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Abstract

Monitoring wind turbine components through vibration signals enable operators
to detect faults at an early stage, reducing operation and maintenance costs and
improving reliability. Consequently, operators such as TrønderEnergi wish to imple-
ment monitoring systems utilising vibration signals. This thesis examined vibration
signals from four wind turbines owned by TrønderEnergi in order to detect faults
and fault development of gears and bearings. In addition, the research explored
whether a relationship between start-stop cycles and degradation existed. Most
research relies on component dimensions and state when monitoring conditions to
validate their results. This study, however, aims to demonstrate the potential for
exploratory analysis using only vibration and operational data, when component
dimensions and component status is unavailable from the manufacturer.

The signals, recorded from August 2018 to January 2020, were analysed using two
approaches. The first was a traditional vibration analysis consisting of order analy-
sis used to inspect gears and an envelope order analysis applied to study bearings.
The traditional approach was used to detect faults and fault development over
time by inspecting spectrums. Spectrum comparison was carried out. The second
approach was a data-driven clustering method using the K-means clustering algo-
rithm, with the aim of detecting fault development over time. Documented features
from previous literature were extracted from the signals, enabling the clustering
method to identify transient signals and non-linearities, thus detecting fault devel-
opment over time.

The results of the traditional vibration analysis suggested that one of the turbines
could have an early parallel gear and a bearing fault. The same turbine had the
highest number of start-stop cycles, which suggested a relation between start-stop
cycles and faults. The traditional vibration analysis and the clustering results
indicated that no fault development had occurred during the time period. This
either suggested that the proposed fault development methods were unable to de-
tect an actual deterioration over time, or that no fault development existed in the
signals. The missing information regarding the component dimensions limited the
conclusiveness of the results. This study would greatly benefit from knowing this
information, and it is recommended that efforts are made to obtain it from the
wind turbine manufacturers in future projects.
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Sammendrag

Overvåking av vindturbinkomponenter ved bruk av vibrasjonssignaler tillater oper-
atører å detektere tidlige feil. Dette bidrar til å redusere kostnader tilknyttet drift
og vedlikehold samt redusere driftstans. Operatører som TrønderEnergi ønsker der-
for å implementere overvåkningssystemer for vibrasjonssignaler. Denne masteropp-
gaven undersøker vibrasjonssignaler fra fire vindturbiner eid av TrønderEnergi for
å oppdage feil og feilutvikling av komponenter i girboksen og kulelager tilknyttet
høyhastighetsakslingen. Studiet undersøker også om det finnes et forhold mellom
antall start-stopp sykluser og feil. Tidligere relevant forskning støtter seg på in-
formasjon om komponentenes dimensjoner og tilstand for å validere resultatene.
Denne oppgaven skiller seg fra andre ved at denne informasjonen var utilgjengelig
fra produsenten.

Vibrasjonssignalene var hentet fra august 2018 til januar 2020 og ble analysert med
to metoder. Den første metoden var en tradisjonell vibrasjonsanalyse besående av
en order analyse for å oppdage girfeil og en evelope order analyse for å finne feil i
kulelager. Den overordnede hensikten med den tradisjonelle metoden var å oppdage
feil og feilutvikling over tid. Her var spektrum-analyse et sentralt verktøy. Den
andre metoden var en datadreven clustering-teknikk implementert med K-means
algoritmen. For å kunne skille ut transiente signaler og ikke-lineære sammenhenger
som kunne indikere feil, ble veldokumenterte attributter trukket ut fra signalene.
Målet med clustering-teknikken var å oppdage feilutvikling over tid.

Resultatene fra den tradisjonelle vibrasjonsanalysen indikerte at en av turbinene
hadde en tidlig kulelager- og girfeil. Ettersom den samme turbinen hadde betydelig
flere start-stopp sykluser enn de andre, pekte det på en sammenheng mellom start-
stopp sykluser og feil. Resultatene fra den tradisjonelle og den datadrevne metoden
viste ingen tegn på feilutvikling. Dette tydet enten på at de to foreslåtte metodene
ikke var i stand til å oppdage noen feilutvikling, eller at det faktisk ikke eksisterte
noen feilutvikling. På bakgrunn av de manglende komponentdimensjonene, kunne
ikke en endelig konklusjon tas med sikkerhet. Denne studien viser at det er svært
hensiktsmessig å innhente denne informasjonen for fremtidige prosjekter.
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Chapter 1
Introduction

1.1 Topic and Context
The past decade has seen a rapid development of wind parks as renewable en-
ergy sources, both on-shore and off-shore (Lee and Zhao, 2020). Along with this
growth, finding ways to minimise costs and maximise performance has become a
key concern within the field. One area of interest is the operation and maintenance
(O&M) of wind turbines (WTs) which, as estimated by The International Renew-
able Energy Agency (IRENA) (2012), accounts for up to 25 % of the levelised cost
of energy (LCOE: the cost of the power produced).

Norwegian wind power production is estimated to increase from 2,85 TWh in 2017
to 25 TWh in 2030 (Bartnes et al., 2018). Norwegian power company TrønderEn-
ergi has a clear ambition to be a part of the development. TrønderEnergi currently
operates and maintains four wind parks consisting of 51 WTs and is the co-owner of
several other wind parks. Early next year, TrønderEnergi will also add Roan wind
park, Norway’s second largest wind farm comprising of 71 WTs, to its portfolio.
The expansion heightens the need for cost-effective and efficient O&M of the firm’s
WTs (Viseth, 2018).

WTs are subject to extreme and varying loads due to varying winds, start-ups,
shutdowns and emergency stops. These conditions cause significant amounts of
strain on the mechanical components. Gearbox components, with a design life of
20 years, have been reported to fail prematurely; after only 5-7 years (Barszcz and
Randall, 2009; Coultate and Hornemann, 2018). Research suggests that a high
number of start-stop cycles may degrade gearbox components (Drago, 2007). Ad-
ditionally, Commission (2019)1 informs that WTs are designed for 50 start/stop
cycles per year. Early gearbox failure is also attributed to the heavy duty gear-
boxes used in WTs, designed for other industry applications with different load

1Section 7.4.4 (Start-up (DLC 3.1 to 3.3)) in Commission (2019)

2



patterns (Barszcz, 2019; Musial et al., 2007).

Condition monitoring (CM) works by observing mechanical components to identify
changes that can indicate an emerging fault (Randall, 2011). CM aims to replace
or repair components ahead of failure, saving time and costs. Vibration analysis of
mechanical components is effectively paired with CM, and highly-developed signal
processing techniques allows for weak fault impulses to be detected even in the
presence of large noise from other rotating components.

Vibration from WT gearboxes are valuable to monitor due to their high failure
rate (Musial et al., 2007). Components in the gearbox that are vulnerable to fail-
ure are bearings, parallel gears and planetary gears. High failure rates are also
prominent in bearings connected to the power-producing high-speed shaft (HSS)
(Musial et al., 2007). The HSS is connected to the gearbox, thus HSS vibration
measurements will also contain any gearbox fault impulses.

Traditional vibration analysis (TVA) utilises signal processing and frequency anal-
ysis to detect faults and changes in vibration signals from CM systems. TVA
provides a visual interpretation easily understood by vibration analysts (Barszcz
and Randall, 2009). However, TVA often requires specific information regarding
the components, e.g. bearing dimensions, to support the analysis. This kind of
information is not always provided by manufacturers. Domain knowledge is also
advantageous with TVA.

TVA is applied across many different industries. Zhao et al. (2013) discovered bear-
ing faults from real, noisy locomotive vibrations and Barszcz and Randall (2009)
detected planetary gear faults in real, noisy WT vibration data. Guo et al. (2012a)
detected bearing faults in an experimental setup. The common denominator with
these applications was that the faults were known, and the components’ dimensions
were familiar. Hence, the methods and results could be validated.

Data-driven approaches using machine learning (ML), a sub-field within artificial
intelligence (AI), can be used to detect changes in large amounts of vibration data.
The accessibility of powerful computing hardware has accelerated such analysis
methods. However, results from ML methods often lack interpretability (Ribeiro
et al., 2016), and may be difficult to rely on if the results are not validated.

Data-driven methods with ML are used in a variety of settings. Ben Ali et al.
(2018) used machine learning to detect WT bearing faults in HSS, Liu et al. (2016)
detected imbalance faults in WTs. The research was validated in both papers
using WT vibration data with known faults. Yiakopoulos et al. (2011) and Huitao
et al. (2018) applied data-driven methods to detect bearing and gear faults using
laboratory set ups. The methods were validated using known faults.
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1.2 Focus and Scope
The data to be examined in this thesis was streamed from four WTs located at
Skomakerfjellet. The WTs have been operating since 2016. The data consisted of
vibration signals from a Vestas Condition Monitoring (CM) system, sampled at
25.6 kHz from August 2018 to January 2020. Access to the data was provided by
the Norwegian power company TrønderEnergi.

In addition to TrønderEnergi wanting to expand their CM systems, the four WTs
being analysed had logged between 350 - 700 start-stop cycles per year, with one
of them having approximately twice as many in total as the other three. On-site
WT operators had not reported any faults on the WTs. With this information in
mind, TrønderEnergi requested for a vibration analysis to be carried out on the
WTs, to look for indications of early mechanical faults.

As mentioned, gears and bearings in gearboxes, as well as bearings associated with
the high-speed shaft, have the highest failure rates in WTs. Thus, gear and bearing
faults were selected for further analysis. Specifically, the vibration measurements
recorded on the HSS were studied.

Three crucial pieces of information regarding the WTs in this thesis were lacking.
(i) The dimensions of the gears and bearings were unknown. (ii) The state of
the gearboxes and bearings were not given. (iii) Even though the turbines were
assembled by Vestas at the same time, there was uncertainty whether the same
drive-train components were used.

1.2.1 Research Questions
Other researchers usually rely on the two first aforementioned factors to validate
that their methods indeed did detect present faults. Contrarily, this thesis aimed
to demonstrate the potential for exploratory analysis regarding early fault detec-
tion in gearboxes and shafts using only vibration data and operational data (wind
speed, power production etc.). The findings are potentially valuable in scenarios
where power companies lack information from the WT manufacturer.

In particular, this thesis will examine three main research questions (RQs): Do the
vibration signals recorded on the high-speed shaft on the WTs:

1. Indicate fault characteristics suggesting faulty gears or bearings?

2. Indicate any gear or bearing fault development over time (August 2018 to
December 2019)?

3. Reveal any relationship between the number of start-stop cycles and gear or
bearing faults?
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1.2.2 Procedure
In this thesis, two exploratory methods were applied (Figure 1.1); traditional vibra-
tion analysis and a data-driven analysis using clustering. The traditional vibration
analysis focused on manually inspecting selected vibration signals, and aimed to
answer all three research questions. The data-driven clustering approach analysed
and grouped hundreds of signals, using extracted fault-detection features. This
allowed for the detection of potential fault development over time, since similar
signals would be grouped together. Research question 2 was answered through
the clustering approach. Research question 1 and 3 were out of the scope for
this method, since it was only able to detect changes. This is brought up in the
Discussion, Chapter 6.

Figure 1.1: Overview of analysis procedure and what each
method is capable of detecting.

Research question 2 was explored using two separate approaches, primarily to
strengthen the analysis. The data-driven approach is capable of analysing all sig-
nals from a single WT at once, whilst the TVA relies on manual, visual inspection
of some selected signals. A comparison of these methods is presented in the Dis-
cussion, Chapter 6.

As seen in the procedure overview in Figure 1.1, the TVA applied two sub-methods
to detect gear faults and bearing faults; order analysis was applied for detecting
gear faults, and envelope order analysis was applied to detect bearing faults. The
clustering method was not specified towards any faults in particular, but was able
to detect transients and non-linearities in vibration signals, which are both related
to mechanical faults in vibration (Fackrell et al., 1995a,b; Rivola and White, 1999).
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1.3 Outline
This thesis is structured as follows. Chapter 2 defines the relevant theoretical
framework. Chapter 3 provides an overview of relevant research where the theory
was applied. Chapter 4 describes the data, the chosen methods along with ad-
vantages and disadvantages of these. Chapter 5 presents the results along with a
brief analysis. Chapter 6 discusses the results and considers the research questions.
Future work is also presented in the Discussion. Chapter 7 presents the conclusion.
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Chapter 2
Theory

2.1 Maintenance Strategies
Maintenance strategies are often categorised into three main groups; reactive, pre-
ventive and predictive (Randall, 2011; Stetco et al., 2019; Tchakoua et al., 2014).
In this thesis, predictive maintenance is the focus, and is used with condition mon-
itoring.

A reactive maintenance strategy performs repairs or replacements after a defect
has occurred. A preventive strategy aims to perform maintenance at decided in-
tervals, to limit the likelihood of a fault between checks. A predictive maintenance
strategy uses component data from a condition monitoring system to decide if a
component is due to fail. Maintenance is therefore performed at the optimal time.
Figure 2.20 shows the cost associated with each approach as well as the desired
goal of predictive maintenance (Tchakoua et al., 2014).
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Figure 2.1: Cost associated with the three maintenance ap-
proaches (Sanger, 2017).

2.1.1 Condition Monitoring
Condition monitoring is an important tool within predictive maintenance. It in-
volves observing components to identify their conditions and changes in operation
that could indicate development of a fault.

Signs of mechanical faults are detectable through different monitoring methods,
shown in Figure 2.2. Vibration based monitoring is able to detect failure at the
earliest stage, 1-9 months prior to failure (Barszcz and Randall, 2009; Stetco et al.,
2019). Oil analysis and thermography is capable of detecting faults 1-6 months
and 3-12 weeks ahead of failure, respectively.

Figure 2.2: Detection stages of mechanical faults using dif-
ferent monitoring methods (Basics, 2009).

Additionally, vibration analysis has other advantages compared to the other meth-
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ods in Figure 2.2; change is immediately visible, it can pinpoint the location of
faults, and most importantly, powerful signal processing techniques can be applied
to the signals to extract even weak fault indicators (Randall, 2011). Consequently,
vibration monitoring is the preferred analysis method for detecting gearbox faults
in this thesis.

2.1.2 Fault Detection, Fault Diagnosis and Fault Prediction
The literature distinguishes between three types of CM applications (Stetco et al.,
2019):

• Fault detection is a binary analysis; determining whether the system is in
a faulty state or not.

• Fault diagnosis separates the different fault types and aims to classify which
is present.

• Fault prediction analyses data to find a pattern leading up to a fault, and
aims to predict if and when a fault will happen in the future.

Fault detection is the focus for this thesis. Diagnosis and prediction is not possible
due to the lack of information.

2.2 Vibration Signals

2.2.1 Discrete-Time and Continuous Signals
There are two types of signals- continuous-time signals and discrete-time signals.
Measured vibration signals are discrete-time signals consisting of a sequence mea-
surement. Vibration signals are often measured by either a displacement sensor, a
velocity sensor or an accelerometer. Displacement sensors are capable of measuring
low-frequency vibration, velocity sensors measure low to medium frequencies, and
accelerometers measure high frequency ranges (Verbruggen, 2003). Accelerometer
measurements are preferred for gearbox fault detection (Randall, 2011).

Discrete signals have two parameters; sampling frequency fs and the number of
samples N . The sampling frequency is the time between each sample, given by
Ts = 1

fs
. The duration of the signal is given in T = N · Ts.

2.2.2 Filtering
Filters are used to remove unwanted components from a signal, for example when
focusing on higher frequencies in a vibration signal. Three common types of filters
are lowpass, highpass and bandpass filters. The idealised filters can be seen in Fig-
ure 2.3. Pass band denotes the range of frequencies from a signal that are passed
through the filter, and band stop is the range that is rejected.
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Figure 2.3: Idealised filter responses (Uhrmann et al., 2014).

In Figure 2.3, the transition from pass band to stop band is illustrated as in-
stantaneous. This will not be the case in reality, as there will exist a transition
region (Figure 2.4). Filters therefore aim to approximate the ideal filter responses
(Uhrmann et al., 2014).

Filters are either designed for continuous-time signals or discrete-time signals.
The most common filter families for continuous-time signals include Butterworth,
Chebyshev, and elliptic filters (Jackson, 2002).

Figure 2.4: Butterworth low pass filter response (Jackson,
2002).

The filters mentioned above can in most cases be transformed and applied to
discrete-time signals. After a transformation, these filters are characterised as
digital filters. The discrete-time filters resulting from a transformation from a
continious-time filter are infinite impulse response (IIR) filters (Jackson, 2002).
Digital transformations of the Butterworth filter approximation will be imple-
mented in this thesis for lowpass, highpass and bandpass filters.
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2.3 Wind Turbines
WTs drive-trains are complex machines designed to transform kinetic wind energy
to a generator to produce electricity. Relevant drive-train components from a
vibration monitoring point of view are presented, followed by challenges associated
with WT vibrations.

2.3.1 Wind Turbine Components
Interesting mechanical components are shafts, rotor with blades, couplings, gears,
and rolling element bearings (REBs). Gearbox components, i.e. parallel gears,
planetary gears and gearbox bearings, have recorded high failure rates (Barszcz,
2019; Coultate and Hornemann, 2018). Bearings associated with the HSS are also
known to fail prematurely (Musial et al., 2007). On the basis of this, gear and
bearing faults are the most interesting components to analyse in terms of an early
fault exploratory study. An illustration of WT components is shown in Figure 2.5
and an illustration of Vestas’ gearbox is shown in Figure 2.6.

Figure 2.5: Illustration of the main components inside a WT
(Statkraft).

Figure 2.6: Illustration of the gearbox used in Vestas WT,
consisting of two planetary gears, one parallel gear and several
bearings. The illustration is a modification of a gearbox shown
in Barszcz (2019).
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2.3.2 Challenges with Wind Turbine Signals
Signals are Non-Stationary

Wind speed varies during operation and the rotation of WT components and gen-
erator output varies with it. In some cases, wind speed changes dramatically and
suddenly. There are events when wind speed can increase from 3 m/s to 11 m/s
in only 60 s, making WTs non-stationary systems. Such changes in operating con-
ditions present a challenge when applying standard vibration analysis techniques
(Barszcz, 2019).

Noise-to-Signal Ratio is High

Vibration from WTs are dominated by strong signals associated with shafts, rotor
bars and parallel gears (Ben Ali et al., 2018). Thus, weaker vibration from faults
in components such as bearings are hidden in the vibration data, making fault
detection challenging (Liu, 2005). Early fault detection in environments with high
noise-to-signal ratio is a widely researched field (Wei et al., 2019). Before a fault
is fully developed, resonances will first appear in the higher frequency ranges (Liu,
2005), shown in Figure 2.7. Consequently, a number of the methods implemented
in this thesis will focus on the higher frequency ranges.

Figure 2.7: Typical vibration sources of rotating machinery
in a frequency spectrum (Liu, 2005).
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2.4 WT Component Characteristics
All rotating machinery components produce a specific vibration signal with a dis-
tinctive trait (Barszcz, 2019; Randall, 2011) known as a component’s characteristic
frequency (CF). The CFs are related to the component’s condition, and it is possible
to identify and track them using different methods (Section 2.5). Identifying com-
ponents without CFs is very difficult and sometimes impossible. However, some are
easier to identify for instance by recognising a pattern (Barszcz, 2019). This section
describes the characteristic frequencies for each relevant component. Parallel gears
are presented in this section, followed by planetary gears and bearings.

2.4.1 Parallel Gear Characteristics
In the Vestas WTs studied, the parallel gear in the gearbox was connected to the
high-speed shaft. The speed ratio is given in Equation 2.3. The process of tooth
meshing generates vibration and its CF is called the gear mesh frequency (GMF).
It is given in Equation 2.2:

f1 =
N2

N1
f2 (2.1)

fGMF = N1 · f1 = N2 · f2 (2.2)

where Ni is the number of teeth and fi is the rotational speed of wheel i (Barszcz,
2019).

Figure 2.8: Illustration of a parallel gear (Barszcz, 2019).

2.4.2 Planetary Gear Characteristics
The first and second stage of the Vestas gearboxes consisted of planetary gears.
An illustration of a planetary gear is shown in Figure 2.9. The gear ratio is given
in Equation 2.3 and the speed ratio is given in equation 2.4.
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n =
Ns +Nr
Ns

= 1 +
Nr
Ns

(2.3)

fs = n · fc =

(
1 +

Nr
Ns

)
fc (2.4)

where Ns is the number of sun gear teeth, Np is the number of planet gear teeth,
Nr is the number of ring gear teeth, np is the number of planets, fc is the rotational
speed of the carrier and fs is the rotational speed of the sun gear.

Figure 2.9: Ilustration of planetary gear (Barszcz, 2019).

Planetary gears are more complex than parallel, and have more CFs associated
with them. Their CFs are listed in Table 2.1.

Table 2.1: Characteristic frequencies for planetary gears.

Fault description Fault location Characteristic frequency

Gear mesh frequency
(GMF)

Present in majority of
failures fGMF = Nr · fc

Ring over roll (ROR) Ring gear fROR = np · fc
Sun over roll (SOR) Sun gear fSOR =

Nr·np
Ns

fc

Planet over roll (POR) Planet gear fPOR = Nr
Np
fc

Planet rolling element
bearing (PREB) Bearing of the planet fPOR =

Nr−2Np
Np

fc

2.4.3 Rolling Element Bearing Characteristics
As bearings deteriorate, a spall may emerge on the inner race, the outer race, the
rolling elements, or a combination of these. When the spall impacts with another
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surface during operation, an impulse is generated at a periodic repetition rate; the
bearing’s CF. The CF depends on the bearing geometry, load angle (θ), rotational
speed (fr) and the location of the spall. An illustration of bearing geometries is
shown in Figure 2.10 and the CFs are show in Table 2.2. Note that n is the number
of balls, d is the ball diameter, and p the pitch diameter.

Figure 2.10: Illustration of bearing geometry (Barszcz, 2019).

Table 2.2: Characteristic bearing fault frequencies.

Fault description Fault location Characteristic frequency

Ball pass frequency of the outer
race (BPFO) Outer race fBPFO = 1

2frn
(

1− dcosθ
p

)
Ball pass frequency of the inner
race (BPFI) Inner race fBPFI = 1

2frn
(

1 + dcosθ
p

)
Ball pass spinn frequency (BSF) Rolling element fBSF = fr

d
p

(
1− d2cos2θ

p2

)
Fundamental train frequency
(FTF) picks up mechanical
looseness

Cage fFTF = 1
2fr

(
1− dcosθ

p

)

2.5 Traditional Vibration Analysis Techniques
An important source of information reagarding TVAmethods was Tomasz Barszcz’s
textbookVibration-Based Condition Monitoring of Wind Turbines from 2019 (Barszcz,
2019).

This section will introduce the most common and effective Traditional Vibration
Analysis (TVA) methods. The methods are traditional in the sense that they are
widely applied across different industries. Their main advantage is that they have
a real, physical interpretation, easily understood by most vibration analysts and
experts (Barszcz and Randall, 2009).
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Firstly, an overview of recommended TVA methods are presented. Secondly, the
Fourier analysis is defined, providing a theoretical foundation to TVA methods.
Lastly, the two relevant TVA methods for this thesis is presented; the order anal-
ysis (OA) and the envelope order analysis (EOA). They are used to detect gear
deterioration and bearing deterioration, respectively.

2.5.1 Recommended Traditional Vibration Analysis Tech-
niques

Recommended TVA methods depending on the component being analysed is pre-
sented in Table 2.3 (Barszcz, 2019). In the table, nX is the nth harmonic of the
CF. Identifying faults using these CFs is described in Section 2.5.4 and 2.5.6.

Table 2.3: Recommended TVA techniques.

Component
of interest Analysing technique Interesting characteristics

Parallel gears Order analysis GMF 1X, 2X, 3X, sidebands

Planetary gears Order analysis GMF 1X, 2X, 3X, sidebands

REBs Envelope order analysis REB CFs

Varying wind speeds causes the WT signals to behave non-stationary. Therefore,
to correctly compare various vibration signals, it is common to define a generator
power threshold of 80 % of nominal power (Barszcz, 2019).

2.5.2 Fourier Analysis
A Fourier analysis consists of a Fourier transformation and a frequency analysis
and plays an essential part when analysing vibration from rotating machinery. The
frequency spectrum from a Fourier transform reveals spectral lines showing the
frequency content of a signal. These lines can be linked to mechanical components
through the CFs discussed in Section 2.4. A Fourier transformation represents
a signal as a summation of sinusoidal components and almost all signals, whether
they are periodic, almost periodic or random, can be decomposed this way (Randall,
2011).

Analogue Fourier Transformation

The Fourier transformation of an analogue signal is given in equation 2.5 and the
inverse Fourier transformation is presented in equation 2.6.

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2.5)

x(t) =

∫ ∞
−∞

X(f)ej2πftdf (2.6)
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for an analogue signal x.

Discrete Fourier Transformation

When Fourier transforming discrete signals, the discrete Fourier transform (DFT)
must be applied. It is given in Equation 2.7 and the inverse in 2.8. The fast
Fourier transform (FFT) algorithm is considered the most efficient implementation
of DFT (Barszcz, 2019). DFT plays an essential part in traditional vibration
analysis methods described in 2.5.3 and 2.5.5. A more thorough mathematical
study of Fourier transformations can be found in Randall (2011).

X(k) =

N−1∑
n=0

x(n)e−
j2π
N nk (2.7)

x(n) =

N−1∑
k=0

X(k)e
j2π
N nk (2.8)

where x is a discrete signal.

Frequency Analysis Example

Figure 2.11) shows how a simulated signal composed of two shafts and a parallel
gear can be analysed using a Fourier Transform. Spectral lines corresponding to
the components CFs are easily observed.

The two first spectral lines relate to the slow shaft rotating at 540 rpm (9 Hz), the
fast shaft rotating at 1500 rpm (25 Hz). The last two spectral lines at 225 Hz and
450 Hz are the CF and the first harmonic of the gear. The gear has 25 teeth on
its slow rotating wheel and 9 teeth on its fast rotating wheel and the CF can be
calculated by the equation found in Section 2.4.1.

Figure 2.11: Left: simulated vibration signal of two shafts
and a parallel gear with white noise added. Right: frequency
spectrum after Fourier transformation is applied. The charac-
teristic frequencies are easily identified.

Fourier analysis are most accurate when transforming vibrations from machinery
rotating at constant speed. However, WTs are non-stationary, and all CFs are de-
pendent on the rotational speed (Section 2.4). Consequently, when the rotational
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speed changes, the CFs change as well, making it difficult to compare frequencies
when the rotational speed is not exactly the same. In addition, acceleration and
deceleration leads to frequency smearing and makes it difficult to separate the char-
acteristic frequencies from noise. This makes regular Fourier analysis inaccurate
for WTs. Yet, Fourier transformation and frequency analysis play an important
part in the other methods and an overview is therefore valuable.

2.5.3 Order Analysis
Order analysis is recognised as a powerful tool for handling non-stationary vi-
bration signals Barszcz (2019). To accurately Fourier transform a non-stationary
signal, order analysis applies resampling. This means that a signal dependant of
time is resampled to be a function of revolutions instead. This makes the signal
independent of speed variations, which is defined as a cyclo-stationary signal. An
illustration of the procedure is given in Figure 2.12 and an example of a simulated
vibration signal from a parallel gear is provided in Figure 2.13.

Figure 2.12: Illustration of the order analysis process.

A regularly sampled vibration signal has an equal number of data points for a given
time period. Order analysis, on the other hand, requires an equal number of data
points between each shaft revolution to make the vibration signal cyclo-stationary.
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Figure 2.13: Top: Fourier analysis of a simulated non-
stationary signal. Bottom: Order analysis of the same signal.

It is necessary to track the shaft’s revolutions to resample correctly. This is com-
monly achieved with a tachometer, which delivers a pulse signal for each rotation.
The actual resampling is often executed with a resampling algorithm, estimating
the values between each rotation using interpolation. Cubic interpolation is the
optimum interpolation method (McFadden, 1989). There are many rotating shafts
within a wind turbine. However, Barszcz (2019) recommends using the high speed
shaft’s rotational speed measurements to resample with high resolution.

The next step involves Fourier transforming the resampled signal to reveal char-
acteristic frequencies. This is performed using DFT. After resampling, the data
points are not equidistant in time anymore and, after the Fourier transformation,
it is no longer in the frequency domain. Instead, they are in the order domain
where order 1 is the rotational frequency of the shaft.

The CFs become independent of speed variations and are only determined by the
components geometry. This means that they are constant in the order domain.
The spectral lines become much sharper and it is easier to identify the CFs.

2.5.4 Identifying Faults with Order Analysis
Order analysis is used to track parallel and planetary gear faults, which are typ-
ically visible in the first 50 orders of the spectrum. According to Barszcz (2019),
"the existence and amplitude of gear mesh frequencies and sidebands is a very
good indicator of the gearbox’s health". The spectrum of a healthy gear shows
clean spectral lines at the GMF and its harmonics.

Gear faults causes frequency/phase modulation in the signal and can be observed
as series of sidebands around GMF and its harmonics. As wear increases, the
amplitude and number of sidebands will increase. When a parallel gear is in poor
condition, the GMFs are barely visible and the overall energy level of the frequency
region has increased (Barszcz, 2019).
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An advantage with order analysis is that some spectral lines are easier to link to
components by recognising the pattern, even without knowing the CFs. Regarding
fault development, it is possible to inspect if new spectral lines emerge, if new
sidebands appear or if the general level of noise increases Barszcz (2019).

2.5.5 Envelope Order Analysis
Envelope order analysis (EOA) is a powerful tool capable of detecting weaker im-
pulse signals concealed in a stronger signal (Barszcz, 2019; Zhao et al., 2013).
Figure 2.14 shows a simulated complex vibration signal with a weak REB fault
(BFPO), and the isolated weak signal. It is important to note that real WT vibra-
tion is much more complex than the simulated signal. EOA has proved effective
at detecting these kinds of faults in REBs. It handles non-stationary signals by
making them cyclo-stationary.

Figure 2.14: Left: A simulated, complex vibration signal with
an early bearing fault masked by noise from shaft harmonics.
Right: Bearing impulses isolated.

Weak impulse signals from REBs are often concealed by other components like
gears and shafts, and are undetectable by order analysis Barszcz (2019). However,
these signals can be observed as series if impulses, spaced at their CF, which EOA
takes advantage of. The CFs are strongest around the resonance frequency.

Envelope Order Analysis Procedure

The simulated vibration signal shown in Figure 2.15 is used to explain the EOA
procedure. The signal contains an early BPFO (Ball Pass Frequency Outer race)
fault development. The CF is fBPFO ≈ 83.33 Hz and after resampling it is
forderBPFO ≈ 3.33.

The goal of envelope analysis is to demodulate the signal to easier reveal the char-
acteristic frequencies of the bearing fault. There are two demodulating techniques
used to obtain the envelope signal; the first uses a high-pass filter, rectification
and a low-pass filter while the second is a Hilbert transformation (Barszcz, 2019).
The first method is implemented in this thesis and thus further explained. The
procedure follows the steps below. Each step corresponds to a row in Figure 2.15.
The Fourier transformation is performed using DFT.
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1. The vibration signal is obtained. After a Fourier transformation, the sought
frequencies are barely visible on the frequency spectrum around 3 kHz. How-
ever, the shaft speed harmonics are easily visible.

2. The signal is high-pass filtered to reject vibration signals from shaft, gears,
etc, which produce lower frequencies. The frequencies of interest are more
evident, appearing in the high frequency region.

3. Next, the signal is rectified by taking the absolute value of the signal. This
is the demodulating part. New spectral lines appear in the low frequency
bands.

4. The rectified signal is low-pass filtered, removing noise. The envelope signal is
obtained. We observe harmonics of the fault characteristic frequency fBPFO
at 83.33 Hz and its harmonics.

5. The envelope signal is resampled, producing the envelope order signal, suited
for non-stationary systems. The signal’s x axis become order and the order
spectrum is obtained. We observe forderBPFO at 3.33 and its harmonics.
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Figure 2.15: Envelope analysis procedure of a simulated sig-
nal with a REB BPFO fault. Each row corresponds to a step in
EA procedure. Left figures: show the vibration signal zoomed
in. Middle figures: show the frequency spectrums after Fourier
transformation. Right figures: show the frequency spectrums
zoomed in.

When performing envelope analysis, it is important to consider which frequency
band should be demodulated (Step 3). Barszcz (2019) argues that it is generally
sufficient to use a a high-pass filter with a cutoff frequency above the second or
third gear mesh harmonic of the fastest gear. This is usually around 2 kHz for
wind turbines (Barszcz, 2019). If the fault is in a very early stage and masked
by other sources of impulses, this may not be enough. In this case, Narrowband
envelope analysis is preferred. After selecting the optimal frequency band (OFB),
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it uses a band-pass filter to demodulate the interesting part of the signal. However,
defining the OBF is a challenging task. One of the efficient methods recommended
by Barszcz (2019) is Spectral Kurtosis, which is further explained in Section 2.6.

2.5.6 Identifying Faults with Envelope Order Analysis
An illustration of REB fault development is shown in Figure 2.16. A healthy REB
has not developed spalls, meaning that CFs are not present in the EOA spectrum
and the level of vibration is low (Stage (a)). A REB with a fault developing means
that a spall has emerged on the REB. This is seen as clear spectral lines at CF
and otherwise low vibration in the EOA spectrum (Stage (b) and Stage (c)). As
the spall grows and becomes larger than the rolling element, the overall vibration
level increases in the EOA spectrum and impulses tend to mix (Stage (d)). At this
stage the REB is in a poor state and should be replaced (Barszcz, 2019).

Figure 2.16: Fault regions for bearings in early fault detec-
tion. Early bearing faults produce resonances in the high fre-
quency region, above 2000 Hz (Liu, 2005).
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2.6 Spectral Kurtosis and the Kurtogram
Spectral kurtosis (SK) is powerful method for detecting weak fault impulses in
noisy, non-stationary signals. SK finds the OFB by exploring different combina-
tions of filter parameters; center frequency and bandwidth, and calculates the kur-
tosis for each combination. The kurtosis value is often used to indicate mechanical
faults. The combination with the highest kurtosis value is the optimal frequency
band.

Kurtosis is the 4-th moment of a distribution (vibration) x and is defined as

K =

∫ +∞
−∞ (x− µ)4p(x))dx

σ4
(2.9)

where µ is the mean value of x, p(x) is the probability density of x and σ is the
standard deviation. Kurtosis can also be used on a complete signal, without apply-
ing any filtering. The kurtosis of a Gaussian distribution equals three, thus values
above 3 indicate transients in a vibration signal.

However, when the noise-to-signal ratio is high, the kurtosis-value fails to detect
the weak fault impulses. In such cases, SK is useful and returns the OFB. The
definition of SK is placed in Appendix A.1.

According to Barszcz (2019), there are two practical applications of SK; the Kur-
togram proposed by Antoni and Randall (2006) and the Fast Kurtogram developed
by Antoni. The original Kurtogram calculates all combinations of center frequen-
cies and bandwidths, making it resource-intensive. The Fast Kurtogram calculates
fewer combinations while achieving the same accuracy.

Regular kurtosis and SK with the Fast Kurtogram is used in this thesis.

2.7 Machine Learning
Machine learning (ML) is a collection of methods that can detect patterns in data
with little human intervention, and use these patterns to understand new, unseen
data (Murphy, 2012). With access to large amounts of vibration data, ML can be
applied to detect changes over time.

2.7.1 Supervised and Unsupervised Learning
ML is mostly divided into two types, supervised and unsupervised learning (Mur-
phy, 2012).

Supervised learning methods aim to learn a mapping function from a sample x to a
target variable y. A data set D can be defined with N samples or observations on
the form D = {(xi, yi)Ni=1}, where xi is the input and yi the known target variable
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(output). D can then be used to learn the mapping function. Each data sample xi
consists of S features. Each feature holds a numbered value. An example of target
variable yi could be outer race bearing fault. An approximation function or model
f̂ is the result from training on the data D. f̂ is then capable of predicting target
values for new samples f̂(x0) = y0 (James et al., 2013).

In unsupervised learning, the target variable is unknown. The data only consists
of inputs, D = {(xi)Ni=1} (Murphy, 2012). The goal of unsupervised learning is to
discover interesting patterns in the data. Clustering is a broad set of unsupervised
learning techniques where the data samples xi are grouped together (Jain, 2010;
James et al., 2013).

Since the vibration data in this thesis was unlabelled, the machine learning method
applied was unsupervised.

2.7.2 Clustering
Clustering can be used in exploratory data analysis of vibration data to group
samples that share common characteristics (Yiakopoulos et al., 2011). Clustering
methods are broadly divided into partitional and hierarchical clustering (Figure
2.18). A partitional clustering is a division of the data set samples into non-
overlapping subsets (clusters). Hierarchical clustering organises clusters in a tree,
and allows for clusters to have sub-clusters.

Figure 2.17: The two most common clustering types.

K-Means Clustering

K-means is a simple partitional clustering technique first introduced by Lloyd
(1982) in 1957 (Elkan, 2003). Even though thousands of clustering algorithms
has been published since then, K-means still remain popular (Berkhin, 2002; Jain,
2010). The procedure for K-means is described in the following section.
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Given a data set D = {(xi)Ni=1} with N samples xi...xN and S features for each
sample xi, K-means clustering can be applied to group similar samples into K
clusters. The clusters are denoted C1, ..., CK and contain the indices of the samples
in each cluster. It is desirable that each cluster Ck has a small within-cluster
variation W (Ck) (James et al., 2013). W (Ck) states how much each sample within
each cluster differ from each other. The samples should be partitioned into clusters
so that the total within-cluster variation is minimised. This is defined as (James
et al., 2013):

min
C1,...,CK

{
K∑
K=1

W (Ck)

}
(2.10)

where W (Ck) is defined as

W (Ck) =
1

|Ck|
∑

i,i‘∈Ck

p∑
j=1

(xij − xi‘j)2 (2.11)

The number of samples in each cluster is denoted |Ck|. As seen in equation 2.11,
the within-cluster variation is calculated as the pairwise squared Euclidean dis-
tances between all the samples in the kth cluster.

Combining Equations 2.10 and 2.11 yields the optimisation problem defining K-
means clustering (James et al., 2013).

min
C1,...,CK

{
1

|Ck|
∑

i,i‘∈Ck

p∑
j=1

(xij − xi‘j)2

}
(2.12)

Minimising equation 2.12 is known to be a NP-hard problem (Drineas et al., 2004).
However, it can converge to a local minimum using the following algorithm (Jain
and Dubes, 1988):

1. Select an initial partitioning with K clusters and

2. Iterate until the cluster membership stops changing:

(a) For each of the K clusters, compute the cluster centroid. The centroid
is the mean value for all samples in the Kth cluster.

(b) Re-assign each sample to its closest cluster centroid.
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Figure 2.18: K-means clustering with K = 3 as described in
equation 2.7.2. The large discs are the cluster centroids (James
et al., 2013).

The K-means implementation in this thesis is performed with an acceleration of
the K-means algorithm which avoids unnecessary distance calculations by apply-
ing the triangle inequality and distance bounds. It is described in detail in Elkan
(2003).

Before clustering, the data needs to be normalised. This is because a proximity
measure like euclidean distance will implicitly assign greater weight to large-ranged
features (Jain and Dubes, 1988). Normalisation will be done in this thesis through
scaling, where the range for each feature is set to [0, 1].

K -Means User Decisions

The K-means algorithm requires three user-defined parameters, namely the num-
ber of clusters K the data should be partitioned into, the initial partitioning of
the data samples, and the distance metric used. Of these three parameters, the
selection of K is the most critical (Jain, 2010). K-means implementation in this
thesis used Euclidean distance.

Generally, K can be selected by running K-means with different K’s, and selecting
the one which yields the most meaningful result to the domain expert (Jain, 2010).
This is of course subjective, and increasingly difficult when clustering data in more
than 2-dimensional space (Jain, 2010).
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Another approach for selecting K is the elbow method (Huang, 2017). The elbow
method works by running K-means with a range of Ks. For each K, the within-
cluster-variation W (Ck) decreases (Equation 2.12). The local optimal K is then
selected where the incremental improvement of W (Ck) is small. This thesis uses
the common elbow method as well as an objective-driven criteria, presented in the
Method chapter, Section 4.3.6.

The initial partitioning of the data samples (step 1. in 2.7.2) is often selected
at random (James et al., 2013) or by using the K-means++ algorithm. The K-
means++ uses a randomised seeding technique for selecting the initial clusters, and
can be studied further in Arthur and Vassilvitskii (2007). K-means++ has been
documented to greatly increase the speed and accuracy of K-means (Arthur and
Vassilvitskii, 2007). The algorithm will be used with K-means in this thesis.

Cluster Validation

Jain and Dubes (1988) propose three criteria used to measure the validity of a
cluster. The external criteria will be applied in this thesis. An external criteria
measures performance of a partitioning by matching a clustering structure to a
priori information. This can for example be a measure of the degree to which
data confirms a defined objective. The two other criteria are described in Jain and
Dubes (1988).

Challenges with K-Means

Jain and Dubes (1988) illuminated a range of important questions to bear in mind
when clustering data (Appendix A.2). This list of questions will be addressed in
the discussion, Chapter 6. James et al. (2013) recommended clustering the data
on different subsets, in order to gain a sense of robustness of the resulting clusters.

2.7.3 Feature Extraction
To apply unsupervised ML to detect gearbox faults, features need to be extracted
from the discrete vibration signals. Features are commonly extracted from three
domains: the time domain, time-frequency domain, and the frequency domain.

Time Domain Features: Statistics

Time domain features can be extracted from a raw vibration signal x and often
consists of statistical features such as mean, standard deviation (SD), and kurto-
sis. Frequently extracted time domain features for detecting faults gearboxes are
presented in the Literary Survey (Chapter 3).
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Frequency Domain Features: Bi-Spectrum

Frequency information within noisy vibration data can be derived from the bi-
spectrum (Fackrell et al., 1995b; Nikias and Mendel, 1993; Saidi et al., 2015). Since
mechanical faults are often present as nonlinearities in the vibration signature, bi-
spectrum analysis can be used to detect such faults (Fackrell et al., 1995a,b; Hinich
and Wilson, 1990; Rivola and White, 1999).

The bi-spectrum of a discrete signal is a higher order statistic (HOS) which can
be used to analyse the interaction between frequencies. HOS provides higher order
moments and nonlinear combinations of higher order moments called cumulants
(Nikias and Mendel, 1993). HOS can be studied in greater detail in Nikias and
Mendel (1993) and Mendel (1991).

Saidi et al. (2015) specify two properties which make the bi-spectrum applica-
ble for vibration signal analysis; (i) Bi-spectrum is insensitive to noise since it
is is theoretically zero for Gaussian noise and flat for non-Gaussian white noise,
(ii) the bi-spectrum peaks only at frequency pairs corresponding to those related
components with frequency and phase (Mendel, 1991; Nikias and Mendel, 1993).
These properties makes the bi-spectrum a relevant tool for analysing non-linear and
non-Gaussian vibration signals (Nikias and Mendel, 1993). However, bi-spectrum
analysis requires the input signal to be stationary, which is not the case for WT
vibration signals. This can be solved by using a short-period signal of the input
signal.

For systems where weak fault impulses are masked by stronger periodic components
and noise, traditional linear spectral analysis such as power spectral may fall short
(Fackrell et al., 1995a). The power spectrum is one of the most common signal
analysis tools, and is defined in Equation 2.13.

S(k) = E[X(k)X∗(k)] (2.13)

E is the expectation operator and k is the discrete frequency variable. X(k) is the
DFT of the discrete signal x(t) and X(k)∗ its conjugate. The power spectrum is
considered the signals second moment (Rivola and White, 1999).

The signal’s DFT is also used to describe the bi-spectrum as

B(f1, f2) = E[X(f1)X(f2)X∗(f1 + f2)] (2.14)

where B(f1, f2) is complex and is defined by two frequencies f1 and f2.

A DFT holds redundant information above the Nyquist frequency, fs/2. Symme-
tries also exist in the f1, f2 plane (Fackrell et al., 1995a)]. The relevant region is
called the principal domain (PD), defined as

PD = f1, f2 : 0 ≤ f1 ≤ fs/2, f2 ≤ f1, 2f1 + 1 = fs (2.15)
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Equation 2.14 can be estimated though a direct or indirect method (Nikias and
Mendel, 1993). The direct estimation is given as

B̂(f1, f2) =
1

K

K∑
i=1

Xi(f1)Xi(f2)X∗i (f1 + f2) (2.16)

Here, K is the number of segments the discrete signal is split into, each segment
consisting of M data points. The elaborated process can be seen in Nikias and
Mendel (1993).

With the bi-spectrum estimated, a range of features can be extracted for use in
clustering. Commonly extracted features are shown in the Literary Survey, Chapter
3.

Time-Frequency Domain Features: Ensemble Empirical Mode Decom-
position

Time-frequency features can be extracted from non-stationary vibration signals
using ensemble empirical mode decomposition (EEMD) to detect gearbox faults
(Ben Ali et al., 2018, 2013; Chen et al., 2017; Yu et al., 2006). Commonly extracted
features are highlighted in the literary survey. An example of a decomposition is
shown in Figure 2.19. Following is a brief overview of the EEMD method.

Figure 2.19: Example of a decomposition using EMD. C1-6
shows the IMFs to the input signal (Chang, 2010).
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EEMD is an adaptive denoising technique that can be used to extract the weak
fault characteristics from a vibration signal (Wei et al., 2019). EEMD is an im-
provement of empirical mode decomposition (EMD), and eliminates the problem
of mode mixing in EMD (Chang, 2010). Both methods are proposed by Huang
et al., and are applicable with nonlinear and non-stationary signals, since they are
based on local characteristics of the signals (Chang, 2010).

EEMD and EMD decompose a signal x(t) into a series of intrinsic mode functions
(IMFs) without requiring any assumptions about the signal which is being decom-
posed (Figure 2.19). After acquiring the M IMFs for a signal, the original signal
can be represented like so

x(t) =

M∑
m=1

cm(t) + rM (t) (2.17)

where cm is IMF number j, rM is the residue of data after M IMFs have been
extracted. The IMFs are extracted in an iterative fashion, where the repeated step
is to find one IMF, subtract it from the original signal, and then use this resulting
signal to find the next IMF.

Chang (2010) describes that each IMF has a unique instantaneous frequency at
every instant of time and needs to satisfy the two conditions:

1. In the whole data set, the number of extrema and the number of zero crossings
must either be equal or differ at most by one.

2. At any point in the times series, the mean value of the envelopes which is
defined by local maxima (upper envelope) and local minima (lower envelope)
is equal to zero.

In the EMD algorithm, the IMFs are obtained through a 5 step process termed the
sifting algorithm (Gaci, 2016):

1. Identify the extrema (local maxima and minima) of the input signal x(t).

2. Use cubic spline to interpolate the local extrema to find the upper and lower
envelope functions, respectively U(t) and L(t).

3. Calculate the local mean m(t) from the average of U(t) and L(t).

4. Subtract the mean m(t) from the original signal to obtain h1: h1(t) = x(t)−
m(t)

5. Replace the signal x(t) by h1(t), and repeat steps 1-4 until the resulting signal
satisfies the two IMF conditions.

The EEMD method improves on EMD by adding different realizations of white
noise wn(t) to the input signal where n is the trial number, for n = 1, 2, ..., N and
N the number of ensembles or trials.
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Yn(t) = x(t) + wn(t) (2.18)

After the noise is added in one of the N trials, the steps for EMD are then carried
out from step 1 with Yn(t) to get the decomposed signal

Yn(t) =

M∑
m=1

cnm(t) + rnm(t) (2.19)

where
M∑
m=1

cnm(t) is the sum of the IMFs obtained in the n-th trial and rnm(t) the

residue in the same trial n, after M IMFs have been extracted from the signal.

After all trials with their corresponding IMFs (with the same number of IMFs for
each trial), the ensemble mean is computed for each IMF.

cm(t)average =
1

N

N∑
n=1

cnm(t) (2.20)

Chang (2010) state that the added white noise will provide a relatively uniform ref-
erence scale distribution, which in turn will not affect the decomposition method.
Chang (2010) also expresses that the added noise may assist in extracting inter-
esting signal characteristics from the data. Additionally, taking the mean of the
corresponding IMFs reduces the chance of mode mixing, which was the main prob-
lem for the EMD algorithm. EMD and EEMD is explained in further detail in
(Chang, 2010).

2.7.4 Feature Selection
High dimensional data sets consist of many features or variables. Such data sets
has provided a challenge to clustering approaches (Jain, 2010). Firstly, a high
dimensional data set can cause the algorithm to run slowly. Secondly, clustering
data on irrelevant features may cause the algorithm to fail to detect the underlying
structures (Guyon et al., 2005; Jain, 2010).

Reducing the dimension of a data set can be done through feature selection or
feature extraction. Feature selection selects a subset of the features for further
analysis, whilst feature extraction constructs a smaller set of features from the
original features (Boutsidis et al., 2009). Feature selection will be relevant for
reducing the feature space in this thesis.

2.7.5 Data set Exploration Techniques
Cross-Correlation
Cross-correlation is a term used in statistics to measure the strength of a linear
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relationship between two variables X and Y . One method for quantifying this
relationship is through the Pearson correlation coefficient (PCC) (Benesty et al.,
2009). It is defined as

ρX,Y =
cov(X,Y )

σXσY
(2.21)

Which is the co-variance of two variables divided by the product of their respective
standard deviation. PCC is defined between -1 and 1. If the correlation value is
0, the two variables are uncorrelated. If ρX,Y = 1, the variables have a strong
linear correlation, and a negative linear correlation if ρX,Y = −1 (anti-correlation)
(Benesty et al., 2009).

Highly correlated variables hold the same information and can be considered redun-
dant (Abu-Mostafa et al., 2012). On the other hand, Guyon and Elisseeff (2003)
suggest that high variable correlation does not necessarily indicate absence of vari-
able complementary.

Box Plots and Violin Plots
The box plot and violin plots are used to summarise the characteristics of a variable
in a data set. The box plot shows four main features of a variable: centre, spread,
asymmetry, and outliers. However, the distribution of samples in a box plot is
not visible. The violin plot supplements the box plot by using a simple density
estimator to show the distribution of data samples. The distribution of samples is
useful for discovering clusters in the data (Hintze and Nelson, 1998).

Figure 2.20: Components of box plot and violin plot (Hintze
and Nelson, 1998).
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Chapter 3
Literary Survey

This chapter demonstrates how the presented theory has been applied in other
research. The key findings are presented as a summary in the final section of the
chapter.

3.1 Applications of Traditional Vibration Analysis
Li et al. (2009) identified a cracked gear fault in a parallel gear using order analysis.
The data was collected during speed-up of a gearbox in an experimental test rig.
The components’ dimensions and CFs were known and the results of order analysis
were manually inspected where the fault was identified.

Zhao et al. (2013) explored EOA to identify a faulty REB in real vibration data,
originating from a locomotive with a known BPFO fault. The geometric dimensions
of the components were known, thus the CFs were known as well. The noise-to-
signal ration was high. However, after SK was carried out and EOA was filtered
with the OFB. Clear indications of a REB BPFO fault was discovered in the EOA
spectrums.

Barszcz and Randall (2009) applied SK to detect tooth crack in a planetary gear
of a wind turbine eight weeks before failure. The data was from a catastrophic
gear failure on a wind turbine and the geometric dimensions and CFs were known.
The authors filtered out low frequencies before applying SK. They were able to
discover a shift in SK values from around 1.5 - 9 to 50 - 270 which indicated fault
development. The authors localised the faulty signal by only using SK. However,
the authors recommends using SK with envelope order analysis for automated de-
tection.

Guo et al. (2012b) detected REB faults in a rotating machinery operating at vari-
able speed by utilising EOA. The authors first analysed the vibration signals using
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SK to obtain the OFB, next, the EOA spectrums were manually inspected and
fault characteristics of REB faults were identified. As their data originated from
an experimental test rig and all components’ dimensions were known, they were
able to validate their results.

3.2 Applications of Data-Driven Methods
This section will first show how K-means clustering has been used in previous
literature to detect faults. Furthermore, commonly extracted features for fault
detection is presented.

3.2.1 Fault Detection with K-Means clustering
Yiakopoulos et al. (2011) applied K-means to automate the detection of REB
faults. The authors highlighted that the biggest advantage of K-means is that it
is unsupervised, meaning that no previous data from faulty bearings is needed to
train the model. Other mentioned benefits for selecting K-means is the ease of
implementation and its simplicity. The method is tested on a laboratory test case
with known bearing faults.

3.2.2 Extracted Features
Three domains are mostly used for extracting machine learning features for fault
detection of vibration signals, namely the time domain, frequency domain and the
time-frequency domain. This section will summarise some of the most relevant
features from the literature. Several studies also deal with high noise-to-signal
ratios.

Time Domain Features

Ben Ali et al. (2018) used the following features from the time domain; RMS, kur-
tosis, skewness, peak to peak, crest factor, shape factor, impulse factor, margin
factor, mean, standard deviation, energy and energy entropy.

Yiakopoulos et al. (2011) classified bearing faults using similar time domain fea-
tures as Ben Ali et al. (2018), without energy and energy entropy and adding
clearance factor. Yiakopoulos et al. (2011) emphasised the potential of detecting
"spiky" signals using crest factor and kurtosis.

Yiakopoulos et al. (2011) provided an explanation behind each chosen time domain
feature: The RMS of a signal can be used to indicate the severity of a bearing de-
fect. Kurtosis is a measure of how peaked or flat a signal is compared to a normal
distribution. Skewness is a measure of symmetry/non-symmetry of a signal. Crest
factor is the ratio of the peak value of a signal to its RMS value. Shape factor
is the value that is being affected by an object’s shape but is independent of its
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dimensions.

Caesarendra and Tjahjowidodo (2017) provided an overview of time domain fea-
tures to be used when classifying REB. The authors state that impulse factor is
used to measure how much impact is generated from defects. Margin factor was
used to measure the level of impact between REB and their raceways.

Frequency Domain Features: Bi-Spectrum

Features extracted from a bi-spectrum analysis has shown to be highly relevant in
condition monitoring of vibration signals with noise present. Ben Ali et al. (2018)
extracted features from the bi-spectrum from WT vibration data to classify a range
of bearing faults. The extracted features from the bi-spectrum are shown in Table
3.1.

Table 3.1: The bi-spectrum features extracted by Ben Ali
et al. (2018).

Extracted bi-spectrum features

1 Sum of logarithmic amplitudes

2 Sum of logarithmic amplitudes of diagonal elements

3 kth-order spectral moment of amplitudes of diagonal elements (k=1,k=2,k=3)

4 Normalized bi-spectral entropy

5 Normalized bi-spectral squared entropy

6 Bi-spectrum phase entropy

7 First axe weighted center of the bi-spectrum

8 Second axe weighted center of the bi-spectrum

9 Mean magnitude

Saidi et al. (2015) performed CM and fault diagnosis of four different faults in an
induction motor based on extracted features from the bi-spectrum. The features
were the same as in Table 3.1, with the exception of feature (9) as well as only
using k=1 for feature (3). The feature space was then reduced from 8 features to 5
using a principal component analysis (PCA). PCA constructs new features based
on input features using weighted sums in order to find orthogonal directions of
maximum variance (Saidi et al., 2015).

Saidi et al. (2014) demonstrated how bi-spectral analysis of vibration signals can
be coupled with EMD to diagnose bearing faults. The data used by the authors
contained a high noise-to-signal ratio, which complicates classical frequency anal-
ysis. Because of the non-stationary signals in WTs, the authors proposed to first
decompose the signals to stationary IMFs using EMD. Thereafter, they applied
the bi-spectral analysis to these IMFs. The suggested method was able to diagnose
4 types of bearings states with an accuracy of 98.9 %. The states were healthy
bearing, Outer race fault, inner race fault and ball fault.
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Time-Frequency Domain Features: EMD/EEMD Features

Yu et al. (2006) proposed a method for diagnosing REB faults using Artificial Neu-
ral Networks (ANNs) using time-frequency features extracted from EMD (Section
2.7.3). Specifically, the authors extracted the energy entropy from each IMF by:

1. Calculating the energy from the first m IMFs:

Ei =
∑
N

x2
j (3.1)

where i = 1...m and N is the total number of samples in the considered IMF.

2. Construct a feature vector T with the calculated energy from each IMF

T = [E1, E2, ..., Em] (3.2)

3. Normalising the feature vector T by first calculating he total energy in the
signal:

E =

(
m∑
i=1

|E|2
)0.5

(3.3)

and then dividing the feature vector by E, the authors get

T ′ = [E1/E,E2/E, ..., Em/E] (3.4)

which was then used to train the parameters of a machine learning classifier (ANN).

Ben Ali et al. (2018) used a similar approach as Yu et al. (2006) when extracting
features from the time-frequency domain (they also used other features, discussed
in Section 3.2.2 and 3.2.2. Ben Ali et al. (2018) selected the first five IMFs on the
basis of previous research by the same authors (?), much like the features shown in
Equation 3.4. The expression Ei/E was denoted the energy rate pi for each IMF.
Ben Ali et al. (2018) also extracted the energy entropy Hen from each IMF

Hen = −pilog(pi) (3.5)

resulting in the two feature vectors shown in Equation 3.4 and 3.6:

[−p1log(p1),−p2log(p2), ...,−p5log(p5)] (3.6)

Thus, Ben Ali et al. (2018) extracted 10 features in the time-frequency domain.

3.3 Summary
To summarise the literature, applications of TVA has been thoroughly studied and
is widely used for detecting gear and bearing faults. A key finding is that the
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presented research uses known component dimensions in their analysis. These di-
mensions were, as stated, not available in this thesis, separating it from previous
studies. In regards to the data-driven approach, Ben Ali et al. (2018) proposed
a strong argument for extracting features from all three available domains; the
time domain, the frequency domain and the time-frequency domain. These three
domain were therefore explored in this research.
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Chapter 4
Method

This chapter presents the methods applied in the thesis. First, the available data
will be shown, followed by a traditional vibration analysis and a data-driven ap-
proach using clustering.

4.1 Available Data
Four Vestas V112 3.3 MW WTs were analysed in this thesis. They are located at
Skomakerfjellet on the coast of Trønderlag in Norway. The wind farm is operated
by TrønderEnergi and has produced power since March 2016. Skomakerfjellet wind
farm has a yearly production of 36 GWh and supplies energy to 1800 households
(TrønderEnergi). The data set used in this thesis was from August 2018 to De-
cember 2019.

The WTs’ CM systems continuously store 165 different operational parameters such
as wind speed, power outputs, temperatures, currents, and voltages It also stores
different statistics related to vibration measurements. A small sample from the five
first measurements of WT01 is shown in Table 4.1.

Vestas’ WTs were equipped with 9 accelerometers measuring vibration at different
locations. The full, raw vibration signals, were stored. In addition, the WTs were
equipped with two tachometers measuring rotational speed of the low-speed shaft
and the high-speed shaft. All vibration signals were sampled at 25.6 kHz and had
a duration of 10 s. Every signal was recorded once or twice a day. The data set
used contained approximately 400 measured signals from every sensor in each WT.
The sensors are listed in Table 4.2. Information regarding start-stop cycles in the
four WTs is presented in Table 4.3.
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Table 4.1: WT01: Example of operational data.

Time
stamp

Average
power
[kW ]

Wind
speed
[m/s]

Ambient
temp [Co]

Gbx
bearing
oil temp
[Co]

Gbx Rotor
Bearing
ISOA
[m/s2]

...

04.08.18
18:51:17 543.4 5.5 14.0 60.0 0.3411 ...

04.08.18
20:24:47 2500.9 13.0 15.0 71.0 0.7170 ...

05.08.18
12:44:15 1839.5 9.5 10.0 70.0 0.5709 ...

10.08.18
13:01:19 2565.2 9.9 15.0 69.0 0.5138 ...

11.08.18
13:00:46 2861.5 12.0 13.0 71.0 0.6297 ...

Table 4.2: Measurements i Vestas’ WTs.

Name Unit Measuring
device Description

GnDe m/s2 Accelerometer Generator vibration.

GnNDe m/s2 Accelerometer Generator vibration.

MnBrg m/s2 Accelerometer Main bearing vibration.

GbxRotBrg m/s2 Accelerometer Gearbox vibration, low speed shaft.

Gbx1Ps m/s2 Accelerometer Gearbox vibration, 1st planetary gear.

Gbx2Ps m/s2 Accelerometer Gearbox vibration, 2nd planetary gear.

GbxIss m/s2 Accelerometer Gearbox vibration, intermediate speed
shaft.

GbxHssFr m/s2 Accelerometer Gearbox vibration, high-speed shaft.

GbxHssRr m/s2 Accelerometer Gearbox vibration, high-speed shaft.

HssShf V Tachometer Measuring rotations of high-speed shaft.

LssShf V Tachometer Measuring rotations of low-speed shaft.

Time s - Time during measurement.

Table 4.3: Number of turbine start-stop cycles (TrønderEn-
ergi).

Wind turbine Start/ stop cycles Number of signals WT operating since

WT01 1148 410 March 2016

WT02 897 419 March 2016

WT03 1040 415 March 2016

WT04 1805 424 March 2016
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4.1.1 Operational Data
The following operational parameters were selected; time stamp, wind speed, aver-
age power and average rotational speed of the high-speed shaft. Note that average
rotational speed is denoted AvgSpeed throughout this thesis. The features above
were all averaged over 10 s.

4.1.2 Vibration Data
Out of the 9 available vibration measurements presented in Table 4.2, GbxHssRr
(Gearbox High-Speed Shaft) was selected for analysis in this thesis. This choice
was made based on the vulnerability of the gearbox and the high-speed shaft bear-
ings. Additionally, GbxHssRr measurements encapsulates potential gearbox and
high-speed bearing faults, both of which were interesting to study. All GbxHssRr
vibration signals for each WT are plotted consecutively in the Figure 4.2 and 4.1.
The HssShf measurements, measuring rotational speed of high-speed shaft and
used to resample the signals, was selected as well. It was selected because it mea-
sures the same shaft as GbxHssRr. In addition, resampling with the highest speed
measurements gives the highest resolution, as described in Section 2.5.3.

Figure 4.2 and 4.1 suggested that the running conditions varied greatly among the
measured 10 s vibration signals. Consequently, all signals were not comparable to
each other. This is further described in Section 4.2.2.

(a)

(b)
Figure 4.1: All 10 s vibration signals plotted after each other
for (a) WT01 and (b) WT02.
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(a)

(b)
Figure 4.2: All 10 s vibration signals plotted after each other
for (a) WT 3 and (b) WT 4.

4.2 PART 1: Traditional Vibration Analysis
Based on the literature study, the most effective TVA methods were determined to
be OA for parallel and planetary gears and EOA for REBs, following the recom-
mendations in Section 2.5.1.

The chosen TVA methods handle non-stationary vibration signals, enabling them
to track the state of WT components, and to detect fault development during a
time period. In addition, the analysis can be compared across WTs to investigate
whether one has deteriorated more than another, given that the WTs are assembled
with the same components. Thus, the methods were implemented in an attempt
to answer all three research questions.

A disadvantage with TVA methods is that they require human inspection as the re-
sults must be interpreted by vibration experts. An in-depth analysis of all vibration
signals was considered too extensive to be included. Thus, a smaller sub-sample
was chosen to thoroughly investigate each WT.

4.2.1 Fourier Transformation of all WTs
In addition to the two chosen methods, a Fourier transformation was performed
on all signals from each WT, regardless of the generated power during each mea-
surement. As explained in Section 4.2.3, the vibration signals were non-stationary,
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making the results from regular Fourier transformation inaccurate. However, they
were used to inspect if any notable differences existed. The RMS of the amplitudes
were taken to easier compare the spectrums.

4.2.2 Selecting Comparable Signals
A threshold was set to include signals measured while generator power output was
greater than 80 % of nominal power (equivalent to 2640 kW) as recommended in
Section 2.3. Out of the filtered signals, five signals were selected from each WT
for further analysis. These five signals were evenly spaced out in time to detect
changes in condition. The selected signals are presented in Table 4.4.

Table 4.4: Relevant information regarding the five chosen
signals for each WT.

Wind
turbine Date Time Average

power [kW]
Average
rpm

WT01

10.08.2018 13:01:19 2862 1499

10.11.2018 01:56:57 3294 1532

17.03.2019 15:12:45 2915 1489

26.06.2019 18:32:15 3305 1505

25.10.2019 11:51:54 2906 1490

WT02

19.08.2018 11:03:11 3066 1476

09.11.2018 23:43:41 3298 1476

17.03.2019 15:16:30 2968 1481

06.06.2019 18:43:42 2969 1493

20.10.2019 06:05:54 2911 1519

WT03

04.08.2018 20:22:58 2953 1489

14.11.2018 22:49:56 3100 1470

05.03.2019 13:58:58 2856 1483

21.06.2019 22:27:49 2887 1473

25.10.2019 08:11:15 3207 1468

WT04

11.08.2018 12:54:56 2853 1460

10.11.2018 22:17:55 3315 1464

01.03.2019 02:40:08 3010 1505

18.06.2019 12:42:55 2858 1493

24.10.2019 06:19:54 3244 1511
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4.2.3 Order Analysis
OA was applied to detect gear faults and is described in detail in Section 2.5.2 and
2.5.3. It involves resampling the signal and taking the Fourier transform.

Resampling Signal

As mentioned, the vibration signal was resampled according to the high-speed
shafts rotational speed. The high-speed shaft normally completed approximately
250 revolutions during the recorded 10 s when generator power was above the
threshold value.

The data points in between a revolution of the HSS was denoted a segment. It was
decided that each segment should contain 2000 data points, corresponding to about
twice as many as in the original segment, to increase interpolation precision. As
concluded in Section 2.5.3, cubic interpolation is preferred and was implemented.
This was done using SciPy’s cubic interpolation technique; scipy.interpolate (Vir-
tanen et al., 2020).

Fourier Transformation

The discrete Fourier transform was done using NumPy’s Fast Fourier Transform
implementation; numpy.fft (Van Der Walt et al., 2011). The Fourier transformed
values were normalised by dividing it by the number of data points in the signal.
Due to symmetry, only the first half of the frequencies were used.

Analysing Order Spectrums

As described in Section 2.5.1, OA is preferred when analysing parallel gears. The
spectrums were analysed with regards to fault characteristics of gears (described
in Section 2.5.4). As stated in Section 2.5.4, the CFs usually appears in the first
50 orders. To account for harmonics, the spectrums were filtered to show the first
200 orders. In addition, complete spectrums was inspected to detect changes in
the whole spectrum.

The order spectrums of the five selected signals from each WT were thoroughly in-
spected. To compensate for missing vibration expertise and not knowing the CFs,
the spectrums were compared across WTs to identify deviation which could indi-
cate fault, thereby answering RQ1. To address RQ2 and detect fault development,
the spectrums within each WT were compared over time.

Lastly the order spectrums were computed for all signals above the power threshold
in each turbine. The median as well as the 5th and 95th percentile were plotted to
better understand how much the order spectrums varied across measurements.
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4.2.4 Envelope Order Analysis
Implementation of EOA followed the same steps described in Section 2.5.5. The
procedure is illustrated in Figure 4.3.

Figure 4.3: Schema of the EOA process.

An initial filtering was performed using a highpass filter with a cutoff frequency of
2000 Hz to remove vibration signals originating from shafts and gears. Obtaining
the optimal frequency band for further filtering is known as a challenging task and
three methods were explored:

1. Highpass filter.

2. Narrow-band filter based on Optimal SK Values.

3. Narrow-band filter based on manual selection.

Highpass Filter

The signals were highpass filtered with a cutoff frequency at 2500 Hz. This thresh-
old was chosen to remove gear CFs and harmonics, since REBs faults are analysed
in EOA (Barszcz, 2019; Liu, 2005). Because all signals were filtered the same way,
they were easily compared. However, it might be difficult to detect early failure if
the faulty signal is masked by other components (Section 2.3.2).

Narrowband Filter Based on Optimal SK Values

The signals were bandpass filtered using the OFB reccomended by SK. Calculating
SK was performed using MatLab’s implementation; kurtogram (MATLAB, 2019),
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which utilises the Fast Kurtogram algorithm mentioned in Section 2.6. It is capable
of revealing the most energetic transient signals. However, recommended OFBs
from SK were rarely the same, making the spectrums difficult to compare.

Narrow-Band Filter Based on Manual Selection

Manually selecting the frequency band and was done by inspecting kurtograms.
The frequency band with repeatedly high SK values in the kurtograms were cho-
sen to bandpass filter the signal. This method is able to obtain highly energetic
transient signals that are comparable since all are filtered the same way. The dis-
advantage is that the manual selection is cumbersome and time consuming.

After manually investigating the kurtograms, the frequency bands listed in Table
4.5 were selected. It was discovered that the frequency range with centre frequency
at 9600 Hz and a bandwidth of 6400 Hz often had a SK value of 0.6 - 0.8 for all
signals in all turbines. In many cases, it had the highest SK value. Thus, it was
decided to investigate it for all selected signals from each WT.

Furthermore, the same narrow frequency band with high SK value in the kur-
tograms were inspected for each WT. This way, a comparison within each WT
was possible. Because the selected narrow band across WTs were not the same,
spectrums from different WTs was not.

Lastly, the two additional frequency bands for WT03 and WT04 were considered
interesting and were included.

Table 4.5: Selected frequency bands for each WT.

Wind
turbine

Centre
frequency

[Hz]

Bandwidth
[Hz]

WT01
6425 50

9600 6400

WT02
7500 50

9600 6400

WT03

6125 50

4500 1500

9600 6400

WT04

6625 50

8200 800

9600 6400
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Frequency filtering was done using SciPy’s filtering techniques from scipy.signal
(Virtanen et al., 2020). Note that the signals were filtered before resampling. This
means that the filtering was executed in the frequency domain [Hz], not order
domain [X]. Resampling into order and taking the Fourier transform followed the
same steps described in Section 4.2.3.

Analysing Envelope Order Spectrums

The analysis of envelope order spectrums were conducted similarly to order spec-
trums. All spectrums of the five selected signals from each WT had to be compared
across WTs to identify characteristics which could indicate faults (answering RQ1).
This was done to compensate for missing vibration expertise and CFs. In addi-
tion, the spectrums within each WT were compared to detect fault development
(answering RQ2).

4.3 PART 2: Fault Development Analysis Using
Clustering

The main goal of the data-driven clustering approach was to explore whether later
signals could be separated (grouped) from the earlier signals, thereby indicating a
change in state over time. Hundreds of signals from the same turbine were analysed
together to find these patterns. The clustering was done using K-means.

In broad terms, the following degradation pattern analysis was carried out sepa-
rately for each WT:

Step 1: Select vibrations signals above 1450 rpm (4.3.1).

Step 2: Extract a feature data set from the signals (4.3.2).

Step 3: Handle outliers and extreme values in the feature data set (4.3.3).

Step 4: Explore the feature data (4.3.4).

Step 5: Cluster the feature data set using different subsets of the extracted
features (4.3.6).

Step 6: Inspect whether there exists a degradation pattern over time.

In step 2, common features for detecting faults were extracted from each of the
four WTs based on the Literary Survey in Section 3.2. After extracting features,
clustering was applied in step 5.

Clustering was selected because no prior information was needed regrading the state
of the turbine components. Advantages of K-means over other clustering methods
is its simplicity and documented success in fault detection. Disadvantages of K-
means is that it is sensitive to outliers in the data set and poorly chosen features.
Feature selection with limited domain knowledge also presented a challenge.
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4.3.1 Selecting Vibrations Signals
Signals measured with an average shaft speed above 1450 rpm were selected, and
features were extracted from these. This was to remove signals related to startups
and shutdowns of the WTs. Table 4.6 shows how many signals each WT vibration
data contained before and after selecting signals.

Table 4.6: Number of signals before and after filtering each
turbine.

Wind turbine Number of signals
before filtering

Number of signals
after filtering

WT01 410 250

WT02 419 264

WT03 415 262

WT04 424 269

4.3.2 Feature Extraction

Figure 4.4: Schema showing the feature extraction process.
A matrix consisting of N rows and S features, where each row
represents one signal in a wind turbine, is returned for each
WT. The raw input signals had an average shaft speed above
1450 rpm.

The proposed approach takes in operational data from a WT, e.g. wind speed
data, as well as raw vibration signals from a single WT. A matrix (denoted feature
data set) is returned, consisting of features to be analysed with a clustering method
(Figure 4.4). One feature data set was extracted for each of the four WTs, and

48



features from the time domain, frequency domain and time-frequency domain were
used. Each feature data set was analysed individually. Following is an explanation
of the features in the data sets.

Operational Features

By including the four operational features shown in Table 4.7, machine learning
methods such as K-means clustering are enabled to "connect" the running con-
ditions of the signals with the corresponding vibration features presented below,
since running condition will be related to the vibration response. This allowed for
advanced pattern recognition.

Table 4.7: The operational features from the first 5 signals
for WT 4.

Signal
number

Average
power
[kW]

Active
power
[kW]

Wind
speed
[m/s]

Average
rpm

0 2697.4 2332.1 9.1 1456.4

1 2606.1 2843.5 10.0 1468.5

2 2541.8 2694.1 10.5 1458.8

3 2853.3 3293.4 12.7 1460.6

4 2752.1 3040.3 9.7 1490.1

Time Domain: Statistical Features

The 11 time domain parameters in Table 4.8 were extracted from the raw signals
high passed at 6000 Hz.
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Table 4.8: Time domain features extracted from each signal
x.

Time domain features

(1) RMS
(

1
N

∑N
i=1 x

2
) 1

2

(2) kurtosis 1
N

∑N
i=1

(xi−x̄)4

ρ4

(3) skewness 1
N

N∑
i=1

(xi−x̄)3

ρ3

(4) peak_to_peak xmax − xmin
(5) crest_factor

xmax
RMS

(6) shape_factor RMS
1
N

∑N
i=1|xi|

(7) impulse_factor
xmax

1
N

∑N
i=1|xi|

(8) margin_factor
xmax(

1
N

∑N
i=1|xi|

)2

(9) signal_mean x̄ = 1
N

∑N
i=1 xi

(10) std σ =
(

1
N

∑N
i=1 xi −mean

) 1
2

(11) signal_energy x̄ =
∑N
i=1 xi

2

Frequency Domain: Bi-Spectrum

Since the bi-spectrum requires the input signal to be stationary, it is assumed that
cutting each signal to only 0.1 s will cause the non-stationary signal to behave
approximately stationary. Additionally, the 0.1 s signals were highpass filtered at
6 kHz using a butterworth filter (2.2.2). As presented in 2.3.2, weak resonance
frequencies for rotating machinery are located in the higher ranges, which is why
the input signals were HP-filtered before extracting bi-spectrum features.

Six features were extracted from the bi-spectrum, shown in Table 4.9. Normalised
bi-spectral squared entropy was another feature often extracted in bi-spectral anal-
ysis for similar applications (Ben Ali et al., 2018; Saidi et al., 2015). It is defined
as

B5 = −
n∑
PD

qnlog(pn) (4.1)

where

qn =
|B(fk, fk)|2∑

f1,f2∈PD
|B(fk, fk)|2

(4.2)

However, because of small bi-spectrum values, Equation 4.1 often returned negative
infinity. Consequently, the feature was not included in the feature data sets.
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Table 4.9: The 6 extracted bi-spectrum features.

Bi-spectrum features

(1) Sum of logarithmic amplitudes B1 =
∑

f1,f2∈PD
log(|B(f1, f2)|)

(2) Sum of logarithmic amplitudes of
diagonal elements B2 =

∑
fk∈PD

log(|B(fk, fk)|)

(3)
kth-order spectral moment of
amplitudes of diagonal elements
(k=1,k=2,k=3)

B3 =
∑

fk∈PD
klog(|B(fk, fk)|)

(4) Normalised bi-spectral entropy B4 = −
n∑
PD

pnlog(pn) where pn = |B(fk,fk)|∑
f1,f2∈PD

|B(fk,fk)|

(5) First axe weighted center of bi-
spectrum B6 =

∑
PD

iB(i,j)∑
PD

B(i,j)

(6) Second axe weighted center of bi-
spectrum B7 =

∑
PD

jB(i,j)∑
PD

B(i,j)

Time-Frequency Domain: EEMD

The IMF rate and IMF entropy features were calculated using the equations in Sec-
tion 3.2.2. The kurtosis for each IMF was computed using the equation in Table 4.8.

For each sampled 10 s signal x, 15 features were extracted using the 5 first IMFs
from the EEMD method. They were:

• 5 IMF energy rate features, one for each IMF:

[E1/E,E2/E,E3/E,E4/E,E5/E] (4.3)

The energy in each IMF is Ei =
∑
N

x2
j over the data points in IMF i. E is

the energy sum: E =
∑5
i=1Ei.

• 5 IMF energy entropy features:

[−p1log(p1),−p2log(p2),−p3log(p3),−p4log(p4),−p5log(p5)] (4.4)

where pi is the energy rate pi = Ei/E.

• 5 IMF kurtosis features: The kurtosis was calculated from each IMF using
the equation in Table 4.8.

4.3.3 Handling Outliers and Extreme Values
The four extracted feature sets (one for each WT) consisted of 36 features in total:
4 operational features, 11 time domain features, 6 frequency domain features (bi-
spectrum) and 15 time-frequency domain features (IMFs). Before continuing the
data-driven analysis, outliers and extreme values were removed.
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Box-plots were created for every feature in the extracted data set and studied to
detect outliers. If a feature contained an extreme value, the whole row was omitted
from the data set. Since K -means is sensitive to noise, it was essential that noisy
samples were removed. This could be samples recorded by malfunctioning sensors.
K -means uses every data sample to find cluster centroids. Consequently, noisy
samples may cause the algorithm to find "wrong" clusters and thereby fail to detect
any potential fault degradation patterns.

4.3.4 Feature Data set Exploration
Distribution of Samples Over Time
After removing outliers, the distribution of indexes in each feature data set was
analysed to make sure the samples were spread out across the timeline. Especially
for the later indices, it was important that there existed enough samples for the
proposed K-means approach (Section 4.3.6) to be viable.

Single Feature Development Over Time
The N rows, equal to the number of signals in each WT, were grouped together by
which month the signals were sampled. Furthermore, violin plots were created for
every feature for every month in the data set.

The operational data features such as average wind speed and average power were
inspected in these violin plots. For instance, these plots illustrated whether the
turbines produced more power during the winter months. Knowledge like this
is valuable when dealing with highly sensitive methods such as K-means, because
features that change depending on the season may contaminate the partitions (clus-
ters).

Grouped violin plots for the other features were also inspected. An increase in
mean value over time of each monthly violin plot could indicate fault development
by studying one feature at a time, since some features could theoretically indicate
gearbox faults.

As mentioned in Section 2.7.5, a disadvantage of violin plots is that the distribution
of data samples in different groups may look similar even though the number of
samples differ. The number of samples in each violin plot was therefore presented
below each plot.

Two-Feature Development Over Time
Scatter plots were created for the features to look for clustering tendencies (Jain
and Dubes, 1988). Applying colour hues to the samples over time results in a
human interpretable plot. Separate clusters consisting of samples from signals
recorded at later times could indicate a change in state. Scatter plots allowed for
analysis of two features at a time, combined with the Signal Index (time) to look
for clusters. Furthermore, clustering with K-means allowed for an extension of this
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scatter-analysis, since it is not restricted to comparing just two features at a time.

If no clustering patterns are visible in these plots for WT1-4, it is increasingly
interesting to extend the study to n-dimensional feature space with K-means.

4.3.5 Feature Selection and Subsets
The Pearson correlation coefficient matrix (Section 2.7.4) was plotted for each data
set for the four turbines. Highly linearly correlated (or linearly anti-correlated) fea-
tures were handled by performing clustering on different subsets of the 36 features,
where some subsets did not contain highly correlated features. The decision of
splitting the complete feature sets into smaller subsets was done based on the
challenges related to clustering high-dimensional data, mentioned in Section 2.7.4.

Feature Subsets

The 36 features were divided into 6 groups, shown in Table 4.3.5.

Table 4.10: The six feature groups and their features.

Subset name Subset features

Operational
(4 features)

[AvgPower, ActPower, WindSpeed, AvgSpeed]

Bi-spectrum
(6 features)

[B1, B2, B3, B4, B6, B7]

Time
(11 features)

[rms, kurt, skewness, peak_to_peak, crest_factor, shape_factor,
impulse_factor, margin_factor, signal_mean, std, signal_energy]

IMF energy (10
features)

[imf_rate_1, imf_rate_2, imf_rate_3, imf_rate_4, imf_rate_5,
imf_entropy_1, imf_entropy_2, imf_entropy_3, imf_entropy_4,
imf_entropy_5]

IMF kurtosis (5
features)

[imf_kurtosis_1, imf_kurtosis_2, imf_kurtosis_3,
imf_kurtosis_4, imf_kurtosis_5]

mixed features
(4 features)

[imf_rate_5,imf_kurtosis_5,B1,B5]

Furthermore, the Operational features were combined with the other five groups
to form the subsets to be clustered with K-means:

1. Operational and bi-spectrum

2. Operational and time

3. Operational and IMF energy

4. Operational and IMF kurtosis

5. Operational and mixed features

The Operational features were included in all sets to be clustered in order to capture
patterns correlated to different running conditions. For instance, an increase load
on the HSS caused by a higher average power may lead to a different vibration
response.
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4.3.6 K-Means Clustering
As mentioned in Section 2.7.2, the most crucial step when performing K-means
clustering is the selection of how many clusters K the data is grouped into. This
thesis presents a subjective approach to this challenge, and aims to find the K
which best separates the most recent signals in the data, thus indicating some dis-
tinct fault vibration pattern towards the end of the recorded signals. Specifically,
the most recent signal were defined as having index or signal number from 350 to
approximately 400 (depending on the WT).

The subsets from each WT were clustered using K-means. The distance metric
used was Euclidean Distance. N was the number of signals and S the number of
features in a subset. The following strategy for selecting parameter K was used:

1. The elbow criterion method (Section 2.7.2) was used with K from 1 to 30 to
gain an understanding of the range for K.

2. Using the plot produced by the elbow method, a range was defined for K:
RangeK = [1, ...,Kmax]. Kmax denotes the K where the change in within-
cluster variation is minimal (by visual inspection).

3. For every Ki in RangeK :

(a) Obtain the Ki clusters through the K-means algorithm. The signals
(rows) in the feature data set is separated into Ki clusters and returned
in a labels array of length N. This array holds information about which
signal index [0, ..., N ] was assigned which cluster.

(b) Transform the labels array to a key-value pair dictionary where the keys
are the cluster labels (integers) and values a list of signal indices within
the cluster.

(c) Pass the dictionary to Algorithm 1 to acquire the cluster number con-
taining the maximum percentage of indices after index 350. An example
of a result after this process is shown in Table 4.11.

(d) Furthermore, the cluster with the maximum (highlighted in Table 4.11)
percentage number of indexes above 350 is selected and appended to a
new matrix MmaxPercentage.

4. Based on MmaxPercentage, shown in Table 4.12, the most fitting parameter
K is determined by inspection. The max percentage number works as the
external criteria for evaluating the clusters. It is ideal that this number is as
close to 100 % as possible.

5. Finally, K-means was performed on the subsets and the results analysed.
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Algorithm 1: GetClusterStatistics: Get statistics from clus-
ters
Input: clusterDictionary: Keys (Int) represent cluster index.

V alues (List) contains index of signals/intervals in cluster.
Output: statsMatrix: Matrix with statistics about the input

clusters

statsMatrix← declare empty 2-dimensional matrix
for cluster in clusterDictionary do

mean← calculate mean of indexes in cluster
count← count the number of indexes cluster
percentage←
percentage of indexes in cluster with value above 350

// Append row of variables to statsMatrix
statsMatrix.appendRow(mean, count, percentage)

return statsMatrix

Table 4.11: Example of clusters statistics from running Al-
gorithm 1 (GetClusterStatistics) with K = 7.

Cluster
label

Intervals
in cluster

Average
index
value

Number of
indices greater
than index 350

Percentage of
indices greater

than 350

1 29 193.7 5 17.0

2 48 187.8 5 10.0

3 5 240.6 1 20.0

4 38 217.2 8 21.0

5 61 201.5 8 13.0

6 16 175.0 2 12.0

7 68 231.588 17 25.0

Table 4.12: The MmaxPercentage matrix. The rows con-
tain the clusters with the percentage of cluster indexes above
350 maximised, when K-means was executed with values K
from [2, ...,Kmax]. In this example, K=7 is selected because it
maximeses the objective.

Iteration K Intervals in cluster Max percentages

0 2 97 20.0

1 3 70 19.0

2 4 71 18.0

3 5 38 24.0

4 6 38 24.0

5 7 68 25.0
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4.4 Hardware and Technical Implementation
The programming language Python v3.7.5 was used for data processing and analy-
sis. The code is written in Jupyter Notebook, an open-source web application that
supports mixing markdown sections and code. This results in code that can be
easily reviewed. All the code written for this thesis is in the following repository:
https://github.com/stianismar/master-thesis/.

Matlab v9.7.0.1190202 was utilised for Spectral Kurtosis (MATLAB, 2019). The
Python library used for data processing was mainly Pandas v1.0.1. Also, Scipy
v1.4.1 was used for signal processing and Scikit-learn v0.22.1 was used for im-
plementing K-means. EEMD was implemented with with pyEMD developed by
Laszuk (2017), and bi-spectrum analysis was conducted through the implmentation
in Eulenfeld (2018).

With regards to hardware, the analysis were run on a MacBook Pro with 3.1 GHz
Intel Core i5 processor and 8 GB RAM.
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Chapter 5
Results and Analysis

This chapter first presents the results from the TVA (Section 5.1). Afterwards, the
results from the clustering analysis (Section 5.2) is presented. Interpretations of
the results is presented continuously.

5.1 PART I: Traditional Vibration Analysis
The following results presented in this section. First, a Fourier transformation of
all signals is presented. Next, an example of a resampled signal and its Fourier
transformation is presented and compared to the original. Lastly, the results re-
garding the two TVA methods are presented; order analysis and envelope order
analysis. The results for every WT from a method is presented before advancing
to the next method.

5.1.1 Fourier Transformation of all WTs
The Fourier transformation of every unfiltered GbxHssRr signal is plotted consec-
utively for each WT in Figure 5.1. Even though the signals were unfiltered, the
figure still allowed for an initial comparison between the WTs.

WT01 and WT04 were similar, although WT04 had a higher RMS amplitude in the
high frequency region. The plot also showed that WT02 and WT03 were similar.
They had high spikes in RMS amplitude around 1800 Hz. These findings were
interesting and are further discussed in Chapter 6.
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Figure 5.1: Fourier transform of all GbxHssRr signals for
each turbine. The images were plotted with a RMS limit of
8 to capture the weaker frequency amplitudes of WT01 and
WT04 in the lower frequency ranges.

5.1.2 Resampling Signal Validation
A resampled signal is shown in Figure 5.2 for validation. The vibration signals
show the first two shaft revolutions. The Fourier transformation of the original-
and the resampled signal is also provided for comparison.

The resampled signal was almost identical to the original, whilst the spectrums
were very different. The signal had become cyclo-stationary, spectral smearing was
reduced and spectral lines more clear. In addition, some amplitudes increased.
This validated the resampling method.

5.1.3 Order Analysis
This section first presents the OA results regarding gear fault detection for the first
200 orders. Following are the results from the OA from the complete spectrum.
These analysis were conducted on the five chosen signals for each WT. Lastly,
the median values with the 5th and 95th percentile of all comparable signals is
presented.

Gear Fault Development: First 200 Orders

Order spectrums showing the first 200 orders of each WT is shown in Figure 5.3
and 5.4. They were scaled such that spectrums were easily compared.

In regards to fault development , the spectrums from the first 200 orders indicated
no fault development. Spectral lines were constant and no new harmonics or side-
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Figure 5.2: Validating the resampling method. Left: Vibra-
tion signal, before and after resampling. The red line indicates
a new revolution. Right: Spectrums after Fourier Transforma-
tion. The resampled signal produced a clearer spectrum.

bands emerged during the time period.

The spectrum from the OA showed that WT01 and WT04 were similar and WT02
and WT03 were similar. Even though the CF of the parallel gear was unknown,
the component could be identified based on the spectral lines and harmonics. A
spectral line appeared at order 25 with clear harmonics at 50 and 75 in the spec-
trums from WT01 and WT04. This was most likely originating from a parallel
gear with 25 teeth on the wheel connected to the high speed shaft. This is based
on the Equation 2.2 and the fact that the parallel gear was the same shaft as the
vibration sensor. The spectrums from WT02 and WT03 had a spectral line at 28
and a distinct 2nd harmonic at 56 as well as less clear harmonics at 84 and 112.
This appeared to be a different parallel gear with 28 teeth.

It was discovered during conversations with WT operators and experts at Trøn-
derEnergi that Vestas may use different components from different manufacturers
when assembling their WTs. Consequently, the WTs may not be exactly the same.
These findings suggests that the WTs were indeed assembled with different gear-
boxes. Unfortunately, it complicated the comparison across WTs. Still, it was
possible to compare WTs with the assumed same gearbox. Comparing WT02 and
WT03, there were no significant differences between them. Comparing WT01 and
WT04, the 3rd harmonic was less clear in WT04 and there were more sidebands
around each harmonic, which could indicate an early fault on the parallel gear as
described in Section 2.5.4.

The level of noise was higher in WT04’s spectrums than any of the other WTs’
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spectrums. Different spectral lines appeared in the WT04 spectrums compared to
WT01’. However, these lines could not be linked to any components since the CFs
were unknown. The differences suggest that WT04 was more likely to have a fault
than WT01 given that their gearboxes were the same.

Figure 5.3: Order analysis of the five selected signals from
WT01 and WT02. The first 200 orders are displayed.
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Figure 5.4: Order analysis of the five selected signals from
WT03 and WT04. The first 200 orders are displayed.
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Gear Fault Development: Complete Order Spectrums

Order spectrums showing all orders of each WT is shown in Figure 5.5 and 5.6.

In regards to fault development, the spectrums were similar throughout the time
period, indicating no fault development. Some spectral lines appeared, disappeared
and reappeared more frequently, but seemed to be independent of time. This makes
them likely to be natural variation rather than fault development.

Regarding fault identification, none of the WTs were exactly the same. Compared
to WT02, WT03 displayed slightly more vibration in the higher order region. Yet,
the difference was minimal, meaning that no faults could be identified.

The difference between WT01 and WT04 was notable and varied more for higher
orders than the previously inspected lower orders. Some notable spectral lines
were observed in WT01 (up to 300 orders), while WT04’s spectrums were chaotic
with higher spectral lines appearing throughout the spectrum. It also showed high
variation regarding the amplitudes of the spectral lines. These findings suggested
that WT04 could indeed have an early fault.
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Figure 5.5: Order analysis of the five selected signals from
WT01 and WT02. All orders are displayed.
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Figure 5.6: Order analysis of the five selected signals from
WT03 and WT04. All orders are displayed.
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Median, 5th and 95th Percentile of all Comparable Signals

Figure 5.7, 5.8, 5.9 and 5.10 show the the median RMS amplitudes for each order,
together with the 5th and 95th percentile for for all comparable signals (more than
80% of nominal power output) for each turbine. The figures were equally scaled
to simplify comparison. They give an indication of how much the spectrums varied.

Again, the spectrums of WT02 and WT03 were similar, especially up to 120 or-
ders. Above 120, the median values were still similar, although WT03 had more
variation shown by the 5th and 95th percentile.

WT01 and WT04 were similar in the lower order range, however, the variation in
higher order range (above 120) were much higher in WT04. It strongly differed
from the other WTs.

Figure 5.7: Median RMS values together with the 5th and
95th percentile of all comparable signals from WT01.
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Figure 5.8: Median RMS values together with the 5th and
95th percentile of all comparable signals from WT02.

Figure 5.9: Median RMS values together with the 5th and
95th percentile of all comparable signals from WT03.
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Figure 5.10: Median RMS values together with the 5th and
95th percentile of all comparable signals from WT04.
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5.1.4 Envelope Order Analysis
The results of envelope order analysis is presented in this section. Distinguishable
spectral lines are commented. A complete analysis of each spectrum is impossible
without knowing the characteristic frequencies. However, some findings are pre-
sented. The EOA results based on the three different filtering approaches from
Section 4.2.4.

Highpass Filtered: 2500 Hz

Figure 5.11 and 5.12 show the first 30 orders. The spectrums were equally scaled
to easily compare.

Regarding fault development in the WTs, the spectrums varied slightly when com-
pared within each WT. However, spectral lines appeared inconsistently, suggesting
natural variation rather than degradation.

Regarding fault identification, the overall vibration level was slightly lower in WT02
than WT03. In addition WT02 had no evident spectral lines while interesting spec-
tral lines appeared in WT01 at 10.96, 11.96, 12.96, 21.93, 22.93 and 23.93. They
were likely related given their spacing. It was difficult to interpret whether the
existence of these spectral lines were enough to indicate a fault or not. If they were
related to REBs it is more likely to be a sign of early fault (as described in Section
2.5.6). However, one cannot be certain without knowing the CFs.

Comparing WT01 and WT04 some interesting spectral lines appeared in WT01
(especially around 10 and 20), while many more were present in WT04. WT04’s
spectrums were more chaotic and the general level of vibration was higher. As with
WT03, it was difficult to interpret whether the existence of spectral lines in WT01
were enough to indicate fault. The higher spectrum amplitudes in WT04 could
mean that it had a fault.
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Figure 5.11: Envelope order spectrums of the five selected
signals from WT01 and WT02. Filtered with cutoff frequency
2500Hz. First 30 orders shown.
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Figure 5.12: Envelope order spectrums of the five selected
signals from WT03 and WT04. Filtered with cutoff frequency
2500Hz. First 30 orders shown.
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Narrow-Band Filter Based on Optimal SK Values

Kurtograms
Kurtograms visualise the SK values in different frequency bands. A sample of
kurtograms showing the first selected signal from each WT is provided in Figure
5.13, 5.14, 5.15 and 5.16. The rest of the selected signals’ kurtograms are found in
Appendix B.1. A SK value of 0 corresponds to a random, Gaussian distribution
and is therefore uninteresting. Note that the kurtisis value is centered around 0
and not 3 in Matlab’s implementation. Higher SK values indicate the presence of
energetic, transient signals and are considered more interesting.

In general, the kurtograms differed from each other, both within a WT and across
WTs. The kurtograms were especially different in the short frequency bands found
at level 8 (521). However, there were some similarities. For instance, the frequency
range with centre frequency at 9600 Hz and a bandwidth of 6400 Hz often had a
SK value of 0.6 - 0.8 for all selected signals.

The kurtograms from WT01 and WT02 were the most similar, although WT01
sometimes had higher SK values in level 8. SK values from WT02 were consis-
tently lower than the others. WT03 often highlighted other frequency bands and
their kurtograms looked different from the others. WT04 often had the highest SK
values.

Figure 5.13: Kurtogram visualising SK-values in different
frequency bands for the first chosen signal in WT01.
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Figure 5.14: Kurtogram visualising SK-values in different
frequency bands for the first chosen signal in WT02.

Figure 5.15: Kurtogram visualising SK-values in different
frequency bands for the first chosen signal in WT03.
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Figure 5.16: Kurtogram visualising SK-values in different
frequency bands for the first chosen signal in WT04.

Envelope Order Based on Optimal SK Values
The results are given in Figure 5.17, 5.18, 5.19 and 5.20. The left figures show
the signals after filtering with the recommended frequency band based on SK. The
middle figures show the signals filtered with the optimal frequency band. Finally,
the right figures show the envelope order spectrums. They display different orders
based on how narrow their bandwidth were.

The spectrums would be more interesting to inspect if the characteristic frequencies
were known. It is difficult to detect if any fault existed without them. Apart from
WT02, the recommended OBF were often from different frequency regions. This
made it hard to discover changes during the time period which could indicate fault
development. Further interpretations was therefore considered pointless. Manu-
ally selecting these frequency bands attempted to deal with this challenge and is
presented next.
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(a)

(b)

(c)

(d)

(e)
Figure 5.17: Envelope order spectrums of the five selected
signals from WT01, band-pass filtered based on SK recom-
mendations. Left figures: Signal after narrow-band filtering.
Middle figures: Frequency band chosen for filtering. Right fig-
ures: Envelope order spectrum of signal.
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(a)

(b)

(c)

(d)

(e)
Figure 5.18: Envelope order spectrums of the five selected
signals from WT02, band-pass filtered based on SK recom-
mendations. Left figures: Signal after narrow-band filtering.
Middle figures: Frequency band chosen for filtering. Right fig-
ures: Envelope order spectrum of signal.
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(a)

(b)

(c)

(d)

(e)
Figure 5.19: Envelope order spectrums of the five selected
signals from WT03, band-pass filtered based on SK recom-
mendations. Left figures: Signal after narrow-band filtering.
Middle figures: Frequency band chosen for filtering. Right fig-
ures: Envelope order spectrum of signal.
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(a)

(b)

(c)

(d)

(e)
Figure 5.20: Envelope order spectrums of the five selected
signals from WT04, band-pass filtered based on SK recom-
mendations. Left figures: Signal after narrow-band filtering.
Middle figures: Frequency band chosen for filtering. Right fig-
ures: Envelope order spectrum of signal.
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Manually Selected Frequency Bands

The results from the manually selected frequency bands presented in Table 4.5 in
Section 4.2.4 are found in this section.

Narrow-Band Filter with Bandwidth 6400 Hz
Figure 5.21 and 5.22 were produced using a band-pass filter with central frequency
9600 Hz and bandwidth 6400 Hz. The results strongly resembled those obtained
by a high-pass filter (5.1.4) and similar observations could be made.

Narrow-Band Filter with Bandwidth 50 Hz
Figure 5.23 and 5.24 were produced by the 50 Hz, narrow-band filter. The centre
frequency were different for each WT, thus the spectrums were not comparable
across WTs. Note that the spectrum from WT04 is scaled differently than the
others to show its higher amplitudes.

Regarding WT01, the spectral line at order 0.43 was present in three of the spec-
trums. Still, it was unknown which component this order corresponded to. The
spectrums were chaotic and spectral lines in one spectrum was not necessarily found
in the next. Overall, it was difficult to say if any fault development had occurred,
since every spectrum was slightly different.

WT02 showed no obvious sign of fault development. The spectrums were chaotic
with the most distinguishable spectral lines appearing in low orders (less than 0.1)
and at 2.

Spectrums from WT03 were less chaotic than WT02. The spectral lines at 1 and
sometimes at lower orders (around 0.004) were clear. However, no clear fault de-
velopment could be observed through the time period.

Spectrums from WT04 had much higher vibration amplitudes. The spectral lines
at 1, 2 and at lower orders (around 0.004) were clear. Other spectral lines appeared
inconsistently. Thus, no fault development could be observed through the time pe-
riod.

Narrow-Band Filter with Bandwidth of 800 Hz and 1500 Hz
Figure 5.25 shows envelope order spectrums filtered with centre frequency 4500 Hz
and 8200 Hz, and bandwidth 1500 Hz and 800 Hz of WT03 and WT04 respectively.
Note that only WT03 and WT04 were selected in this section due to their inter-
esting spectrums. The spectrums from both WT03 and WT04 strongly resembled
those obtained using highpass filter (Figure 5.12). However, the spectrums in Fig-
ure 5.25 displayed much clearer spectral lines. This indicates that CFs were better
separated from noise.

In regards to WT03’s spectrum, sharp spectral lines at order 1 and 2 were evident.
In addition, an interesting pattern was revealed. What seems to be harmonics
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with sidebands occurring between order 10 and 14, between 21 and 26 and again
between 34 and 36. This was impossible to know for certain without knowing the
CF. Even though the amplitudes varied, neither the number of sidebands nor the
general level of vibration increased during the time period, making it unlikely that
fault development had taken place.

In WT04’s spectrums, clear spectral lines were visible along the whole order spec-
trum form 0 to 30. These were repeated almost every order. In some areas, spectral
lines appeared every half order. Again, it was impossible to know which compo-
nents they originated from. Regardless, it was an interesting pattern, unique for
this turbine. Concerning fault development, the amplitudes in WT04 showed no
increase over time. Still, it was difficult to determine whether the components’ con-
dition had a fault development during the time period, or if it was due to natural
variation.
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Figure 5.21: Envelope Order Spectrum of the five selected
signals from WT01 and WT02.
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Figure 5.22: Envelope Order Spectrum of the five selected
signals from WT03 and WT04.
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Figure 5.23: Envelope Order Spectrum of the five selected
signals from WT01 and WT02.
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Figure 5.24: Envelope Order Spectrum of the five selected
signals from WT03 and WT04.
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Figure 5.25: Envelope Order Spectrum of the five selected
signals from WT03 and WT04.
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5.2 PART 2: Fault Development Analysis Using
Clustering

This section first presents the results from an initial exploratory study of the op-
erational features in Section 5.2.1. Second, outlier handling and exploration of the
extracted feature data sets is presented in Section 5.2.2. Third, the results from
K-means clustering is presented in Section 5.2.6.

It is important to bear in mind that the clustering approach will always attempt
to group the data, even though no patterns are present.

5.2.1 Exploration of Operational Features
WindSpeed, AvgPower and AvgSpeed are grouped by month of recording and visu-
alised for WT01 in Figure 5.26. The features are grouped by month, and the colours
resemble the seasons for easy interpretation. The figures indicated no particular
seasonal trends. For instance, the wind speeds do not seem to increase around the
winter months. As a consequence, K-means might not be affected by any varia-
tions in the operational features due to seasonality. The seasonal trends may not be
visible because the signals were filtered, thereby ensuring similar operational con-
ditions. WT02-4 showed similar results, and their plots are placed in Appendix B.2.
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(a)

(b)

(c)
Figure 5.26: WT1: Wind speed, Average Power produced
and Average Shaft speed (High Speed shaft) grouped by month.
No seasonal trend is visible.

5.2.2 WT01: Outlier Handling and Exploration
Outlier Handling

The box-plot of the extracted features for WT01 in Appendix B.28, shows that
there exists some outliers in the EEMD-features, namely the imf-rate and imf-
kurtosis features. These values suggested that the EEMD implementation was
unable to decompose some signals correctly. Therefore, the intervals with index
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127, 158, 243, and 336 were removed altogether from the data set. Note that these
indexes are in relation to the original index, where index 0 is the first recorded signal
(04.08.2018) and index 409 being the most recently recorded signal (27.10.2019).
The box-plot also reveals that there exist one interval with negative average wind
speed recorded. This sample was removed from WT01 feature data set.

Data set Exploration

The distribution of samples after selecting signals with shaft speed above 1450 rpm
(Section 4.3.1) is seen in Figure 5.27. The distribution is approximately even across
the timeline.

Figure 5.27: WT01: Distribution of the signals represented
in the complete extracted feature data set.

The violin plots for features kurtosis, B1 and imf_entropy_1 grouped over time
are shown in Figure 5.28. The plots show no indication of deterioration over time.
The other features were inspected as well, and provided no significant findings.
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(a)

(b)

(c)
Figure 5.28: WT01: Kurtosis, B1 (1st bi-spectrum features)
and imf_entropy_1 grouped by month.

Two-Feature Development Over Time
A collection of scatter plots is shown in the pairplot in Figure 5.29. No distinctive
clusters were visible. Therefore, further clustering in n-dimensions was interesting.
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Figure 5.29: WT01: Pairplot of five selected features. Darker
colour indicates later signal number.

5.2.3 WT02: Outlier Handling and Exploration
Outlier Handling

From inspection of the box-plot of the WT02 feature data set in Appendix B.4, sam-
ples with index 92, 169, 230 and 291 were removed. These signals had imf_kurtosis
values larger than 500, which suggested an incomplete decomposition by EEMD.

Data set Exploration

Figure 5.30 shows the distribution of samples after selecting signals with shaft
speed above 1450 rpm. The distribution is relatively even.
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Figure 5.30: WT02: Distribution of the signals represented
in the complete extracted feature data set.

Single Feature Development Over Time
The grouped violin plots for WT02 of features kurtosis, B1 and imf_entropy_1
show no conspicuous patterns indicating degradation. The remaining features were
also inspected and showed similar patterns.
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(a)

(b)

(c)
Figure 5.31: WT02: kurtosis, B1 and imf_entropy_1 plot-
ted. The colours represent the four seasons. Red is summer,
blue is winter.

Two-Feature Development Over Time
A collection of scatter plots is shown in the pairplot in Figure 5.32. No apparent
clustering are visible. Further analysis in n-dimensions was therefore relevant using
K-means.
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Figure 5.32: WT02: Pairplot of five features. Darker colour
indicates later signal number.

5.2.4 WT03: Outlier Handling and Exploration
Outlier Handling

Outliers visible in the box-plot in Figure B.30 in the Appendix were removed from
the data set for WT03. This was samples with index 39, 58, 141, 204, 210 and
269, which were removed by filtering the data set on feature imf_kurtosis_5 < 5.
Additionally, the box-plot revealed two other outliers in the kurtosis feature. These
samples, index 189 and 214, were therefore omitted from the data set.

Data set Exploration

The distribution of data samples for WT03 after selecting signals with average
shaft speed above 1450 rpm is displayed in Figure 5.33. The distribution was even.

92



Figure 5.33: WT03: Distribution of the signals represented
in the complete extracted feature data set.

Single Feature Development Over Time
The following three plots in Figure 5.34 show no significant change over time for
either of the features kurtosis, B1 or imf_entropy_1. The rest of the features were
also inspected over time, but did not change over time.
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(a)

(b)

(c)
Figure 5.34: WT03: Kurtosis, B1 (1st bi-spectrum features)
and imf_entropy_1 grouped by month.

Two-Feature Development Over Time
Figure 5.35 reveals no clustering trends of later samples. An extended analysis into
n-dimensions using K-means was therefore relevant.
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Figure 5.35: WT03: Pairplot of five selected features. Darker
colour indicates later signal number.

5.2.5 WT04: Outlier Handling and Exploration
Outlier Handling

The box-plot for the extracted WT04 features can be seen in B.31. It shows that
there exist a number of noisy data points for the imf_kurtosis variables. These
values suggested that the signals were not decomposed properly using the EEMD
method. Consequently, signal number 67, 85, 227, and 238 were removed from the
data set.

The box plot showed that the WindSpeed feature also contained some measure-
ments faults. Five samples (rows) where the wind speed was negative was removed
altogether from the data set.
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Data set Exploration

The distribution of samples after selecting signals with average shaft speed above
1450 rpm is shown in Figure 5.36. The distribution was approximately even.

Figure 5.36: WT04: Distribution of the signals represented
in the complete extracted feature data set.

Single Feature Development Over Time
Some other features were plotted over time using violin plots in figure 5.37, grouped
by month. However, the feature development over time yielded no patterns regard-
ing degradation for WT04. This could have been because of the varying running
conditions for the turbine. With clustering, these variations are taken into account
through the operational features.
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(a)

(b)

(c)
Figure 5.37: WT04: Kurtosis, B1 (1st bi-spectrum features)
and imf_entropy_1 grouped by month.

Two-Feature Development Over Time

The features were also studied in two dimensions using scatter plots. Plotting
the features in two dimensions shows that there are no apparent relations between
later signals and fault characteristics, i.e. in Figure 5.38, no accumulations of later
signals were visible. This suggested that it was relevant to extend the analysis to
n-dimensions with K-means.
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Figure 5.38: WT04: Pairplot of five selected features. Darker
colour indicates later signal number.

5.2.6 Clustering Results
As stated in the Method, Section (4.3.5), K-means was run for every WT with
different feature data sets:

1. Complete data set (36 features)

2. Operational and bi-spectrum fea-
tures only

3. Operational and time features only

4. Operational and IMF energy fea-
tures only

5. Operational and IMF kurtosis fea-
tures only

6. Operational and mixed features

The results of the clustering process for each wind turbine for all subsets is presented
in the following section.
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WT01

The correlation plot for WT01 is shown in Figure B.24. The coefficients range from
-1.0 to 0.2. The imf_rate_1 feature shows a strong anti-correlation between some
of the other IMF-features. Clustering on all of the IMF features could therefore be
redundant.

Table 5.1: WT01: Subsets and the selected selected K for
the four other subsets of the features data set.

Subset Selected K

Max percentage
of samples above
index 350 in

cluster

Samples in
max

cluster

Complete Data set 17 37 % 27

Operational and bi-spectrum 17 26 % 23

Operational and time 12 36 % 11

Operational and IMF kurtosis 18 40 % 15

Operational and IMF energy 17 43 % 14

Mixed features 17 31 % 13

The results in Table 5.1 shows that the subset Operational and IMF energy best
separates the signals recorded after index 350 (2019-08-30 07:01:59) from the rest
of the signals. The distribution of the points in the max cluster is shown in Figure
5.39. In spite of the separation percentage being at 43 %, it is still too low to
conclude that there is any fault development in WT01.

Figure 5.39: WT01: Which samples are assigned which clus-
ter with K=17 using the Operational and IMF energy feature
subset. Cluster number 1 was most interesting based on the
objective of separating the later samples (highlighted here).

WT02

The correlation plot for the extracted features from the WT02 vibration signals is
placed in Figure B.25. It shows that there exists an anti-correlation of about -1
between the IMF rate and IMF entropy features.
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Table 5.2: WT02: Subsets and the selected selected K for
the four other subsets of the features data set.

Subset Selected K

Max percentage
of samples above
index 350 in

cluster

Samples in
max

cluster

Complete Data set 18 36 % 11

Operational and bi-spectrum 11 39 % 18

Operational and time 15 45 % 11

Operational and IMF kurtosis 14 36 % 14

Operational and IMF energy 18 50 % 10

Mixed features 7 37 % 27

The results in Table 5.2 show to which degree the later data samples in WT02 were
separated from the rest using K-means clustering. Operational and IMF kurtosis
separated the data best, with 50 % of the samples in one cluster coming from signals
recorded after index 350 (2019-08-18). However, since there were 45 samples in the
filtered data set recorded after index 350, and only 5 samples (50 % of the samples
in the selected cluster highlighted) were detected, no implications of bearing and
gearbox deterioration is present.

Clustering the Operational and IMF energy subset with K=18 yielded the grouping
of signals in Figure 5.40.

Figure 5.40: WT02: Which samples are assigned which clus-
ter with K=18 using the Operational and IMF kurtosis feature
subset. Cluster number 18 was most interesting based on the
objective of separating the later samples.

WT03

The correlation plot for the extracted features from WT03 ranges from -1.0 to 0.2,
shown in Figure B.26. It shows a strong anti-correlation between margin_factor
and the bi-spectrum features (B1-3), as well as the signal_energy and SD features.
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Table 5.3: WT03: Feature subsets and the results using K-
means.

Subset Selected K

Max percentage
of samples above
index 350 in

cluster

Samples in
max

cluster

Complete Data set 7 25 % 68

Operational and bi-spectrum 12 38 % 8

Operational and time 17 42 % 12

Operational and IMF kurtosis 18 42 % 12

Operational and IMF energy 10 38 % 26

Mixed features 13 40 % 15

Based on Table 5.3, running K-means on the subset Operational and IMF kurtosis
best separated the signals recorded after index 350 (2019-08-28). The percentage of
samples in the cluster maximising the objective of isolating the later signal features
was 42 %. However, as seen in Table 5.3, this particular cluster only contained 12
signal indexes in total. Therefore, no indication of fault development is detectable.

Figure 5.41: WT03: Which samples are assigned which clus-
ter with K=18 using the Operational and IMF kurtosis feature
subset. Cluster number 12 was most interesting based on the
objective of separating the later samples.

WT04

The correlation plot between the extracted features for WT04 is placed in Figure
B.27. The correlation coefficients range from -1.0 to 0.2. The 10 energy-entropy
and energy-rate features extracted using the EEMD method are strongly anti-
correlated. Using them all when finding the clusters can be considered redundant.
The correlation matrix does not indicate any other highly correlated features.

The results from clustering the data set extracted from WT04 vibration is shown
in Table 5.4.
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Table 5.4: WT04: Subsets and the selected selected K for
the four other subsets of the features data set.

Subset Selected K

Max percentage
of samples above
index 350 in

cluster

Samples in
max

cluster

Complete Data set 14 41 % 27

Operational and bi-spectrum 14 32 % 19

Operational and time 8 26 % 54

Operational and IMF kurtosis 13 26 % 34

Operational and IMF energy 14 43 % 21

Mixed features 13 33 % 15

The results show features extracted from vibration signals recorded after index
350 (2019-08-15 20:10:25) are separated from the rest. Clustering the data in
Operational and IMF energy yielded the best result. 43 % of the data points in
cluster number 8 were from samples with index >= 350. However, with 57 % of the
points coming from earlier signals, these result did not imply any fault degradation
over time. The distribution of points with K=14 for the subset Operational and
IMF energy is shown in Figure 5.42.

Figure 5.42: WT04: Which samples are assigned which clus-
ter with K=14 using the Operational and IMF energy feature
subset. Cluster number 8 was most interesting based on the
objective of separating the later samples.
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Chapter 6
Discussion

This thesis demonstrated an exploratory analysis aimed to answer three research
questions (RQ) concerning gear and bearing faults based solely on vibration and op-
erational data. Similar studies rely on knowing the dimensions of the components
to properly identify and track them. Additionally, knowledge of a component’s
state is often used to confirm that an indicated fault came from an actual fault.
These two factors separates this thesis from other research, and answers the fol-
lowing research questions: (1) Is there any indication of faults present? (2) Is there
any indication of fault development? (3) Is there a relation between a large number
of start-stop cycles and the indication of faults?

This chapter discusses how the results from the TVA and clustering analysis an-
swered the three research questions. Limitations and how they impacted the results
is also presented.

6.1 Traditional Vibration Analysis
TVA was applied to explore all three research questions. There were two main
findings; the fault detection results showed that the WT04 spectrums were differ-
ent from the others, which could indicate an early fault. However, there were no
signs of fault development during the time period for any of the WTs, including
WT04. The results regarding each research question is discussed consecutively.

RQ1
For RQ1, it is important to bear in mind that the spectrums were compared across
the different WTs to compensate for the lack of information regarding CFs. The
presented discussion is based on the results showing that WT01 and WT04 most
likely contained similar gearboxes. Similarly, WT02 and WT03 were assumed to
have the same gearbox.
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The results of the order analysis showed that WT02 and WT03 had similar order
spectrums. However, with no healthy spectrum as reference it was difficult to de-
termine the gears’ health for WT02 and WT03. This is further discussed in Section
6.1.1. The order analysis indicated that WT04 had greater amplitudes in the higher
order range compared to WT01. Additionally, WT04 demonstrated notably more
sidebands than WT01, indicating that WT04 might be in a deteriorated condition.

Results of the EOA showed comparably greater vibration amplitudes for WT04.
The EOA results also showed that spectral lines appeared in WT01’s and WT03’s
spectrums. Spectral lines from an EOA could be an indication of early REB faults.
No significant spectral lines was detected in WT02 which suggests non-faulty REB.

The kurtograms from the five WT04 signals indicated that some kurtosis values
were around 1.5. This may indicate an early fault, as described in Section 3.1. No
notable kurtosis values were detected in the other three WTs.

RQ2
In regards to RQ2, the results from the order analysis and EOA showed no signs of
fault development during the time period for any of the WTs. No new spectral lines
or sidebands consistently reoccurred over time or increased in magnitude. Based
on these results, there are two possible scenarios; (i) there is no fault development
in the gearbox or HSS bearings, or (ii) there exist some development, but the TVA
methods were unable to detect it.

If scenario (i) is true the results suggested that WT04 could either contain an early
stage fault which is unchanging, or not contain any faults altogether. However, the
former is more probable, reflecting the findings above. However, if scenario (ii) is
true, this suggests that the TVA methods are incapable of detecting change over
time. As pointed out by Ben Ali et al. (2018), fault detection for TVA methods
depend on the experience of the vibration analysts. An expert might have been
able to detect fault development in the spectrums in Section 5.1.3.

RQ3
Regarding RQ3, the results indicated that there could indeed be a relationship
between frequent start-stop cycles and degradation. WT04 had the highest start-
stop cycles while WT02, showing no signs of degradation, had the least.

6.1.1 Limitations
Fault development could have been more evident in other signals, since only five
were chosen for manual inspection. Selecting the optimal five signals is a challeng-
ing task, as shown by the variation in the frequency median plots (for example
Figure 5.10). Additionally, deterioration in early stage faults could develop slowly
and therefore be unnoticed by TVA.
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The TVA methods answer the proposed research questions, but there is significant
uncertainty related to the conclusiveness of the results. Although spikes in the
spectrums were clearly visible, only the CFs of the parallel gear could be identified.
Therefore, the TVA shows that it is highly beneficial to know the dimensions of
the relevant components in order to compute and track CFs.

As mentioned, WT01 was compared to WT04, and WT02 to WT03. If all four
turbines were equipped with exactly the same set of components, the analysis
proposed would have been easier to carry out, even without component dimensions.
If they had been the same, and a healthy reference had been obtained as well, the
results would have been easier to interpret.

6.2 Fault Development Analysis Using Clustering
The clustering approach is only capable of detecting change, hence, only RQ2 is
answered through this approach. As seen in the results, no sign of mechanical fault
development for either of the four WTs was visible. These results indicate two
possible scenarios; (i) there are no fault development patterns present in the vibra-
tion signals, or (ii) there exist degradation patterns, but the proposed clustering
approach was unable to detect it.

If scenario (i) is true, the clustering approach would obviously not detect similar-
ities between later points related to any fault degradation. In this scenario, there
could either exists a fault which is not developing over time or there could exist no
fault at all.

If scenario (ii) is true, fault development is present in the signals, but the extracted
features and clustering failed to detect it. If the faults are at an early stage, it is
possible that the degradation process is so slow that changes in the later signals
are undetectable by the selected features. Another alternative is that K-means
is unable to detect any faults because of the sensitive nature of the method (Sec-
tion 2.7.2). K-means is, as mentioned in Section 4.3, highly reliant on the input
features. Thus, a poor feature choice or feature combination could prevent the
detection of interesting fault developments.

Since no fault detecting was apparent, due to the poor "separation" of later sampled
signals, no further cluster analysis was applied. There was no reason to look into
why certain samples had been grouped together.

6.2.1 Limitations
The "no free lunch" theorem states that there is no universally best model to every
ML problem (Wolpert, 1996). A limiting factor of this clustering approach is there-
fore that other clustering methods should also have been explored to strengthen the
analysis and potentially detect fault development. There exist a range of clustering
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techniques, some of which are presented in future work, Section 6.4.

Jain and Dubes (1988) presented nine challenges associated with clustering (Ap-
pendix A.2). Here, a selection of the challenges will be discussed in relation to the
results:

1. What features should be used when clustering?
Selecting the optimal features for detecting fault development is an important
but challenging task. When clustering data in more than three dimensions,
humans cannot inspect and verify any clustering tendencies. Therefore, one
should be critical towards every included feature. The relevance of some of
the extracted features could be questionable. For instance, wind speed is
not as relevant for capturing the different running conditions as for example
average power, which captures the load of the HSS. The information provided
by wind speed could therefore be redundant and contaminate the clusters. In
such circumstances, expert knowledge could be of use (Jain, 2010).

2. Should the data be normalised? Since the features in this proposed approach
are normalised, they are equally important through the "eyes" of K-means.
However, it is debatable whether the wind speed feature is as important as
for example the bi-spectrum features.

3. Are there any outliers (extreme values) in the data? Outliers in the data set
were removed manually through an inspection of the feature distributions.
However, it can be hard to determine the filtering threshold for outliers. Here,
statistical approaches can be used more actively to remove samples. Other
approaches include interpolating values suspected to be outliers, instead of
removing the whole data points altogether.

4. Are the discovered clusters valid? Jain and Dubes (1988) state that the valid-
ity of clusters can be challenging to asses. The measure used in this approach
was an external criteria; the percentage of samples originating from signal in-
dex 350 or later. This is an objective measurement evaluating whether the
proposed approach answered RQ2. It is important to have a measure, since
clustering methods will group the data even if there are no interesting pat-
terns.

It is difficult to know if the method actually pickedup fault development. An
interesting approach could have been to assess it using simulated data. This is
discussed in Recommendations and Future Work, Section 6.4.

6.3 Traditional Vibration Analysis vs. Data-Driven
Approach

As discussed, the TVA method encapsulates all three RQs. Spectral lines can be
tracked closely to determine faults and deterioration over time. Only RQ2 is dis-
cussed using the clustering approach. This is because the clustering approach is
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only capable of detecting change.

The TVA results are interpretable to human vibration analysts, making them trust-
worthy in decision making processes. This is useful when planning maintenance,
and is one of the reasons why they are implemented in commercial online CM sys-
tems (Barszcz and Randall, 2009). The clustering results, on the other hand, are
less interpretable to humans, especially with multi-dimensional data. This make
them less suitable in situations where the consequence of a poor decision is dreadful
or costly, for example when deciding whether a gearbox is faulty or if maintenance
is needed.

The TVA results require manual inspection, and may be less suited for detect-
ing fault degradation over time. K-means, however, is capable of finding complex
patterns in hundreds of vibration signals under various running conditions. This
makes clustering more applicable in automated degradation analysis than TVA.

Clustering requires no a priori knowledge of vibration signals. Contrarily, the
results show that TVA is highly dependant on prior knowledge, such as component
dimensions.

6.4 Recommendations and Future Work
This section presents future work related to the TVA methods, clustering approach,
and other sensor data.

6.4.1 Traditional Vibration Analysis
Potential for EEMD to Isolate REB Signal

Extracting the OBF to use with EOA is the main challenge in regards to this
method. An alternative approach to SK using EEMD to isolate the faulty bearing
signal was proposed by Zhao et al. (2014). They found that EEMD outperformed
other methods when used on complex vibration signals from multiple components.
EEMD was more resilient to noise and was better at separating the faulty vibration
signals. It would be interesting to investigate if this method would yield different
results.

6.4.2 Clustering Approach
The K-means clustering method could have been validated on similar or simulated
data sets with known fault development. It would be wise to test the method prior
to running it on real world data. This would increase the viability of the method.

Some of the features extracted in the clustering approach could also have been
studied further. The bi-spectrum and EEMD contain interesting information re-
garding the state of various WT components. A bi-spectrum analysis could have
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been used in isolation to look for fault indications, in research question 1 (Saidi
et al., 2015; Wang et al., 2018). EEMD could have been combined with further
signal analysis to detect and diagnose machinery (Saidi et al., 2014). However,
both of these methods would require known dimensions in order to locate faults.

Various improvements could have been implemented in the clustering procedure.
Firstly, other clustering approaches could have been applied to strengthen the re-
search. Secondly, different subsets of features could have been mixed. Outliers
could have been handled using statistics, instead of completely removing the sam-
ple.

Jain and Dubes (1988) stated that a challenge related to clustering is knowning
which clustering method to use. K-means assigns a cluster to every data sample,
and is therefore sensitive to noisy data samples (Section 2.7.2). Density-based
clustering approaches such as DBSCAN omits samples in low-density regions and
classifies them as noise (Frigui, 2008). It is therefore not as sensitive to noise as
K-means. DBSCAN could be an interesting clustering method to apply to the
feature data in this thesis.

6.5 Other Data-Driven Methods
Autoencoders is a type of neural network used to detect anomalies in data (Alla
and Adari, 2019). Autoencoders takes a feature data set as input, and attempts
to reconstruct the input in the output. If a new measurement, e.g. vibration
measurement from a CM system, is recorded, it can be run through the already
trained autoencoder. The method then returns a reconstruction error, stating how
well the input data was reconstructed. A high error indicates anomalies, which can
be used to indicate fault development. This method works well with high volumes
of data and more than five features (Alla and Adari, 2019).

6.6 Other Sensor Data
Vibration measured in the GbxHssRr sensor was studied in this thesis because of
the failure rates of gearbox components and HSS bearings. However, faults could
have appeared in other places and other sensor measurements, e.g. GbxHssFr,
could have been interesting to explore. Additionally, oil analysis could have been
studied to gain a further understanding of the WTs’ states.
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Chapter 7
Conclusion

Condition monitoring of WT components could provide useful knowledge of their
state. Particularly, components with high failure rates, such as gearboxes and HSS,
are valuable to monitor. In this thesis, traditional analysis methods and a clus-
tering approach was applied to detect faults (RQ1), fault development (RQ2) and
reveal any relationship between the number of start-stop cycles and faults (RQ3).
Contrary to similar studies which rely heavily on geometric dimensions and compo-
nent’s state to validate their results, this thesis aims to demonstrate the potential
for exploratory analysis using only vibration and operational data.

The examined data was streamed from four WTs located in Trøndelag, Norway,
covering a time period from August 2018 to January 2020. The data consisted of
10-second vibration signals and operational data such as power production. The
vibration signals were sampled at 25.6 kHz and were measured on the HSS. WT04
had logged approximately twice as many start-stop cycles (1805) as the other three.

The traditional vibration analysis (TVA) methods studied five selected signals from
each turbine, and aimed to answer all three research questions. TVA consisted of
an order analysis directed towards detecting gear faults and an envelope order
analysis used to detect bearing faults (REB). The proposed clustering approach
used the K-means algorithm and was aimed at detecting fault development pat-
terns (changes) in the signals, and therefore answered RQ2. The clustering method
was not directed towards identifying any specific faults. Instead, it was capable
of detecting transient signals and non-linearities, often associated with mechanical
faults.

A traditional analysis and a data-driven approach was selected for detecting fault
development due to their different properties. The TVA methods are advanta-
geous over the data-driven approach because they are interpretable by technicians.
However, the TVA methods rely on manual inspection, which is cumbersome when
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looking for fault development. The clustering approach is powerful in the way it
handles hundreds of signals at once, with no need for a priori knowledge. Data-
driven approaches are therefore applicable in automated CM systems.

In order to answer the research questions using TVA, spectrum comparison was
applied to compensate for the lack of information regarding the CFs. WT01 was
compared to WT04, and WT02 was compared to WT03. These pairs were assumed
to contain the same gearbox components, due to similarities in the frequency re-
sponses. To answer RQ1, the results from the OA indicated that the parallel gears
of WT04 were more degraded than WT01. None of the other three WTs showed
any noticeable gear fault characteristics. The EOA results demonstrated more vi-
bration noise in WT04 compared to WT01. This could potentially indicate REB
faults in WT04. The location of the faulty bearings were not determined. In re-
gards to RQ2, no fault development was detected through either the order analysis
or the EOA analysis. Concerning RQ3, the detected WT04 degradation implied
that there could be a relationship between a relatively high number of start-stop
cycles and faults.

The clustering approach grouped extracted features from the time domain, fre-
quency domain and the time-frequency domain. K-means was run with different
subsets of the extracted features to strengthen the analysis. The measurable ob-
jective of the clustering approach was assessed with an external criteria; how many
indexes after 350 could be separated from the rest. This would indicate a change,
potentially related to fault developments. In respect to RQ2, the clusters showed
no sign of mechanical fault development for either of the four WTs. The best sep-
aration of indexes after 350 was approximately half of the samples of a relatively
small cluster. Therefore, the K-means clusters were unable to indicate any fault
degradation.

The TVA and the clustering approach produced similar fault development results,
indicating no degradation over the time period for any of the WTs. This could
either mean that no fault development existed in the signals, or that the fault de-
velopment was undetected by the TVA and clustering. Validating the TVA and
clustering method on other data with known faults would have been valuable in
order to test the viability of the methods. Furthermore, findings from the TVA
suggested that the parallel gears and bearings in WT04 were degraded.

This thesis demonstrated the potential of an exploratory analysis based only on vi-
bration and operational signals, when component dimensions are unavailable from
the manufacturer. Although, the research questions were answered, it is evident
that the lack of information and domain knowledge limited the conclusiveness of
the results. This study would greatly benefit from knowing component dimensions,
and it is recommended that efforts are made to obtain such information in future
projects.

110



Bibliography

Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T., 2012. Learning From Data: A
short Course , 215.

Alla, S., Adari, S.K., 2019. Beginning Anomaly Detection Using Python-Based
Deep Learning. doi:10.1007/978-1-4842-5177-5.

Antoni, J., Randall, R.B., 2006. The spectral kurtosis: Application to the vibratory
surveillance and diagnostics of rotating machines. Mechanical Systems and Signal
Processing 20, 308–331. doi:10.1016/j.ymssp.2004.09.002.

Arthur, D., Vassilvitskii, S., 2007. k-means++: the advantages of careful seeding,
in: Bansal, N., Pruhs, K., Stein, C. (Eds.), SODA. SIAM, p. 1027–1035. URL:
http://dblp.uni-trier.de/db/conf/soda/soda2007.html#ArthurV07.

Barszcz, T., 2019. Vibration- Based Condition Monitoring of Wind Turbines.
Springer International Publishing.

Barszcz, T., Randall, R.B., 2009. Application of spectral kurtosis for detection of
a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and
Signal Processing 23, 1352–1365. doi:10.1016/j.ymssp.2008.07.019.

Bartnes, G., Amundsen, J.S., Holm, I.B., 2018. Kraftmarkedsanalyse 2018-
2030 Mer vindkraft bidrar til økt nordisk kraftoverskudd. 84. URL: http:
//publikasjoner.nve.no/rapport/2018/rapport2018_84.pdf.

Basics, B.T.O., 2009. Part 1 : Maintenance Strategy Overview 29, 0–5.

Ben Ali, J., Saidi, L., Harrath, S., Bechhoefer, E., Benbouzid, M., 2018. Online
automatic diagnosis of wind turbine bearings progressive degradations under
real experimental conditions based on unsupervised machine learning. Applied
Acoustics 132, 167–181. doi:10.1016/j.apacoust.2017.11.021.

Ben Ali, J., Sayadi, M., Fnaiech, F., Morello, B., Zerhouni, N., 2013. Importance
of the fourth and fifth intrinsic mode functions for bearing fault diagnosis. 14th

111

http://dx.doi.org/10.1007/978-1-4842-5177-5
http://dx.doi.org/10.1016/j.ymssp.2004.09.002
http://dblp.uni-trier.de/db/conf/soda/soda2007.html#ArthurV07
http://dx.doi.org/10.1016/j.ymssp.2008.07.019
http://publikasjoner.nve.no/rapport/2018/rapport2018_84.pdf
http://publikasjoner.nve.no/rapport/2018/rapport2018_84.pdf
http://dx.doi.org/10.1016/j.apacoust.2017.11.021


International Conference on Sciences and Techniques of Automatic Control and
Computer Engineering, STA 2013 , 259–264doi:10.1109/STA.2013.6783140.

Benesty, J., Chen, J., Huang, Y., Cohen, I., 2009. Pearson Correlation Co-
efficient. volume 2. URL: http://www.springerlink.com/index/10.1007/
978-3-642-00296-0, doi:10.1007/978-3-642-00296-0.

Berkhin, P., 2002. Clustering survey Bherkin. Technical Report, Accrue Software
, 1–56doi:10.1007/3-540-28349-8{\_}2.

Boutsidis, C., Mahoney, M.W., Drineas, P., 2009. Unsupervised feature selection
for the k-means clustering problem. Advances in Neural Information Processing
Systems 22 - Proceedings of the 2009 Conference , 153–161.

Caesarendra, W., Tjahjowidodo, T., 2017. A review of feature extraction meth-
ods in vibration-based condition monitoring and its application for degrada-
tion trend estimation of low-speed slew bearing. Machines 5. doi:10.3390/
machines5040021.

Chang, K.M., 2010. Ensemble empirical mode decomposition: A Noise-Assited.
Biomedizinische Technik 55, 193–201. doi:10.1515/BMT.2010.030.

Chen, H., Chen, P., Chen, W., Wu, C., Li, J., Wu, J., 2017. Wind turbine gear-
box fault diagnosis based on improved EEMD and Hilbert square demodulation.
Applied Sciences (Switzerland) 7. doi:10.3390/app7020128.

Commission, I.E., 2019. INTERNATIONAL STANDARD , 1–15.

Coultate, D.J., Hornemann, M., 2018. Why wind-turbine gear-
boxes fail to hit the 20-year mark. Windpower Engineering & De-
velopment , 24–26URL: https://www.windpowerengineering.com/
wind-turbine-gearboxes-fail-hit-20-year-mark/.

Drago, R.J., 2007. The effect of start-up load conditions on gearbox performance
and life - Failure analysis and case study. American Gear Manufacturers Associ-
ation - Fall Technical Meeting of the American Gear Manufacturers Association
2007, AGMA , 125–138.

Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V., 2004. Clustering
large graphs via the Singular Value Decomposition. Machine Learning 56, 9–33.
doi:10.1023/B:MACH.0000033113.59016.96.

Elkan, C., 2003. Using the Triangle Inequality to Accelerate k-Means. Proceedings,
Twentieth International Conference on Machine Learning 1, 147–153.

Eulenfeld, T., 2018. Polycoherence: Calculate bicoherence, bispectrum, polycoher-
ence and polyspectrum. URL: https://github.com/trichter/polycoherence.

Fackrell, J.W., White, P.R., Hammond, J.K., Pinnington, R.J., Parsons, A.T.,
1995a. The interpretation of the bispectra of vibration signalsI. theory. Mechan-
ical Systems and Signal Processing 9, 257–266. doi:10.1006/mssp.1995.0021.

112

http://dx.doi.org/10.1109/STA.2013.6783140
http://www.springerlink.com/index/10.1007/978-3-642-00296-0
http://www.springerlink.com/index/10.1007/978-3-642-00296-0
http://dx.doi.org/10.1007/978-3-642-00296-0
http://dx.doi.org/10.1007/3-540-28349-8{_}2
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.1515/BMT.2010.030
http://dx.doi.org/10.3390/app7020128
https://www.windpowerengineering.com/wind-turbine-gearboxes-fail-hit-20-year-mark/
https://www.windpowerengineering.com/wind-turbine-gearboxes-fail-hit-20-year-mark/
http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96
https://github.com/trichter/polycoherence
http://dx.doi.org/10.1006/mssp.1995.0021


Fackrell, J.W., White, P.R., Hammond, J.K., Pinnington, R.J., Parsons, A.T.,
1995b. The interpretation of the bispectra of vibration signals—II. Experimental
results and applications. Mechanical Systems and Signal Processing 9, 267–274.
doi:10.1006/mssp.1994.0022.

Frigui, H., 2008. Clustering: Algorithms and applications. 2008 1st International
Workshops on Image Processing Theory, Tools and Applications, IPTA 2008
doi:10.1109/IPTA.2008.4743793.

Gaci, S., 2016. A New Ensemble Empirical Mode Decomposition (EEMD) Denois-
ing Method for Seismic Signals. Energy Procedia 97, 84–91. URL: http://
dx.doi.org/10.1016/j.egypro.2016.10.026, doi:10.1016/j.egypro.2016.
10.026.

Guo, W., Tse, P.W., Djordjevich, A., 2012a. Faulty bearing signal recovery from
large noise using a hybrid method based on spectral kurtosis and ensemble em-
pirical mode decomposition. Measurement: Journal of the International Mea-
surement Confederation 45, 1308–1322. URL: http://dx.doi.org/10.1016/j.
measurement.2012.01.001, doi:10.1016/j.measurement.2012.01.001.

Guo, Y., Liu, T.W., Na, J., Fung, R.F., 2012b. Envelope order tracking for fault
detection in rolling element bearings. Journal of Sound and Vibration 331, 5644–
5654. URL: http://dx.doi.org/10.1016/j.jsv.2012.07.026, doi:10.1016/
j.jsv.2012.07.026.

Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research , 1157–1182doi:10.1016/j.aca.2011.07.
027.

Guyon, I., Gunn, S., Ben Hur, A., Dror, G., 2005. Result analysis of the NIPS 2003
feature selection challenge. Advances in Neural Information Processing Systems
.

Hinich, M.J., Wilson, G.R., 1990. Detection of Non-Gaussian Signals in Non-
Gaussian Noise Using the Bispectrum. IEEE Transactions on Acoustics, Speech,
and Signal Processing 38, 1126–1131. doi:10.1109/29.57541.

Hintze, J.L., Nelson, R.D., 1998. Violin Plots: A Box Plot-Density
Trace Synergism Statistical Computing and Graphics Violin Plots: A
Box Plot-Density Trace Synergism. Source: The American Statistician
52, 181–184. URL: http://www.jstor.org/stable/2685478%5Cnhttp:
//www.jstor.org/%5Cnhttp://www.jstor.org/action/showPublisher?
publisherCode=astata.%5Cnhttp://www.jstor.org.

Huang, K.G.M.C.K.M.H., 2017. Anomaly Algorithms Principles and Detection.

Huitao, C., Shuangxi, J., Xianhui, W., Zhiyang, W., 2018. Fault diagnosis
of wind turbine gearbox based on wavelet neural network. Journal of Low
Frequency Noise Vibration and Active Control 37, 977–986. doi:10.1177/
1461348418795376.

113

http://dx.doi.org/10.1006/mssp.1994.0022
http://dx.doi.org/10.1109/IPTA.2008.4743793
http://dx.doi.org/10.1016/j.egypro.2016.10.026
http://dx.doi.org/10.1016/j.egypro.2016.10.026
http://dx.doi.org/10.1016/j.egypro.2016.10.026
http://dx.doi.org/10.1016/j.egypro.2016.10.026
http://dx.doi.org/10.1016/j.measurement.2012.01.001
http://dx.doi.org/10.1016/j.measurement.2012.01.001
http://dx.doi.org/10.1016/j.measurement.2012.01.001
http://dx.doi.org/10.1016/j.jsv.2012.07.026
http://dx.doi.org/10.1016/j.jsv.2012.07.026
http://dx.doi.org/10.1016/j.jsv.2012.07.026
http://dx.doi.org/10.1016/j.aca.2011.07.027
http://dx.doi.org/10.1016/j.aca.2011.07.027
http://dx.doi.org/10.1109/29.57541
http://www.jstor.org/stable/2685478%5Cnhttp://www.jstor.org/%5Cnhttp://www.jstor.org/action/showPublisher?publisherCode=astata.%5Cnhttp://www.jstor.org
http://www.jstor.org/stable/2685478%5Cnhttp://www.jstor.org/%5Cnhttp://www.jstor.org/action/showPublisher?publisherCode=astata.%5Cnhttp://www.jstor.org
http://www.jstor.org/stable/2685478%5Cnhttp://www.jstor.org/%5Cnhttp://www.jstor.org/action/showPublisher?publisherCode=astata.%5Cnhttp://www.jstor.org
http://dx.doi.org/10.1177/1461348418795376
http://dx.doi.org/10.1177/1461348418795376


Jackson, L.B., 2002. Digital Filters and Signal Processing. URL: http://dx.doi.
org/10.1016/j.tws.2012.02.007, doi:10.1017/CBO9781107415324.004.

Jain, A.K., 2010. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters 31, 651–666. URL: http://dx.doi.org/10.1016/j.patrec.2009.09.
011, doi:10.1016/j.patrec.2009.09.011.

Jain, A.K., Dubes, R.C., 1988. Algorithms for Clustering Data.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Sta-
tistical Learning. volume 64. 1st ed. doi:10.1016/j.peva.2007.06.006.

Laszuk, D., 2017. Python implementation of Empirical Mode Decomposition algo-
rithm. URL: https://github.com/laszukdawid/PyEMD.

Lee, J., Zhao, F., 2020. GWEC Global Wind Report. Wind energy technology ,
78URL: www.gwec.net.

Li, H., Zheng, H., Tang, L., 2009. Gear fault diagnosis based on order tracking and
Hilbert-Huang transform. 6th International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2009 4, 468–472. doi:10.1109/FSKD.2009.220.

Liu, C.S., 2005. Fault Detection Of Rolling Element Bearings.

Liu, X., Xu, X., Jiang, Z., Wu, G., Zuo, Y., 2016. Application of the state de-
terioration evolution based on bi-spectrum entropy and HMM in wind turbine.
Chaos, Solitons and Fractals 89, 160–168. doi:10.1016/j.chaos.2015.10.018.

Lloyd, S.P., 1982. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory 28, 129–137. doi:10.1109/TIT.1982.1056489.

MATLAB, 2019. version 9.7.0.1190292 (R2019b). The MathWorks Inc., Natick,
Massachusetts.

McFadden, P.D., 1989. Interpolation techniques for time domain averaging of gear
vibration. Mechanical Systems and Signal Processing 3, 87–97. doi:10.1016/
0888-3270(89)90024-1.

Mendel, J.M., 1991. Tutorial on Higher-Order Statistics (Spectra) in Signal Pro-
cessing and System Theory: Theoretical Results and Some Applications. Pro-
ceedings of the IEEE 79, 278–305. doi:10.1109/5.75086.

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. The MIT
press. doi:10.1007/978-94-011-3532-0{\_}2.

Musial, W., Butterfield, S., Mcniff, B., 2007. Improving wind turbine gearbox
reliability. European Wind Energy Conference and Exhibition 2007, EWEC
2007 3, 1770–1779.

Nikias, C.L., Mendel, J.M., 1993. Statistics and Spectra of a Signal Can Be Defined
in Terms. IEEE Signal Processing Magazine doi:10.1210/jc.2010-2239.

114

http://dx.doi.org/10.1016/j.tws.2012.02.007
http://dx.doi.org/10.1016/j.tws.2012.02.007
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.peva.2007.06.006
https://github.com/laszukdawid/PyEMD
www.gwec.net
http://dx.doi.org/10.1109/FSKD.2009.220
http://dx.doi.org/10.1016/j.chaos.2015.10.018
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/0888-3270(89)90024-1
http://dx.doi.org/10.1016/0888-3270(89)90024-1
http://dx.doi.org/10.1109/5.75086
http://dx.doi.org/10.1007/978-94-011-3532-0{_}2
http://dx.doi.org/10.1210/jc.2010-2239


Randall, R.B., 2011. Vibration-Based Condition Monitoring.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. "Why should i trust you?" Explaining
the predictions of any classifier. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining 13-17-Augu, 1135–1144.
doi:10.1145/2939672.2939778.

Rivola, A., White, P.R., 1999. Detecting system non-linearities by means of higher
order statistics. Revue Francaise De Mecanique 2, 129–136.

Saidi, L., Ali, J.B., Fnaiech, F., 2014. Bi-spectrum based-EMD applied to the
non-stationary vibration signals for bearing faults diagnosis. ISA Transactions
53, 1650–1660. doi:10.1016/j.isatra.2014.06.002.

Saidi, L., Ben Ali, J., Fnaiech, F., 2015. Application of higher order spectral fea-
tures and support vector machines for bearing faults classification. ISA Trans-
actions 54, 193–206. doi:10.1016/j.isatra.2014.08.007.

Sanger, D., 2017. Reactive, preventive and predictive main-
tenance. URL: https://ivctechnologies.com/2017/08/29/
reactive-preventive-predictive-maintenance/.

Statkraft, . Wind power briefly explained.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane,
J., Nenadic, G., 2019. Machine learning methods for wind turbine condition
monitoring: A review. doi:10.1016/j.renene.2018.10.047.

Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T.A.,
Ekemb, G., 2014. Wind turbine condition monitoring: State-of-the-art re-
view, new trends, and future challenges. Energies 7, 2595–2630. doi:10.3390/
en7042595.

The International Renewable Energy Agency (IRENA), 2012. Wind Power. doi:10.
1007/978-3-642-20951-2{\_}8.

TrønderEnergi, . Skomakerfjellet vindkraft. URL: https://tronderenergi.no/
produksjon/kraftverk/bessakerfjellet2.

Uhrmann, H., Kolm, R., Zimmermann, H., 2014. Analog Filters. Springer Series in
Advanced Microelectronics 45, 3–11. doi:10.1007/978-3-642-38013-6{\_}2.

Van Der Walt, S., Colbert, S.C., Varoquaux, G., 2011. The NumPy array: A struc-
ture for efficient numerical computation. Computing in Science and Engineering
13, 22–30. doi:10.1109/MCSE.2011.37.

Verbruggen, T., 2003. Wind turbine operation and maintenance based on condition
monitoring WT-. Technical Report,ECN-C–03-047, .

115

http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1016/j.isatra.2014.06.002
http://dx.doi.org/10.1016/j.isatra.2014.08.007
https://ivctechnologies.com/2017/08/29/reactive-preventive-predictive-maintenance/
https://ivctechnologies.com/2017/08/29/reactive-preventive-predictive-maintenance/
http://dx.doi.org/10.1016/j.renene.2018.10.047
http://dx.doi.org/10.3390/en7042595
http://dx.doi.org/10.3390/en7042595
http://dx.doi.org/10.1007/978-3-642-20951-2{_}8
http://dx.doi.org/10.1007/978-3-642-20951-2{_}8
https://tronderenergi.no/produksjon/kraftverk/bessakerfjellet2
https://tronderenergi.no/produksjon/kraftverk/bessakerfjellet2
http://dx.doi.org/10.1007/978-3-642-38013-6{_}2
http://dx.doi.org/10.1109/MCSE.2011.37


Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,
S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R., Jones,
E., Kern, R., Larson, E., Carey, C.J., Polat, , Feng, Y., Moore, E.W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A.,
Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P.,
Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Sco-
patz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström,
C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E.,
Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price,
G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P.,
Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schön-
berger, J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez,
J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M.,
Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk,
N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feld-
bauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pud-
lik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera,
T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-
Baeza, Y., 2020. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nature Methods 17, 261–272. doi:10.1038/s41592-019-0686-2.

Viseth, E.S., 2018. TrønderEnergi satser stort på vind - tredobler porteføljen. URL:
https://www.tu.no/artikler/tronderenergi-satser-stort-pa-vind/
449760.

Wang, G., Gu, F., Rehab, I., Ball, A., Li, L., 2018. A Sparse Modulation Signal Bis-
pectrum Analysis Method for Rolling Element Bearing Diagnosis. Mathematical
Problems in Engineering 2018. doi:10.1155/2018/2954094.

Wei, Y., Li, Y., Xu, M., Huang, W., 2019. A review of early fault diagnosis
approaches and their applications in rotating machinery. Entropy 21, 1–26.
doi:10.3390/e21040409.

Wolpert, D.H., 1996. The Lack of a Priori Distinctions between Learning Algo-
rithms. Neural Computation 8, 1341–1390. doi:10.1162/neco.1996.8.7.1341.

Yiakopoulos, C.T., Gryllias, K.C., Antoniadis, I.A., 2011. Rolling element bearing
fault detection in industrial environments based on a K-means clustering ap-
proach. Expert Systems with Applications 38, 2888–2911. URL: http://dx.
doi.org/10.1016/j.eswa.2010.08.083, doi:10.1016/j.eswa.2010.08.083.

Yu, Y., YuDejie, Junsheng, C., 2006. A roller bearing fault diagnosis method based
on EMD energy entropy and ANN. Journal of Sound and Vibration 294, 269–277.
doi:10.1016/j.jsv.2005.11.002.

Zhao, M., Lin, J., Xu, X., Lei, Y., 2013. Tacholess envelope order analysis and
its application to fault detection of rolling element bearings with varying speeds.
Sensors (Switzerland) 13, 10856–10875. doi:10.3390/s130810856.

116

http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.tu.no/artikler/tronderenergi-satser-stort-pa-vind/449760
https://www.tu.no/artikler/tronderenergi-satser-stort-pa-vind/449760
http://dx.doi.org/10.1155/2018/2954094
http://dx.doi.org/10.3390/e21040409
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1016/j.eswa.2010.08.083
http://dx.doi.org/10.1016/j.eswa.2010.08.083
http://dx.doi.org/10.1016/j.eswa.2010.08.083
http://dx.doi.org/10.1016/j.jsv.2005.11.002
http://dx.doi.org/10.3390/s130810856


Zhao, M., Lin, J., Xu, X., Li, X., 2014. Multi-Fault detection of rolling element
bearings under harsh working condition using imf-based adaptive envelope order
analysis. Sensors (Switzerland) 14, 20320–20346. doi:10.3390/s141120320.

117

http://dx.doi.org/10.3390/s141120320


Appendix A
Supplementary Theory

A.1 Spectral Kurtosis Definition
The mathematical definition of Spectral Kurtosis is as follows (Barszcz, 2019). A
system with input x(t), an output y(t) and a time varying impulse response h(t, s),
can be described as:

y(t) =

∫ +∞

−∞
ej2πH(t, f)dX(f) (A.1)

where H(t, f) is the time varying transfer function. It can also be described as
the complex envelope of the signal y(t) at frequency f . Given that H is stationary
and H and X are independent, the process y is considered conditionally non-
stationary and the fourth order spectral cumulant of the process can be calculated.
Its definition is show in equation A.2:

C4Y (f) = S4Y (f)− 2S2
4Y (f) (A.2)

where S2nY (t, f) is the 2nd-order instantaneous moment, interpreted as the mea-
sure of energy of the complex envelope. It is defined as:

S2nY (t, f) =
E{|H(t, f)dX(f)|2nω}

df
= |H(t, f)|2nS2nX (A.3)

At last, Spectral Kurtosis is defined as the energy normalised cumulant and given
in equation A.4

KY (f) =
C4Y (f)

S2
2Y (f)

=
S4Y (f)

S2
2Y (f)

− 2 (A.4)
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A.2 Challenges with Clustering
List of challenges associated with clustering by Jain and Dubes (1988):

1. What is a cluster?

2. What features should be used?

3. Should the data be normalized?

4. Are there any outliers (extreme values) in the data?

5. How do we define the pair-wise similarity?

6. How many clusters are present in the data?

7. What clustering method should be used?

8. Does the data have any clustering tendency?

9. Are the discovered clusters valid?
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Appendix B
Data Plots

B.1 Kurtograms - Spectral Kurtosis

Figure B.1: WT01: Kurtogram of the first of five selected
signals.
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Figure B.2: WT01: Kurtogram of the second of five selected
signals.

Figure B.3: WT01: Kurtogram of the third of five selected
signals.
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Figure B.4: WT01: Kurtogram of the fourth of five selected
signals.

Figure B.5: WT01: Kurtogram of the fifth of five selected
signals.
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Figure B.6: WT02: Kurtogram of the first of five selected
signals.

Figure B.7: WT02: Kurtogram of the second of five selected
signals.
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Figure B.8: WT02: Kurtogram of the third of five selected
signals.

Figure B.9: WT02: Kurtogram of the fourth of five selected
signals.

124



Figure B.10: WT02: Kurtogram of the fifth of five selected
signals.

Figure B.11: WT03: Kurtogram of the first of five selected
signals.
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Figure B.12: WT03: Kurtogram of the second of five selected
signals.

Figure B.13: WT03: Kurtogram of the third of five selected
signals.
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Figure B.14: WT03: Kurtogram of the fourth of five selected
signals.

Figure B.15: WT03: Kurtogram of the fifth of five selected
signals.
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Figure B.16: WT04: Kurtogram of the first of five selected
signals.

Figure B.17: WT04: Kurtogram of the second of five selected
signals.
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Figure B.18: WT04: Kurtogram of the third of five selected
signals.

Figure B.19: WT04: Kurtogram of the fourth of five selected
signals.
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Figure B.20: WT04: Kurtogram of the fifth of five selected
signals.
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B.2 Feature Exploration Plots

B.2.1 WT02

Figure B.21: WT02: Wind speed, Average Power produced
and Average Shaft speed (High Speed shaft) grouped by month.
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B.2.2 WT03

Figure B.22: WT03: Wind speed, Average Power produced
and Average Shaft speed (High Speed shaft) grouped by month.
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B.2.3 WT04

Figure B.23: WT04: Wind speed, Average Power produced
and Average Shaft speed (High Speed shaft) grouped by month.
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B.3 Correlation Plots for Data Sets
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Figure B.24: WT01: Correlation plot of all the 36 features
extracted.
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Figure B.25: WT02: Correlation plot of all the 36 features
extracted.
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Figure B.26: WT03: Correlation plot of all the 36 features
extracted.
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Figure B.27: WT04: Correlation plot of all the 36 features
extracted.
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B.4 Box Plots for Data Sets
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WT01: Box plot of the 36 extracted features

Figure B.28: WT01: Boxplot on the unfiltered data after
extracting features.
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Figure B.29: WT02: Boxplot on the unfiltered data after
extracting features.
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Figure B.30: WT03: Boxplot on the unfiltered data after
extracting features.
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Figure B.31: WT04: Boxplot on the unfiltered data after
extracting features.
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