
Digital Twin Deployment at the
Department of Mechanical and
Industrial Engineering - NTNU

July 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Espen Marstein Sandtveit

2020
Espen M

arstein Sandtveit

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g





Digital Twin Deployment at the
Department of Mechanical and Industrial
Engineering - NTNU

Espen Marstein Sandtveit

Mechanical Engineering and ICT
Submission date: July 2020
Supervisor: Bjørn Haugen
Co-supervisor: Terje Rølvåg

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering





Preface

This Master thesis is written on behalf of the Department of Mechanical and In-
dustrial Engineering (MTP) as part of the study program mechanical engineering
and ICT. The project was completed during the spring semester of 2020 as a con-
tinuation of the specialization project from the prior semester. This thesis is aimed
at deploying a digital twin instance and in the process evaluate and continue de-
velopment of the current digital twin solutions at MTP.

The project is supervised by Bjørn Haugen and the co-supervisor is Terje Rølvåg.
The supervisors have provided assistance and guidance throughout the project.
FEDEM technologies and SAP have assisted by providing resources on the physical
asset used in this thesis. A special thanks to Runar Heggelien from SAP for taking
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Abstract

Digital twins is a fast-growing field and publications on the topic are increasing.
Businesses are dedicating an increasing amount of resources to the implementa-
tion of digital twins. Especially fields such as structural integrity monitoring and
predictive maintenance stand to benefit greatly from the digital twin technology.
Several companies like Siemens, Ansys, and IBM are working on digital twins, but
these solutions are proprietary and expensive. Despite this commercial interest,
open-source digital twin solutions are few and not well suited to the applications
at the department of mechanical engineering (MTP).

There is an ongoing project at MTP to develop a digital twin platform for aca-
demic work. This thesis builds on the work done in previous years and focuses
on the backend of the digital twin platform. The work done in previous years has
been analyzed and areas of improvement have been identified. The previous work
is compared to the definition of a digital twin that is defined in this thesis. Fea-
tures to add or improve are derived form this comparison. The solutions are then
developed further before a digital twin instance is selected and deployed to the
platforms.

The thesis reviews the deployment of a digital twin at MTP. Two platforms are
reviewed, one utilizing the Azure digital twin API and one in-house solution. The
thesis explains why development on the platform using Azure is not continued.
Then Bidirectional communication is added to the in-house solution and the mes-
sage format is changed before a new digital twin instance is deployed to the plat-
form. The thesis concludes with a section on future work on the platform.
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Sammendrag

Digitale tvillinger er et raskt voksende felt, og det er flere og flere publikasjoner
om emnet. Bedrifter bruker en økende mengde ressurser på implementeringen
av digitale tvillinger. Spesielt områder innen overvåking av strukturell integritet
og forutsigbart vedlikehold kan dra stor nytte av digital tvilling teknologi. Sel-
skaper som Simens, Ansys og IBM jobber med digitale tvillinger, men disse løs-
ningene er proprietære og kostbare. Til tross for denne kommersielle interessen
er open source digitale tvilling løsninger få og ikke godt egnet for applikasjonene
ved avdeling for maskinteknikk og produksjon (MTP).

Det pågår et prosjekt på MTP for å utvikle en digital tvilling plattform for akademisk
arbeid. Denne avhandlingen bygger på arbeidet som ble gjort i tidligere år og fok-
userer på backend av den digitale tvilling plattformen. Arbeidet gjort i tidligere år
er analysert og forbedringsområder er identifisert. Arbeidet sammenlignes med
definisjonen av en digital tvilling som er definert i denne oppgaven. Fra denne
sammenlikningen blir funksjoner som kan legges til eller forbedres identifisert.
Løsningene blir deretter videreutviklet før de evalueres på nytt. En digital tvilling
instans blir valgt og deretter testet på plattformene.

Oppgaven omhandler evalueringen av digital tvilling plattformene på MTP samt
utviklingen av en ny digital tvilling instans. To plattformer blir gjennomgått. Av
disse bruker den ene Azure IoT Hub API og den andre er en eget stående løsning
uten eksterne aktører. Oppgaven begrunner hvorfor utviklingen på plattformen
som bruker Azure IoT Hub API ikke videreføres. Deretter legges det til toveiskom-
munikasjon til den interne løsningen og meldingsformatet endres før en ny digital
tvilling instans blir testes på plattformen. Oppgaven avsluttes med et avsnitt om
fremtidig arbeid på plattformen.
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Abbreviations

List of Abbreviations

API Application Programming Interface
DAS Data Acquisition System
DT Digital Twin
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
JSON JavaScript Object Notation
MTP Department of Mechanical and Industrial Engineering
PLM Product Lifecycle Management
UDP User Datagram Protocol
TCP Transmition Control Protocol
IoT Internet of Things
CAE Computer Aided Engineering
JSON Java Script Object Notation

Glossery

FEDEM: A computer program for multibody simulation of mechanical sys-
tems. In this thesis FEDEM is used to mesh finite element models and export
the executable files(FMUs) for simulations.

Tvilling Digital: The API created by Simen Norderud Jensen in 2019.

Bluerig: Or "Testrig" as it is also called is a jack placed on a trolley at MTP
faculty. The asset is depicted in appendix D.

Tingen: Or "The Thing" as it is also called is an inverse pendulum used as
the physical asset in this thesis.
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HBM data acquisition board: The specific data acquisition board used on
the "Bluerig".

Catman software: Used for data acquisition on the "Bluerig". This sotfware
has some data visualization and allows data to be sent to an IP address.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Definition of a Digital Twin . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Applications of Digital Twin Technology . . . . . . . . . . . . . . . . . 8

2.3 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Messaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Messaging Architecture . . . . . . . . . . . . . . . . . . . . . . . 11

xi



xii Espen M. Sandtveit: Digital Twin Deployment

2.5.2 Message Brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Networking and Data Transfer . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 FMI and FMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.1 Model Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.2 Co-Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.3 FEDEM FMU Export . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 System Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9.1 Real-Time Finite Element Simulations . . . . . . . . . . . . . . 14

2.10 Async & Multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10.1 Async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10.2 Multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Technology Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Data Acquisition Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Digital Twin Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Digital Twin Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Azure Digital Twin PoC . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 "Tvilling digital" System . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Kafka Consumer Groups . . . . . . . . . . . . . . . . . . . . . . 22

3.5 A note about Python and FEDEM binaries . . . . . . . . . . . . . . . . 22

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 "Tingen" from SAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 "Tingen" FMU Generation . . . . . . . . . . . . . . . . . . . . . 23



Contents xiii

4.1.2 Communication between Data Acquisition Board and Sensors 24

4.1.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Azure API and Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Implementing Parallel Processing . . . . . . . . . . . . . . . . . 27

4.3 "Tvilling digital" System . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Bidirectional Communication . . . . . . . . . . . . . . . . . . . 28

4.3.2 Kafka Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Azure API and Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 "Tvilling digital" System . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Bidirectional Communication . . . . . . . . . . . . . . . . . . . 32

5.2.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Deployment of the Digital Twin Instance . . . . . . . . . . . . . . . . . 33

5.3.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Azure API and Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 "Tvilling Digital" System . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Bidirectional Communication . . . . . . . . . . . . . . . . . . . 39

6.2.2 "Edge Solution" API . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Digital Twin Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.1 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



xiv Espen M. Sandtveit: Digital Twin Deployment

A System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 Initial Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B Specialization Project Report . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Raspberry Pi Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.1 IMUv5m4.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.2 funk_sensor_config.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3 funk_sensor_check.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4 funk_sensor_read.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.5 funk_sensor_register.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D Bluerig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

E Digital Twin Platform Code Documentation . . . . . . . . . . . . . . . . . 89

F Result Graph from Digital Twin Platform . . . . . . . . . . . . . . . . . . 105



Figures

2.1 Dr. Grieves original schema of the DT concept. . . . . . . . . . . . . . 5

2.2 Information flow in a digital model . . . . . . . . . . . . . . . . . . . . 6

2.3 Information flow in a digital shadow . . . . . . . . . . . . . . . . . . . 7

2.4 Information flow in a DT . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Illustrates how data is collected and processed in a DAS. . . . . . . . 10

2.6 Illustrates how information flow though a generic IoT architecture.
The vertical line indicates the separation between the on-site sys-
tem and the cloud. The figure is taken from Confluent blog post
[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Illustrates how a request from outside the network is mapped to a
computer inside the network. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Illustrates how the physical asset is constructed. . . . . . . . . . . . . 18

4.1 Picture on the left shows the element model of the cantilever in
FEDEM. The drawing on the right illustrates where the FMU input
and outputs are on the physical asset. . . . . . . . . . . . . . . . . . . 24

4.2 Shows a MiniIMU-9 v5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Shows a map of the pins on a Raspberry Pi with their corresponding
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Shows the connection between force and deflection of a cantilever 26

xv



xvi Espen M. Sandtveit: Digital Twin Deployment

4.5 Schema of how information flows through the architecture. The
vertical line indicates the separation between the edge system, the
cloud and the frontend. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Shows the delay for the last 300 data points. The enlarged picture
is provided in Appendix F.1 . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Shows the delay for the last 300 simulated data points. The en-
larged picture is provided in Appendix F.2 . . . . . . . . . . . . . . . . 33

5.3 Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples per second and the K value at 0.9. The
enlarged picture is provided in Appendix F.3 . . . . . . . . . . . . . . 34

5.4 Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples per second and the K value at 0.1. The
enlarged picture is provided in Appendix F.4 . . . . . . . . . . . . . . 34

5.5 Illustrates measured and calculated values for the physical response
of "Tingen" with 20 samples per second. The enlarged picture is
provided in Appendix F.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 This scheme is taken from the Confluent blog on Kafka in IoT. It
illustrates how devices can send MQTT messages directly to the
cloud as supposed to implementing a gateway. . . . . . . . . . . . . . 39

D.1 Illustration of how the "Bluerig" or "Testrig" asset is constructed. . . 87

F.1 Shows the delay for the last 300 data points. . . . . . . . . . . . . . . 106

F.2 Shows the delay for the last 300 simulated data points. . . . . . . . . 107

F.3 Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples a second and the K value at 0.9. . . . 108

F.4 Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples a second and the K value at 0.1. . . . 109

F.5 Illustrates measured and calculated values for the physical response
of "Tingen" with 20 samples a second. . . . . . . . . . . . . . . . . . . 110



Tables

3.1 Physical properties of the cantilever in figure 3.1 . . . . . . . . . . . . 19

4.1 Model properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Describing the data communication from MinIMU-9 v5 . . . . . . . . 25

xvii





Code Listings

3.1 Configurations added to server.properties file . . . . . . . . . . . . . . 21

5.1 Script showing how to send a single message using the edge solu-
tion API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Configurations added to server.properties file . . . . . . . . . . . . . . 52

C.1 IMUv5m4.py: The main for running the sensor reading. . . . . . . . 79

C.2 funk_sensor_config.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3 funk_sensor_check.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4 funk_sensor_read.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.5 funk_sensor_register.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xix





Chapter 1

Introduction

The Department of Mechanical and industrial engineering (MTP) has a goal to
develop a digital twin(DT) platform that will serve as a tool for research in the
field of real-time structural integrity monitoring and predictive maintenance.

In previous years there have been work done on the development of a DT platform
at MTP. This thesis has used the work done in last years specialization project and
the thesis written by Simen Norderud Jensen on the "Tvilling digital" platform[1]
to evaluate and develop a complete DT platform. A DT instance was chosen and
deployed to the platform to evaluate the work done. In an effort to standardize
the DT setup, a data acquisition board was chosen and an API for communication
with the platform was developed.

1.1 Background and Motivation

In recent years, the introduction of affordable 4G and soon 5G has accelerated
the development in the field of Internet of Things (IoT)[2]. There is an increasing
amount of publications in the field of IoT and DTs. Companies are now looking
to add value to their IoT data by implementing DTs. This can enable new ways
of looking at their data and handling their physical assets in the field. A DT can
bring new information and knowledge about an asset and thereby increasing the
value of the data. Enabling DTs opens up for several benefits for industry by giving
more information to the decision basis and allowing remote control of their assets
in the field.

There are several types of DTs, but this thesis will only discuss DTs that have a
physical counterpart. The main area of interest in this thesis is real-time structural
integrity monitoring. The data created by real-time structural integrity monitoring

1
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can be used for purposes like estimation of Remaining Useful Lifetime(RUL). It can
also be used to evaluate the performance of the assets in the field against the uses
the asset was intended for. The insight given by DTs can reduce the need for on-
site presence of personnel in dangerous or remote locations. It can also be used
to optimize downtime due to planned maintenance.

Today there are several companies working on DT solutions that answer industry
needs, but these are costly and not well suited for the academic work at MTP. DT is
a term that refers to a software representation of a physical asset. In this thesis, a
DT will refer to a virtual representation of physical assets that can be represented
with a finite element model (FE model). The FE model is provided by SAP and the
FEDEM software is responsible for the calculations performed based on the sensor
data. This project also tries to generalize the setup of these DTs and make this into
a process that can be performed in a cost effective and quick manner. In order to
achieve this, two platforms that use different technologies was investigated.

During the specialization project of fall 2019, a proof of concept was developed.
This platform utilized the API and infrastructure provided by Azure in order to
simplify development and increase the versatility of the DT platform compared to
the existing solution. From previous years another solution has been developed
at MTP. This solution was built in-house and was running on a virtual machine at
NTNU. This thesis evaluates the platforms and continue developing their features
before a new DT instance is deployed.

1.2 Problem Description

The main goal of this thesis is to deploy a DT instance and to develop the current
platforms in accordance with the initial evaluation. To achieve this the thesis have
been divided into sub-goals that are described below.

1. Research the existing solutions and evaluate their initial state against the
definition of a DT.

2. Identify a physical asset to be implemented as a DT instance.

3. Develop the DT platforms in accordance with the initial evaluation.

4. Deploy the DT instance and evaluate.
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1.3 Outline

This section will explain the overall structure of the thesis, and the purpose of
each section.

• Introduction: Introduces the topic of this thesis and motivates for its rel-
evance. Gives some background information and formulates goals for the
project.
• Theory: This section will explain relevant concepts and literature that makes

the foundation of the project.
• Technology Research: This section explains the technology choices based

on the concepts from the section on theory. It also covers some in depth
features of technologies used.
• Implementation: This section contains the development process. It describes

the technology that has been used and how they have been applied. It de-
scribes the deployment of the physical asset and the considerations that
were made in the process.
• Results: Presents the results generated in the thesis. Performance data for

the platform and the DT deployment is visualized.
• Discussion: Discusses results and how the current implementation answers

the problem statement in Section 1.2. The platform is also compared to the
theory of a DT platform from Chapter 2.
• Conclusion: Gives a critical view of the project. Goals that where achieved

and not achieved and how this thesis contributes to MTPs goal of developing
a DT platform.





Chapter 2

Theory

2.1 Definition of a Digital Twin

The definition of a DT varies according to which field and context its being used in.
The first attempts of a DT is perhaps the "pairing" technology developed by NASA
for the space program during the 1970’s[3]. This paring technology consisted in
gathering information from astronauts and instrumentation and then manually
update the physical replica on earth. By doing this the ground crew was able to
assist the astronauts both in testing and in identifying errors in a way that would
be impossible without the pairing technology. In particular the Apollo 13 benefited
greatly from pairing technology and it is said to have been crucial to Apollo’s
reentry to earth[3]. Despite this it is widely acknowledged that the concept of a
DT as the term is used today was originally described by Dr. Michael Grieves at the
university of Michigan in 2002. In a lecture held at the formation of a PLM center,
Dr. Grieves describes the components of a DT system and how they interact. At the
time the concept wasn’t called DT, but the lecture clearly illustrates the concept
of a DT as they are known today. Figure 2.1 shows Dr. Grieves scheme from the
2002 lecture[3][4][5][6].

Figure 2.1: Dr. Grieves original schema of the DT concept.

5
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It wasn’t until 2010 that the concept conceived by Dr. Grieves was called "digital
twin" by John Vickers at NASA. The DT concept consisted of three parts. The
physical asset, the virtual asset and the communication between the two. Later in
2017 Dr. Grieves and Vickers wrote an article together where they defined the term
and specified different types of DT’s[7]. The following paragraph is the definition
of a DT that Dr. Grieves and Vickers proposed.

“Digital Twin (DT)—the Digital Twin is a set of virtual information constructs
that fully describes a potential or actual physical manufactured product from
the micro atomic level to the macro geometrical level. At its optimum, any
information that could be obtained from inspecting a physical manufactured
product can be obtained from its Digital Twin.”

This definition clearly states the goal for an optimum DT. What the definition does
not directly include is a clear statement for the connection between the real and
the virtual representation.

In 2018 a research group from Vienna in Austria gathered resources on the naming
conventions for a DT[8]. Because the term DT is used slightly differently in the
disciplines that discussed them, they proposed to classify the DTs according to
their level of integration. They formulated three categories:

• Digital model: Manual data transfer from physical object to digital object
and from digital object to physical object.

Figure 2.2: Information flow in a digital model
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• Digital shadow: Direct data transfer from physical object to digital object
and manual data transfer from the digital object to the physical object.

Figure 2.3: Information flow in a digital shadow

• Digital twin: Direct data transfer both from the physical object to the digital
object and from the digital object to the physical object.

Figure 2.4: Information flow in a DT

The paper on naming conventions by Kritzinger[8] states that for a physical object
to have a DT, the information flow has to be automatized both from the physical
asset to virtual and from the virtual asset to the physical[8].

The two reports both propose classifications and goals for DTs. While Kritzinger
from the research group in Vienna proposes a classification system, Dr. Grieves
and John Vickers proposes to grade DTs from optimum DTs to less optimum DTs.
Depending on how much of the information from the physical asset can be ob-
tained from the DT. These two definitions are both widely used. By fulfilling one
definition one does not necessarily fulfill the other. Therefore, this paper evaluates
a DT with respect to both definitions. A "full DT" refers to a DT instance where the
physical asset is fully described by its digital counterpart, and the communication
between them is automated.
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2.2 Applications of Digital Twin Technology

DTs have many applications, and as the field matures new uses will be found.
Today DTs have industrial applications in several areas. Some examples are:

• Maintenance:
DTs are being used to optimize maintenance of equipment such as power
generation and jet engines[9].
• Enterprise Architecture:

A field that have gotten some attention lately. By making entire blue prints
of an organization and having metrics on performance means that insight
to how businesses operates at any time can be obtained[10].
• Asset Monitoring:

Used to create digital replicas of physical objects. This means that key per-
sonnel like operators know the status or configuration of the physical object
without having to manually investigate the asset[3].

2.3 Cloud Computing

Amazon states: "Cloud computing is the on-demand delivery of computing power,
database, storage, applications, and other IT-resources"[11]. A cloud can be everything
from your own laptop being remotely accessible to the large services provided by
companies like Google, Amazon and Microsoft. Cloud providers provide services
that is accessible through the internet. These services offers access to computing
power storage and more. Cloud services provide many advantages instead of buy-
ing and maintaining hardware for every use. By centralizing the management of
hardware and computational power, resources can be managed more efficiently.
The initial cost of hardware is also eliminated for the user. Big cloud providers also
ensure that safety is up to date. Clouds also provide the possibility for dynamic
scaling depending on the service. The different services provided typically fall into
one of four categories, IaaS(Infrastructure as a Service), PaaS(Platform as a Ser-
vice), serverless or SaaS(Software as a Service)[12]. These four offer different
levels of control or independence to the user by letting almost all configurations
be optional for the user, or providing the user with development environments
and even ready to use software.

IaaS

The model with the highest level of control given to the user is the IaaS. This
provides the user with a high-level API and the user must define things like man-
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agement of resources, location, operation system and backup of data. This service
is typically renting servers, virtual machines or storage[12].

PaaS

This model offers a development environment to application developers. Normally
this include a predefined operating system, database, web server and programming-
language execution. Developers buy the software platform instead of leasing the
underlying hardware[12].

Serverless Computing

Serverless computing overlaps with the PaaS model but this is a cloud-computing
execution model where the cloud provider runs the server and dynamically man-
ages the allocation of computational resources. The applications are event driven.
This means it only uses resources when a function is triggered. Pricing is based on
the amount of resources consumed by a user, rather than on pre-purchased fixed
capacity[13].

SaaS

SaaS is a method for delivering applications over the internet. Examples of SaaS
are software like Outlook or Gmail. With SaaS the cloud provider handles under-
lying infrastructure, maintenance and updates[12].

2.4 Data Acquisition System

A Data Acquisition System (DAS) are systems designed to measure and track phys-
ical systems. Their purpose is to convert measurements of the physical system into
data the computer can read, store and manipulate. A DAS consists of three parts:
sensors, an analog to digital converter(AD converter) and a connection between
the AD converter and the sensors. Figure 2.5 shows how sensors gather data from
the physical system and then transmits this to the AD converter. Sensor readings
are subject to interference form the environment and some noise will be present in
the reading. Using filters besides the AD conversion are in many cases beneficial.
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Figure 2.5: Illustrates how data is collected and processed in a DAS.

To make an effective DAS the sensors are placed in key locations on the physical
system. The sensors are then connected to the Data Acquisition Board(DAB). This
connection is normally some low power transmission over short distances, either
through Bluetooth or wiring. The DAB is often responsible for several sensors
and continuously receives sensor data. The DAB transmits the data to either a
computer at the location or directly to the cloud.

DAB is a micro processor or computer. The aim of the DAB is to reliably perform it’s
task while being as cost effective as possible. In many cases it is hard to know what
is required of the DAB going into a project. Therefore, some DABs are specially
designed with development in mind.

At NTNU Arduino is the most popular of this development boards, while Raspberry
Pi with the possibility of using different programming languages is a good choice
for more software intensive development. Boards like Arduino and Raspberry Pi
became very popular because they are relatively cheap and because they offer both
data acquisition and micro-controller capabilities. They also have fairly high level
programming languages which makes them easier to start developing with[14].

2.5 Messaging System

The following sections discusses the theoretical foundation for a high-level mes-
saging system. Message systems are used to manage large amounts of events or
messages. A message system is responsible for transferring data from one applica-
tion or process to another so they don’t get bogged down or cluttered by the data
transfer. Messages are placed in queues, thereby decoupling processes and applic-
ations. There are two types of messaging patterns. The first is "point-to-point" and
the other is "publish-subscribe" pattern. The "publish-subscribe" or "pub-sub" is the
most used[15]. This pattern allows multiple data sources to publish data to the
queue and multiple sinks to subscribe to the queue.
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2.5.1 Messaging Architecture

In the field of IoT it is normal to divide the system into two parts. These are often
referred to as the edge solution and the cloud solution[16][17]. Edge makes up
the "on-site" hardware and software while cloud is the software that resides in the
cloud. The hardware utilized by the cloud are responsible for storage, processing
and allowing access to users. This hardware can be utilized in a number of ways
through different services models, see Section 2.3.

Figure 2.6 shows a generic architecture for a streaming platform that collects data
from different devices. In this case a device can be a single sensor, or several
sensors and actuators connected to a DAB. In any of these cases the data is then
sent to the gateway, as shown in figure 2.6. This gateway is any computer or DAB
that is connected to Wi-Fi and is responsible for moving the data from the edge
solution and to the cloud[17].

Figure 2.6: Illustrates how information flow though a generic IoT architecture.
The vertical line indicates the separation between the on-site system and the
cloud. The figure is taken from Confluent blog post [17]

2.5.2 Message Brokers

A message brokers is “A program that translates a message to a formal messaging
protocol of the sender, to the formal messaging protocol of the receiver”. This
means that message brokers act as middlemen between applications and pro-
cesses[18]. Message brokers are useful when a system is processing large amounts
of messages or data. The implementation of a message broker will simplify the
handling of data and also helps to decouple processes allowing for temporary
storage which allows processes to consume data asynchronously[19].

In a DT system it can be expected that there will be both large amounts of mes-
sages and differences in processing time. A DT instances may produce as much
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as 200 messages per second. Data that have to be inferred from the DT model
have a longer processing time than raw data. The implementation of a message
broker allows these processes to work independently and enables asynchronous
communication in the system. In this way messages are ready for the simulation
process to consume as it finishes its current calculations.

2.6 Networking and Data Transfer

A key aspect of DTs is remote monitoring. This is achieved by sending sensor data
from the physical asset to the cloud platform. The internet is ideal for this task.
Sending data over the internet requires an IP address to ensure that packages
reach their destination. Each computer connected to the internet is assigned an
IP address. Personal computers that are connected to a router have a local IP ad-
dress[20][21]. These are only used in that sub-net. Routers on the other hand have
a public IP address. A public IP address is recognized across the internet[20][21].
Computers that communicate behind the router use the local IP addresses. These
are assigned to every device that is connected to the router but can only be used
inside that network. Communication over different networks uses the public IP
address that is globally unique to ensure it reaches its destination[20][21].

Figure 2.7: Illustrates how a request from outside the network is mapped to a
computer inside the network.

Figure 2.7 illustrates an example network. In this network machines behind the
router are represented as laptops. These three computers can address each other
by referring to the local IP address and a specific port on the receiving com-
puter[20][21]. The arrows illustrates how a message from outside the local net-
work reaches its destination. The message is addressed to the public IP address of
the router. The router is then responsible for directing the message to the correct
local IP address inside its own network.
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2.7 FMI and FMU

The Functional Mock-up Interface (FMI) is a standard that defines a container and
an interface to exchange dynamic models. FMI standard uses a combination of
XML files, binaries and C code that are zipped into a single file. The FMI standard
is supported by over 100 tools and is maintained as a Modelica Assosiation Project
[22].

2.7.1 Model Exchange

An instance of the FMI is called an FMU or functional Mock-up unit. These are con-
tainers or models that follow the standards of the FMI. By following this standard
the models can be exchanged between any of the FMI compatible programs no
matter the original format [23].

2.7.2 Co-Simulation

Some FMUs also support co-simulation. This means that the FMU contains a solver
for the specific model and that the model can be solved in any compatible program
as long as the platform supports the binaries[23].

2.7.3 FEDEM FMU Export

The FMUs that are exported by FEDEM utilizes the model exchange in order to
run the models independently from the FEDEM software. Co-simulation is used to
export the solver from FEDEM. The FMU builder from FEDEM currently exports
binaries that are supported in a 64-bit windows platform. In addition, the FMU
builder adds a link to a database. This checks a license and insures that FMUs that
are built by FEDEM only can run in networks that are licensed.

2.8 System Delay

System delay in this thesis refers to the time from the measurement is taken to
the moment the data is received in the browser. All measurements are made on
a single computer; thereby ensuring that the clocks are synchronized and elim-
inating the delay caused by internet transfer. The transfer time over the internet
is dependant on the geographical locations and routing. Because of the arbitrary
locations of any DT instance this delay will vary according to the geographical
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location and the traffic on the routers used. The development of this platform will
not effect the internet transfer time and it was therefor decided to leave this out of
the delay calculations. An additional delay will occur from the distance between
the user and the physical asset. The routing between the to will also play a role
and may vary depending on traffic to the specific routers.

2.9 Real-Time

The goal of this thesis is to perform real-time finite element calculations on DT’s.
This section discusses the term real-time and finite element simulations in the
context of a DT platform.

“A real-time computer system may be defined as one which controls an envir-
onment by receiving data, processing them and returning the results sufficiently
quickly to affect the functioning of the environment at that time” [24].

The quote above is in this thesis interpreted to mean that the definition of real-
time for a DT instance is dependant on the physical asset. In processes that are
slow, updates every minute gives the process a high resolution, like the waterline
changing with the tide. Other processes are faster, like the oscillation of a spring.
In this case updates are required to be much more frequent than every minute.
The system needs to be able to measure the spring at any point in its oscillation
and respond to that position. For a generic DT instance the sample rate should be
small enough so that information lost between measurements is considered to be
trivial and not effect the overall picture of the asset’s operational conditions. The
DT platform should then also be able to respond fast enough to affect the system
at these times.

2.9.1 Real-Time Finite Element Simulations

In the field of mechanical engineering the Finite Element Method(FEM) has im-
posed it self as the most powerful and versatile tool when it comes to structural
analysis[25]. It enables highly effective modeling and simulation of structures
characterized by complex geometries that have high numbers of boundary and
initial conditions. Typically these simulations are preformed off-line[25], and con-
tain three essential parts, the first being preprocessing. This includes building the
model and placing boundary and initial conditions. The second is the solver, which
provides the solution to the problem with all required quantities. Finally there is
the post-processor that offers tools for visualization to analyze the obtained solu-
tion [25]. In the case of a DT platform it is the last two phases that are of interest.
The design of the model and the initial conditions are determined by engineers in
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advance.

FEM simulations in the sense it has been discussed so far refers to a structure
divided into a finite number of elements. This means that for any general geo-
metry in 3 dimensions the model will consists of thousands of elements. This
makes the simulation process very computationally demanding and time consum-
ing. Preforming these calculations in real-time is not feasible for a general geo-
metry. Therefor the FMU that is exported from FEDEM does not contain the full
model with all nodes. Instead the user have to select nodes for input and out-
put. Only the necessary equations for the selected nodes is kept, and the rest of
the equation system is removed. This reduces the number of equations needed to
be solved for every input. In theory the simulation of a DT should describe the
model down to the micro atomic level, see Section 2.1. Practically this is difficult,
and therefore it is left to the engineers to choose key values, or a resolution that
describe the system sufficiently.

2.10 Async & Multiprocessing

In order to make a web API for a DT platform, both async and multiprocessing are
techniques that are central to the implementation.

2.10.1 Async

Async is a technique that is used in web development to make the web page more
responsive. Async declares that the function will execute asynchronously via the
event loop, and it uses an implicit promise to return the result. This means that
while the execution is waiting for the result from a request to return, other tasks
can be executed. A typical scenario in a server can be a request for data in a
database. The server will then send a request to the database and wait for the
response, before returning it to the user. Async allows the server to handle other
tasks while waiting for the database to respond to the initial request. This is not
the same as doing two things at the same time. Async only works when the ex-
ecution is waiting, meaning not doing anything. This is why it is so well suited
for web APIs. There are often many database calls leaving the server waiting for
a response[26][27].

2.10.2 Multiprocessing

By using multiprocessing, processes can be executed in parallel. When a new DT
is added to the platform, resources need to be programmatically made available
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to the DT instanse so that the data processing for that instance can be preformed
in real-time. In the instance of a DT platform, multiprocessing is used to allocate
resources to processes. This allows the platform to do FEM calculations while still
being able to handle requests from the web page, or to send data directly to the
user while the calculations are being executed in the background[28].
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Technology Research

3.1 Data Acquisition Board

From Section 2.4 it follows that the Data Acquisition Board (DAB) needed was a
board made for development. Factors like high flexibility and customization for
academic projects is paramount for the selection of the DAB. The main users for
this system will be students at NTNU. Reducing cost and complexity compared to
the HBM DAB from previous years will be critical for student involvement in the
future. The DAB should be familiar to the user in terms of setup and program-
ming language. The two biggest vendors are either the Arduino or the Raspberry
Pi. The Arduino is used in classes at NTNU. This means that the Arduino is famil-
iar and available to the students at NTNU. The Raspberry Pi is very popular world
wide and comes with an operating system. This means that users can choose the
programming language and that the platform is well documented. Another factor
was that both the Azure IoT hub API and the Kafka library was available for Rasp-
berry Pi, while the C code used in the Arduino would make the implementation
of these two a lot more complicated. For the last couple of years NTNU has made
Python the programming language in the introduction to programming classes.
This combined with the versatility of the Raspberry Pi has made it the DAB of
choice in this thesis.

3.2 Digital Twin Instance

In order to test the platforms as realistically as possible it was decided to deploy
a DT with a physical asset to the platforms. At the start of the project multiple
assets was considered for this purpose. Among the assets considered was a small
scale wind turbine, the elevator at the MTP office and a cantilever provided by
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SAP. The wind turbine was modeled in NX and 3D printed. The complexity of this
system and the lack of material data, contributed to this option being dropped.
The elevator at MTP was suggested. The platform was to be represented as a
spring with a weight. This would have given the deployment a real world use case,
but on examination of the elevator, no power source was found in the elevator
cabin. In addition, a system of this size would be harder to trouble shoot during
development. This meant that the elevator option was also dropped. At SAP they
have already worked with real time structural integrity monitoring and have used
"Tingen" as a demo physical asset. "Tingen", which translates to "the thing" in
English, was named this because it is supposed to represent a generic physical
asset in a structural integrity monitoring case[29]. This device is small enough to
sit on a table top, and the fact that SAP was familiar with the setup meant that
documentation and resources where available. This made "Tingen" from SAP an
ideal choice.

Figure 3.1: Illustrates how the physical asset is constructed.

3.2.1 Physical Properties

"Tingen" is a cantilever standing vertically, as illustrated in Figure 3.1. At the top
of the cantilever there is a weight. The system works like an inverted pendulum
where the weight oscillates. The way the system oscillates due to the weight on top
of the cantilever imposes requirements on the deployment in regards to sample
rate and filtering of sensor data. The device also have large and rapid deflections
that the FMU have to calculate in real time. This makes "Tingen" an interesting
DT case.
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Table 3.1: Physical properties of the cantilever in figure 3.1

Physical Properties
Length 300 mm
I 2.1 mm4

E-module 210000 N
mm2

In Table 3.1, "I" is the area moment of inertia for the cantilever cross section over
the Y axis, see Figure 3.1. "E-module" is the elasticity modulus of the material in
the cantilever.

3.3 Digital Twin Platform

Two systems was considered as solutions for a DT platform. The two platforms
use different technologies to achieve DT monitoring. The following paragraphs
describes the platforms and formulate features that the system should implement
in order to become a full DT platform. The two platforms that will be discussed is
the "Tvilling digital" system developed by Simen Norderud Jensen and the PoC of
an Azure based system developed as part of the specialization project of fall 2019,
see Appendix B.

3.3.1 Azure Digital Twin PoC

The Azure platform was conceived as a response to the first weeks spent config-
uring the "Tvilling digital" system, the HBM DAB and the Catman software. There
was a desire to build a system that was easier to configure and to develop fur-
ther. Azure have in recent years launched an IoT API called "Azure IoT Hub" that
utilizes their infrastructure in order to build scalable IoT streaming platforms.

In the fall of 2019 a PoC was built to explore the functionality and features provided
by Azure. The PoC built was a streaming platform using the Azure IoT hub API to
read data from an edge solution. The data was then streamed through a NodeJS
server and visualized in a web browser.

Evaluation of the Azure Digital Twin PoC

The API provided by Azure made the configuration of new devices easier and
less code was needed. This is because Azure holds and maintains the code for
transmitting messages. This API is being adapted to new languages and platforms
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presently. This makes the choice in DAB more versatile for the user. The format on
the messages is string. This means that messages can be built using JSON format.
The advantage with JSON is that it is a much used format that is easy to read and
supported in most programming languages and platforms.

The system was, however, missing the parallel processing capability. This means
that FEM simulations and filters was not yet integrated in the system. Therefore,
the platform has to be developed to implement FEM simulations in order to eval-
uate it fully.

3.3.2 "Tvilling digital" System

"Tvilling digital" is the name given by Jensen to the platform developed in 2019[1].
It appears from the thesis written by Simen Norderud Jensen on "Tvilling digital"
that there are in fact two systems in the solution. The entire system is called "Tvil-
ling digital" and a sub system is called the "Blueprint" system. The "Blueprint"
system is used to create different processes in parallel with the main execution. A
class called "P" implements a set of methods like an interface. Depending on input,
different processes are started by the "Blueprint" system. This makes adding new
filters or other operations standardized and easier to implement. The "Tvilling
digital" platform uses "datasources" to add new DT instances. This receives UDP
messages and places them into Kafka topics. The system uses aiohttp to build the
web API and runs on a virtual machine at NTNU. The platform is well documented
with HTML resouces and a PDF file.

Evaluation of the "Tvilling Digital" System

The system is designed alongside the "Bluerig". The picture in Appendix D de-
scribes the asset. "Bluerig" is the name given to a physical asset that have been
worked on in previous years. The "Bluerig" is a jack used to lift an arm and apply
torsion to a connected staff. The HBM DAB with Catman as the software is used
to collect data on the "Bluerig". The "Tvilling digital" system was developed along
side the HBM DAB and the Catman software. The Catman software exports data
in a messaging format using byte arrays. This makes the manipulation of data
complicated and hard to read for the user. "Tvilling digital" have continued to use
this format throughout the system. This have complicated further development.

The system offers a lot of functionality, and it works well with the current physical
asset. In this thesis a new asset is to be introduced. Therefore some changes can
be made to make the setup of new DT instances easier. The system is currently
lacking bidirectional communication capability. By implementing this the platform
can operate as a full DT platform. The Catman software has a GUI that allows data
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to be sent to an IP address. In a general DT case this catman software will not be
used. This means that sending messages from device to platform have to be coded.
This requires both some understanding of IP addresses and how the APIs that the
platform is built on works. By implementing an edge solution API that handles
the configurations of the platform and standardizes the communication between
platform and device. The user friendliness of the system is thus improved.

3.4 Kafka

Kafka is a messaging system, see Section 2.5, meant as a way of decoupling pro-
cesses. Kafka clients are implemented in the processes to handle the messages
that are sent between them. These clients are normally implemented on the same
machine or in the same network. In an IoT setting, one client is needed to trans-
fer messages from the physical asset. For Kafka to be used in this context, it has
to be configured to communicate with clients outside its local network. In the
"server.properties" file one can add a listeners attribute that tells the client how to
connect to the Kafka cluster. The key is that the only parameter required in the
client is the bootstrap server. This tells the client where to go and get the metadata
about brokers in the Kafka cluster. It is the host that is passed back in the initial
connection that will be the one the client connects to for reading and writing data.
Below is a snippet of code that is added to the "server.properties" file in order to
allow clients outside the local network to connect [30].

Code listing 3.1: Configurations added to server.properties file

listeners=INTERNAL://0.0.0.0:9092,EXTERNAL://0.0.0.0:19092
listener.security.protocol.map=INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT
advertised.listeners=EXTERNAL://[YOUR IP ADDRESS]:PORT,INTERNAL://localhost:9092
inter.broker.listener.name=INTERNAL

• listeners: The first line is a comma-separated list of listeners which tell
Kafka the host/IP and port to bind to. In Code listing 3.1, the pattern "0.0.0.0"
is used. this means that Kafka is listening to all interfaces, meaning it can
be reached on all the machine addresses.
• listener.security.protocol.map: The second line "listener.security.protocol.map"

configures the security protocol to be used for each listener as a key value
pair.
• advertised.listeners: The "advertised.listeners" attribute contains the metadata

passed back to the client in the initial request. This attribute have to be con-
figured with the address for the server the client is going to read and write
to. In an IoT setting where the client is in a different location, the "advert-
ised.listeners" attribute must be configured with the address of the broker
that the client can reach for reading and writing.
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• inter.broker.listener.name: The "inter.broker.listener.name" attribute is used
to specify the listeners to communicate between brokers. In this implement-
ation, the system is only one broker on one machine. Therefore, this attrib-
ute is not relevant the way the system is running now.

3.4.1 Kafka Consumer Groups

A Kafka consumer group is a group of related consumers that preform a task. In
the case of a DT platform the task is sending messages to a process or applica-
tion. A consumer group is recognized by it’s "group.id" attribute. All members of
a consumer group have the same group id. Kafka then divides the partitions in
that topic evenly, if possible amongst the consumers in that group. If there are
more consumers then there are partitions, the extra consumers remain idle until
another consumer dies before they start to consume messages.

3.5 A note about Python and FEDEM binaries

Most computers to day run a 64 bit operating system. The binaries exported by
FEDEM are also 64 bit. However the standard Python installation is a 32 bit pro-
gram running on a 64 bit operating system. This means that an error may occur
when running the FEDEM FMU. The error will say that the 64 bit binaries can’t
be run on the current platform. In order to run the FMU, the user have to install
a 64 bit Python interpreter. This problem has not been tested on other platforms
than the current 64 bit windows 10 machine used for development.
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Implementation

This section describes the approach to deploy a DT instance and to develop the
platforms based on the theory and the research done in the previous chapters.
This section will address the process done in order to answer the initial problems
described in Section 1.2.

4.1 "Tingen" from SAP

"Tingen" from SAP was chosen as the physical asset for the DT instance. In order
to deploy it, the asset had to be modeled in FEDEM and a FMU had to be exported.
The asset had to be instrumented with sensors and a DAB in order to stream data
from the asset through the internet to the platform. The physical properties can
be found in table 3.1.

4.1.1 "Tingen" FMU Generation

The cantilever was already a device that SAP had used in other structural integrity
monitoring cases. Therefore a finite element model was available. The illustration
on the left in Figure 4.1 shows the model when meshed using shell elements in
FEDEM. The base of the model is fixed allowing no movement or rotation. The
point where the force acts on the model is assigned at the top of the cantilever as
shown in the figure. The sensor is placed near the point of attack on the model.
In this way the measurement is taken as close to where the input force acts as
possible. The illustration shows how the top nodes are connected to the point of
attack.
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Figure 4.1: Picture on the left shows the element model of the cantilever in FE-
DEM. The drawing on the right illustrates where the FMU input and outputs are
on the physical asset.

The FMU generated uses one input and calculates two outputs. The input data is
force applied to the top of the cantilever as shown in the drawing to the right in
Figure 4.1. The force data is calculated form the angle output of the sensor, as is
explained more in depth in Section 4.1.3. The outputs are stress on the cantilever
beam and the angle at the top of the cantilever, also marked in the drawing to
the right i Figure 4.1. This angle output from the FMU is compared to the sensor
value in order to control the correctness of the FMU calculations.

Table 4.1: Model properties

FE model Tingen
Mesh 2d_mapped_mesh
Mesh Collector ThinShell (1mm)
Property PSHELL Steel
Material Steel-Rolled

4.1.2 Communication between Data Acquisition Board and Sensors

The asset was equipped with a Pololu MiniUMI-9 v5, see Figure 4.2. This sensor
measures both angle and angle acceleration. The sensor have five main connec-
tions and in the current configuration the SCL, SDA, GND and VDD are used to
communicate with the DAB through wires. The wires are connected to GPIO pin
1, 3, 5 and 6 on the Raspberry Pi with the pins corresponding to ground, power
supply and data transfer. See Figure 4.3 for information on the pins.
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Figure 4.2: Shows a MiniIMU-9 v5.

Figure 4.3: Shows a map of the pins on a Raspberry Pi with their corresponding
applications.

Table 4.2: Describing the data communication from MinIMU-9 v5

PIN Description
SCL Level-shifted I2C clock line: HIGH is VIN, LOW is 0 V
SDA Level-shifted I2C data line: HIGH is VIN, LOW is 0 V

In the standard configuration, SCL and SDA transfers data with a voltage that
matches the voltage on the VIN pin on the HIGH and 0 V on the LOW. The cur-
rent implementation has opted for an alternative configuration with 3.3V power
supply connected to the VDD pin, and the VIN is left disconnected. This is also
a configuration that is possible and described in the data sheet[31]. Table 4.2 is
taken form the data sheet on the pololu MiniIMU-9 v5 and describes how data is
transferred using the SCL and SDA connections with the I2C interface.
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4.1.3 Data Processing

The sensores are read using I2C . I2C is a standard for data transfer using the
SCL and SDA connections. I2C was invented by Phillips and is now used by most
major IC(Integrated circuits) manufactures[32]. The data that is read using I2C
is translated into radians, degrees and force using scripts that was developed with
the help of Runar Heggelien Refsnaes at SAP. The scripts are available in Appendix
C.

Figure 4.4: Shows the connection between force and deflection of a cantilever

The sensor doesn’t directly measure force. Therefore this has to be calculated from
the angle of the tip of the cantilever. By applying the inverse method, see equation
4.1 to calculate the force necessary to achieve the deflection that corresponds to
the measured angle the input force is found. Figure 4.4 illustrates the correlation
between deflection of a cantilever and the force applied.

p = θB
2EI
L2

(4.1)

Equation 4.1: Is the inverse method used to calculate the force on the cantilever.

The angle that is sent form the Raspberry Pi to the platform is not read directly
from the sensor. In order to smooth the momentary angle reading, expression
4.2 is applied. The equation sums the contribution of the change in angle and
the angle acceleration at that moment. Adjusting K changes the fraction of the
contribution from angle acceleration and angle to the momentary reading. An
increasing K smoothes the reading by weighting the acceleration less.

θ(i+1) = K(θi + dθ ) + K1θ̈ where K = 0.85, K1 = 1− K (4.2)

Equation 4.2: Is used to smooth the momentary angle reading.

The code for reading data from the sensor only returns angle in positive values.
The zero radians point is at 90 degrees relative to the horizontal line. I.e. the script
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returns zero when the cantilever is pointing straight up and positive radians for
any deflection to either side.

4.2 Azure API and Infrastructure

In order to evaluate the Azure platform that was started during the specialization
project of fall 2019, parallel processing capability has to be implemented. Spe-
cifically the platform was missing the ability to do FEM simulations which is a key
part of a DT platform. The system description for last years project can be found
in Appendix B.

4.2.1 Implementing Parallel Processing

The FMUs generated by FEDEM must be executed in Python with a 64 bit windows
operating system. Because running or using a FMU is a CPU demanding task and
the platform had to be able to run multiple instances. It was necessary to create
a new process dedicated to the FMU calculations.

The IoT hub API from Azure provides an easy to use messaging format that enables
the DT instance to communicate with the server, but Azure IoT hub API doesn’t
support Python as a server language at this time. Therefore the telemetry from
the devices had to be received in a Node server. This means that a bridge between
the Node server and the Python process must be built. In Node a much used API
is the child_process API. This allows the main Node process to programmatically
create a new process where the the FEM calculations can be made while the sensor
streaming still runs. The child_process API is equivalent with running a script from
a terminal window. Therefore, a Python process could be started from the node
process. A method in the API called "pipe()" is used to communicate between the
processes created. This would be responsible for transmitting new telemetry and
changing simulation configurations during execution.

4.3 "Tvilling digital" System

From the framework discussed in Section 3.3.2 it was clear that some changes
could be made to improve the system. In order to make the platform a more com-
plete DT platform. There was a desire to standardize the DT setup and make the
system easier to develop. To achieve this the message format would be changed.
The current solution was also missing the bidirectional communication capabil-
ity. This would make the system a DT platform as supposed to a digital shadow
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platform.

4.3.1 Bidirectional Communication

In implementing bidirectional communication, an edge solution API had to be de-
veloped. The platform was all ready using Kafka, therefore it was decided to use
a Kafka client in the API, see Section 3.4. The Kafka client is responsible for estab-
lishing the connection with the server. The API implements methods for sending
and receiving messages to and from the platform using this Kafka client. The Kafka
client uses request-response type communication. In order establish a connection
with the clients in the edge solution, the Kafka server had to be configured. The
"advertised.listeners" attribute was changed to the IP address of the development
computer, and the bootstrap server provided as a parameter in the client was
changed to the same IP address. Thereby the connection was established. The
client was now able to produce and consume messages from the Kafka server.

Figure 4.5: Schema of how information flows through the architecture. The ver-
tical line indicates the separation between the edge system, the cloud and the
frontend.

Figure 4.5 illustrates the information flow in the system. The physical system is
measured with the Pololu MiniIMU. The measurements are read and processed
with the Raspberry Pi. Then the "Edge API" places the data in Kafka. The DT plat-
form then consumes the messages placed in Kafka and either performs FMU cal-
culations or sends the data directly to the frontend where it is visualized.
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4.3.2 Kafka Configuration

Kafka Consumer Groups

When implementing bidirectional communication it was decided to reserve a par-
tition in every topic that is used for communication from the platform to the DT.
To ensure that the consumers will divide the partitions amongst them in a desired
fashion, every consumer is given an unique group ID within every topic. When
consumers are not in the same consumer group, the partitions are not divided
amongst them. Instead, every consumer consumes every message from every par-
tition in the topic. This property is used to ensure that every message is read by
the desired consumers. [33]

AIOKafkaConsumer

During testing it was discovered that from the creation of a new topic, either
when starting a new DT instance or a new process, the time AIOKafkaConsumer
would take to start consuming from this topic could be several minutes, even
as much as five minutes. This is because the AIOKafkaConsumer has an attribute
"metadata_max_age_ms" that by default uses 300000 ms. This attribute dictates
how often the AIOKafkaConsumer updates the meta data that amongst other in-
formation holds which topics the consumer is subscribed to. By changing this to
3000 ms the creation of new processes and addition of new DT instances is more
responsive.





Chapter 5

Results

This chapter presents the results generated during this project. Several graphs are
used to show how the platform is performing and how the DT instance is displayed
in the platform. The graphs are pictures captured in the frontend of the platform.
The values can be hard to read due to the size of the labels. Therefore some of
the relevant figures have an equivalent graph in Appendix F, where the picture is
enlarged so that values are easier to read. In the figure text of the relevant graphs,
a hyper link to the enlarged picture is provided.

5.1 Azure API and Infrastructure.

In Section 3.3.1, during the initial evaluation of the system it was discovered that
the platform was missing the parallel processing capability. From the implement-
ation in Section 4.2, parallel processing was implemented using the child_process
API. This allowed the Azure platform to perform FEM simulations on the device
data. The pipe method, a part of the child_process API was intended to allow the
node process to send telemetry to the process continuously and allow configura-
tions of the FMU process while running. It was discovered that the pipe method
is unable to establish a connection between processes using different languages.
This meant that there was no communication between the node process and the
Python process.

5.2 "Tvilling digital" System

A web API for a DT platform has been developed. In this platform, bidirectional
communication has been implemented. An API for communication between the
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platform and Raspberry Pi has been made to standardize the communication. The
internal and external messaging format has been changed to JSON format, and a
DT instance has been deployed to the platform.

5.2.1 Bidirectional Communication

A Kafka client is used to hold the connection between the device and the Kafka
server in the "edge" API. The API implements a class called "connect" that initializes
and holds the Kafka connection. Sending and receiving messages with this client is
done through the methods "send" and "receive" in the API. Code listing 5.1 shows
a simple use case for the API. First, a connection to Kafka is established. Then a
message is built. The "add_to_message()" can be used to update existing values
or insert new attributes. "send()" publishes the message to Kafka and "receive()"
checks for incoming messages. If the message is "pause" the "pause()" function is
triggered.

Code listing 5.1: Script showing how to send a single message using the edge
solution API

from digitalTwinPlt import Connect

dtMessaging = Connect(device_id=’test_device’, topic=’0000’)

dtMessaging.add_to_message(name=’Temperature’, value=20)
dtMessaging.add_to_message(name=’Humidity’, value=78)
dtMessaging.add_to_message(name=’Input_F_in’, value=8)
dtMessaging.send()
instruction = dtMessaging.receive()

for topic, partition_msg in instruction.items():
for m in partition_msg:

if m.value == b’pause’:
pause()

The maximum message rate of the "edge" API was found to be approximately 500
messages per second. The addition of bidirectional communication lowers the
message rate to just under 400 messages per second. This has been tested using
a message counter on a simulated device.

5.2.2 Latency

The delay in milliseconds for the last 300 data points is represented in Figure 5.1.
The delay is normally below 20 ms with some peak values. These are due to the
processor doing other tasks and then pausing the data processing in that period.
From time stamp 10:12:30 to 10:12:34, the mean of the delay is clearly larger
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than the delay before and after. This rise in the mean value was induced to the
system by opening a new program during this time interval.

The delay is calculated as described in Section 2.8. Without simulations the system
has been tested for the API max message rate of about 500 samples per second
and the system converges to a delay of 100 ms to 250 ms per data point.

Figure 5.1: Shows the delay for the last 300 data points. The enlarged picture is
provided in Appendix F.1

Figure 5.2 shows the delay in milliseconds for the last 300 data points. The data
have been calculated by the FMU made for the cantilever that is part of "Tingen".
The system was able to handle about 150-160 messages per second but the delay
start to diverge for a sample rate of 175-185 messages per second. The delay is
normally below 100 ms for sample rates of 100 samples per second. The addition
of simulations have added a delay of about 50 ms to 70 ms.

Figure 5.2: Shows the delay for the last 300 simulated data points. The enlarged
picture is provided in Appendix F.2

5.3 Deployment of the Digital Twin Instance

The inverted pendulum called "Tingen" has been implemented as the physical
asset in this thesis. A finite element model was derived from the physical asset
by SAP and then later used in this thesis. A FMU was constructed using force as
input, and the angle of the tip of the cantilever and stress of the cantilever beam
as outputs. A Raspberry Pi was implemented as a DAB using the "edge" API for
communication with the platform.

Figure 5.3 show the DT Instance "Tingen" as represented in the platform. The
graph illustrates how the inverted pendulum oscillates. The radians on the tip of
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the cantilever is represented on the y-axis. The blue line represents the sensor
values and the orange line represents the FMU calculated angle. The maximum
radians value is 0.8 which is just under 46 degrees. The figure shows a sample
rate of about 100 samples per second. The K value is set to 0.90. This smooths the
momentary read-out from the sensor.

Figure 5.3: Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples per second and the K value at 0.9. The enlarged
picture is provided in Appendix F.3

In contrast, the Figure 5.4 with the same sample rate and close to the same os-
cillations are shown when the K value is at 0.1. The graph clearly contains more
noisefrom the sensor.

Figure 5.4: Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples per second and the K value at 0.1. The enlarged
picture is provided in Appendix F.4

From the y-axis in Figure 5.4 and 5.3 the values from the FMU is smaller than
the sensor values. The sensor values reads almost 0.8 radians, while the FMU
values are at most 0.7 radians. This makes out a difference of about 5 degrees
for the largest of the angle displacements. The difference between calculated and
measured angle is smaller for smaller angle displacements.
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Figure 5.5: Illustrates measured and calculated values for the physical response
of "Tingen" with 20 samples per second. The enlarged picture is provided in Ap-
pendix F.5

Figure 5.5 illustrates the system with a sample rate of 20 samples per second and
with a large angle displacement applied to the cantilever. From Figure 5.5 the
peak values of the cantilever are steadily decreasing with about the same interval
for each period. The lowest values of each period corresponds to the zero radians
mark. These values varies and doesn’t evaluate to zero radians in every oscillation.

5.3.1 Documentation

A video has been produced showing how to start the DT platform, and also some
key functionality. The video is available on youtube by following this link: ht-
tps://youtu.be/JtvOd3jCTvU. A document with instructions on the prerequisites
required and the installation has also been made, see Appendix A. Code belonging
to the DT platform have been documented using Docstring. Sphinx has been used
to generate a HTML resource in the "docs" folder in the project. A PDF document
describing project has also been generated using Sphinx, the PDF is available in
Appendix E.

https://youtu.be/JtvOd3jCTvU
https://youtu.be/JtvOd3jCTvU
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Discussion and Future Work

This section answers the subgoals from Section 1.2. The subgoals are devided
in to four sections in this chapter. The section on the Azure DT platform and the
"Tvilling digital" platform answers subgoal 1 and 3. The section on DT deployment
answers subgoals 2 and 4. The last section suggests future work on the platform.

6.1 Azure API and Infrastructure.

During the evaluation of the initial state of the platform, it was found that the
platform was lacking the parallel processing capability. This is an important part
of a DT platform and it was decided to implement this feature.

The PoC was finished and the utilization of parallel processing was added. The
platform was then tested on a simulated device. It was found that the process
created, using the child_process API was unable to establish a pipe connection
between the Python and Node processes. This meant that there was no commu-
nication between the processes after the child process was started. The sensor data
then had to be batched, and a process had to be started for each batch before re-
turning the results. During development it was discovered that the unpacking and
initialization of the FMU takes several seconds. This meant that for every batch
calculated an additional delay corresponding to the initialization time would be
added. It would be possible to aggregate a lot of data and then send this to the
child process. This would decrease the delay per message compared to sending
one data point at a time. However this would introduce a delay in addition to the
initialization time. This delay would be dependant on the batch size but the ex-
ecution would be several seconds behind real-time. This made the child_process
API in this particular implementation of the system impractical. The batching of
data combined with the time it takes to unpack and initialize a FMU meant that
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the delay was unacceptable for the applications of this system.

A possible way of replacing the pipe method in the child_process API could be to
build two servers. The two servers would then be connected using websockets or a
similar technology. This technology is familiar and is capable of handling the large
amounts of data sent through the system. Because a Python server had already
been constructed in previous years, and this platform could hold both the web
API and the FEM simulation. This was an argument for continuing on the existing
solution. In addition to this, there is also a monetary cost associated with sending
messages through Azure. This means that, for a DT instance like the cantilever
where the sample rate needs to be between 50 and 100 samples per second to
give the system a resolution that accurately represents the physical behavior, it
would either be costly when scaling to multiple DTs or when sending data over
time. A remedy for this could be more data processing in the edge system in order
to reduce the amount of messages from edge to cloud and in this way making the
system a viable solution.

The IoT hub API is meant to simplify the messaging between edge to cloud by
handling IP configurations and security. The API also provides bidirectional com-
munication capability which was an element needed to let the system become a
more complete DT platform. The API was dropped in this project because it be-
came apparent that two servers had to be built. This would increase complexity
of the overall solution and the implementation of bidirectional communication
seemed to be feasible without the Azure API. The Raspberry Pi was ideally suited
for this task. The main feature that was needed from the Azure API was now some-
thing that could be implemented without using it. This lead to the decision to not
to continue the development of this system.

6.2 "Tvilling Digital" System

During the evaluation of the initial state of the platform in section 3.3.2. It was
found that the platform was lacking bidirectional communication capability. Chan-
ging the messaging format would also help to improve the platform by simplifying
further development. In an effort to standardize the DT setup, an API for commu-
nication between the edge system and the platform is developed. The platform
has been tested on two FMUs produced by FEDEM and using a combination of
simulated data and the deployed DT instance. As much as three DTs have been
tested at once to verify the solution. The platform has been tested for one night
or approximately eight hours of continues running. During the test no issues with
the platform was discovered.

A problem with the FEDEM FMUs has been that they gradually use more and more
memory[1]. Testing the FMU of both "Tingen" and the "Bluerig" proved that this
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still is a problem which could fill up the memory of the computer and potentially
crash the system.

6.2.1 Bidirectional Communication

In the implementation of bidirectional communication it was decided to use a
Kafka client in the "edge" API. This has the benefit of having a very tight integra-
tion and low architectural complexity. The implementation of bidirectional com-
munication opens the platform up to not only monitor the physical assets, but
controlling them based on decisions made from the web application. The intro-
duction of bidirectional communication moves the platform from a digital shadow
platform to a more complete DT platform, see section 2.1.

The Kafka client is relatively complex and resource intensive compared to client
libraries optimized for IoT[34]. This means that the DAB needed must have the
resources to run both the Kafka client and the other tasks that are needed in the
edge system. The client have only been tested on a Raspberry Pi and works well
in this instance.

In this thesis, Raspberry Pi is used as both DAB and gateway. A possible improve-
ment of the gateway could be to use Kafka connect and add a MQTT proxy in
place of the Gateway, see figure 6.1. In this way the "edge" API could implement
the MQTT protocol that is optimized for IoT. This would allow other more light
weight devices to implement the edge API and communicate directly with the
MQTT proxy that puts the messages into Kafka. Kafka connect offers a ready built
MQTT connector but only for linux.

Figure 6.1: This scheme is taken from the Confluent blog on Kafka in IoT. It
illustrates how devices can send MQTT messages directly to the cloud as supposed
to implementing a gateway.

6.2.2 "Edge Solution" API

In order to help standardize the setup of DTs, an API for the DAB has been de-
veloped. The API is written in Python and is developed and tested on a Raspberry
Pi. The API also formats messages to ensure that the platform can process them.
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The API is developed so that students that are deploying a DT can focus on the
instance specific code. The students will be responsible for writing logic for sensor
reading and building functions that operate motors or actuators on the asset. The
API will then provide a simple way of interacting with these functions. This enables
the asset’s sensor data to be remotely visualized through the "send()" method, or
remotely activating motors or actuators on the asset using the "receive()" method.

6.2.3 Latency

Figure 5.1 and 5.2 is a representation of how the system performs in general.
The performance is dependent on factors like the specific computer and other
background processes running on this computer. The delay shown in figure 5.1
and 5.2 may vary depending on these factors. There are some peak values in
figure 5.1. These are probably due to the processor performing other tasks and
pausing the data processing at that time interval.

Comparing the latency found in Section 5.2.2 to the definition of a DT in Section
2.1 specifically that, all information that can be derived from the inspection of
a physical asset should be available in the DT. The current latency of the system
allows a sample rate of more then a hundred samples per second. With this resolu-
tion of the inverted pendulum oscillation, the information that is not represented
in the DT is only the data that occurs between the samples. At 100 samples per
second this loss is minimal. The delay with FMU calculations in figure 5.2 was
measured at bellow 100 ms for the majority of the data points. This is acceptable
for most DT instances.

For many applications of the platform, the requirements on latency may not de-
mand such a low delay. An argument can be made for increasing the delay by
implementing buffers around the processes in the solution and thereby reducing
the CPU cost per message. This would allow the system to run more efficiently,
meaning less CPU usage per message, but would increase the latency to some
extent.

The delay introduced into the system in figure 5.1 coincided with a program being
opened. This means that the processor is probably forced to pause either the FMU
process or the streaming process while this task is being handled.

6.3 Digital Twin Deployment

In Section 3.2 "Tingen" from SAP was chosen as the DT instance. The physical
properties of the system makes it an interesting DT case. Figures 5.5, 5.4 and 5.3
show "Tingen" oscillating without any input to the system. From Section 4.1.3
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on data processing, the radians values are only returned in positive values. This
gives the graph the distinctive look with rounded tops and sharp minimums. The
cantilever in "Tingen" is slightly deformed and leans to one side. This means that
the inverted pendulum oscillates around a point of equilibrium that is not zero
radians. This is why every other maximum in the graph is larger than the one
between.

A physical behavior of the inverted pendulum is that the arm is moving at it’s
fastest close to the zero radians mark. Figure 5.5 shows the inverted pendulum
with a sample rate of 20 per second with a large angle displacement applied to the
system. The lowest point between each peak should always evaluate to zero, this is
it not the case. A possible explanation is that the pendulum passes the zero radian
point so fast that the sample rate is unable to capture this value. The sample is
then taken at some point around the zero radians mark, giving the graph in figure
5.5 a minimum that varies.

In the situation in figure 5.5 the platform is still representing some of the op-
eration conditions of "Tingen", but a significant amount of information is now
lost between the sampling points. The sampling is done at steady intervals and
will never sample the cantilever at the exact point where it passes zero radians.
Therefore, it is important to have a sample rate that is fast enough to represent
the system no matter the timing of the samples.

The way the platform represents the DT allows for all the needed functionality
to call the platform a full DT platform. However, the FMU that is used in this
paper only provides two outputs for the asset. This is less than the definition of
a DT defines as optimum, see Section 2.1. Even though this is the case, before a
FMU is created the user has to choose the outputs, by selecting key values that
represents points of max stress or torsion. These values can represent the points of
interest in the structure, without calculating all nodes in the FE model. Therefore
the DT will not be optimal but can still add value to the sensor data. The same
is true for the inputs of the model. The amount of sensors placed and the chosen
inputs restrict the overall picture of how the asset is preforming in reality. If the
inverted pendulum in this thesis is subject to rotation around the cantilever arm,
the torsion that arises will not be picked up by the sensors. Therefore, the DTs as
they are used today only represents a picture of the asset as defined in advance.
Choosing attributes with knowledge and making good assumptions, the DTs can
still represent a good picture of the operational conditions of the asset.

Sources of Error

The material properties used are the same as SAP has used for the model earlier
and have not been verified extensively. In figure 5.3 there is a deviation between
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the calculated angle from the FMU and the angle measured by the sensor. The
calculated angle from the FMU is being compared to same the sensor angle used
as input. This means that any error that is present in figure 5.3 have to originate
in the angle calculations. To calculate the angle from the FMU, the force corres-
ponding to the sensor angle is found using the inverse method. This force is then
used as input in the FMU before the angle output from the FMU is compared to
the original angle. Both in the FMU calculations and in the inverse method, ma-
terial data is used. These properties will have some variations with temperature,
fatigue and imperfections that will cause errors in the calculations.

6.3.1 Prototyping

Web Application

To test the Azure based API and the "Tvilling digital" API a web Application has
been developed for each. This made it easier to test features and to make sure that
the features worked. These web applications are only meant for personal testing
and is fairly cluttered and hard to use. Therefore a video of how to do basic opera-
tions on the web application for the "Tvilling digital" API has been made. The video
can be found on youtube with the following link: https://youtu.be/JtvOd3jCTvU.
This is to help further development and hopefully make the process of getting
started with the platform easier.

Simulated Devices

During the development of the system, two simulated devices have been used
extensively. They are documented and part of the project under the folder "digit-
alTwinPltAPI". These simulated devices helps to show how the API is is used. They
also help the further development of the system by adding a data source that is
fast to deploy and easy to customize.

6.4 Future Work

• Data Base: The addition of a data base would be needed in both authen-
tication of users and to implement some historical data features. It would
also be an important part in the development of security in the platform.

• Security: This has not been a focus in this paper but is important to the
platform before it is to be deployed. Currently the platform is vulnerable

https://youtu.be/JtvOd3jCTvU
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due to the fact that any one can produce messages to Kafka and consume
messages from Kafka given a topic name.

• Blueprint system: The platform still uses the blueprint system. The only
blueprint currently in use is the FMU blueprint. The addition of new blue-
prints like filtering, event triggers and aggregation of data would add func-
tionality to the platform.

• FEDEM FMU: Both the FMUs exported from FEDEM have worked well
in this thesis. In the future, FMUs from a different FMU builder should be
tested to verify that the FMU blueprint can generalize. There are also some
potential improvements that could be made to the FMUs. The FMUs cur-
rently have a 64 bit binary, a second 32 bit binary could be implemented,
thereby avoiding the set up of a 64 bit python environment. The FMUs also
have a interval of values that are accepted and if data out side this interval
is used the FMU crashes. When inspecting the FMU there is no way of see-
ing what values are in this interval. Adding this information to the model
description would help in testing and development.





Chapter 7

Conclusion

The goal of this thesis was to deploy a DT instance and to evaluate and develop the
current platforms. "Tingen" from SAP has been deployed as a DT. The platforms
have been developed further in accordance with the definition of a DT.

The Azure PoC was finished, but it was decided that the development of this plat-
form would not be continued. This was because the solution would not reduce the
complexity of the overall system and because of monetary constraints. The PoC
was only tested with the child_process API and batching. No other solutions was
tested before it was decided to stop the development and start working on the
"tvilling digital" system. In a different case where the requirements on real-time
is different, the API may be a better option.

Using the code and framework from "Tvilling digital" a DT platform has been cre-
ated. This platform implements bidirectional communication in order to become a
full DT platform. In addition, the platform uses JSON format on both internal and
external messages in order to increase the user friendliness and simplify further
development of the system.

"Tingen" was used as a DT instance. The platform is able to represent the physical
asset and characterize the physical behaviors of the system. The FMU and the
scripts used to transfer data and calculate values for the cantilever gives a good
picture of the operating conditions of the system. The angle calculated and the
angle measured have some deviations which is to be expected.

An edge solution has also been implemented. In an effort to standardize the DT
setup, an API for communication with the platform has been created. The API has
only been tested on "Tingen". However, the methods implemented are general
and an arbitrary DT instance should be able to utilize methods like "send()" and
"receive()" in a DT deployment.
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Appendix A

System Setup

This section explains how to setup the system on a personal computer to either test
the system or to continue developing. The steps are kept short and on reasoning or
theoretical background will be given. The system is reliant on a FEDEM lisenced
network, therefore this set-up should be done either on the NTNU network or with
a VPN. If you are using a VPN make sure to connect the VPN before you start kafka.
If the set-up is preformed on the NTNU network the Raspberry Pi mush be con-
figured to connect to eduroam. This proedure is explained in the following link:
"https://autottblog.wordpress.com/raspberry-pi-arduino/connecting-raspberry-pi-
to-eduroam/"

A.1 Prerequisites

• python 3.7: This have to be able to execute 64 bit binaries.

• Kafka: Installation can be done form this "link:https://kafka.apache.org/quickstart"
The kaka version used in the development is 2.3.

• Code for DT platform: The code is available in the zipped file called "py-
thonDTsolution" that is inside the zipped file delivered with the PDF of the
thesis. The code is also available on github following this link:
https://github.com/espenmarstein/pythonDTsolution. The FMUs are only
available in the zipped file, and have to be acquired from SAP separately if
you use github.
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A.2 Configurations

• Kafka: Open the kafka folder from your installation. navigate inside the
the config folder and open the server.prperties file. Add the following lines
under the section called "Socket Server Settings"

Code listing A.1: Configurations added to server.properties file

listeners=INTERNAL://0.0.0.0:9092,EXTERNAL://0.0.0.0:19092
listener.security.protocol.map=INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT
advertised.listeners=EXTERNAL://[YOUR IP ADDRESS]:PORT,INTERNAL://localhost:9092
inter.broker.listener.name=INTERNAL

Substitute "[YOUR IP ADDRESS]:PORT" with your IP address this can be
found using the "ipconfig" command in the terminal.
• digitalTwinPlt.py The "Kafka_server" property have to be configured on

the initial run. This must be the same IP address and port as configured in
code listing A.1

A.3 Initial Run

Install the requirements in requirements.txt file using "pip install -r requirements.txt"
when you are in the project folder. After this follow the instructions in the video
provided with the report to complete the platform set-up. The video is also avail-
able with this link: https://youtu.be/JtvOd3jCTvU
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Summary

This project looks at the definition of a digital twin and formulates requirements for a digital

twin platform. Then the current Blueprint system is investigated and evaluated before a new

architecture is proposed in Azure. The project has been written under the supervision of Bjørn

Haugen and Terje Rølvåg.

A prototype has also been developed to test the technology choices. The prototype is a

streaming platform that receives and visualises data from a simulated Raspberry Pi circuit. A

quick start have been written to help deploy the system, see appendix A.
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Chapter 1

Introduction

The Department of Mechanical and industrial engineering (MTP) has a goal to develop a digital

twin platform that will serve as a tool for research in the field of real time structural integrity

monitoring and predictive maintenance. The goal of this project is to explore Azure as a possible

cloud provider to host the software for digital twin monitoring.

1.1 Background and motivation

In recent years the introduction of affordable 4G, and soon 5G internet has accelerated the de-

velopment in of the field of internet of things (IoT). This has reduced the cost of sensors, and

some industries are now looking to make use of their IoT data by implementing digital twins. By

implementing digital twins businesses are giving more value to the data collected. Digital twins

enable several benefits to businesses. Regarding digital twins with physical assets there are two

mayor areas. The first is structural monitoring. This can be used to reduce the need for onsite

presence of personnel in dangerous or remote places. The other one is predictive maintenance.

By providing more data to models that predict remaining useful lifetime (RUL) their effective-

ness can be greatly improved.

Today there are several companies working on digital twin solutions that answer industry needs

but these are costly and not well suited for the academic work at MTP. Digital twin is broad term

that is loosely defined but it refers to a software representation of a real process or a physical

asset. In this thesis a digital twin refers to a physical asset that can be represented with finite

element model (FE model). The FE model will be provided by FEDEM and the FEDEM software

is responsible for the simulations preformed based on the sensor data. This project also tries to

generalize the setup of these digital twins and make this into a process that can be performed

cheaply and quickly.

2
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1.2 Problem formulation

This report explores the concept of a digital twin and formulates requirements for a digital twin

platform. Then the report looks at the Blue Print system and explores the possibilities of mak-

ing a cloud platform in Azure. The hope is then to introduce new functionality and reducing

complexity while reusing parts of the Blue Print system. The project work can be split into four

major goals:

• Formulate functional requirements for a digital twin.

• Explore the Blue print system.

• Explore Microsoft Azure and formulate a architecture

• Make a prototype of the new architecture.

1.3 Requirements

This section describes the different components of the digital twin system that is required to give

the system it’s desired functionality. The requirements listed make up a minimal viable product

and not all the requirements are in the scope of this project. They are listed because these are

the sub goals the project have worked to achieve.

• Physical asset:

- Finite element model.

- Measure physical conditions.

• Sensors:

- Capture relevant data.

- Stream in real time.

- Quality for sensor is adequate.

• Data acquisition board:

- Signal processing.

- Bi-directional communication.

- Internet connectivity.

- Compatible with Azure.

• Azure Cloud:

- Event consumer

- Data lake, storage.
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- Python backend for FEM simulations.

- Server hosting Web portal.

• Web Portal:

- User interface.

- Different acquisition boards.

- Different sensors belonging to a acquisition board.

- Visualization of real time streaming sensor data.

- Visualization of FE simulations.



Chapter 3

Technology research

In order to begin the process of developing a platform for digital twins it was important to re-

search the different APIs and infrastructures for digital twins provided by Azure. There is already

work on developing a digital twin platform at NTNU and this paper aims at reusing as much as

possible form this solution while adding benefits form Azure. The documentation provided by

azure and an extensive research into the Blueprint system forms the foundation for the litera-

ture study in this chapter. The goal is to combine the Blueprint system with a cloud platform in

azure to answer the requirements listed in section 1.3.

3.1 Azure

In the field of digital twin azure offers a few different types of services. These services differ in

how much functionality they offer. All Instances below are compared to the list of requirements

in the implementation chapter 4.2.

3.1.1 Event consumers

• Azure Event Hub: Is a big data streaming platform and event ingestion service. Azure is

able to receive and process millions of events per second. This makes it ideal for real time

streaming. It is a PaaS platform but integrates Azure functions which means that a server-

less architecture is possible. This helps speed up development and makes the architecture

highly scalable. Azure event hub is supported in many programming languages for flexi-

bility in development. Figure 3.1 below shows the event hub architecture. Events are cre-

ated on the left and then moves to the right, before ending up at either some visualization

or calculation. (microsoft 2018a)

11
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Figure 3.1: Shows the scheme for the event hub architecture

event producers is any entity that is sending data to the event hub. I the case of Digital

twins this is acquisition boards that have collected sensor data. A single event can be data

from several sensors either at a sinlge time or several recordings over an interval. Partition

only reads a subset or partition of the incoming data. Consumer Group subscribes to any

number of partitions. A consumer group enable applications to each have a separate view

of the event stream. This is practical when data streamed is either personal or only for

a small subset of consumers. This way the wind turbines from Equinor is not visable for

anyone else that is using the digital twin platform. Event receivers any entity that reads

the event data from the event hub. Any consumer group may have may event receivers as

is shown in figure 3.1.

• Azure IoT Hub: Is is another type of the Event hub, but it offers some more capabili-

ties. The IoT hub comes with a extended API that includes bidirectional communication.

This enables the digital twin to receive data and commands form the cloud just like the

cloud receives data from the device. IoT hub also supports several messaging formats

like device-to-cloud telemetry, file upload form device and request-reply methods that

enables control of device form the cloud. Like with the event hub the IoT hub scales to

millions of devices, and also provides a secure communication channel between device

and cloud. Azure IoT hub also provides a device provisioning service. This enables the

automatic provisioning of ids to the devices (microsoft 2018b). This is used when new

devices is registered to avoid doing the registration manually.
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Figure 3.2: Shows how the Provisioning service assigns ID’s.

• Azure Digital twin: “Azure Digital Twins is an Azure IoT service that creates comprehensive

models of the physical environment.". This the first line in Azures documentation of the

azure digital twin. The digital twin service from Azure provides the capability of a "spatial

intelligence graph" this graph models the relationship and interactions between devices.

This is the service that offers the most functionality and is built using IoT hub to connect

to devices witch again is a type of event hub.

3.2 Blue Print System

This is the solution developed by students at NTNU in previous years. The Tvilling digital or

Blue print system is built to be a start point for a general purpose digital twin system. The cur-

rent system is built to be general and is designed so adding filters, solvers or other FMUs(othr

digital twin) is possible. Even though this is the case the system is specifically designed for the

HBM data acquisition system and catman as the software this are used on the blue rigg that is

stationed at MTP faculty. Both the Catman software and the HBM data acquisition board are

systems that are relatively expensive. The Catman software is developed to allow data streams

to specific IP addresses but it is worth here to mention that the task of configuring Catman with

the blue print system was a fairly complicated procedure. The set up was not stable if the system

used wifi and an Ethernet cable had to be used in order to have a stable stream from the data

acquisition board. This system is open sourced and as much as possible will be reused for this

system. However, there are parts of the system that can be replaced to add more functionality

and simplify development.

3.3 Raspberry Pi & Arduino

From the research stage it follows that the data acquisition board needed was a board made

for development. The main users for this system will be students at NTNU therefore reducing

cost and complexity in deployment is critical. The data acquisition board should be familiar to
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the user in terms of setup and programming language. The two biggest vendors are either the

Arduino or the Raspberry Pi. In terms of capabilities both have boards that deliver all needed

functionality and more.

The Arduino is a used a lot in classes at NTNU and in the mechatronics lab several boards

are available. The board is required to be able to connect to wifi and none of the Arduino’s

available that the Mechatronics lab have this built in. This means that a new board will have

to by purchased no matter if it’s a arduino or a Raspberry Pi. Following Azure’s github repos-

itories it’s clear that the APIs for Arduino is not yet ready while the Raspberry Pi who sup-

ports several programming languages and thereby several API’s are ready to use for the Rasp-

berry Pi. On closer examination it was also discovered that the Arduino and the other APIs

are very similar, for instance the functions have the same names like "start", "stop" and so on

(https://github.com/Azure/azure-iot-arduino/graphs/contributors n.d.) (https://github.com/Azure/iot/graphs/contributors

n.d.). A prototype made with a Raspberry Pi will therefore be highly transferable to the Arduino

when this API is done. Also, the Raspberry Pi is well suited for this task.



Chapter 4

System overview & Implementation

4.1 System overview

This section takes the previously discussed technologies and requirements and explains how

each part of desired functionality is answered. The system is designed to be able to fulfill the

definition of a digital twin as defined by both Kritziger 2.4 and Dr. Grieves 2.1. Figure 4.1 show

the information flow in the architecture of the system as it is currently implemented. The Rasp-

berry Pi is placed near the physical asset. This asset is then instrumented with sensors that

transmit data to the Raspberry Pi. A WiFi connection between the Raspberry Pi and the cloud

is used to transmit data directly to the cloud. Here illustrated by the cloud surrounding all the

components in the cloud, see figure 4.1. The data received is then processed and the visualisa-

tion is accessible through a web browser.

Figure 4.1: Show the scheme for the digital twin architecture
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4.2 Implementation

4.2.1 Data Acquisition System

The sensors and the Raspberry Pi makes up the data acquisition system in the digital twin sys-

tem. The Raspberry Pi was chosen because it is a versatile development tool that is believed

to be accessible to many students and familiar in setup, there by make the system more user

friendly. The fact that the API was ready was also a important factor in the choice of DAB. This

system have for the benefit of development and time constrain been substituted for a online

simulator and a Python script in this iteration of the system. In real world applications the

Raspberry Pi will receive data from the sensors and through the internet send data directly to

the cloud using the API provided by azure. By using a Raspberry Pi the goal is to reduce cost and

complexity of deploying a digital twin for the end user. Reducing the deployment complexity

and cost will make the system more accessible for students at NTNU.

To help explore the azure API and also to help generalize the system three different devices

have been used to send telemetry to the IoT hub. The devises used are a mobile phone with and

android application, a Python script called "blueRiggSimulation.py" running on a laptop, and

also a online simulated Raspberry Pi with a script called "raspberryPi.js" have been used to send

simulated telemetry to the cloud. The Raspberry Pi is the device that the system will continue

using but the Python script have also been very help full in testing and development. The API

provided by Azure formats all events in a JSON format. This means that the cloud architecture

is device independent. All events handled by the IoT hub are just JSON objects and devices are

treated the same way.

4.2.2 Cloud Architecture

The rest of the digital twin system is contained within the Azure cloud. In the cloud a server is

constantly running two scripts server.js and Chart-device-data.js. server.js is responsible for the

logic of the entire system and Chart-device-data.js handles the visualization and user interac-

tions. The information flow of the cloud architecture starts with an event arriving at the IoT hub.

This is then routed to the consumer group. The server.js is listening to the consumer group and

is triggered when a event arrives there. Server.js then sends data to FEM.py. this is where the

Blue Print system will be implemented, for now only delay is calculated. Then the data is sent

back to server.js. The message is then broadcast through websocket to Chart-device-data.js for

visualization.

Event Consumer: The IoT hub is here implemented as the Event consumer. The IoT hub

provides the necessary functionality through the IoT hub API. Azure digital twin was also con-
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sidered but this only offered more solutions that is not yet part of the system and there by com-

plicating the development. The digital twin service uses the azure iot to keep track of the phys-

ical assets and extending the system with digital twin service can therefore be done if needed

in the future. The Azure IoT hub that is implemented is configured to send the telemetry to a

consumer group that server.js is listening to.

server.js: This is the main logic for the backend and is constantly running. The server.js calls

other scripts as needed during execution. This script is listening for events arriving in the con-

sumer group and as an event is picked up by server.js the event is parsed in to a message. This

is done using the event-hub-reader.js. Then it is sent to the Python script FEM.py. In the Python

script the delay is calculated and the result is sent back to server.js. A websocket connection is

then used to then broadcast sensor data to Chart-device-data.js for visualization.

FEM.py is responsible for the calculations done in the system. It was important in the pro-

totype to have the backend be able to spawn python processes. Spawning a Python process

means that calculations are separate processes with a Python environment. This is so that the

Blueprint system can be implemented at a later stage.

Chart-device-data.js is as previously stated the logic for the frontend. This class keeps the

last 50 data points in memory and plots them. This also handles the user interactions witch for

now is only switching DAB. Figure 4.2 shows how the temperature is plotted with delay. Chart-

device-data.js with the CSS and HTML files are taken from a tutorial on azure IoT hub and reused

of this purpose with only minor changes.

Figure 4.2: Shows the user interface.
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Table Storage is used for the long term data storage. This was the cheaps form of storae while

stil being table based. This was implemented but then later removed because the frontend had

no way of handling the data. This meant that sensor data was just augmenting in the cloud with

out any way of using it or removing it with out scripting or removing from within the azure portal

manually.



Chapter 5

Results

The goal of this thesis was to investigate the concept of a digital twin and explore Azure cloud

services as a potential cloud provider for for digital twin platform. The project looked at the

current solution the Blueprint system hosted here at NTNU and investigated the possibility of

adding functionality while simplifying the current solution and further development by using

Azure.

5.1 digital twin

The concept of a digital twin in this thesis is formulated the definition from both Dr. grieves

and form Kritzinger. In the definition of a digital twin provided by Dr. Grieves, he and John

Vickers states that "the Digital Twin is a set of virtual information constructs that fully describes

a potential or actual physical manufactured product from the micro atomic level to the macro

geometrical level.". In order to address this all digital twins of the system will be represented

by a FE model. In this way FEM calculations can be done, and the physical asset described in

great detail. Kritzinger proposes a digital twin classification where the connection between the

digital twin and the physical asset must be automatic both from the physical to the virtual asset

and the virtual to the physical asset in order to classify system as a digital twin. By using Azure

bi-directional communication it is possible with automated communication in both directions

to be implemented.

5.2 The Blue Print System

A system for digital twin monitoring was already developed by Simen Jensen at MTP. This sys-

tem was designed to be extendable with filters and solvers but is specific for the data acquisition

board and software on the Blue rigg at MTP. The system manages to stream data and by FMUs
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exported form FEDEM it also manages to do real time FEM simulations. By combining the cur-

rent Blueprint system with the platform in azure a great deal of code that is both specific to the

Blue rigg and that handles the byte streams will then be inside the Azure API. This cuts down the

complexity of the system greatly and makes the system more usable for students at NTNU. After

a lot of research into the Blueprint system there are identified parts that are possible to reuse for

the new platform. These parts will require some rewriting but the main functionality will be the

same.

5.3 prototype system

In order to fully understand and to see if in fact a true digital twin could be developed using

Azure a proof of concept have been developed. The digital twin system is currently a streaming

platform that receive data from a data acquisition board and displays this in a web portal. In

order to investigate if the different requirements formulated in 1.3 could be met the system pro-

vides some basic functionality that proved the the different technologies are present and work

together. See chapter 4

There was also a concern about the delay caused by routing data through Azure. In figure

5.1 the delay for 50 events are plotted. The delay is calculated by running a python script on

the local computer and using the computers internal clock to give the event a time stamp that

corresponds to the time the event is sent. Then the message is processed in azure before the

message is received back at the same computer and the time differential is calculated before it

is plotted. Figure 5.1 shows how the delay is plotted the y axis on teh right show teh delay in

milliseconds and the time stamp is plotted along the x axis. The max value is almost 205 ms

and the lowest is almost 165 ms. This delay is fairly typical but variations do accrue. In early

November the same test was carried out and this time the mean value was closer to 130 ms. In

addition to the fact that the mean varies, some values occur that are fare bigger then the mean.

This have been observed to be almost 800ms and could of course be even greater. The test does

not have statistical background for the numbers presented but serves more like example values.
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Figure 5.1: Show the scheme for the digital twin architecture

Although some delay is inflicted on the system by using azure. This values are well with in

acceptable. In order to implement some type of signal processing sensor data have to be aggre-

gated for a couple of seconds to few seconds before the data is sent. In this case the delay caused

by routing through Azure will be relatively small compared to the seconds of delay from the sig-

nal processing. The recorded latency for the Tvilling Digital system without any processing was

between 100 and 200 ms(Norderud Jensen 2019). This is about the same delay that is observed

in the Azure system.



Chapter 6

Discussion

6.1 Requirements

Requirements have been formulated and based on the papers written by Kritzinger and Dr.

Grieves. The requirements are for a minimal viable product and the proof of concept have not

been able to incorporate all desired features. It was necessary to redefine the requirements from

the earlier papers written on development of a digital twin system. Because the new system

incorporates both a self-defined data acquisition system and a cloud architecture with storage.

The project thesis and the master thesis by Simen Jensen(Norderud Jensen 2019) have been used

as starting point for the requirements and then changes and additions have been as needed.

6.2 Digital Twin Definition

It appears that there is no one definition for a digital twin. There are many different definitions

proposed from different papers and these are variation of the definition proposed by Dr. Grieves

(Kritzinger et al. 2018) giving the understanding that a digital twin is a digital counter part to a

physical system. Instead of a new definition Kritzinger proposed a classification system of the

integration level between the physical and virtual. By combining these two the digital twin for

this specific system is defined.

6.3 The Blueprint system

The Blueprint system works as a good starting point for further development and parts of the

solution is applicable to the new system. There are however problems with the systems techni-

cal debt. The better part of 2 months was spent trying to get the system running. This was to a

large extent caused by the HBM acquisition board and the Catman software. These are the parts
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of the system that are specifically developed for the blue rigg system and will not be extended in

the new version. Out of the parts that are transferable it is unclear exactly how much rewriting

is required.

6.4 Prototype

The prototype developed in Azure serves as a proof of concept for the technology research done.

The prototype shows how technologies that are needed work and that they are available in a

Azure environment. Some work still remains on the prototype, it was a goal to run simulations

during this semester but this have not been achieved. This is in part to technical debt in the

Blueprint system but a change in thesis half way in to the semester have also effected the time

spent on development.

Initially there were concerns regarding the delay caused by using azure both from geographi-

cal location and azures allocation of resources. The delay was measured at random times during

the semester and was found to vary from time to time and to have some messages that would

have a lot longer delay than the mean delay value. Even though this is the case by introducing

signal processing this delay would by relatively small in comparison. The delay is also compa-

rable to the delay in Tvilling Digital that was hosted here at NTNU.

Bye developing a system in Azure the digital twin platform is gaining functionality in the form

of bi-directional communication. By introducing the Raspberry Pi the system is greatly gener-

alized and more user friendly. The system is also easier to scale and maintain. The main target

group of this system is perhaps the students at NTNU and cost and fast deployment is important

factors if this system is to be used by the students.

6.5 Challenges

The study is affected by the time constraint the first half of the semester was spent working

on the Blueprint system before it was decided that a new platform would by developed from

scratch. This greatly reduced the time spent on development and the current prototype. This

has resulted in no integration of the Blueprint system into the Azure platform and therefore no

FEM simulations is currently possible. The time spent on trying to further develop the Blueprint

system have become important information as the systems might be merged but to much time

was allocated to this.
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6.6 Future Work

As this report illustrates there is still work to be done for the system to be implemented in Azure.

The data visualization is specific for the current solution and only allows the user to view one

sensor with the delay. The user can change between different DAB but not between the different

sensors form the DAB. There should also be implemented some 3D visualisation of the physical

asset this can be achieved by implementing Ceetron for instance. FEM simulations also needs

to be integrated into the system. The python backend is ready for integration with the Blueprint

system by integrating the Blueprint system a significant amount of time can be saved in the de-

velopment. There is however some uncertainty as to the scope of the integration.

Simulated devices have been used for development up to this point and it is recommended

to continue using these during development. The flexibility and easy access makes them ideal

for generalising the solution. This being said a physical asset and a Raspberry Pi should be de-

ployed in the future to gain real world experience.

In order to reduce the amount of events sent to the IoT hub some signal processing should be

implemented in the Raspberry Pi. The script in the Raspberry Pi should be made specifically for

each physical asset in this way different types of signal processing and number of sensors can be

deployed for each digital twin. This leaves the user with some coding to be done before deploy-

ment but this is deemed a good compromise. Because the Raspberry Pi will be customized for

every asset a message format should therefore be developed so the backend of the azure system

can process a event form a general digital twin.



Chapter 7

Conclution

Definitions for a digital twin have been researched and a meaning of the term have been derived

in the context of this project. Requirements that fulfill the derived meaning of digital twin have

been formulated and a prototype have been developed. By utilizing Azure as a cloud provider,

the digital twin platform gains several advantages. The Azure API will help to generalize the

platform by introducing the Raspberry Pi as an easy to use and easy to modify data acquisition

board. Raspberry Pi can also be used as a micro controller and thereby allowing meaningful bi-

directional communication. Azure cloud platform is flexible and the possibility of running the

Blueprint system in azure may speed up further development. The introduction of Raspberry

Pi and the Azure API also helps to reduce technical debt in the Tvilling Digital system. Specifi-

cally by removing the part of the old system that is responsible for communication between the

software Catman and the digital twin platform.
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Appendix A

Quickstart

A.1 Prerequisites

Python 3.7

Git

NodeJS

Nodejs can be installed from this link:

https://nodejs.org/en/

A.2 Importing project

extract all files from from the zip file to a file location of your choice.

A.3 Packages

A.3.1 Pyhton

open a new terminal window and copy following comand:

pip install azure-iot-device

A.3.2 NodeJS

If You dont add Nodejs to your "path" in environment variables open the NodeJS command

promt. Copy this commands in the window:

27



A.4 Project configurations 28

• npm install @azure/event-hubs

• npm install azure-storage

• npm install eslint

• npm install express

• npm install ws

A.4 Project configurations

in the project open server.js navigate to line 32. Here you replace "YOUR INTERPRETERS NAME"

with the name for your interpreter.

The project are now ready to run. In your node promp navigate to the project folder and

copy this command:

Node server.js

The web at is now running. Open a web browser of your choice in the address field write:

localhost:3000



Appendix C

Raspberry Pi Code

This appendix contains the code that is used to read sensor data from MinIMU-9
v5 and send the data to the platform.

C.1 IMUv5m4.py

Code listing C.1: IMUv5m4.py: The main for running the sensor reading.

# socket configuration
from math import degrees

UDP_IP = "1.2.3.4"
UDP_PORT = 27015

# number of connected sensors
N = 1

# --------------------------------------------------------------------------------
# GENERAL definitions
# --------------------------------------------------------------------------------

# I2C bus and register
from smbus import SMBus

BUS = SMBus(1)
LSM = 0x6b # 3-axis gyroscope and 3-axis accelerometer
LIS = 0x1e # 3-axis magnetometer

# socket configuration and check for connection
import socket
import time

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
socket_check = 1
while (socket_check > 0):

socket_check = sock.connect_ex((UDP_IP, UDP_PORT))
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time.sleep(1)

# --------------------------------------------------------------------------------
# functions
# --------------------------------------------------------------------------------

# from numpy import pi
pi = 3.14

def socket_send(INCdata):
datastring = ’’
for i in range(N):

for k in range(2):
datastring = datastring + ’%.8f’ % (pi / 180 * INCdata[i][k]) + ’,␣’

sock.sendto(datastring, (UDP_IP, UDP_PORT))

# --------------------------------------------------------------------------------
# sensor connection
# --------------------------------------------------------------------------------

# import functions
from func_sensor_register import SENregister
from func_sensor_check import SENcheck
from func_sensor_config import SENconfig

# definitions
# Sout = [[False, False], [True, False], [False, True], [True, True]]
Sind = 0

# set register definitions
(LSMconf_gyro, LSMconf_acc, LISconf) = SENregister(BUS, LSM, LIS)

# go through all sensors
print(’’)

# check if sensor is available
Sind = SENcheck(BUS, LSM, LIS)

# perform sensor configuration
if (Sind == 2):

SENconfig(BUS, LSM, LIS)
print(’IMU␣online’)

else:
print(’IMU␣offline’)

# --------------------------------------------------------------------------------
# sensor measurements
# --------------------------------------------------------------------------------

# import functions
from func_sensor_read import XYZ_data_1
from func_sensor_read import XYZ_data_n

# definitions
# from numpy import zeros
INCini = [[0., 0., 0., 0.]] # zeros([N,4])
INCdata = [[0., 0., 0., 0.]] # zeros([N,4])
SENdir = [’X’, ’Y’]
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# initial measurement step

# read and store sensor data
INCdata = XYZ_data_1(BUS, LSMconf_gyro, LSMconf_acc)
INCini = INCdata

# kafka connection
import digitalTwinPlt

dthub = digitalTwinPlt.Connect(device_id=’tingenSAP’,
topic=’demo’,
receiving_partition=1)

start_time = tid = time.time()

# measurement step 2-n
def pause(is_paused=True):

while is_paused:
inst = dthub.receive()
for _topic, _partition_msg in inst.items():

for _m in _partition_msg:
if _m.value == b’start’:

is_paused = False

try:
while True:

# read and update sensor
radians, force = XYZ_data_n(BUS, LSMconf_gyro, LSMconf_acc, INCdata)

if time.time() - tid > 0.01:
print("rotation:␣" + str(round(radians, 4)) + "␣|||||␣" +

"degrees:␣" + str(round(degrees(radians), 4)) + "␣|||||␣" +
"force:␣" + str(round(force, 4)) + "␣|||||␣" +
"time␣diff:␣" + str(time.time() - tid))

tid = time.time()

dthub.add_to_message(name=’Cantilever_Angle_radians’, value=radians)
dthub.add_to_message(name=’Input_F_in’, value=force)
dthub.send()
instruction = dthub.receive()
for topic, partition_msg in instruction.items():

for m in partition_msg:
if m.value == b’pause’:

pause()

print("successfully␣sent␣to:␣" + str(dthub.topic))

start_time = time.time()

time.sleep(0)
# send data over sockect connection
# socket_send(INCdata)

except:
sock.close()
exit()
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C.2 funk_sensor_config.py

Code listing C.2: funk_sensor_config.py

# --------------------------------------------------------------------------------
# FUNCTION, sensor configuration
#
# danielz, 11/2015
# --------------------------------------------------------------------------------

# function definition

def SENconfig(BUS, LSM, LIS):
# LSM6DS33 datasheet, page 46-54

# 104 Hz (high performance), 2g accelerometer full-scale selection,
# 50Hz anti-aliasing filter bandwidth selection
BUS.write_byte_data(LSM, 0x10, 0b01000011)

# 104 Hz (high performance),
# 245 dps (degrees per second), full scale disabled
BUS.write_byte_data(LSM, 0x11, 0b01000000)

# high pass filter gyroscope enabled
BUS.write_byte_data(LSM, 0x16, 0b01000000)

# low pass filter accelerometer enabled
BUS.write_byte_data(LSM, 0x19, 0b00111100)

C.3 funk_sensor_check.py

Code listing C.3: funk_sensor_check.py

# --------------------------------------------------------------------------------
# FUNCTION, sensor check
#
# danielz, 11/2015
# --------------------------------------------------------------------------------

# whoami identification
LSM_WHOAMI = 0b01101001
LIS_WHOAMI = 0b00111101

# function definition
def SENcheck(BUS, LSM, LIS):

# definitions
Sind = 0
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# LSM, 3-axis gyroscope and 3-axis accelerometer
try:

if (BUS.read_byte_data(LSM, 0x0f) == LSM_WHOAMI):
Sind = Sind + 1

except IOError as e:
Sind = Sind

# LIS, 3-axis magnetometer
try:

if (BUS.read_byte_data(LIS, 0x0f) == LIS_WHOAMI):
Sind = Sind + 1

except IOError as e:
Sind = Sind

# return value
return (Sind)

C.4 funk_sensor_read.py

Code listing C.4: funk_sensor_read.py

# --------------------------------------------------------------------------------
# FUNCTION, sensor read
#
# --------------------------------------------------------------------------------

# --------------------------------------------------------------------------------
# definitions
# --------------------------------------------------------------------------------

pi = 3.14
raddeg = pi / 180

# filter parameters
K = 0.90
K1 = 1 - K
time_diff = 0.005

# Cantilever dimentions

CL = 0.300 # [m]
CH = 0.025 # [m]
CB = 0.001 # [m]
CE = 210000000000 # (N/ m ) Cantilever Elastisity module
CA = CH * CB
CIx = CB * pow(CH, 3) / 12
CIy = CH * pow(CB, 3) / 12

beam = raddeg * 2 * CE * CIy / pow(CL, 2)

# degrees of freedom
DOF = 2

# import modules
from math import sqrt
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from math import atan2
from math import degrees

# --------------------------------------------------------------------------------
# functions
# --------------------------------------------------------------------------------

def twos_comp_combine(msb, lsb):
twos_comp = 256 * msb + lsb
if (twos_comp >= 32768):

return (twos_comp - 65536)
else:

return (twos_comp)

def XYZ_sensor_data(BUS, LSMconf_gyro, LSMconf_acc):
# Gyroscope
LSMdata_gyro = [0] * DOF
for i in range(DOF):

LSMdata_gyro[i] = twos_comp_combine(
BUS.read_byte_data(LSMconf_gyro[0], LSMconf_gyro[2 * i + 2]),
BUS.read_byte_data(

LSMconf_gyro[0], LSMconf_gyro[2 * i + 1])) \
* LSMconf_gyro[7]

# Accelerometer
LSMdata_acc = [0] * 3
for i in range(3):

LSMdata_acc[i] = twos_comp_combine(
BUS.read_byte_data(LSMconf_acc[0], LSMconf_acc[2 * i + 2]),
BUS.read_byte_data(

LSMconf_acc[0], LSMconf_acc[2 * i + 1])) \
* LSMconf_acc[7]

# return

return (LSMdata_gyro, LSMdata_acc)

def XYZ_data_1(BUS, LSMconf_gyro, LSMconf_acc):
# sensor reading
(LSMdata_gyro, LSMdata_acc) = XYZ_sensor_data(BUS,

LSMconf_gyro,
LSMconf_acc)

# initial values
INC = [0] * 2 * DOF
for i in range(DOF):

INC[i] = get_rotation(LSMdata_acc, i)
INC[i + DOF] = LSMdata_gyro[i]

# print(INC)

# return
return (INC)

def XYZ_data_n(BUS, LSMconf_gyro, LSMconf_acc, INC):
# sensor reading
(LSMdata_gyro, LSMdata_acc) = XYZ_sensor_data(BUS,

LSMconf_gyro,
LSMconf_acc)
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# complementary filter
for i in range(DOF):

LSMdata_gyro[i] -= INC[i + DOF]
gyro_delta = (LSMdata_gyro[i] * time_diff)
rotation = get_rotation(LSMdata_acc, i)
INC[i] = K * (INC[i] + gyro_delta) + (K1 * (rotation))

force = (90 - INC[1]) * beam
# return
return ((90 - INC[1]) * raddeg), force

def dist(a, b):
return (sqrt(pow(a, 2) + pow(b, 2)))

def get_rotation(LSMdata_acc, i):
if (i == 0):

radians = atan2(LSMdata_acc[1], dist(LSMdata_acc[0], LSMdata_acc[2]))
return (-degrees(radians))

elif (i == 1):
radians = atan2(LSMdata_acc[0], dist(LSMdata_acc[1], LSMdata_acc[2]))
return (degrees(radians))

elif (i == 2):
radians = atan2(LSMdata_acc[2], dist(LSMdata_acc[0], LSMdata_acc[1]))
return (degrees(radians))

C.5 funk_sensor_register.py

Code listing C.5: funk_sensor_register.py

# --------------------------------------------------------------------------------
# FUNCTION, sensor registers
#
# --------------------------------------------------------------------------------

# import modules
from numpy import pi

# function definition
def SENregister(BUS, LSM, LIS):

# LSM6DS33 datasheet, page 37-38
# ----------------------------------------------------------------------------

# Gyroscope output register
LSMconf_gyro = []
LSMconf_gyro.append(LSM)

# OUTX_L_G - Angular rate sensor pitch axis (X) angular rate output register (r)
LSMconf_gyro.append(0x22)

# OUTX_H_G - Angular rate sensor pitch axis (X) angular rate output register (r)
LSMconf_gyro.append(0x23)
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# OUTY_L_G - Angular rate sensor roll axis (Y) angular rate output register (r)
LSMconf_gyro.append(0x24)

# OUTY_H_G - Angular rate sensor roll axis (Y) angular rate output register (r)
LSMconf_gyro.append(0x25)

# OUTZ_L_G - Angular rate sensor yaw axis (Z) angular rate output register (r)
LSMconf_gyro.append(0x26)

# OUTZ_H_G - Angular rate sensor yaw axis (Z) angular rate output register (r)
LSMconf_gyro.append(0x27)

# scaled angular rate sensitivity for 245 dps
LSMconf_gyro.append(0.00875 * pi / 180)

# Accelerometer output register
LSMconf_acc = []
LSMconf_acc.append(LSM)

# OUTX_L_XL - Linear acceleration sensor X-axis output register (r)
LSMconf_acc.append(0x28)

# OUTX_H_XL - Linear acceleration sensor X-axis output register (r)
LSMconf_acc.append(0x29)

# OUTY_L_XL - Linear acceleration sensor Y-axis output register (r)
LSMconf_acc.append(0x2A)

# OUTY_H_XL - Linear acceleration sensor Y-axis output register (r)
LSMconf_acc.append(0x2B)

# OUTY_L_XL - Linear acceleration sensor Z-axis output register (r)
LSMconf_acc.append(0x2C)

# OUTY_H_XL - Linear acceleration sensor Z-axis output register (r)
LSMconf_acc.append(0x2D)

# scaled linear acceleration sensitivity for 2g full-scale
LSMconf_acc.append(0.000061 * 9.81)

# LIS3MDL datasheet, page 23
# ----------------------------------------------------------------------------
# Magnetometer output registers
LISconf = []
LISconf.append(LIS)
LISconf.append(0x28) # OUT_X_L - x-axis data output
LISconf.append(0x29) # OUT_X_H - x-axis data output
LISconf.append(0x2A) # OUT_Y_L - x-axis data output
LISconf.append(0x2B) # OUT_Y_H - x-axis data output
LISconf.append(0x2C) # OUT_Z_L - x-axis data output
LISconf.append(0x2D) # OUT_Z_H - x-axis data output

# return values
# ----------------------------------------------------------------------------
return (LSMconf_gyro, LSMconf_acc, LISconf)



Appendix D

Bluerig

Figure D.1: Illustration of how the "Bluerig" or "Testrig" asset is constructed.
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class main.Settings ( settings_module )
Class for application settings from settings file

main.main ( args )
Starts the application. Sets up settings and calls run app. :param args: Command line args if the
script is run as script :return: Application

app.check_for_existing_topics ( app )
Checks kafka for existing topics and adds them to the app. :return: nothing

app.cleanup_background_tasks ( app )
A method to be called on shutdown, closes the WebSocket and Kafka connections

app.init_app ( settings ) → aiohttp.web_app.Application
Initializes and starts the server

app.start_background_tasks ( app )
A method to be called on startup, initiates the Kafka consumer loop.

views.bidirectional_communication ( request: aiohttp.web_request.Request )
Sends single command to topic that is defined in the request. :return: status OK if message is sent.

views.index ( request: aiohttp.web_request.Request )
The API index
A standard HTTP request will return a sample page with a simple example of api use. A WebSocket
request will initiate a websocket connection making it possible to retrieve measurement and simula-
tion data.
Available endpoints are - /client for information about the clients websocket connections - /data-
sources/ for measurement data sources - /processors/ for running processors on the data -
/blueprints/ for the blueprints used to create processors - /fmus/ for available FMUs (for the fmu
blueprint) - /models/ for available models (for the fedem blueprint) - /topics/ for all available data
sources (datasources and processors)

views.models ( request: aiohttp.web_request.Request )
List available models for the fedem blueprint

views.session_endpoint ( request: aiohttp.web_request.Request )
Only returns a session cookie
Generates and returns a session cookie.
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views.subscribe ( request: aiohttp.web_request.Request )
Subscribe to the given topic

views.topics ( request: aiohttp.web_request.Request )
Lists the available data sources for plotting or processors
Append the id of a topic to get details about only that topic Append the id of a topic and /subscribe
to subscribe to a topic Append the id of a topic and /unsubscribe to unsubscribe to a topic Append
the id of a topic and /history to get historic data from a topic

views.topics_create ( request: aiohttp.web_request.Request )
Creates new Kafka topic. :return:

views.topics_delete ( request: aiohttp.web_request.Request )
Deletes topic. :return: Status

views.topics_detail ( request: aiohttp.web_request.Request )
Show a single topic
Append /subscribe to subscribe to the topic Append /unsubscribe to unsubscribe to the topic
Append /history to get historic data from a topic

views.unsubscribe ( request: aiohttp.web_request.Request )
Unsubscribe to the given topic

class utils.RouteTableDefDocs
A custom RouteTableDef that also creates /docs pages with the docstring of the functions.

static get_docs_response ( handler )
Creates a new function that returns the docs of the given function

route ( method: str, path: str, **kwargs ) → Callable[Union[typing.Type[aiohttp.abc.AbstractView],
typing.Callable[[NoneType], typing.Awaitable[NoneType]]], Union[typing.Type[aiohttp.abc.Ab-
stractView], typing.Callable[[NoneType], typing.Awaitable[NoneType]]]]

Adds the given function to routes, then attempts to add the docstring of the function to /docs

utils.add_partition_for_simulation ( app, topic )
Adds one new partition to the topic

utils.find_in_dir ( filename, parent_directory='' )
Checks if the given file is present in the given directory and returns the file if found. Raises a HTTP-
NotFound exception otherwise

utils.getClient ( request: aiohttp.web_request.Request )
Returns the client object belonging to the owner of the request.

utils.make_serializable ( o )
Makes the given object JSON serializable by turning it into a structure of dicts and strings.

utils.try_get_all ( post, key, parser=None )
Attempt to get all values with the given key from the given post request. Attempts to parse the values
using the parser if a parser is given. Raises a HTTPException if the key is not found or the parsing
fails.

class client.Client
Handles connections to a clients websocket connections
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close (  )
Will close all the clients websocket connections

dict_repr (  ) → dict
Returns a the number of connections the client has

receive ( topic, messages )
Asynchronously transmit data to the clients websocket connections
Will add the data to the buffer and send it when the buffer becomes large enough
Parameters • topic – the topic the data received from

• bytes – the data received as bytes

kafkaconsumer.consume_kafka ( app: aiohttp.web_app.Application )
The function responsible for delivering data to the connected clients.

class processors.processor.Processor ( processor_id: str, blueprint_id: str, blueprint_path: str, init_-
params: dict, topic: str, source_topic: str, source_format: str, min_input_spacing: float, min_step_spacing: float,
min_output_spacing: float, processor_root_dir: str, kafka_server: str )

The main process endpoint for processor processes

retrieve_status (  )
Retrieves the status of the processor process
Can only be called after initialization. Should be run in a separate thread to prevent the connec-
tion from blocking the main thread :return: the processors status as a dict

set_inputs ( input_refs, measurement_refs, measurement_proportions )
Sets the input values, must not be called before start
Parameters output_refs – the indices of the inputs that will be used

set_outputs ( output_refs )
Sets the output values, must not be called before start
Parameters • input_refs – the indices of the inputs that will be used

• measurement_refs – the indices of the input data values that will be used.
Must be in the same order as input_ref.

• measurement_proportions – list of scales to be used on values before
inputting them. Must be in the same order as input_ref.

start ( input_refs, measurement_refs, measurement_proportions, output_refs, start_params )
Starts the process, must not be called before init_results
Parameters • input_refs – the indices of the inputs that will be used

• measurement_refs – the indices of the input data values that will be used.
Must be in the same order as input_ref.

• measurement_proportions – list of scales to be used on values before
inputting them. Must be in the same order as input_ref.

• output_refs – the indices of the inputs that will be used
• start_params – the processors start parameters as a dict
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Returns the processors status as a dict

stop (  )
Attempts to stop the process nicely, killing it otherwise

class processors.processor.Variable ( valueReference: int, name: str )
A simple container class for variable attributes

processors.processor.processor_process ( connection: multiprocessing.connection.Connection,
blueprint_path: str, init_params: dict, processor_dir: str, topic: str, source_topic: str, source_format: str,
kafka_server: str, min_input_spacing: float, min_step_spacing: float, min_output_spacing: float )

Runs the given blueprint as a processor
Is meant to be run in a separate process
Parameters • connection – a connection object to communicate with the main process

• blueprint_path – the path to the blueprint folder
• init_params – the initialization parameters to the processor as a dictionary
• processor_dir – the directory the created process will run in
• topic – the topic the process will send results to
• source_topic – the topic the process will receive data from
• source_format – the byte format of the data the process will receive
• kafka_server – the address of the kafka bootstrap server the process will use
• min_input_spacing – the minimum time between each input to the processor
• min_step_spacing – the minimum time between each step function call on the

processor
• min_output_spacing – the minimum time between each results retrieval from

the processor

Returns

processors.views.processor_create ( request: aiohttp.web_request.Request )
Create a new processor from post request.
Post params:

• id:* id of new processor instance max 20 chars, first char must be alphabetic or underscore,
other chars must be alphabetic, digit or underscore

• blueprint:* id of blueprint to be used max 20 chars, first char must be alphabetic or underscore,
other chars must be alphabetic, digit or underscore

• init_params: the processor specific initialization variables as a json string
• topic:* topic to use as input to processor
• min_output_interval: the shortest time allowed between each output from processor in seconds

processors.views.processor_list ( request: aiohttp.web_request.Request )
List all created processors :return: List of processor names

processors.views.processor_start ( request: aiohttp.web_request.Request )
Start a processor from post request.
Post params:
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• id:* id of processor instance max 20 chars, first char must be alphabetic or underscore, other
chars must be alphabetic, digit or underscore

• start_params: the processor specific start parameters as a json string
• input_ref: list of reference values to the inputs to be used
• output_ref: list of reference values to the outputs to be used
• measurement_ref: list of reference values to the measurement inputs to be used for the inputs.

Must be in the same order as input_ref.
• measurement_proportion: list of scales to be used on measurement values before inputting

them. Must be in the same order as input_ref.

processors.views.processor_stop ( request: aiohttp.web_request.Request )
Stop the processor with the given id.

processors.views.retrieve_processor_status ( app, processor_instance )
Retrieve the initialization results from a processor
Will put the results in app[‘topics’] and return them.

class digitalTwinPltAPI.digitalTwinPlt.Connect ( device_id, topic )
Class that holds the connection to the Kafka server. This resides in the edge solution. Therefore
configurations have too be done manually.

add_to_message ( name, value=None )
Adds or updates attributes in the message.

receive (  )
Listens to the receiving topic for in coming  messages

send ( data=None )
sends the message to Kafka topic

digitalTwinPltAPI.blueRiggdeviceSim.sensor_sampling ( dtMessaging )
Example method showing applications of bidirectional communication.

digitalTwinPltAPI.theThingDeviceSim.pause ( is_paused=True )
Example method showing applications of bidirectional communication.

digitalTwinPltAPI.theThingDeviceSim.sensor_data ( dtMessaging )
Loop running indefinitely generating simulated data. :param dtMessaging: This is the object holding
the connection to Kafka

blueprints.views.blueprint_detail ( request: aiohttp.web_request.Request )
Get detailed information for the blueprint with the given id

blueprints.views.blueprint_list ( request: aiohttp.web_request.Request )
List all uploaded blueprints.
Append a blueprint id to get more information about a listed blueprint.

blueprints.views.fmu_model_variables_and_valuereferences ( request: aiohttp.web_re-
quest.Request )

Get name and internal value reference of the fmu instance.
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Returns Name and value reference of all variables in selected fmu

blueprints.views.retrieve_method_info ( class_body, method_name, params_ignore=1 ) →
Tuple[str, List]

Retrieves docs and parameters from the method
Parameters • class_body – the body of the class the method belongs to

• method_name – the name of the method
• params_ignore – how many of the first params to ignore, defaults to 1 (only

ignore self)

Returns a tuple containing both the docstring of the method and a list of parameters with name
and default value

A blueprint for running FMUs.

class blueprints.fmu.__init__.P ( fmu='Cantilever.fmu' )
The interface between the application and the FMU

start ( start_time, time_step_input_ref='-1' )
Starts the FMU
Parameters • start_time – not used in this blueprint

• time_step_input_ref – optional value for custom time_step input

blueprints.fmu.__init__.prepare_outputs ( output_refs )
Create FMUPy compatible value references and outputs buffer from output_refs
Parameters output_refs – list of output indices
Returns tuple with outputs buffer and value reference list

• Index
• Module Index
• Search Page
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Python Module Index

a
app, ??

b
blueprints

blueprints.fmu.__init__, ??
blueprints.views, ??

c
client, ??

d
digitalTwinPltAPI

digitalTwinPltAPI.blueRiggdeviceSim,
??

digitalTwinPltAPI.digitalTwinPlt,
??

digitalTwinPltAPI.theThingDeviceSim,
??

k
kafkaconsumer, ??

m
main, ??

p
processors

processors.processor, ??
processors.views, ??

s
settings, ??

u
utils, ??

v
views, ??
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Index

A
add_partition_for_simulation() (in module utils),

2
add_to_message() (digitalTwinPltAPI.digi-

talTwinPlt.Connect method), 5
app (module), 1

B
bidirectional_communication() (in module

views), 1
blueprint_detail() (in module blueprints.views), 5
blueprint_list() (in module blueprints.views), 5
blueprints.fmu.__init__ (module), 6
blueprints.views (module), 5

C
check_for_existing_topics() (in module app), 1
cleanup_background_tasks() (in module app), 1
Client (class in client), 2
client (module), 2
close() (client.Client method), 3
Connect (class in digitalTwinPltAPI.digitalTwin-

Plt), 5
consume_kafka() (in module kafkaconsumer), 3

D
dict_repr() (client.Client method), 3
digitalTwinPltAPI.blueRiggdeviceSim (module),

5
digitalTwinPltAPI.digitalTwinPlt (module), 5
digitalTwinPltAPI.theThingDeviceSim (module),

5

F
find_in_dir() (in module utils), 2
fmu_model_variables_and_valuereferences() (in

module blueprints.views), 5

G
get_docs_response() (utils.RouteTableDefDocs

static method), 2
getClient() (in module utils), 2

I
index() (in module views), 1
init_app() (in module app), 1

K
kafkaconsumer (module), 3

M
main (module), 1
main() (in module main), 1
make_serializable() (in module utils), 2
models() (in module views), 1

P
P (class in blueprints.fmu.__init__), 6
pause() (in module digitalTwinPltAPI.-

theThingDeviceSim), 5
prepare_outputs() (in module blueprints.f-

mu.__init__), 6
Processor (class in processors.processor), 3
processor_create() (in module processors.views),
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processor_list() (in module processors.views), 4
processor_process() (in module processors.pro-

cessor), 4
processor_start() (in module processors.views), 4
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Figure F.1: Shows the delay for the last 300 data points.
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Figure F.2: Shows the delay for the last 300 simulated data points.



108 Espen M. Sandtveit: Digital Twin Deployment

Figure F.3: Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples a second and the K value at 0.9.
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Figure F.4: Illustrates measured and calculated values for the physical response
of "Tingen" with 100 samples a second and the K value at 0.1.
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Figure F.5: Illustrates measured and calculated values for the physical response
of "Tingen" with 20 samples a second.


