
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

M
as

te
r’s

 th
es

is

Basir Sedighi

Deep learning for fault detection of
guardrails

Master’s thesis in Simulation and Visualization

Supervisor: Ottar L. Osen, Robin T. Bye

June 2020

Basir Sedighi

Deep learning for fault detection of
guardrails

Master’s thesis in Simulation and Visualization
Supervisor: Ottar L. Osen, Robin T. Bye
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Summary

Humans are immeasurably good at extracting information from images in complex scenery
to detect and classify an object. In recent years, algorithms and methods have been pre-
sented to do the same. Advanced algorithms are used for complex tasks, famously in
areas related to self-driving cars, tracking, classifying, etc. The field in machine learning
called computer vision heads out to extract the vast information present in images. The
exponential advances in numbers of computing units in GPUs (Graphical Computing
Units), have made it possible to create algorithms that were unimaginable a decade ago
without supercomputers.

Recent years have seen an increase in neural network for solving a variety of tasks, where
the Convolutional Neural Network is known for its performance on image processing.
Also, resourceful IT-companies and research faculties having the advantage of avail-
able computational power, have contributed with state-of-the-art, costume tailored CNN
models for a variety of computer vision tasks. This thesis investigated the state-of-the-art
CNN models to aid skilled workers in maintaining guardrails across Norway to automize
the visual inspection done by these workers. Today’s visual inspection is done by driving
in speeds between 1-15 km/h and performing visual inspection through the camera or the
car window to detect the faults.

This work sets out to implement a state-of-the-art architecture, which is chosen by eval-
uating a variety of architectures according to the objectives set by the thesis. The ex-
perimentation was done by collecting data, pre-processing, and implementing the neural
network. The model achieved a promising mAPIOU=50 of 71%.

i

ii

Preface

This report is a result of the master’s thesis given at the Norwegian University of Science
and Technology (NTNU), autumn 2020. The report is part of the Master’s program in
Simulation and Visualization at the Department of ICT and Engineering.

The Master’s thesis is weighted to 30 out of 120 credits. I was assigned the project
by Arvid Gjerde AS in collaboration with iSi AS. The purpose of this report is to give
the reader an insight into how machine learning model was implemented and modified
for detection of faults in guardrails.

This report is addressed to Arvid Gjerde AS, iSi AS, NTNU and others who are in-
terested in the topics covered by the report. I want to thank local supervisor Ottar L.
Osen and Robin T. Bye of NTNU and external supervisors Nils Tarjei Hjelme and Bård
Indredavik of iSi. In addition, I would like to thank the employees of the at Arvid Gjerde
for the construction of the dataset. This came in very handy.

Date / Place

Basir Sedighi

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Background . 2
1.2 Problem description . 3
1.3 Objectives . 3
1.4 Scope . 4

2 Theory 5
2.1 Railing . 5
2.2 Maintenance . 5

2.2.1 Corrective maintenance . 6
2.3 Deep Learning . 7
2.4 Categories of Machine Learning algorithms 9

2.4.1 Supervised learning . 9
2.4.2 Unsupervised learning . 9
2.4.3 Reinforcement learning . 9

2.5 Deep learning algorithms . 10
2.5.1 Feedforward neural network 10
2.5.2 Convolutional Neural Network (CNN) 17

2.6 Computer vision . 20

v

2.6.1 Classification . 20
2.6.2 Semantic segmentation . 21
2.6.3 Object detection and instance segmentation 21

3 Related work 23
3.1 Datasets . 23

3.1.1 Common Objects in context dataset 23
3.1.2 VOC dataset . 23

3.2 Feature Pyramid Network . 24
3.3 Transfer learning . 26

3.3.1 Residual Neural Network (ResNet) 26
3.4 A brief summary of object detection algorithms 27
3.5 Choosing network - A Review . 30

4 Methodology 33
4.1 Data . 33

4.1.1 Labelling and preparation . 33
4.2 Implementation details . 35

4.2.1 Local computing . 35
4.2.2 Cloud computing . 35

4.3 Mask R-CNN . 36
4.3.1 Model details . 36
4.3.2 Training details . 38
4.3.3 Hyperparameter tuning . 40

4.4 Evaluation . 43

5 Experiment and results 47
5.1 Assumptions . 47
5.2 Baseline architecture . 48

5.2.1 Results . 48
5.3 Transfer learning with Mask R-CNN 49
5.4 Split training schedule . 50

5.4.1 Results . 51
5.5 Data augmentation . 53
5.6 Final model . 55

6 Discussion 59
6.1 Baseline architecture . 59
6.2 Transfer learning . 59
6.3 Split training schedule . 61
6.4 Augmentation . 62
6.5 Final model . 63
6.6 Uncertainty and limitation . 64

7 Conclusion 67
7.1 Future work . 68

vi

Bibliography 69

vii

viii

List of Tables

4.1 Complementary table for AP calculations [30] 45

5.1 Configuration for baseline model . 48
5.2 Configuration for baseline model . 48
5.3 Detection result for baseline model . 49
5.4 Configuration for model with transfer learning 50
5.5 Detection result for Mask R-CNN with transfer learning 51
5.6 Configuration for model with transfer learning 52
5.7 Detection result for Mask R-CNN train the head + entire network 52
5.8 Configuration for model with transfer learning 54
5.9 Detection result for Mask R-CNN with transfer learning with split train-

ing schedule . 54
5.10 Detection result for baseline model with augmentation 55
5.11 Detection result for transfer learning model with augmentation 55
5.12 Configuration for model with transfer learning 55
5.13 Detection result for final Mask R-CNN with transfer learning 57
5.14 Detection result for Mask R-CNN with transfer learning and diverse an-

chor generation . 57
5.15 Improvement on detection result by adjusting the loss function 57

ix

x

List of Figures

2.1 Preventive vs. corrective maintenance 6
2.2 Preventive vs. corrective maintenance 6
2.3 Subsets of Artificial Intelligence [53] 7
2.4 Advantages of deep learning [55] . 8
2.5 Supervised learning . 9
2.6 Unsupervised learning . 10
2.7 Neuron in a neural network . 11
2.8 Three activation functions . 11
2.9 Neuron in a neural network . 13
2.10 Learning rate . 14
2.11 Neuron in a neural network . 15
2.12 Overfitted model . 15
2.13 Dropout [70] . 16
2.14 Convolutional Neural Network [3] . 17
2.15 Kernel convolutional example [69] . 18
2.16 Kernel for edge detection[68] . 18
2.17 Max pooling and average pooling . 19
2.18 Flattening layer . 20
2.19 Classification [37] . 20
2.20 Semantic segmentation [67] . 21

3.1 Object detection vs instance segmentation [43] 24
3.2 Feature Pyramid [41] . 24
3.3 Bottom-up and top down pathways for feature pyramid network [31] . . 25
3.4 Pre-trained Deep Learning Models as Feature Extractors [33] 26
3.5 ResNet34 architecture [28] . 27
3.6 Two-stage detectors[80] . 29
3.7 Single-stage detectors [80] . 30
3.8 VOC 2012 test set results Zhao et al. [82] 31
3.9 VOC 2007 test set results Zhao et al. [82] 31

xi

3.10 COCO test set results Zhao et al. [82] 32

4.1 VGG annotation tool [18] . 34
4.2 Visual inspection . 34
4.3 Anchor boxes [63] . 37
4.4 Discarding of proposal [21] . 37
4.5 Smoothing . 39
4.6 Optimal weights after training . 40
4.7 Gradient decent on entire data set vs. Mini-batch vs. Single training

example . 41
4.8 Mask R-CNN specific losses [11] . 43
4.9 Precision and recall . 44
4.10 TP, FP, FN given threshold of 0.5 . 45
4.11 Interpolated precision-recall curve [30] 46

5.1 Prediction made by the baseline model 49
5.2 Prediction made by the transfer model without confidence filtering . . . 50
5.3 Prediction made by the transfer model with confidence filtering 50
5.4 Region proposals . 51
5.5 Baseline models region proposal . 52
5.6 Baseline models detections without confidence filtering 53
5.7 Baseline models detections with confidence filtering 53
5.8 Final region proposal from model head+entire network trained 53
5.9 Final region proposal from transfer model where head+entire network

trained . 53
5.10 Final detection from transfer model where head+entire network trained . 54
5.11 Correct predictions . 56
5.12 Correctly predicted wrong end, falsely predicted damaged foot 56
5.13 Wrong prediction . 56

6.1 Correct predictions of wrong end . 60
6.2 Severe damage to the railing . 63
6.3 Missing foot . 65
6.4 Questionable prediction . 65

xii

Abbreviations

AI = Artificial Intelligence
AP = Average Precision
CNN = Convolutional Neural Network
COCO = COmmon object in COntext
DL = Deep Learning
GPU = Graphical Processing Units
HOG = Histogram of Oriented Gradients
IOU = Intersection Over Union
IT = Information Technologies
mAP = mean Average Precision
ML = Machine Learning
ResNet = Residual neural Network
ROI = Region Of Interest
RPN = Region Proposal Network
SSD = Single Shot MultiBox
TP = True Positive
FP = False Positive
VOC = Visual Objects Classes
YOLO = You Only Look Once algorithm

xiii

xiv

Chapter 1
Introduction

One of the most recognizable cars in Norway to date are the ones produced by Tesla.
They became well known for being the first company to develop premium sports cars
that weren’t in anyway reminiscent of the two-seat small electric cars of that time. In
later years they got big recognition for the technology provided in their automobiles, es-
pecially the autopilot which could make the car drive itself from place to place [72]. How
is it possible for a car to drive itself?

One could believe we could program sets of rules from the computer, like stay within the
lines in the road or start driving when the lights turn green, but this is high level human
thinking. Driving a car for a mere human requires a lot of information which mostly is
provided from our sensory organs. Writing every rule for the computer to follow would
be very time and resource consuming. What if instead of giving it sets of rules to follow,
one could teach the computer to learn?, in other words, make it perform a specific task
without explicitly being programmed for it.

Machine learning is an application of Artificial Intelligence (AI) that does specifically
this. The aim of machine learning is to allow the computers to learn automatically with-
out human intervention or assistance and adjust actions accordingly [52]. As an example,
the machine learning algorithm take an input which could be pixels of an image or human
measurements and predict if a certain object is in the picture or the human’s Body Mass
Index (BMI).

Machine learning is very demanding computationally, but in recent years the advances
in Graphical Processing Units (GPU) has made it easier to run this model on a local
machine [50]. Also, Google and other big companies provide free services like Google
Collab to train a model on an virtual computer. The goal here is to utilize these services
to introduce machine learning for road maintenance, for detecting faults in road fences.

1

Chapter 1. Introduction

1.1 Background

“Improper auto protection may have contributed to the death of 18-year-olds”
– Norwegian Broadcasting Channel (NRK), 2018 [57]

“In Norway, there are at least 1745 railing on bridges with vulnerabilities, faults and
deficiencies that can affect road safety.”
– National Newspaper VG, 2018 [40]

The Norwegian Public Roads Administration is working on a number of road safety mea-
sures and campaigns against traffic accidents. The National Road Safety Action Plan for
Road Safety 2018–2021 is a four-year plan for road safety work in Norway [46]. The
plan is a collaboration between the Norwegian Public Roads Administration, the police,
the Directorate of Health, the Directorate for Education, Trygg Trafikk, the county mu-
nicipalities and seven metropolitan municipalities. In addition, a number of other public
actors at the national level and about 20 interest organizations have contributed to the
plan.

The plan contains 136 targeted measures. These will contribute to the Storting’s target
for 2030 of a maximum of 350 died or severely injured in traffic per year. In 2016, 791
people were died or seriously injured on Norwegian roads[4].

The operating contractors are currently responsible for checking the guardrails annually.
The check seeks if any bolts are missing, any damage has been done, they are inclined
and if they are in accordance with today’s norm. There is good reason to believe that this
either does not happen today, or that it is done in a superficial way. As of today, there is
absolutely no requirement for competence on those who are going to install road fences
in Norway! Unfortunately, this causes incorrect installation of some railings, wrong ends
choices, or railings mounted in places where one could have safer side terrain, and some-
times even use of cheaper measures than railings.

The conclusion from Supervision Case 2018-19 is that “Missing bolts in railings are
a road safety problem with high damage potential. The Norwegian Public Roads Ad-
ministration’s management system does not capture this problem, either in terms of risk
assessment of objects, requirements for inspections, specifications of control activities,
causal analysis or experience sharing/learning. Without system and practice changes,
this problem will continue. ”[76]

Apparently, there is some misconception of how the inspections of the road fences should
be done. This has contributed to unsafe road railings in Norway, this is not the only con-
tribution, but also the fact that Norway has four seasons. The plowing of the snow on the
roads during the winter does a lot of wear and tear to the railings and can also make the
bolts pop out from their sockets.

2

1.2 Problem description

1.2 Problem description

During autumn, the client has been commissioned to do the maintenance, and has done
so in the most efficient way possible, but, at the same time, in such a way that it is done in
a qualitatively manner. The fences must be mounted correctly and not damaged in order
to function properly. Today the client has driven 1 car with driver and controller at 1-15
km / h and done visual inspection through the window or with camera mounted on the
car. They have also repaired any damage that has been affordable to repair on site. In
addition, they have driven with a rear-seat cushion car to ensure safety.

The Norwegian Public Roads Administration has taken the problem seriously, and want
all the contractors to identify fault in road fences and report them to their database. As
of today, they don’t really know many faults there are in the road fences, because the
numbers that have been estimated are based on observations done in a fraction of the
roads. However, assigning skilled workers to drive 1-15 km/h through Norwegian roads
is neither scalable nor safe. Usually, it requires three people and two cars, and it must
be done at night for busy roads. A company like Arvid Gjerde which is responsible for
many of the roads in their area must dedicate a lot of resources to ensure they are safe by
monitoring them manually. This sector is in need of innovation to make the identifying
of faults cheaper and faster for their customers. This is important as the Norwegian
government has a vision of no casualties in traffic accidents, but then a drastic change is
needed in order to improve the identification of faults on the road fences. Also, it would
be more attractable for the workers to work during daytime, be able to drive the same
speed as the traffic and without being danger for other drivers.

1.3 Objectives

The method proposed should be a resource for helping the company to maintain the
railing which they are responsible for. In the context of common fault on railings today,
it is necessary to review computer vision theory, algorithms, and methods to propose
a solution aiding the workers. Given that the system does not need to be realtime, the
pursuit of a solution should be in terms of accuracy, and especially consider missing
bolts, as it is the most common faults in railings. Aiding the company to collect data,
and preparing the data according to standards used in the computer vision field. The
chosen state-of-the-art model should be implemented and modified to the specific need
for fault detection in railings. Experimentation is to be done on a costume dataset, and the
result should be presented and discussed in a way, giving the company and the interested
reader the insight needed to understand the limitations of using the proposed model. The
methodology used in the thesis should be explained so that if one wishes to implement
the proposed solution, the implementation can easily be modified for the specific needs of
the individual or company. Finally, the resulting model from experimentation should be
a starting point for the future projects the company has regarding fault detection through
a camera.

3

Chapter 1. Introduction

1.4 Scope
This project is a part of a bigger project, where the outcome will have Industry grade
GPS to remember the exact location within X-meters of where the picture was taken.
Also, there will be a lidar in the result to find the angle of inclination of the road behind
the fences. These are the requirements for the inspections and will not be touched upon
this thesis. A new architecture will not be created either as it requires big resources and
should be left for the big companies like Google and Facebook. Rather, in this thesis an
implementation of the state-of-the-art architectures will be used and fitted to be able to
detect faults on the road fences.

4

Chapter 2
Theory

2.1 Railing
In event of a road accident, the purpose of rails and cushions is to reduce the extent
of damage to humans and material as much as possible. According to The Norwegian
Public Roads Administration’s manual [77], rails and cushions are expected to:

• Prevent dangerous side obstructions.

• Prevent exit on high and steep slopes, deep ditches, water, etc.

• Prevent collisions between oncoming vehicles.

• Protect road users and others who are on or near the road from vehicles on the
road.

• Protect special facilities near the road, eg. rail, fuel tanks etc. against vehicles on
the road.

• Prevent damage to road structures that can result in very serious consequential
damage, like bridges.

• Prevent vehicles from falling off the road or rail, into a river that goes under the
road.

Railings shall function so that when hit by a vehicle, it will guide the vehicle along
the railing, until it stops, or lead the vehicle back to the roadway, but no longer than to
avoid colliding with oncoming vehicles.

2.2 Maintenance
This section is a superficial analysis of the maintenance done on the railings today. In
maintenance, there are two main subcategories. These are corrective and preventive

5

Chapter 2. Theory

maintenance, however, this section will focus on corrective as the preventive mainte-
nance is not relative for this thesis.

2.2.1 Corrective maintenance
The main difference between corrective maintenance and preventive maintenance is when
the maintenance is done. Corrective maintenance can either be planned or unplanned de-
pending on whether a maintenance plan has been created or not. But, nowadays, it is
more associated with the unplanned as this is more interesting from a cost-analysis per-
spective. However, corrective maintenance is done after failure while preventive is done
before failure. In mechanical engineering, this approach is the costly approach, because
the cost is associated with danger to life in this project and not the physical cost of the
railings. [62]

Figure 2.1: Preventive vs. corrective maintenance

These types of maintenance from mechanical engineering do not translate perfectly to
our project, as in this thesis the cost is not the measurement which is wished to be re-
duced, but rather safety, as mentioned above. However, the mechanical instruments are
usually in a plant, where its task is dependent on another instrument and so on, and when
one of the instruments fails, the production of the entire plant stops. In the case of de-
tecting faults in railings an additional time is added for detecting the fault. If a fault goes
undetected the fault remains until the next control, which can take seasons to happen.

Figure 2.2: Preventive vs. corrective maintenance

6

2.3 Deep Learning

2.3 Deep Learning

An algorithm is a set of rules to be followed when solving problems. In AI, Deep Learn-
ing (DL) and Machine Learning (ML), algorithms take in data and perform calculations
to find an answer[47]. To understand deep learning, these terms need to be explained as
it is a subset of machine learning and artificial intelligence, as depicted in the figure 2.3.

In mass media, these terms are used interchangeably but they are in fact not the same
thing. AI is a broader concept than machine leraning and includes every algorithm which
addresses the use of a computer to mimic the cognitive function of the human brain.
Machine learning, on the other hand, includes algorithms that take sets of input data and
through adaptive learning and automatically can learn the relationship between the input
and output data. This is done through sets of transformations to the input data and then
evaluating the transformations to further improve upon. Overtime its performance will
improve.[22] [47]

Figure 2.3: Subsets of Artificial Intelligence [53]

Deep learning functions and algorithms are similar to those in machine learning, but the
difference between traditional machine learning and deep learning is the numerous layers
of these algorithms. Each of these layers provides a different interpretation of the data
it is fed on. In short, deep learning has several layers on processing which makes it be
able to recognize more complex patterns. Deep learning is not a new concept, but its
popularity can be summed up to two main reasons: The amount of data available and the
increase of raw power in the graphics processing unit[35]. Creating deep learning models
was, a decade ago, exclusively preserved to resourceful IT companies or universities that
could afford expensive GPUs to do the calculations needed to make a successful model.
However, today this can be done with a mid-tier GPU for a reasonable price at a students
dorm. Also, the amount of data for an arbitrary problem is widely available. Consider a
hospital doing X-rays to detect fractures, it would typical, some decades ago, to produce
the images on a film, but, as for today, this would be done digitally, stored in a database
and over the years a dataset could be created out of this for teaching a deep learning
model to detect fractures.[20] [55]

7

Chapter 2. Theory

Figure 2.4: Advantages of deep learning [55]

One way products like Netflix and Amazon can make you spend more time/money on
their websites is that they have millions of active users that leave a lot of data about their
preferences, giving them the necessary data to make an accurate model that predicts what
one as a costumer would spend money on and not. As depicted in the figure 2.4, the deep
learning model will have high performance compared to other algorithms as the data is
vastly available.[55]

A variety of tasks are solved by deep learning, from language processing in the form
of virtual assistants on phones (Siri, Google Assistant), to playing games like Dota 2 or
chess. The models are based on an artificial neural network which is processing units
in conjunction, inspired by a biological neurals to do transformations to data. One very
popular and standard ML algorithm which was used in this research project was the feed-
forward neural network, and it will be explained in section 2.5.1.[55]

8

2.4 Categories of Machine Learning algorithms

2.4 Categories of Machine Learning algorithms

2.4.1 Supervised learning

In supervised learning, the dataset is the collection of labelled samples (xi, yi)
(N). Each

element xi among N is called a feature. A feature is a vector in which each dimension
j = 1, ..., D. The label yi can be either an element belonging to a finite set of classes
1, 2.....C, or a real number. As an example x(j=1) could be the weight of a person,
x(j=2) could be the height and x(j=3) could be muscle mass then yi could belong to
Ci = {overweight, normalweight, underweight} or just a real number that indicated
the individual’s BMI. The goal of the supervised algorithm is to use the dataset to produce
a set of transformations that takes the features x and yi. [12]

Figure 2.5: Supervised learning

2.4.2 Unsupervised learning

In unsupervised learning there is a collection of data just like supervised learning, how-
ever, now it is not needed to have the collection of label yi. Meaning the dataset is a
collection of unlabelled samples {xi}. xi is still the feature, and the goal of the algo-
rithm is to create a model where x is transformed into another vector or a value that is
useful for the current practical problem. This can, for example, be a clustering problem.
After passing a feature vector xi to the model, it will return which cluster the feature
vector belongs to. This can also be used in dimensionality reduction where the model re-
ceives xiN and it returns {xi}M where M < N , in other words, it returns fewer features
as the neglected features are unneeded for solving the problem. [12]

2.4.3 Reinforcement learning

Reinforcement learning have a long-term objective to maximize a numerical performance
measure. In contrast to supervised learning, reinforcement learning ”lives” in an environ-
ment and can understand the state of the environment. The goal is to learn a policy such

9

Chapter 2. Theory

Figure 2.6: Unsupervised learning

that in every stage, the model decides an action that is optmal (maximizes the expected
reward). [12][71]

2.5 Deep learning algorithms

2.5.1 Feedforward neural network

The feedforward neural network is the simplest of the different types of neural networks
[12]. The information flows in one direction from input to output, through neurons (also
called nodes). The nodes are simple processing units, which will transform sets of inputs
into one output. The transformed signal from a neuron then becomes one of several input
signals to the neurons in the next layer. Between the layers, the neurons have a weighted
connection. The neurons get activated by the signal from the previous layer, except for
the input layer. The output of a neuron is the sum of the weighted signal between the
layers, passed through an activation function. Considering the highlighted section in
figure 2.7, this will result in equation 2.1. [14]

y = σ(
∑

Wi × xi − b) (2.1)

xı are the inputs or the activation from previous layer, Wi are the weights between the
layers, bi is the associated bias for the neuron and the activation for the output of the
neuron is in this case equals to y and σ is our activation function. This is the general
equation for a neuron but in practice, a matrix representation is more suitable for com-
puters. Many of the libraries using matrix operation for modern programming language
is very well optimised for this, also, matrix operations are well suited for running calcu-

10

2.5 Deep learning algorithms

lations on the GPU as this component is specialised for this task. [56]

a(1) = σ(


w0,0 w0,1 x0,2 . . . w0,n

w1,0 w1,1 w1,2 . . . w1,n

...
...

...
. . .

...
wk,0 wk,1 wk,2 . . . wk,n

 ∗

a
(0)
0

a
(0)
1
...

a
(0)
n

 +


b1
b2
...
bn

) (2.2)

a(1) = σ(W ∗ a(0) + b) (2.3)

In programming languages, object programming implementation of the neural net-
work would look similar to equation 2.2. The same equation is applied over and over
again until the signal reaches the output layer. The indexes n and k indicates nodes in
their respective layers. wk=1,n=2 is the weight between second node in current layer and
first node in previous layer . Sigma is again our activation function and b is the bias. [56]

Figure 2.7: Neuron in a neural network

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

(a) Sigmoid

−10 −5 0 5 10
0

2

4

6

8

10

(b) Relu

−10 −5 0 5 10
−1

−0.5

0

0.5

1

(c) Tanh

Figure 2.8: Three activation functions

What is the purpose of the activation function?
The activation function defines the output of a neuron given a set of inputs. The neuron

11

Chapter 2. Theory

in a neural network is inspired by the activity in the human brains, where a specific neu-
ron is fired by the ”right” stimuli[56]. Some of the most known activation functions, as
depicted in figure 2.8, is the Sigmoid, Relu, and Tanh. The Sigmoid outputs 1 if the input
is much larger than 1, and output 0 if the input is much less than 0. Another way of think-
ing about it is, it will squeeze the input x in a range between zero and one. The Tanh is
very similar to the Sigmoid function, however, the range of the input will be transformed
into a range between −1 and 1. Relu, on the other hand, is a bit more unique. The Relu
function lets all values pass-through as long as it’s bigger than 0 or else the neuron will
output 0.

The main reason to use the Sigmoid function is that it is especially good for a model
that seeks to predict probability as an output[66]. As the probability of anything exists
between the range of 0 and 1, Sigmoid is the right choice. The Tanh or hyperbolic tangent
activation function can be used for the classification of two classes[66]. Relu is the most
widely used activation function, and that is for good reason. In the training of Imagnet
dataset, which is an image database of 200 classes, Relu had almost 6x improvement in
the training process compared to Tanh[37]. The equation for the activation functions are
given by:

fsigmoid(x) =
1

1 + e−x
(2.4)

frelu(x) = max(0, x) (2.5)

ftanh(x) =
ex − e−z

ex − e−z
(2.6)

The output of a neural network is the result of numerous activations and biases, how-
ever,it is necessary to train the neural network to do the right transformations to the data
throughout all the layers. During the start of the training, there are some clever ways to
initialize the weights and biases for faster training time, or for simplicity can be initial-
ized randomly. After initializing both weights and biases, the network needs to know how
precise the predictions are. This is done by defining a cost/loss function, simply being
how far of the prediction was to the target or desired value. Then the process of finding
the optimal weights is to minimize this loss function. Considering a neural network with
one node in each layer, results in loss function in equation 2.7.[56]

C(w, b) = (y − a(L))2 (2.7)

Using the gradient of the cost function, the network can find out how much each weight
and bias is affecting the overall cost. Backpropagation is a technique where the model
uses the chain rule to find the partial derivative of each weight and bias to calculate the

12

2.5 Deep learning algorithms

Figure 2.9: Neuron in a neural network

gradient or slope of the cost function, and then, take a ”small step” down the slope.
Sometimes, there is a way to explicitly derive the minimum of a function, however, this
can be hard or impossible for functions that take as input thousands of parameters. Ini-
tializing the weights and biases, can be considered as starting in an arbitrary point in the
nth dimensional surface and, calculating the slope downhill from the arbitrary point is,
finding the gradient of the cost with respect of the weights and biases.[56] [55]

In the simple one node neural network in figure 2.9, it is shown some new terms like
z(l), and C. The term z indicated the value before activation and a is after the activation
function has been applied to the input. In this network, using backpropagation calculates
the weight w(l) effect on the overall cost. One training example results in equation 2.8.

∂C0

∂w(L)
=
∂z(L)

∂w(L)
+
∂a(L)

∂z(L)
+
∂C(L)

∂a(L)
(2.8)

The equation is averaged across all training examples for each weight and bias to compute
gradient vector OC, as shown in equation 2.9.

OC(w) =



∂C
∂w(1)

∂C
∂w(2)

...
∂C

∂w(L)


, where

∂C

∂w(L)
=

n−1∑
k=0

∂Ck

∂w(L)
(2.9)

Earlier in this thesis, it was mentioned that, when calculating the gradient vector, the
weights and biases are updated as if taking a ”small step” in the direction of the vector.
This was referring to the learning rate µ, a user-defined parameter which determines how
big step the network should take in direction of the gradient vector. This does not need

13

Chapter 2. Theory

intensive explanation about its relevance, and can be illustrated simply as depicted in
figure 2.10. The weights can then be updated with following equations:

4wt+1 = µOE(wt) (2.10)
wt+1 = wt +4wt+1 (2.11)

Introducing more than one node each layer there is a need of more indices, as the weights
can affect several nodes, and also, there might be more than one output. Equation 2.12
accounts for these changes by averaging the N paths affecting the cost function.

C(w, b) =
1

N

N−1∑
i=0

(yi − a(L)
i)2 (2.12)

Another change which is emphasized in equation 2.13, is how a single training example
affects to the cost with respect of previous activations by applying the chain rule.

∂C0

∂a
(L−1)
k

=

nL−1∑
j=0

∂z
(L)
j

∂a
(L−1)
k

+
∂a(L)

∂z(L)
+
∂C

(L)
0

∂a
(L)
j

(2.13)

The network and equations described above research published in the 80s and 90s, in data
science we call this network ”vanilla neural network” but research has come far since
then. Other proposals that have become ”standard” is the introduction to momentum
term for the error calculation. Instead of using only the gradient of the current step to
guide the search, momentum also accumulates the gradient of the past steps to determine
the direction to go. The equations of gradient descent are revised as follows.[56] [49]

4wt+1 = (1− α)µOE(wt) + α4wt−1 (2.14)
wt+1 = wt +4wt+1 (2.15)

The momentum term alpha is a value that determines how much of the gradient and/or
previous weight adjustments shall be used. In the equation above alpha equals zero
means the weight update is solely determined by the gradient without considering previ-
ous weight, and alpha equals one means the opposite. [13]

Figure 2.10: Learning rate

14

2.5 Deep learning algorithms

Figure 2.11: Neuron in a neural network

Regularization and overfitting

One common problem in machine learning is overfitting or the network memorizing the
data instead of making a valid generalization of the problem [17]. The network should
work on not only the data it was introduced to, but also data the network never has seen
before. The common way to detect overfitting is training the network on a larger subset
and withhold a smaller part. While training on the larger subset and calculating the error
to adjust the weights, the smaller subset is only for calculating the error for validation.

Figure 2.12: Overfitted model

In figure 2.12, the two data points the model can train on are depicted with red color and
the data which the model can not train on is depicted with the color green. Between the
two red data points, it is infinite possible ways the model could fit a line through, however

15

Chapter 2. Theory

upholding some of the data a check can be done to find out if the model is overfitting or
not. When the loss of both training and the upheld data decreases, the model can safely
continue to train, however, if the loss of the training continues decreasing while the up-
held data increases, it is an indication that the model is overfitting.

In deep learning, regularly the best performing models tend to be large models trained in a
way that restricts the utilization of their entire potential. In other words, encouraging the
models to have a preference towards simpler models. This reduces the risk of overfitting,
and one way this can be achieved is by adding a weight penalty term to the cost function.
[38, 32]

C(w, b) =
1

N

N−1∑
i=0

(yi − a(L)
i)2 + (weightpenalty) (2.16)

(weightpenalty) = α
∑

w2
i (2.17)

In equation 2.17 an additional term is introduced which is the squared sum of the weights.
When the model is being trained the optimization algorithm will minimize both the orig-
inal loss function and the weight penalty term, and expressing a preference towards
smaller weights.

Another simple regularization technique is the dropout method. This method randomly
drops out a portion of the nodes in the network with some probability during training.
This means that, in each iteration of the training, a subset of the network is trained.
This approach encourages the nodes in the network to learn useful features on their own,
without being to heavily dependent on nodes.[32]

Figure 2.13: Dropout [70]

16

2.5 Deep learning algorithms

2.5.2 Convolutional Neural Network (CNN)

The computer vision field enables machines to view or perceive the world as humans
do. This is what is used in videorecognition, image analysis, classification, etc. One of
the main algorithms is the Convolutional Neural Network, a deep learning algorithm that
has methods for extracting important features by sharpening, blurring, enhancing and de-
tecting the edges, and other high order processing on images. This is primarily done by
assigning importance (learnable weights and biases) to areas or pixels in an image and
let the network itself learn the importance of these features or, better said, which features
to look for.[26]

The image will go through four different types of layers, which have different pur-
poses. First, it needs to extract the important features, which is done in the convolution
layer. From this stage, the network will subsample the output (a feature map) which
will preserve the important features and discard the unnecessary data. This will, in other
words, give the network fewer parameters to work with. Usually, several of these two
different layers are used in conjunction depending on the problem before passing the data
to the flattening layer. The flattening layer converts the higher-order representation into
a 1D representation so the data can be passed through the fully connected layer, which is
a Feedforward neural network described in section 2.2.2.[8]

Figure 2.14: Convolutional Neural Network [3]

Convolution layer

The process of filtering out the important features is done by kernel convolution, and it is
not only a key element in the Deep learning algorithm CNNs but in many computer vision
algorithms. In the convolution layer, a process is happening where a smaller matrix of
numbers called the kernel or filter is passed over an image to transform it based on the
value of the filter. The output is called a feature map and is calculated based on equation
2.18, where the input image is denoted by f and the filter by h. The indexes of rows and
columns of the resulting matrix are noted with m and n.[69]

17

Chapter 2. Theory

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]f(m− j, n− k) (2.18)

Figure 2.15: Kernel convolutional example [69]

One can imagine placing the kernel over a pixel, like depicted in figure 2.15 with purple
color. The corresponding value pair from the kernel and pixel of the picture and multiply
them. Finally, sum all products produced in the previous step. G[0,3] (blue color) in the
feature map in figure 2.15 would have the following solution.

G[0, 3] = 10× 1 + 10× 2 + 10× 1.....+ 0×−1 + 0×−2 + 0×−1 = 40 (2.19)

Figure 2.16: Kernel for edge detection[68]

The algorithm will, through error minimization, find itself the kernels which it deems
important, and if knowing where the edges are is important for solving the task, then the
deep learning algorithm might come to a kernel similar to figure 2.16.

18

2.5 Deep learning algorithms

Pooling layer

One thing the pooling layer has in common with the convolutional layer is the dimen-
sionality reduction; this is, decreasing the computational power required, by compressing
the image to a smaller size while maintaining the important features. Also, the feature
maps generated from the previous layer are dominant features that are positional invari-
ant. In other words, even though the image is rotated, sheered or other transformations
have been applied to it, features can still be detected, like edges in figure 2.19. This leads
to a lower chance of overfitting and more effective training.
The two common types of pooling are average pooling and max pooling[8]. Max pooling
returns the maximum value from a portion of the kernel, while average pooling returns
the average of all the values in a portion of the kernel. The portion or pool size of the
kernel is chosen by the user.[73]

Figure 2.17: Max pooling and average pooling

The term stride [x,y] in the pooling layer tells the algorithm how the pooling window
should be moved horizontal and vertical direction. In figure 2.17 the pool-size or size of
the sliding window is (2,2) and the stride is [2,2].

Flattening layer

This layer is rather simple, and its purpose is to prepare the data to be fed into a feed-
forward neural network. This is done by converting the matrices into a vector[59]. The
result from the pooling layer in figure 2.17 after flattening would convert to be a vector
with 4 samples.

Fully connected layer

This is the layer where the vector is fed to an artificial neural network, like the feedfor-
ward network from section 2.2.2. This layer is responsible for performing classification
or regression on images. [59]

19

Chapter 2. Theory

Figure 2.18: Flattening layer

2.6 Computer vision

There have been big improvements in the field of computer vision. A good part of this
is from big companies like Google, Microsoft, and Facebook contributing in the form of
datasets to benchmark the newly developed networks, or develop networks. However,
computer vision gives the computer the ability to extract information from pictures or
videos to understand the scene as humans do. In other words, a camera just captures the
moment while with computer vision a computer can ”see”. This section, explains the
main categories of computer vision tasks.[64]

2.6.1 Classification

The lectures from Fei-Fei Li [65] describe the four main classes of problems in detection
and segmentation. These are classification, semantic segmentation, object detection, and
instance segmentation. Classification trains the computer to distinguish pictures from one
another, by labelling them into different classes. The network should, with high certainty,
output if there is a cat in the picture or not, given that it was trained to find pictures with
cats. Figure 2.19 shows what the output from a network designed for classification looks
like. [64]

Figure 2.19: Classification [37]

20

2.6 Computer vision

2.6.2 Semantic segmentation
In computer vision segmentation is the process of the partitioning of an image into several
segments. This is done by fully convolutional networks [45]. The goal is to simplify the
image for further processing. Usually, each pixel is assigned to one of the predefined
classes like background, cat, etc. An application of this is the portrait mode on modern
phones in the camera application, where the camera knows what is the foreground and
background, and blurs the background.[64]

Figure 2.20: Semantic segmentation [67]

2.6.3 Object detection and instance segmentation
As the name implies, object detection finds the instances of the class it is trained on
within the image. Given that a network was trained for detecting people in a picture,
then, the network should confidently recognize all the people in the picture and their lo-
cation, while accounting for overlapping. This is usually depicted with boundary boxes
on the output pictures where the instance is located.[64]

Instance segmentation is similar to object detection, their main difference is that it gives
one step higher accuracy as the network should also know all the pixels that belong to
the instance. It should, as the object detection, know how many different instances of a
class are in an image and keep track of them. [64]

21

Chapter 2. Theory

22

Chapter 3
Related work

3.1 Datasets
One of the primary goals of computer vision is the understanding of visual scenes,
which involves localization, recognition, characterization, and relationships between ob-
jects; however, it requires excessive data to train a computer vision algorithm. The
ranked searches of a dog on Google images or Flickr will result in uncompromised, well-
composed images of a dog[43]. The problem is that, when training the computer vision
model, the dataset should be representative of the problem one wants to solve. Detecting
dogs in CCTV footage on a common street requires labelled images in similar scenarios.
Studio-quality and well-centered pictures of dogs will not be sufficient, and this is where
contributions to the open-source community from well-established IT-companies come
in [43].

3.1.1 Common Objects in context dataset
This dataset has been described as following in the COmmon object in COntext (COCO)
paper [43]: ”We present a new dataset with the goal of advancing the state-of-the-art
in object recognition by placing the question of object recognition in the context of the
broader question of scene understanding. This is achieved by gathering images of com-
plex everyday scenes containing common objects in their natural context.” The images
were mostly gathered by hiring from Amazon Mechanical Turk. What is unique with
the COCO dataset is that it provides instance-level segmentation and has a high level of
instances per class compared to other datasets.

3.1.2 VOC dataset
The Pascal Visual Object Classes (VOC) challenge was presented in 2005 and associated
with the benchmark test for object detection. Their diverse development kit provided an
easy way to evaluate object detection models, which today have become standard. The

23

Chapter 3. Related work

Figure 3.1: Object detection vs instance segmentation [43]

dataset consists of images collected from Flickr, which has been annotated and made
ready for training [19]. The dataset contained necessary data for both classification and
object detection, however, it consisted of only 20 classes and, as the technologies ad-
vanced within machine learning, the necessity of making a new challenging dataset arose.
Review papers that evaluate different networks, usually list metrics generated for VOC
and COCO [19] [43].

3.2 Feature Pyramid Network

Figure 3.2: Feature Pyramid [41]

The Facebook AI research team proposed the feature pyramid network in 2017 [41]. The
problem addressed in their paper was that recognizing objects at vastly different scales
is a fundamental challenge. The solution until then was solved using an image pyramid
(figure 3.2 a) to build a feature pyramid. However, using a single picture in different
scales to generate sets of feature maps was computationally heavy and required a lot of
memory. The proposal for this problem was the feature pyramid network in figure 3.2d,
which is computationally similar in speed as generating a single feature map, as in the
CNN after the convolution layer described in chapter 2.2.2 generated [41].

24

3.2 Feature Pyramid Network

Buttom-up pathway

A feedforward convolutional neural network (often called the backbone), as described in
chapter 2 is the bottom-up pathway of the feature pyramid network. When using transfer
learning to initialize the backbone of the feature pyramid, there might be many layers
after each other with outputs the same size. This is defined in the pyramid network as
one stage. As shown in figure 3.10, the feature maps fed through the stages in the bottom-
up pathway, the spatial dimension of the image is reduced by 1/2. The output of each
convolution module is later used for the top-down pathway.[31]

Top-down Pathway

The top-down pathway ”simulates” higher resolution features by upsampling, by a factor
of two from previous pyramid layers. The features from the higher levels are spatially
coarser but have semantically stronger features[41]. The lateral connections merge fea-
ture maps of the same size from the bottom-up pathway and the top-down pathway. The
reason for merging the feature maps is that the activation localized in the bottom-up path-
way is more accurate as it has been subsampled fewer times. In figure 3.3 the pyramid
feature P1 does not exist, or upsampling M2 and merging it with conv1, this is due to the
spatial dimension of C1 is too large, which would result in a slower process.[31]

Figure 3.3: Bottom-up and top down pathways for feature pyramid network [31]

25

Chapter 3. Related work

3.3 Transfer learning
Transfer learning in Machine Learning refers to the transferring of knowledge between
networks. The knowledge gained while solving one problem could be reapplied to solv-
ing another similar problem. For example, the knowledge gained while training a net-
work on voice recognition could be applied to trigger word recognition when activating
a virtual assistant like Siri on iPhones or Google Assistant on Android phones. This is
not far from how humans learn, as humans don’t start from scratch every time learning
something but rather build on from past experiences. One of the main reasons to use
transfer learning is due to insufficient data for a new domain, or the overall problem is
dependent on a sub-problem that has been solved efficiently before with state-of-the-art
deep learning algorithms [54].

There are different forms of transfer learning strategies. Moreover, in computer vision,
the most common is off-the-shelf pre-trained models [58], as in the case of this thesis. A
subset of the previously trained architectures can be used for a new problem where the
output layer is substituted with the desired output. The criteria to use transfer learning
can be summarized to [54]:

• There is not enough labelled training data to train a network from scratch.

• There already exists a network that is pre-trained on a similar task, which is usually
trained on massive amounts of data.

• When task 1 and task 2 have the same input.

Figure 3.4: Pre-trained Deep Learning Models as Feature Extractors [33]

3.3.1 Residual Neural Network (ResNet)
When deciding the number of layers in a neural network and nodes, at first glance, it
might seem that more layers and nodes are better. This is not a bad assumption, after
all, the amount of neurons is higher, which gives more activations to estimate a function.
However, a deeper neural network leads to a more strenuous training process. This is
due to the famously known vanishing gradient problem. When the network is too deep
during backpropagation, the cost function shrinks to zero for earlier layers. More details
for vanish gradient problem can be found at [29].

26

3.4 A brief summary of object detection algorithms

The ResNet, or Residual neaural Network, can have variable sizes; in this thesis, both
ResNet101 and ResNet50 were experimented with, but this section will consider ResNet34,
as in the official Microsoft research paper [28]. In the figure, the ResNet consists of one
convolution and one pooling step. After these steps, it repeats the same pattern: perform
3x3 convolution with fixed map dimensions [64,128,256,512] and bypasses every other
convolution. The dotted line represents a change in the dimension of the input volume.
The reduction is not like in chapter two, where the pooling operation was responsible for
the reduction, but rather, the reduction is achieved by increasing the strides from one to
two in these steps.

Figure 3.5: ResNet34 architecture [28]

This network has a better learning representation, it is shown that, when adapted to deep
learning object detection algorithms, it significantly improves accuracy. The result of
one of the states-of-the-art object detection algorithms, called Faster R-CNN [61], had
the authors achieve a relative improvement of 28% compared to other CNN models for
feature extraction. By using the ResNet as a backbone for the feature pyramid, the model
achieved 1st place in multiple categories in the COCO2015 challenge.

3.4 A brief summary of object detection algorithms
A feature descriptor is a representation of an image that simplifies the image, most com-
monly by extracting useful information and discarding counterproductive features. One
of the famous feature descriptors, Histogram of Oriented Gradients (HOG) [16], would
take an image as an input in the form of a 3-D array (considering RGB), and output a
1-D array, or a vector.

In the early stages of object detection, the task was divided into three main stages.

• Proposal generation.

• Feature vector extraction.

• Region classification.

During the proposal stage, the idea is to use techniques to find regions of interest or,
in other words, regions that might contain an object. Vedaldi et al. [75] suggested us-
ing multiple kernels as sliding windows to scan a portion of the image at the time. To

27

Chapter 3. Related work

account for objects in different scales and aspect ratios, the image was resized multiple
times, and also set into different scales before sliding over the images. Each location that
was retrieved in the first stage from the sliding windows was, in the second stage, used
for extracting the important feature vectors. Methods like HOG were used for the feature
vector extraction. Features from covered regions were then, in the third step, assigned
categorical labels, most commonly by using support vector machine which was known
for its good performance.[80]

The most successful traditional object detection algorithms like Zhang et al. [81] from
the Institute of Automation of the Chinese Academy of Science had a recurrent theme
going on. They all based on carefully hand engineering feature descriptors. With the help
of good feature descriptors, in 2010, they achieved the state-of-the-art result in the VOC
dataset. However, these traditional methods only achieved incremental progress.[80]

Surprisingly, in 1998, there were attempts to adapt deep neural networks for digit recog-
nition and showed promising results; however, it was not further explored for many
years. This is, perhaps, because widely used dataset was not introduced for benchmark-
ing, which would have revealed its potential; therefore, algorithms like support vector
machines were prominently adopted. Alex Krizhevsky et al [37]. introduced a deep
convolutional neural network trained on ImageNet, a dataset consisting of 1.2 million
high-resolution images. They achieved first place with an error rate of 15.3%, a marginal
difference compared to the second place with 26.2%. After these promising results, deep
learning techniques were quickly adapted compared to traditional methods [80].

Today, object detection has two categories of deep learning frameworks: the two-stage
detectors and single-stage detectors. The two-stage detectors are incremental improve-
ments from the R-CNN first proposed by Ross Girshick et al [24].

The two-stage detectors used a generator to generate its proposals; in the case of R-CNN,
it was done by Selective Search[24], but later advances use CNN as a region proposal
network to generate the proposals [27, 61], which are classified in the following step.
One-stage detectors make a categorical prediction on each location of the feature map
(without the region classification step). A common theme was that the two-stage detec-
tor would achieve state-of-the-art results on public benchmarks; however, the one-stage
detector as still superior in real-time detection [80].

Important two-stage detectors

• R-CNN is the pioneering two-stage object detector which achieved 54.7% mAP
on VOC dataset which was significantly higher than the second place with 13%.
R-CNN uses a combination of traditional object detection (such as Selective search
or SVM) and a convolutional neural network to achieve this. More details can be
found at [24].

• Fast R-CNN addressed the biggest shortcoming of R-CNN. Arguably, the most

28

3.4 A brief summary of object detection algorithms

significant difference between R-CNN and fast R-CNN is the generation of re-
gions. The region proposals are generated by the output (feature map) of a convo-
lutional neural network, instead of the input image; this bypasses approximately
2000 passes through the convolutional neural network. Then, the regions of pro-
posals are generated and wrapped into fixed sizes from the feature map. The most
significant achievement was that it only needed approximately 9 hours to train,
compared to the 84 hours of the R-CNN. Also, the detection time for a single im-
age dramatically reduced from 49 seconds to 2.3. More details can be found at
[23].

• Faster R-CNN achieved an end to end training (that is, training the entire network
as a whole). Both the R-CNN and the Fast variant relied on selective search on the
input image or the feature map to generate a region of proposals. Faster R-CNN
introduced a fully connected convolutional neural network to generate the region
proposals. This also achieved state-of-the-art mAP on the COCO dataset while
reducing the detection time by 10 times. More details can be found at [61].

• Mask R-CNN, while achieving the state-of-the-art mAP on COCO dataset, it was
also a extension of Faster-RCNN that allowed instance segmentation. The mask
is generated by a separate, fully connected convolutional neural network parallel
with the classification and bounding box regression. More details can be found at
[27].

Figure 3.6: Two-stage detectors[80]

Important single-stage detectors

• YOLO or You Only Look Once real-time object detection algorithm, spatially
divided the input image using a 7x7 grid, which made sub-parts (cells) of the image
equally sized, and was later used as region proposal for one or more objects [21].
YOLO considers object detection as a regression problem; then, for each cell, there
is calculation of bounding boxes, classification of the objects, and determination

29

Chapter 3. Related work

of whether the location had an object or not. It also had a performance of 45 FPS
to 155 FPS (simplified backbone). Its limitation was crowded objects and small
objects. This algorithm is not suitable for predicting object at multiple scales either
[60].

• SSD or Single Shot MultiBox Detector addressed the limitations of YOLO, espe-
cially having a fixed-sized proposal. SSD similarly divided images into grid cells,
however for each sell a set of anchor were generated with different aspect ratios
(i.e.[1:1, 1:2, 2:1]) and diffrent scales[1, 0.5, 2]; SSD also detected objects from
multiple feature maps to make its prediction; and it achieved detection accuracy
comparable to Faster R-CNN. More details can be found at [44].

• CornerNet delivered something special, as networks before this one initialized an-
chors in which objects were fitted into, while CornerNet didn’t need initialization
of anchor. This anchor-free approach detected objects like a pair of corners. More
details can be found at [39].

• RetinaNet addressed further limitations that single-stage detector had until this
point. The models with region proposal network have the advantage of having
less negative samples to filter negative samples, the networks until now had a class
imbalance between foreground and background. RetinaNet solved this with a cus-
tomized loss function; this network also implemented feature pyramid network.
More details can be found at [42].

Figure 3.7: Single-stage detectors [80]

3.5 Choosing network - A Review
There is no right answer when choosing a network, as it is quite a problem-dependent
decision and, as already mentioned, while some networks have good accuracy, other
networks sacrifice accuracy for speed. However, there are papers published were the
state-of-the-art networks are reviewed and benchmarked. One such paper was published
by Zhao et al. [82], which has been a key source in the stage of choosing a network.
Also, Wu et al. [80], has been a good source to review the development of the two types

30

3.5 Choosing network - A Review

Figure 3.8: VOC 2012 test set results Zhao et al. [82]

of object detection networks throughout the years.

Earlier in this chapter, the VOC and COCO datasets were introduced; and figure 3.9
from [82] shows the result on the 2012 VOC’s dataset. The front runners are the SSD
network[44], faster R-CNN network [61], and faster R-CNN based network. At first
sight, SSD-network might seem outperforming (in terms of accuracy) Faster R-CNN
based network; but, luckily, there is more benchmarking available.

In figure 3.9, there is a clear indication that, if incorporated properly, more powerful
CNN models definitely improve object detection like ResNet, VGG, etc. in terms of
accuracy; the figure shows Faster R-CNN based networks outperforming SSD or single-
stage networks. Still, a deliberate decision has to be made based on the problem one
wishes to solve, as approximately ten percentage points loss in terms of accuracy might
be admirable for a gain in performance of 200 times (0.2 vs. 45 frames per second). [82]

Figure 3.9: VOC 2007 test set results Zhao et al. [82]

The improvement in the performance obtained by the single-stage networks carry a cost
evident on the results of the COCO dataset. This dataset has more crowded and smaller
objects, for this dataset contains images in context, as mentioned earlier in this chapter.
The bottleneck of SSD is small objects; as illustrated in figure 3.9, it has a significant
accuracy loss compared to two-stage networks for small objects. This bottleneck is still

31

Chapter 3. Related work

prominent, even after feeding the networks with higher resolution images (SSD300 vs.
SSD512). The clear winner, in terms of accuracy is the Mask R-CNN, with its robust
backbone CNN architecture (FPN and ResNet) beating the competition in every category.
In chapter two, categories of computer vision were described, and Mask R-CNN was an
instance segmentation algorithm, considering that the problem in this thesis was object
detection. In the Mask R-CNN paper [27], the author produced the numbers by letting
the network work in object detection, where the mask outputs are ignored; and used, for
evaluation, the bounding box coordinates. Also, in the paper, it is mentioned that the
extra mask output’s performance cost is negligible.

Figure 3.10: COCO test set results Zhao et al. [82]

32

Chapter 4
Methodology

The thesis’s main objective is to explore how deep learning can automate the maintenance
of railings across Norway’s roads. The previous chapters addressed the goals, relevant
theory considering image processing in deep learning, categories within it, and related
work considering object detection with traditional and deep learning and its development
throughout the years. Also, the introduction of state-of-the-art networks considering
object detection was previously presented. This chapter describes the data collection,
data preparation, and implementation details for the experimentation of the thesis.

4.1 Data
There was no available dataset found about the railings for the roads in Norway, so it
was determined that it does not currently exist (not publicly available). Therefore, this
thesis dataset was primarily collected by iSi AS and Arvid Gjerde AS and annotated by
the skilled employees of Arvid Gjerde AS.

4.1.1 Labelling and preparation
While training the network, it is necessary to rate the accuracy of the predictions the sys-
tem managed to produce. The output that the system generates is bounding boxes (exact
location) around the object, assigning a label to the area previously located, and the exact
pixels belonging to the class. Labelling in this project was done by creating a lookup
table with the necessary information of each image, like the class and bounding box. The
software used to generate this lookup table was VGG annotation tool by [18].

Image annotated such as illustrated in figure 4.1, the generation of the bounding boxes’
corners is done by extracting the xmin, xmax , ymin, and ymax and adding a small offset
the coordinates. By this annotation, the mask is also generated, by having a representa-
tion of the image in the form of a 2-D array and assigning 1 in the array where the object

33

Chapter 4. Methodology

Figure 4.1: VGG annotation tool [18]

is present and 0 otherwise. The label has to be assigned manually (i.e., cat/dog).

After training on the initial dataset, the network didn’t seem to generalize and make
useful predictions; therefore, an analysis of the dataset was required. One methodology
for preparing the datasets was the manipulation (adding, deleting, cropping, etc.) of
the training set and validation set was acceptable. Still, the testing dataset should not
be tampered. Any modifications that will be done should be with the purpose of better
generalization (that is, performing better on data that the network has never seen before).

Visual inspection

This section, considers one class in which the visual inspection was applied, but the same
analogy can be used for the other classes. Class A, or ”damaged railing”, has a variety of
subclasses, meaning a ”damaged rail” can be bulk, rust, deformation, etc., compared to
the class ”wrong end”. The images were imported to a vector drawing application with
a red or green border around the image to indicate that it belongs to the training set or
validation set. Then, they were sorted into their class and their subclass. As discussed

Figure 4.2: Visual inspection

in chapter two, the performance of the validation set allows the user to indicate whether
the model is overfitting or not. Sorting them (figure 4.3) allowed it to find instances
in the training set, which is not represented in the validation set. The solution was as

34

4.2 Implementation details

simple as moving some of these images to the validation set. Moreover, this also worked
as an indication of the correlation between the training and validation set. This method
allowed finding some instances of wrongly labelled images. In a particular case, the
exact scene in two different photos had two different labels. Even though the dataset was
labelled by a professional, mistakes can be made, considering that it takes one misclick
on a dropbox to mislabel it. Both were removed, as there was no professional to label
them again. Another interesting finding was that the class ”other mistakes” had almost
no correlation between the datasets and could be assigned to various subclasses (every
image was its own subclass); that is why this class and the instances belonging to them
were removed.

4.2 Implementation details

4.2.1 Local computing
Initially, it was thought to develop model and train it on a local machine; however, train-
ing a CNN requires a specific hardware that can do it efficiently. If training it on an
average PC, networks like Faster R-CNN or Mask R-CNN takes weeks to train without
dedicated GPU. Also, there must be many hyperparameters adjusted to train the net-
work, meaning that trying and failing is a part of the procedure for making the network
work. The CNNs have an exponential training performance gain by training it on GPU,
which currently the libraries supported by the machine learning libraries (Tensorflow and
Pytorch) are CUDA developed by Nvidia; hence, the GPU required is an Nvidia GPU.
Moreover, if using cutting edge algorithms, one has to take care of many dependencies
like drivers, configurations, etc., which makes it hard to recommend over a cloud com-
puting for the company, as the goal is to make it as simple as possible. However, if the
local machine is desired, one can use these sources [2] [1] for Windows, Linux and ma-
cOS, respectively, for the correct setup. However, both local (for evaluation) and cloud
(for training) computing were used in this thesis.

4.2.2 Cloud computing
The solution for extreme training time in this project was to do the computations using
cloud services solutions that already exist, in this case, Amazon web services. Many
cloud computing solutions exist; and some of the most prominent players in this field are
Google Cloud, AWS, and Microsoft’s Azure. The instances available are vast, and one
can import instances already initialized for Deep Learning. Still, as there are many de-
pendencies to make a state-of-the-art algorithm work, the decision fell upon configuring
it specially for this thesis;which resulted in an instance called p3.2xlarge; which includes
a 16GB of video ram, 8 virtual CPUs, a memory of 61 GB, and a bandwidth up to 10
Gbps. Further installation and modifications were:

• CUDA 9 and cuDNN 7 [79]

– Nvidia libaries used to run computations on the GPU

35

Chapter 4. Methodology

• Python 3.7.0 [74]

– Object oriented programming language

• Tensorflow 1.8.0 [5]

– A free and open-source software library for dataflow and differentiable pro-
gramming across a range of tasks.

• Keras 2.2.0 [15]

– Keras is an open-source neural-network library written in Python.

• NumPy 1.18.0 [78]

– Python library for scientific computing.

• Imgaug 0.4.0 [34]

– Python library image augmentation.

• Tensorboard 0.4.0 [48]

– Provides the visualization and tooling needed for machine learning experi-
mentation

• Matterport/mask R-CNN [6]

– framework for easier implementation of Mask R-CNN

4.3 Mask R-CNN

4.3.1 Model details
Region proposal

Feature pyramid network [48] and ResNet [43] was introduced in chapter two; and they
are the backbone of the Mask R-CNN [27] implemented in this project. The network
used for the bottom-up pathway in the feature pyramid network for Mask R-CNN was the
ResNet, which produced the pyramid features for the Region Proposal Network (RPN).
The purpose of using RPN is to provide regions of interest, by obtaining bounding boxes
for each feature, and a probability for the area that contains an object.
The regions are generated by sliding a window over the image, and the center of each
position that is stored is called the anchor. Pre-defining aspect ratios (usually 1:1, 1:2 and
2:1) and sizes (usually 64, 128, 256) are used to define bounding boxes for each anchor
(9 anchor boxes) [7].
The RPN takes the anchor boxes as input and outputs the probability of an object is
present (foreground or background) in the box, and refinement adjusts the coordinate
boxes. This is done because of anchor boxes that have a high probability of containing
an object might not be well centered. The following step after getting the two outputs is

36

4.3 Mask R-CNN

Figure 4.3: Anchor boxes [63]

discarding redundant anchor boxes. The discarded anchor boxes are chosen by selecting
the boxes with the lowest probability, invalid boxes, and rejecting sets of boxes with low
Intersection Over Union (IOU) [63].

(a) Invalid proposal
(b) High IOU value (i.e. same
proposal)

Figure 4.4: Discarding of proposal [21]

Region of interest align

The second stage is similar to the Faster R-CNN, as it was the predecessor to the Mask
R-CNN. After the RPN output, the adjusted anchor boxes with the probability of contain-
ing an object (proposal) serves as the input in the next stage. Mask R-CNN made some
modifications to improve instance segmentation and performance, as the Faster R-CNN
was not designed for pixel-to-pixel alignment between the network input and output. To
fix this misalignment, it was proposed a modification to this module called ROIAlign
[25] [27].

When generating anchor boxes, the RPN generates them with different size and aspect
ratios. A Convolutional Neural Network does not perform well on variable input; hence,
transformation to the input image is done in networks with CNN. The job of the module
Region of interest align (similarly to the Region of interest Pool in Faster R-CNN) is to

37

Chapter 4. Methodology

transform all proposals to the same size. When scaling the feature map that corresponds
to the Regions Of Interest (ROI) by ROI pooling, the first step is to divide each ROI into
the same number of bins. The boundaries of the ROI, feature map, and bins may not
match; so, quantization (transforming a broad set of values to a discrete set) of the bins
was used for aligning the ROI. Max-pooling is used on all of the bins; however, quanti-
zation causes a significant drop in performance for tasks that need higher accuracy, like
predicting the mask, and the author of Mask R-CNN proposed a more accurate ROI align
[27].

ROI pooling solved the mismatch by using quantization on the bins that do not corre-
spond to the feature maps. On the other hand, the ROI align solved this by using bilinear
interpolation, which also allowed the generation of bins of the same size within each
ROI. The number of points used for the bilinear interpolation is found to be best when
using 4 points according to the paper [27].

Predictions

The last module of the Mask R-CNN are the network heads, that take the ROI with
the same dimension, which was constructed on the previous step to make its predictions.
The final predictions are the bounding boxes, classification, and prediction of the object’s
mask. It was mentioned in chapter two that Mask R-CNN has an additional branch of
a fully convolutional layer for predicting the mask. Knowing the regions of interest on
the feature pyramid network’s original feature map, the regions are used to predict the
classes and bounding boxes.

4.3.2 Training details

Tensorboard

In chapter two, regularisation techniques were presented, the techniques that were used
in this thesis (dropout [70], and weight decay [32]); this was for combating the network
remembering the instances from the dataset instead of learning to generalize from the
instances. The training and validation sets uses have also been explained, as it is an up-
per bound of how much can the network learn from training before starting to remember.
Tensorboard was used for visualizing the losses over the training and validation set. Ad-
ditional to this, it is possible to, in order to save computational power, use a subset of
the validation set for each iteration to indicate if the model is overfitting. The size of the
subset depends on the dataset’s size; so, if there is availability of vast datasets, then 30%
- 40% of the validation set should be enough. In this project, 75% of the validation set
was used, as the available dataset was not vast enough. This approach might cause high
fluctuation in the cost function of the validation, and the exponential moving average can
be used (smoothing in Tensorboard) to give an indication of the true cost.

38

4.3 Mask R-CNN

Figure 4.5: Smoothing

Saving the weights

The intuition behind saving the weights after each iteration (update to the weights) is
to be able to go back in through the iterations and pick the best weights. The training
takes approximately 3-6 hours depending on the chosen parameters. To make sure that
the iteration with the best weights haven’t ”passed”, it should be able to go back and pick
the desired weights.

The best weights can be chosen by finding the iteration where the validation loss starts
to increase while the training loss decreases.

Freezing the network

Freezing a layer or a subset of the neural network is about controlling how the weights
should be updated; it means that the subset cannot be modified during training, and it
is usually done layer-wise (in contrast to dropout). This technique provides a trade-off
between computational time and accuracy.

However, some entries like [51] on the Kaggle challenge have had great success with
Mask R-CNN. An investigation into their code shows the applied approach chosen was
freezing a subset of the network until the network cannot learn any further, and then
training the entire network.

The intuition behind this is that, by applying transfer learning, the network has learned
low-level feature extractions, while the head of the network has where classification,
box-regression, and mask prediction happens, and which relies on information further
down the chain, will perform worse. This approach can limit the search space, and can
then fine-tune the entire network. The experiments regarding this were carried out as
following:

• Training parts of the network.

• Training entire network.

39

Chapter 4. Methodology

Figure 4.6: Optimal weights after training

• Training parts of the network + fine-tuning by training the entire network.

Transfer learning and backbone

As explained, Transfer learning refers to giving the network a ”head start”; the weights
and biases from the COCO dataset are applied to initialize the Mask R-CNN network. In
the case of the backbone, ResNet50 and ResNet100 were employed through experimen-
tation.

4.3.3 Hyperparameter tuning

The weights and biases are derived via training, but parameters that cannot be obtained
by training are called hyperparameters. These are used to control the learning process.
Even though it was not explicitly stated earlier in this thesis, the learning rate is a hyper-
parameter. The user chooses this parameter in contrast to the weights and biases. Another
known hyperparameter is the batch size. There are techniques to obtain the best hyper-
parameter, as an optimization algorithm like Particle Swarm Optimization or Genetic
algorithm. Probably, the most known in machine learning is grid search, which iterates
through every combination and stores a model for each combination. This approach is
intuitive, and works well for function estimation in regression or simple artificial neural
network grid search [10]; however, it is not freezable for network architectures like CNN

40

4.3 Mask R-CNN

and, especially, Mask R-CNN, as this experimentation uses 3-6 hours to train. Proper
tuning of the hyperparameters is necessary to achieve optimal results. To tune the hyper-
parameters, it is essential to know their effect on the overall prediction.

Batch size

Using the entire dataset before updating the gradient makes the calculated gradient pre-
cisely aligned with the true one ;like, for instance, the case of gradient descent, which
was discussed in chapter two. As the entire dataset is employed to calculate the gradi-
ent, this method is less prone to randomness compared to using a subset (mini-batch)
of the dataset. Using a mini-batch is affected by the randomness of selecting the batch
each iteration. As a result, using the entire dataset means taking smooth steps towards
the globally optimal of the cost function. This results with the cost of the entire dataset
having to be retained in memory.

Depending on the size of the mini-batch, its learning is exposed to more or less ran-
domness. The smaller the batch-size is, the greater the randomness resulting. How-
ever, if choosing an optimal batch size, they train much faster than full batch learning.
Also, picking a very high batch-size on a challenging problem (i.e., image recognition) is
known to cause significant degradation in the quality of the model. The inability of gen-
eralization occurs because of full-batch converges (gets stuck) in sharp local minimums
of the training functions loss [36].

Figure 4.7: Gradient decent on entire data set vs. Mini-batch vs. Single training example

Anchor size and ratio

Anchor boxes, are the generated boxes used for sliding over the image for further pro-
cessing for the RPN. The boxes are generated in different sizes and aspect ratios.

The size ranges should reflect the problem that shall be slowed through the dataset.
Choosing a large range of scales (i.e. [8,16,32,64]) for a dataset consisting of a small
object of 8px by 8px would mean more unnecessary computation when generating the
larger anchor boxes. More accurate predictions can also be made by choosing the appro-
priate ratios. If the dataset consists of long and narrow objects, wider aspect ratios (i.e.,
1:2, 1:3) should be applied in order to better capture the objects.

41

Chapter 4. Methodology

Region Of Interest per image

This integer number indicates the maximum number of Regions Of Interest the region
proposal network can generate. When training on an annotated dataset, it should be
possible to extract the maximum number of instances on the images; then, assigning the
”ROI per image” to it can help in the reduction of False Positives and training time. How-
ever, if the number of instances is not known in the application of the model (i.e people
detection in Times square), this number should be put to a reasonably high number.

Detection threshold

Confidence level threshold is a way to tell how certain the network should be to consider
the detection a True Positive. If detecting all of the faults is of the highest importance, it
can be lower; however, this comes with the cost of False Positive generation. If the accu-
racy of the detection is essential, then increase the threshold to minimize false positives
and ensure only proper quality detection.

Image size

Image size is controlled by two integer values that control the width and height. The
default value is 1024x1024, but smaller images can reduce the memory requirement and
training time. However, downscaling the images will result in the loss of potentially
essential details.

Weighted loss functions

Mask R-CNN predicts box locations, class of the object, and each pixel corresponding
to the object (mask); and, the loss function is the weighted sum of the different losses at
each stage of the model. A weight is assigned to the different losses corresponding to a
specific loss in the main stages of the network [11].

• Region proposal classification loss: This loss consists on the improper classifica-
tion (foreground, background) on the proposals by the Region Proposal Network.
Increasing this hyperparameter, leads the network to emphasize on generating bet-
ter proposals, and should be only increased when the RPN does not detect objects.

• Region proposal box loss: This corresponds to the localization loss for the region
proposals. This weight is to be tuned in case that the object is detected, but the
bounding boxes are misaligned.

• Mask R-CNN classification loss: Indicates an improper classification done after
the region of interest passthrough the fully connected layers, which is classification
of objects that are present in the region proposal. This is to be increased if the
localization of the object is precise but misclassified.

• Mask R-CNN box loss: This is assigned to the localization of the final output.
It is to be increased if classified correctly, but the localization of the object is not
precise.

42

4.4 Evaluation

• Mask R-CNN mask loss: This implies the accuracy of the identification of every
pixel belonging to the object. This is to be increased if localization and classifica-
tion are precise, but the mask generated is not.

Figure 4.8: Mask R-CNN specific losses [11]

4.4 Evaluation

Single-stage and two-stage detectors were compared in chapter three, and the perfor-
mance of different models was introduced. The metric employed to evaluate the models
is mean Average Precision (mAP). Competitions such as PASCAL VOC, ImageNet and
COCO have exclusively adopted average precision as their performance metric. As a
result, mean average precision has become the most used metric when evaluating seg-
mentation and object detection models. This is calculated by computing the Average
Precision (AP) for each class in the dataset (i.e., missing bolt, or damaged foot) and then
average between all the classes; hence, the name mean Average Precision.

Object detection and other categories of algorithms in computer vision, are not meant
straight forward to evaluate the performance. In the case of object detection, location
and classification indicated the performance of the output. What if the bounding box
is predicted correctly but not the class, or the other way around? What AP solves is
the evaluation if the network’s performance is given a single number. A single number
makes it trivial to assess the performance, especially when the algorithm performs well
in one of the subtasks while lacking in others.

The AP is dependent on precision and recall. The underlying metric’s precision, mea-
sures the quality (accuracy) of the predictions. In other words, how many of the predic-

43

Chapter 4. Methodology

Figure 4.9: Precision and recall

tions were relevant.

Precision =
TP

TP + FP
(4.1)

In the equation above TP (True positive) is the total numbers of correct predictions and FP
(False positive) it the total number of incorrect predictions. In contrast, recall measures
the models ability of detecting the relevant cases among all the data.

Recall =
TP

TP + FN
(4.2)

A perfect model would have both recall and precision close to 1. Whereas a high pre-
cision meaning that, when the neural network makes a prediction, it is most likely to be
correct. A high recall indicates that the model detects close to all objects in the dataset.

In the case of classification, it is trivial knowing when the algorithm predicts wrong.
i.e., the model predicted a cat but should’ve predicted a dog. However, in the subtasks
of Mask R-CNN like object detection and mask prediction, it is a bit more complicated.
Perfect bounding boxes where each corner perfectly matches the bounding boxes of the
dataset is almost impossible to reproduce. It is up to the user to decide when the pre-
dicted box is a positive prediction. In the case of object detection, this is done by setting
a threshold to the comparison between the prediction and the ground truth. The compar-
ison is made by using IOU.

(4.3)

44

4.4 Evaluation

For each object detection, if the IOU values are higher than the set threshold and the
predicted classes are correctly labelled, then the prediction is set to true positive. On
the other hand, if the predictions fall short to meet the threshold value, the prediction is
deemed false positive. False negative is measured by the presence of an object in the
dataset or ground truth that was not detected. For a certain IOU, precision and recall

Figure 4.10: TP, FP, FN given threshold of 0.5

can be computed for each class in the dataset by, first, determining true positive, false
positive, and false negative of the predictions; then, sorting by the confidence distributed
prediction with the corresponding type of prediction (TP or FP); and, finally, calculating
a pair for precision-recall for each rank. I.e. rank B’s precision-Recall pair is calculated
by proportion of TP 2/3 = 0.67, and proportion of TP out of the possible positive
ground truth 2/4 = 0.5. The AP for a specific class (i.e., missing bolt, damaged foot)

Rank Correct? Precision Recall

A Yes 1 0.25
C No 0.5 0.25
B Yes 0.67 0.5
D Yes 0.75 0.75

Table 4.1: Complementary table for AP calculations [30]

is calculated through precision-recall pairs, by measuring the area under their curve. To
measure the area under the key-value pairs, the precision value is interpolated by equation
4.4.[30]

(4.4)

Finally, the AP can be calculated by equation 4.5 to measure the area under the curve.
The mAP is the average of each class’ AP; and it is also listed in the comparison of the
different object detection algorithms in chapter three, the metric 0.5:0.95. This metric is
determined by calculating the mAP for 10 different thresholds between 0.5 and 0.95 and
averaging them. However, in this thesis, threshold of 0.5 has been exclusively used.

45

Chapter 4. Methodology

Figure 4.11: Interpolated precision-recall curve [30]

AP =

∫ 1

0

pinterp(r)dr (4.5)

46

Chapter 5
Experiment and results

The current chapter, explains the different experiments, and all the approaches are for
incremental changes to get the most out of the network’s performance. The evaluation of
the models were stated in the fourth chapter, and are performed on the untampered test
dataset.

5.1 Assumptions
From the understanding of how the Mask R-CNN and its components work, it is viable
to make educated assumptions, in order to focus on the most significant experiments.

1. Due to a lack of quality data, the most significant approach for increasing the per-
formance would be the use of transfer learning to utilize the information extraction
of a previously trained Mask R-CNN on a vast dataset.

2. Allowing the network to generate small anchors will significantly increase the per-
formance in the detection of missing bolts.

3. Allowing the network to generate anchors with wider ratio will increase the per-
formance of images of a damaged railing.

4. A combination of training parts of the network and finetuning by training the entire
network would be the best approach for further increasing the performance across
all classes. This is because limiting the search space allows the network to learn
valuable information extraction before attacking a harder problem.

5. Generating extra data by augmenting the training dataset will be essential to com-
bat the lack of data, and to increase the performance across all classes.

6. ResNet100 as the backbone, will outperform ResNet50 as presented in their paper,
ResNet architecture is robust against vanishing gradients.

47

Chapter 5. Experiment and results

5.2 Baseline architecture
The purpose of this section is to make a baseline Mask R-CNN model as a reference
point. All other modifications to the network will be compared to the baseline model.
In this way, the improvements of each modification, and their effect on the different
branches of the network can be isolated. The model will be trained with the following
configuration.

Configuration
Max Iterations 30
Anchor sizes 64,128,256
Anchor ratios 1:1, 1:2, 2:1

Backbone ResNet50
Detection threshold 90%

Image size 1024x1024
Batch size 2

Validation steps 75%
Schedule Head

Augmentation No
Transfer Learning No

Weighted loss adjusted No

Table 5.1: Configuration for baseline model

The dataset details are as follows. The same dataset has been used on all of the different
experiments in this chapter.

Dataset details
Dataset # Missing bolt # Damaged foot # Wrong end # Damaged railling
Training 200 200 200 200

Validation 50 50 50 50
Testing 100 100 100 100

Table 5.2: Configuration for baseline model

5.2.1 Results
The training iterations were set to a maximum of 30, and the training stopped after 17
iterations as the model couldn’t learn any further (the dataset was used up). The optimal
weights were located at iteration 13 and used for evaluating the model. The detection
results for the different classes are shown in table 5.3. Also, an prediction example is
shown in figure 5.1

48

5.3 Transfer learning with Mask R-CNN

Figure 5.1: Prediction made by the baseline model

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset

AP ∼ 0 ∼ 0 0.1 ∼ 0 0
Recall ∼ 0 ∼ 0 0.1 ∼ 0 0

Precision ∼ 0 ∼ 0 0.1 ∼ 0 0

Table 5.3: Detection result for baseline model

5.3 Transfer learning with Mask R-CNN
This section presents the effects of transfer learning in the detection results on the dataset.
All of the configurations are initialized as the baseline model, excepting the weights and
biases, that are initialized from a previously trained Mask R-CNN model on the COCO
dataset. The learning rate had to be adjusted through experimentation to find the optimal
achievable weights with the current configuration. The configuration is shown in the
table below.

Results

The full extent of the dataset was used after 24 iterations; and, during the following
iterations, the model started to overfit. Figure 5.3 illustrates an example of the detection
result. Usually, these models make many detections with low confidence (i.e., missing
bolt 30%). These detections are filtered out by a confidence filter set by the user. Figure
5.2 shows the predictions before the filtering is applied to the detection. Meaning that the
detections that the model keeps, are because it is more than 90% certain that it is correct.

49

Chapter 5. Experiment and results

Configuration
Max Iterations 30
Anchor sizes 64,128,256
Anchor ratios 1:1, 1:2, 2:1

Backbone ResNet50
Detection threshold 90%

Image size 1024x1024
Batch size 2

Validation steps 75%
Schedule Head

Augmentation No
Transfer Learning Yes

Weighted loss adjusted No

Table 5.4: Configuration for model with transfer learning

The regions generated by the RPN are illustrated in figure 5.4, and the final detection
results can be found in table 5.5.

Figure 5.2: Prediction made by the transfer model without confidence filtering

Figure 5.3: Prediction made by the transfer model with confidence filtering

5.4 Split training schedule
In previous experiments, parts of the network were frozen, and only the heads of the
network (RPN, classification, mask, and box-regressor) were trained. However, this ex-
periment explored training heads compared to the entire network, and a combination of
training both the heads of the network and the entire network.

50

5.4 Split training schedule

Figure 5.4: Region proposals

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset

AP 0.30 0.26 0.84 0.26 0.43
Recall 0.36 0.33 0.86 0.31 0.44

Precision 0.23 0.22 0.84 0.19 0.38

Table 5.5: Detection result for Mask R-CNN with transfer learning

In the section that presents the results, training the entire network from scratch is ex-
cluded, for no interesting observations were made, and the model’s performance was
very similar to training only the heads of the network (baseline model) from scratch.

5.4.1 Results

Baseline model training schedule

The baseline model was trained similarly to the process explained in section 5.1; but,
after 13 iterations, where approximately the optimal weights could be found, the model
was trained for five more iterations, where the model could train the entire network.
Some minor modification needed was that, when starting to train the whole network, the
learning rate set for training the head was too large and had to be reduced by a factor of
ten.

Table 5.7 presents the detection results of the model, and figure 5.5 shows the final region
proposals where the RPN is more than 70% confident about the areas that contain an
object, and these proposals will be further processed by the model. Finally, figure 5.6
and 5.7 show the detection done by the model and the detections that are kept after
confidence filtering.

Transfer learning with split training schedule

Similarly to the transfer learning model train in section 5.2, the model was frozen, with
the exception of the heads, and after 24 iterations, the model was trained for another 15
iterations. The model’s configuration is listed in table 5.7; also, this model had to reduce

51

Chapter 5. Experiment and results

Configuration
Max Iterations 30
Anchor sizes 64,128,256
Anchor ratios 1:1, 1:2, 2:1

Backbone ResNet50
Detection threshold 90%

Image size 1024x1024
Batch size 2

Validation steps 75%
Schedule Head + Entire network

Augmentation No
Transfer Learning No

Weighted loss adjusted No

Table 5.6: Configuration for model with transfer learning

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset

AP 0 0 0 0 0
Recall 0 0 0 0 0

Precision 0 0 0 0 0

Table 5.7: Detection result for Mask R-CNN train the head + entire network

Figure 5.5: Baseline models region proposal

its learning rate by a factor of ten when training the entire model.

Table 5.9 presents the results of the precision, recall, and AP/mAP for the model; and
notes, next to the metrics, the changes in performance. The table presents a comparison
of the transfer model when only the heads are trained, and when the model head + en-
tire network is trained. Figure 5.8 illustrates the final region proposals made from the
RPN.Then, figure 5.9 is a prediction done where the low confident predictions are not
filtered; and figure 5.10 shows predictions after filtering low confident predictions.

52

5.5 Data augmentation

Figure 5.6: Baseline models detections without confidence filtering

Figure 5.7: Baseline models detections with confidence filtering

Figure 5.8: Final region proposal from model head+entire network trained

Figure 5.9: Final region proposal from transfer model where head+entire network trained

5.5 Data augmentation
Data augmentation is a technique for producing more data to combat cases where data
is insufficient. The images created by the augmentation generator exist for precisely
one passthrough of the network. The procedure for data augmentation for the transfer
learning model is listed below.

1. Randomly generate a discrete number in an interval between [x = 0, y = 2] and
assign it to a variable c.

53

Chapter 5. Experiment and results

Configuration
Max Iterations 30
Anchor sizes 64,128,256
Anchor ratios 1:1, 1:2, 2:1

Backbone ResNet50
Detection threshold 90%

Image size 1024x1024
Batch size 2

Validation steps 75%
Schedule Head + Entire network

Augmentation No
Transfer Learning Yes

Weighted loss adjusted No

Table 5.8: Configuration for model with transfer learning

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset
AP(%) 40 (+10) 40 (+14) 35 (-49) 36(+12) 40(-3)

Recall(%) 50 (+14) 55 (+22) 36.6 (-49.5) 38(+7) 46 (+2)
Precision(%) 27 (-4) 33 (+11) 35(-49) 38(+19) 35(-3)

Table 5.9: Detection result for Mask R-CNN with transfer learning with split training schedule

Figure 5.10: Final detection from transfer model where head+entire network trained

2. Arbitrarily choose c augmentations to do from the list below

(a) In 50% of cases flip the image from left to right

(b) In 50% of cases flip the image from up to down

(c) Arbitrarily choose to rotate the image by either 90◦, 180◦ or 270◦

(d) Alter the brightness of the image by a number d between [0.8, 1.5]

Similar augmentation was done to the baseline model; however, a more intense augmen-
tation procedure was chosen, by setting the interval [x=0,y=4] in its first step. The result
of this experimentation is listed in table 5.10 and 5.11.

54

5.6 Final model

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railing Testset
AP(%) 20 22 42 3 20.7

Recall(%) 25 26 45 5 26
Precision(%) 18 20 41 2 19.75

Table 5.10: Detection result for baseline model with augmentation

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset

AP 37(+7) 34(+8) 75.6(-7.4) 33(+7) 50.5(+7.5)
Recall 44(+4) 43(+10) 77(-9) 40.3(+9.3) 52(+8)

Precision 28(+5) 28.6(+8.6) 75(-9) 24.5(+5.5) 46(+8)

Table 5.11: Detection result for transfer learning model with augmentation

5.6 Final model

Previously in this chapter, the most significant approaches for increasing the performance
were presented, like transfer learning, anchor generation, and training part of the network
compared to the entire network and a combination. This section presents the consolida-
tion of previous methods that have been experimented with to produce the final model
for the company.

The full configuration is listed in table 5.10; then, figure 5.11 shows the predictions that
the final model did correctly; figure 5.12 the ones that the model did partially correct;
and 5.13 where the model failed.

Configuration
Max Iterations 70
Anchor sizes 16, 32, 64, 128, 256, 512
Anchor ratios 1:1, 1:2, 2:1, 3:1

Backbone ResNet101
Detection threshold 90%

Image size 1024x1024
Batch size 2

Validation steps 75%
Schedule Head + Entire network

Augmentation Yes
Transfer Learning Yes

Weighted loss adjusted Yes

Table 5.12: Configuration for model with transfer learning

55

Chapter 5. Experiment and results

(a) Correctly predicted damaged
railing, correctly predicted dam-
aged foot

(b) Correctly predicted damaged
foot

(c) Correctly predicted damaged
foot

Figure 5.11: Correct predictions

(a) Correctly predicted missing
bolt; falsely predicted damaged
railing

(b) Correctly predicted damaged
railing, falsely predicted dam-
aged foot

(c) Correctly predicted wrong
end, falsely predicted damaged
foot

Figure 5.12: Correctly predicted wrong end, falsely predicted damaged foot

(a) No prediction on a image
where the bolt/bolts are missing

(b) No prediction on an image
with wrong end

(c) Falsely predicted wrong end
on an image of damaged railling

Figure 5.13: Wrong prediction

56

5.6 Final model

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset
AP(%) 71 67 84 56 71

Recall(%) 75 71 92 61 77
Precision(%) 67 60 75 51 67

Table 5.13: Detection result for final Mask R-CNN with transfer learning

Anchor boxes

A model was trained with a more diverse anchor generation with and without transfer
learning. The model without transfer learning will not be listed in this section, because
no significant observations were made from it. The smallest anchor generated had a width
of 16, and the largest had a width of 512. The anchors increased in size by two, and the
aspect ratios were 1:1, 1:2, 2:1, and 3:1. In table 5.12 is the result of this experimentation.

Detection results
Metric Missing bolt Damaged foot Wrong end Damaged railling Testset
AP(%) 60 (+30) 33.8(+7.8) 67(-17) 39(+13) 48(+7)

Recall(%) 70(+34) 40(+7) 65(-21) 46.5(+15.5) 55.8(+11.8)
Precision(%) 48(+25) 30(+8) 62(-22) 30(+11) 41(+3)

Table 5.14: Detection result for Mask R-CNN with transfer learning and diverse anchor generation

Adjusted loss function and backbone

It was attempted to adjust the loss function. The result shows that adjusting the loss
function with respect to the mask loss improves the performance. The performance on
the classes ”missing bolt” and ”damaged foot” remained after the change of the loss,
but there was an improvement on the classes ”damaged railing” and ”wrong end”. The
optimal change to the loss function was 20%; any lower than 20% would worsen the
performance again. In table 5.13 the change in performance is listed.

Changing the backbone from ResNet50 to ResNet100 improved the performance after
many attempts to use the optimal configuration; however, the observed improvement
was negligible.

Improvement on detection results
Metric Damaged railing Wrong end

∆ AP(%) 3 8
∆ Recall(%) 5 10

∆ Precision(%) 2 5

Table 5.15: Improvement on detection result by adjusting the loss function

57

Chapter 5. Experiment and results

58

Chapter 6
Discussion

6.1 Baseline architecture
The basic Mask R-CNN model achieved optimal results after 13 iterations. No adjust-
ment was made to the model, and it didn’t manage to archive significant results. The
latter was clearly the first sign of insufficient data. The figure in 5.1 showed that the
region proposal didn’t achieve generating the regions of interest through the training
procedure. Interestingly, the model achieved some of the detections; giving the models
score of 0.1 in the class ”Wrong end”, and giving the first sign of the class ”wrong end”
is the easiest class in the dataset to detect. Moreover, instances in the dataset containing
the class ”Wrong end,” were usually labelled correctly, but the model had no clue about
where the fault was located in the image, similar to classification in computer vision.
The same figure also shows the model labelling the image correctly, but not managing to
localize it in the image.

6.2 Transfer learning
Transfer learning model was an experiment where the objective was to repurpose knowl-
edge of a Mask R-CNN model learning to solve a different task, like finding faults in
railing. This was the first experiment where the model learned features necessary to
solve the task this thesis sought to do.

This model achieved a remarkable mAP of 43%, which was a clear indication that some
of the transferred knowledge helps in case of limited data. The region proposal networks’
generalization abilities far exceed the baseline model. Figure 5.4 illustrates the regions
proposed by the model, which shows what the model decided to emphasize on. Every
region is capturing some aspect of the railing, and the proposal in purple showing that
the model also learned the square section in important regions where the bolts should be.

59

Chapter 6. Discussion

Although the model has recognized what regions are important, it did not achieve promis-
ing results on classifying the region and finding the section where the fault was. Approx-
imately, the model managed to find the regions and classify correctly 25% of the times
for ”missing bolt”,”damaged foot” and ”damaged railing”. The quality of the prediction
(the precision) was a small incremental worse than its ability to find all the faults (recall).
However, the detection results have a significant outlier.

The model achieved an impressive 85% accuracy to find all the images where the railing
had a wrong end and label them correctly. It is not trivial, knowing exactly what a deep
learning model learns; however, a visual inspection of the dataset was carried out to un-
derstand why the model achieved significant results on the images with the wrong end
on the railings.

(a) Correctly predicted damaged
railing, correctly predicted dam-
aged foot

(b) Correctly predicted damaged
foot

(c) Correctly predicted damaged
foot

Figure 6.1: Correct predictions of wrong end

The class ”wrong end” can roughly be divided into two subclasses; and, these two sub-
classes, are represented abundantly with many instances in all three datasets (training,
validation, and testing). Figure 6.1.a shows the two subclasses in the first subclass; a
horizontal segment of the railing is connected to the inclining segment by an angle. The
other subclass is if the railing has a small declining segment towards the ground (Figure
6.1.c).

Training a human to do this detection would be quite trivial, and the reason for that
is that the classification of this region is dependent on natural and big features. Similarly,
it is trivial for the neural network, as these big features are not easily obstructed by other
factors like the brightness or bad resolution of an image, and the image taken from far
away.

60

6.3 Split training schedule

6.3 Split training schedule

Baseline

In table 5.2, the detection results for the baseline model trained with a split schedule is
listed. The model heads were trained until it achieved the optimal results, and then, the
entire network was trained.

At first sight, it might seem no improvements were made by using the split training
schedule. The model achieved a mAP of 0%, similar to the baseline model without
split schedule training. However, the improvements were observed in the region propos-
als. Contrary to the baseline that was not trained with this schedule, the model neither
achieved generating proposals, localizing the object, nor classifying it. Still, the region
proposal for this model is far superior compared to the baseline model. Figure 5.5 showed
the output from the region proposal network, and the model achieved capturing the rail-
ing on the majority of the proposals. Due to the manner the criteria initialized, the model
should only output predictions the model is certain of; but figure 5.6 shows that the model
made many predictions on that particular instance and even achieved to localize and la-
bel the predictions correctly compared to the ground truth. However, the model was too
uncertain of its prediction (57%) and was, in the final output, filtered out.

Transfer model

For 24 iterations the transfer model trained only the heads; then, it trained the entire
network for 15 iterations. Figure 5.8 depicts the RPN output, that has understood the
essential parts of the railing, where it has no abundant proposals. All proposals capture
the different parts of the railing, which is valid for all instances in the datasets.

This model achieved a mAP of 40%, which was 3% less than in the transfer model that
was trained without split schedule. The model managed to find 46% of all faults in the
dataset, which was an improvement of 2 %, but a decrease of 3% in the quality. However,
the model achieved better results in all of the classes except for ”Wrong end”, which was
a significant outlier in the previous experiment.

Averagely, the model did approximately 10% better at finding all the faults and labelling
them correctly (excluding ”Wrong end”). I.e., damaged railing had an increase of 19%
in its quality of predictions, and an increase of 7% in finding all faults. Similarly, the
damaged foot had a mAP increase of 14%, where the model achieved finding 55% of all
faults in the testing set. Also, the model had a precision increase of 11%.

The model achieved approximately the same result as without split schedule training,
even with the significant improvements observed; this, due to the bog drop in detection
result considering ”wrong end”. It is important to mention that this class was trained
optimally before the entire network’s training started; the training regarding this class
began to overfit after trained further, giving this class a significant drop in the different

61

Chapter 6. Discussion

metrics used for evaluation. This caused concern in the project, knowing that the prob-
lem’s difficulty is reflected in the complexity of the model, and the dataset has the same
number of instances but different difficulties.

6.4 Augmentation

Baseline model
The experimentation shows that augmentation is an essential part for achieving a effec-
tive model when data is the limiting factor. Even the baseline model achieved mAP
above 0 (20.7%) considering all other experiments done on this model. Somewhat, the
data generation solved the problem with limited data points for a model.

Again, it is prominent that the ”wrong end” is the easiest class in the dataset. The model
achieved an AP of 42 %, where it managed to find 45% of these instances in the test set
and a precision of 41%. Similarly, the model achieved to learn features to correctly local-
ize and label approximately 20% of the cases in the classes ”missing bolt” and ”damaged
foot”.

The model achieved to learn some patterns to detect damaged railings; however it only
accomplished an AP of 3% where it managed to find 5% of all instances in the dataset,
correctly classify and localize them 2% of the time. Showing the model did achieve to
learn something but not to a significant extent. It is relevant to note that an AP of 3% is
far superior compared to an AP of 0%. However, the definition of a damaged railing is
wide and could be divided into many subclasses; thererore, a good assumption would be
that, as this class is so vast, it is possible that this class’s learning can’t efficiently utilize
the generation of more data as when the image is manipulated, the vast boundary of the
defintion of ”damaged railing”, is widened. Also, it is important to mention that when
less aggressive augmentation is used, it significantly affects the performance of the other
classes, but the class ”damaged railing” seems to be unaffected by it.

Transfer model
The transfer model with augmentation has utilized the generation of more data. The mAP
had an increase of 7.5%, and also, averagely, AP had an increase of approximately 7%.
Furthermore, like in other experiments regarding the transfer model, this experiment’s
detection takes a hit for the class ”wrong end”, but not as significant as in the others.

Still, the reason for the drop is that it is starting to overfit. Additionally, the augmenta-
tion limits the remembering as the data, meaning the chance of training on an instance
the model already trained on, is far less than without the augmentation. Interestingly,
the class ”damaged railing” managed to utilize the generation of more data, in the same
rate as the other classes with an improvement of 7% AP. This might contradict the pre-
vious section’s assumption, but it must be mentioned that this model didn’t start with no
knowledge of the problem it tries to solve. It seems like there is a balance between how

62

6.5 Final model

much the network knows before starting and the widening of the definition of ”damaged
railing”. The threshold for learning has increased by manipulating images in an already
highly diverse class, making it harder to utilize the generation of more data. The transfer
learning model has previously learned features and feature extraction, making it easier to
overcome the threshold.

6.5 Final model
The final model is a combination of early experiments, but, with minor modifications like
generating varied anchors and adjusting the loss function. This model achieved to find
77% of all faults in the test set with a precision of 67%, giving it an mAP score of 71%.
This model trained the heads only for 30 iterations, and the entire network was trained
for 20 iterations.

The ”damaged railing” was the class with the least impressive results, for it achieved
an AP score of 56%, where it managed to find 61% of all instances in the test set and a
precision of 51%. Eventhough it achieved much better than previous experiments, it still
had some shortcomings. An interesting observation is that the model achieved finding
railings with severe damage, like illustrated in the figure below. However, the model
struggles to find minor damages. Moreover, this class has inconsistency in the way it is
labelled; when labelling this fault, the operator has chosen to label the entire segment of
the railing from one foot to the other; then, halfway through the datasets, decided to label
only the section where the fault is. This labelling makes the model also struggle with
detection, which is technically correct, but comes short in the IOU of 50% threshold the
model was initialized with. There are also special instances that the model struggles with
achieving high enough confidence level, like in figure 6.2 b. The figure shows an image
of a railing from an angle, the false negative is understandable given that these instances
are not well represented in the training set.

(a) Correct detection with IOU
less than 50% (b) False negative (c) Sever

Figure 6.2: Severe damage to the railing

The ”missing bolt” and ”damaged foot” classes are rather aggressive, which reduces
their precision score. Interestingly, when the image is taken from far, the model does not
output these classes, but when the image is unclear, the model predicts these classes with

63

Chapter 6. Discussion

confidence. Besides, the ”damaged foot” class seems to be predicted far more correctly
when the foot is made from wood than metal. This case would be true for humans also,
as the tree foot cracks while the metal foot gets bent, which makes it easier to detect in
an image.
From the previous experiments, the class ”missing bolt” has a huge spike in its metric
scores. As depicted in table 5.14, the class has an increase of 30% in AP. The reason is
that the model can now use smaller, semantically richer feature maps to detect this class
when generating smaller anchor boxes. The final model (table 5.13) had another increase
in AP with 11% showing that the model could utilize the generation of more data with
extracting more certain regions from the feature maps.

Adjusting the loss function seemed to only affect the classes’ ”damaged railing” and
”wrong end”. A feasible assumption for this would be that this is due to the generation of
the mask; which is generated from the bounding boxes. Damaged foot and missing bolt
have very accurate labelled bounding boxes. Generating the mask from these bounding
boxes has a small error compared to the original mask that the model should use during
training; however, this is not true for the classes ”wrong end” and ”damaged railing.”
The bounding boxes the operator labelled cover a lot of the surroundings of the faults
(i.e., grass, or buildings). Reducing the loss for the mask is a way to tell the model that it
should emphasize on the bounding boxes and not the masks.

6.6 Uncertainty and limitation

In chapter four and five, respectively, detection result from the different experiments was
presented, as well as the evaluation of the model. The definition of the mAP is defined
as the mean over the Average Precision for each class. However, when the number for
the evaluation metrics for each class was generated, images with multiple instances were
filtered out (approx. 25% of the dataset). The generation for the metrics to do the evalu-
ation was not done in a costly cloud server, but on a local computer without a dedicated
GPU. The evaluation for a single experiment took several hours without GPU from the
experimentation done in this thesis. Each class was compared to each other throughout
the different experiments; but, this should not affect the analysis, as the main concern
was the improvement/decrease in the evaluation metrics. Nonetheless, the evaluation for
the entire dataset was done calculating its AP (mPA), and provided a good indication of
the previous calculations accuracy.

Another critical fact to discuss is the class ”missing foot” that was removed from the
datasets; as the instances in the dataset which had a missing foot, the model couldn’t
learn at all. It seems that it is too much to ask from the network. to find the absence of
an object. This might sound like a contradiction, because then, how is it possible for the
model to find instances of a missing bolt? The model doesn’t really find the area that is
missing a bolt, but rather a hole where the bolt should’ve been. Given the figure 6.3, the
operator probably did some calculations like the length between two poles, the height of
the pole relative to the ground, to understand where the pole should’ve been. In other

64

6.6 Uncertainty and limitation

words, how do you tell the model that the annotated region of interest is dependent on
two different parts of the image? And then ask it to calculate the height of the railing.

Figure 6.3: Missing foot

One last interesting finding that evidences the limitation of the model is the instance
in figure 6.4. Because of the way the model was trained (data of ”wrong end” fed to
the model), the prediction in green is technically correct, but by the law and regulation
criterion, it is not. The definition of ”wrong end” in a railing, by new regulations, is not
allowed because the railing works as a ramp. With this definition, the model predicted
correctly, then why did not the operator label it? Well, the operator is an expert in this
field; given that the image is taken from a car, this is certainly from a traffic road (the one
in blue). While the railing predicted in green is in another category of a road (walkway),
these roads have another set of laws and regulations, which does not dictate railing with
a declining endpiece is prohibited; so, to conclude this, the model can predict accurately
from visual cues, but the fact it does not know Norwegian laws and regulations for safety
on the roads makes this image especially hard to predict correctly.

Figure 6.4: Questionable prediction

65

Chapter 6. Discussion

66

Chapter 7
Conclusion

This thesis presented the research carried out to implement and prepare the state-of-the-
art-model based on literature review, and the task the company wishes to solve. The
most common fault is ”missing bolt”, according to the company and vegtilsynet [76];
and, given that accuracy is the highest priority, the network choice was Mask R-CNN
(He et al. [27]).

A lot has changed since the project started, for images were a labor-intensive task to cap-
ture and annotate for the company, which was coordinated by the author. The company
executed this task by capturing images with a GoPro camera and annotating them with
VGG [18]. However, they also got support from Innovation Norway (Innovasjon Norge),
which give them the resources to implement a project more representative to the task that
shall be solved in the future.

There were certain limitations observed as the research and experimentation was carried
out; especially the limited data, and inconsistency of labelling. With the newfound re-
sources and support, the company will install a camera system on the car, and obtain far
more data than was available throughout the thesis. In addition, the company is currently
working on making a software where more relying labelling is proposed. The intention is
that an image has to be annotated by several operators, and those annotations must have
an IOU above 90% to be considered a fault, similar to True Positive definition in object
detection from chapter 4.

The final model achieved a promising mAPiou=50 = 71%, where it managed to find
77% of all faults in the dataset and predict correct labels 67% of the time. It managed
to find an essential region of the image, emphasizing the areas containing the railing,
and part of the railing where the classes of faults are usually located. As stated in the
thesis, driving between 1− 15km/h is neither safe nor efficient. The limiting factor for
the driving speed is solely dependent on the chosen cameras’ ability to capture images,
frequency of the lidar, and GPS. Also, the economic aspect hasn’t been stated either. The

67

Chapter 7. Conclusion

model can run 6FPS for each 6GB video memory; which means that, a server instance
of 32 GB is needed to match 30FPS. The hour cost in the server is 4.56 dollars per hour
[9] (worst case, high demand), making a factor of 5 times cheaper than the per hour rate
of skilled workers. Also, the car would drive 2x faster(worst case).

However, the test data in which the model was trained on is insufficient to represent the
full extent of the problem. This was clear even before starting this thesis; yet the limit-
ing factors, a successful model was trained. Even though the problem isn’t completely
solved, the model is the right step towards solving it, and the network is a great starting
point for the company. The weight of this model (and the model itself) has been stored for
its use in transfer learning. The approaches are clearly explained (chapter 4), and their
effects on the class prediction accuracy (chapter 5, 6), such that the company or other
parties can implement the model to their specific need or for modification. From experi-
mentation, transfer learning has proven to be an essential part of finding faults in railings;
and, now it does exist a network with pre-knowledge of detecting faults in railings.

7.1 Future work
This thesis presented a proof of concept that object detection algorithms can aid the
workers in keeping the Norwegian roads safe. The list below suggests work related to
this thesis that should be investigated in a close future.

• It is apparent that some classes are harder to detect than others, as discussed
in chapter 6. An interesting approach to this would be implementing sampling
strategies; i.e., in each training iteration, higher percentage of difficult classes are
trained for overcoming clasewise overfitting.

• Another approach to the variety of difficulties between classes would be similar to
reducing mask loss to make the network emphasize on the bounding box predic-
tions; however, the implementation would be for defining a loss for each class for
a given dataset.

• As mentioned in the scope, this thesis is one part of a larger project. The metadata
of the images will be annotated with GPS location, considering that a working
model will eventually be developed, and faults in railings across Norway docu-
mented extensively. Analysis of the results can be made moving towards predic-
tive maintenance.

• One class that the model didn’t achieve to detect was ”missing foot”. The company
decided to use height obtained by the lidar to detect ”missing foot” faults, but this
might also be obtainable through other means.

68

Bibliography

[1] , a. Build from source : Tensorflow. URL: https://www.tensorflow.org
/install/source.

[2] , b. Build from source on windows : Tensorflow. URL: https://www.tensor
flow.org/install/source windows.

[3] , . Cs231n: Convolutional neural networks for visual recognition. URL: http:
//cs231n.stanford.edu/.

[4] , . Meld. st. 33, nasjonal transportplan 2018–2029. Statens vegvesen. URL: http
s://www.regjeringen.no/contentassets/7c52fd2938ca42209
e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf.

[5] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.,
2015. TensorFlow: Large-scale machine learning on heterogeneous systems. URL:
https://www.tensorflow.org/. software available from tensorflow.org.

[6] Abdulla, W., 2017. Mask r-cnn for object detection and instance segmentation on
keras and tensorflow. https://github.com/matterport/Mask RCNN.

[7] Abdulla, W., 2018. Splash of color: Instance segmentation with mask r-cnn and
tensorflow. URL: https://engineering. matterport. com/splash-of-color-instance-
segmentation-with-maskr-cnn-and-tensorflow-7c761e238b46 .

[8] Albawi, S., Mohammed, T.A., Al-Zawi, S., 2017. Understanding of a convolutional
neural network, in: 2017 International Conference on Engineering and Technology
(ICET), pp. 1–6.

69

https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source_windows
https://www.tensorflow.org/install/source_windows
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf
https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf
https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf
https://www.tensorflow.org/
https://github.com/matterport/Mask_RCNN

[9] Amazon, . Amazon EC2 G3 Instances, year = 2020, url =
https://aws.amazon.com/ec2/instance-types/g3/,.

[10] Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization.
Journal of machine learning research 13, 281–305.

[11] Bobba, R., . Taming the Hyper-Parameters of Mask RCNN, year = 2019,
url = https://medium.com/analytics-vidhya/taming-the-hyper-parameters-of-mask-
rcnn-3742cb3f0e1b, urldate = 2019-12-14.

[12] Burkov, A., 2019. The Hundred-Page Machine Learning Book. Andriy Burkov,
author@themlbook.com.

[13] Bushaev, V., . Stochastic Gradient Descent with momentum, year = 2017, url =
https://towardsdatascience.com/stochastic-gradient-des
cent-with-momentum-a84097641a5d, urldate = 2017-12-04.

[14] de Castro, L.N., 2007. Fundamentals of Natural Computing: Basic Concepts, Al-
gorithms, and Applications.

[15] Chollet, F., et al., 2015. Keras. https://keras.io.

[16] Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detec-
tion, in: 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), IEEE. pp. 886–893.

[17] Dietterich, T., 1995. Overfitting and undercomputing in machine learning. ACM
computing surveys (CSUR) 27, 326–327.

[18] Dutta, A., Zisserman, A., 2019. The VIA annotation software for images, audio and
video, in: Proceedings of the 27th ACM International Conference on Multimedia,
ACM, New York, NY, USA. URL: https://doi.org/10.1145/334303
1.3350535, doi:10.1145/3343031.3350535.

[19] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A., 2007. The
pascal visual object classes challenge 2007 (voc2007) results .

[20] Fridman, L., . lecture: MIT Deep Learning Basics: Introduction and Overview,
year = 2020, url = https://deeplearning.mit.edu/, urldate = 2020.

[21] Gandhi, R., 2018. R-cnn, fast r-cnn, faster r-cnn, yolo object detection algorithms.
july 9, 2018. Retrieved September 20, 2019.

[22] Garbade, M.J., 2018. Clearing the confusion: Ai vs machine learning vs deep
learning differences. URL: https://towardsdatascience.com/clear
ing-the-confusion-ai-vs-machine-learning-vs-deep-learn
ing-differences-fce69b21d5eb.

[23] Girshick, R., 2015. Fast r-cnn, in: Proceedings of the IEEE international conference
on computer vision, pp. 1440–1448.

70

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://keras.io
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
http://dx.doi.org/10.1145/3343031.3350535
https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb
https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb
https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-learning-vs-deep-learning-differences-fce69b21d5eb

[24] Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587.

[25] Group, M.V.R., 2019. Mask r-cnn unmasked. URL: https://medium.com
/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296.

[26] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X.,
Wang, G., Cai, J., et al., 2018. Recent advances in convolutional neural networks.
Pattern Recognition 77, 354–377.

[27] He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn, in: Proceedings of
the IEEE international conference on computer vision, pp. 2961–2969.

[28] He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recog-
nition. arXiv:1512.03385.

[29] Hochreiter, S., 1998. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 107–116.

[30] Hui, J., 2018. map (mean average precision) for object detection. Jonathan Hui .

[31] Hui, J., 2020. Understanding feature pyramid networks for object detection (fpn).
URL: https://medium.com/@jonathan hui/understanding-fea
ture-pyramid-networks-for-object-detection-fpn-45b227b
9106c.

[32] Isikdogan, L., . Regularization, year = 2018, url =
https://www.isikdogan.com/blog/regularization.html, urldate = 2017-12-04.

[33] Izadpanahkakhk, M., Razavi, S.M., Taghipour-Gorjikolaie, M., Zahiri, S.H.,
Uncini, A., 2018. Deep region of interest and feature extraction models for palm-
print verification using convolutional neural networks transfer learning. Applied
Sciences 8, 1210.

[34] Jung, A., 2019. Imgaug documentation. Readthedocs. io .

[35] Kapoor, A., 2019. Clearing the confusion: Ai vs machine learning vs deep learning
differences. URL: https://hackernoon.com/deep-learning-vs-ma
chine-learning-a-simple-explanation-47405b3eef08.

[36] Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P., 2016.
On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv:1609.04836.

[37] Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks, in: Advances in neural information processing
systems, pp. 1097–1105.

71

https://medium.com/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296
https://medium.com/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296
http://arxiv.org/abs/1512.03385
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://medium.com/@jonathan_hui/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://hackernoon.com/deep-learning-vs-machine-learning-a-simple-explanation-47405b3eef08
https://hackernoon.com/deep-learning-vs-machine-learning-a-simple-explanation-47405b3eef08
http://arxiv.org/abs/1609.04836

[38] Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for deep learning: A
taxonomy. arXiv preprint arXiv:1710.10686 .

[39] Law, H., Deng, J., 2018. Cornernet: Detecting objects as paired keypoints, in:
Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–
750.

[40] LERAAN, O., ENGAN, S., 2018. Sp om fiksing av farlige rekkverk: – det kan ikke
utsettes! VG.

[41] Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Fea-
ture pyramid networks for object detection, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2117–2125.

[42] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal loss for dense
object detection, in: Proceedings of the IEEE international conference on computer
vision, pp. 2980–2988.

[43] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft coco: Common objects in context, in: European
conference on computer vision, Springer. pp. 740–755.

[44] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016.
Ssd: Single shot multibox detector, in: European conference on computer vision,
Springer. pp. 21–37.

[45] Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for seman-
tic segmentation, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440.

[46] Løtveit, S., Ådlandsvik, L.F., Gullbrå, E.H., Oksnes, T., Sandvik, T.F., Midtgård,
F., Grytli, T., Kvanvik, M., Munch-Olsen, Y., Tronsmoen, T., Hendbukt, M., 2017.
Nasjonal tiltaksplan for trafikksikkerhet på veg 2018-2021. Statens vegvesen.

[47] M., V., . Artificial Intelligence vs. Machine Learning vs. Deep Learning,
year = 2018, url = https://www.datasciencecentral.com/profiles/blogs/artificial-
intelligence-vs-machine-learning-vs-deep-learning, urldate = 2018-05.

[48] Mané, D., et al., . Tensorboard: Tensorflow’s visualization toolkit, 2015.

[49] Marsland, S., 2009. Machine Learning: An Algorithmic Perspective.

[50] Mesquita, D., . How to use NVIDIA GPUs for Machine Learn-
ing with the new Data Science PC from Maingear, year = 2019, url
= https://towardsdatascience.com/how-to-use-gpus-for-machine-learning-with-the-
new-nvidia-data-science-workstation-64ef37460fa0, urldate = 2019-10.

[51] mirzaevinom, 2018. data science bowl 2018. https://github.com/mirza
evinom/data science bowl 2018.

72

https://github.com/mirzaevinom/data_science_bowl_2018
https://github.com/mirzaevinom/data_science_bowl_2018

[52] Mulonda, Y., . What is Machine Learning? “In Simple English”, year = 2018,
url = https://medium.com/@yannmjl/what-is-machine-learning-in-simple-english-
b0aaa251cb60, urldate = 2018-11-17.

[53] Nada, Berchane, N., . Artificial Intelligence, Machine Learning, and Deep
Learning: Same context, Different concepts, year = 2018, url = https://master-
iesc-angers.com/artificial-intelligence-machine-learning-and-deep-learning-same-
context-different-concepts/, urldate = 2018-0403-16.

[54] Ng, A., 2017. Lecture:transfer learning (c3w2l07). deeplearning.ai. URL: https:
//www.youtube.com/watch?v=yofjFQddwHE&t=1s.

[55] Ng, A., Katanforoosh, K., 2018. Stanford cs230: Deep learning autumn 2018 lec-
ture 2 - deep learning intuition. URL: https://www.youtube.com/watc
h?v=AwQHqWyHRpU&list=PLoROMvodv4rOABXSygHTsbvUz4G YQhOb.

[56] Nielsen, M., Michael Nielsen. Neural Networks and Deep Learning.

[57] NRK, 2018. Feil autovern kan ha bidratt til at 18-åring omkom. URL: https:
//www.nrk.no/vestland/feil-autovern-kan-ha-bidratt-til
-at-18-aring-omkom-1.14296659.

[58] Pan, S.J., Yang, Q., 2009. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22, 1345–1359.

[59] Prabhu, R., . Understanding of Convolutional Neural Network (CNN) — Deep
Learning, year = 2018, url = https://medium.com/@RaghavPrabhu/understanding-
of-convolutional-neural-network-cnn-deep-learning-99760835f148, urldate =
2017-03-04.

[60] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Uni-
fied, real-time object detection, in: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 779–788.

[61] Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks, in: Advances in neural information
processing systems, pp. 91–99.

[62] Sagnier, C., . TYPES OF MAINTENANCE : 5 DEFINITIONS YOU
SHOULD KNOW, year = 2018, url = https://www.mobility-work.com/blog/5-
types-maintenance-you-should-know, urldate = 2018-11-15.

[63] Sambasivarao, 2019. Region proposal network-a detailed view. URL: https:
//towardsdatascience.com/region-proposal-network-a-det
ailed-view-1305c7875853.

[64] Sedighi, B., 2018. Deep learning for fault detection in fences. Norwegian university
of science and technology.

73

https://www.youtube.com/watch?v=yofjFQddwHE&t=1s
https://www.youtube.com/watch?v=yofjFQddwHE&t=1s
https://www.youtube.com/watch?v=AwQHqWyHRpU&list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb
https://www.youtube.com/watch?v=AwQHqWyHRpU&list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb
https://www.nrk.no/vestland/feil-autovern-kan-ha-bidratt-til-at-18-aring-omkom-1.14296659
https://www.nrk.no/vestland/feil-autovern-kan-ha-bidratt-til-at-18-aring-omkom-1.14296659
https://www.nrk.no/vestland/feil-autovern-kan-ha-bidratt-til-at-18-aring-omkom-1.14296659
https://towardsdatascience.com/region-proposal-network-a-detailed-view-1305c7875853
https://towardsdatascience.com/region-proposal-network-a-detailed-view-1305c7875853
https://towardsdatascience.com/region-proposal-network-a-detailed-view-1305c7875853

[65] Serena Yeung, F.J.., 2018. Lecture 11:detection and segmentation. Norwegian
university of science and technology.

[66] SHARMA, S., . Activation Functions in Neural Networks, year =
2017, url = https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6/, urldate = 2017-09-06.

[67] Silberman, N., Sontag, D., Fergus, R., 2014. Instance segmentation of indoor scenes
using a coverage loss, in: European Conference on Computer Vision, Springer. pp.
616–631.

[68] Sinha, U., . Convolutions, year = 2017, url = https://aishack.in/tutorials/image-
convolution-examples/,.

[69] Skalski, P., . Gentle Dive into Math Behind Convolutional Neural Networks,
year = 2019, url = https://towardsdatascience.com/gentle-dive-into-math-behind-
convolutional-neural-networks-79a07dd44cf9, urldate = 2019-04-12.

[70] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15, 1929–1958.

[71] Szepesvári, C., 2010. Algorithms for reinforcement learning. Synthesis lectures on
artificial intelligence and machine learning 4, 1–103.

[72] Tesla, . Tesla’s mission is to accelerate the world’s transition to sustainable energy.
URL: https://www.tesla.com/about.

[73] Thomas, S., 2019. PyTorch Deep Learning Hands-On: Build CNNs, RNNs, GANs,
reinforcement ... Packt Publishing.

[74] Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA.

[75] Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A., 2009. Multiple kernels for
object detection, in: 2009 IEEE 12th International Conference on Computer Vision,
pp. 606–613.

[76] vegtilsynet, . System for oppfølging av avvik på rekkverk statens vegvesen. URL:
https://vegtilsynet.com/tilsyn/tilsynsrapporter/system
-for-oppfolging-av-avvik-pa-rekkverk.

[77] vegvesen, S., 2014. Rekkverk og vegens sideområder, håndbok n 101. URL: http
s://www.vegvesen.no/ attachment/69909.

[78] Walt, S.v.d., Colbert, S.C., Varoquaux, G., 2011. The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering 13, 22–30.

[79] Whitehead, N., Fit-Florea, A., 2017. Floating point and ieee-754 compliance for
nvidia gpus. Nvidia Whitepaper .

74

https://www.tesla.com/about
https://vegtilsynet.com/tilsyn/tilsynsrapporter/system-for-oppfolging-av-avvik-pa-rekkverk
https://vegtilsynet.com/tilsyn/tilsynsrapporter/system-for-oppfolging-av-avvik-pa-rekkverk
https://www.vegvesen.no/_attachment/69909
https://www.vegvesen.no/_attachment/69909

[80] Wu, X., Sahoo, D., Hoi, S.C.H., 2019. Recent advances in deep learning for object
detection. arXiv:1908.03673.

[81] Zhang, J., Huang, K., Yu, Y., Tan, T., 2011. Boosted local structured hog-lbp for
object localization, in: CVPR 2011, pp. 1393–1400.

[82] Zhao, Z.Q., Zheng, P., tao Xu, S., Wu, X., 2019. Object detection with deep learn-
ing: A review. arXiv:1807.05511.

75

http://arxiv.org/abs/1908.03673
http://arxiv.org/abs/1807.05511

76

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

M
as

te
r’s

 th
es

is

Basir Sedighi

Deep learning for fault detection of
guardrails

Master’s thesis in Simulation and Visualization

Supervisor: Ottar L. Osen, Robin T. Bye

June 2020

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Problem description
	Objectives
	Scope

	Theory
	Railing
	Maintenance
	Corrective maintenance

	Deep Learning
	Categories of Machine Learning algorithms
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Deep learning algorithms
	Feedforward neural network
	Convolutional Neural Network (CNN)

	Computer vision
	Classification
	Semantic segmentation
	Object detection and instance segmentation

	Related work
	Datasets
	Common Objects in context dataset
	VOC dataset

	Feature Pyramid Network
	Transfer learning
	Residual Neural Network (ResNet)

	A brief summary of object detection algorithms
	Choosing network - A Review

	Methodology
	Data
	Labelling and preparation

	Implementation details
	Local computing
	Cloud computing

	Mask R-CNN
	Model details
	Training details
	Hyperparameter tuning

	Evaluation

	Experiment and results
	Assumptions
	Baseline architecture
	Results

	Transfer learning with Mask R-CNN
	Split training schedule
	Results

	Data augmentation
	Final model

	Discussion
	Baseline architecture
	Transfer learning
	Split training schedule
	Augmentation
	Final model
	Uncertainty and limitation

	Conclusion
	Future work

	Bibliography

