinforcement learning is sometimes called learning
with a critic because of this monitor that scores the answer but does not suggest
improvements.

ML has been used to address different types of problems. In particular, supervised learning
can be divided into two types [31]:

e Regression: Try to model the relationship between inputs and output, meaning that
we try to map the input variable to some continual function.
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e (lassification: In this case, we are trying to map input variables into discrete
categories.

The ML models explored in this thesis are explained in more detail in the following sections.
The detailed description contains concepts such as neurons, layers, activation functions,
learning rate, and much more. Those concepts are often referred to as hyper-parameters
and are parameters that need to be set before training a model.

2.4.1 Artificial Neuron (AN)

An artificial neuron is a connection point in an artificial neural network. The definition of
an artificial neuron relies on the definition of inputs, weights, bias, as well as summation,
and activation functions. Neuron in the input layer receives signals from the input, while a
neuron in the other layers receives signals from other neurons. The output of a neuron in
the output layer is an output of the model, while it is an input to other neurons if the neuron
in the other layers. A neuron output value is determined from the sum of the weighted
inputs passed through an activation function [27].

Figure 2.6 illustrates an artificial neuron. The output Y is defined by taking the sum of the
weighted inputs that go later through the activation function.

Inputs Weights
X1

ﬁ w1
A4 Activation
function
- p \ —_— Output

x2 PN > ;
—_— w2 —e ) e fi) —_—y

X2 y / }b
—_— w3

bias

Figure 2.6: Architecture and components of an artificial neuron.

Each neuron (n;) has the inputs 1,22,23,. .. ,21 and outputs y. It sums the input values
multiplied with the weight plus the bias. The sum of weighted inputs (O;) are obtained
by Equation (2.37), where N is the total number of input and weight, w is the weights, 7
represents the neuron, and b is the bias.

N
0i =Y WiX;—bi (2.37)
j=1

Then, the output y; can be calculated through pass the sum of weighted inputs (O;) into an
activation function f.

Therefore, the output y; is given by the equation:
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N
Yi = flo)) = f(Z Wi Xj — by) (2.38)
i=1

The activation function f can determine the output of the neuron. Many types of activation
functions have been proposed for different kind of problems, but here we define the most
three common activation functions: Sigmoid, Rectified linear unit (Re LU), and hyperbolic
tangent (tanH ). Those functions are illustrated in Figure 2.7.

sigmoid ReLU (Rectified Linear Unit) tanh
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(a) sigmoid (b) Relu (¢) Tanh

Figure 2.7: Three common activation functions

The sigmoid function (Equation 2.39) outputs values between (0 and 1). That can be
explained as a probability in classifications [32]. The ReLU is the most popular activation
function in deep learning. The Re LU is bounded between 0 and positive number as shown
in Figure 2.7b. The benefit of ReLU relies on its computational costs and on its fast
convergence properties. The ReLU is defined as in Equation 2.40.

The tanH activation function gives values between -1 and 1, and it’s shape looks as
Sigmoid function. The output of The tanH function is defined by Equation 2.41.

1

fsigm,oid(z) = 1+e? (239)

fretu(z) = maz(0, 2) (2.40)

franh(z) = i (2.41)
e — €

Artificial Neural Networks (ANN)

Artificial neural networks consist of an input layer, hidden layer, and the output layer [33]
as shown in Figure 2.8. The artificial neuron is the basis of the building of (ANN). In

24



2.4 Machine learning methods

Figure 2.8, each layer has multiple neurons and each neuron in one layer is connected with
others in the next layer. This called a fully connected network or multi-layer perceptron
(MLP).

Hidden
layer

Input layer Output layer

B41

Bias

Figure 2.8: Structure of MLP with a single hidden layer.

MLP is classified as a feed-forward network because the neural network forwards (pass)
the data from the input layer to the output layer through the hidden layer. There is only
one direction from the input to the output. The parameters (weights, biases) are initialized
randomly, then parameters are updated to improve the performance of the model. MLP
uses a variety of learning techniques, such as back-propagation where the output values
are compared with the correct answer in order to compute the value of the predefined
error-function. Then the error is fed back through the neural network [34].

2.4.2 Linear regression (LR)

LR is one of the most popular supervised methods. LR is a statistical method that can be
used to make a prediction for real or numeric variables.

LR aims to establish a linear relationship between a dependent (z) and independent (y)
variable. The linear regression finds how the value of the dependent variable is changing
according to the independent variable as shown in Figure 2.9.

Linear regression can be represented mathematically as:

y=ao+az+e (2.42)
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Figure 2.9: Linear regression.

where y represents a dependent variable (target variable), x is the independent variable
(predictor Variable), ag intercept of the line (it gives an additional degree of freedom), a; is
linear regression coefficient (scale factor to each input value)and and € is a random error.

There are two type of linear regression:

o Simple Linear Regression: In this case, when single independent variable use to
predict the value of a numerical variable.

e Multiple Linear regression: In this case, when there are more than one independent
variable used to predict the value of a numerical dependent variable.

2.4.3 Recurrent neural network (RNN)

The recurrent neural network (RNN) is a type of artificial neural network, designed for
capturing information from sequences and time series data. RNN is different from ANN,
as the connections between neurons form a cycle. In addition, signals are able to move in
different directions as shown in Figure 2.10. Furthermore, the recurrent layer is composed
of a memory cell that is used repeatedly to compute the output. RNN has been applied
in many contexts where the sequences in the data are an important feature. Examples of
applications of RNNS include sequence transformation [35], language modelling [36, 37],
speech recognition [38], and time series forecasting [39].

The standard RNN model can be formalized as we show in Figure 2.11. The RNN model
adds a hidden state (hg, h1, ..., hr) that is generated by the sequential information on of
time series and produces a sequence of outputs (Yp, Y7, ..., Y7). In Figure 2.11, x; is the
input vector at time ¢, w, u, v are the weights of the transition hidden state, hidden layer,
and the output layer, respectively. h; is the hidden state at time (¢), and it is the input vector
and the previous hidden state. h; is defined as:
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Output
layer

Figure 2.10: Illustration of an recurrent neural network.
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Figure 2.11: A unfolding architecture of an recurrent neural network.

Time step

ht = f(U.’IZt + Wh.’l?t_l) (243)
where f is the activate function.

There are many activation functions which can be used. The three activation functions
that are most used, are introduced in Section 2.4.1. Generally, the RNN algorithm uses an
activation function tan H, because RNNs have a tendancy to have unstable gradients. Then,
the gradients can vanish during the training or they can explode. This can happen specially
if we use ReLU activation function which in non saturating. While if we use tanH, it will
saturate.

Y} is the output at time ¢ and can be computed as shown in Equation 2.44:

Yi=f(Vh) (2.44)
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The RNN works fine with short-term dependencies, but not with long-term dependencies
due to the vanishing or exploding gradient [40, 41].

This can happen when the gradient of the activation function calculated through the back-
propagation becomes very small. Here, the weights are multiplied by itself many times
which leads to zero or infinity. This means that the error becomes zero in the first layer of
network, which makes train those layers take a longer time than the next ones.

One way of getting around this is by using other variants of RNNs, which can deal with the
vanishing gradient problem. Some examples include Long short term memory (LSTM) and
gated recurrent unit (GRU). In this thesis, the LSTM will be used.

2.4.4 Long short term memory (LSTM)

LSTM is a type of RNN models, which was designed to avoid the long-term dependency
problem [40, 41]. LSTM is one of the solutions that can be used to address the vanishing or
exploding gradient problem by exploring the use of memory cells [41]. The memory cell of
the LSTM consists of four units as shown in Figure 2.12: an input gate, an output gate, a
forget gate, and a self recurrent neurons.

Memory cell
output

Memory cell
input

Input gate

Figure 2.12: A memory cell of an LSTM.

The purpose of gates is to control the interaction between the memory cells and their
neighbouring cells. In other words, the gates regulate the flow of information into and out
of the cell. The input gate can control the input signal if it can modify the state of the
memory cell. The output gate can control the state of memory cell if it can modify the state
of other memory cell. The forget gate can control if the model wants to remember or forget
the previous state [42].

The architecture of an LSTM and memory cell is shown in Figure 2.13 [43].

In the Figure 2.13, x; is the input vector to the memory cell at time ¢, h; is the output to the
memory cell at time ¢, 7, is the value of the input gate at time ¢, f; the forget gate at time ¢,
o is the output gate at at time ¢, C; are the value of candidate state of the memory cell at
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time ¢, and C is the state of the memory cell at time ¢. The CY is adjusted by the gates (i.e.,
regulators).

Figure 2.13: Architecture components of the LSTM and memory cell.

As shown in Figure 2.13, there is the line between the C; and C;_1. The line has the + and
x operations, which refer to the add and remove operations, respectively. Those operations
can remove or add information in the current state cell state. The line shows how the cell
state can be effected through the LSTM. In the following, I will explain briefly how easch
gate works. My explanation is inspired by the explanation of LSTM in [43, 44].

The Forget Gate f; determines what kind of information can be forwarded from the
previous cell state. Equation 2.45 shows how it can be defined.

ft = U(Wf * [htflth} + bf) (245)

The forget gate uses the output form the previous cell h; and the input of current cell z;
multiply the weight of the forget cell Wy plus the bias of forget gate b¢. The results of
them go through sigmoid activation function o to get the final resulting of vector f;, which
consists of the number between 0 and 1.

The Input Gate layer i, is used to determine how much the candidate solution can add to
the cell state. 7; can be defined by Equation 2.46.

i = O'(WZ * [h‘t—17 Xt} + bz) (2.46)

The input gate uses the output form the previous cell /; and the input of current cell x;
multiply with the weight of the input cell W; plus the bias of input gate b;. The results of
them go through sigmoid activation function o to get the final resulting of vector i;, which
consists of the number between 0 and 1.
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The output of i, and the output cell state from C (which generate a candidate cell state) are
added as shown in Figure 2.13. The cell state is calculated from Equation 2.47, and uses
the tanh activation function.

Cy = tanh(W, * [hy—1, X;] + b.) (2.47)

From the forget gate plus, the input gate can calculate the new cell stat C;. The cell state is
determined by Equation 2.48

Cy=fixCy_1 414 xCy (2.48)

The Output Gate layer o; is the final step in the LSTM architecture, which determines
whether the LSTM cell output is going to the next layer or an output of network. The
o; can be calculated by Equation 2.49. It uses the same inputs of the (input and forget
gate) Xy, hy—1 and uses its own weights and bias (W, b,). The results of them go through
sigmoid activation function o to get the final resulting of vector o;, which consists of the
number between 0 and 1.

0 = O'(WO * [htfl, Xt} + bo) (249)

The final output h; from the LSTM is defined by Equation 2.50. h; is computed by
multiplying the output gate O, with the result of tanh activation function applied to the
current cell C;

ht = Ot * tanh(Ct) (250)

2.4.5 Convolution neural network (CNN)

A convolutional neural network (ConvNet, or CNN) is a version of multilayer perceptrons
which are usually fully connected neural networks, where is, each neuron in one layer is
fully connected to all neurons in the next layer. CNNs have been used in several applications,
such as images recognition, image classifications, objects defections, face recognizing, ...,
etc'. CNN can also be used for 1D-data such as time-series as the electricity consumption
data which is used in the thesis, used for 2D, 3D data such as image and speech signals, or
even in 4D-data such as videos [45].

CNN has become popular due to its ability to automatically extract important features from
input data. One of the motivations of using CNN is that it reduces computation requirements

IStanford University, Convolutional Neural Networks (CNNs / ConvNets), https://cs231n.github.
io/convolutional-networks/ (As of May 2020).
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due to weight sharing. CNNs have an input layer, an output layer, and hidden layers. The
hidden layers usually consist of convolutional layers, ReLU layers, pooling layers, and
fully connected layers.

A classic CNN architecture would look something like this:

Input — > Convolution — > ReLU — > Convolution — > ReLU — > Pooling — >
ReLU — > Convolution — > ReLU — > Pooling — > Fully Connected.

Figure 2.14 shows an example of a classic CNN architecture with two convolutions, pooling
layers, fattening, and a fully-connected network .

— CAR
— TRUCK
— VAN

d |j — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
Y % Y
FEATURE LEARNING CLASSIFICATION

Figure 2.14: Example of classic CNN Architecture [1].

Convolution

A convolution is an integral that measures the amount of overlap of two functions, as one is
shifted over the other function. This is a way of mixing two functions by multiplying them.

In a convolution layer, the input data is convoluted with a filter (i.e., filter detector) to get a
feature map. The feature detectors learn which features to look for in the training process.
Figure 2.15 illustrates the convolutional operation between the input data H and the filter
F'. The mathematical formula for a 2D convolution operation is given as:

G0, j) = (H x F) (i, j) = 3> H(m,n)F(i = m, j = n) 2.51)

where G is the output, ¢, j are indexes and m, n are the number of array elements in each
dimension. Then, the feature map after this process will be smaller than the original input
image as shown in Figure 2.15.
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Figure 2.15: Operation of convolution CNN.

2.4.6 Support Vector Machine (SVM)

The support vector machine (SVM) is a supervised machine learning algorithm, commonly
used for both classification, regression problem, as well as time series forecasting. The
SVM technique is based on statistical learning principles.

The SVM can be used to solve linear and non-linear problems. It is based on the idea of
finding the best line or decision boundary that can divide the n-dimensional space into two
regions (two classes). This line is called hyperplane. Support vectors are the data points
nearest to the hyperplane. The position of hyperplane will be changed depending on the
supporting vectors being considered. Because of that, support vectors can be considered
the critical elements of the training dataset. In Figure 2.16, the SVM model construction
process is illustrated.

eu Maximum

Margin Positive

J Hyperplane

Maximum
Margin
Hyperplane

Support
Vectors

3
’o

Figure 2.16: Basic components of the SVM model construction process.

Negative Hyperplane

There are two types of SVM:

e Linear Support vector machine: In this case, the data can be classified into two
types, and a straight line is used to separate both classes. Then, the data is called
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linearly separable, and the SVM, which classifies such data, is called a linear SVM.
e Non-linear Support vector machine

In this case, the data is can not be classified into two types by using only a straight
line. In another word, the data is not linearly separable, and the SVM, which classifies
such data, is called a non-linear SVM.

The best hyperplane can be determined to find the margin value. Margin is the distance
between the support vector and the hyperplane (see Figure 2.16). The rationale behind
SVM is to maximize this margin.

Even though SVM is originally developed for classification problems, but it is also used
for numeric prediction. By using of the kernel function, mapping can be done in SMV
algorithm [46]. The kernel function can be represented as:

fz,y) = &(2).2(y) (2.52)

where z and y are vectors in the input space.

In regression problems, SVM is used to find a linear model of the the form as:

y(x) = wlp(z) + ¢ (2.53)
where ¢(x) is the space transformation function (i.e., kernel function), w and c¢ are
parameters [2]. The task in the linear regression is to minimize the regulated error function.
In SVM, we use ¢ -insensitive error function to obtain sparse solution, i.e., if the absolute

distance between the the target and the predict is less than ¢, then the error is zero [2]. This
makes a tube with € width around the target function as shown in Figure 2.17.

The regulated error function is written as [2]:
o 1
C= ;@- +&)+ 5w 254)

The regulated function in Equation 2.54 must be minimized with following constraints:

¢ and & >0, (2.55)
y(z:) +e+ & > L, (2.56)
y(z) —e—& >t (2.57)

The regulated error function can be minimized by using Lagrange multipliers [2]. Then,
the forecasting function is written as:

N

y(z) = Z(ai +ad;)f(z,x;) + ¢ (2.58)

i=1
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where f is the kernel function, a; and d; > 0 are Lagrange multipliers, and x1, ..z are
support vectors that lie outside the tube.
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Figure 2.17: SVM regression model with € -insensitive [2].

Kernel functions

There are many kernel functions that can be used in SVM models. In this thesis work, I
used three popular kernel functions which are supported by the Weka tool (Weka is used in
the implementation of SVM models for time series forecasting) [47]. These functions are:
1) radial basis kernel, ii) Pearson VII function based kernel, and iii) polynomial kernel.

e Radial basis kernel function can be written as:

2
L=yl
flzy) = e( =) (2.59)
where x and y are vectors in the input space, o is a free parameter which is set by the
user [47].

e Pearson VII kernel function is written as [46]:

1

flz,y) =
(x.) 1 (VEEV2E 1z,

(2.60)

where x and y are vectors in the input space, ¢ and w are parameter which can be
changed [47].

e polynomial kernel function is written as:

fzy) = (@"y +¢) 2.61)
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where x and y are vectors in the input space, c is a free parameter which is set by the
user [47], and d is the dimension of new space.

2.4.7 K-Nearest Neighbors (K-NN)

K-Nearest Neighbors is a supervised machine learning algorithm. K-NN is one of the
simplest method in ML [48, 49]. The K-NN can be used for both classification [50] and
regression prediction problems [51]. K-NN is a non-parametric and lazy learning algorithm.
This means that the model structure determined from the dataset. This will be very helpful
in practice where most of the real-world datasets do not follow mathematical theoretical
assumptions. The algorithm is lazy because it does not need any training data points for
model generation. All training data are used in the testing phase. This makes training faster
and testing phase slower and more costly.

In the forecasting problems, K-NN considers that all instances are some points in the
n-dimensional space R™. The inductive bias of the method assumes that the prediction of a
new instance will be similar to the prediction of the other close instances. The Euclidean
distance is generally used to calculate the distances. For a given instance we can define
nearest neighbors using the Euclidean distance d(x;, z;). The calculation of the Euclidean
distance between two instances is given by:

n

(i, ;) = | Y (ar(z;) — ap(2:))? (2.62)

r=1

The target function may be both discrete-valued and real-valued, so this method can be
used for both for classification and regression problems. In the regression problem, as we
have, let’s consider a training algorithm for continuous-valued target function [52]:

1. For each training example (x, f(x)), add the example to the list of training examples.
2. Given a query instance z, to be predicted:

e Letxy, ...,z denote the k instances from training examples that are nearest to
Zq-
q

e Then

k

Flag) « L:lkf (i) (2.63)
One typical problem, which can arise using nearest-neighbor learning, refers to the fact that
the distance between neighbours may be dominated by some irrelevant attributes. Thus,
when there are many irrelevant attributes in data, the so-called curse of dimensionality
become a problem. To avoid this, we can weight each attribute with different value. We
can imagine this as stretching the axes in the Euclidean space: those axes which represent
irrelevant (or less relevant) attributes become shorter, and those axes which represent
relevant (or more relevant) attributes become longer [52].
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2.5 Evaluation Measures

This section presents the evaluation measures used to assess the predictive performance of
models. In the previous sections, I have introduced various useful and popular techniques
for time series forecasting. Another important issue is of course implementation, i.e. to
apply these methods for generating forecasts. While applying a particular model to some
real or simulated time series, first the raw data is divided into two parts: the training set and
test set. The observations in the training set are used for constructing the desired model.
Often a small sub-part of the training set is kept for validation purpose and is known as the
validation set.

Once a model is constructed, it is used for generating forecasts. The test set observations
are kept for verifying how accurate the fitted model performed in forecasting these values.
If necessary, an inverse transformation is applied on the forecasted values to convert them
to the original scale. In order to judge the forecasting accuracy of a particular model or for
evaluating and comparing different models, their relative performance on the test dataset is
considered.

Due to the fundamental importance of time series forecasting in many practical situations,
proper care should be taken while selecting a particular model. For this reason, proper
performance measures should be selected to estimate forecast accuracy and to compare
different models. These performance measures are also known as performance metrics [53].
Each of these measures is a function of the actual and predicted values of the time series. In
this section, I will describe the important performance measures and their properties, which
are frequently used to evaluate time series forecasting models.

The forecast error at time ¢ is calculated as:

e=y — fi (2.64)

where y; is the actual value and f; is the predicted value. If the size of the test set is n, then
the mean is:

1 n
T=-> (2.65)
t=1
The test variance is:
1 n
o? = — Z(yt —7)? (2.66)
t=1

2.5.1 Mean absolute error (MAE)
The mean absolute error is defined as [53, 54, 55, 56]:
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1 n
MAE = — .
- > el (2.67)
t=1
Its properties are:
e It measures the average absolute deviation of forecasted values from original ones.
e It is also termed as the Mean Absolute Deviation (MAD).

o It shows the magnitude of overall error, occurred due to forecasting.

e In MAE, the effects of positive and negative errors do not cancel out.

Unlike MFE, MAE does not provide any idea about the direction of errors.

For a good forecast, the obtained MAE should be as small as possible.

Like MFE, MAE also depends on the scale of measurement and data transformations.

Extreme forecast errors are not penalized by MAE.

2.5.2 Mean absolute percentage error (MAPE)
This measure is given by [53, 54]:

€t

Yt

MAPE = 1 Z x 100 (2.68)

n
t=1

Its important features are:
e This measure represents the percentage of average absolute error occurred.
e It is independent of the scale of measurement, but affected by data transformation.
e It does not show the direction of error.
e MAPE does not panelize extreme deviations.

¢ In this measure, opposite signed errors do not offset each other.

2.5.3 Mean percentage error (MPE)
It is defined as [57]:

MPE =L f: (ﬁ) % 100 (2.69)

n
1 Yt

The properties of MPE are:

37



Chapter 2. Background concepts

MPE represents the percentage of average error occurred, while forecasting.
It has similar properties as MAPE, except,

It shows the direction of error occurred.

Opposite signed errors affect each other and cancel out.

Thus like MFE, by obtaining a value of MPE close to zero, we cannot conclude that
the corresponding model performed very well.

It is desirable that for a good forecast the obtained MPE should be small.

2.5.4 Mean squared error (MSE)

Mathematical definition of this measure is [54, 58]:

1 n
MSE = - Z e? (2.70)
t=1

Its properties are:

It is a measure of average squared deviation of predicted values.

As here the opposite signed errors do not offset one another, MSE gives an overall
idea of the error occurred during forecasting.

It penalizes extreme errors occurred while forecasting.

MSE emphasizes the fact that the total forecast error is in fact much affected by large
individual errors, i.e. large errors are much expensive than small errors.

MSE does not provide any idea about the direction of overall error.
MSE is sensitive to the change of scale and data transformations.

Although MSE is a good measure of overall forecast error, but it is not as intuitive
and easily interpretable as the other measures discussed before.

2.5.5 Root mean squared error (RMSE)
Mathematically, RMSE is defined as [55, 56]:

RMSE = VMSE = @271

Its properties are:
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o RMSE is nothing but the square root of calculated MSE.
o All the properties of MSE hold for RMSE as well.
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Chapter 3

Related work

In this chapter, I will give an overview of some of the previous work on the electric load
forecasting and how the forecasting models are used in different fields.

3.1 Load forecasting models

Electricity demand forecasting is a significant method that is used to balance the electricity
generated and the electricity demand to increase the efficiency. This is an integral process in
the structuring, planning and operation of the electrical power systems. Forecasting models
help in making decisions associated with generating process and predicting electricity prices
[3]. Also, these models help in improving the reliability of the network by predicting the
faults and responding to the demands. Due to the fluctuation in demand of electricity which
depends on different factors (e.g., weather and living style), and the increase in electricity
prices during the peak’s time, forecasting models become the core of the smart grids and
smart cities that automatically adapt to fulfil the citizens’ need, achieve sustainability,
reduce emissions, among other benefits.

The horizon of the prediction can be classified into many categories. Some researchers have
divided load forecasting into three categories as following [59, 60, 61, 62]: i) short-term
forecasting ii) mid-term forecasting iii) long-term forecasting. While other researchers
added one more category which is very short term forecasting [63, 6, 64, 65]. The period of
the prediction depends on the characteristics of the available data (e.g., per minute, hourly,
weekly, monthly, or annually) and the application of the forecasting model. Table. 3.1
shows the classification of the load forecasting reference to the prediction horizon, and
shows potential applications [4, 5].
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Table 3.1: Demand forecasting classification.

Forecasting mode Duration Applications
Generation,
Few seconds to few | contingency

Very short-term forecasting . ; .
minutes analysis for system security

and distribution schedule
Maintenancescheduling,
From an hour to few | spinning reserve allocation,

Short-term forecasting

days operational planning and
unit commitment.
. . Few days to few Planning for seasonal peak
Mid-term forecasting Y g . p
weeks (summer or winter)
. Few months to few . .
Long-term forecasting years Generation growth planning

Although, there are many load forecasting models, which are developed with different
forecasting methods, still building an appropriate and accurate forecasting model for a
particular electricity network is not an easy task. An accurate load forecasting model
can not be generalized for all electricity data patterns [59, 66, 7]. In general, the load
forecasting methods are divided into two forecasting methods: i) time series forecasting
methods (as used in this thesis), and ii) multi-factor forecasting methods [67]. The time
series forecasting methods depend only on the historical time series data, while multi-factor
methods take the influence of other factors also (i.e., through finding causal relationships)
in forecasting values.

3.2 Time series forecasting models

Most of the time series forecasting models are built by statistical approaches and artificial
intelligence algorithms [68]. The selection of the best method depends on two things: i) the
available historical data, and ii) and the application the models is build for [64, 8].

In the past, time series forecasting models were almost limited to only traditional statistical
methods. But forecasting models based on machine learning methods are becoming more
popular in nowadays with the progress in the technology we are experiencing [65].

3.2.1 Statistical models

Statistical methods have been used to develop time series forecasting models massively
from very long time [69]. These models are divided to: i) Box-Jenkins basic models, and
exponential smoothing models [69, 70, 71, 72].

Box-Jenkins models are:

e Autoregressive (AR) Models which have used for long time in many different fields
including the electric load forecasting [3, 7, 8].
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e Autoregressive Moving Average (ARMA) Model which has been proposed by George
Box in 1970s [7, 69], is used massively in electric load forecasting [3, 73].

o Autoregressive Integrated Moving Average (ARIMA) Model which is proposed by
George Box to include the condition of non-stationary also. ARIMA models have
been used much in the electric load forecasting [3, 59, 8, 9, 74, 75].

Exponential smoothing (ES) methods are also used to build load forecasting models such
asin [72].

3.2.2 Machine learning models

Machine learning methods give an an alternative mechanism to do time series forecasting.
Machine learning methods are applied in various applications, and for different purposes.
In time series load forecasting, machine learning models have been applied massively in
the last two decades [9].

Artificial Neural Network (ANN) Algorithm which is composed of many neurons that
are changing their dynamic state response with respect to external inputs [63, 7, 9]. The
commonly employed ANN algorithms for electric load forecasting are [3, 63, 65, 73, 76,
77]:

e feed-forward (FF) neural networks.

o NARX (nonlinear autoregressive with exogenous inputs) neural networks.
e back-propagation (BP) neural networks.

e radial basis function (RBF) neural networks.

e random neural networks.

e recurrent neural networks (RNN).

e self-organizing competitive neural networks.

ANN models can be classified into two groups forecasting period, according to [3]:

e ANN algorithms which that have only one output node, they used to predict one
point (i.e., the next hour’s load, next day’s peak load, or next day’s total load).

e ANNSs algorithms which that have several output nodes, they used to predict a
sequence of points (i.g., hourly loads for the next week).

Support vector machines (SVMs) are used also for the forecasting purposes, and solving
of the time series forecasting problems in the last two decades [3, 7, 9, 66]. Specifically
in electric load forecasting, SVM models have been widely used. SVM model is used in
[78] to forecast the next day’s electricity load of public buildings, while in [79] it is used
in mid-term load forecasting for a whole city. In [80], an SVM model based on the particle
swarm optimization is developed for short term load forecasting.
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It already exist various forecasting models with different time frame, inputs, outputs, scale,
data sample size and error type [7]. Based on the results found by [7], the majority of the
regression models are used for long-term forecasting with big time scale, while ANN is
more used for short-term prediction with fine time scale. Also, SVM models are mainly
applied for a short and very short term prediction.

3.3 Load forecasting models for energy management

The load forecasting is the core of the energy management systems. Table. 3.1 summarizes
some of the potential applications of electric load forecasting. Energy management is a hot
research topic due to its advantages in related to design sustainable systems and reduce the
CO2 emissions. Energy management consists in choosing among a set of sources able to
produce energy that will give energy to a set of loads by minimising costs and losses [81].

Long-term load forecasting is used for planning the generation process, and finding new
sources to meet the increasing load demand [82]. While, short and mid term load forecasting
are used more in energy management systems at different levels (e.g., micro-grid level and
building level) [83].

One of the emergent applications of the short-term load forecasting is smart and sustainable
cities. In [4], the author has discussed the problem of applying the electricity demand
forecasting for a smart city. In [84], the authors have integrated the short term load
forecasting in the smart city framework. They have designed a full architecture of the smart
city framework by including the short-term time load forecasting at buildings level.

Energy management systems

Designing smart energy management systems at different levels is an important step to
use the energy efficiently. At the micro-grid level, short-term load forecasting can be used
in designing an intelligent energy management system which aims to exploit the sources
(i.e., renewable sources) to cover the load demand, and minimize the amount of energy
required from the grid as in [85]. Demand side managements can be at different levels
[86]. In [87], the authors presented a home energy management system. The residents
can schedule their power usage in the home by themselves for the purpose of reducing
electricity expense.
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Methodology

The main objective of this thesis is to build a time series forecasting model which performs
best on the electricity consumption dataset and explore methods to integrate the forecasting
model in energy management systems. In order to achieve this objective, we have to
explore different forecasting methods (i.e., statistical and machine learning methods) to
find the best one that performs best on our energy consumption dataset. In this chapter,
the adopted methodology of the project, the dataset considered in our study, data analysis,
analyses concerning the existing correlations among consumption data and other data such
as weather data, and implementations details are described.

4.1 Load forecasting model

The load forecasting model is based on applying the time series prediction process, which
is divided into seven steps, as shown in Figure 4.1. The steps are:

1. Collecting data: Collecting the historical data is essential to do prediction and it is
the first step in building the forecasting model. We can use historical or generate
synthetic data. In this project, I have used a real energy consumption dataset. An
overview of the used data in the forecasting model will be presented in the next
section.

2. Pre-processing: The next step in the load forecasting model is to split the historical
data (i.e., the load time series dataset) into two sequences: i) one before the forecasting
horizon: this part is called training dataset which is used to train the forecasting
model, and ii) another sequence after that training sequence which is called the testset,
and it is used in the final evaluation of the forecasting method. In this project, there
are two case studies which used different load forecasting horizons (i.e., short-term
and mid-term forecasting). Therefore, we divided the historical energy consumption
data set as:

(a) Short-term load forecasting (STLF) The horizon prediction in the short-term
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Figure 4.1: Time series prediction process.

load forecasting is from an hour to few days ahead (Table 3.1). The most benefit
of this type of forecasting is to minimize the daily running and dispatching cost.
In this project, I used the hourly total energy consumption for 1112 consumers
from (1/10,/2019) to (30/10/2019), which are 30 days in total. In this case, I
split the dataset into training dataset including the first 23 days of hourly data
and testing dataset which includes the last 7 days

Mid-term load forecasting (MTLF) In the mid-term load forecasting, the
prediction horizon ranges from days to few weeks (Table 3.1). This type
of forecasting can be useful in performing efficient operation planning (e.g.,
planning for seasonal peaks). For this type of prediction, I used the hourly total
energy consumption for 1112 consumers from (16/11/2018) to (24/11/2019),
374 days in total. In this case, I split the dataset into training datset which
includes the first 344 days of the hourly data, and testing dataset which includes
the last 30 days.

3. Parameter estimation: The third step refers to the selection of the forecasting
model structure based on the data characteristics. To estimate the model parameters,
search algorithms are used. The training sequence is divided into sub-sequences

(.e.,

samples) for training and validation. The search algorithm starts with initial

parameters and iteratively tries to find parameters values that minimize the predictive
error of the forecasting model.

4. Model building: Then, the model is built based on the estimated parameters values
which found in previous step, and fits the training data. Then, the prediction error of
the model reflects the chosen values for the parameters.

5. Prediction of values: The fifth steps relies on the use of the trained models to predict
the values of a time series.
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6. Performance evaluation: This step compares the predicted values with actual values
(i.e., testing dataset) to measure the performance accuracy of the model. There are
many performance evaluation measures. Some of them are introduced in Section 2.5.

7. Prediction of future values: The last step of the forecasting model will make
predictions for future periods for which we do not have to the time series values
yet. The prediction error must be calculated as soon as the new measurements are
available (i.e., actual values) to check if the model parameters should be fine-tuned
according to the recent data or not.

As introduced in Chapter 2 - Background concepts, time series prediction models
have been developed over the years , including approaches ranging from the simple
regression models to the deep learning models.

4.2 Data

4.2.1 Data collection and description

The data used in this project are mainly the energy consumption of 1112 consumers. Also,
other related historical data such as weather data were collected and investigated.

Energy consumption data

The project has used real energy consumption readings that were collected from smart
meters (AMS) from Aalesund city by Morenett AS (Aalesund, Norway). The dataset that
contains these readings is used in finding the best prediction algorithm, design IEMS, and
DSM.

The readings are collected hourly from 1112 meters. The dataset has 8975 instances
with two attributes: i) time and ii) energy consumption. The readings are collected from
16/11/2018 to 16/11/2019. Table 4.1 summarizes the used dataset, and Figure 4.2 shows
the total consumption of all units (i.e., 1112 meters).

Table 4.1: Dataset from Morenett.

Type of meter Number of units
Apartments and houses 960
Industrial/commercial units | 114

Cabins 38

Total 1112
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Figure 4.2: Energy consumption of 1112 meters in (Mega watt (MW)).

Weather data

I have investigated the correlation between the energy consumption and weather data such
as: temperature, humidity, wind, cloud cover and visibility. The data is collected from the
Vigra weather station'. Vigra station has most of the needed data without any loss in the
readings. Table 4.2 summarizes the collected weather data which contains both hourly and
daily readings for the same period as in energy consumption data.

Table 4.2: Collected weather data.

Type Time Description

Temperature Hourly recorded Air temperature recorded hourly above 2m from the ground.
Humidity Hourly recorded and daily average | Relative humidity

‘Wind Hourly recorded Mean wind speed

Total cloud cover is registered using a code 0 - 8
describing how many eights of the sky is covered by clouds
Cloud cover Hourly recorded (0 =no clouds, 8 = completely overcast). Code =-3 or 9
means cloud cover can not be estimated because the sky is
obstructed from view because fog, drifting snow, etc.
Visibility Hourly recorded In km, Converted from synop code (max 75 km)

Daily sum of heating degree days.

HDD is defined as how many degrees below 17 °C

HDD (heating degree days) Daily calculated the hourly mean temperature is. If the hourly temperature
is 17 or above, then the HDD is 0.

Max T Daily recorded Highest recorded air temperature per 24 hours

Min T Daily recorded Lowest recorded air temperature per 24 hours
Daily mean dew point temperature is

Dew P (Mean dew point temperature) | Daily calculated the temperature at which the air, when cooled,

will become saturated.

4.2.2 Pre-processing

The aim of pre-processing is to check if there is missing data, wrong values, or cut off in
the electricity. Figure 4.2 shows the energy consumption data that we used. We see there
are obvious wrong values, probably because of cut off in the electricity, in 18/01,/2019 at
23:00 and 08/05/2019 at 03:00. We fixed this by using linear interpolation between the
values in the previous day, and next day at the same time point (i.e.,hour). For example
we substitute the value at 18,/01/2019 at 23:00 by the average value between the values at
17/01/2019 at 23:00 and 19/01,/2019 at 23:00.

IObservations and weather statistics, available online from: https://klimaservicesenter.no/
observations/. (As of 30 June 2020)
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4.3 Explanatory analysis

4.3 Explanatory analysis

This section contains some explanatory analysis of the dataset used in this project.

4.3.1 User types

The dataset contains 960 apartments and houses, 114 industrial and commercial buildings,
and 38 cabins (see Table 4.1). Figure 4.3 shows samples from different categories: house,
commercial, and cabin. There is a clear irregular consumption pattern at the building
level. This is very clear in the example of cabin. The cabins are used more often in
weekends, holidays, and usually when there are good weather conditions. The example
in the Figure 4.3 shows more usage in the summer time than in the spring time in cabin
example. The same is true for houses and apartments; the energy consumption may follow
patterns in householders daily activities, such as working time, number of users, and type
of building. While in the industrial and commercial buildings, there is an obvious pattern in
the consumption as seen in Figure. 4.3, but it is still so much noise in the data.
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Figure 4.3: Samples from different categories: house, commercial, and cabin.
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There is an obvious pattern in the total energy consumption time series as seen in Figure 4.2.
Therefore, we made a load forecasting by using the total consumption of 1112 buildings in
this project. While at the building level, the patters is irregular (i.e., stochastic), and we
have to consider other factors, such as activity plan, holidays, ... etc, in order to perform
forecasting.

Figure 4.4 shows the hourly average. There are tow peeks, one in the morning at 08:00 and
the other one is in the end of working day at 16:00. Probably if we take only houses, the
peaks will be more obvious.
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Figure 4.4: Hourly average.

4.3.2 Correlation with weather data

The weather condition is always a very important factor which can affect the load forecasting
[88]. Figure 4.5 illustrates the relation between weather data and electricity consumption
hourly-based. This figure suggests that the energy consumption is influenced more by the
temperature than other meteorological factors such as humidity, wind, cloud cover, and
visibility.

Figure 4.5 shows the correlation between weather data and electricity consumption on
hourly-based. There are very little correlation between energy consumption and humidity
and wind (i.e., -0.24 with humidity and 0.20 with wind). There is a clear correlation
between energy consumption and temperature (i.e., -0.77). This means that the consumers
use more electricity when the temperature gets lower. Table 4.3 shows correlation matrix
hourly-based.

Table 4.3: Correlation matrix - hourly-based.

Temp | Humidity | Wind | Energy
Temp 1 -0.006 -0.107 | -0.772
Humidity | -0.006 | 1 -0.195 | -0.238
Wind -0.107 | -0.195 1 0.204
Energy -0.772 | -0.238 0204 |1
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Figure 4.5: Weather data and electricity consumption per hour.

We also analyse the correlation between the energy consumption and weather data that are
recorded or calculated on daily basis (see Table 4.2). The energy consumption inside the
building is more influenced by the weather data that calculated on daily basis such as HDD.
This is because the heating is a continual process which is less affected by short variation.
Figure 4.7 shows the relation between weather data (e.g., HDD, Max T, Min T, Dew P, and
Humidity) and electricity consumption on daily based.
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Correlation Matrix
-0.11 -0.77

-0.19 -0.24

0.20

0-10 0 10 20 30 50 100 150 o 10 20 O 5 10
Temp Humidity Wind Energy

Figure 4.6: Correlation matrix - hourly based.

In order to check the relation between the weather data (HDD, Max T, Min T, Dew P, and
Humidity) and electricity consumption on daily-based, we plotted the correlation matrix as
seen in Figure 4.8. Also, we summarized the results of the correlations in the Table 4.4.
The energy consumption is affected more by the temperature data (HDD, Max T, Min T,
and Dew P) than humidity. The HDD, Max T, Min T, and Dew P are highly correlated.
For instance, the correlation between HDD and Max T is -0.96 (highest). HDD has the
maximum correlation with the energy consumption 0.90.

Table 4.4: Correlation matrix - daily-based.

HDD | MaxT | Min T | Dew P | Humidity | Energy
HDD 1 -0.962 | -0.946 | -0.932 | -0.219 0.904
Max T -0.962 | 1 0.869 | 0.885 | 0.157 -0.892
Min T -0.946 | 0.869 1 0915 | 0.280 -0.856
Dew P -0.932 | 0.885 0915 |1 0.545 -0.876
Humidity | -0.219 | 0.157 0.280 | 0.545 1 -0.287
Energy 0.904 | -0.892 | -0.856 | -0.876 | -0.287 1
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Figure 4.7: Relation between weather data and electricity consumption on daily based

4.3.3 Time series components

A time series plot shows a graphical presentation of the relationship between time and the
time series target variable (e.g., energy consumption) as shown in Figure 4.2. The time
series components are i) trend, ii) seasonality, and iii) residual as described in Section 2.1.
A good starting for point for time series analysis relies on the visualization of data by using
a time series decomposition plot separate the time series into it is seasonal, trend, and
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Figure 4.8: Correlation matrix - daily-based.

residual components. Figure 4.9 shows these components. There is upward trend which
started in the end of summer and continued in the autumn. Also, there is downward trend
which started in the end of winter time and continued in the spring time. There is no trend
in the summer and winter times (i.e., horizontal trend). The seasonality is not clear enough
in this figure, but the data has daily and weakly seasonality (check Chapter 5). And lastly,
the residual is the error in the model that calculates. Time series decomposition provides a
useful tool for better understanding problems during the analysis and forecasting processes.

4.3.4 Auto correlation

Autocorrelation shows the correlation of a signal with itself as a function of the time lag
between the two points. It is a useful visualisation to determine periodic phenomena in
time series data sets.

Figure 4.10 shows ACF and PACF with 50 lags. The correlation coefficient represented
in the vertical axis while the number of lag shown across the horizontal axis. This allows
us know how far out our time series is correlated with itself. This series is un-differenced
and has no obvious decay toward 0 correlation. This means that the series is not stationary
and it needs to be differenced to reach a stationary series. Figure 4.12 shows ACF after the
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Figure 4.9: Decomposition

first difference. Now, lag-1 is significant. If we take a look at the PACF plot after the first
difference, we find that PACF plot has most significant spikes at Lag-1 and Lag-2.
Section 2.3 explains the auto correlation function (ACF) and partial auto correlation function
(PACF).

Autocorrelation Partial Autocorrelation
10 10
08
08
06
06 04
04 0z
00 T.'I'Tn 'I"I'!'I'-rh"h o atlallase o
L T[T v T
02 l I'l
-0.2
0.0 04
-0.2 -0.6
0 1 B e a0 50 0 1 0 30 W 50
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Figure 4.10: ACF and PACEF plots of the total energy consumption dataset.

The data as shown in Figure 4.11a are non-stationary since the mean and the variance are
not constant over time. After taking the first difference, Figure 4.11b shows that the trend is
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Figure 4.11: Energy consumption dataset with mean and standard deviation on stationary and
non-stationary dataset.
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Figure 4.12: ACF and PACEF plots of the resulting after one difference total energy consumption
dataset.

4.4 Implementation details

4.4.1 Hardware

All the models were developed using an Apple MacBook Pro 13 Retina, with 3.1 GHz two
CPU cores (Intel Core i7), 16GB Memory, and 1TB SSD Harddisk. Also, I used Google
Colab? to develop some methods for time series forecasting by using Python. The Google
Colab is a free cloud service which support GPU also.

Zhttps://colab.research.google.com/ (As of July 2020).
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4.4.2 Programming languages, Tools, and Libraries

In this section, the main used tools in the master project will be introduced. Some of these
tools are used for preparing the data for the forecasting models or analysing the data.

Python

Most development of the statistical and machine learning algorithms to build the time series
forecaster was done with the programming language Python 3. Python is the most popular
programming language for time series forecasting. Python has many libraries to use in time
series forecasting such as SciPy [89].

The main libraries used are:

e Pandas: It is a software library written for the Python programming language for
data manipulation and analysis. Pandas is a flexible, easy-to-use and powerful tool
which offers data structures and operations for manipulating numerical tables and
time series [90].

o Statsmodels: It has several tools for statistical modelling. Further, there are tools
dedicated to time series that be used for forecasting.

e Scikit-Learn: It is a free machine learning library for Python. It supports Python
numerical and scientific libraries like NumPy and SciPy and it features various
algorithms such as support vector machine, and k-nearest neighbours [91].

o Keras: It is a powerful and easy to use library for developing and evaluating deep
learning models. Keras runs on top of tensorflow.

e Tensorflow: It is a Python library for fast numerical computing created and released
by Google. It is a foundation library that can be used to create Deep Learning
models directly or by using wrapper libraries that simplify the process built on top of
TensorFlow [92].

e Pytorch: It is an open source, deep learning library that facilitates building deep
learning projects [93].

MATLAB

MATLAB is developed by MathWorks [94]. It is a multi paradigm numerical computing
environment and proprietary programming language. MATLAB uses computations and
algorithms to analyze large amounts of data and present it in visually appealing formats.
MATLAB has many useful toolboxes such as statistical toolbox, and optimization toolbox.

Weka

Weka (Waikato Environment for Knowledge Analysis) is developed at the University of
Waikato, New Zealand. Weka contains a collection of visualization tools and algorithms
for data analysis and predictive modeling, together with graphical user interfaces for easy
access to these functions [47].
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4.4.3 Data formatting

The historical load data is stored in C'SV format file. Data set contains 8975 rows and
two columns, each row represents a new time step (1 hour) and a load observation. This
format is a two-dimensional matrix with the following shape (#Samples;#Features). This
gives the possibility to use the data directly in statistical methods. But in the machine
learning methods such as CNN, it requires a specific kind of historical data format to train
the models. These models require not only the current sample, but all the samples in the
specified historical time window. This needs to be in a specific format having a list of
lists, with samples. Then, the matrix will be three-dimensions matrix (#Samples;#Time-
steps;#Features), where:

e Samples: One sequence is one sample and a batch is comprised of one or more
samples.

o Time Steps: One time step is one point of observation in the sample.
e Features: One feature is one observation at a time step.

For this type of format, a special library is used and the time window approach is used.

4.4.4 Load forecasting model implementation

This section briefly mentions which libraries and some details about the implementation of
the different load forecasting models.

Statistical methods
e AR is implemented by using Python in Colab.
e ARMA is implemented by using Python in Colab.
o ARIMA is implemented by using Python in Colab.
e SARMA is implemented by using Python in Colab.
e MA is implemented by using Python in Colab.
o SES is implemented by using Python in Colab.
e HES is implemented by using Python in Colab.

e Single-seasonal Holt-winters method is implemented by using Python in Colab.

Machine learning methods

e LR is implemented by using Python in Colab (we use Keras model which contains
Dens layer without any activation function. The model is compiled with the optimizer
(SGD) and it uses hyper loss for training and early stopping callback function.

e SVM is implemented by using WEKA.
e K-NN is implemented by using WEKA.

58



4.4 Implementation details

e DNN is implemented by using Python in Colab (Implemented using Dense layers in
Keras).

o RNN is implemented by using Python in Colab (Implemented using RNN layer in
Keras).

e LSTM is implemented by using Python in Colab (Implemented using LSTM layer in
Keras).

e CNN is implemented by using Python in Colab (Implemented with standard layers
in Keras).

4.4.5 Case study implementation

This section gives an overview of the implementation of the case studies. The case studies
are: 1) an intelligent energy management system, and ii) demand side management system.

Case A

A full description of the proposed intelligent energy management system (IEMS) will be
presented in Chapter 6. The example of IEMS is implemented by using MATLAB. The
load is predicted by the implemented load forecaster. The power also generated locally in
the grid by different sources such as solar cells and wind farms. The generating depends
on the foretasted weather (e.g., wind speed). The IEMS will optimise the using of energy
storage to minimize the peak and reduce the power usage from the grid.

Case B

A full description of the proposed demand side management (DSM) model will be in
Chapter 6. The example of DMS is implemented by using MATLAB. The load is predicted
by the implemented load forecaster. The user will schedule using of shiftable appliances,
such as washing machine, dish washer, clothes dryer, and electrical vehicle, to reduce his
electricity prices.
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Chapter 5

Load forecasting results

This chapter presents the implementation details and results of time series forecasting
models in the master project. In the first section, the statistical methods’ results are
presented. After that, machine learning methods’ results are presented in the next section.
At the end of the chapter, a comparison between different statistical and machine learning
methods in the performance is given.

5.1 Statistical methods

These methods are applied on a dataset that contains the historical total energy consumption
for 1112 consumers and applied on two different time series horizons: i) The first horizon
is from (1/10/2019)) to (30/10/2019), 30 days. We split the dataset into a training set,
which includes the first 23 days of the dataset, and testing set which includes the last 7 days.
ii) the second horizon is from (16/11/2018)) to (24/11/2019), 374 days is used. We split
the dataset into a training set, which includes the first 344 days of the dataset, and testing
set, which includes the last 30 days. Figure 5.1 shows the used dataset.
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(a) Dataset, training set (blue) and testing set (b) Dataset, training set (blue) and testing set
(yellow) for 30 days forecasting horizon. (yellow) for 7 days forecasting horizon.

Figure 5.1: Dataset, training set and testing set.
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5.1.1 ARIMA
Autoregressive Model (AR)

As mentioned in Section 2.3.3. AR model is selected through a combination of visual
inspection of (ACF) and (PACF) plots. After running the functions to choose the optimal
lags in order to find the parameter (p), AR(1) model appears to be our best AR Model for
the 7-day horizon, while the AR(3) is the best AR model for the 30-day horizon. It was no
increase in the forecasting accuracy when we tried other parameter values. The prediction
with AR model on the datatset is shown in Figure 5.2. Figure 5.2a shows the forecasting
result for 7-day horizon , and Figure 5.2b shows the forecasting result for 30 days.
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(a) Forecasting values (red) and actual values (blue) (b) Forecasting values (red) and actual values (blue)
for 7-day horizon. for 30-day horizon.

Figure 5.2: Forecasting results of AR model.

ARMA

Similarly to the AR model, ARMA model’s parameters p, q are selected by visual inspection
of the ACF and PACEF plots as described in Section 2.3.3. ARMA (1, 1) model seems to
be the best model as it gives the best forecasting accuracy for the 7-day horizon , while
ARMA (5, 3) gives a best forecasting accuracy for the 30-day horizon (i.e.,there was not
any improvement in the forecasting accuracy when I tried other different values for p, g
parameters. The prediction with ARMA model is shown in Figure 5.3. Figure 5.3a shows
the forecasting result for the 7-day horizon, and Figure 5.3b shows the forecasting result
for the 30-day horizon.

(a) Forecasting values (red) and actual values (blue) (b) Forecasting values (red) and actual values (blue)
for 7-day horizon. for 30-day horizon.

Figure 5.3: Forecasting results of ARMA model.
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ARIMA

Akaike’s Information Criterion (AIC') is used to determine the order of ARIMA model
(p,d,q) as described in Section 2.3. Depending on the AIC score, the order of ARIMA is
selected. The optimal model for the dataset is ARIMA(7, 0,1) on both horizons, 7-days and
30-days. The result of the forecasting is shown in Figure 5.4.

M91025 190026 219027 2190028 M150029 0190030 2190031 20191101 097025 2191029 2191101 20191105 0191109 W1SIL13 | AW9ALT 2191121 2181125
Date Date

(a) Forecasting values (red) and actual values (blue) (b) Forecasting values (red) and actual values (blue)
for 7-day horizon. for 30-day horizon.

Figure 5.4: Forecasting results of ARIMA model.

SARIMA

Similarly to the ARIMA model, AIC is used to determine the parameters of SARIMA
model (p, d, q), (P, D, Q) as described in Section 2.3. AIC' score is used to find the best
SARIMA model which fits the training set.

The optimal model is SARIMA (1,0, 1), (1,0, 1)24 on the horizon of 7 days, and SARIMA
(2,1,2),(1,1,0)24 on the horizon of 30 days. Figure 5.13 shows the forecasting results by
using the SARIMA model. The forecasting results for 7-day horizon is illustrated in Figure
5.5a, and in Figure 5.5b for 30 days.
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(a) Forecasting values (red) and actual values (blue) (b) Forecasting values (red) and actual values (blue)
for 7 days. for 30 days.

Figure 5.5: Forecasting results of SARIMA model.

5.1.2 MA

Moving average (MA) is a simple method which is used often is smoothing the data. MA
model forecasting depends on the number of recent observations (n) that are included in
the calculation of MA values as described in Section 2.3. Figure 5.6a shows the forecasting
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results when n = 48. The MA model gives a curve roughly emulating the original time
series, but it does not anticipate trend or seasonality depending on the current time (i.e.,
the period after which you want to forecast). Figure 5.6c shows the result of MA when
n = 2. The forecasting accuracy is much increased by selecting n = 2. MA is used only
for evaluation, but not in prediction because in order to get the value for the next step, we
need the previous values to be actually observed.

(a) Forecasting values (red) and actual values (blue), (b) Forecasting values (red), training set (blue), and
N=48. testing set (orange), N = 48.
| ‘ \f\ \ ‘ | M
| [T
r \ )L \‘ | \ | M
Wil

(c) Forecasting values (red) and actual values (blue), (d) Forecasting values (red), training set (blue), and
N=2. testing set (orange), N = 2.

Figure 5.6: Forecasting results of MA model.

513 ES

To estimate the exponential smoothing (ES) model, the fit criteria is used (default fit
function) to find the best value of «, 3, and «y (i.e., which gives the lowest error value) to
fit the model to the data. Table 5.1 shows the selected parameters for the ES algorithms.
These parameters give the best model to SES, HES, AHW, and MHW on the horizons of
7-days, and 30-days. Figure 5.7 shows the forecasting results for ES model on the horizon
of 7-days. Figure 5.7a shows the forecasting result from SES model, Figure 5.7b shows the
forecasting result from HES model, Figure 5.7¢ shows the forecasting result from AHW
model, and Figure 5.7d shows the forecasting result from MHW model. The forecasting
result on the horizon 30-days is illustrated in Figure 5.8, where Figure 5.8a show the result
from SES. Figure 5.8b shows the result from HES, Figure 5.8c shows the result from AHW,
and Figure 5.8d shows the result from MHW.
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Table 5.1: Selected parameter for ES.

SES Smoothing constant associated with the level («) a=0:01:1
HES Smoothing constant associated with the level (o) a=0:01:1
Smoothing constant associated with the trend () 8=0:01:1
Smoothing constant associated with the level (c) a=0:01:1
Smoothing constant associated with the trend (3) 8=0:01:1
AHW . . . .
Smoothing constant associated with the seasonality a a=0:01:1
Number of observations that make up a seasonal period (m) | m =0:24
Smoothing constant associated with the level («) a=0:01:1
Smoothing constant associated with the trend (3) B8=0:01:1
MHW . . . 5
Smoothing constant associated with the seasonality « a=0:01:1
Number of observations that make up a seasonal period (m) | m =0:24
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(a) Forecasting values (red) by SES model and (b) Forecasting values (red) by HES model and
actual values (blue).
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(c) Forecasting values (red) by AHW model and
actual values (blue).

(d) Forecasting values (red) by MHW model and
actual values (blue).

Figure 5.7: Forecasting results of ES model on the horizon 7 days.

5.2 Machine learning methods

Machine learning (ML) methods were applied to perform predictions on the same periods

as statistical methods in Section 5.1.

5.21 LR

The linear regression (LR) is described in Section 2.4. Figure 5.9 shows the layout which
is used in the forecasting model. The model was fit over the 200 epoch and the results
are shown in Figure 5.15a for 7-day horizon and in Figure 5.16a for 30-day horizon. The
parameters that used to tune the model are summarized in Table 5.2.
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(a) Forecasting values (red) by SES model and
actual values (blue).
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(c) Forecasting values (red) by AHW model and
actual values (blue).

(b) Forecasting values (red) by HES model and

actual values (blue).
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(d) Forecasting values (red) by MHW model and

actual values (blue).

Figure 5.8: Forecasting results of ES model on the horizon 30 days.

Model: "sequential®

Layer (type) Output Shape Param #

dense (Dense) (None, 1) 49

Total params: 49
Trainable params: 49
Non-trainable params: 0

Figure 5.9: LR Layout.

5.22 MLP

Table 5.2: Selected parameters for LR.

Long-short-term-memory | Parameters
Optimizer SGD
Learning rate le—6
Batch size 32

Time window 48

Output Layer 1

The MLP is not that much different from the linear regression model. It is relatively simple
deep neural network that has three layers as shown in Figure 5.10. The activation function
which is used in this model is the Re LU function. The selected parameters for the MLP
model is summarized in Table 5.3, where the model consists of two Dense layers (10, 10),
and one output layer 1. Figure 5.15b shows the forecasting results of MLP model for 7-day
horizon and Figure 5.16b for 30-day horizon. It is obvious that the model performs very

good on the given dataset.

66



5.2 Machine learning methods

Table 5.3: Selected parameters for MLP.

Model: "sequential”

T — R Deep Neural Network | Parameters
dense (Dense) (None, 20) 980 Optimlzer SGD
dense_1 (Dense) (None, 20) 420 Learnlng I'ate 1.26 _ 4
dense_2 (Dense) (None, 1) 21 "
B——— Batch size 32
o e s Time window 48
Dense layer (10, 10)
Figure 5.10: MLP Layout. Output Layer 1

The recurrent neural network (RNN) model contains two recurrent layers and one final
dense layer, which serves as the output layer as shown in Figure 5.11a. As described in
Section 2.4, the RNN model is fed by a batch of sequences (i.e., windows from the time
series), and the model output is a batch of forecasts. The inputs contain three variables
(batch size, # time steps, # of dims = 1). In Keras, the default behaviour of all the recurrent
layers is sequence to vector (i.e., the output of each recurrent layer is a single vector). This
is called RNN (sequence to vector) and it shown in Figure 5.11a, and this model was
implemented in the beginning. "None" meaning the model will support sequences of any
length. Then, I have changed the default behaviour in Keras to build RNN (sequence to
sequence) model to let the recurrent layers to output sequences. This model is shown in
Figure 5.11b.

Model: "sequential®

layer (type) Output Shape Paran #
Layer (type) Output Shape Param #

simple rnn (SimpleRNN) (None, None, 100) 10200
lambda (Lambda) (None, None, 1) 0
n n simple rnn_1 (SimpleRNN) (None, None, 100) 20100
simple_rnn (SimpleRNN) (None, None, 100) 10200
simple_rnn_1 (SimpleRNN) (None, 100) 20100 dense  (Dense) (None, None, 1) 101
dense (Dense) (None, 1) 101 lambda (Lambda) (None, None, 1) 0
lanbda_1 (Lambda) (None, 1) 0 Total params: 30,401
Total params: 30,401 Trainah}e parans: 30,401
Trainable params: 30,401 Non-trainable params: 0
Non-trainable params: 0

(a) RNN (sequence to vector) Layout. (b) RNN (sequence to sequence) Layout.

Figure 5.11: RNN (sequence to sequence) Layout.

In both RNN models: sequence to sequence RNN and sequence to vector RNN, the default
activation function in the RNN layers is tanH, which is the hyperbolic tangent activation.
The hyperbolic tangent function is used instead of ReLU because RNN models have
tendency to have unstable gradient. The gradients are more likely to saturate by using
hyperbolic tangent. Training RNN model is actually tricky. For example, if the learning
rate is high, then the training is unstable and the model does not learn. While if the learning
rate is low to avoid the instability, the training is very slow. In Keras, the RNN model
with the optimal learning rate was found automatically by using callbacks function, with
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early stopping and checkpoints. The selected parameters for the RNN (sequence to vector)
model is summarized in Table 5.4a, while the selected parameters for the RNN (sequence
to sequence) model is summarized in Table 5.4b.

Figures 5.15c and 5.16¢ show the forecasting results of RNN (sequence to vector) model
for 7 days and 30 days, respectively. Figures 5.15d and 5.16d show the forecasting results
of RNN (sequence to sequence) model for 7 days and 30 days, respectively. The model
performs well on the given dataset.

Table 5.4: Selected parameters for RNN model.

(a) RNN (sequence to vector). (b) RNN (sequence to sequence).
RNN (sequence to vector) | Parameters RNN (sequence to sequence) | Parameters
Optimizer SGD Optimizer SGD
Learning rate 1.5e=0 Learning rate le %
Batch size 128 Batch size 128
Time window 48 Time window 48
Simple RNN Layers 100,100 Simple RNN Layers 100,100
Output Layer 1 Output Layer 1

524 LSTM

To make the RNN learn long-term patterns, long short term memory model (LSTM) is
implemented. LSTM is implemented in Keras by replacing the simple RNN layer with an
LSTM layer as shown in Figure. 5.12. The LSTM layer implements many optimizations,
which make the model very slow. Similarly to RNN model, the LSTM model with the
optimal learning rate was found automatically. Table 5.5 shows the selected parameters for
the LSTM. The table shows that the SGD with a learning rate of 1e — 6 performs best with
two hidden layers of 100 and 100. The time window was selected to be 48. Figures 5.15¢
and 5.16e show the forecasting results of the LSTM model for 7-day horizon and 30-day
horizon, respectively. The model did not perform better than RNN on the given dataset.

Model: "sequential”

Layer (type) Output Shape Param #

1stm (LSTM) (1, None, 100) 40800

Istm 1 (LSTM) (1, None, 100) 80400

dense (Danse) 1, Wome, 1) o1 Table 5.5: Selected parameters for LSTM.
lambda (Lambda) (1, None, 1) 0
Eeatnabto porean: 121,301 Long-short-term-memory | Parameters
ontrainabie patame: Optimizer SGD
Learning rate le—6
Figure 5.12: LSTM Layout. Batch size 39
Time window 48
Hidden Layers 100,100
Output Layer 1
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5.2.5 CNN

CNN model comprises two of one dimensional convolutional CONV-1D layers, and one
dense output layer as shown in Figure 5.13a. The model used Relu as an activation function
in this experiment. Table 5.6a shows the model parameters. The kernel size is 5, therefore
the padding that is used here, is a causal padding. This is essential to ensure that the model
does not cheat and use future value to forecast future value. The stride is 1, and the model
finds the optimal learning rate by using the fit model that used the training dataset to find
the best learning rate that gives the lowest error and best performance. The results that
achieved from CNN are shown in Figure 5.15f for 7-day horizon, and in Figure 5.16f for
30-day horizon. Some other adjustments were tested, resulting in an increase improvement
in the performance. Specifically, dilated convolution with different rates that is called CNN
wavenet was developed. The parameters that are used in the CNN wavenet model are
summarized in Table 5.6b, and the layout of the model is shown in Figure 5.13b.

Nodel: "sequential’ nodel. sumary ()
Model: "sequential”
Layer (type Output Shape Param #
Fer (type) P P Layer (type) Output Shape Param #
convid {Conle) (None, None, 3,2) 192 convld (ConviD) (None, None, 32) 96
convld 1 (ConviD) (None, None, 32) 2080
convld_L (ConvD) (None, None, 32) 5152
= convld 2 (ConviD) (None, None, 32) 2080
dense (Dense) (None, None, 1) 1) convld 3 (ConviD) (None, None, 32) 2080
convld 4 (ConviD) (None, None, 32) 2080
lambda (Lambda) (None, None, 1) 0
convld_5 (ConvlD) (None, None, 32) 2080
Total params: 5,377 convld 6 (ConviD) (None, None, 1) 33
Trainable parans: 5,377 Total params: 10,529
Non-trainable parans: 0 Trainable params: 10,529
Non-trainable params: 0
(a) CNN Layout. (b) CNN wavenet Layout.

Figure 5.13: CNN and CNN wavenet models Layouts.

The CNN Wavenet model composed of six one-dimensional convolutional layer with
growing dilation rate, and output 1D convolutional layer with a single kernel size 1 with
stride 1. The results from this experiment is shown in Figure 5.15g for 7-day horizon and
in Figure 5.16g for 30-days horizon. It is obvious that the model performs very well on the
given dataset.
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Table 5.6: Selected parameters for CNN and CNN wavenet models.

(a) Selected parameters for CNN.

(b) Selected parameters for CNN Wavenet.

Convolutional Neural Convolutional Neural
Parameters Parameters
Network Network wavenet
Optimizer SGD Optimizer SGD
Learning rate le=? Learning rate 3e—4
Batch size 132 Dilation rate 1,2,4,8,16,32
Time window 48 Batch size 132
filters 32 Time window 48
kernal size 5 filters 32
strides 1 kernal size 2
padding causal strides 1
Output Layer 1 padding causal

5.2.6 Combination (CNN, LSTM, MLP)

CNN, LSTM, and MLP models can be together forming the desired topology by do
combinations between them. The layout of the model is shown in Figure 5.14, and the
model parameters that are used, are summarized in Table 5.7. The model starts with the
1D — Convolution with filter 48. This output is fed to the couple of LSTM with 60 cell.
Then the output is fed into the dense (30, 10) layer, and finally the output from the dense 1
layer. The results from this experiment is shown in Figure 5.15h for 7-day horizon and in
Figure 5.16h for 30-day horizon. This model didn’t perform very good on the given dataset,

as CNN and CNN wavenet models.

Model: "sequential”

Layer (type)

Output Shape

convld (ConviD)

(oney Home, 46) Table 5.7:  Selected parameters for
1stm (LSTM) (None, None, 60) 26160 . .
combination model.
Istm 1 (LSTM) (None, None, 60) 29040
dense (Dense) (None, None, 30) 1830
Genee T (oo ions, woms, 107 o Combination Model | Parameters
dense_2 (Dense) (None, None, 1) 11 Optimizer SGD
lambda (Lambda) (None, Nonme, 1) 0 n -6
Learning rate 1.2¢
Trainable params: 57,639 . .
Non-trainsble parane: 0 Dilation rate 1,2,4,8,16,32
Batch size 100
Figure 5.14: Combination Layout. Time window 48
filters 48
kernal size b)
padding causal
LSTM layer 60, 60
Dense layer 30,10
output 1
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Figure 5.15: Forecasting values by machine learning models for 7-day horizon.
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Figure 5.16: Forecasting values by machine learning models For 30-day horizon.

5.2.7 SVM

SVM is implemented in Weka as SMOreg [47]. The parameter C' is the width of the tube.
The value of C' is determined by the user. I have tried out different SVM models (i.e., using
radial basis kernel function) with different values of the parameter C' to find the optimal one.
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Table 5.8 summarizes the performance of the SVM with different C' values, for both 7 days
and 30 days. The performance is not improved massively by C' = 5 in 30-day horizon, then
I'set C' = 2, to reduce the computational time. In the case of 7-day horizon, [ set C' = 5.
Table 5.9 summarizes the performance of the SVM with the polynomial kernel function. I
tried two values of exponent. For more complex data, higher values of exponent should be
used. For the given dataset, the optimal value of exponent is 1 for both 7-day horizon and
30-day horizon, this suggests that the data is not complex and has high correlation between
the observations. Also, the Pearson VII kernel function is tested. It is a general kernel
function and the model behaviour changes by changing the value of w. The performance of
the Pearson VII kernel function (i.e., called PUK in Weka) is summarized in Table 5.10. I
conclude that SVM with the polynomial kernel function, exponent =1, performs best on the
given data. Figure 5.17a shows the forecasting results of SVM model with the polynomial
kernel function, C' = 5, and exponent = 1 for the 7-day horizon, and Figure 5.17b shows
the forecasting results of SVM model with the polynomial kernel function, C' = 2, and
exponent = 1 for the 30-day horizon.

Table 5.8: Performance of the SVM for different values of tube width C.

7 days 30 days

C | MAE | MAPE | RMSE | MSE | MAE | MAPE | RMSE | MSE
0.1 | 0.4388 | 10.2549 | 0.5276 | 0.2783 | 0.149 | 3.0863 | 0.2142 | 0.0459
1 0.1722 | 4.1106 | 0.2329 | 0.0542 | 0.0969 | 2.0207 | 0.1458 | 0.0213
2 0.1411 | 3.3882 | 0.2004 | 0.0402 | 0.093 1.9406 | 0.1398 | 0.0195
5 0.1189 | 2.8641 | 0.1738 | 0.0302 | 0.0911 | 1.8988 | 0.1348 | 0.0182
10 | 0.1113 | 2.6858 | 0.1639 | 0.0269

Table 5.9: Performance of the polykernel-SVM for different values of exponet.

7 days 30 days
exponet | MAE | MAPE | RMSE | MSE MAE | MAPE | RMSE | MSE
1 0.094 | 2.6223 | 0.1401 | 0.0196 0.0899 | 1.8813 | 0.1316 | 0.0173
2 0.1122 | 3.2938 | 0.1604 | 0.0257 0.6679 | 13.0918 | 0.8129 | 0.6608

Table 5.10: The performance of PUK-SVM for different values of w.

7 days 30 days

w MAE | MAPE | RMSE | MSE | MAE | MAPE | RMSE | MSE
0.05 | 0.4008 | 9.2042 | 0.5009 | 0.2509 | 0.3444 | 6.7263 | 0.4464 | 0.1992
0.1 | 0.3724 | 8.516 0.4707 | 0.2215 | 0.3322 | 6.49 0.4332 | 0.1876
0.5 | 0363 | 8.1952 | 0.4733 | 0.224 | 0.3342 | 6.5345 | 0.4344 | 0.1887
1 0.3742 | 8.3994 | 0.4948 | 0.2448 | 0.3523 | 6.8789 | 0.4559 | 0.2078
5 0.3985 | 8.8714 | 0.5401 | 0.2917 | 0.4075 | 7.9385 | 0.5346 | 0.2858

5.2.8 K-NN

KNN algorithm is an instance-based learning model. It does not begin to construct the
model immediately as in regression models, instead it saves training examples. When new
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instance arrives, its distance to the training examples is measured in order to forecast its
target value. KNN is called a lazy learner, since it postpones the work until the new query
arrives. Then each new instance is treated separately. The KNN algorithm in Weka is used
to build the model. We used non-weighted KNN. During using non-weighted algorithms,
noise can greatly affect the algorithm accuracy. In order to deal with the problem, finding
an optimal constant K is required, so only the majority of the class will influence the output,
not a single nearest neighbor. The optimal value of K depends on the data characteristics
such as data quality and complexity of the data.

The model performance on the test data with different number of K were tested. The results
of the experiments are summarized in Table 5.11. The best performance was achieved
for K = 3 for 7-day horizon and K = 12 for 30-day horizon. The models with smaller
K "learn" the training data too well, while their performance is not good enough on the
test data. The big value of K, suggests that there is a noise in the data. Figure 5.17¢
shows the forecasting results of KNN model for 7-day horizon, and Figure 5.17d shows
the forecasting results of KNN model for 30-day horizon. We can observe that the K-NN
model yields worst results comparing to SVM.
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Figure 5.17: Forecasting results of SVM and KNN models in Weka.
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Table 5.11: KNN performance for different number of neigbors (K).

7 days 30 days
MAE | MAPE | RMSE | MSE MAE | MAPE | RMSE | MSE
0.3628 | 8.5505 | 0.4391 | 0.1928 | 0.3395 | 7.2306 | 0.4142 | 0.1715
0.3579 | 8.3937 | 0.4292 | 0.1842 | 0.3304 | 7.0296 | 0.4009 | 0.1607
0.3234 | 7.4846 | 0.407 0.1656 | 0.3257 | 6.9309 | 0.3949 | 0.156
0.3644 | 8.487 0.4344 | 0.1887 | 0.3292 | 6.9672 | 0.397 0.1576
0.363 8.4191 | 0.4354 | 0.1895 | 0.328 | 6.9356 | 0.3946 | 0.1557
0.3701 | 8.5807 | 0.4428 | 0.1961 | 0.3278 | 6.9167 | 0.395 0.1561
12 | 0.378 8.7743 | 0.4496 | 0.2021 | 0.3275 | 6.9028 | 0.394 0.1552
15 | 0.3837 | 8.8947 | 0.4573 | 0.2091 | 0.3292 | 6.9214 | 0.3963 | 0.157
18 | 0.3942 | 9.1074 | 0.4736 | 0.2243 | 0.3286 | 6.9019 | 0.3976 | 0.1581
21 | 0.4027 | 9.2877 | 0.4843 | 0.2345 | 0.3282 | 6.8903 | 0.3974 | 0.1579
24 | 0.4069 | 9.3737 | 0.4892 | 0.2394 | 0.3293 | 6.9128 | 0.399 0.1592

O | | W | = B

5.3 Performance evaluation of machine learning and
statistical methods

The empirical results that are achieved arranged into two case studies: (i) results from
predictive models applied for short term load forecasting as illustrated in Figure 5.18, and
(ii) results from predictive models applied to midterm load forecasting as illustrated in
Figure 5.19.

Four different evaluation measures are used for short term load forecasting (STLF) and
mid-term load forecasting (MTLF): i) Mean absolute error (MAE) as shown in Figures
5.18a, and 5.19a, ii) Mean square error (MSE) as shown in Figures 5.18b, and 5.19b, iii)
Root mean square error (RMSE) as shown in Figures 5.18c, and 5.19¢, and iv) Mean
absolute percentage error (MAPE) as shown in Figures 5.18d, and 5.19d.

Finding the method which performs best on the given data is the answer of the first research
question in the master thesis. In statistical methods, MA gives best result as obviously seen
in the Figure 5.6, but as mentioned before, this method can not be used in the prediction
because in order to get the value for the next step, we need the previous values to be
actually observed. But if we compare the performance among ARIMA models, we find that
SARIMA performs best on the STLF and also on the MTLF. SARIMA model has captured
the seasonality of the data, the trend as well, and the residual. The AR Model gives a good
performance since it captures the correlation in energy consumption. ARMA model has
also performed well, but it did not capture the seasonality well. ARIMA model has failed to
capture the seasonality, so it yields the highest error values on MTLF while ARMA gives
the highest error on the short term.

From the ES models that have been applied to the dataset (SES, HES, AHW and MHW),
the HES model achieves the best performance where it captures trend. While the SES use
exponentially decreasing weight for past data, it also works well with the data. There was
not an enormous difference between MHW and SES, in the opposite of the AHW model
which gives the worst result among all the ES models.

In the machine learning methods, the model that shows the most promising results for both

75



Chapter 5. Load forecasting results

09

0,7 08
06 07
06
05
w w05
§ o g 04
03 03
0,2 ‘ ‘ 02
01 01
. I I | a1 I = I
¢ o SRR ¢ TR
3@@“‘:\" v“‘@"@“@’a&%@ é“u‘?@%e ‘\“%\l 0““"*«“”" s88
&
6‘ ¢
(a) Mean Absolute Error (MAE) (b) Mean Square Error (MSE)

03 0,06
02 | 0,04 ‘
ol 0,02
: ¥ ! 1
&3@&‘@9&*0@&*’@?6@4‘&
TFEg e e FHFFESS R R
TS A ¥ b w‘c“@‘ 4 ;\*@{Nww
& &6

(¢) Root Mean Square Error (RMSE) (d) Mean Absolute Percentage Error (MAPE)

Figure 5.18: Performance evaluation of the statistical methods and machine learning methods for
short-term load forecasting (STLF)

STLF and MTLF is the CNN Wavenet, while LR model yields the worst result on the given
data. It seems that LR model did not find any specific patterns in the dataset. The same is
happening with the K-NN model applied for the MTLF. But the difference is in the running
time, the K-NN has taken more time to run than the LR.

From the evaluation figures, we can observe that the results of LSTM are worst than the
one of RNN models. But if we compare the performance among RNN models, we find the
RNN (Sequence to Sequence ) gives the best performance. In addition, RNN (Sequence to
Sequence ) is faster in running time in the opposite of the RNN (Sequence to vector). SVM
performs very well in the given dataset, but the finding the best SVM model took very long
time. Beside this, the model is computationally very heavy. For instance, the model which
gives the forecasting results that shown in Figure 5.17b runs for more than an hour.

Creating the different combinations of CNN, LSTM and MLP did not give any improvement
in performance as shown in Figures 5.18 and 5.19.
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Figure 5.19: Performance evaluation of the statistical methods and machine learning methods for

mis-term load forecasting (MTLF)

Further discussion about the results of the implemented time series forecasting models are

given in Chapter 7 (discussion).
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Chapter 6

Case studies

This chapter presents two case studies. In the first section, I will present a case study
of modeling an intelligent energy management system (IEMS). Then, the demand side
management (DSM) case study will be presented in the next section.

6.1 Case A: An intelligent energy management system

Energy management at different levels is a hot topic in Norway'. IEMS as illustrated in
Figure 6.1, consists of a set of sources to produce energy (i.g., wind power station and
solar power plant), a set of heterogeneous loads (i.e., houses, cabins, commercial, and
industrial buildings), energy storage, and the connection to grid. The IEMS aims to exploit
the sources (i.e., renewable sources) to cover the load demand, and minimize the amount
of energy required from the grid by managing the energy storage. The connection to the
grid is in two-direction. This means the IEMS buys and sells energy to the grid. The IEMS
model is implemented in MATLAB, and it is based on the micro-grid energy management
model example which is implemented by LeSage [85].

6.1.1 Load forecasting

Load forecasting is an essential part of the [IEMS model. The load is predicted depending on
the previous values (i.e., time series forecasting). Load forecasting is a complex process, and
it requires much historical data and advanced forecasting methods, such as machine learning
methods, to get accurate forecasting values. In this case study, we perform short-term load
forecasting (24 hours).

I'Statnett har testet om elbiler kan regulere kraftnettet: — En ekstremt billig Igsning. Available at: https:
//www.tu.no/artikler/. (As of June 2020)

79


https://www.tu.no/artikler/
https://www.tu.no/artikler/

Chapter 6. Case studies
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Figure 6.1: Intelligent energy management system model.

6.1.2 Distributed sources

The sources in the model are photostatic arrays (PV) and wind turbines. The IEMS will
purchase energy from the grid or get energy from the energy storage when it is needed.

Photostatic arrays

We used the data for a sunny day which is available by examples in MATALB?. The sunrise
is at 05:00 and the sunset is at 19:00. The panels area is 2500 m? and the panels’ efficiency
is 30%. The power which is generated from PV is shown in Figure 6.2. The PV farm
produces energy proportional to three factors: i) the size of the area covered by the PV
farm, ii) the efficiency of the solar panels, and iii) the irradiance data.

Wind turbines

The generated power from wind turbines depends on the wind data. We used the simplified
model of a wind farm, which produces electrical power following a linear relationship with
the wind. When the wind reaches a nominal value, the wind farm produces the nominal
power. The wind farm stops when the wind speed exceeds the maximum wind value until
the wind gets back to its nominal value. The generated power from the wind turbine (PW)
is shown in Figure 6.2.

6.1.3 Demand response and prices

Demand response is a change in the power consumption of an electric utility customer to
better match the demand for power with the supply [95]. Case B which is presented in the

2Simplified model of a small scale micro-grid, Avialble at: https://se.mathworks.com/help/
physmod/sps/examples/simplified-model-of-a-small-scale-micro-grid.html. (As
of July 2020)
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6.1 Case A: An intelligent energy management system

next section, is about the demand side management. The electricity prices generally follow
the demand fluctuations. The prices are high during the load peaks and low in the other
periods.

6.1.4 Optimisation

The optimisation process is the core of the IEMS model. The optimizer is responsible for
managing the energy storage (i.e., when is to charge and dis-charge), and when is to buy
energy from or sell energy to the grid.

Energy storage

The energy storage (i.e., batteries) is used to store energy for future use when there is a
surplus in the power in the microgrid because high generating from PV and wind turbine,
or the electricity price in the external grid is low. Also, it provides additional power if there
is high demand in the microgrid. The energy storage is controlled by the optimizer.

Objective function

The main objective is to minimize the total cost of power from the grid while meeting load
with power form wind turbine, PV, energy storage, and grid. Then the objective function is
modeled as:

i=1

N
min (Costtot = Z(C’osthid(i).Egrid(i)O 6.1)

where Costy,, is the total cost of electricity purchased from the grid, ¢ is the time step, N
is the maximum time steps, Costg,;q() is the electricity price at step i, Egq(%) is the
energy bought from the grid at time step . The constraints are:

e Satisfy power load with power from PV, PW, grid and energy storage (i.e., power
balance).

Pload(i) = Pgrid(i) + Pp’u (Z) + Ppw (Z) + Pes (Z) (6-2)

where Pjyqq(1) is the load at times step ¢, Py,;q(7) is power from grid, Py, () is
power from photostatic arrays, Py, (i) is power from wind turbines, and P,(%) is
absorbed power or provided power by energy storage (i.e, charge/ dis-charge).

e Power input/output to the energy storage is:
ES(i=ES(i—1)+ Pes(i).dt (6.3)
where FS(7) is the energy which is stored in the energy storage at times step i, P, ()

is power which is absorbed or provided by energy storage in the duration between
time step ¢ and ¢ — 1.
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Results

The optimization results are shown in Figure 6.2. The optimization problem is implemented
in MATLAB by using the linear programming optimizer in the optimization toolbox>. The
optimization problem is defined to minimize the objective function in Equation 6.1 with
the constraints in Equations 6.2 and 6.3. The time step is 5 min, N = 288, and the energy
storage at 0 time is 50%. Since the time series load forecasting model predicts future values
in hourly-basis steps (i.e., 24 steps ahead in the case of one day), we have to reshape data
from hourly-basis to 5 min. We have used "remap"* function in the MATLAB to match
the time step to 5 min. The behaviour of the energy storage is shown in the amber line in
Figure 6.2. The power from the grid is shown in the red-dot line. The power from grid
takes positive values and negative values (sell energy to the grid).
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Figure 6.2: IEMS optimisation results.

3Linear Programming in Optimization Toolbox - MATLAB https://se.mathworks.com/
discovery/linear-programming.html (As of July 2020).

4Remap numerical values https://www.mathworks.com/matlabcentral/fileexchange/
54404-remap-numerical-values, MATLAB Central File Exchange. (As of July 2020).
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6.2 Case B: Demand side management

6.2 Case B: Demand side management

Efficient energy demand side management (DSM) is an essential part of the current hot
research topics such as: smart grids and smart cities. The residential households can play
the major rule in order to have an efficient energy system with less energy loss and cheap
prices. The residential households can help in reducing the load peaks (i.e., flattening
the peaks) by scheduling the usage of shiftable appliances such as washing machine, dish
washer, and clothes dryer. By using heuristic optimization techniques such as genetic
algorithm (GA), scheduling of shiftable devices can be realized to minimize the overall cost
of electricity payment and keep resident’s comfort. Figure 6.3 shows an overview of the
DMS model. The consumers can control their activities depending on the predicted dynamic
prices, predicted load, and predicted local power generating. The model is implemented in
MATLAB.

— %
Power grid
AMS

Load Shifting

Demand Side Management

QR —-

Shift loads
(scheduling)
Storage control

Comfort control
Optimization

Figure 6.3: Demand-side management model

6.2.1 Shiftable appliances

In general, electrical appliances are categorized into i) shiftable, and ii) non-shiftable
appliances. Non-shiftable appliances are used in a specific period with non-changed
power level. These appliances include essential equipment, (such as; lights, cooker, kettle,
ventilation, etc). In contrast, shiftable appliances, (such as; washing machine, electrical
vehicle and clothes dryer) can be moved to another time to use. For example, we can charge
the electrical vehicle battery during the night to avoid the peak hours to reduce the energy
costs. Table 6.1 summarizes the shiftable appliances in this experiment, and the operational
time, the time of usage and the power.

Table 6.1: Parameters of shiftable appliances.

Appliance Start time (h) | End time (h) | Power (KW) | Operational time (h)
‘Washing machine Tam Tpm L5 2
Clothes dryer 9am 9pm 4 2
Dish washer 6am 10pm 3 2
Electrical car 16pm 6am 4 4

6.2.2 Optimisation

In order to reduce the electricity consumption cost, the user can schedule the shiftable
appliances to take their job on non-peak hours. The non-shiftable devices must operate
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at any time depending on their characteristics or the user’s needs. Then the reduction
of electricity bill is not possible with non-shiftable appliances. But the electricity usage
cost can still be reduced by scheduling the shiftable appliances., GA is used to solve this
scheduling problem after defining the problem and the objective function.

Objective function

The overall objective function is to minimize the electricity bill by scheduling the shiftable
devices to take their jobs at optimal time. The objective function has two parts: minimizing
the electricity bill and minimizing the waiting time to keep the user’s comfort. Each
shiftable appliance has start time (st), end time (et), and operation time (ot) as in Figure
6.4.

st sOT
‘ Wr ‘ ot ‘

Figure 6.4: Parameters of appliance

—

The electricity consumption cost at each hour is the total energy consumption at this hour
multiplied by the electricity price at this hour as follows:

m

Cost; =p; Y _(E(ax,t;)) (6.4)

k=1

where Cost; is the total electricity consumption cost of an hour i, p; is the electricity price
of an hour i, F(ag, t;) is the energy consumption by an appliance k at an hour i. m is the
total number of appliances. Then the daily cost is the summation of the cost of each hour as
follows:

24

Cost =Y (E(ax,1;)) (6.5)

k=1

It is important to include the residents’ comfort also. We consider the user wish to switch
on the appliance at the given start time (st), as shown in Figure 6.4. Then, we schedule the
shiftable appliances to minimize the waiting time also as follows:

WT = (SOTy, sty,)) (6.6)
k=1
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where WT is the total waiting time for all the shiftable appliances, SOT} is the start
operation time for device k, and sty is the given possible start time by the user for the
appliance k. Then the objective function is modeled as:

24

min(wl(Z(E(ak, ) erg(i (SOTy, sty )) 6.7)
k=1

k=1

where w; and wq are weights of two parts of objective function and their values are between
Oand 1, and wy + wy = 1.

GA for appliances’ scheduling problem

Genetic algorithm (GA) is an optimization and search technique based on the principles of
genetic and natural selection [96]. A GA allows a population composed of many individuals
to evolve under specified selection rules to a state that maximize the fitness (i.e., minimizes
the cost function in our case). In this scheduling problem, the objective is to find the
optimal start operation time for the shiftable appliances. Then, the chromosome length is
the number of shiftbale appliances, and the variables are the start operation times (SO P;)
for the appliances as follows:

chromosome = [SOTy, SOTy, ..., STO,,] (6.8)
where m is the number of shiftable appliances. and the SOT} take only integer values.

Results

For scheduling; we got the “spotpris” from Nordpool ® for this region in week 47 as shown
in Figure 6.5, middle figure. Then, we counted the bill for this end user for week 47, 2019
which was 300.67 NOK. After that, we optimize it by finding the optimal scheduling. We
used GA with defined parameters in Table 6.2. The objective function in Equation 6.7 with
wy = 0.7 and wy = 0.3.

Table 6.2: GA parameters.

Number of optimisation variables 4
Upper limit on optimisation variables | [19,21,22,28]
Lower limit on optimisation variables | [7,9,6,16]

Maximum iteration 100
Population size 100
Selection rate 0.8

The optimization results are illustrated in Figure 6.5. Upper part shows the original energy
consumption and the optimized one. The middle figure shows the prices on hourly-based.

SMarket data from Nord Pool. Available at: https://www.nordpoolgroup.com/Market—datal/
Dayahead/Area-Prices/NO/Hourly/?view=chart (As of July 2020).
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The bottom figure shows the consumption cost for both original consumption and optimized
consumption by applying scheduling. The result shows that this user could save 10 NOK
if he scheduled the shiftable appliances even if the electricity prices were not varying
massively comparing to other time spots .
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Figure 6.5: Case A: optimization results

9S4 mye svinger strgmprisen i Igpet av dggnet. [online] available at: https://enerwe.no/
sa-mye-svinger-stromprisen-i-lopet-av-dognet/144438. (As of July 2020
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Chapter 7

Discussion

This chapter presents a general discussion about the results of the implemented time series
forecasting models and applying them for short-term and mid-term load forecasting. Further,
a discussion about the conceptual models of an intelligent energy management system and
demand side management is given.

7.1 Load forecasting

Steadily increasing of energy consumption and its influence on the environment makes
challenge in finding new and clean energy sources. Therefore, using of the efficient energy
management systems is an important issue. Load forecasting is a treasure that saves much
effort in energy management. The forecasting results can be used in planning, schedule
maintenance, and identifying energy-saving opportunities.

7.1.1 Time series forecasting methods

In this work, different forecasting models have been applied to the electricity consumption
dataset. The forecasting models are implemented by using different statistical and machine
learning methods. Machine learning methods are newly applied to the time series forecasting,
in comparison with statistical methods which have long history [97]. Empirical reached has
proved at the machine learning algorithms for the time series prediction, give outstanding
performance and result in comparison with the statistical models [98, 99]. For statistical
methods, the performance obviously depends on the data properties (i.e., attributes), and
the success in defining a model with appreciate parameters to capture these properties. On
contrast, the machine learning models (i.e., data driven models) do not depend on the data
distribution.

The result form this work is divided into two categorizes based on the prediction horizon,
either short-term or mid-term. The statistical and machine learning methods are applied for
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short term forecasting and for mid-term forecasting in order to compare the results between
them.

The first research question is about evaluation of different statistical and machine learning
prediction methods to find the best method which gives the best performance on the
electricity consumption dataset. In spite of the fact that time series forecasting is still a
complex task and finding one model that fits a complex data such as electricity complex
data, is a hard process, but we have succeed in finding the best model which gives very
good result. Based on the evaluation measures of the forecasting model’s performance, and
the visualization of the forecasted values, the forecasting model that provided good results
compared to the all other methods is the CNN wavenet model. It performs best on both
short-term load forecasting and mid-term load forecasting.

The CNN wavenet is an efficient network with simple architecture. It can be used as a strong
baseline for time series prediction. There is an ability to improve the method by using a
large number of layers and filters to increase the ability to learn non-linear dependencies.

MLP, RNN, LSTM, and SVM yield very close results and good performance also. In
contrast, the LR and K-NN did not perform well in comparison to the other machine
learning models. RNN gave results better than LSTM even if it is much simpler. This
emphasises that simpler type of models give as an accurate result in many cases [100].

Among statistical methods, the SARIMA was the best promising method in both short-
term load forecasting and mid-term load forecasting. This emphasizes that SARIMA and
ARIMA models perform better than exponential smoothing algorithms when the time series
data are relatively long and have many regularities.

Then, the answer to the first research question is, the CNN wavenet model outperforms
better than other used methods. Machine learning models are data-driven models that can
perform very good on the non-linear and noisy data.

The second research question is to investigate how the available data should be pre-processed
and analysed to improve prediction accuracy. The data is collected from advanced metering
systems. The time series is a total electricity consumption of different 1112 consumers
from Aalesund municipality. Statistical analysis is carried to understand the time series
data and prepare the data for the use in the forecasting models. The data decomposition
into time series components shows that data has trend (irregular trend), seasonality and
noise. Another prove of noise in the data is the performance of LR and K-NN models. The
LR performs well when the data is linearly separable (i.e., separable by line). Also, the big
value of K (neighbors) in K-NN model indicates that the data is highly correlated or has
noise.

Data analysis is a time-consuming process, but it is an important step in order to understand
the features in the data. This understanding helps in selecting the forecasting model’s
parameters in the statistical models (parametric models). Machine learning models (no-
parametric models) do not require previous knowledge on the type of data distribution, it
will work on, but learns it directly from the data used for training. We have to take care that
our machine learning models are not over-fitted or under-fitted, and we have to select good
learning rate. Keras has good automated solutions to these considerations, while Weka has
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not. In K-NN and SVM, I have to try manually different parameters to find the best model.

Analysis process of the time series dataset is very important part of the project. Also, based
only on standard error measures (e.g., mean percentage error) in evaluating the forecasting
models, can be very misleading some times. For example, random walk models perform
well on time series data even if it is generated from a stochastic process [100]. Therefor,
statistical analysis and visualization (in time and frequency domains) of the time series data
help in avoiding such mistakes.

7.2 Applications of time series load forecasting

This thesis has investigated the applications of the time series load forecasting in different
domains. In Norway, all electricity consumers received advanced metering system (AMS)
by 1 January 2019. AMS provides power utilities and consumers with better information
about electricity load consumption and prices. This information facilitates better services
and opportunities to engage consumers in demand response as shown in the case studies
(Chapter 6). Time series forecasting is the core of energy management systems. Good
load forecasting accuracy helps energy system parts (i.e., power utilities and consumers)
to plan efficiently. Table 3.1 summarizes some potential applications of the time series
load forecasting models. The duration of prediction depends on the application. Short-
term load forecasting is used in a wide area of applications such as energy purchasing,
transmission and distribution planning, demand side management, and in operations and
maintenance [101]. While the mid-term load forecasting is used in the planning for seasonal
peak (summer and winter) in addition to the previous mentioned applications. In order to
investigate the importance of the load forecasting in different applications, two case studies
were done in this master project as presented in the Chapter 6. In the following, I will
discuss the results from these case studies.

7.2.1 Case A: An intelligent energy management system

In this case study, a model of an intelligent energy management system (IEMS) at micro-
grid level is proposed. The aim of the IEMS model is to exploit the renewable energy
sources in the local grid to cover the load demand, and minimize the purchased energy
from the main grid. This is done by balancing the power load with the power from grid,
renewable sources, and energy storage. In this case, the load forecasting accuracy is very
important in order to have a reliable system.

This implemented model, which is illustrated in Figure 6.1, is a conceptual model to
illustrate how the IEMS works. The management of energy storage and purchasing process
from the grid are managed by the IEMS depending on the forecasting values. The simulation
results for 24 hours, shows the efficiency of the presented solution. It is clear from the
simulation results which are shown in Figure 6.2, the power from the renewable sources
are exploited efficiently by optimizing the energy storage system. The simulation results
show also that the IEMS purchases more electrcity from the main grid when the prices are
low (before 05:00 and after 16:00), and sells energy to the grid when the prices are high
(between 08:00 and 15:00).
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Chapter 7. Discussion

This example shows the importance of forecasting models in designing new smart solutions
to meet the increasing in the demand. These smart solutions integrate all the stockholders
in order to meet the challenges.

This conceptual model shows the importance of load forecasting and how the forecasting
model can be used in smart girds. This is partially answer the third research question.
The next case study, shows how the load forecasting model can be used in demand side
management.

7.2.2 Case B: Demand side management system

In this case study, a model of demand side management is proposed. The consumers can
control their activities in order to have an efficient energy system with less energy loss and
cheap prices. The consumers schedule the shiftable appliances to take their jobs at optimal
time. This is an optimization problem which is solved by using genetic algorithm (GA).
The simulation results show how the consumer can save 10 NOK daily. This means 300
NOK monthly and 3600 NOK annually.

The load forecasting model is the core of the demand side management system. The
proposed conceptual model in this case study, can be extended in many different ways such
as including solar panels.

This system can be used to increase the user’s awareness and designing smart solutions at
different levels. These case studies (case A and B) answer the third research question. In
this project, we have successfully integrated the energy consumption forecasting model in
designing different smart solutions such as IEMS and demand side management.

Of course, there are still many other applications where we can use the load forecasting
models, such as vehicle-to-grid systems which have potentials in Norway because the
increasing number of electrical cars in the country [102].
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Chapter 8

Conclusions and future work

The overall goal of this project is to build a load forecaster to be used in designing smart
systems such as smart grids, smart cities and smart houses. The load dataset includes the
electricity consumption data from 1112 electricity meters from Aalesund municipality. The
dataset is analysed, and the total consumption time series is used to evaluate forecasting
models in order to find the best performing model among them. Many statistical and
machine learning methods are evaluated in this work, in order to find the best method
which gives the best performance on the given dataset. All the evaluated methods have
been applied on both short-term load forecasting and mid-term load forecasting. Statistical
methods were mainly in use for time series forecasting until recently when machine learning
methods became more popular and promising. In order to answer the first research question
which is about finding the best forecasting method for the given dataset, many forecasting
models are implemented by using different statistical and machine learning methods. These
methods are selected based on the carried literature review about time series load forecasting.
The statistical methods include different ARIMA and exponential smoothing methods, and
the machine learning methods include many algorithms (such as; linear regression, RNN,
CNN, K-NN and SVM). Four different performance measures are used in the evaluation
process. These methods are: i) mean absolute error, ii) mean square error, iii) root mean
square error, and iv) mean absolute error. The overall result shows that the CNN wavenet
preformed best on our dataset. This result is aligned with previous studies [103]. CNN
wavenet works good on non-linear noise data. It has the ability to learn non-dependencies
and capture sudden changes. Among the statistical methods, SARIMA performed a bit
better than other methods. This means the time series has seasonality in addition to the
trend and noise components.

The historical electricity consumption data are pre-processed and statistically analysed,
in order to answer the second research question which is about how is the analysis of
the historical load data can improve the accuracy of the load forecaster. The statistical
analysis shows that the data has seasonality, trend and noise. The data analysis shows that
the data are points are highly correlated, and the data has big noise. Also, the electricity
consumption data is highly correlated with temperature only on a daily basis.
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Chapter 8. Conclusions and future work

The third research question is about how the load forecasting model can be used in different
applications. Two models were implemented to show the integration of the load forecaster
in recent emergent applications. In the first model, load forecasting model is used as a main
core of the intelligent energy management system model. The simulation result shows how
the model meets the load demand efficiently. In the second case, load forecasting model is
used to design a demand side management model. The simulation result shows how the
consumers can do appliance scheduling based on the predicted load. These examples prove
the importance of the time series forecasting model in designing new solutions to meet the
challenges that arise by the increasing in load demand and other environmental issues.

8.1 Contribution

Load forecasting modeling is the core of hot research topics such as smart grids, micro-grids,
low voltage grids, smart, green and sustainable cities. This work provides a methodology
to design a good load forecasting model which depends on the available data, and show the
effectiveness in applying the forecasting model in different domains. The main contributions
are:

e Proposed a methodology to find the best time series forecasting model which performs
best on a specific data.

e Results show that machine learning methods, particularly CNN wavenet, perform
best on the highly correlated and noisy data such as electricity consumption data.

o Illustrated how the load forecasting model can be used in energy management
systems.

8.2 Future work

Time series load forecasting modeling and its application is a hot topic in the research due
to the importance of the topic and its benefits to every one. This work can be extended in
different ways as following:

o In future works, we want to explore the multivariate scenario which still constitutes an
important gap in the literature. In multivariate, we can include more time-dependent
variables in addition to the electricity consumption, such as weather data.

e Categorise the electricity consumption data depending on different criteria, such as
consumers’ type (i.e., apartment, house, fabric, ..., etc), and sub-regions. Our dataset
consists of data from 1112 consumers, but we do not know which data series belongs
to which type of user.

o Investigate the effects of other relevant data such as households activity and holidays
on the prediction accuracy. These data are more important for short-term and very
short-term load forecasting.

o Investigate the use of time series load forecasting in other applications, such as
integration of the load forecaster in smart grids and smart cities frameworks.

92



Chapter 9

Legal and ethical considerations

The power utilities are making use of advanced technologies to increase the reliability,
resilience, intelligence, and efficiency of the existing power grid to be smart grid (SG).
Norway follows the European Union (EU) in applying programs to tackle energy efficiency
and reduce emissions. Advanced metering systems (AMS) are the core of the SG solutions.
AMS allows collecting large amount of data about the electricity consumption. These
electricity consumption data (historical and real-time) can be used to find the consumption
pattern which can be used to identify the households’ life pattern. The question is: does the
SG solutions give away household privacy? [104].

AMS are installed in all Norwegian houses by January 2019. The installation companies
are responsible for the installation. The new smart meters record electricity consumption on
an hourly basis and automatically send consumption information to the grid company. This
provides faster and more accurate collection of meter values and a basis for the invoice that
will be sent to the electricity customers. In addition, the grid companies will be able to use
the information to operate the networks more efficiently. The introduction of new meters is
regulated by the Regulations on measurement, accounting, billing of network services and
electrical energy, the grid company’s neutrality,. . . etc.’

9.1 Use of measurement data

The use of measurement data, which are recorded by AMS is subject to the Personal
Data Act? by The Norwegian Data Protection Authority (DPA)?. This means that the grid
company and the power supplier can only use the personal information needed to bill the
customer. What information is to be recorded and what the meter is to do is regulated in
the functional requirements (Regulations on measurement, accounting, billing of network

"https://lovdata.no/ (As July 2020)
2https://lovdata.no/ (As July 2020)
Jhttps://www.datatilsynet.no/ (As July 2020)
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Chapter 9. Legal and ethical considerations

services and electrical energy, the grid company’s neutrality, etc., Chapter 4, Section 2). In
addition to the above, the customer has the right to decide who can access their own data.
The online company cannot store customer data for more than 3 years (Personal Data Act,
Chapter 3, sections 9 and 10).

9.2 Power consumption information is personal
information

Power usage information is basically associated with a meter number at a specific address,
not a person. However, when the meter is again linked to a homeowner, the power
consumption information can be traced back to a specific person. This can be the subscriber
himself or another person, such as a tenant. Power consumption data at hourly intervals can
tell when people are on vacation or at work, when they are asleep or are awake and similar
information.

Power consumption information is to be considered a personal information and must
be treated as such (datatilsynet.no). The power companies and relevant players
must ensure that the Personal Data Act is complied. This includes ensuring that information
security is adequately safeguarded and that the information is only used for the purpose for
which it has been granted permission.

9.3 Access to more personal information through the
HAN port

All of the new smart meters are equipped with a physical output, called the Home Area
Network (HAN) port. By connecting to the HAN port, the consumer will be able to access
additional information about his own electricity consumption. He decides how to use this
information.

9.4 Legal and ethical consideration in this project

The purpose of this project is to use advanced methods and technology to facility the
resident’s life while respecting the privacy and confidentially interests of all relevant
stakeholders. The power consumption data used in this project is anonymized by the data
supplier and It is not possible to connect the measurement data to real consumers. The
Norwegian organizations who deal with personal information (collecting, processing and
storing) must fulfil the requirement by the Personal Data Act, and if they fail in doing that,
they will get a huge fine from the DPA.
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