
Developing a Cloud-Based
Monitoring System for Digital
Twins

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Erik Kjernlie
Anne Pernille Wulff Wold

2020
Erik Kjernlie, Anne Pernille W

ulff W
old

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g

Developing a Cloud-Based Monitoring
System for Digital Twins

Erik Kjernlie
Anne Pernille Wulff Wold

Engineering and ICT
Submission date: June 2020
Supervisor: Bjørn Haugen
Co-supervisor: Terje Rølvåg

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

i

Preface
This Master’s thesis concludes our M. Sc. Engineering and ICT degrees at the
Norwegian University of Science and Technology in Trondheim. The project
is conducted at the Department of Mechanical and Industrial Engineering. It
is the continuation of our Specialization thesis, ”Evaluating the Cloud-Based
Monitoring System for Further Development,” from December 2019.

We would like to thank our supervisors Bjørn Haugen and Terje Rølv̊ag, for
support and guidance throughout the project and introducing us to relevant
people that have influenced the project. SAP Norway and Runar Heggelien, in
particular, for the enthusiasm and taking time to answer all of our questions. Jan
Christian Meyer, for discussions, technical insights, and valuable feedback. Bjørn
Lindi and the rest of MIME’s Brønn, for providing us with technical support.

It is assumed that the reader possesses a general understanding of the fields of
information and communications technology (ICT) and mechanical engineering.

Trondheim, 10.06.2020

Erik Kjernlie Anne Pernille Wulff Wold

¨

Faculty of Engineering

Department of Mechanical and Industrial Engineering

Address: Org.nr. 974 767 880

NO-7491
TRONDHEIM

Norway

Email:

mtp-info@mtp.ntnu.no

https://www.ntnu.edu/mtp

MASTER’S THESIS 2020

FOR

STUD.TECHN. ERIK KJERNLIE

AND

STUD.TECHN. ANNE PERNILLE WULFF WOLD

DEVELOPING A CLOUD-BASED MONITORING SYSTEM FOR DIGITAL TWINS

Utvikling av skybasert monitoreringssystem for digitale tvillinger

Several software companies are developing digital twin solutions for predictive maintenance and
monitoring of structural integrity. These are based on very expensive proprietary formats and solutions not
applicable to academia and SME companies. NTNU/MTP is therefore developing a cloud-based
monitoring system (CBMS) for integrity monitoring of physical structures and mechanisms. The CBMS is
currently in a prototype phase and we want to benchmark this system on the MTP’s knuckle boom crane.

Tasks include:

1. Build a user-friendly client in React

2. Facilitate support for personal and persisting projects

3. Implement a generic configuration system for easy adaption to other digital twin applications

4. Implement functionality for monitoring of physical assets

5. Implement methods for post-processing and analytics

If time permits:

6. Write a scientific digital twin paper with the supervisors

Contact:

At the department (supervisor, co-supervisor): Bjørn Haugen, Terje Rølvåg and Eilif Pedersen

From SAP: Runar H. Refsnæs and Henrik Løfaldli

ii

Abstract
A wide range of businesses and industries worldwide are increasingly adopting
digital twins to achieve more intelligent and automated manufacturing processes.
Their applications expose more insight into physical assets, revolutionize outdated
work processes and save companies time and money. Industrial equipment is
instrumented with sensor technology, which enables continuous monitoring
of assets. Monitoring of industrial equipment uncovers potentially harmful
operating conditions, and the insights gained provides a better basis for making
decisions about the system. By incorporating emerging technology trends such
as data analytics, cloud computing, and machine learning, one can simulate
remaining useful lifetime and optimize operations of assets.

The development of digital twin platforms for monitoring and predictive
maintenance is a complex process, as it requires extensive knowledge about
information, communication and sensor technologies, and expertise within the
application domain. Most of these platforms are based on expensive proprietary
formats, and are not applicable to academia and SME companies. At NTNU,
there is an ongoing project at the Department of Mechanical and Industrial
Engineering that aims to develop a cloud-based monitoring system (CBMS) for
digital twins. The project is developed in multiple iterations by students at the
department.

The authors’ specialization project in the fall of 2019 (Kjernlie and Wold 2019)
made a thorough evaluation of the state of the CBMS. This thesis further develops
the CBMS based on findings from the specialization project, including building a
completely new front-end solution and substantial extensions to the back-end. A
database and an authentication service enable the creation of persisting projects.
The platform is equipped with features to facilitate monitoring of physical assets,
such as curve plots, video streaming, and dynamic maps. Users are notified
of alarming sensor values by event triggers and predictions based on machine
learning models. Fast Fourier transforms (FFTs) and spectrogram analyses
expose changes in the structural integrity. Filters can be applied to remove noise
from the signal. This thesis demonstrates that all the requirements are fulfilled.
Future work is proposed for the next iteration of the development process. This
work contributes a functional CBMS, and takes the project one step closer to
the desired full-featured CBMS for digital twins.

iii

Sammendrag
Et bredt spekter av virksomheter og næringer over hele verden tar i stadig større
grad digitale tvillinger i bruk for å oppn̊a mer intelligente og automatiserte
produksjonsprosesser. Bruksomr̊adene deres gir mer innsikt i fysiske eiendeler,
revolusjonerer utdaterte arbeidsprosesser og sparer selskaper tid og penger.
Industrielt utstyr er utstyrt med sensorteknologi, som muliggjør kontinuerlig
overv̊aking av eiendeler. Overv̊aking av industrielt utstyr avdekker potensielt
skadelige driftsforhold, og innsikten som innhentes gir et bedre grunnlag for å ta
beslutninger om systemet. Ved å innlemme nye teknologitrender som dataanalyse,
skytjenester og maskinlæring, kan man simulere gjenværende nyttig levetid og
optimalisere driften av eiendeler.

Utviklingen av digitale tvillingplattformer for overv̊aking og prediktiv vedli-
kehold er en kompleks prosess, ettersom den krever omfattende kunnskap om
informasjons-, kommunikasjons- og sensorteknologier, og ekspertise innen appli-
kasjonsdomenet. De fleste av disse plattformene er basert p̊a dyre proprietære
formater, og gjelder ikke akademia og SMB-selskaper. Ved NTNU er det et
p̊ag̊aende prosjekt ved institutt for maskinteknikk og produksjon som har som
mål å utvikle et skybasert overv̊akingssystem (CBMS) for digitale tvillinger.
Prosjektet er utviklet i flere iterasjoner av studenter ved instituttet.

Forfatternes fordypningsprosjekt høsten 2019 (sst.) foretok en grundig evalu-
ering av status for CBMS-prosjektet. Denne avhandlingen videreutvikler CBMS
basert p̊a funn fra fordypningsprosjektet, inkludert å bygge en helt ny front-end-
løsning og betydelige utvidelser til back-end. En database og en autentiserings-
tjeneste muliggjør opprettelse av vedvarende prosjekter. Plattformen er utstyrt
med funksjoner for å lette overv̊aking av fysiske eiendeler, for eksempel kurve-
plott, videostreaming og dynamiske kart. Brukere blir varslet om alarmerende
sensorverdier av event triggere og prediksjoner basert p̊a maskinlæringsmodeller.
Fast Fourier transformer (FFTs) og spektrogramanalyser avslører endringer i
strukturell integritet. Filtre kan brukes for å fjerne støy fra signalet. Denne opp-
gaven viser at alle kravene er oppfylt. Framtidig arbeid foresl̊as for neste iterasjon
av utviklingsprosessen. Dette arbeidet bidrar med en funksjonell CBMS, og tar
prosjektet et skritt nærmere ønsket fullverdige CBMS for digitale tvillinger.

iv

iv

Abbreviations

AaaS Authentication as a Service
API Application Programming Interface
CBMS Cloud based monitoring system
CP Concurrent Probing
CSS Cascading Style Sheets
CSV Comma Separated Values
CTA Concurrent Think Aloud
DAQ Data Acquistion System
FFT Fast Fourier Transform
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
GDPR General Data Protection Regulation
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation
MTP Department of Mechanical and Industrial Engineering
MTU Maximum transmission unit
NDA Non-Disclosure Agreement
noSQL not only SQL
PLM Product Lifecycle Management
PoC Proof of Concept
RTA Retrospective think aloud
TCP Transmission control protocol
UDP User Datagram Protocol
SaaS Software as a Service

Contents

Preface i

Abstract ii

Sammendrag iii

Abbreviations iv

1 Introduction 1
1.1 Background . 1
1.2 The Cloud-Based Monitoring System 2
1.3 Previous Work . 2
1.4 Scope of Thesis . 4
1.5 Structure of Thesis . 6

2 Technical Background 7
2.1 Digital Twins . 7

2.1.1 Definition . 7
2.1.2 Digital Twin Platform . 9

2.2 Cloud Computing . 9
2.2.1 Service Models . 10
2.2.2 Deployment Models . 10

2.3 Monitoring and Maintenance . 11
2.4 Software Architecture . 13

2.4.1 Front-end . 13
2.4.2 Back-end . 14
2.4.3 Authentication . 14

v

vi CONTENTS

2.4.4 Storage . 14
2.4.5 Network Protocols . 16
2.4.6 Functional Mock-Up Interface and Unit 17

2.5 Usability . 18
2.5.1 Achieving Usability . 18
2.5.2 Conducting and Measuring Usability Tests 19

3 Method 21
3.1 User-Friendly Client . 21

3.1.1 Architectural Design Checklist 21
3.1.2 Usability Testing . 22

3.2 Personal and Persisting Projects 25
3.3 Generic Configuration System . 25
3.4 Monitoring . 29
3.5 Post-Processing and Analytics . 29
3.6 Development Process . 32

3.6.1 Agile Approach . 32
3.6.2 Code Control and Collaboration 34
3.6.3 File Sharing and Communication 35

4 System Overview 37
4.1 Terminology . 37
4.2 Requirements . 40
4.3 Architecture . 42

4.3.1 System Architecture . 42
4.3.2 Communication . 46
4.3.3 Cloud-based . 47

4.4 Technology stack . 47
4.4.1 Front-end . 48
4.4.2 Back-end . 48
4.4.3 Communication . 48
4.4.4 Authentication . 48
4.4.5 Storage . 49
4.4.6 Visualization of Virtual Models 50

5 Implementation 51
5.1 User-friendly Client . 51

5.1.1 Creating a React App from Template 52
5.1.2 Components . 53

CONTENTS vii

5.1.3 Routing . 55
5.1.4 Data flow . 56
5.1.5 External Communication 57

5.2 Personal and Persisting Projects 59
5.2.1 Authentication . 59
5.2.2 Storage . 60

5.3 Generic Configuration System . 61
5.3.1 Creating a project . 61
5.3.2 Datasources . 62
5.3.3 Models and Generation of 3D Files 64
5.3.4 Tiles . 64

5.4 Monitoring . 66
5.4.1 Curve Plot . 66
5.4.2 Video Streaming . 66
5.4.3 Map . 67
5.4.4 Event Triggers . 67
5.4.5 Real-Time Predictions . 68

5.5 Post-Processing and Analytics . 70
5.5.1 Fast Fourier Transform 70
5.5.2 Spectrogram . 70
5.5.3 Statistics . 71
5.5.4 Historical Data . 72
5.5.5 Downloading Data . 72
5.5.6 Report Generator . 73
5.5.7 Inspect dataset . 74

6 Results 75
6.1 User Interface . 75

6.1.1 Landing Page . 75
6.1.2 Projects Page . 77
6.1.3 New Project Page . 77
6.1.4 Project Page . 81
6.1.5 Admin page . 90

6.2 Usability . 92
6.2.1 Documentation . 92

6.3 Latency . 94
6.3.1 Curve Plots and Filters 94
6.3.2 Notifications . 95
6.3.3 Predictions . 96

viii CONTENTS

6.4 Availability and Performance . 97

6.5 Functionality Validation . 98

7 Discussion 101

7.1 User-friendly Client . 101

7.1.1 Usability . 102

7.1.2 Developing in React . 106

7.2 Personal and Persisting Projects 107

7.2.1 Authentication . 107

7.2.2 Database . 107

7.3 Generic Configuration System . 109

7.3.1 Datasources . 109

7.3.2 Models . 110

7.4 Monitoring . 110

7.4.1 Monitoring Tools . 111

7.4.2 Latency . 115

7.5 Post-Processing and Analytics . 117

7.5.1 Datasets . 117

7.5.2 Analytics Functionality 118

7.6 Other Aspects . 119

7.6.1 Accessibility and Deployability 120

7.6.2 Scalability . 120

7.6.3 Concurrency . 121

7.6.4 Performance and Availability 122

7.6.5 Security . 123

7.6.6 Digital Model, Shadow or Twin 123

8 Further Work 125

9 Conclusion 127

A File System Structure 133

B Implementation 135

B.1 External libraries . 135

B.2 Code Listings . 138

B.2.1 Front-end . 138

B.2.2 Back-end . 144

CONTENTS ix

C Latency 149
C.1 Assets alone over different networks 149
C.2 Effect of multiple tiles . 151
C.3 Filtered data . 151

D Usability testing 155

E User Guides 159
E.1 Starting a session . 159
E.2 Register User . 159

E.2.1 View profile settings . 162
E.3 Configure a project . 162
E.4 Configure a datasource . 164

E.4.1 Configure JSON datasource 165
E.4.2 Configure CSV datasource 166

E.5 View and upload models . 168
E.6 Invite User to Project and Chat 169
E.7 Create a Tile . 172
E.8 Tile Settings . 184

E.8.1 Adding and removing sensor values from tiles 186
E.8.2 Downloading data from Tiles 186
E.8.3 Adjust number of data points in plot 186

E.9 Event triggers and notifications 186
E.9.1 Create Event Trigger . 186
E.9.2 See Current Event Triggers 187
E.9.3 See Notifications . 188

F Installation Guide 189
F.1 Downloads and Installations . 189
F.2 Guide . 189

F.2.1 Send data from the torsion bar rig to the back-end solution190
F.2.2 Back-end . 190
F.2.3 Front-end . 191

G Front-end deployment 193

x CONTENTS

List of Figures

1.1 Previous client . 3

2.1 Digital twins, shadows and models 8

3.1 The torsion bar suspension rig 26
3.2 The SensorLog Application. 28
3.3 Snapshot of a Kanban board in Trello from the first sprint. . . . 33
3.4 Design sketches from Figma. 34

4.1 Overview with terms . 38
4.2 System overview . 43
4.3 Front-end routing . 44
4.4 Structure of the back-end . 44
4.5 Current database structure . 45
4.6 Communication protocols . 47

5.1 React structure . 52
5.2 The dataflow inside the React application. 56
5.3 Project creation process . 62
5.4 Process of uploading a model . 65
5.5 Expected format of CSV files and XLSX respectively 72

6.1 Landing page . 76
6.2 Sign in and sign up . 77
6.3 Projects route . 78
6.4 Configure project . 78
6.5 Upload model . 79
6.6 Create datasource . 80

xi

xii LIST OF FIGURES

6.7 Upload model . 81
6.8 Navigation bar . 82
6.9 User settings and chat . 82
6.10 Dashboard page . 83
6.11 Monitoring Tiles . 84
6.12 Analytics Tiles . 85
6.13 Generate report and inspect dataset 86
6.14 Notifications page . 87
6.15 Notifications from event triggers. 88
6.16 Model visualization page . 89
6.17 Datasources page . 90
6.18 Admin page . 91
6.19 Main README for the front-end application. 93
6.20 Monitoring delay plots . 94
6.21 Notification delay plot . 95
6.22 Prediction time plots . 96
6.23 Performance plots . 97
6.24 FFT generated (a) in the platform and (b) by SAP. 98
6.25 Spectrogram plots generated (a) in the platform and (b) by SAP. 99

A.1 Tree . 134

C.1 Delay plot torsion bar suspension rig 149
C.2 Delay from the SensorLog application over 4G network 150
C.3 Delay from the SensorLog application over Wi-Fi connection . . 150
C.4 Delay effect of multiple tiles . 151
C.5 Effect of filter with buffer size of 1 151
C.6 Effect of filter with buffer size 20 152
C.7 Effect of filter with buffer size 500 152
C.8 Checkly notification . 153

D.1 Background. 156
D.2 I am familiar with the field of Digital Twins. 156
D.3 The platform is easy to use. 156
D.4 It is easy to navigate within the platform. 157
D.5 The platform is fast and responsive. 157
D.6 It is easy to get an overview of available features. 157
D.7 I will likely return to the platform in the future. 158
D.8 I find the platform attractive. 158

LIST OF FIGURES xiii

D.9 The platform has a clean and simple presentation. 158

E.1 Illustration of the landing page with highlighted areas. 160
E.2 Navigate to register page . 161
E.3 Profile settings . 162
E.4 Projects page . 163
E.5 Options for further configuration after registering project name . 163
E.6 Adding a datasource to the new project 164
E.7 Navigate to datasource configuration 164
E.8 Completed configuration of a JSON formatted datasource 166
E.9 New datasource in datasource list 166
E.10 Configuration of a datasource on CSV format. 167
E.11 List of datasources after creating a CSV formatted datasource . . 168
E.12 The Models and New Model pages. 169
E.13 Invite user . 170
E.14 Invite and chat window . 170
E.15 Project invitation . 171
E.16 Add new tile . 172
E.17 Add new tile window . 172
E.18 Expected format of CSV files and XLSX respectively 173
E.19 Filtering options . 175
E.20 Configuration of a new video stream 176
E.21 Adding new static and dynamic maps respectively 176
E.22 Select sensors for predictions . 178
E.23 Prediction configuration . 179
E.24 Predictions . 180
E.25 Creating a historical plot from file 180
E.26 Add a fast Fourier transform . 181
E.27 Adding new spectrogram from datasource and file respectively . 182
E.28 Configuration of a statistics tile 183
E.29 Adding a model to the dashboard 184
E.30 Curve plot tile . 185
E.31 Settings for a real-time curve plot 185
E.32 Notifications page . 187
E.33 Add event trigger . 187
E.34 List of current event triggers . 188
E.35 Plot from an event in the notifications list 188

xiv LIST OF FIGURES

List of Tables

3.1 Design checklist . 23
3.2 Functionality validation files . 30
3.3 Calculation of FFT and spectrogram variables 31

4.1 Funtional requirements . 40
4.2 Functional requirements (continued) 41
4.3 Non-functional Requirements . 42
4.4 Server specifications . 47

6.1 Usability testing background . 92
6.2 Usability test results . 92
6.3 Monitoring delay . 95
6.4 Notification delay . 96
6.5 Predictions delay . 96
6.6 Availability and performance . 97
6.7 Frequency step values . 99

B.1 Overview of external libraries used in the front-end 136
B.2 Overview of external libraries used in the back-end 137
B.3 Description of the variables used in the machine learning model . 142

E.1 Value format in CSV file . 177

xv

xvi LIST OF TABLES

Code Lisings

5.1 Interface . 53
5.2 React component . 53
5.3 Generic component . 54
5.4 Styling components . 55
5.5 Front-end routing . 55
5.6 useState . 56
5.7 Example of a store . 57
5.8 Parse response to JSON . 57
5.9 Front-end handling of real-time data 58
5.10 The useMemo hook listens to changes in the newData object . . 59
5.11 Implementation of authentication service 59
5.12 Listening to notifications in the front-end 60
5.13 Receiving request for user profile in the back-end 60
5.14 Fetching user profile from Firestore in the back-end 61
5.15 Create project request . 61
5.16 Buffering JSON data in the back-end 63
5.17 The API endpoint in the back-end to view available datasource . 63
5.18 Drag and drop implementation 64
5.19 Creating a tile . 65
5.20 Curve plot component . 66
5.21 Map component . 67
5.22 Register notification in the back-end 68
5.23 Text message notifications . 68
5.24 Machine learning API endpoints 69
5.25 Generate FFT in the back-end 70
5.26 Generate spectrogram in the back-end 71
5.27 Plotting spectrograms . 71
5.28 Download data in CSV or XLSX format 73

xvii

xviii CODE LISINGS

5.29 Create report . 73
B.1 Using a store . 138
B.2 Droppable elements: one for the right and one for the left column 139
B.3 Parsing data in the front-end . 140
B.4 uploadFile function that sends a file to the server 141
B.5 Generating histogram from file 143
B.6 Generating statistical information from a file 143
B.7 Upload file in the back-end . 144
B.8 Buffering JSON data . 144
B.9 Setting available datasources in the back-end 146
B.10 Receiving create project request in the back-end 146
B.11 Removing trigger in the back-end 147
G.1 Front-end deployment . 193

Chapter 1

Introduction

This chapter presents the background of the thesis, the long-term ambitions, and
the previous work related to the project. The scope, objectives, and structure of
the thesis are described.

1.1 Background

The fourth industrial revolution, often referred to as Industry 4.0, leverages the
latest industry trends to achieve more intelligent and automated manufacturing
processes (Zhou, Taigang Liu, and Lifeng Zhou 2015). The digital transforma-
tion utilizes advanced information and communication technology to increase
productivity and enhance operations and products (Rosen et al. 2015).

Digital twins are an essential application of Industry 4.0 and the Industrial
Internet of Things (ibid.). The idea is to use the digital twin to monitor and
interact with the physical twin. Digital twins can be used to optimize the
performance of real assets, using emerging technologies such as machine learning,
big data, and cloud computing. Manufacturing processes are becoming more
digitized, which makes digital twins a critical component for the fourth industrial
revolution.

Digital twins are often represented in interactive platforms to capture and
display real-time data and visualizations (NSW 2019). Digital twin platforms
monitor and analyze equipment’s health based on the sensor data sent from
physical assets. The asset changes its behavior based on results from analyzes
and processed data. The development of a digital twin platform requires compre-

1

2 CHAPTER 1. INTRODUCTION

hensive knowledge about information, communication and sensor technologies,
which is why most of the existing platforms are proprietary and not well suited
for use in academia and small enterprises.

1.2 The Cloud-Based Monitoring System

The department of Mechanical and Industrial Engineering at NTNU has an
ongoing project that aims to develop an open-source Cloud-Based Monitoring
System (CBMS) for educational purposes. The platform should reflect and
monitor physical assets in real-time, predict potential failure modes, and notify
users of the asset’s state. It should be generic by using standardized interfaces to
create and manage digital twins, and it should be able to handle multiple users
and assets. The platform should visualize historical data and run simulations
and analyses.

The process of developing and deploying an advanced system for monitoring
of digital twins is time-consuming and labor-intensive. The system is developed
iteratively in multiple master’s theses, and this thesis is the second iteration
of the development process. It continues the development of the platform
and facilitates further development by other students. An essential part is
to document how the system is implemented and the workflows during the
implementation. The outcome includes a separate chapter dedicated to the
implementation, and information about the development process in the method
chapter. The discussion chapter contains suggestions for further development,
and comprehensive guides for installing, deploying, and using the system are in
the appendix.

1.3 Previous Work

In the fall of 2018, a prototype of the platform was developed in a specialization
project by students at the department (Jensen et al 2018). The following
spring, three Master’s theses started the development of the CBMS; a back-end
development project that is related to the server-side of the platform (Jensen
2019), a front-end related to client-side (Børhaug and Sande 2019) and finally, a
project that created a prototype of a configuration system for a more generic
solution (Johansen 2019).

The back-end was developed by Jensen (2019) in Python. It is extendable,
and provides support for Functional Mock-up Units (FMUs) along with filtering

1.3. PREVIOUS WORK 3

and fast Fourier transforms (FFTs). The back-end connects to the front-end via
an application programming interface (API) made in collaboration with Børhaug
and Sande (2019) to accommodate their needs for the front-end. The front-end
supports real-time visualization of sensor data in a curve plot, and visualization
of a 3D model of an asset is possible with a large delay. The implementation was
customized for the torsion bar suspension rig. Johansen (2019) instrumented a
physical asset and made a digital model in order to connect the physical asset
to the system. Additionally, Johansen (ibid.) developed a prototype for a more
generic configuration system for digital twins.

(a) 3D visualization of NTNU’s torsion bar
suspension rig rig

(b) Curve plot of the load applied to the
torsion bar suspension rig for a given time
series

Figure 1.1: Snapshots from the previous work on the front-end solution.

In the fall of 2019, a specialization project conducted at the department investi-
gated the use of the Microsoft Azure platform as an alternative back-end to the
CBMS (Sandtveit 2019). A prototype was developed and connected to a Rasp-
berry Pi that transmitted sensor data. Azure is a commercial product, which
means one has to consider the possible advantages against the cost. Azure is not
integrated with this thesis due to the conclusion in Sandtveit (ibid.). In parallel
with this project, a Master’s thesis is investigating two-way communication
between a CBMSand a physical asset using a Raspberry Pi.

4 CHAPTER 1. INTRODUCTION

Specialization Project

The authors’ specialization project in the fall of 2019 (Kjernlie and Wold 2019)
laid the groundwork for the scope of this thesis. The main objectives of the
project were to

1. Carry out a thorough analysis of the state of the project

2. Consider if any of the modules were to be rebuilt

3. Make specification and requirements for further development of the CBMS

The analysis revealed that implementation of a database and an authentication
service would enable users to create persistent projects, and that a system
for configuring digital twins was required to create a more generic platform.
The platform should accept standardized formats for virtual models and accept
different data formats for the sensor data from physical assets. Furthermore,
a list of tools to facilitate monitoring, post-processing, and analyzing physical
assets was defined, including curve plots, filtering, event triggers, real-time
predictions, and FFTs.

It was decided to keep the existing back-end due to its robustness and
extendable structure. Implementation of the features listed in the previous
paragraph requires extensions to the back-end, e.g., communication with the
database. It was decided to develop a new front-end with React from scratch
since the application did not meet the stakeholders’ requirements. Both the
solutions lacked sufficient documentation, which is why providing comprehensive
documentation was considered an essential element on the requirement list for
this Master’s thesis.

1.4 Scope of Thesis

The findings from the specialization project forms the foundation for the scope
of this thesis. It includes continuing the development of the platform according
to the specifications and requirements. Objectives include:

1. Build a user-friendly client in React1

2. Facilitate support for personal and persisting projects

1React is an open-source JavaScript library for building user interfaces.

1.4. SCOPE OF THESIS 5

3. Implement a generic configuration system for easy adaption to other digital
twin applications

4. Implement functionality for monitoring of physical assets

5. Implement methods for post-processing and analytics

Build a user-friendly client in React The success of an application directly
relates to how easy it is to use. A platform that is difficult to understand and
navigate does not attract users, and it reduces the productivity of the application.
A user-friendly application engages users and assists them in completing tasks
efficiently and effectively. The users understand the purpose of the application
and are able to use the implemented functionality.

Facilitate support for personal and persisting projects Enabling stor-
age of sessions and projects saves the user a considerable amount of work in
terms of setting up a project and configuring digital twins. A database facilitates
the storage and management of data related to users and projects. A user is
authorized to access their data after an authentication process to log into the
system.

Implement a generic configuration system for easy adaption to other
digital twin applications The platform should be available to anyone, and
the end-user must be able to configure digital twins of their assets and data
to be useful. The platform should leverage standardized formats of streaming
data, models, and files to facilitate the configuration of digital twins that can be
monitored and simulated in the platform.

Implement functionality for monitoring of physical assets Adequate
tools should be implemented to monitor the state of assets in the platform.
Monitoring tools can receive real-time data from assets and display them to the
user, or they can process the data and let the user know if alarming values occur.

Implement methods for post-processing and analytics Post-processing
and analytics increase insights about the health of a physical component or
an asset and its structural integrity. Simulations can be used to calculate the
remaining useful lifetime.

6 CHAPTER 1. INTRODUCTION

1.5 Structure of Thesis

The thesis consists of the following chapters:
The Introduction sets the context of the project, describes the CBMS

project, lists the previous work, and defines the scope of this thesis.
Technical Background introduces definitions and concepts on which the

thesis builds upon. Digital twins and digital twin platforms are defined, the
terms cloud and monitoring are presented and explained, and aspects of the
system architecture and requirements within the field are covered.

Method outlines the methods used during development. Development
approaches and evaluation methods are described for the thesis objectives.
Finally, the general development process and tools used during development are
introduced and explained.

System Overview describes the system after development. Terminology
used during development is explained. Requirements are listed and categorized,
and the software architecture and the technology stack is described.

Implementation explains specific implementation carried out in the thesis.
Results shows the application’s user interface and the results from the

evaluation of the objectives.
Discussion evaluates implementation and results of each objective. Finally,

other aspects of the CBMS are presented.
Further Work lists interesting directions for further research and other

aspects that can be implemented in the future.
Finally, the Conclusion summarizes the thesis.
The Appendices include more detailed information about results, elaborate

code listings, user and installation guides along with instructions on how to
deploy the front-end.

Chapter 2

Technical Background

This chapter defines terms and concepts such as digital twins, digital twin
platforms, cloud services, and architectural aspects of software development.

2.1 Digital Twins

Various industries are adopting digital twins, from the more traditional manu-
facturing and automotive businesses to construction, utilities, and healthcare.
Sensors transmit data, which reveals the state of components and can be used
to perform simulations to obtain more knowledge about the physical asset. This
knowledge can be used to optimize the performance of assets, and the digital
twins become a bridge between the real and digital worlds. This section defines
the concept of a digital twin and proceeds to introduce a digital twin platform
and its requirements.

2.1.1 Definition

A digital twin is a virtual copy of a process, product, or service, but there is no
single, fully accepted technical definition. This thesis uses the same definition as
the previous work by the authors (Kjernlie and Wold 2019), which is the first
concept of a digital twin, presented by Micheal Grieves in 2002 (M. Grieves
2016). Grieves’ model consists of the real and virtual space that communicate
with each other. The real space consists of a physical asset that sends sensor
data that reflects its state to the virtual space. Simulations are executed in the

7

8 CHAPTER 2. TECHNICAL BACKGROUND

virtual space, and the results provide further insight into the state of the physical
asset. The insight indicates which actions can be taken in the real space, e.g.,
maintenance actions. Grieves did not invent the term digital twin; it was John
Vickers of NASA who used it to describe Grieves’ concept (M. Grieves 2016).

The premise for Grieves’ concept was the exchange of information - that
the real and virtual space adjusts each other, which is known as a digital twin
today. Two other concepts are related to digital twins; digital models and
digital shadows. The extent of autonomy in the interaction between the real and
virtual space is what distinguishes them. A digital shadow receives the data and
processes it but does not automatically send a response to the physical asset, as
the response must be sent manually. A digital model sends information both
ways manually. Figure 2.1 shows an illustration of the three concepts.

Figure 2.1: A digital model has no automated data exchange between the physical
and digital object. A digital shadow sends data from the physical to the digital
object and the digital twin sends data in both directions.

2.2. CLOUD COMPUTING 9

2.1.2 Digital Twin Platform

A digital twin platform must facilitate the creation of digital twins by fulfilling
the requirements defined by Grieves (2014) Grieves (2014):

1. Physical products in real space

2. Virtual products in virtual space

3. The connections of data and information that ties the virtual and real
products together

This creation consists of uploading models to the virtual space. The models
must contain a representation of the physical asset that can perform simulations.
The platform must provide functionality for exchanging information between
the physical and virtual products to complete the digital twin. The physical
twin must be instrumented with sensors that capture its state, and sensor data
must be sent to the platform in real-time. After processing this data, the system
can send a response with instructions back to the physical asset. The specific
simulations and analyses in the platform is decided by the industry the digital
twin is applied in.

2.2 Cloud Computing

In 1961, John McCarthy stated that (sometime in the future), one would pay for
computational resources used as a utility made available to the public (Daylami
2015). In the end of the 20th century, grid computing was defined as a large-
scale resource sharing system providing on-demand computational resources
(Foster, Kesselman, and Tuecke 2001). It was developed to solve the problem of
facilitating

direct access to computers, software, data, and other resources re-
quired by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering
(ibid.)

Cloud computing is essentially providing computing resources, applications,
storage, or entire infrastructures as a pay-as-you-go solution. An individual or
an enterprise does not need knowledge of the hardware infrastructure (Bhardwaj,
L. Jain, and S. Jain 2015), but can subscribe to cloud providers’ services.

The cloud has the characteristics of being

10 CHAPTER 2. TECHNICAL BACKGROUND

on-demand self-services with broad network access, resources pooling,
elasticity in terms of scaling, and pay-per-use (Bhardwaj, L. Jain,
and S. Jain 2015).

Scaling refers to allocating or removing resources, and can be performed vertically
or horizontally. Vertical scaling consists of adding resources to an existing server
instance, while horizontal scaling adds another instance to the server.

2.2.1 Service Models

One usually divides cloud services into three categories; Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).
IaaS provides processing, storage, and networking services (Daylami 2015). The
provider maintains the system, and the user installs and runs software on top of
the infrastructure. PaaS extends IaaS, where developers can build and deploy
applications without buying a single piece of hardware (Bhardwaj, L. Jain, and
S. Jain 2015). SaaS offers access to or use of software hosted by the provider,
integrating with the user’s application or infrastructure through configuration
and customization.

The services are hosted in a virtual environment, either virtual machines
(VMs), containers, or serverless architecture. A VM is an instance that has the
characteristics of a traditional computer, including an operating system and a
certain amount of available resources. The user can install software and run
applications. Containers are more lightweight than VMs as they do not have
an operating system. They provide an environment to run applications, which
only requires the application itself and files and information needed to run it,
such as dependencies, environment variables, and configuration files. Since it
virtualizes the operating system, the container is operating system-independent.
The serverless architecture lets the user upload a package to a server that contains
the source code of an application. When a function in the package is called, it
is deployed in a container. The customer does not know anything about the
environment in which the application runs (Baldini et al. 2017).

2.2.2 Deployment Models

The most common cloud models are public and private clouds. Public clouds
are available to the general public and large organizations. These are typically
offered as a pay-per-use fee and scale with the user’s demand. Private clouds
are operated for a single organization, either by the organization itself or with a

2.3. MONITORING AND MAINTENANCE 11

third party service. Only granted members can use the private cloud, providing
greater control over the infrastructure and computational resources (Goyal 2014).
Control over the system is an advantage of a private cloud, facilitating data
privacy and security management. A significant drawback of a private cloud is
higher costs, as a public cloud enables the economy of scale.

Some of the largest public cloud providers are Amazon Web Services, Google
Cloud Platform, and Microsoft Azure. These platforms offer services for the
development, management, and deployment of applications, including solutions
for authentication and database management, big data analytics, and IoT devices.
Developers can select the services that fit their needs. The services are often
straightforward to integrate, as public cloud providers want to attract as many
users as possible. Simple integration makes it possible to develop faster, but it
has a tradeoff in terms of costs and flexibility.

A large organization such as NTNU manages a private cloud within the
organization, as it has a large technological community and comprehensive
resources. NTNU users can create networks, routers, and virtual machines in the
private cloud stackit. Stackit does not offer serverless services, but it is possible
to scale on-demand by upgrading resources.

2.3 Monitoring and Maintenance

Monitoring is the regular observation and recording of a system’s quality and
progress over time. It is valuable to monitor industrial equipment because it
uncovers the state of an asset’s structural integrity, and increases the awareness
of potentially harmful operating conditions. Insights gained from monitoring
provides a better basis for making decisions about the system, e.g., when to
perform maintenance to prevent structural failure. Continuous measuring and
real-time transmission of critical parameters such as strain, temperature, and
applied load is facilitated by instrumenting assets with sensors. The requirements
for real-time transmission depends on the application; a delayed signal in a car
engine control system has an entirely different effect than a delayed signal from
a wind turbine in the ocean. Filtering sensors removes unwanted components of
the signal and improves the quality of the data. However, a defect sensor can
lead to incorrect decisions, and one must carry out frequent tests of equipment.

Historically, maintenance policies have concerned doing maintenance and
repairs at equipment failure (reactive maintenance), under suspicion of fault
(corrective maintenance), or at systematic time intervals (preventive maintenance)
(Barros 2019). These maintenance schemes are suitable for some applications,

12 CHAPTER 2. TECHNICAL BACKGROUND

but often sub-optimal. Corrective maintenance might lead to extra costs due to
broken equipment, and the faulty equipment can lead to unexpected halts in
operations, which affects other parts of the system. Preventive maintenance is
often performed in excess, as it usually over-schedules maintenance in fear of
failure.

Condition-based and predictive maintenance strategies try to solve these
problems by exploiting sensor data. Condition-based monitoring uses data from
sensors or other conditions such as listening to a machine’s sound to obtain
indications about a system’s health. These indications can imply a degradation
of the system’s performance, and maintainers should be notified. Furthermore,
triggers can automatically inform the relevant persons when sensor values are
outside specified limits.

Predictive maintenance relies on advanced statistical methods such as machine
learning (ML) to predict when to perform maintenance on a part. Continuous
monitoring is required to obtain sufficient information about specific components’
health (Carvalho et al. 2019). Predictive maintenance looks at complex patterns
across multiple sensors and makes predictions about the system’s future behavior.
ML algorithms are often preferred due to their high degree of generalization
for classification and regression tasks without substantial domain knowledge.
These properties make ML suitable for generic systems such as the CBMS. The
key is that models can be trained to detect patterns without using any explicit
instructions, making them applicable to problems that are difficult to solve using
conventional algorithms. The data must be pre-processed before it trains a
model. The knowledge discovery during the training phase is more complicated
if the data contains noise, as the quality of the model is highly dependent on
the data’s quality (Kotsiantis, Kanellopoulos, and Pintelas 2007). Cleaning the
data is, therefore, essential to increase the accuracy and efficiency of the model.
Training an ML model with high accuracy can be difficult, but once a model is
trained, it is fast to predict. Fast prediction is one of the significant advantages
of using ML models for real-time applications. Adaption to data-driven ways
of predicting faulty components and sensors minimizes maintenance costs and
increases the remaining useful lifetime.

2.4. SOFTWARE ARCHITECTURE 13

2.4 Software Architecture

Architectural decisions lay the groundwork for the development and have impli-
cations in terms of constraints. The following sections list concepts that should
be evaluated in order to plan the development of an application.

The CBMS uses a client-server architecture. The client provides an interface
that allows the user to interact with the server (Hosch 2015). It sends requests a
dedicated central server that receives, processes, and returns a response. The
requests can be for resources or services that the server provides, and the network
communication goes through the server as the clients can not communicate with
each other. Hence, it needs to run on hardware with high processing power and
large storage space to manage communication and process requests. The server
can provide authentication service, database resources, and run applications.
The communication between the client and the server is facilitated through a
network or the internet.

2.4.1 Front-end

The front-end is the client in a client-server architecture. It provides the interface
that the end-user can use to interact with the server and displays the requests’
response. Furthermore, the front-end decides what happens when the user
interacts with elements in the interface, such as buttons or input fields. Since
the front-end is what the user sees and uses, it is also responsible for the user
experience (Granevang 2019b). The user experience is essential for how valuable
the application is to the user, which is why they are often designed by interaction
and graphic designers.

The front-end is usually developed with JavaScript, HTML, and CSS. A
framework can be used for more efficient development. The framework provides
a foundation for building programs by offering specific functionality in reusable
code, such as sorting algorithms that can be used in an application.

Front-end solutions can be web applications that run in browsers or native
apps that can be downloaded on a device. The compatibility of the application
decides how broad it can reach; if it is developed as an iOS app, it is only available
to end-users with Apple devices. Web applications are available to everyone with
an internet connection. They are compatible with different JavaScript, CSS, and
HTML versions, and thus a web application might not be compatible with all
web browsers. One should investigate if any of the elements used in the front-end
rule out compatibility with a web browser during development.

14 CHAPTER 2. TECHNICAL BACKGROUND

2.4.2 Back-end

The back-end is the counterpart of the front-end and the server in the client-
server architecture. The end-user does not interact directly with the back-end.
The back-end’s tasks include heavier calculations, interaction with a database,
and communication with the front-end. The back-end is often split into different
layers that handle various tasks (Granevang 2019a). If the application processes
large amounts of data, the back-end must interact with a database. The back-end
is also responsible for the security of the application by regulating access for
different user groups (ibid.). As explained in Section 2.2, the back-end can be
hosted locally or in a cloud solution, depending on the requirements for the
back-end.

2.4.3 Authentication

Authentication is required in all platforms where one can register a user and log
into a system. It is the process of verifying an identity and relies on something you
know, have or are (Bishop 2005). When a purchase is made using a credit card,
authentication is completed using a code that the card owner knows. Something
you have can be a device that generates a code, e.g. the code chip used by
Norwegian banks. Signatures, fingerprints, and retinal scans can authenticate
users because they are a part of who you are. Authentication grants access and
enables storing information that can be accessed later in a new session.

It is common to implement an authentication system in an application, and
many companies offer Authentication-as-a-Service (AaaS). AaaS enables easy
implementation of authentication and user management services in applications.
Using a third party to authenticate users is preferable because the probability
that it is more robust than a self-written system is high.

2.4.4 Storage

Applications need to store data in different ways, ranging from the name of a
person to an entire file. Size, format, availability, and duration of storage decide
how a database should be implemented.

Web Storage

Web storage makes it possible to save information persistently directly in the
browser with JavaScript. It is a feature of the HTML5 specification, and the
largest web browsers support it. Data can be stored in either session storage or

2.4. SOFTWARE ARCHITECTURE 15

local storage. Session storage only saves data for the current session, whereas
local storage keeps the data stored after the browser is closed. The data is saved
as strings in key-value pairs. If an integer or object is stored, it is automatically
converted to strings. Web storage is easy to use and misuse. It is not a substitute
for a database as it has a limit of 5MB storage space, and there is no access
protection. The information is only stored in the browser, and any JavaScript
code can access it, which is why sensitive information should never be stored in
web storage.

Database

The purpose of a database is to store information based on a specific data
model over time. It is possible to read, update, delete, or add new data using
a database management system (DBMS). There exists a variety of databases
that offer different solutions for different needs. The database implementation
must be tailored to fit the data model of the application in the best possible
way. It is possible to implement multiple databases in an application. This
is advantageous for complex applications with a variety of data formats and
performance requirements. A drawback of using more than one database is
more complicated implementation, but one can gain substantial performance
improvements. A real-time database processes transactions for time-sensitive
information in real-time. Databases can be hosted locally, or in private or public
clouds, with the advantages and drawbacks explained in section 2.2.

Relational databases use schemes to define how the data should be stored in
different tables that are related to each other. Within one table, there are strict
rules that determine which data can and must be within each row of the table.
Structured Query Language (SQL) is used for data management. Relational
database management systems provide atomicity, consistency, isolation, and
durability (ACID) guarantees. They can be vertically scaled, but might not offer
ACID characteristics if they are horizontally scaled. It is easy to restrict access to
data for different user groups. Relational databases are optimized for structured
data. The format of the data should be defined before the implementation.
Examples of relational databases include MySql, MS-SQL and Oracle.

Non-relational (or NoSQL) databases support unstructured data by providing
flexible schemas that do not have to be defined before implementation. They
provide more scalability, and horizontal scaling is more straightforward than
in relational databases. However, NoSQL databases do not support ACID
transactions in general. Well-known NoSQL databases include MongoDB, Hbase,
and Redis.

16 CHAPTER 2. TECHNICAL BACKGROUND

2.4.5 Network Protocols

Network protocols define rules and standards for communication over a network
and facilitate communication between two devices (Shimonski, Cross, and Hunter
2005). Both the sender and receiver need to set up the same network protocol to
be able to communicate. There are many different protocols, and the one being
used depends on the communication requirements. Some connections require
high throughput, and others rely on assurance that every message is sent and
received.

Transmission Control Protocol (TCP) splits messages into small packets,
which can be lost or arrive in an incorrect order. If a device sends more than
one message at a time, it is important to identify which packets belong to which
message. A three-way handshake initializes the connection between two devices.
Then, messages start flowing back and forth. Each time a computer receives a
packet, a confirmation message is sent back to the sender to confirm that it is
received. If the sender does not receive a packet confirmation, that packet is
resent. This means that the connection is reliable: all messages are successfully
transmitted. However, reliable connections impact bandwidth as all messages
require a confirmation (Zimmermann, Eddy, and Eggert 2016).

User Datagram Protocol (UDP) is similar to TCP, but no handshake is
required to initiate the communication. One specifies an IP address and start
sending messages. The messages are split into packets in the same manner as
TCP, but confirmation messages are not sent back to the sender. Hence, UDP
communication is not reliable and must tolerate a certain loss, but can reach a
higher throughput than TCP (User Datagram Protocol 1980).

Hyper Text Transfer Protocol (HTTP) is designed to transfer informa-
tion between networked devices, and transfers HTML documents over the web
(Belshe et al. 2015). A client sends a request and receives a response from the
server. The response contains a code, which indicates if the request is successful
(200), if there is a client-side (400) or server-side (500) error. If the request is
successful, additional information is sent with the response. HTTP is built upon
the TCP protocol.

Hyper Text Transfer Protocol Secure (HTTPS) is an extension of the
HTTP protocol, which is used for secure communication between the client and

2.4. SOFTWARE ARCHITECTURE 17

the server. HTTPS uses an encryption protocol to encrypt messages to protect
data during transmissions.

WebSocket is also built on top of TCP, and facilitates two-way communication
between a client and a server. Real-time communication is achieved by allowing
the server to send data to the client without being requested by the client first,
and keeping the connection open, reducing the overhead of HTTP (Pimentel
and Nickerson 2012).

2.4.6 Functional Mock-Up Interface and Unit

A functional mock-up interface (FMI) is an open standard interface that allows
the exchange of dynamical simulation models between different tools (Blockwitz
et al. 2012). The FMI standard provides import and export between various
tools while keeping the same model. According to Blockwitz et al. (ibid.), it has
become heavily adopted in the industry since it was released in 2010. A model
following the FMI standard is called a functional mock-up unit (FMU). The
FMU contains a simulation model which is acquiescent with FMI specification.
The FMU extension is a zip file containing an XML file defining input and output
for the model. It also consists of binary files and DLL1 files that contain the
equations used in the model.

There are two types of FMUs, namely co-simulation and model exchange
of dynamic models. Both kinds of FMUs can be used for both co-simulation
and model exchange and can perform simulations of the system over time. The
difference lies in the execution of the models. Dynamical models consist of
differential equations and have inputs that provide values to these equations.
Outputs are specified by the result of the differential equations and their input.
In a co-simulation FMU, the solver, determining how to solve the differential
equations, lies in the FMU. The importing tool only sets the input and tells the
FMU to do a time step. In a model exchange FMU, however, the importing
tool have the solver, and the FMU provides the equations. The solver in the
importing tool computes the state and decide when to do a time step.

1A DLL file is a library that contains code and data for executing a particular task in
Windows.

18 CHAPTER 2. TECHNICAL BACKGROUND

2.5 Usability

Usability is concerned with how easy it is for a user to accomplish a desired
task. Making a product usable is one way of improving a user’s perception about
a system’s quality (Bass, Clements, and Kazman 2015). However, the task of
making a usable product is not an easy task, or as Albert Einstein said; ”any
darn fool can make something complex; it takes a genius to make something
simple” (ibid.). Usability derives from the term user friendly (Alonso-Rı́os
et al. 2009), which was critized of having undesirably vague and subjective
connotations (Bevan 1995b). The term usability is therefore used to replace the
term user-friendly to overcome its limitations (Bevan, Kirakowski, and Maissel
1991).

2.5.1 Achieving Usability

Developing a user-friendly application involves making it as easy as possible to
learn the features of the system, make the user use them efficiently, minimize
the impact of errors, adapt the system to the needs of the user and increase the
satisfaction and confidence of the user while he or she is using the system (Bass,
Clements, and Kazman 2015).

Learning the Features of the System. The system should help users un-
familiar with the system use new and existing features. Learning new software
requires time and effort, and the system should help the user with the process.

Using a System Efficiently. The system should help users to be as efficient
as possible in the process of achieving their goals. The system should be intuitive
and avoid time-consuming operations to make a seamless experience. Users
should be able to manage the system’s resources without having to think about
the underlying logic and functionality.

Minimizing the Impact of Errors. Errors should be displayed in a simple
and interpretable format to minimize the impact of the error.

Adapting the System to the User Needs. The system should adapt to
users to make it easier to use. The system should automate tasks to make it
easier for users to achieve their goals.

2.5. USABILITY 19

Increasing the Confidence and Satisfaction. The system should give
feedback to the user when a correct or incorrect action occurs to raise the user’s
confidence and satisfaction. The design of the system should reflect the purpose
of the service to deliver a better user experience. Every web appliation has its
personality, even if the owners of the applications are not aware of it (Wathan
and Schoger 2018). A web application raises different impressions, whether it
is professional, playful, formal, or technological. The choice of colors, fonts,
and hierarchy of elements affects these impressions and should be taken into
consideration when creating a design.

2.5.2 Conducting and Measuring Usability Tests

Usability testing is conducted to see how usable or intuitive an application is by
observing how real users use a service by encountering problems and experience
confusion. It can be used in many ways during the lifecycle of a project, both
during the beginning of the project, during development and after the project is
finished. Usability testing is a useful tool to see if an application achieves its
goals, but it cannot completely mimic real-life usage.

There are many ways of conducting a usability test. A common usability
technique is concurrent think aloud (CTA) (Haak, Jong, and Schellens 2003),
which is used to understand what users think while interacting with an application.
The user is narrating their thoughts throughout the whole session. This technique
is helpful to understand what kind of problems the user encounters while using
the service, and provides instant feedback and emotional responses of the user.

Another technique is retrospective think aloud (RTA) (ibid.), where the users
retrace their steps after they have completed the session. This technique is used
if it is preferable to not interfere with the user, for example if it is interesting to
see how much time the user spends on a certain action. The overall length of
the session is increased, and it can be difficult for the user to remember all the
steps. Retrospective probing (Birns et al. 2002) is similar to RTA and is based
on an interview after the session about the tester’s thoughts and actions.

A technique that makes it possible to hear what the user thinks and lets the
person conducting the test interact with the user is called concurrent probing (CP)
(Aiyegbusi 2019). The user narrates while testing as in CTA, but the researcher
can interrupt with questions if the user does or says something interesting. CP
brings the users’ thoughts to the surface while working through a task. However,
it interferes with their thoughts, making them execute actions later that might
be different if they are not interfered with.

Data can be collected both during and after usability tests with questionnaires

20 CHAPTER 2. TECHNICAL BACKGROUND

to measure the usability and quality of a web application. The questionnaire
can be standard or homegrown tailored to the specific situation. A standardized
questionnaire provides a more reliable and valid measure compared to homegrown
questionnaires (Sauro 2015). The drop in reliability is most likely due to poor
questionnaire design (Hornbæk and Law 2007). A standardized questionnaire can
also be used to measure improvements in the future. A drawback of standardized
questionnaires is that the questions are typically wide and open and it can be
difficult to isolate particular issues. These issues can be detected by using one
of the techniques described above to observe how the user uses the system and
encounters problems.

Chapter 3

Method

The first five sections of this chapter describe the methods used to implement
and assess the objectives of the thesis. Section 3.6 describes the workflow and
tools used during development.

3.1 User-Friendly Client

A usable web application has to be developed based on usability principles.
Usability tests are executed during and after development to measure if the
implementation fulfills a set of requirements.

3.1.1 Architectural Design Checklist

A design checklist provides guidance to achieve the qualities of a user-friendly web
application described in Section 2.5. The checklist used in this thesis is defined
in Bass, Clements, and Kazman (2015), and is a categorization of seven design
decisions developers can focus on to develop a usable application. Allocation of
responsibilities describes how the system allocates responsibilities to assist the
user, and the coordination model explains how the system’s elements coordinate
for a better user experience. Data model describes the data abstractions involved
in making the web application perceivable for the user, and mapping among
architectural elements describes how architectural elements are visible to the user.
Resource management says how the user manages available resources, and the
binding time says something about when the user can perform specific actions.

21

22 CHAPTER 3. METHOD

Lastly, choice of technology explains how technologies are chosen to create the
best user experience. Table 3.1 explains the checklist item more thoroughly.

3.1.2 Usability Testing

Usability tests are useful to reveal flaws in the platform’s user experience design
during and after the development process. For the CBMS, the CTA technique
is used during the development phase. It is simple to conduct and provides
fast results as the user expresses his or her thoughts during the session. The
feedback from CTA tests are applied directly in the implementation. A mix
of CP and RTA is used to test the CBMS at the end of the project to get a
more detailed impression of the usability of the platform. The users are told to
narrate their thoughts and interact with the person conducting the test while
doing the following actions:

• Register an account and log in

• Create a project, upload a model and configure a data source

• Create a dashboard and visualize real-time data

• Experiment with the functionality available in the platform

• Log out

At the end of the session, the users fill out a questionnaire. A modified version of
the Standardized User Experience Percentile Rank Questionnaire (Sauro 2015)
is used to validate the platform’s usability. The questionnaire is a comprehensive
measure of the quality of the user experience (ibid.). The original questions
described in Appendix D are adjusted to adapt to the use case of the CBMS.
The questionnaire presents statements related to the usability of the platform,
and are answered on a scale from 1 to 5 according to the level of agreement with
the statement. The first statement evaluates the relevant background knowledge
related to the purpose of the platform, and the rest are related to the usability
of the platform. The questionnaire contains the following statements:

• I am familiar with the field of digital twins.

• The platform is easy to use.

• It is easy to navigate within the platform.

3.1. USER-FRIENDLY CLIENT 23

Category Description

Allocation of re-
sponsibilities

Ensure system responsibilities are located to assist the
user in learning how to use the system, efficiently achieve
the task at hand, adapt and configure the system and
recover from user and system errors.

Coordination
model

Ensure system elements coordinates to make sure the
user learns the systems, achieves its goals, adapts and
configures the system, recover from errors, and gains
increased confidence and satisfaction.

Data model Determine abstractions of data and operations to make it
easier for the user to learn the system, achieve the tasks
at hand, adapt and configure the system, recover from
errors and increase satisfaction and confidence.

Mapping among
Architectural El-
ements

Determine the mapping among architectural elements
visible to the end-user, for example, the extent to which
the user is aware of local and remote services to make
sure the user learns the system, achieve tasks, adapt and
configure the system, recover from errors and increase
satisfaction and confidence.

Resource Man-
agement

Determine how the user can adapt and configure the sys-
tem’s use of resources. Ensure that the level of resources
does not adversely affect the users’ ability to learn how
to use the system or decrease confidence and satisfaction.

Binding Time Determine which and when decisions should be under user
control. Binding time is the latest time during the process
the user has to decide to make a decision. These decisions
should not affect the user’s ability to learn the system,
use it efficiently, minimize errors, adapt and configure
the system, and increase confidence and satisfaction.

Choice of tech-
nology

Ensure technologies help to achieve the system’s usability
without adversely affecting users’ ability to learn the
system, use it efficiently, minimize errors, and adapt
and configure the system and increase confidence and
satisfaction.

Table 3.1: The design checklist for usability defined by Bass, Clements, and
Kazman (2015).

24 CHAPTER 3. METHOD

• The platform is fast and responsive.

• It is easy to get an overview of available features.

• I will likely return to the platform in the future.

• I find the platform attractive.

• The platform has a clean and simple presentation

A minimum of 25 participants with knowledge of digital twins should test
the platform to obtain a sufficient dataset to draw conclusions regarding the
platform’s usability. The responses are scored by averaging the results from
the questions related to the usability of the platform. A survey executed in
Sauro (2015) with 2,513 responses across 70 websites with the standard SUPR-Q
questionnaire shows an average score of 3.93. This is not directly comparable to
the questionnaire used to measure the usability of the CBMS as it is customized
for its purpose. It is still used as a basis to determine the score for considering the
usability objective to be fulfilled. The average usability of the web application
is set as a benchmark for the user-friendliness of the CBMS. The platform is
therefore considered to be user-friendly if the average score from the questionnaire
is higher than 3.93. The question related to the user’s knowledge about the field
of digital twins is not associated with the platform’s usability, so this question is
not included in these calculations.

3.2. PERSONAL AND PERSISTING PROJECTS 25

3.2 Personal and Persisting Projects

The objective of facilitating support for persistent projects is approached by
implementing an authentication service and a database that contains data about
users and projects. Evaluation of the objective achievement is carried out in a
test where two users simultaneously execute the following tasks:

1. Register an account and log in

2. Create a new project

3. Connect to a data source

4. Upload a model

5. Create one or more dashboards

6. Create one or more tiles

When these steps are completed, the testers log out. The next day, they
log on again on different devices. If they see the same content they created the
previous day, the test is considered successful, and the objective is completed.

3.3 Generic Configuration System

During development, two physical assets are used to implement functionality for
digital twin configuration; a torsion bar suspension rig and a smartphone.

NTNU has a torsion bar suspension rig used for experimental purposes. The
rig is instrumented with sensors to capture its state. The sensors include a
load cell, accelerometer, strain gauge, and rosettes. Sensors send data to a data
acquisition system (DAQ) before it is sent to the server, as seen in Figure 3.1a.
The DAQ software is installed on a computer connected to the rig and configures
and transmits the data. Figure 3.1b shows a picture of the rig. The red handle
is used to jack up the torsion bar, and the black handle attached to the jack
lowers it.

SensorLog is an application developed by Bernd Thomas, published on Apple
Store. It displays real-time sensor data from the hardware of an Apple device,
e.g., longitude and latitude coordinates, accelerometer, and a gyroscope, as seen
in Figure 3.2a. The app provides three main options for the use of the data. It
can be displayed on the device, logged to file or streamed. Figure 3.2b shows the
configuration settings of the application. Streaming frequency ranges from 1 to

26 CHAPTER 3. METHOD

(a) Real-time plots from the DAQ software used to measure the physical characteristics
of the torsion bar suspesion rig

(b) NTNU’s torsion bar suspension rig used during development of the CBMS

Figure 3.1: Screenshot of the DAQ software and a picture of the torsion bar
suspension rig.

3.3. GENERIC CONFIGURATION SYSTEM 27

100 hertz. The data can be logged and streamed in a comma-separated values
(CSV) or JavaScript object notation (JSON) format. The data is transmitted
with the TCP or UDP protocol.

A new physical asset is connected to the system after the development phase
to evaluate how flexible and generic the system is. The model is uploaded, and
a data source is configured. The new asset is monitored, and analyses and post-
processing are executed. The results indicate how successful the implementation
is. The objective is considered fulfilled if the monitoring and analytics features
produce results, i.e. the real-time data is displayed, and one can query recent
data to generate analyses.

28 CHAPTER 3. METHOD

(a) Visualization of sensor data from a smart phone in the SensorLog applica-
tion

(b) Options for configuring a smart phone to collect and send data in the
SensorLog application

Figure 3.2: The SensorLog Application.

3.4. MONITORING 29

3.4 Monitoring

This objective’s goal is to implement monitoring features that provide insights
and knowledge about the current state of the physical asset. The elements must
present the data reasonably and intuitively. The level of success is evaluated
by measuring the average delay from the data is sent from the physical asset
until it is received and displayed in the front-end. It is crucial to synchronize
the clocks in the physical assets, the back-end, and the front-end before the test
is executed to obtain accurate results. The objective is considered fulfilled if the
results of the assessment comply with the requirements outlined in Section 4.2
related to the monitoring objective.

The CBMS needs to be running at all times to monitor physical assets and
carry out tasks continuously. These properties can be evaluated by measuring the
availability and the performance of the system. The availability is measured by
how often the system responds to a request, while the performance is measured
by the time it takes to respond to a request. Checkly is a relability platform
used to measure availability and performance. Checkly automatically checks
that the back-end is up and running by making an HTTP request to one of
the API endpoints every 5 minutes. Checkly also makes a browser check every
10 minutes to verify that the client is running. The browser check starts up a
Chrome browser and loads the web page. When the page finishes the loading,
the check is complete. The requirement for the availability and performance of
the platform is outlined in Section 4.2.

3.5 Post-Processing and Analytics

Evaluation of the implemented analytics functionality achieved by comparing
the outcome to trusted, external data. SAP provides the data required to test
and validate the features. The validation files are received after implementation
to prevent customized implementation, and Table 3.2 describes the validation
set.

The data files are in a CSV format, where one column contains the variables
separated by commas. The raw data and spectrogram files are provided in
two formats, raw data iso.csv has a UNIX timestamp in microseconds and
raw data epoch.csv has a date1 format.

The sample spacing and sample frequency need to be generated to generate
the transformations. The total number of data points is found, and the duration

1The date format is on the form yyyy-mm-ddThh:mm:ss.msZ

30 CHAPTER 3. METHOD

of the sample is calculated from the timestamps. Table 3.3 lists the required
variables.

The platform generates an FFT using the raw data epoch.csv file and the
sample spacing from Table 3.3. Data from the generated FFT is downloaded.
The result is evaluated by visual inspection and comparison of the values. The
values in the fft.csv file generated by SAP are plotted using the historical plot
functionality in the platform for visual inspection. The downloaded values from
the platform are compared to the values in the fft.csv files. A spectrogram is
generated from the raw data epoch.csv file and the sample spacing value from
Table 3.3.

Filename Content

fft.csv FFT values from the signal: frequencies of the
signal along with intensity

raw data epoch.csv Raw file that consists of two columns: timestamps
formatted as UNIX timestamps in microseconds
and corresponding sensor values of an accelerome-
ter in a compressor

raw data iso.csv Raw data file that consists of two columns: times-
tamps formatted as Dates and corresponding sen-
sor values of an accelerometer in a compressor

spectrogram epoch.csv CSV file containing three columns: frequencies
of the signal, timestamps on a UNIX format in
microseconds and acceleration values.

spectrogram iso.csv CSV file containing three columns: frequencies
of the signal, timestamps formatted as dates and
acceleration values

spectrogram.png PNG file showing the spectrogram with values
from the spectrogram data files.

Table 3.2: Files provided by SAP. The raw data files are used to generate FFT and
spectrogram, fft.csv and the spectrogram files contain FFT and spectrogram
values generated by SAP and spectrogram.png is SAP’s spectrogram.

3.5. POST-PROCESSING AND ANALYTICS 31

Variable Value Calculation

N 2560 Number of samples
Duration 9.9961 Difference between first and last

data point
Frequency 256.1001 N / duration
Sample spacing 0.0039 duration / N

Table 3.3: Calculation variables for FFTs and spectrograms. N and duration
are the number of samples and the duration of the time series in seconds
respectively. Sample spacing is the inverse of frequency, the time between to
samples. Frequency is in hertz and sample spacing in seconds

32 CHAPTER 3. METHOD

3.6 Development Process

The development is carried out in sprints, following an agile approach. Kanban
boards organize and keep track of the progress of the sprints. Figma and Adobe
Photoshop enables layout design of the application Git and Github facilitate
version control and collaboration.

3.6.1 Agile Approach

The project development follows an agile methodology by developing and refining
tasks in iterations called sprints. In an agile development approach, one starts
with the fundamental features and adds complexity incrementally. The most
substantial advantages of an agile approach are less time spent on detailed plan-
ning, which frees up resources in a project with time constraints, and continuous
review of the progress. The agile approach relies heavily on communication
between the members of the team. As the group only comprises two members
working closely together at all times, it is considered a small risk.

Kanban

During the development phase, Kanban boards in Trello2 are used to track the
progress. Kanban boards consist of columns representing possible states of a
task, in this case, ”to do,” ”doing,” ”code review,” ”testing,” and ”done.” Before
initiating each sprint, a selection of tasks from the backlog is put in the ”to-do”
column. The backlog initially consists of the high level functional requirements
in Table 4.1 split into small tasks. However, more tasks are added after sprint-
reviews and when new needs arise. Sprint items that are not completed during
one sprint are transferred to the next or removed if they are no longer relevant.

2Trello is a free, web-based Kanban project management application.

3.6. DEVELOPMENT PROCESS 33

Figure 3.3: Snapshot of a Kanban board in Trello from the first sprint.

During the sprint, the developers take items from the ”to do” list and move them
to the ”doing” column while the development is in progress. When the task is
completed, it is moved to the ”code review,” and finally the item is tested. Then,
if there are no bugs, it moves on to the ”done” column. Different developers
can contribute to the process of implementing the same task, e.g., one developer
solves the task and another tests and approves. Tasks are assigned to developers,
as seen in Figure 3.3.

Design

The design process is based on the principles and tactics from Wathan and
Schoger (2018). The design and implementation are developed in cycles. Must-
have features are designed first, then implemented. New features are designed
and implemented in a new iteration after the first iteration is complete. This
process is repeated until there are no more features to implement. A cyclic
design process is used to save time and focus on the most critical elements first.

The layout of the front-end solution is outlined using Figma and Adobe
Photoshop. Figma offers a free, collaborative design interface where it is possible
to design interactive components that can be connected through user actions
such as clicking a button. Figma is used to create prototypes quickly, as shown
in Figure 3.4. Adobe Photoshop is used to create and edit images used in the
web application, such as the logo for the CBMS.

34 CHAPTER 3. METHOD

Figure 3.4: Design sketches from Figma.

3.6.2 Code Control and Collaboration

Code is written in Visual Studio Code, a source code editor created by Microsoft.
Changes in the code are shared using Git. Git is a version control system for
keeping track of changes, additions, and deletions of files, making it possible
to revert the project or a part of the project to a previous state. Centralized
synchronization of source code is essential in development projects. GitHub, a
code collaboration platform, is used for this purpose. Source code for the project
is uploaded to GitHub in a repository, and users can clone the repository to
their local computer to implement changes. When a new task is initiated, a new
branch is created. Upon completion, the branch with the updates is pushed to
GitHub, and a pull request is created. A pull request is a request to merge the
updated changes with another branch, usually the master, the main branch of
the repository. A team member can look through the changes made and approve
or leave comments before the branch is merged.

3.6. DEVELOPMENT PROCESS 35

It is important to use identical code formatting to minimize the number of
merge conflicts. Two Visual Studio extension packages are used for this purpose:
Prettier and vsc-organize-imports. Prettier helps formatting code by adjusting
the code to comply with defined rules when files are saved, e.g. length of lines,
use of parentheses, commas, etc. vsc-organize-imports automatically sorts the
imports in a file in alphabetical order for consistency.

3.6.3 File Sharing and Communication

Google Drive is used to organize the project and the administrative files. Sum-
maries from status meetings, meetings with supervisors, and other external
resources are located in different folders to makes it possible to go back and
review old notes and information at a later stage. It simplifies administration and
improves control of progress. Credentials, passwords and NDA-restricted files
that cannot be uploaded to GitHub are stored in the drive. When communication
cannot be conducted face to face, Microsoft Teams is used to conduct meetings.

36 CHAPTER 3. METHOD

Chapter 4

System Overview

The previous work described in Section 1.3 is the foundation for the system’s
requirements, architectural decisions and technology stack, which are described
in this chapter. The first section defines terms used during development of the
system.

4.1 Terminology

This section introduces the terms and definitions used in the development phase.
The majority of the terms do not appear in the client as they can be confusing
for the end-user. The terms are defined for the reader to understand the
system better, and Figure 4.1 shows an illustration of the system with the terms
integrated.

Datasources are the real-time streams of sensor data created by the users in
a project. The values of the datasources originate from physical assets and are
routed through the back-end before they arrive in the front-end. The back-end
receives the data while the physical assets send data, but the user must define a
datasource to connect the client to the sensor data.

Processors transform streams of sensor data, such as filtering. The user sees
these as datasources to abstract logic, but there is a technical difference as the
data is no longer the same as the raw data sent from the physical asset.

37

38 CHAPTER 4. SYSTEM OVERVIEW

Blueprints are defined in the back-end and relate to processors. Jensen (2019)
created a blueprint system to make a generic way to add processors. When the
functionality in the back-end is extended by adding new functionality, a new
processor that follows the blueprint system is created. This includes initiation
parameters and functions such as init, start and stop for initiating, starting
and stopping processors, respectively.

Topic The data streams are transmitted from the server to the client via
Apache Kafka. To keep control over the traffic, Kafka makes a topic for each
datasource. When the data arrives in the front-end, it is managed using topics.
As with processors, the term topic is not visible; the user only interacts with
datasources.

Channels of a topic or datasource are the sensors that the topic or datasource
contains. The channels contain a name of the sensor and an id. Whenever the
user creates a tile in a dashboard, the data comes from one or more channels.

Figure 4.1: Physical assets are datasources sending sensor data to the back-end.
The data is forwarded to the front-end in a topic as raw data or processed
in a processor. A topic consists of channels containing sensor values. The
user navigates between routes in the front-end and the data is visualized with
components.

4.1. TERMINOLOGY 39

Dashboard is the main component of a project, and is initially a blank canvas.
The users configure the dashboards themselves by creating tiles with monitoring
and analysis functionality.

Notifications appear when a sensor value exceeds a selected threshold. The
notification contains information about the event, e.g., date, duration, and
description, and the user can view a plot of the sensor value at the time of the
event.

Models are the virtual models of the physical asset. Models are visualized in
3D and can be used to run simulations.

Components are the building blocks of React applications. Components
receive input parameters and return a React element describing how a section of
the user interface appears.

Routes keep the user interface in synchronization with the URL in the browser.
A route’s component is rendered when the route matches the URL.

40 CHAPTER 4. SYSTEM OVERVIEW

4.2 Requirements

The system should be a cloud-based open-source platform for digital twin
applications. The user should be able to configure projects by uploading models
and connecting to streams of sensor data. Both the models and data streams
should be visualized in the client of the platform. It is desirable to execute certain
post-processing such as FFT or spectrogram. The client should be available in a
web browser to be device-independent. The technology stack should be chosen
so that it is easy to continue the development at a later stage, and thorough
documentation should be generated.

The requirements are divided into two categories: the functional and non-
functional requirements. The functional requirements outline what the system
should do. In contrast, non-functional requirements include aspects of the system
that do not have an explicit connection to the functionality, rather the quality
of the product. Tables 4.1, 4.2 and 4.3 list the functional and non-functional
requirements. These are numbered and given a rating in terms of priority and
difficulty ranging from low to high. The requirements are related to the objectives
of the thesis.

ID Priority Difficulty Obj. Requirement

FR01a High Medium 3 The user should be able to con-
nect to streams of sensor data by
providing an IP address.

FR01b High Medium 3 The platform should accept data
streams in JSON and CSV for-
mats.

FR02 High Medium 3 The user should be able to gener-
ate a 3D model by uploading an
FMU file.

FR03 High Medium 4 The system should visualize real-
time data streams from physical
assets.

FR04 High High 4 The system should visualize and
update 3D models in real-time.

FR05 High Medium 5 The user should be able to visu-
alize historical data.

Table 4.1: List of functional requirements of the platform.

4.2. REQUIREMENTS 41

ID Priority Difficulty Obj. Requirement

FR06 High High 5 The user should be able to post-
process data, e.g. by computing
FFTs.

FR07 High Low 5 The user should be able to upload
files in CSV or XLSX format.

FR08 High Low 1 The user should get an error mes-
sage if something goes wrong and
be told how they can fix the prob-
lem.

FR09 Medium High 5 The system should provide pre-
dictive maintenance functionality
to avoid equipment failure.

FR10 Medium Medium 3 The user should be able to apply
filters to data sources.

FR11 High Low 2 The user should be able to regis-
ter a unique account using their
e-mail.

FR12 High Low 2 The user should be able to con-
figure projects by adding models
and connect to datasources. It
should be possible to make per-
sonal dashboards that are saved
for later sessions.

FR13 Low Low 2 It should be possible to share
projects among multiple users by
sending invitations.

Table 4.2: List of functional requirements of the platform (continued).

42 CHAPTER 4. SYSTEM OVERVIEW

ID Priority Difficulty Obj. Requirement

NFR01 High Low 1 The platform should be available
in Google Chrome, Microsoft
Edge, Mozilla Firefox and Safari

NFR02 High Low 1 The front-end should be devel-
oped using React

NFR03 Medium High 1 The platform should be intuitive
and easy to interact with.

NFR04 Medium Low 1 Detailed documentation should
be generated for the system in
the form of README files, in-
struction videos and user guides.

NFR05 High High 4 The real-time data should have
a latency of at most two seconds.

NFR06 Low High 4 The platform should have an up-
time of at least 99.95%.

Table 4.3: List of non-functional requirements of the platform.

4.3 Architecture

This section describes the components of the complete system, its internal
and external connectors, and the technology stack used for development. The
architecture is a product of the requirements, the specialization project, and the
state of the project before development.

Throughout this thesis, the terms front-end and client refer to the React
application that constitutes the interaction with the user. Back-end and server
both refer to the Python application running on the server. All use of database
refers to the Firestore instance implemented in this thesis. Firebase refers
to Google’s mobile platform, providing both Firestore and the Authentication
service used in the project. The CBMS is referred to as the platform and the
system.

4.3.1 System Architecture

The platform uses a server-client architecture, and Figure 4.2 shows the top-level
structure. The front-end uses an authentication service, listens to notifications

4.3. ARCHITECTURE 43

from the database, and communicates with the server. The server also communi-
cates with the database, receives data from physical assets, and reads and writes
files in the local file system.

Figure 4.2: The system consists of a front-end developed in React, a Python
back-end, an authentication service, a database and connections to a local file
system and physical assets.

The front-end is a single-page application divided into components, or routes,
as Figure 4.3 illustrates. The landing page route renders when the application
first loads. The user can log in or register, or go directly to the projects Route if
already authenticated. From the projects route, one can navigate to an existing
project or configure a new project. In the project route, there are four sub-
routes: dashboards, notifications, models, and data sources. The admin user
can navigate to the admin route to see administrative settings for the platform.
Only the developers of the CBMS can make users admins.

The back-end has the structure illustrated in Figure 4.4. Similarly to the
front-end, it is divided into separate modules based on the functionality they
provide. Each model has two layers: the views and models layer. The views
layer manages client communication by receiving requests and sending responses.
The logic and calculations that are executed between these actions are taken
care of by the models layer.

44 CHAPTER 4. SYSTEM OVERVIEW

Figure 4.3: Routing diagram of the front-end. The text below the name
of each route represents the URL in the browser, e.g., /signin represents
www.cbms.surge.sh/signin.

Figure 4.4: The back-end is divided into modules, such as Database or Topics.
Each module contains a file for communication with the front-end, views.py, and
some of the modules has a file for performing calculations, models.py.

4.3. ARCHITECTURE 45

Figure 4.5: The database structure in Firestore consists of collections and
documents. A project contains information about dashboards, datasources,
event triggers, models, notifications and the users of the project. A user can
have many projects and a project can be shared with other users.

46 CHAPTER 4. SYSTEM OVERVIEW

The database is a real-time noSQL database that follows a concept of col-
lections and documents. Each collection contains one or more document, and
documents can contain sub-collections. The platform has two root collections,
profiles and projects. The profiles collection consists of profile documents, which
contain the user information. The projects collection has a more complex
composition, which Figure 4.5 illustrates.

The file system structure follows the structure of the back-end, where the
folders correspond to a particular module. Files are written to and read from,
and used in the various components of the system. The blueprint folder contains
the blueprint instances as sub-folders. When a processor is initiated, the init-file
in the correct blueprint folder is run, and a processor is created. This processor
is then saved as a file in the processor folder. Appendix A shows an illustration
of the file system.

4.3.2 Communication

Different network protocols are chosen according to the need of the interaction be-
tween components. Data streams require high throughput, while communication
with the database does not require real-time response.

The client and server communicate through WebSocket connections and
HTTP requests as shown in Figure ??. The sensor data is sent through the
WebSocket connection, as high throughput is essential for the streams. Kafka
distributes the data. All interactions that do not require real-time transmission
use HTTP requests. This comprises querying data from the server, uploading
files, fetching transformations, and handling database requests. The majority of
the requests to Firebase from the client go through the server. There are two
types of requests directly between Firebase and the front-end: the authentication
service provided by Firebase and the real-time listeners in Firestore. When users
are authenticated, the client sends a request directly to Firebase. The event-
listeners in the front-end receive updates directly from Firestore in a WebSocket
connection. The back-end listens for UDP connections from physical assets
and forwards data to clients. Kafka simplifies the communication by sending
messages directly from different processes.

4.4. TECHNOLOGY STACK 47

Figure 4.6: Overview of the communication protocols between the elements in
the CBMS.

4.3.3 Cloud-based

All the components are hosted in the cloud. The client is hosted by Surge,
which is a free resource provided through node package manager (npm). Surge
publishes web applications for free and the process of deploying to Surge is
presented in Appendix G. Google’s Firebase is used for both authentication and
database. The back-end is hosted with stackit as a VM with the specifications
shown in Table 4.4. The server is globally available.

Specification Value

Random Access Memory (RAM) 16GB
Virtual Central Processing Units (VCPUs) 4
Disk 60GB

Table 4.4: Specifications of server instance in terms of processing and storage
capacity

4.4 Technology stack

This section lists and describes the selected technologies used during the devel-
opment of the platform.

48 CHAPTER 4. SYSTEM OVERVIEW

4.4.1 Front-end

During the research conducted in Kjernlie and Wold (2019), it was decided that
React and TypeScript should be used to develop the new front-end solution due
to its flexibility, performance, and prior knowledge within the team.

React is a JavaScript library, but it can be used with TypeScript to imple-
ment type safety. TypeScript is a superset of JavaScript, which compiles to
JavaScript. TypeScript makes it easier to read and debug by catching type
mistakes. Types reduce the need for code documentation and build more robust
software. JavaScript files are still accepted for external Javascript imports into
the project, e.g. for implementing 3D visualizations with Ceetron.

4.4.2 Back-end

The back-end solution was created in Jensen (2019), and it is decided to keep and
further develop this solution in Kjernlie and Wold (2019). It is implemented in
Python using a modular style that easily enables extension of functionality. The
back-end is described in ”Building an Extensible Prototype for a Cloud-Based
Digital Twin Platform” by Jensen (2019).

4.4.3 Communication

JavaScript provides functionality for both HTTP and WebSocket communication;
hence no further technologies are needed to facilitate communication in the front-
end. However, Python does not have built-in feature for external communication,
but several libraries provide it. Aiohttp was selected in Jensen (ibid.) to support
HTTP and WebSocket communication, and Kafka through aiokafka. Apache
Kafka is used as a message distributor from the processes in the back-end to the
front-end.

4.4.4 Authentication

Many companies provide AaaS, but they offer different features, functionality,
and pricing plans. Originally, Feide was selected to be the Authentication
provider (Kjernlie and Wold 2019). However, the project would not be accessible
to anyone other than students and professors in Norway. Auth0 and Firebase
Authentication are considered, and the latter is selected due to the integration
with the database and lower costs. It provides a simple and well-documented API
for features such as login, logout, and password resetting. Additional features

4.4. TECHNOLOGY STACK 49

such as phone authentication can be implemented, but are not a part of the free
solution.

4.4.5 Storage

The platform handles three sorts of data: user-generated data, data associated
with the physical state of the asset in the form of incoming real-time sensor
data, and files uploaded by users. Due to different formats and use cases, three
different storage units are used. The two latter units are implemented in previous
work (Jensen 2019).

Two different databases are considered for user-generated data handling in
the platform: a local MySQL database and Google’s cloud database Firestore.
MySQL is a free, open-source database, and it can be run on a local server or in
the cloud. It is an SQL relational DBMS, and the data is stored in tables with
row and columns. MySQL is one of the world’s most popular databases1 with a
large community, known for being simple to install and using few resources in
terms of computer memory and CPU.

Firestore is a cloud-based, real-time document store structured in collections
and documents instead of tables. Each collection contains documents, which can
be compared to a row in an SQL table. Firestore supports non-relational data,
making it more flexible than traditional relational databases as documents in the
same collection do not need to contain the same fields and sub-collections. This
makes it easy to change the format of the data during development. Google’s
Firestore is selected due to flexibility, fast prototyping, and cloud-related advan-
tages. Firestore has a free tier, including up to 50.000 and 20.000 read and write
operations a day.

Files and models are stored in the file system on the server. Sensor data
from physical assets is saved in Kafka logs folders on the server. Apache Kafka
is mainly an open-source event-streaming system, but can also be used to store
data. The data is stored as streams of events persisted to disk, checksummed,
and replicated for fault tolerance. It does not work as a regular database with a
query language to store and retrieve data. However, it can operate similarly to
a database and provide ACID guarantees. Kafka does not replace an ordinary
database, but this is neither its purpose.

1https://db-engines.com/en/ranking, accessed: 06.06.2020

https://db-engines.com/en/ranking

50 CHAPTER 4. SYSTEM OVERVIEW

4.4.6 Visualization of Virtual Models

Code from Ceetron is used to visualize the physical assets. Integration with
Ceetron prohibits the CBMS from being completely open-source as the scripts
are NDA-restricted and cannot be shared publicly. Code snippets related to the
visualization and processing of virtual models are therefore not included in this
thesis. The implementation builds on work in Børhaug and Sande (2019).

Chapter 5

Implementation

This chapter describes the implementation carried out in this thesis. The majority
of the development is focused on the front-end since it is built from scratch, but
the back-end is extended to support the implemented functionality. The chapter
is divided into five sections, one for each thesis objective.

The development is executed in a top-down manner. The first step is to
initiate and define the structure and data flow in the front-end and its communi-
cation with external parts of the system. Then, functionality is implemented
in both the front-end and the back-end, including a generic configuration of
profiles, projects, datasources and models, monitoring, and analysis features.
Finally, after the critical functionality is completed, more details and additions
are added following the agile approach described in Section 3.6. The external
libraries used for implementation in this thesis are listed and briefly described in
Appendix B.1.

5.1 User-friendly Client

Defining the application structure is the first task of creating a web application.
The application structure includes determining the main modules of the front-
end, establish how to navigate and pass data between them, and select how to
communicate with external parts of the platform.

A React app consists of components that have a set of properties called
state. State is an object containing the properties of a component, and when
the properties change, the component is re-rendered. Components are nested

51

52 CHAPTER 5. IMPLEMENTATION

in a hierarchy, and one can pass properties, called props, from the parent to
the child component. The child component is a part of the parent component’s
scope, and props is the way to pass data down to the child. Routing facilitate
navigation between the top-layer components. Data is shared globally between
components in stores or in a uni-directional flow between components using
props. The structure and data flow is illustrated in Figure 5.1.

Figure 5.1: React’s structure consists of nested components that pass props
among them and keep a consistent internal state. Routing facilitates navigation
between the routes of the application

5.1.1 Creating a React App from Template

The first step of the development phase is to create a React app. The application
is initialized by using React’s standard template1 with TypeScript. TypeScript
requires that each variable must be declared. Interfaces defines the variables of
an object and their respective types. Different objects are defined as interfaces
in the types folder and are divided into four files depending on use. Listing 5.1
shows the interface for the type Profile.

1https://create-react-app.dev/docs/getting-started/

5.1. USER-FRIENDLY CLIENT 53

1 export interface Profile {

2 projects: string [];

3 occupation: string;

4 firstName: string;

5 lastName: string;

6 invites: string [];

7 }

Code lising 5.1: Interface that defines the type Profile, which consists of the
variables projects, occupation, firstName, lastName and invites

5.1.2 Components

The React application is built with functional components. Functional compo-
nents are JavaScript functions that take some parameters as inputs and return a
React element as output. Functional components are more readable, reusable,
require less code, and are easier to test compared to class components, which is
another common standard in React. Classes provide lifecycle methods, which
often generate larger amounts of code than necessary. Hooks reduce the number
of concepts exposed to developers, which makes it easier to learn. Writing
everything as functions simplifies reusing the code, instead of switching be-
tween functions and classes. Listing 5.2 shows a functional component called
MapComponent. It takes in coordinates and returns another component, Map,
which renders a map with a marker on the given position. Marker is the child
component of Map, which is the parent component.

1 const MapComponent = ((long: string , lat: string) => {

2
3 return (

4 <Map >

5 <Marker

6 position ={[long , lat]}

7 icon={ myIcon}

8 >

9 </Map >

10);

11 });

12 export default MapTile;

Code lising 5.2: A simple component that takes in longitude and latitude and
renders a map using a Map component

54 CHAPTER 5. IMPLEMENTATION

Generic components such as buttons and input fields are created to ensure
a consistent and coherent layout. The component is defined with attributes
in a TypeScript file as in Listing 5.3. Button is here used as an example, but
the process is identical for other components. Different buttons can be used by
specifying the className attribute, which changes the design of the button.

1 import * as S from "./ Button.style.ts";

2 export default function Button(props: Props) {

3 /* ... code ... */

4 return (

5 <S.Button

6 className ={"Accept"}

7 onClick ={ onClick}

8 /* more button attributes */

9 >

10 {loading ? <ClipLoader size ={15} color={"blue"}

11 loading ={ loading} /> : children

12 }

13 </S.Button >

14);

15 }

Code lising 5.3: Custom button component. The loading property is set to
true if the button should display a loading icon. children refers to the content
inside the Button component, for example the text ”Please click me”.

Styling of components is implemented with the styled-components library. The
design of the button is defined in a specific file called Button.style.ts. This
file includes custom classes, as shown in Listing 5.4, where green and red buttons
are used to continue or cancel an action, respectively. The design of the button
is imported in the Button component in Listing 5.3, where it can be accessed
by using S.Button. If one wants to use the design of the accept button, the
className property is set to ”Accept.”

5.1. USER-FRIENDLY CLIENT 55

1 import styled from "styled -components";

2
3 export const Button = styled.button `
4 /* Default styling and other classes */

5 &. Accept {

6 background -color: green;

7 /* more attributes such as "font -size", "color" etc. */

8 }

9 &. Decline {

10 background -color: red;

11 /* more attributes */

12 }

13 /* More button classes */

14 `;

Code lising 5.4: Excerpt of styling file for the Button component showing the
Accept and Decline classes for the Button component.

5.1.3 Routing

Routing manages the flow between the main components of an application that
can be navigated to through an url. React-router-dom facilitates routing between
the components by declaring where to direct the user when different routes
are specified in the address bar, e. g. www.cbms.surge.sh/signin renders the
SignInSignUp component as shown in Listing 5.5. It is implemented using the
Route, Router and Switch components of react-router-dom.

1 <Router >

2 <Switch >

3 <Route exact path="/" render ={() => <LandingPage />} />

4 <Route exact path="/signin" render ={() => <SignInSignUp />}

/>

5 <Route exact path="/new" render ={(props) => <NewProject />}

/>

6 /* More routes */

7 </Switch >

8 </Router >

Code lising 5.5: Router component renders LandingPage, SignInSignUp or
NewProject depending on the url. exact specifies that the url must match
exactly the path in the route.

Internally, react navigates between routes using the useHistory Hook, also
provided by react-router-dom. useHistory has a variable called history, which
can be used to manage routes, e.g. by sending the user to the new project page
by calling history.push("/new").

56 CHAPTER 5. IMPLEMENTATION

5.1.4 Data flow

React Hooks provides a simple way to manage the state within a functional
component. Hooks are functions that make it possible to hook into a component
for managing local state and lifecycle methods. State management is achieved
by using the useState hook. The useState hook contains one variable for
accessing the current state value and one for updating it. The hook only has one
argument; the initial state. Listing 5.6 shows an example when the useState

hook is used to control the e-mail value of an input-field when a user registers.
E-mail is initially set to an empty string, and is updated with the setEmail

method when a user types something in the input field.

1 const [email , setEmail] = useState("");

Code lising 5.6: Initiating an email variable as an empty string using useState

The useState cannot share data with other components. A complex React
app requires a way to handle global state across components. The global state
is managed using the Zustand library, a solution based on Hooks. Stores are
defined in the store folder in the repository, which is divided into different
categories, e. g. profileStore as shown in Figure 5.2.

Figure 5.2: The dataflow inside the React application.

The stores contain variables and functions to manipulate the state of the
variables. Listing 5.7 shows the profileStore used to store information about
a user. A component that wants to access data from a store imports the store
and declares the specific content it needs, as shown in Listing B.1 in Appendix
B.2. When the state of the data is updated in the store, it is also updated in
the components that use it.

5.1. USER-FRIENDLY CLIENT 57

1 import create from "zustand";

2
3 const [useProfileStore] = create ((set , get) => ({

4 profile: {} as Profile ,

5 fetchingProfile: false ,

6 /* More variables , such as profileError etc. */

7 createProfile: async (profile: Profile) => {

8 /* Code for creating profile */

9 },

10 /* More methods: getProfile etc. */

11 }));

Code lising 5.7: profileStore manages the profile variable and provides the
createProfile function to create a new profile

Methods for fetching resources from the back-end are located in the backendAPI
folder. Methods are split into different files depending on the API endpoint
they call. For instance, the methods used for creating, deleting, and retriev-
ing information about a user are in the profile.ts file, which contains the
profileStore. Data can also be retrieved through services, which communicate
directly with Firebase, as shown in Figure 5.2. Stores import functions from
backendAPI, and share the data with components in the application.

5.1.5 External Communication

The front-end receives data from the back-end with HTTP requests and Web-
Sockets.

HTTP requests

Resources are fetched from the back-end using HTTP requests. JavaScript
provides a built-in asynchronous method called fetch to make a request and
fetch a resource. The method takes one mandatory input argument, which is the
path to the API endpoint. It returns a promise that resolves to the response,
and the data can then be parsed directly in JavaScript as JSON, as shown in
Listing 5.8.

1 export async function getJSONResponse(link: string) {

2 const response = await fetch(link);

3 jsonResponse = await response.json();

4 return jsonResponse;

5 }

Code lising 5.8: Simplified getJSONResponse function that parses a HTTP
response to JSON format

58 CHAPTER 5. IMPLEMENTATION

WebSockets

The process of receiving, parsing, and displaying data is similar to the approach
used in Børhaug and Sande (2019). Information about the datasources is stored
in a globally accessible dictionary called datasources. The dictionary contains
the name, available channels, and the byte format for each datasource. A
WebSocket connection opens when a user subscribes to one or more channels of
a datasource, and is kept open as long as the user is in the same project. Data
from processors is also sent through the WebSocket connection.

The process of handling the incoming data is shown in Listing B.3 in Appendix
B.2. Data streams from the back-end are received through WebSocket connections
in the dataStore in the front-end. WebSockets have an onMessage property,
which is an event handler called when a message is received from the back-end.
WebSockets transfer raw sequences of bytes, which is why the data is parsed
into strings when received in the front-end. The first four bytes of a data stream
are decoded with JavaScript’s built-in TextDecoder to get the topic id of the
data stream, which is used to retrieve the format of the data stream from the
datasources object. The rest of the data stream is parsed with structjs; a
library used to parse binary data to JavaScript values by iteratively unpacking
data according to a given format. The timestamp for each data point is stored
in a buffer called timestamp buffer, whereas sensor values are stored in the
value buffer. The data from a single datasource is stored in one buffer called
datasourceBuffer, whereas the buffers from all the datasources are stored in
the datasourcesBuffer. The data is stored in a buffer to avoid updates every
time new data arrives. The most recent data is sent to the dataStore every 100
milliseconds, and the buffer is reset, as shown in Listing 5.9.

1 setInterval (() => {

2 set({

3 newData: cloneDeep(get().datasourcesBuffer),

4 });

5 get().resetBuffers ();

6 }, 100)

Code lising 5.9: setInterval pushes data to the global store every 100
milliseconds. set updates the store, whereas get retrieves the sourceBuffers
object. cloneDeep is used to create a new, independent object.

Real-time components listen to the dataStore for updates, as shown in List-
ing 5.10. newData is updated every time parsing of new data is completed in the
dataStore. When newData changes, the component calls requestAnimationFrame
with updatePlot as a callback function. React’s built in Hook useMemo only

5.2. PERSONAL AND PERSISTING PROJECTS 59

re-runs the function if the data has changed. requestAnimationFrame updates
the plot before re-painting the object passed to the function to ensure a smoother
update animation of the plot.

1 useMemo (() => {

2 requestAnimationFrame (() => updatePlot ());

3 }, [newData]);

Code lising 5.10: The useMemo hook listens to changes in the newData object

5.2 Personal and Persisting Projects

Personal and persisting projects are obtained by implementing a database and
an authentication service.

5.2.1 Authentication

Firebase’s authentication service is implemented as a service layer in the front-
end, and a simplified version can be seen in Listing 5.11. When someone
fills in the required information and wants to register or login, either the
createUserWithEmailAndPassword or the signInWithEmailAndPassword method
is called on the authentication object. The service layer receives the input argu-
ments, passes them to the authentication provider, and returns a response with
the result of the action.

1 export const createUserWithEmailAndPassword = async (

2 email: string ,

3 password: string

4) => {

5 return authentication.createUserWithEmailAndPassword(email ,

password);

6 };

7 export const signInWithEmailAndPassword = async (

8 email: string ,

9 password: string

10) => {

11 return authentication.signInWithEmailAndPassword(email , password)

;

12 };

Code lising 5.11: Methods that communicate with the authentication service
and their respective input parameters.

60 CHAPTER 5. IMPLEMENTATION

5.2.2 Storage

Firestore communication is implemented in the front-end and the back-end.
The database is implemented in the front-end solution to receive real-time
notifications from actions, such as event triggers and project invites. Listing
5.12 illustrates a simplified method for listening to event triggers for a project,
and shows that listening to changes in a collection is implemented with the
onSnapshot method. Every time a document in the notifications collection is
changed, the front-end receives the updated information. The orderBy method
is used to order the notifications by date.

1 listenToNotifications: async (projectId: string) => {

2 firestore.collection("projects").doc(projectId).collection("

notifications").orderBy("startedAt", "asc").onSnapshot(

snapshot => {

3 snapshot.docChanges ().forEach(change => {

4 updateNotification(change);

5 });

6 });

7 }

Code lising 5.12: The listenToNotifications function is an event-listener to
the notifications collections with the onSnapshot method.

Firestore is implemented in the src/database folder in the back-end using
the same structure as the rest of the back-end components. The API endpoints
for the client are placed in views.py, and the code for interactions with Firestore
is placed in models.py. The latter is the only of the two files that contain code
related to Firestore. When the front-end requests information about a user, it
sends a request to the back-end, which is received by the method in Listing
5.13. Listing 5.14 shows the process for retrieving requested information from
Firestore. Listing 5.13 and 5.14 shows that the API for retrieving data from
Firestore is almost identical in Python and React.

1 @routes.get('/profile /{id}', name='get_profile ')
2 async def get_profile(request: web.Request):

3 email = request.match_info['id']
4 profile = await database.get_user_profile(email)

5 if profile is None:

6 raise web.HTTPNotFound ()

7 return web.json_response(profile , dumps=dumps)

Code lising 5.13: The back-end receives a request from the client to retrieve a
user profile and responds with the information fetched from Firestore.

5.3. GENERIC CONFIGURATION SYSTEM 61

1 async def get_user_profile(email):

2 doc_ref = db.collection('profiles ').document(email)
3 try:

4 doc = doc_ref.get()

5 return doc.to_dict ()

6 except:

7 return None

Code lising 5.14: The back-end fetches the document for the user profile of the
given email. This information is stored in the profiles collection in Firestore.

5.3 Generic Configuration System

The following sections summarize the implementation of components and logic
that expand the configurability of the platform.

5.3.1 Creating a project

The user can configure a new project on the projects page. All the information
the user needs to create a new project is the name of the project. The user can
have a maximum of ten projects, as Firestore can only query information for
a maximum of 10 documents in the same operation. The createProject call
in Listing 5.15 sends a request to the server, which makes a new project in the
database. It only contains information about the user and the selected project
name. The server receives the request and forwards it to Firestore.

1 export async function createProject(

2 email: string ,

3 projectName: string

4) {

5 let formData = new FormData ();

6 formData.append("email", email);

7 formData.append("date", new Date().toString ());

8 formData.append("projectName", projectName);

9 return fetch(rootAPI + "/projects/new", {

10 method: "POST",

11 body: formData ,

12 });

13 }

Code lising 5.15: createProject sends a request to the back-end to create a
new project. rootAPI it the IP-address of the back-end.

62 CHAPTER 5. IMPLEMENTATION

The process of creating a project is visualized in Figure 5.3. The request is
received in the back-end in its API endpoint. The back-end creates a new project
in the database if it does not already exist. The process of retrieving a request
and sending a response is shown in Listing B.10 in Appendix B.2. Later on,
users can add new information such as datasources, models, dashboards, event
triggers, and tiles by sending similar requests to the back-end from the files in
the backendAPI folder. The requests contain information about the different
components that can be linked to the project, i.e., the name of a datasource, or
model. The file containing the information about the actual datasource or model
is stored in the back-end, as only the reference to the file is stored in Firestore.

Figure 5.3: The user triggers a request in the client. Firestore checks if the
project already exists. If so, no project is created. Otherwise, the user receives
a confirmation that the project is created.

5.3.2 Datasources

The process of handling datagrams from UDP connected devices in CSV format
is implemented in Jensen (2019). The back-end solution now accepts incoming
datasources with JSON or CSV format, which can be configured by the user
during the setup process. If the incoming data is in JSON format, it is handled
differently than in Jensen (ibid.). An abstracted process of buffering JSON
data is shown in Listing 5.16, and a complete version is shown in Listing B.8

5.3. GENERIC CONFIGURATION SYSTEM 63

in Appendix B.2. The size of messages sent in JSON format are usually larger
than CSV as they include each sensor’s name. This increases the probability
of data fragmentation for the JSON data. The data is therefore stored in a
buffer until the complete JSON object arrives. This is verified by checking if the
JSON object has the same amount of left and right curly brackets, as the curly
brackets defines the JSON object. The data is then packed into a binary array
according to the datasource’s byte format and distributed to clients when all
the fragments have arrived.

1 if address in self.buffers:

2 # If device is added to buffers: append more data here

3 else:

4 self.buffers[address] = "" + raw_data.decode ()

5 if len(self.buffers[address]) > 0 and

6 self.buffers[address].count("{") == self.buffers[address]. count

("}"):

7 try:

8 # code that converts JSON data into an array of values

9 data = struct.pack(

10 source.byte_format , incoming_data[source.time_index],

11 *[incoming_data[ref] for ref in source.output_refs])

12 # The data is then distributed to listening clients

Code lising 5.16: Excerpt of a function that buffers JSON data. The number
of curly brackets is counted and sent when the number of left and right curly
brackets is equal.

A function is implemented in the back-end to assist users if they do not know
the IP-address of the device that sends JSON data. This is achieved by checking
if a datasource is configured when new data arrives. If it is not yet configured,
the IP-address and its sensor names are stored in a dictionary in the back-end,
as seen in Listing B.9 in Appendix B.2. If a user wants to see the available
datasources, a request is sent to the endpoint in Listing 5.17, which returns the
dictionary with IP-addresses.

1 @routes.get('/datasources/available ', name='
get_available_datasources ')

2 async def get_available_datasources(request: web.Request):

3 datasources = request.app['datasources ']. get_available_sources
()

4 return web.json_response(datasources , dumps=dumps)

Code lising 5.17: The API endpoint in the back-end to view available datasource

64 CHAPTER 5. IMPLEMENTATION

The dictionary for available sensors contains the name of the sensors for each
datasource. The sensor names are retrieved from the server by making an HTTP
request from the client to the endpoint described above. The sensors are rendered
as drag and drop items using the react-beautiful-dnd library. Sensors are rendered
as Draggable components inside a Droppable component as described in Listing
5.18. The user can drag the desired sensors into a separate Droppable area for
the selected sensors. The name of the channels are not included if a datasource
is sending CSV data. The user, therefore, has to fill in the sensors’ names in the
correct order to get a correct output.

1 <Droppable >

2 /* more code for handling the droppable component here */

3 {sensors.map((sensor: string , index: i) => (

4 <Draggable key={ sensor} draggableId ={ sensor} index ={i}>

5 /* Displaying the sensor here*/

6 </Draggable >

7))}

8)}

9 </Droppable >

Code lising 5.18: Drag and drop functionality is implemented using Droppable

and Draggable components.

5.3.3 Models and Generation of 3D Files

Models are configured in the NewProject route or in the models tab in the
project route. The model is first uploaded in FMU format to the server using
the FileUpload component, and then processed to generate JSON files used
for 3D Visualization by Ceetron’s Cloud Components. Processing the FMU is
implemented as a parallel process with the multiprocessing package to do the
process as a separate task. This process is shown in Figure 5.4. A message
appears when the model is fully processed so that the user can view the 3D
model. The code for processing the FMU and visualizing the model with Ceetron
is not shown, as it is only available if an NDA is signed. The 3D visualization
can be shown under the models tab, but it is also possible to add a model as a
separate tile in a dashboard.

5.3.4 Tiles

Tiles are configured in the front-end in the AddNew component. The information
provided by the user in terms of input data and configuration variables is stored

5.3. GENERIC CONFIGURATION SYSTEM 65

in the database when a new tile is created. When the dashboard renders, the
tile information is extracted and used to render the components. Listing 5.19
shows the POST request made in the client when a user creates a new tile. The
implementation of the different tiles is described in Section 5.4 and 5.5.

1 export async function createTile(project: string , dashboard: string

, tile: TileFormat) {

2 return fetch(rootAPI + "/projects/" + project + "/dashboards/" +

dashboard + "/tiles/new",

3 {

4 method: "POST",

5 headers: {

6 Accept: "application/json",

7 "Content -Type": "application/json"

8 },

9 body: JSON.stringify(tile)

10 }

11);

12 }

Code lising 5.19: Creating new tile in the client. TileFormat is the format of a
tile, specified with an interface. rootAPI is the IP address of the back-end. The
data is sent in JSON format with a POST request.

Figure 5.4: Process of uploading a model

66 CHAPTER 5. IMPLEMENTATION

5.4 Monitoring

Monitoring includes functionality for visualizing data in curve plots, video
streams, and maps. It also provides functionality for event triggers and real-time
predictions.

5.4.1 Curve Plot

The curve plot component displays the selected data as a function of time
in a graph, either as a line or scatter plot. The plots are implemented with
React Plotly, a JavaScript library used to draw charts. The tile renders us-
ing incoming real-time data from a datasource in a dynamic plot or queries
historical data or data from a file to render a static plot. If the filtering of a
datasource is desirable, this can be configured during creation. A Butterworth
processor is created, configured, and started in the back-end using calls from the
backendAPI/processor.ts file in the front-end. Processors are implemented in
Jensen (2019). When the tile renders, a plot is built using Plotly the same way
as for curve plots, but the real-time data comes from the processor instead of the
raw data from the datasource. An abstracted example of a plot component is
shown in Listing 5.20, where <Plot /> is a component from the Plotly library.

1 <S.PlotComponent >

2 <S.Header >

3 /* Code for header component */

4 </S.Header >

5 <S.Plot >

6 <Plot data= data{} ... />

7 </S.Plot >

8 </S.PlotComponent >

Code lising 5.20: Abstraction of curve plot. The data property contains the
configuration parameters and the data that is rendered in the plot.

5.4.2 Video Streaming

Video streaming is implemented by displaying live YouTube videos with their
free live streaming service. A Google account is required to use YouTube’s live-
streaming feature. The user navigates to YouTube’s live dashboard in the web
browser and press the ”go live” button, and the attached camera can immediately
start streaming. The user is given a unique YouTube video ID, which is used
to display the video in the front-end solution. The live-stream is displayed in

5.4. MONITORING 67

an iframe tag in the client. An iframe tag is typically used to display external
objects within a web page, and it supports displaying videos.

5.4.3 Map

The leaflet and react-leaflet libraries are leveraged to implement the map feature.
All the components in Listing 5.21 are react-leaflet components and constitute
all the necessary code to render a map. Additionally, logic for updating the map
is implemented and set to the userLocation attribute. The location is updated
every five seconds for dynamic maps using JavaScript’s setInterval method,
but the frequency can be adjusted.

1 <Map center ={[userLocation [0], userLocation [1]]} >

2 <TileLayer

3 url="https ://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png" />

4 <Marker position ={[userLocation [0], userLocation [1]]}

5 <Popup >

6 Coordinates: {userLocation [0]},{ userLocation [1]}

7 </Popup >

8 </Marker >

9 </Map >

Code lising 5.21: Map, TileLayer, Marker and Popup are components imported
from react-leaflet. OpenStreetMap is used to render the map based on the
coordinates of the url.

5.4.4 Event Triggers

Event triggers functionality is implemented as a processor in the back-end. The
processor receives real-time data and checks whether the value is higher than
the maximum value or lower than the minimum value. If it is, a notification is
created and stored in the database, as seen in Listing 5.22. The event is also
stored in a dictionary to keep control of when the sensor returns to the normal
state. If the time since the last notification is under 2 seconds, the back-end
does not create a new notification to prevent multiple notifications in a short
amount of time. While the incoming values are still below the minimum value
(or above maximum), the trigger remains active. When the value returns to
the normal state, it is updated to finished in the database and removed from
the dictionary, as shown in Listing B.11 in Appendix B.2. The client listens to
notifications in the database, receiving a notification in real-time if the sensor is
not behaving according to the given limits.

68 CHAPTER 5. IMPLEMENTATION

1 if (value < minVal and time_since_last_notification > 2):

2 database.create_notification(self.project_id , {

3 u'sensor ': sensor ,

4 u'startedAt ': datetime.datetime.now(pytz.timezone('
Europe/Oslo')),

5 u'triggerReason ': "Sensor value below minimum value",

6 u'finished ': False ,

7 u"severity": severity ,

8 u"description": description ,

9 })

Code lising 5.22: Simplified implementation for registering a notification when
the value is below defined minimal value. The notification is created and updated
to finished equal to True when the sensor is back to its normal state.

It is experimented by sending out SMS notifications to the users of a project
if an event trigger is triggered. This is achieved by using a Norwegian supplier
of SMS services called Sveve. SMS notifications can be implemented in the
front-end by sending an SMS with Sveve’s API when a notification for an event
is received in the front-end. The code for sending an SMS is shown in Figure
5.23.

1 const sendSMS = (phoneNumber: string , message: string) => {

2 fetch(

3 "https :// sveve.no/SMS/SendMessage?user=username&passwd=

password&to=" +

4 phoneNumber +

5 "&msg=" +

6 message +

7 "&from=CBMS"

8);

9 };

Code lising 5.23: Experimenting with SMS notifications to warn users about
potential threats. username and password are credentials needed to use Sveve’s
API.

5.4.5 Real-Time Predictions

A simple predictive maintenance prototype was developed in Horn and Kjernlie
2019 to predict sensor values to tell if something is wrong with a sensor or a
component. The prototype was implemented specifically for the torsion bar
suspension rig in React with JavaScript and class components. The previously
developed prototype is modified and implemented as a more generic system in

5.4. MONITORING 69

this thesis. The machine learning logic is still implemented with TensorFlowJS ;
an open-source library that makes it possible to define, train and run machine
learning models directly in the browser.

A more generic machine learning system is achieved by applying two significant
changes to the prototype. The first change is a new configuration process, where
the user can upload a dataset and connect the corresponding datasource directly
to the model. The dataset used for training must be from the same datasource,
as it relies on the sensors in the dataset. The second modification is that the
model and the weights of the trained machine learning model are stored in
the back-end instead of the user’s browser. This makes it possible to access a
machine learning model from different computers. It is achieved by creating API
endpoints in the back-end, following TensorFlowJS’s API requirements. When a
user wants to save or load a machine model, it first requests a JSON file named
model.json, a file which contains the topology and reference to the weights of
the model. Then it requests a binary file named model.weights.bin, which
carries the weights of the model. The names of these files are always the same,
and one must implement the API endpoints in the described way to save and
load models. The code for the API endpoints are shown in Listing 5.24.

1 @routes.post('/machinelearning /{ project_id }/{ tile}/model ')
2 # Save trained machine learning model and weigths to project

3 @routes.get('/machinelearning /{ project_id }/{ tile}/model.json')
4 # Load and return the trained machine learning model

5 @routes.get('/machinelearning /{ project_id }/{ tile}/model.weights.bin
')

6 # Load and return the trained weights

Code lising 5.24: API endpoints for storing and loading trained machine learning
models and weights

Except for these changes, most of the machine learning logic remains the
same. After a user uploads a dataset, the user is prompted to choose the sensor
he or she wants to predict and which sensors should be used for the prediction.
To choose the input sensors for the prediction, the user should always inspect
the dataset before selecting the input parameters for the prediction. The data is
pre-processed the same way as it is in Horn and Kjernlie (ibid.). The model is
trained with the input parameters in Table B.3 in Appendix B.2. The trained
model and its corresponding weights are then saved to the back-end. Trained
models are used to predict sensor values in real-time in the client. Every time
a new data point arrives from the selected datasource set in the configuration
process, the model predicts the desired output based on the selected input
parameters. As the model is pre-trained, it is not necessary to do any heavy

70 CHAPTER 5. IMPLEMENTATION

calculations for predicting the sensor output in the front-end. The predicted
output is then displayed with the actual output in a plot.

5.5 Post-Processing and Analytics

The platform implements functionality for creating FFTs, spectrograms and
statistics. It is also possible to view and download historical data, as well as
generating reports of the current tiles in the dashboard or by uploading a dataset.

5.5.1 Fast Fourier Transform

FFTs are generated in the back-end and plotted in the client using Plotly as
a graph with frequencies on the X-axis and intensity on the Y-axis. FFTs are
generated in the back-end from historical data from a data file or a datasource.
The SciPy library is used to create an FFT, and numpy is used to extract the
frequencies of the signal. Listing 5.25 shows a function that takes data and
sample spacing as inputs and makes an FFT and corresponding frequencies
which it returns. The data required for this function comes from historical
datasource data or a data file depending on the FFT configuration decided by
the user.

1 def get_fft(data , sample_spacing):

2 fft_values = scipy.fftpack.fft(data)

3 frequencies = np.fft.fftfreq(data.shape [-1])

4 intensities = 2.0 / data.shape[-1] * np.abs(fft_values [:data.

shape[-1] // 2])

5 return [[val for val in x], [float(val) for val in fft_values]]

Code lising 5.25: The function get fft creates and returns an FFT of data

with sample spacing sample spacing using the numpy and scipy libraries.

5.5.2 Spectrogram

After configuration in the front-end, spectrograms are generated in the back-end
using historical data from a datasource or contents of a data file as in the
FFT. Listing 5.26 shows a function that creates spectrogram data, either from
historical data from a datasource or a data file.

5.5. POST-PROCESSING AND ANALYTICS 71

1 def make_spectrogram(frequencies , duration):

2 sampling_frequency = len(frequencies) / duration

3 fig , ax = plot.subplots (1)

4 power_spectrum , frequencies_found , time , image_axis = ax.

specgram ([f for f in frequencies], Fs=sampling_frequency)

5 return [

6 [[x for x in row] for row in power_spectrum],

7 [freq for freq in frequencies_found],

8 [t for t in time]

9]

Code lising 5.26: The function make spectrogram takes in data frequencies

and duration duration, and creates a spectrogram using the matplotlib library.

The spectrogram data is generated in the back-end. The front-end receives
the data from the back-end and plots the spectrogram using Plotly’s heatmap,
as seen in Listing 5.27. The z values are the color scale values, while the x and y
are the axis values of the spectrogram.

1 const plotData = [

2 {

3 x: jsonResponse [2],

4 y: jsonResponse [1],

5 z: jsonResponse [0],

6 type: "heatmap",

7 colorscale: "YlGnBu"

8 }

9];

Code lising 5.27: Plotting a spectrogram in the front-end using Plotly’s ”heatmap”
type

5.5.3 Statistics

Statistics are visualized in the front-end either as a table with statistical informa-
tion or a histogram that shows the data distribution. The histogram is created
using Plotly’s histogram, shown in Listing B.5 in Appendix B.2. Listing B.6,
also in Appendix B.2, illustrates the generation of the statistical information
shown in a table. The information is generated using the JavaScript library
stats-lite, but can also be generated without an external library. The code in
both listings generates histograms and tables from a data file, but the same logic
is generated from a data source’s historical data. The data is provided from a
call to the back-end.

72 CHAPTER 5. IMPLEMENTATION

5.5.4 Historical Data

If one does not use real-time data, historical data from the datasources or data
files can be used. If data from datasources is selected, the back-end retrieves
a time series stored by Kafka. The result is the requested time series, which is
used to generate the selected feature in the front or back-end. Alternatively, a
data set can be uploaded, as seen in Listing B.4 in Appendix B.2. The function
uploads the file and sends it to the back-end in a post request. Listing B.7 in
Appendix B.2 shows the function that receives the request and saves it to the
file system. When the tiles using the file is rendered in the front-end, the file is
opened, and the data is used to generate the desired feature.

The data file must contain a UNIX timestamp in milliseconds as the first
column and sensor data in the following column(s). The columns should contain
a header in the first row with the name of the sensor or ”Timestamp” for the
first column. Figure 5.5 shows examples of correct data format of CSV and
XLSX files respectively.

(a) Format of a CSV file (b) Format of an excel file

Figure 5.5: Expected format of CSV files and XLSX respectively

5.5.5 Downloading Data

If a tile’s menu includes the header ”Download,” the user can download the
content of the tile as a CSV or an XLSX file. The format of the downloaded
data is the same as the required format for file uploads described in the previous
section. This functionality is implemented using the xlsx and file-saver libraries.
First, the selected data is converted to XLSX or CSV format using XLSX, and
then the converted data is downloaded with file-saver, as seen in Listing 5.28.

5.5. POST-PROCESSING AND ANALYTICS 73

1 const exportToCSV = (csvData: any , fileName: string , type: any) =>

{

2 const ws = XLSX.utils.json_to_sheet(csvData);

3 const wb = { Sheets: { data: ws }, SheetNames: ["data"] };

4 const excelBuffer = XLSX.write(wb , {

5 bookType: type ,

6 type: "array"

7 });

8 const data = new Blob([excelBuffer], { type: type });

9 FileSaver.saveAs(data , fileName);

10 };

Code lising 5.28: Excerpt of the code that converts csvData to an XLSX or
CSV workbook and downloads the converted data

5.5.6 Report Generator

Reports are generated as PDFs directly in the front-end through three steps;
convert the DOM into an SVG, convert the SVG into a PNG, then convert the
PNG into a PDF. This is necessary to save screenshots of the right elements.
HTML2Canvas is a library that takes screenshots of elements directly on the
user’s browser into an SVG format. The screenshot may not be 100% accurate to
what the user sees, as it is not an actual screenshot, but it creates a screenshot
based on all the available information in the code. The SVG is then converted
into a PNG with JavaScript. Converting the PNG to a PDF is achieved with an
external library called jsPDF. Listing 5.29 shows the described process.

1 const pdf = new jsPDF();

2 /* ... code for adding a front page ... */

3 for tile in tiles {

4 // if tile is a valid plot , do the following:

5 const element = document.querySelector(tile);

6 html2canvas(element).then((canvas) => {

7 const elementToImage = canvas.toDtaURL("image/png");

8 /* calculate image height and width */

9 pdf.addImage(elementToImage , "PNG", xPosition , yPosition ,

imageWidth , imageHeight);

10 })

11 }

12 pdf.save("report_name.pdf")

Code lising 5.29: Creating a report from a dashboard using the html2canvas and
jspdf libraries

74 CHAPTER 5. IMPLEMENTATION

5.5.7 Inspect dataset

The user can upload a dataset in CSV format with the FileUploader component.
The back-end receives the CSV file and uses Pandas Profiling to generate HTML
profiling reports from the CSV file. The library creates a detailed interactive
HTML report and returns it to the front-end. The report is visualized using an
iframe tag in the front-end. Inspecting a dataset can be used for selecting the
best input values for real-time predictions.

Chapter 6

Results

This section covers the results of the thesis, starting with the graphical user
interface (GUI) of the front-end developed during the spring of 2020 and statistics
from usability testing. Latency and availability statistics follow before the
evaluation of analytics functionality is presented.

6.1 User Interface

The client consists of several routes and their respective sub-routes. The following
sections present these routes, their respective GUIs, and how they can be used.

6.1.1 Landing Page

When the application loads, one is directed to the landing page as shown in
Figure 6.1. This page sets the context for the application and the background,
along with features the application provides. A video and an image slider show
use cases for the system. The button at the bottom of the landing page leads to
the sign-in page if the user is not logged in, or else the user is navigated to the
user’s home page. The process for signing in and signing up is shown in Figure
6.2.

75

76 CHAPTER 6. RESULTS

Figure 6.1: GUI of the landing page of the platform

6.1. USER INTERFACE 77

6.1.2 Projects Page

The projects page is the home page if the user is logged in. This page lists the
projects the user has access to, along with information about the projects. The
user can create a new project or navigate to an existing one by clicking on it.

6.1.3 New Project Page

The user can configure a project in the new project route. After selecting a name
for the project, datasources and models can be configured. However, model and
datasource configuration is also possible from an existing project. The initial
stage of configuring a project is shown in Figure 6.4. If the user does not know
the IP address of a datasource sending JSON data to the platform, it can be
viewed as shown in Figure 6.5. Figure 6.6 and 6.7 show that the user can connect
to new or existing datasources or upload different types of models and.

(a) Sign up (b) Sign in

Figure 6.2: How to (a) create an account and (b) log into the system with an
existing account

78 CHAPTER 6. RESULTS

Figure 6.3: The projects route lists and displays information about existing
projects.

Figure 6.4: Initial stage of configuring a new project.

6.1. USER INTERFACE 79

Figure 6.5: Viewing available datasources. A datasource with 77.18.56.117 as
its IP address sends sensor data with seven available sensors.

80 CHAPTER 6. RESULTS

Figure 6.6: Creating a new datasource during project configuration. The user
has selected three sensors from the seven available sensors, where loggingTime is
used as a timestmap value. The sensors with a red border are the remaining
available sensors and the sensors with a blue border at the sensors the user wants
to use.

6.1. USER INTERFACE 81

Figure 6.7: Uploading a model for a new project. The user uploads a FMU or
FMM file and the files for 3D visualizations are automatically generated.

6.1.4 Project Page

The project page is the main page of the platform. This is where the digital
twin is visualized, and the monitoring and analyses are executed.

Navigation bar

Figure 6.8 shows the navigation bar. The name of the project and information
about the user is in the top left and right corners, respectively. More user
information is displayed by clicking on the user icon, showed in Figure 6.9a. In
the lower row of the navigation bar, the subsections of the projects are listed.
One can navigate between these four views; dashboards, notifications, models,
and configuration. One can invite other users to a project or initiate a group

82 CHAPTER 6. RESULTS

chat by clicking on the chat symbol to the far right. The chat view is shown in
Figure 6.9b.

Figure 6.8: The navigation bar in the project route displays the tabs dashboards,
notifications, models and datasources. The chat symbol to the right allows
the user to invite another user to collaborate in the project or chat with other
members of the project.

Figure 6.9: User settings displays the available information about a user (a).
Project settings make it possible to invite other users to a project for collaboration
(b).

Dashboard

The dashboard consists of a large canvas, empty at first. The user designs it
according to his or her needs by creating tiles with different content. It is possible
to add multiple dashboards if one wishes to physically separate the tiles. Figure
6.10 shows a sample dashboard called ”CBMS” with two tiles.

6.1. USER INTERFACE 83

Figure 6.10: A dashboard with two tiles. Below the navigation bar, one can
choose to add a new tile, generate a report, inspect a dataset or delete the
current dashboard.

84 CHAPTER 6. RESULTS

The monitoring tools are presented in Figure 6.11, configuration of and displaying
curve plots, maps and sensor value predictions. User guides that describe in
detail how to generate tiles are located in Appendix E.

(a) Configuring a curve plot (b) Curve plot

(c) Configuring a map (d) Map

(e) Configuring real-time predictions (f) Predictions plot

Figure 6.11: (a) Configuring and (b) displaying curve plots, (c) configuring and
(d) displaying maps and (e) configuring and (f) displaying prediction plot.

6.1. USER INTERFACE 85

The analytics tools are presented in Figure 6.12 for configuring and displaying
FFTs, configuring and displaying spectrograms, and displaying statistics as a
data distribution and a statistical summary.

(a) Configuration of FFT (b) FFT plot

(c) Configuration of spectrogram tile (d) Spectrogram plot

(e) Distribution of acceleration and load
values

(f) Statistical summary for sensors

Figure 6.12: (a) configuring and (b) displaying FFT, (c) configuring and (d)
displaying spectrogram, displaying statistics tools: (e) distribution and (f)
statistical summary of sensor data.

86 CHAPTER 6. RESULTS

The user can generate a report by clicking the generate report button on the
dashboard. The report saves the current tiles in the dashboard and downloads
them as a PDF. Figure 6.13 (a) and (b) shows an example of a report. It
is also possible to upload a CSV file and view detailed statistics about the
dataset. Figure 6.13 shows parts of the results for a dataset from the torsion
bar suspension rig, (c) statistical information and (d) correlation between the
variables. The inspection can be used to determine the sensors that should be
used for making predictions.

(a) Front page of a report (b) Plots in a report

(c) Descriptive statistics for the variables in
inspect dataset

(d) Correlation between the variables in in-
spect dataset

Figure 6.13: Users can (a) (b) download a report from a dashboard or inspect
a dataset and view (c) statistics about variables and (d) correlation between
variables.

6.1. USER INTERFACE 87

Notifications

Notifications keep track of the events in the system. The user registers boundaries
for sensor values as event triggers, which generate notifications when the limits
are exceeded. The notifications contain information about the event, and a plot
of the event can be displayed as shown in Figure 6.14. Figure 6.15 shows the
different notifications the user can receive.

Models

Models can be visualized in a dashboard tile, but there is a separate tab dedicated
to 3D visualization with more functionality. One can visualize the model with
different draw styles, including a surface with or without outlines or mesh, or as
points or lines. Visualizations of the torsion bar suspension rig displayed with
and without mesh are shown in Figure 6.16.

Two additional features are implemented for demonstration: adding a sensor
and visualizing the model with colors. These features are shown in Figure 6.16b
and 6.16c. A sensor can be added by clicking on the model after selecting to add
a new sensor. The sensor is automatically positioning itself based on the angle
of the surface. The color scheme shows the distances to a node in the model
from a global and local coordinate system.

Figure 6.14: The notification tab displays the notifications in the project. They
can be expanded to render a plot of the sensor values of the incident. The user
can choose to view data 5, 10, 30 or 60 seconds before and after the incident.

88 CHAPTER 6. RESULTS

(a) Sensor is not in normal state (b) Sensor is back in normal state

(c) SMS notification

Figure 6.15: The notification in the platform when a sensor is out of normal
state (a) and returned to normal (b). (c) shows an example for an SMS when a
sensor is out of normal state.

6.1. USER INTERFACE 89

(a) Model without mesh (b) Model with mesh

(c) Model with color visualization

Figure 6.16: Visualization of the torsion bar suspension rig (a) without mesh,
(b) with mesh, and (c) with color visualization. A sensor can be added as shown
in (b) and (c).

90 CHAPTER 6. RESULTS

Datasources

The last view in a project is the datasources page. Datasources are shown here,
and the user can see if they are created or started. They can be stopped and
deleted as well. More information appears by clicking on the source, e.g., the
sensor values it contains. This page allows the user to create a new datasource
or apply a filter to an existing source, shown in Figure 6.17.

6.1.5 Admin page

The administrator page makes it possible for administrators to manage users
and projects. The admin page is shown in Figure 6.18.

Figure 6.17: Datasources page showing existing datasources in the project

6.1. USER INTERFACE 91

Figure 6.18: Administrators can access the admin board to manage users and
projects.

92 CHAPTER 6. RESULTS

6.2 Usability

Table 6.2 shows the results from the questionnaires from the usability testing.
The first question about the background of the user is in Table 6.1. A more
detailed overview of the answers from the questionnaire is described in Appendix
D.

Mechanical Eng. Computer Science Other

Distribution 0% 75% 25%

Table 6.1: Background of the usability testers

ID Statement Avg. Score

1 I am familiar with the field of digital twins 2.75
2 The platform is easy to use 4.00
3 It is easy to navigate within the platform 4.00
4 The platform is fast and responsiv. 4.50
5 It is easy to get an overview of available features 3.75
6 I will likely return the platform in the future 3.25
7 I find the platform attractive 4.75
8 The platform has a clean and simple presentation 4.50

Average score of the questions related to usability 4.11

Table 6.2: Results from four participants answering the questionnaire after they
have tested the platform. Each question is answered with a linear scale from
1 to 5, where users select 1 if they strongly disagree with an assertion and 5 if
they strongly agree.

6.2.1 Documentation

README files have been created in each folder of the front-end repository that
describe the files in the folder and their respective functions. Links to video
user guides are provided in the README files. Figure 6.19 shows the main
README. Appendix E contains user guides describing how to use the client of
the platform. Appendix F is an installation guide on how to set up the project
for future development. Appendix G shows the Surge deployment process.

6.2. USABILITY 93

Figure 6.19: Main README for the front-end application.

94 CHAPTER 6. RESULTS

6.3 Latency

The latency is measured for curve plots and filters, the time it takes to receive a
notification, and the time it takes to predict a value with a machine learning
model.

6.3.1 Curve Plots and Filters

Figure 6.20 shows latency in four settings: (a) sending sensor data over Wi-Fi
and (b) 4G, (c) the effect of rendering multiple tiles using different datasources
and (d) the effect of applying a filter to a datasource. The red, pink and purple
lines represent the total delay, delay from the asset to the front-end and internal
front-end latency respectively. Table 6.3 lists average values obtained from the
latency assessment.

(a) Latency in signal over Wi-Fi (b) Latency in signal over 4G

(c) Effect of rendering multiple tiles on front-
end

(d) Effect of applying filter on back-end

Figure 6.20: Latency obtained over (a) Wi-Fi and (b) 4G of the SensorLog
application, (c) the effect of multiple tiles and (d) the effect of applying a
filter. Red, pink and purple lines represent total, asset to front-end and internal
front-end delay respectively.

6.3. LATENCY 95

Asset Until
client

Client Total Network Comment

SL 266 81 347 Wi-Fi
SL 537 75 612 4G
TBSR 1 676 74 1 750 Ethernet
SL 663 257 920 4G Multiple tiles
TBSR 1 785 210 1 995 Ethernet Multiple tiles
SL 923 73 998 Wi-Fi Filter, buffer size 1
SL 1 869 75 1 947 Wi-Fi Filter, buffer size 20

Table 6.3: Delay in milliseconds of rendering one asset using Wi-Fi, 4G and
ethernet, effect of rendering multiple tiles in front-end and filters using a buffer
of size 1 and 20 respectively. Sampling rate is 20Hz. SL is the SensorLog
application, and TBSR is the torsion bar suspension rig

6.3.2 Notifications

Figure 6.21 and Table 6.4 show the latency in the notifications. It takes on
average 43 milliseconds from a sensor value is registered in an asset until a
notification is created in the back-end. Almost 300ms later, a user is notified of
the event.

Figure 6.21: Delay from a sensor sends a value until the value is received in the
back-end and from the value arrives until a notification is registered in the client.

96 CHAPTER 6. RESULTS

Variable Value

Number of notifications 50
Asset to back-end 43ms
Back-end to front-end 297ms
Total delay 340ms

Table 6.4: Average total delay for 50 notifications is 340ms; 43ms from the
asset to the back-end and 297ms from back-end to the notification arrives in the
front-end.

6.3.3 Predictions

The time for predicting with a pre-trained model of one sensor based on one and
two input sensor are shown in Figure 6.22a and 6.22b. The plots are summarized
in Table 6.5.

(a) Predictions delay plot with one input (b) Prediction delay plot with two inputs

Figure 6.22: The time for making predictions when the model is trained with
one (a) and two (b) inputs on a single output.

Number of inputs Number of points Average delay

One input 200 15ms
Two inputs 200 17ms

Table 6.5: The average delay for a prediction with 200 samples for a model
trained on one and two inputs.

6.4. AVAILABILITY AND PERFORMANCE 97

6.4 Availability and Performance

The statistics for the performance and availability of the CBMS generated by
Checkly is shown in Table 6.6 and Figure 6.23.

(a) Response times for the back-end

(b) Response times for the front-end

Figure 6.23: Performance metrics for (a) the back-end and (b) the front-end.

24h ratio 7d ratio 30d ratio Avg. p95 p99

Server 99.653 99.900 99.923 177 153 380
Client 100.000 100.000 100.000 1100 1190 1230

Table 6.6: The ratios show availability in percentage for the indicated period.
Avg. is average response time for a request and p95 and p99 are the 95th and
99th percentiles. Response times are in milliseconds.

98 CHAPTER 6. RESULTS

6.5 Functionality Validation

The results from the validation process described in Section 3.5 are illustrated
in this section. Figure 6.24 shows (a) the FFT plot generated by the platform,
and (b) a plot of SAP’s FFT values. Table 6.7 shows the difference in frequency
step values. Figure 6.25 contains (a) the generated spectrogram along with (b)
the spectrogram plot provided by SAP.

(a) FFT generated from raw data

(b) Plot of SAP’s FFT data

Figure 6.24: FFT generated (a) in the platform and (b) by SAP.

6.5. FUNCTIONALITY VALIDATION 99

Variable Generated Value SAP Value

Frequency step 0.100039 0.100000

Table 6.7: Frequency step values obtained during the FFT generation in the
platform and by SAP.

(a) Spectrogram generated in the platform

(b) SAP’s spectrogram

Figure 6.25: Spectrogram plots generated (a) in the platform and (b) by SAP.

100 CHAPTER 6. RESULTS

Chapter 7

Discussion

This chapter discusses the implementation and assessment of each objective
defined for the thesis. The specific requirements are discussed, and the overall
fulfillment of each objective is evaluated. Aspects related to the objectives are
discussed, and suggestions for extensions and new research are listed.

7.1 User-friendly Client

The user experience of the CBMS is emphasized during development as the
previous front-end solution did not meet usability requirements, as explained
in Section 1.3. It is essential to hide unnecessary logic from the user while
keeping the platform configurable so the user can customize it to their needs.
Since the thesis is part of a long-term project, delivering a product that can
be extended in the future is a success criterion of this objective. This section
discusses the development of the front-end in terms of (1) meeting the defined
usability requirements and (2) future development.

Execution of usability testing is described and evaluated. Usability testing
could not be carried out according to the plan described in Section 3.1 due to
the effects of COVID-19. However, some testing is executed, resulting in the
statistics listed in Section 6.2. The results indicate that the requirements of the
objective are met.

101

102 CHAPTER 7. DISCUSSION

7.1.1 Usability

Requirement NFR03 is The platform should be intuitive and easy to interact
with. A user-friendly system should be easy to learn, efficient to use, reduce the
impact of errors, adapt to the user’s needs, and increase the user’s confidence
and satisfaction. This is not a trivial task, and the design checklist described in
3.1 is used to comply with NFR03.

Learning the Features of the Platform

Allocation of responsibilities, Data model, and Coordination model are leveraged
during development to implement a system that is easy to learn. Requirement
NFR04, Detailed documentation should be generated for the system in the form
of README files, instruction videos, and user guides manifests the importance
of a platform that is easy to learn.

The platform has a landing page, videos, and detailed user guides to help
users get started. Each project has a separate page with different tabs for
managing and configuring features, e.g., the datasources tab for controlling data
sources and processes and the models tab to visualize 3D models. The admin
page manages the platform while the sign-in page is dedicated to log-in and
registering a user. This is the separation and allocation of responsibilities, which
clarifies and simplifies the learning process for the user.

The implementation of the system in terms of data and coordination model
directly reflects how many and what kind of actions users have to perform to
achieve their tasks. Work is put into abstracting logic to remove unnecessary
configuration and execution of tasks by the user, for example by making it
possible to visualize a data source with a filter in one operation, instead of
multiple operations as required in the client developed in Børhaug and Sande
(2019). Another example is the automation of 3D file generation when a user
uploads an FMU file. Data abstractions and coordination within the client is
essential to make it easier to learn and use the CBMS.

The system gives feedback to users to tell if they are using the system
correctly. Input elements have a description or label to explain what the user
has to fill in. Error messages are displayed with toasters or banners to tell the
user if something is not correct. A user interface without feedback makes users
wonder if they are doing something wrong or if there is an error in the system,
which is essential for learning how to use the system.

7.1. USER-FRIENDLY CLIENT 103

Using the System Efficiently

Data model, Coordination model, Resource management, mapping among ar-
chitectural elements and binding time are used to enable efficient use of the
platform.

The efficiency of the system is related to the number of operations the user
has to perform to achieve a goal. Web storage persists non-sensitive information
of user preferences in the client. It keeps the data that is convenient for the user
to see if the browser refreshes or if he or she is re-visiting the client from the
same computer. This can, for instance, be the last tab the user visited, such as a
specific dashboard in the dashboards tab. Whenever a user returns to a project,
he or she is navigated directly to the tab last visited on the same computer.

The users trigger actions that use resources. Resource-consuming operations
can potentially block the entire system and create long response times for the
user. Configurations that take long, e.g. processing an FMU, are moved to a
separate process in the back-end to avoid blockage. Users can create a data
source or upload a model when creating a project or do it later, increasing the
platform’s flexibility, which directly impacts binding times. The user does not
need to know about the processes running on the client or server-side. The
machine learning training and predictions are both executed client side to reduce
the load on the server, but the user does not know where it is happening.

Minimizing the Impact of Errors

Choice of technologies, Data model, Coordination model, and Allocation of
Responsibilities and Resource Management are used to develop a system where
the impact of errors is minimal.

Technology choices decide if the functionality is to be built from scratch or
implemented using third-party libraries. External libraries are implemented as
described in Section B.1 to save implementation time and reduce errors. An
important reason for choosing an external library is that they are often less
error-prone if used in other projects.

The platform is designed to prevent errors from happening. It should not be
possible to click on buttons if not all the necessary fields are filled in, complying
with FR08: The user should get an error message if something goes wrong
and be told how they can fix the problem. If a user tries to create an account
with an invalid e-mail, an error message is shown instead of creating an invalid
user. Components are designed to set expectations of interactions to the desired
action. For example, in the Dashboards tab, the button for adding a new tile

104 CHAPTER 7. DISCUSSION

is highlighted in blue, while deleting a dashboard is in faded grey, steering the
user in the direction of the add tile-button and away from the delete dashboard-
button. Actions with irreversible consequences, such as deleting a dashboard or
a tile, requires the user to confirm that he or she wants to go through with the
action.

Real-time data arrives with high frequency and is handled in a separate
store. If this data is not handled efficiently, it can cause the browser to halt and
crash. Instead of updating the entire interface every time a data point arrives,
the store buffers the data and shares it with the rest of the application every
100 milliseconds. If a dashboard has any tiles using real-time data, only the
components listening to the data are re-rendered. The CBMS is optimized to
reduce CPU usage while it is run as a background task by preventing real-time
updates if it is not an active tab in the browser. Without this optimization, it
causes the browser to halt, as it would continue to re-render the application even
though it is not in use.

Adapting the System to User Needs

Mapping Among Architectural Elements abstracts location of the user’s data,
and the data model is designed to adapt to the user’s needs.

Mapping among the front-end, authentication service, storage units, and the
back-end abstracts the data’s location from the user. Communication between
the elements makes sure the system is always up to date with the user’s actions.
Stores in the front-end receive updated data from all the architectural elements
and distribute them to the components of the front-end that depend on it. The
web storage saves non-sensitive information of user preferences, as previously
mentioned. This information does not need to be stored on a remote server, as
multiple users can access the same project. A user should not be navigated to a
tab navigated to by another user. Hence, web storage creates a better experience
for the user.

Increasing the Confidence and Satisfaction of the User

Data and Coordination Model and Resource Management. Instant feedback and
consistent design increase the confidence and satisfaction of the user. Reusable
components such as buttons and text inputs appear throughout the platform to
make a consistent and professional impression. Preventing errors before they
occur is an important step in increasing the confidence of the user. This is
achieved by assisting and guiding the user, for example, by providing descriptive

7.1. USER-FRIENDLY CLIENT 105

labels for filling in input fields. Another example is when a user fills in the log-in
information when he or she is trying to register a user. If the user then switches
to the tab for registering a user, the already entered information is automatically
filled in the input fields for registering a user to increase the satisfaction for the
user. Communicating with progress bars and offering suggestions make their
actions more precise, which leads to fewer errors and higher confidence. All of
the elements described in this section provide a positive experience for the user
and impacts the satisfaction.

Results from Usability Testing

Due to the effects of COVID-19, usability testing could not be executed according
to the plan, as mentioned. In the end, a total of four tests are carried out using
the method described in Section 3.1. The results are shown in Table 6.2. The
tests are included and discussed to demonstrate how it would be done if it was
possible to follow through with the testing as desired, not to draw any conclusions
as four tests is far from sufficient for that purpose. Ideally, a minimum of 25
testers with adequate backgrounds is desirable. Most of the students have a
computer science background, and they have an average score of 2.75 for being
familiar with the field of digital twins. Hence, the participants are not in the
platform’s target audience, which influences their perception of the system.

The platform can be overwhelming for a user who is unfamiliar with the field
of digital twins. The platform still receives an average score of 4.00 (Q2) and
3.75 (Q5) for being easy to use and getting an overview of available features,
respectively. This indicates that users can learn how to use the system efficiently.
The platform receives a high score for being fast, responsive, and easy to navigate,
where it gets a rating of 4.5 (Q4) and 4.00 (Q3), respectively. This indicates
that the system helps the user to use the system efficiently and minimize the
impact of errors. Q3 and Q6 also suggest that the platform adapts to the user’s
needs by automating tasks to make the platform less complicated and confusing.
The platform receives a high score for being attractive and having a clean and
simple design, both questions Q7 and Q8 gets a score above 4.5.

The average score of 4.11 for all the questions meets the requirements of
being a user-friendly design according to the initial plan, where the requirement
is a score above 3.93. The score, therefore, suggests that the platform satisfies
the usability requirements of the user. The initial score of 3.93 is based on
having an audience that is familiar with the field of digital twins. As the average
participant is not in the platform’s target audience, question 6 is not relevant, as
there is a low likelihood that the user will return to the platform. If the score of

106 CHAPTER 7. DISCUSSION

this question is not included in the calculation of the average score, it increases
to 4.25. This is a strong indication that the platform meets the requirements
related to the usability of the platform.

7.1.2 Developing in React

A single-page React application is created to comply with NFR02: The front-end
should be developed using React. It complies with the browsers required in
NFR01: The platform should be available in Google Chrome, Microsoft Edge,
Mozilla Firefox, and Safari. Libraries should be selected to comply with NFR01,
and contribute to a user-friendly design. The application should also be easy to
further develop.

External libraries

The first decision to make when developing new features of an application is
whether to use external libraries or build them from scratch. An advantage is
that it simplifies the implementation process. Still, one suffers a loss of flexibility
by giving up control, and maintenance could get complicated if the library
provider stops maintaining it.

One of the significant advantages of using React is its large active community,
offering a wide range of opportunities in terms of libraries and resources available.
One can usually find a library that simplifies the implementation no matter
what features are needed, but one must be deliberate in the selection process.
The library should be well-documented, have many downloads, and the library
developers should still be active. A well-documented library simplifies the
integration of the desired functionality as it is easy to find examples and use
cases. The probability of bugs is lower if it has many downloads, and the
developers of the library are still active. It is easier to get help on public forums
if problems occur. If a library is not open-source, one should consider if the
library is worth the money if there are other open-source options. Open-source
software is preferred since the goal of the CBMS is to be available to anyone.

The tradeoff between time-constraints, complexity, and ease of use for future
development is evaluated. The only proprietary software used in the system is
Firestore for the real-time database and Ceetron for 3D visualization of FEM
models. Ceetron is chosen as it is used in the earlier development of the CBMS
(Børhaug and Sande 2019). There are no available open-source libraries for
visualization of CAE models in the browser that currently meet the requirements
for the CBMS.

7.2. PERSONAL AND PERSISTING PROJECTS 107

TypeScript

An essential non-functional requirement for the CBMS is that it should be easy
to continue to develop the software in the future. It is decided to use React with
TypeScript, as TypeScript is more readable, and it is easier to understand the
processes in the application than JavaScript. JavaScript is simpler and faster to
develop, but Typescript is considered as a better option for a large scale project
developed through multiple stages due to the potential amount of work needed
to debug an error in an application with JavaScript for new developers. This is
one of the main reasons why the old client (ibid.) is abandoned.

7.2 Personal and Persisting Projects

An authentication system to enable user log-in and a database are implemented
to facilitate support for projects in the platform. The user-generated data in a
project is stored in the database. An assessment of completion of the objective
is performed successfully: the day after registering user accounts and configuring
projects, both the testers logged in to find their projects as they had been
configured the day before. Hence, the objective is fulfilled.

7.2.1 Authentication

To comply with requirement FR11: The user should be able to register a unique
account using their e-mail, an authentication service is necessary. As stated in
2.4.3, there are many external services available which simplifies the implementa-
tion. Firebase is selected due to integration with the database. Firebase is free to
use, and Google is responsible for the security when transmitting user credentials.
It is implemented through a service layer in the client, as described in Section
5.2.1. The service layer simplifies the process of changing the authentication
provider in the future if it is needed. Firebase Authentication guarantees a
secure connection, and hence there is no need to go through the back-end to
authenticate users. A request is therefore sent directly to the cloud provider
with the user’s credentials.

7.2.2 Database

The configuration of projects does not require the creation of users or the
implementation of a database. The system could provide the same functionality
in an ad-hoc format. Requirement FR12 is that The user should be able to

108 CHAPTER 7. DISCUSSION

configure projects by adding models and connect to datasources. It should be
possible to make a personal dashboard that is saved for later sessions. Storing
projects for a particular user over a longer time requires a database as web
storage does not suffice for storing and sharing project data for multiple users,
as explained in Section 2.4.4. Hence, a database is a prerequisite for compliance
with requirement FR13, It should be possible to share projects among multiple
users by sending invitations.

Two alternatives for a database are examined in this thesis; Firestore or
a local SQL database running on one of NTNU’s servers. Firestore offers a
flexible solution with a simple integration process for both client- and server-side
development. Access to the database from both the client and the server enables
fast prototyping. Functionality can first be implemented directly in the client,
then converted to Python, and moved to the back-end later. An SQL database
running locally on a server takes more time to implement as it has a more
complicated configuration process. A NoSQL database is preferable for the
development of the CBMS in this thesis. The data requirements of the project
change with fast, iterative prototyping, and a database with dynamic schemes
makes it easier to add data at a later stage. Firestore is selected because of its
flexibility and simple integration. As one gets closer to the production phase of
the project, the need for flexibility decreases since the data structure converges.
A relational database could replace Firestore as they provide a more powerful
query language. Like with the implementation of the authentication service, the
code for the database is implemented in a service layer, which simplifies the
process of changing the database in the future.

The only drawback encountered during the process of implementing the
Firestore database is deleting documents containing sub-collections. If one tries
to delete a document that includes collections, it is not adequately removed,
and might still be fetched in the client. Firestore provides one function for
deep deletions, which is only compatible with JavaScript. Direct communication
between the client and Firestore should be minimized, as it is easier to change
the database in the future if the logic related to the database is implemented
in the back-end, which is why the implementation of deleting projects is not
implemented in the front-end. The only option for proper deletion is a customized
implementation in the back-end, which can be complicated and costly in terms
of execution time. The CBMS does not require frequent delete operations of
large data structures, but future work should evaluate whether another database
implementation is preferable.

7.3. GENERIC CONFIGURATION SYSTEM 109

7.3 Generic Configuration System

The implementation of a generic configuration system allows the user to connect
to a data source and upload a model. A new asset is not made available for
assessment due to COVID-19 restrictions. Hence, the configuration of a new
digital twin and assessing the fulfillment of this objective is not possible following
the method described in 3.3. Thus, there is uncertainty about how the platform
performs with new assets. However, the system complies with the requirements
related to the objective of implementing a generic configuration system.

7.3.1 Datasources

Functional requirements FR01a and FR01b are The user should be able to connect
to streams of sensor data by providing IP address and The platform should accept
data streams in JSON and CSV formats. Compliance with the requirements
involved creating a configuration process for data sources in the client, and
modifying datasource configuration in the back-end: removing port number and
facilitating JSON object compatibility.

There are two reasons why the port number is no longer in use. The first
reason is that the operating system can automatically select a port, which is often
preferable as the operating system knows which ports are available. An effect of
only using the IP address is that there can be only one connection for each device.
It is not a loss of functionality as one should be able to collect and send all sensor
data from an asset as it is easier to handle fewer connections. After implementing
the video streaming feature through YouTube, it is a reasonable requirement
that all sensor data arrives in one signal. Furthermore, port numbers might be
challenging to configure from some applications. The SensorLog application used
during development does not allow the user to see or edit port numbers. One
would have to send data to an intermediate link that could forward the data
using a specified port number, which more complicated.

When it comes to expanding support of the data format of the streams, there
are several aspects to consider as there are advantages and disadvantages to
the different formats. An effect of accepting multiple formats is more complex
code for data handling in the back-end. The main advantage of transmitting the
data as an array of data points (CSV) is that it is compact, and uses the actual
sensor data. Handling this code on the server-side is simpler than JSON, as the
data usually arrives in one message. This is because the size of the CSV data
in bytes is assumed to be below the limit of the maximum transmission unit
(MTU) on the network. However, the user needs to know precisely how the data

110 CHAPTER 7. DISCUSSION

is sent and specify the structure. It is cumbersome to fill out this information
manually, and it might be challenging to find the configuration of the data.

Data sent as JSON objects is on a key-value format. The data points arrive
with descriptive labels, simplifying the configuration of the data source for the
user as the server automatically extracts the sensors and displays them to the
user. Hence, the user selects the sensors they are interested in and does not
need to know the details of the messages. However, there is an overhead of
sending the data on a key-value format. If the packet size is larger than the
MTU, it needs to be fragmented into multiple pieces. As the size of the message
increases, the probability of packet fragmentation increases, meaning that the
server must handle both packets arriving in non-chronological order and match
packet fragments to retrieve the entire message. The data is sent in a CSV
format when it is forwarded to the client, which restricts the issues mentioned
above to the transmission from the physical asset to the server.

7.3.2 Models

There is one requirement concerned with the configuration of models, namely
FR02: The user should be able to generate a 3D model by uploading an FMU
file. Functionality for uploading virtual assets is implemented to accept models
on FMU or FMM format. FMU is, as stated in Section 2.4.6, an instance of an
open-source standard for dynamic simulation of models.

The user can upload a model, and the back-end starts the generation process.
The server reads the file and generates JSON files for visualization, a resource-
intensive task. Initially, the back-end did not respond to the upload request
until the entire process was complete. The process can take minutes to perform,
and the back-end temporarily blocked the connection between the server and
other clients. The process is modified so that a response is sent to the user when
the file is received in the back-end, which enables the processing of the file to
run in a background process on the server. When the process has finished, a
notification is sent to the client through the front-end, informing the user that
their model has finished processing and can be visualized in the models tab.

7.4 Monitoring

The monitoring objective requires the implementation of tools that allow the
user to see the current state of their assets. The user should get updates in

7.4. MONITORING 111

real-time. The objective is evaluated according to the plan, and the results show
that it is fulfilled.

7.4.1 Monitoring Tools

Requirements FR03 and FR04 concern monitoring tools that can visualize the
state of the asset in different ways: The system should visualize real-time data
streams from physical assets and The system should visualize and update 3D
models in real-time. Curve plots, maps, and video streaming are implemented
to comply with these requirements. A Butterworth filter provides processing of
sensor values in real-time to remove noise from the signal per requirement FR10:
The user should be able to apply filters to datasources. Real-time predictions of
sensor values and event triggers notify the end-user of alarming sensor values
and deviation from expected behavior. Requirement FR09 is The system should
provide predictive maintenance functionality to avoid equipment failure.

Curve Plot

Curve plot exposes information about the state of the asset efficiently. Scatter
and line graphs are available. Plotly offers a selection of graph types and
configurations, and be used to add other plot types. Real-time data requires
efficient handling, and the curve plot component is only re-rendered when new
data arrives. Plotly has a function called scattergl, which is implemented to give
better performance when a large number of data points are involved.

Filter

Configuration of processors uses four HTTP requests from the client to the server
to create, configure and start a processor, which takes several seconds. The
process should only use one request that contains all necessary configuration
data as one usually wants to start a processor right away.

Maps

The current map implementation works well for the intended use. Possible
additions include plotting historical positioning data in a map or tracing the
position in a dynamic map. The two examples require similar code modifications
and are possible to add to the current solution. React leaflet and leaflet.js are
leveraged in the implementation, and provide a large number of components and
functionality.

112 CHAPTER 7. DISCUSSION

Video Streaming

Real-time video streaming supports inspections of physical twins from remote
locations. In Kjernlie and Wold (2019), implementing video streaming is classified
as ”won’t have” functionality as it would have required a lot of resources, both
in terms of implementation time and storage capacity. An alternative solution is
discovered and implemented through YouTube’s streaming functionality. The
user can set up a video stream through YouTube, which can be implemented
in the front-end solution without implementing or storing any data. YouTube
stores the live-stream for up to 12 hours, which makes it possible to rewind
to view previous events. There are three delay options; normal latency, low
latency, and ultra-low latency. Normal latency could be as high as 10 seconds,
whereas the ultra-low latency reduces to a couple of seconds. Ten seconds is
not acceptable as it is not within the threshold of ”real-time”; hence ultra-low
latency is preferable.

Models

Scripts from Ceetron facilitate model visualization in the front-end. Ceetron is
a commercial company that works with 3D visualization, and the files are not
in the Github repository due to NDA restrictions. An open-source solution is
desirable, so future work should research an alternative to the Ceetron scripts.

It is possible to add a sensor to the model and select a data source. In the
future, one should simulate stresses and strains in the entire object, and give
an estimate of the chosen position’s value by interpolation. This value can be
visualized in the sensor’s position. Stresses and strains, can be visualized with a
color scheme, as shown in Figure 6.16c. The color scheme implemented in this
project only uses dummy data for demonstration purposes.

An FMU processor is implemented in Jensen (2019) to update the state of
the models. It was implemented in the client during development, but had a
latency of several minutes. After discussions with the stakeholders, it was decided
that the server of the platform should be improved before these processors are
implemented due to the latency. Hence, visualizing displacements or stresses
and strains in real-time is removed from the scope of the thesis, as it is not
realistic to achieve real-time updates with the server’s properties. However, this
visualization is an essential part of digital twin application, and should be given
a high priority in future work with the platform.

7.4. MONITORING 113

Event Triggers

Event triggers notify the user if a sensor is outside a defined normal state in
terms of a minimum and maximum threshold. If the threshold is set to the
limits where the equipment is no longer working, it alerts users about failure to
trigger reactive (breakdown) maintenance. For preventive maintenance policies,
thresholds should be set to trigger when the system degrades. This prevents
sudden breakdowns. It is up to the user to select a maintenance policy, and the
event triggers should be configured accordingly.

The event triggers are implemented as processors in the back-end, but send
notifications to the front-end. If the user is not actively using the system, he
or she is not informed about the event before they log in. However, one can
easily extend to notify users through other mediums, e.g., text messages, and
e-mails. A text message notification prototype is implemented in the front-end,
as shown in Listing 5.23. The user is notified with a text message from ”CBMS”,
as shown in Figure 6.15c. The notification is only sent if the user is in the
client, as the SMS is sent when a notification is received in the client. This
can be implemented in the back-end in the event trigger processor or as cloud
functions in Firebase. Cloud functions is a serverless framework that makes it
possible to automatically run back-end code in Firebase in response to events
in the Firestore database. When Firestore updates the database with a new
notification, an event can be triggered to run the same code as in Listing 5.23.
This solves the problem, but it requires knowledge about cloud functions. The
most logical way is to implement it in a processor. However, this is a demanding
task as processors do not handle asynchronous calls well.

An extension of event triggers is to implement composed event triggers,
creating notifications if multiple members in a set of sensors have alarming
values. One can also make event triggers based on location by defining a
geographical area of operation. If the asset moves outside the area, the user
can be notified. This is useful to control the position of a moving asset, e.g. an
autonomous car or a research vessel.

Predictions

Predictions make it possible to predict if there is something wrong with the
system. The current and predicted future state of the system can be used to
make decisions, for example, if a sensor or component is malfunctioning and
needs to be changed or fixed, or the load applied reduced. When these events
occur, the user can be notified.

114 CHAPTER 7. DISCUSSION

Predictions are implemented directly in the browser. The average prediction
time with a single input value is 15ms, which increases to 17ms with two inputs
as shown in Section 6.3.3. The predictions are therefore made in real-time.
Real-time predictions are useful to identify a faulty or malfunctioning sensor
by triggering an alarm if the predicted value deviates from the actual value
with a certain threshold. Figure 6.11f shows differences between actual and
predicted values in the three last peaks. In this example, the model is trained on
a dataset from the torsion bar suspension rig, where the load is predicted based
on an accelerometer value. Applying unexpected external forces such as a person
putting weight on top of the torsion bar suspension rig results in a change in
load, but the acceleration is not the same as it is during normal operations with
the same load. The input parameters for the prediction do not change the same
way as the output, which shows a clear deviation between predicted and actual
values as shown in the figure.

The information from the predictions is useful to determine if there is some-
thing wrong with the system, such as the unexpected load, but this is still not
a predictive system. A predictive system should alert the user if something is
going to happen in the future; for example, if a sensor has a load of 400 N over
two minutes, it tends to break down. These predictions can be used to prevent
failure. For the torsion bar suspension rig, the model is only trained on a dataset
made during normal operations. There is no data available for system failure
events, so sensor or component failure cannot be predicted. Triggering alarms
based on certain thresholds may trigger false alarms, as there might not be
anything wrong with the system. Still, it can give a good indication if there is
something that needs to be inspected more closely. Requirement FR09 is covered
by the event trigger functionality. However, the predictions implementation is a
solid foundation for advanced predictive maintenance in future iterations.

The training of the machine learning model is implemented in the front-end.
Training in the browser is slower than a server solution, but this is not a problem
if the RAM is able to allocate resources to handle the data. The assets integrated
with the CBMS, such as the torsion bar suspension rig, are characterized by
having small configuration spaces, which makes it possible to train an accurate
model with a small dataset. TensorFlowJS is a JavaScript implementation of
the TensorFlow library, a machine learning library compatible with multiple
languages, such as Python. TensorFlowJS is a vast leap in bringing artificial
intelligence capabilities directly to the browser, making it possible to make real-
time predictions. TensorFlowJS is used due to ease of implementation because
of experience and limited server capabilities mentioned in 4.3.3. The server has
a limited number of CPUs, which might cause problems if multiple users want to

7.4. MONITORING 115

train a model in the back-end at the same time. Doing these calculations in the
browser helps to reduce the load on the server, as everything related to machine
learning happens client-side. Training of models and real-time predictions should
at a later stage happen on the server instead of the client. TensorFlow’s tools
and libraries in Python are more flexible and offer higher performance than
TensorFlowJS. It is relatively easy to convert TensorFlowJS code from the
front-end to Python code in the back-end, as both libraries are based on the
same building blocks. Existing pre-trained models from TensorFlowJS can also
be converted into a python compatible formats. Hence, models trained in the
front-end can migrate to the back-end, which is essential to avoid data loss and
corruption.

The model only predicts when it receives data, requiring an open browser at
all times. It is a limitation, as it should be possible for a user to return to the
platform and view historical events and alerts. Moving real-time predictions to
the back-end makes it possible to continuously predict in the background and
notify users if something appears to be wrong. A processor on the blueprint
format can run predictions on incoming data the same way a filter or another
processor works. If predicted values deviate too much from real-time values, the
user should receive a notification.

7.4.2 Latency

Low delay is necessary to facilitate real-time updates of the monitoring tools,
manifested in requirement NFR05: The real-time data should have a latency of
at most two seconds. Ideally, data should appear instantaneously in the client
for visualization. Several factors create delay: transmission of the sensor data
from the physical assets to the client via the back-end, processing time in the
back-end, and the characteristics of the system’s hardware.

Transmission

Since the data sources transmit real-time data from the physical assets to the
client via server, UDP is preferable over TCP due to high throughput. In a
real-time monitoring application, it is vital to reduce the delay as much as
possible. Packet loss is a small sacrifice to make to achieve minimal delay. UDP
communication is already in place in the previous version of the platform, so no
changes are required.

The server parses the data and forwards it to the front-end in a WebSocket
connection using Kafka for message distribution. UDP and WebSocket aim at

116 CHAPTER 7. DISCUSSION

transmitting data with minimal delay and optimal throughput, as stated in
Section 2.4.5, making them preferable in this setting compared to the alternatives.
The sensor data must go through the server for several reasons: It must be
processed, be available to all the users, and be stored for analytics. Web
applications cannot communicate through UDP, which means that physical
assets have to transmit sensor data using a WebSocket, which might not be
supported. The SensorLog app only streams data using UDP or TCP. Filtered
sensors have an additional delay due to having to go through the extra filtering
step in the back-end.

Notifications from event triggers arrive in the front-end directly from Firestore.
Firestore is suitable for this purpose, as it is simple to implement and keeps the
data in sync across clients with real-time listeners. Listeners for notifying users
if assets behave abnormally are implemented in the front-end, but can be moved
to the back-end. Notifications can be transmitted in the existing WebSocket
connection directly from the event trigger processor. This reduces the delay and
eliminates the need for listening to notifications from event triggers in Firestore.
However, Firestore must still be implemented in the front-end to receive real-time
notifications such as invites to other projects.

Latency Results

The overall results show that the system has a total delay of less than the
required two seconds. The delay is divided into two intervals: delay from the
data is sent from the physical asset until it arrives in the front-end, and the
delay in the front-end for receiving, processing, and visualizing the data. The
latency is measured for curve plots and filters, but the results are similar for
maps as the data is not processed in the front-end.

The internal delay is 75.6 ms on average for one asset, and the deviation for
different assets is small, as Table 6.3 shows. This is expected since all data that
arrives in the front-end is handled the same way. Since the tiles in a dashboard
do not render simultaneously, there is an increase of 157.9 ms for the tiles that
must wait when there are multiple tiles from distinct data sources. Figure 6.20c
shows the increase in internal delay for the SensorLog application.

Inaccuracy in synchronization, back-end processing, and transmission time
between the physical assets and the server, and the server and client represent
additional delay. All the components are synchronized before initiation, but it is
unlikely that all the components are in perfect synchronization. This can both
add and reduce delays. Figure 6.20 (a) and (b) show delay from the SensorLog
application sent over Wi-Fi and 4G respectively. Wi-Fi is approximately twice

7.5. POST-PROCESSING AND ANALYTICS 117

as fast, but the signal is more stable over 4G. Stability and speed depends on
the individual connections, and can vary. Figure C.1 in Appendix C shows
delay from the torsion bar suspension rig sent over an ethernet connection on
the NTNU network. The delay from the asset to the front-end is significantly
higher than the delay from the two others. The large delay is attributed to
the synchronization of the DAQ software that transmits the data to the server.
Visual inspection by jacking the rig while watching the client with a timer showed
a delay of less than one second. Hence, the delay is not representative. Figure
6.20d shows the performance of a filtered sensor from the torsion bar suspension
rig with a buffer size of 20. The additional delay of approximately 1.5 s compared
to the delay of the unfiltered data is due to the additional processing in the
back-end.

Figure 6.21 shows the delay in the signal from the asset to the back-end and
from the back-end until a notification arrives in the front-end. There is a total
delay of 340 ms, as Table 6.4 shows. The largest delay is between the server and
client, which is not surprising as it is transmitted through Firestore. 340 ms is
within the requirements for notifications.

7.5 Post-Processing and Analytics

Performance of post-processing and analyses require datasets and functionality
applicable to the data. It is concluded that the objective is completed as the
assessment proved that the implemented feature produces correct results from
unknown data.

7.5.1 Datasets

Requirements FR05 and FR07 state that The user should be able to visualize
historical data and The user should be able to upload files in CSV or XLSX
format. To comply with these, the storage of historical data and data files is
necessary.

Sensor Data Storage

Sensor data can be stored in Kafka for an unlimited time but requires a large
storage space. Kafka’s default retention time is seven days, but it is changed to
three days during development to save storage space. The sensor data is stored
in the original resolution, e.g., 100 records per second if an asset samples sensor

118 CHAPTER 7. DISCUSSION

data with a 100 Hz frequency, which quickly fills up the current space of the
server. Fetching historical data from sensors is not optimal due to inadequate
querying tools and it blocks the entire platform because of concurrency issues in
the same way as described in Section 7.3.2.

One should organize data storage according to how crucial the data is and
how frequently it is accessed. Frequently accessed data should be located in hot
storage, while other data should be in cold storage. Hot storage is more resource-
intensive, as data retrieval and response times are much higher than cold storage
services. Recent data should be stored in high, possibly original, resolution in hot
storage for minimum latency access. The cold storage should comprise a more
extended time series with a lower sample rate, as cold storage services generally
support fewer inserts per second. Changing the storage model of the sensor data
is not within the scope of the thesis and is thus not implemented. However,
future work with the project should consider investigating a new storage model,
as it would solve the performance problem of fetching records.

Server File System

Files used for analytics are stored in the file system on the server. One could
first perform the analysis or transformation and store the result, but saving the
original file enables use in other analyses. The drawback of this solution is that
the analysis executes every time the tile using the file is rendered, slowing down
performance slightly. However, it is considered more efficient due to the limited
storage space, and the cost of storing each analysis result would have a larger
impact.

7.5.2 Analytics Functionality

According to FR06, The user should be able to post-process data, e.g., by comput-
ing FFTs. Generation of FFTs and spectrograms is implemented to comply with
this requirement. Section 6.5 illustrates the results obtained from the evaluation
process described in Section 3.5.

Fast Fourier Transform

The validation process resulted in an almost identical FFT plot. Intensity values
are similar; however, due to inaccuracy in sample spacing (not exactly 0.0039),
there is a slight difference in the step value for the frequency. Still, it is only
0.04% larger than SAP’s frequency step value, which is an acceptable difference.

7.6. OTHER ASPECTS 119

A change that mitigates this imperfection is to use the timestamps from the data
to calculate sample spacing to obtain more accurate values. The change can be
quite easily implemented both for FFTs built on data sources and file data.

It can be challenging to interpret the result of an FFT. Noise from the
signal is visible, and it is not always easy to separate it in the final FFT. The
Welch method reduces some of this noise. There is no better implementation,
as it depends on the use case. The industry usually applies the Welch method,
whereas FFTs can be used in scientific environments as the end-user has more
knowledge of signal analysis, and knows how to interpret the transformation.

Spectrogram

The spectrogram generated with data from SAP in the platform has the same
axis values as SAP’s spectrogram, and it is clear that the two spectrograms
illustrate the same trend: highest values at about 75 Hz and smaller peaks
around 50 Hz and 100 Hz. However, there are two substantial differences; the
resolution of the axes and the values of the color plot.

One must decide whether one wants a high resolution of time slices or
frequency values in the spectrogram. When the resolution of one axis increases,
the other decreases. The main advantage of the high resolution of the time axis
is accuracy in time of change of frequency. The exact rates before and after are
not possible to deduct from this plot, only frequency intervals. Spectrograms
with high resolution in the frequency axis have opposite characteristics: one
knows the frequencies more accurately pre and post change but not the exact
time of change. The spectrograms generated using the platform and by SAP
have different configuration. The difference in values of the colors in the plot is a
consequence of different resolutions: large frequency intervals gives a larger value
interval than small. Hence, despite the visual differences, both the spectrograms
are correct.

The configuration of a spectrogram only requires a dataset and a sampling
frequency or duration. In the future, one should investigate whether the user
should get more options when configuring a spectrogram, e.g., setting the
resolution parameters. It is a consideration of flexibility versus code complexity.

7.6 Other Aspects

During development, aspects that are not directly related to the objectives are
encountered and investigated. For instance, the back-end was only available

120 CHAPTER 7. DISCUSSION

internally on the NTNU network before this thesis, which still limited prospective
users to those who have an NTNU account despite changing from Feide to
Firebase authentication. Additionally, parallelization is examined during the
implementation of the generic system due to the blockage produced by the
uploading process discussed in Section 7.3.

7.6.1 Accessibility and Deployability

The front-end is deployed and hosted through Surge, which makes it possible to
access the front-end solution from any network around the world, as it is globally
available. Even though the app is deployed, it needs a proper security review
before it is used for more than research purposes. Surge is selected due to a
simple hosting process, but it can also be hosted through other cloud services,
such as stackit or Firebase, in the future. There have not been any problems
related to hosting the platform through Surge, but it might be preferable to host
everything through NTNU’s cloud solutions. A meeting with stakeholders of
the project at the department of mechanical engineering and the IT department
should be conducted to discuss the best server and hosting solutions in the
future.

The back-end is not ready for deployment due to security reasons, as described
in the next section. Stackit makes it possible to host a VM internally on their
ntnu-internal network, or globally for everyone through the ntnu-global network.
As described in Section 4.4.4, Feide is not used as an authentication service, as
the stakeholders desire that the CBMS should be available to anyone. The VM
hosting the back-end solution is therefore connected to the ntnu-global network
and is now accessible to anyone. This also makes it possible for sensors and
physical assets to transmit data over a global network, without being logged
onto the NTNU network or through a VPN.

7.6.2 Scalability

The back-end runs on the VM described in Section 4.3.3, which has 60 gigabytes
of storage. Default applications occupy much of the space, which is why all
unnecessary applications and files are deleted from the server at the end of the
development phase to utilize the available storage space. The space available
is still under 20 gigabytes after the cleanup process. Storage of datastreams in
Kafka should not be a problem with a low number of users as data is only stored
for three days. It is preferable to store data streams for an unlimited time, as
discussed in Section 7.5.1, which requires either horizontal or vertical scaling of

7.6. OTHER ASPECTS 121

the server in the future. Another problem related to storage capabilities is that
users can upload files of any size. The FMU file for the torsion bar suspension
rig is over one gigabyte, which is a problem as only one FMU file can use more
than 5% of the total available space. The best solution is to increase the server’s
resources, but one can also set a limit on the maximum file size.

7.6.3 Concurrency

The back-end solution needs to handle multiple processes simultaneously. The
current server has four CPUs, making it possible to run four tasks in parallel.
The CBMS manages many users simultaneously, and each user should be able
to run multiple processes to filter and analyze data. It should also be possible
to upload and process files while other tasks are running. This is not possible
due to threading problems in the back-end. The Global Interpreter Lock (GIL)
in Python prevents two threads from executing simultaneously, limiting parallel
programming.

The multiprocessing package in Python side-steps the GIL by using sub-
processes instead of threads, making it possible to leverage multiple CPUs at the
same time, but the server still has limitations. It works well for processes that
communicate through the WebSocket, such as filtering and processing a real-time
data source. However, if a user sends an HTTP request that requires processing,
such as generating an FFT, no other HTTP requests are managed until the
result of the FFT is returned. When a user uploads a large FMU, it takes several
seconds to process it to generate the 3D visualization files, which causes an
availability issue. No one can access the CBMS while the server processes the
FMU, as it cannot handle any other requests.

The concurrency issue when uploading an FMU is solved with the process
explained in Figure 5.4. A separate process is started in parallel when the user
uploads a file. The user is told that he or she receives a notification when the
server has processed the model. When the back-end finishes the task, it updates
Firestore with the information. The client is listening to Firestore and receives a
notification. This is not an optimal solution, but it releases the blockage created
by the FMU upload. As the problem occurs every time a user makes a request
that demands processing in the back-end, it should be fixed with a solution that
works well in all scenarios. The problem can be solved by using scripts in a
language that handles parallel processing better, e.g., Julia or C to execute the
tasks.

It might be necessary to parallelize the back-end in the future. If a data
stream is running, it is impossible to fetch historical data from the same data

122 CHAPTER 7. DISCUSSION

stream without interrupting the current data stream. This is related to the
problem described above, but disappears if hot and cold storage of sensor data
is implemented. Then, the DBMS handles all retrieval of historical sensor data.
This would effectively side-step the GIL, as the back-end does not perform the
heavy work related to reading messages from the file system.

7.6.4 Performance and Availability

As described in Section 7.6.3, concurrency issues can result in availability issues.
To automatically monitor the availability and performance of the CBMS, a
monitoring service called Checkly is set up. This is not possible if the back-end
solution is hosted on an internal server, which was an incentive for transferring
to NTNU’s global network.

The results in Table 6.6 indicate that the client has 100% up-time and never
fails. This is because the client is hosted through Surge, and it will only fail
if Surge’s servers fail. The average response time is over one second, which is
the time it takes to load the landing page. The back-end server runs locally
on one of NTNU’s VMs. Checkly’s API endpoint check fails if the back-end
crashes or is down due to maintenance. The API check will also fail if e.g., a
concurrency issue occurs, and the back-end is not able to respond to requests.
The average response time for a request to the server is 177 ms, which is much
lower than the client. This is most likely due to the loading time of the web
page before returning the response or the location of Surge’s servers. Checkly
performs request from Germany and Sweden, and the stackit server is located
in Norway. However, the location of the front-end server is unknown. If the
client is hosted on a server further away, it can have a negative impact on the
response times. The availability of the back-end does not comply with NFR06:
The platform should have an up-time of at least 99.95%, as it has an availability
of 99.90% over the last seven days. An uptime of at least 99.95% is difficult
when the back-end is not in production, as it is continuously being developed.
The client fulfills the requirement, and it qualifies as a system of having high
availability, which is typically referred to as having an availability of 99.999% or
greater (Bass, Clements, and Kazman 2015). However, the client relies on the
back-end, so the real up-time for the client can be argued to be the same as the
back-end.

7.6. OTHER ASPECTS 123

7.6.5 Security

Security has not been addressed during the development of the front-end solution
or implementation of authentication and the database in Firebase, and should
be considered in future work. It is also out of scope of the back-end develop-
ment in Jensen (2019). It is crucial to keep users’ data safe and protect the
platform against unauthorized access. Additionally, GDPR increased businesses’
responsibility to keep their users’ personally identifiable information secure and
transparent to the user.

Data should be encrypted when being stored, and sensitive personal infor-
mation should not be used in the logic of the application, it should be replaced
with an id. E-mail addresses link user profiles to projects, which should be
replaced with unique identifiers so other users cannot access this information.
Users should consent to the use of data and be told how their data is used upon
registration, and they should be able to delete the data associated with their
user. All communication between the components of the platform should be
encrypted.

A globally accessible application comes at a risk, as anyone in the world can
access the platform. An unencrypted HTTP protocol transmits data between
the client and the server, making it possible for an attacker to intercept the
communication during transmission. It is therefore recommended to configure
the server to use HTTPS in the future for encrypting the connection between
the client and the server.

As described in Jensen (ibid.), the back-end does not check all the input
through the API. Modifications of the back-end for security reasons is not
within the scope of this thesis, but should be considered in the future. The
front-end checks that variables are correctly formatted before it sends requests.
The back-end solution is vulnerable to cross-site request forgery (CSRF), as
critical operations can be executed using GET methods, such as deleting projects,
processors, or user profiles. These methods can be performed by anyone to read,
modify, or delete information about a user, which violates the GDPR.

7.6.6 Digital Model, Shadow or Twin

There is no way of automatically sending instructions back to the assets as
required by the definition of a digital twin in Section 2.1. Hence, the platform
only supports digital shadows by definition. Providing two-way communication
between the physical and virtual models is out of the scope of this thesis, which
means that the platform strictly speaking cannot be more than a CBMS for

124 CHAPTER 7. DISCUSSION

Digital Shadows at this point. As stated, this thesis is part of an ongoing
long-term project conducted at the department of mechanical and industrial
engineering at NTNU, and it is not realistic to finish the project in the course of
this thesis. The objectives comprised developing other features of a platform
that can become a digital twin platform in the future. Two-way communication
should be in the scope of future work on the platform to accomplish the long-term
ambitions.

Chapter 8

Further Work

Chapter 7 proposes many measures that can and should be taken to improve
the CBMS. [Skrive litt at de krever forskjellig og vil gi forskjellig utslag og til
slutt at de vi mener er viktigst kommer her] The authors believe the following
aspects will have the most influence on the project:

1. Improve existing server solution to comply with non-functional require-
ments

2. Implement model simulation

3. Change storage of sensor data to hot and cold storage

4. Implement two-way communication

5. Extend Monitoring and Analytics functionality

6. Analyze security and ensure compliance with GDPR

Improve existing server solution to comply with non-functional re-
quirements The server that the back-end runs on is a VM on NTNU’s cloud
server with a limited amount of resources and computing power. Even for a
few users, these resources are too limited as the storage space fills up quickly.
The discussion suggested vertical scaling as a temporary solution by adding
more storage space and CPUs, and enabling automatic horizontal scaling as a
long-term improvement. These changes improve the performance and open up
for an increase in total simultaneous users.

125

126 CHAPTER 8. FURTHER WORK

Implement Model Simulation Simulation of 3D models is inevitable in
the CBMS, as it is one of the core elements of a digital twin application. It
is not implemented during development due to the poor performance of the
prototype. Hence, the previous server should be improved as stated in the
previous paragraph before model simulation can be implemented to give any
valuable insight to the end-user.

Change storage of sensor data to hot and cold storage At this stage, the
system only saves sensor data for three days due to storage capacity limitations in
the server. It is desirable to keep recent sensor data stored in original frequency
for a short period, and more extended time series in lower resolution, i.e., a hot
and cold storage solution. This way, the user obtains detailed information about
recent events while still being able to see historical data.

Implement two-way communication: As stated in the definition of a digital
twin, automatic data transfer both ways is required in a digital twin, meaning
that as of now, the platform only supports digital shadows. Another Master’s
thesis has investigated possible implementations of bi-directional communication
during the spring of 2020, whose findings might be compatible with this platform.

Extend monitoring and analytics functionality There are still several
features that should be implemented in the platform, such as more filters and
fatigue analysis, and the suggested extensions of existing functionality discussed
in Chapter 7. A complete predictive maintenance system should be implemented
to avoid failure.

Analyze security and ensure compliance with GDPR Security is out
of the scope of all theses related to the CBMS project so far. Security measures
to be taken should be investigated and implemented as the platform needs to be
GDPR compliant before deployment.

Chapter 9

Conclusion

A user-friendly web application has been built to interact with the existing
back-end solution of the Cloud-Based Monitoring System. An authentication
service and a database have been set up to facilitate personal and persisting
projects for the user. A generic configuration system has been implemented to
enable adaption to other digital twin applications. The system allows the user to
upload 3D models and connect to streams of sensor data from their physical twins
using open standard formats. The physical assets can be monitored in real-time
through a variety of features such as curve plots and maps. Notifications from
event triggers and real-time predictions lets the user know if sensors are deviating
from their expected values. The user can post-process and analyze historical
data to gain insight about the physical asset.

User guides and instruction videos are produced for end-user support. Imple-
mentation has been carried out keeping future developers in mind by providing
thorough documentation, including installation guides, README files, and a
detailed implementation chapter.

Functionality and requirements have been evaluated and discussed. Inter-
esting directions for future research have been presented. We conclude that
the thesis has contributed to the CBMS project by complying with the defined
objectives.

127

128 CHAPTER 9. CONCLUSION

Bibliography

9126-4, ISO/IEC TR (2004). Software engineering — Product quality — Part
4: Quality in use metrics. url: https://www.iso.org/obp/ui/#iso:std:
iso-iec:tr:9126:-4:ed-1:v1:en.

9241-11, ISO (2018). Ergonomic requirements for office work with visual display
terminals (VDTs) — Part 11 Guidance on usability. url: https://www.iso.
org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en.

Aiyegbusi, Olalekan Lee (2019). “Key methodological considerations for usability
testing of electronic patient-reported outcome (ePRO) systems”. In: Quality
of Life Research 29.2, pp. 325–333. doi: 10.1007/s11136-019-02329-z.

Alonso-Ŕıos, D. et al. (2009). “Usability: A Critical Analysis and a Taxonomy”.
In: International Journal of Human–Computer Interaction 26.1, pp. 53–74.
doi: 10.1080/10447310903025552.

Baldini, Ioana et al. (2017). “Serverless Computing: Current Trends and Open
Problems”. In: Research Advances in Cloud Computing, pp. 1–20. doi: 10.
1007/978-981-10-5026-8_1.

Barros, Anne (2019). Compendium in Data Driven Prognostic and Predictive
Maintance. TPK4450.

Bass, Len, Paul Clements, and Rick Kazman (2015). Software architecture in
practice. Addison-Wesley.

Batty, Michael (2018). “Digital twins”. In: Environment and Planning B: Urban
Analytics and City Science 45.5, pp. 817–820. doi: 10.1177/2399808318796416.

Belshe et al. (2015). “Hypertext Transfer Protocol Version 2 (HTTP/2)”. In:
doi: 10.17487/rfc77540.

Bevan, Nigel (1995a). “Measuring usability as quality of use”. In: Software
Quality Journal 4, pp. 115–130.

— (1995b). “Usability is Quality of Use”. In: Symbiosis of Human and Artifact.
Ed. by Yuichiro Anzai, Katsuhiko Ogawa, and Hirohiko Mori. Vol. 20. Ad-

129

https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://doi.org/10.1007/s11136-019-02329-z
https://doi.org/10.1080/10447310903025552
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1177/2399808318796416
https://doi.org/10.17487/rfc77540

130 BIBLIOGRAPHY

vances in Human Factors/Ergonomics. Elsevier, pp. 349–354. doi: https:
//doi.org/10.1016/S0921-2647(06)80241-8.

Bevan, Nigel, Jurek Kirakowski, and Jonathan Maissel (Jan. 1991). “What is
Usability?” In: Proceedings of the 4th International Conference on HCI.

Bhardwaj, S., L. Jain, and S. Jain (2015). “Cloud Computing: A Study of
Infrastructure As a Service (IaaS)”. In: International Journal of the Academic
Business World.

Birns, Julie H. et al. (2002). Getting the Whole Picture: Collecting Usability Data
Using Two Methods – Concurrent Think Aloud and Retrospective Probing.

Bishop, Matt (2005). Introduction to computer security. Addison-Wesley.
Blockwitz, T. et al. (2012). “Functional Mockup Interface 2.0: The Standard for

Tool independent Exchange of Simulation Models”. In: Proceedings of the
9th International MODELICA Conference, September 3-5, 2012, Munich,
Germany.

Børhaug, A. and O. H. S. Sande (2019). “Developing a Client for a Digital
Twin Cloud Platform”. MA thesis. Norwegian University of Science and
Technology.

Carvalho, Thyago P. et al. (2019). “A systematic literature review of machine
learning methods applied to predictive maintenance”. In: Computers &
Industrial Engineering 137. doi: 10.1016/j.cie.2019.106024.

Daylami, Nozar (2015). “The Origin and Construct of Cloud Computing”. In:
International Journal of the Academic Business World 9.2, pp. 39–43.

Foster, Ian, Carl Kesselman, and Steven Tuecke (2001). “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”. In: The International
Journal of High Performance Computing Applications 15.3, pp. 200–222. doi:
10.1177/109434200101500302.

Goyal, Sumit (2014). “Public vs Private vs Hybrid vs Community - Cloud
Computing: A Critical Review”. In: International Journal of Computer
Network and Information Security 6.3, pp. 20–29. doi: 10.5815/ijcnis.
2014.03.03.

Granevang, M. (2019a). “Backend”. In: Store norske leksikon p̊a snl.no.
— (2019b). “Frontend”. In: Store norske leksikon p̊a snl.no.
Grieves, M. (2014). “Digital twin: manufacturing excellence through virtual

factory replication”. In: White paper.
Haak, Maaike van den, Menno De Jong, and Peter Jan Schellens (2003). “Ret-

rospective vs. concurrent think-aloud protocols: Testing the usability of an
online library catalogue”. In: Behaviour & Information Technology 22.5,
pp. 339–351.

https://doi.org/https://doi.org/10.1016/S0921-2647(06)80241-8
https://doi.org/https://doi.org/10.1016/S0921-2647(06)80241-8
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1177/109434200101500302
https://doi.org/10.5815/ijcnis.2014.03.03
https://doi.org/10.5815/ijcnis.2014.03.03

BIBLIOGRAPHY 131

Horn, H. and E. Kjernlie (2019). “Predictive maintenance and monitoring using
Machine Learning”. Project in the course TPK4450: Data Driven Prognostics
and Predictive Maintenance.

Hornbæk, Kasper and Effie Lai-Chong Law (2007). “Meta-Analysis of Correla-
tions among Usability Measures”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’07. San Jose, California, USA:
Association for Computing Machinery, pp. 617–626. isbn: 9781595935939.
doi: 10.1145/1240624.1240722.

Hosch, W. (2015). “Client-server Architecture”. In: ENCYCLOPEDIA BRITAN-
NICA.

Jensen et al, S. N. (2018). “Cloud Software For Digital Twin Modeling And
Monitoring”. MA thesis. Norwegian University of Science and Technology.

Jensen, S. N. (2019). “Building an extensible prototype for a cloud based digital
twin platform”. MA thesis. Norwegian University of Science and Technology.

Johansen, C. (2019). “Digital Twin Of Knuckle Boom Crane”. MA thesis. Nor-
wegian University of Science and Technology.

Jokela, Timo et al. (Jan. 2003). “The standard of user-centered design and the
standard definition of usability: Analyzing ISO 13407 against ISO 9241-11”.
In: ACM International Conference Proceeding Series 46, pp. 53–60.

Kjernlie, E. and A. P. W. Wold (2019). “Evaluating the Cloud Based Monitoring
System for Further Development”. MA thesis. Norwegian University of Science
and Technology.

Kotsiantis, Sotiris B., Dimitris Kanellopoulos, and Panayiotis E. Pintelas (2007).
“Data Preprocessing for Supervised Leaning”. In: World Academy of Science,
Engineering and Technology, International Journal of Computer, Electrical,
Automation, Control and Information Engineering 1, pp. 4104–4109.

M. Grieves, J. Vickers (2016). “Digital Twin: Mitigating Unpredictable, Un-
desirable Emergent Behavior in Complex Systems (Excerpt)”. In: Trans-
Disciplinary Perspectives on System Complexity.

NSW, Digital (2019). NSW Digital Twin. digital.nsw. Retrieved on 30-05-2020.
Pimentel, V. and B. G. Nickerson (2012). “Communicating and Displaying Real-

Time Data with WebSocket”. In: IEEE Internet Computing 16.4, pp. 45–
53.

Rosen, Roland et al. (2015). “About The Importance of Autonomy and Digi-
tal Twins for the Future of Manufacturing”. In: IFAC-PapersOnLine 48.3,
pp. 567–572. doi: 10.1016/j.ifacol.2015.06.141.

Sandtveit, E. (2019). “Exploring Azure as cloud provider for digital twin moni-
toring”. MA thesis. Norwegian University of Science and Technology.

https://doi.org/10.1145/1240624.1240722
https://www.digital.nsw.gov.au/article/twinning-spatial-services-has-created-digital-twin-nsw
https://doi.org/10.1016/j.ifacol.2015.06.141

132 BIBLIOGRAPHY

Sauro, Jeff (2015). “SUPR-Q: a comprehensive measure of the quality of the
website user experience”. In: Journal of Usability Studies archive 10, pp. 68–
86.

Shimonski, R., M. Cross, and L. Hunter (2005). “Network+”. In: pp. 317–433.
User Datagram Protocol (1980). RFC 768. doi: 10.17487/RFC0768.
Wathan, Adam and Steve Schoger (2018). “Refactoring UI”. Only published

electronically on their web page.
Zhang, W., D. Yang, and H. Wang (2019). “Data-Driven Methods for Predictive

Maintenance of Industrial Equipment: A Survey”. In: IEEE Systems Journal
13.3, pp. 2213–2227.

Zhou, K., Taigang Liu, and Lifeng Zhou (2015). “Industry 4.0: Towards future in-
dustrial opportunities and challenges”. In: 2015 12th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147–2152.

Zimmermann, A., W. Eddy, and L. Eggert (2016). “Moving Outdated TCP
Extensions and TCP-Related Documents to Historic or Informational Status”.
In: doi: 10.17487/rfc7805.

https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/rfc7805

Appendix A

File System Structure

133

134 APPENDIX A. FILE SYSTEM STRUCTURE

files

Blueprints

Butterworth

init .py

Event trigger

init .py

Datasources

Rig

Fmus

testrig.fmu

Fmu models

testrig

Arm.json

Processors

e trigger 54543.json

fft acceleration.json

Projects

DemoProject

sensor dataset.csv

data log.xlsx

Figure A.1: Tree

Appendix B

Implementation

B.1 External libraries

135

136 APPENDIX B. IMPLEMENTATION

Library Purpose

ReactJS A JavaScript library for building user interfaces
TypeScript A typed superset of JavaScript that compiles to plain

JavaScript for easy debugging and documentation
Firebase Google Firestore for real-time database updates and

Firebase Authentication for authentication
Ceetron For advanced 3D visualization of CAE, CFD and

FEA
Zustand Bear necessities for global state management in React
styled-components Use the best bits of ES6 and CSS to style your apps

without stress
react-router-dom Declarative routing for React
react-beautiful-dnd Beautiful and accessible drag and drop for lists with

React
react-plotly An interactive graphing library
leaflet JavaScript library for interactive maps
react-leaflet JavaScript library for interactive maps
Sveve Simple SMS API
TensorFlowJS Machine learning for JavaScript developers
stats-lite A fairly light statistical package
xlsx Parser and writer for various spreadsheet formats
file-saver Saving files client-side
HTML2Canvas JavaScript HTML renderer
jsPDF PDF Document creation from JavaScript
react-grid-layout A draggable and resizable grid layout with responsive

breakpoints, for React
react-icons Popular icons with ES6 imports
@aksel/structjs Python-style struct module in JavaScript for parsing

real-time data from the back-end

Table B.1: List of external libraries used in the front-end development

B.1. EXTERNAL LIBRARIES 137

Library Purpose

multiprocessing Side-steps the Python GIL
mpld3 convert Python matplotlib code to

JavaScript
fmpy Interact with the virtual model
aiohttp Facilitate HTTP communication
aiohttp session[secure] Allows storage of user-specific data into

a session object
aiokafka Facilitates use of Kafka
aiohttp cors implements Cross Origin Resource Shar-

ing (CORS) support for aiohttp
numpy scientific computing with Python
scipy Ecosystem of open-source software for

mathematics, science, and engineering
firebase-admin Firebase Admin SDK for Python
pandas-profiling[notebook,html] Tool to create HTML profiling reports
pandas open source data analysis and manipu-

lation tool
matplotlib creating static, animated, and interac-

tive visualizations

Table B.2: List of external libraries used in the back-end

138 APPENDIX B. IMPLEMENTATION

B.2 Code Listings

This appendix shows more detailed code from the Implementation section. For
more detailts, see the complete code repository. The first section shows code
snippets from the front-end solution, while the second section shows code snippets
from the back-end solution.

B.2.1 Front-end

A component that wants to access data from a store imports the store and
declares the specific content it needs, as shown in Listing B.1.

1 import useProfileStore from "src/stores/profile/profileStore";

2
3 const { createProfile } = useProfileStore ((state) => ({

4 createProfile: state.createProfile ,

5 }));

Code lising B.1: A component imports the profileStore and the method
createProfile from the profileStore.

B.2. CODE LISTINGS 139

Listing B.2 shows the code for creating Draggable elemnts that can be dragged
inside a Droppable area.

1 <Droppable droppableId="selected">

2 {(provided: any , snapshot: any) => (

3 <S.ColumnRight

4 ref={ provided.innerRef}

5 isDraggingOver ={ snapshot.isDraggingOver}

6 >

7 {sensors.length === 0 && <div >Drop your sensors here </div >}

8 {sensors.map((sensor: string , i: number) => (

9 <Draggable key={ sensor} draggableId ={ sensor} index ={i}>

10 {(provided , snapshot) => (

11 <S.Selected

12 ref={ provided.innerRef}

13 {... provided.draggableProps}

14 {... provided.dragHandleProps}

15 isDragging ={ snapshot.isDragging}

16 onClick ={() => {

17 setIndex(sensor);

18 setTimeIndex(sensors.indexOf(sensor));

19 }}

20 >

21 <div >{ sensor}</div >

22 {sensor === index && (

23 <div >

24 <IoMdTimer

25 color="black"

26 size="1.2em"

27 style ={{ padding: "1px" }}

28 />

29 </div >

30)}

31 </S.Selected >

32)}

33 </Draggable >

34))}

35 {provided.placeholder}

36 </S.ColumnRight >

37)}

38 </Droppable >

Code lising B.2: Droppable elements: one for the right and one for the left
column

140 APPENDIX B. IMPLEMENTATION

Listing B.3 shows the complete process of parsing raw binary data in the front-
end.

1 parseData: (data: any , sourceID: string) => {

2 const datasourceBuffer = get().datasourcesBuffer[sourceID];

3
4 const unpacker = datasourceBuffer.unpacker;

5 const unpackIterator = unpacker.iter_unpack(data);

6 let unpacked = unpackIterator.next().value;

7 while (unpacked) {

8 if (get().datasources[sourceID] && get().datasources[sourceID

]. channels) {

9 datasourceBuffer.timestamp_buffer.push(new Date(unpacked [0]

* 1000));

10 const tempChannelsIds = get().datasources[sourceID].

channels.map(

11 (it: any) => it.id

12);

13 const channelsIds = Array.from(new Set(tempChannelsIds));

14 channelsIds.forEach ((channelID: any) => {

15 if (

16 datasourceBuffer.value_buffer &&

17 datasourceBuffer.value_buffer[channelID]

18) {

19 datasourceBuffer.value_buffer[channelID].push(

20 unpacked[channelID + 1]

21);

22 }

23 });

24 unpacked = unpackIterator.next().value;

25 }

26 }

27 }

Code lising B.3: Parsing data in the front-end

B.2. CODE LISTINGS 141

Listing B.4 shows the function for uploading a file.

1 const uploadFile = (e: any) => {

2 setLoading(true);

3 const createLink = rootAPI + "/project/datafile";

4 e.preventDefault ();

5
6 let file = e.target.files [0];

7 const formData = new FormData ();

8 formData.append("file", file);

9 if (type) {

10 formData.append("type", type);

11 } else {

12 formData.append("type", "none");

13 }

14 axios

15 .post(createLink , formData , {

16 headers: {

17 projectName: projectId ,

18 fileName: file.name.split(".")[0],

19 fileType: file.name.split(".")[1],

20 },

21 onUploadProgress: (progressEvent: any) => {

22 setUploadFilePercentage(

23 Math.round((progressEvent.loaded * 100) / progressEvent

.total)

24);

25 },

26 });

27 };

Code lising B.4: uploadFile function that sends a file to the server

Table B.3 shows the variables used to train the machine learning model in
the client.

142 APPENDIX B. IMPLEMENTATION

Variable Value Explanation

test train split 0.2 The ration used for splitting the dataset
into a training dataset and a test dataset.
The value is set to 0.2, which means 20%
of the dataset is used for testing.

activation relu The activation function is set to ”ReLu”;
Rectified Linear Unit.

learningRate 0.01 The learning rate is used to control how
quickly the model is adapted to the prob-
lem.

epochs 10 Epochs are the number of times all of the
training data is used once for updating the
weights.

optimizer tf.train.adam(0.01) Optimizers are used to change the at-
tributes of the neural network to reduce
the lessos. This can for example be the
weights or the learning rate.

loss meanSquaredError Mean squared error is used as the loss func-
tion to minimize the error of the model.

min R2 score 0.5 The minimum required R2 score of the
model. The R2 score is a measure on how
close the data is to the fitted model.

decent R2 score 0.8 The satisfying R2 score of the model. The
R2 score is a measure on how close the data
is to the fitted model.

max mean diff 100 The maximum differences in mean between
input parameters. This is used to determine
if the data should be standardized.

max std diff 10 The maximum differences in standard de-
viation between input parameters. This is
used to determine if the data should be
standardized.

cov limit 0.9 The maximum allowed covariance between
variables.

max iterations 4 The maximum number of iterations the
model is trying to be trained.

Table B.3: Description of the variables used in the machine learning model

B.2. CODE LISTINGS 143

Listings B.5 and B.6 show how statistics are calculated. Listing B.5 uses historical
data received from the server to illustrate distribution of the data in a histogram,
whereas Listing B.6 calculates statistical values.

1 getJSONResponse(link).then((response) => {

2 const headers = response [0];

3 if (response && response [2]) {

4 const tempData = response [2]. map((data: any , index: number)

=> {

5 const histogram = (stats.histogram(data , 5) as unknown)

as Histogram;

6 let testingArray = [] as any [];

7 testingArray.push({

8 histfunc: "sum",

9 y: histogram.values ,

10 x: histogram.values.map((value: number , index: number)

=> {

11 return index + 1 === histogram.binWidth

12 ? histogram.binLimits [1]

13 : histogram.binLimits [0] + histogram.binWidth *

index;

14 }),

15 type: "histogram",

16 name: headers[index + 1],

17 });

18 return testingArray;

19 });

20 setStatData(tempData);

21 }

22 });

Code lising B.5: Generating histogram from file

1 getJSONResponse(link).then((response) => {

2 const headers = response [0];

3 if (response && response [2]) {

4 const tempData = response [2]. map((datapoints: any , index:

number) => ({

5 name: headers[index + 1],

6 mean: stats.mean(datapoints).toFixed (2),

7 stdDev: stats.stdev(datapoints).toFixed (2),

8 median: stats.median(datapoints).toFixed (2),

9 variance: stats.variance(datapoints).toFixed (2),

10 percentile85: stats.percentile(datapoints , 0.85).toFixed (2),

11 }));

12 setStatData(tempData);

13 setLoading(false);

14 }

144 APPENDIX B. IMPLEMENTATION

15 });

Code lising B.6: Generating statistical information from a file

B.2.2 Back-end

1 @routes.post('/project/datafile ', name='upload_datafile ')
2 async def upload_datafile(request: web.Request):

3 post_request = await request.post()

4 data , headers = post_request['file'] = request.headers

5 project = headers["projectName"]

6 content_length = int(headers['Content -length '])
7 path = request.app['settings ']. PROJECT_DIR + "/" + project + "/

files"

8 os.makedirs(path , exist_ok=True)

9
10 if ".csv" in data.filename or ".xlsx" in data.filename:

11 with open(path + data.filename , 'wb') as file:

12 file.write(data.file.read(content_length))

13 return web.HTTPAccepted ()

14 else:

15 return web.HTTPBadRequest ()

Code lising B.7: upload datafile receives a request that contains a file and
writes it to the file system in project name/files/data.filename

Listing B.8 shows the complete process of receiving a parsing JSON data in
the back-end.

1 if address in self.buffers:

2 if "{" in raw_data.decode ():

3 # print("this { is here")

4 if "}" in self.buffers[address]:

5 self.buffers[address] = raw_data.decode () +

self.buffers[address]

6 else:

7 self.buffers[address] = raw_data.decode () +

self.buffers[address]

8 elif "}" in raw_data.decode ():

9 if "{" in self.buffers[address]:

10 self.buffers[address] = self.buffers[

address] + raw_data.decode ()

11 else:

12 self.buffers = self.buffers[address] +

raw_data.decode ()

13 else:

14 if "{" in self.buffers[address]:

B.2. CODE LISTINGS 145

15 self.buffers[address] = self.buffers[

address] + raw_data.decode ()

16 elif "}" in self.buffers[address]:

17 self.buffers[address] = raw_data.decode () +

self.buffers[address]

18 else:

19 self.buffers = self.buffers[address] +

raw_data.decode ()

20 else:

21 print("empty")

22 self.buffers[address] = "" + raw_data.decode ()

23 if len(self.buffers[address]) > 0 and \

24 self.buffers[address].count("{") == self.

buffers[address].count("}"):

25 try:

26 json_data = json.loads(self.buffers[address])

27 data_values = source.output_names

28 incoming_data = []

29 for (index , value) in enumerate(data_values):

30 # print(value , index)

31 if index == source.time_index:

32 incoming_data.append(

33 datetime.timestamp(parse(json_data[

data_values[source.time_index

]])))

34 else:

35 incoming_data.append(float(json_data[

value]))

36
37 data = struct.pack(

38 source.byte_format , incoming_data[source.

time_index],

39 *[incoming_data[ref] for ref in source.

output_refs])

40 self.producer.send(topic=source.topic , value=

data)

41 self.buffers[address] = ""

42 except ValueError:

43 self.buffers[address] = ""

44 print("failed to parse")

Code lising B.8: Buffering JSON data

146 APPENDIX B. IMPLEMENTATION

Listing B.9 shows the process of creating a dictionary for viewing available
datasources sending JSON data.

1 try:

2 if (address + "_data") in self._available_sources:

3 self._available_sources[address + "_data"] =

4 self._available_sources[address + "_data"] + raw_data.

decode ()

5 else:

6 self._available_sources[address + "_data"] = raw_data.

decode ()

7 if (address + "_data") in self._available_sources and (

8 self._available_sources[address + "_data"].count("{")

== self._available_sources[address + "_data"].count

("}")):

9 sensors_data = json.loads(self._available_sources[address +

"_data"])

10 sensors = list(sensors_data.keys())

11 self._available_sources[address] = {

12 "sensors": sensors ,

13 }

14 del self._available_sources[address + "_data"]

15 /* more code */

Code lising B.9: self. available sources is a dictionary containing available
data sources.

Listing B.10 shows how the back-end processes a request and returns a
response for creating a new project.

1 @routes.post('/projects/new', name='create_new_project ')
2 async def create_new_project(request: web.Request):

3 post = await request.post()

4 name = try_get(post , 'projectName ', str)

5 projectAlreadyExists = await database.check_if_project_exists(

name)

6 if projectAlreadyExists:

7 raise web.HTTPBadRequest(text='Project name already exists '
)

8 date , email = try_get(post , 'date', str), try_get(post , 'email '
, str)

9 created = await database.create_project(email , name , date)

10 if created:

11 return web.HTTPCreated ()

12 raise web.HTTPBadRequest ()

Code lising B.10: Receiving the request in the back-end. try get is a helper
method used to retrieve relevant attributes from the request

B.2. CODE LISTINGS 147

At first, the sensor is below its allowed limits and a notification is shown to the
user that the sensor is not in its normal state. When the sensor returns to the
normal state, another event is triggered and a notification is sent to the user that
the sensor has returned to the normal state. This process is shown in Listing
B.11.

1 if (value > minVal and (sensor in self.trigger) and ("startedAt" in

self.trigger[sensor]) and (

2 self.trigger[sensor]["trigger_reason"] == "lt")):

3 newId = self.trigger[sensor]["id"]

4 updated = database.update_notification(self.project_id , newId ,

{

5 u'finished ': True ,

6 u'endedAt ': datetime.datetime.now(pytz.timezone('Europe/
Oslo')),

7 u'valueExceeded ': minVal

8 })

9 del self.trigger[sensor]

Code lising B.11: The value has returned to the normal state and the trigger is
removed from the dictionary and its state is set to finished in the database

148 APPENDIX B. IMPLEMENTATION

Appendix C

Latency

This appendix shows more detailed graphs from the latency tests. The first
section contains latency calculations from plotting one datasource at a time, then
the second and third sections show impact multiple datasources simultaneously
and of filtering data source with buffers of different size. The red lines represent
total delay, divided into delay from asset to front-end (pink) and internal front-
end delay (purple).

C.1 Assets alone over different networks

Figure C.1: Delay from the Torsion Bar Suspension Rig over ethernet connection

149

150 APPENDIX C. LATENCY

Figure C.2: Delay from the SensorLog application over 4G network

Figure C.3: Delay from the SensorLog application over Wi-Fi connection

C.2. EFFECT OF MULTIPLE TILES 151

C.2 Effect of multiple tiles

Figure C.4: Delay in transmission from the SensorLog application over Wi-Fi
when it is the second to render in a dashboard

C.3 Filtered data

Figure C.5: Delay in transmission from the SensorLog application over Wi-Fi
with filtered a sensor and a buffer size of 1

152 APPENDIX C. LATENCY

Figure C.6: Delay in transmission from the SensorLog application over Wi-Fi
with filtered a sensor and a buffer size of 20

Figure C.7: Delay in transmission from the SensorLog application over Wi-Fi
with filtered a sensor and a buffer size of 500

C.3. FILTERED DATA 153

Figure C.8: Checkly automatically sends out SMS if the client or back-end
solution is failing.

154 APPENDIX C. LATENCY

Appendix D

Usability testing

• The website is easy to use.

• It is easy to navigate within the website.

• I feel comfortable purchasing from the website.

• I feel confident conducting business on the website.

• How likely are you to recommend this website to a friend or colleague?

• I will likely return to the website in the future.

• I find the website to be attractive.

• The website has a clean and simple presentation.

155

156 APPENDIX D. USABILITY TESTING

Figure D.1: Background.

Figure D.2: I am familiar with the field of Digital Twins.

Figure D.3: The platform is easy to use.

157

Figure D.4: It is easy to navigate within the platform.

Figure D.5: The platform is fast and responsive.

Figure D.6: It is easy to get an overview of available features.

158 APPENDIX D. USABILITY TESTING

Figure D.7: I will likely return to the platform in the future.

Figure D.8: I find the platform attractive.

Figure D.9: The platform has a clean and simple presentation.

Appendix E

User Guides

E.1 Starting a session

Connect to NTNU’s network either via wifi or VPN 1. Then, go to cbms.surge.

sh/ in Google Chrome, Mozilla Firefox, Opera, Microsoft Edge or Safari. The
landing page will render.

E.2 Register User

There are two ways to navigate to user registration: From the landing page, click
on either Sign in at the top right corner, or the GET STARTED button at the
bottom of the page marked in red in Figure E.1.

This takes you to the sign in. Click on ”Don’t have an account? Click here to
sign up” marked in red in Figure E.2a. The register page will load. The e-mail
needs to be valid and the password must consist of at least six characters. Fill
in the fields in E.2b, and a user with these credentials will be created. When
the registration process has completed, you will be directed to the projects page
as a signed in user.

1https://innsida.ntnu.no/wiki/-/wiki/English/Install+vpn

159

cbms.surge.sh/
cbms.surge.sh/

160 APPENDIX E. USER GUIDES

Figure E.1: Illustration of the landing page with highlighted areas.

E.2. REGISTER USER 161

(a) Sign in page (b) Register user

Figure E.2: Screenshots illustrating how get to register page from sign in and
the information to be filled in to register.

162 APPENDIX E. USER GUIDES

E.2.1 View profile settings

Whenever you are signed in, your username and a user icon will be in the top
right corner at all times. Clicking on either of the user name and icon opens a
window with information about your profile such as name and e-mail address as
seen in Figure E.3.

Figure E.3: Settings for a profile showing name, e-mail, existing projects, occu-
pation and invites

E.3 Configure a project

In order to configure a project, you need to be signed in. From the projects
page, click on the NEW PROJECT button to the left located on the middle of
the page as seen in Figure E.4.

E.3. CONFIGURE A PROJECT 163

Figure E.4: Projects page: click the button framed in red to start configuration
of a new project

You will be taken to the New Project page. The first and only required step is
to give the project a name. Once ”Create Project” is clicked, the project is saved.
However, it is possible add a datasource and/or a model before advancing to
your new project. The buttons ”Add datasource”, ”Add model” and ”Configure
later” as seen in Figure E.5 show the options, and clicking on them will render
the configuration page. In Figure E.6, the ”Add datasource” button has been
selected.

Figure E.5: Options for further configuration after registering project name

164 APPENDIX E. USER GUIDES

Figure E.6: Adding a datasource to the new project

It is possible to add a new or existing datasource to the project. To configure
a new datasource, please consult the user guide on how to configure a datasource
(REF). If you want to add an existing datasource, a dropdown list shows the
existing sources, and selecting one connects it to the project. The process of
adding a model is described in REF.

E.4 Configure a datasource

A datasource can be created during configuration of a project as described in
Appendix E.3 or from the Datasource tab in the Project page as seen in Figure
E.7.

Figure E.7: To start the configuration process for a datasource, first navigate to
the datasource page by clicking on Datasources in the navigation bar and then
on the create new datasource on the top left

Now the create datasource page pops up. The platform accepts data on CSV

E.4. CONFIGURE A DATASOURCE 165

or JSON format. Both configurations reruire IP address and definition of sensor
names, but the process is not identical. The datasource name can only contain
letters, numbers and underscore, and it has to start with a letter.

E.4.1 Configure JSON datasource

After selecting a name for the datasource, the IP address of the data stream
must be filled in. If you do not know the IP address of your source, click on ”I
don’t know my IP address”, and a list of IP addresses sending JSON data to
the server shows up. Copy the address and paste it in the IP address field.

Now, click on ”See available sensors from datasource”, and the sensors will
appear in the gray column to the left. Drag and drop or click on sensors you
want to use. NB! One of the sensors must contain a timestamp. Click on this
sensor again when it is selected so that a clock icon shows up on the right end
as in Figure E.8. Finally, click ”Set sensors” and then ”create datasource”.
The datasource is created and the configuration page is closed. Back in the
Datasources tab, you should now see your new source as in Figure E.9.

166 APPENDIX E. USER GUIDES

Figure E.8: Completed configuration of a JSON formatted datasource

Figure E.9: When the configuration is finished and the create datasource window
has closed, the new datasource should show up in the list of datasources, and it
should be running

E.4.2 Configure CSV datasource

Fill in name and IP address for your source and select ”CSV” from the dropdown
menu. If you are not using catman, untick the checkbox and select the bytelength

E.4. CONFIGURE A DATASOURCE 167

of each data point. The default is eight if catman is selected

Now, fill in names of all the sensor values in correct order. If the names
don’t match the format the data is sent on, the names will not correspond to the
correct value. Figure E.10 shows configuration of the Torsion Bar Suspension
Rig used for prototyping and development. After setting sources and clicking on
”create datasource”, the window should close and the new source should show
up in the list of datasources as in Figure E.11.

Figure E.10: Configuration of a datasource on CSV format.

168 APPENDIX E. USER GUIDES

Figure E.11: List of datasources after creating a CSV formatted datasource

E.5 View and upload models

From the project page, click on the Models tab in the navigation bar. The page
will look like Figure E.12a. To upload a new model, click on ”Add Model” at
the bottom of the navigation bar. Select file format, either ”FMU” or”FMM”.
If FMU is the chosen format, select an FMU file from the file directory and wait
until it has loaded. If you selected to upload an FMM file, first upload the FMM
file. Then, upload corresponding FTL files. When all files have completed the
upload, you will be redirected to the Models page.

E.6. INVITE USER TO PROJECT AND CHAT 169

(a) Models page

(b) New Model page

Figure E.12: The Models and New Model pages.

E.6 Invite User to Project and Chat

In the Project page, there is a speaking bubble icon to the right in the navigation
bar, as seen in Figure E.13. Clicking on this symbol opens the window seen in
Figure E.14.

To invite a user, fill in an e-mail address of an existing user and click ”send
invite”. The user will receive a pop-up message as in Figure E.15. Accepting
will add the project to the user’s current projects, and ”show invite” will take
them to the projects page where the invitation is displayed. Ignore removes the
pop-up, but the invitation is still available in the projects page.

170 APPENDIX E. USER GUIDES

Figure E.13: Invite user

Figure E.14: Invite and chat window

E.6. INVITE USER TO PROJECT AND CHAT 171

Figure E.15: A pop up is displayed when a user receives an invitation to a
project.

172 APPENDIX E. USER GUIDES

E.7 Create a Tile

From the Dashboards tab in the navigation bar, navigate to the dashboard
where you want to place the tile and click on ”Add new”, placed as shown in
Figure E.16. A window will open showing different tile options, as in Figure
E.17. By clicking on the main categories ”Real-time monitoring”, ”Analytics
and Statistics” and ”3D models” and their respective sub categories, you can
navigate between different tile types.

Figure E.16: Add new tile

All tiles require a name and some input data. The input data varies, but
is generally either a datasource or a file (for Analytics and Statistics tiles and
models). The files in the Analytics and Statistics category should be on a CSV

Figure E.17: The add new tile window: Showing the configuration of a Real-time
curve plot

E.7. CREATE A TILE 173

or XLSX format, and a timestamp is required as the first column as seen in
figure E.18. The rest of the columns are interpreted as sensor data values. The
first row should contain the column names.

(a) CSV file (b) Excel file

Figure E.18: Expected format of CSV files and XLSX respectively

174 APPENDIX E. USER GUIDES

Real-Time Curve Plot The real-time curve plots take live data from a
datasource as input and plots it in a graph. Figure E.17 shows its configuration.
The user must first select a datasource and a sensor value from the selected
datasource. Then, a plot type must be selected, either scatter or lines. If no
processing of the signal is desired, click ”CREATE”, and the plot will be saved
to the dashboard, the window closes and the new tile renders.

However, you want filtering, check the checkbox to the right of ”Filter data?”.
Filtering options will appear for each sensor selected as in Figure E.19. If you
don’t want to filter one of the selected sensors, click ”No filter for this channel”
on the bottom right of the filtering options for that sensor. Otherwise, select
filter type, frequency of the signal, buffer size, cutoff frequency and desired
order of the filter. The possible filter types are lowpass, highpass, bandpass and
bandstop. For bandpass and bandstop, two values must be submitted in the
cutoff frequency separated by a comma. NB! The filtered sensor name must be
different from the original sensor name, e.g. ”sensorname lowpass” for a lowpass
filter. When values are selected, click on ”set filter”. A loading wheel will show
up while the filter is generated. When it disappears, the filter is created and
added to the plot.

E.7. CREATE A TILE 175

Figure E.19: Filtering options

Video Streaming In addition to Tile name, configuration of a platform
only requires ID of a youtube live stream. The ID of the stream is part of
the url to the stream, as described in the left column in Figure E.20. A
guide on how to create a live stream on youtube can be found on https:

//www.youtube.com/watch?v=Xka4OLgzW9Q.

https://www.youtube.com/watch?v=Xka4OLgzW9Q
https://www.youtube.com/watch?v=Xka4OLgzW9Q

176 APPENDIX E. USER GUIDES

Figure E.20: Configuration of a new video stream

Map Both static and dynamic maps can be configured. There are three possible
input types: Both map types can use the location of the device that is logged
into the system by selecting ”Get current”. The map will then place an icon of
this location on the map and update it in the case of a dynamic map. A static
map can also use a location specified by the user in the leftmost column seen in
Figure E.21a. The last input type is to use a datasource’s location sensors as
seen in Figure E.21b.

(a) Static map configuration (b) Dynamic map configuration

Figure E.21: Adding new static and dynamic maps respectively

E.7. CREATE A TILE 177

Predictions The user should always inspect the dataset for potential problems
before it is used to train the machine learning. This can be achieved by using
the inspect dataset functionality in the CBMS. The next step is selecting the
datasource and the sensor the user wants to perform real-time predictions of
as shown in Figure E.24. Then the user has to upload a data set to train
the machine learning model. The data set must be a .csv file where decimal
values are separated with ”.” as seen in Table E.1. The sensor names must
correspond to the sensor names sent from the live data source. The user has to
select the input sensors that should be used to predict the output. The user
must have some knowledge about the data set in order to make predictions.
However, the application in this project is developed for users that do not have
any prior machine learning knowledge. The questions for describing the data set
is therefore as general as possible.

Sensor 1 Sensor 2 ... Sensor n
4.54 7.54 ... 787.12
8.14 2.56 ... 987.16
5.92 9.81 ... 12.32
...

Table E.1: Value format in CSV file

178 APPENDIX E. USER GUIDES

Figure E.22: The user has to choose a datasource and sensor value for real-time
predictions, upload a dataset and select the sensors that should be used for
making the predictions.

The machine learning model is trained in the browser and the user can see
information about input columns, output columns, number of training points
and number of testing points to get a better overview of the training as shown
in Figure E.22. Regularization is applied to the data set if the model does not
converge after two iterations. If the model does not converge or has a high loss,
the user will get an error message saying the training was not successful. If the
training is successful but with limited accuracy, the user will be presented with
a warning message. The accuracy is based on the R2 score which reflects the
accuracy of the predictions on the test set. If the training is successful, the user
will be shown a message with the R2 score.

E.7. CREATE A TILE 179

Figure E.23: The user has to answer two questions regarding the dataset for
making better predictions.

After the model is trained, the user can create the tile and the real-time
predictions will show up in the dashboard as shown in Figure E.23. The real-time
data is shown for the sensor the user wanted to predict. Predictions are visualized
together with the real-time data. The platform is doing predictions in real-time
but it is also possible to do manual predictions. If the user wants to type in
some values for the input sensors and see the predicted value, this can be done
with by clicking the settings button on the tile making the predictions.

180 APPENDIX E. USER GUIDES

Figure E.24: Real-time predictions of the ”load” sensor based on the ”accelerom-
eterX” value from the torsion bar suspension rig.

Historical Curve Plot Historical curve plots can be generated the same
way as a real-time curve plot shown in Figure E.17. Historical values from
this datasource’s sensor(s) will be queried and displayed in the plot. It is also
possible to plot values from a file, as Figure E.25 shows. The file is expected to
have the same format as Figure E.18 illustrates. Switching between the file and
datasource options is done by clicking on ”Use Datasource” and ”Upload File”.

Figure E.25: Creating a historical plot from file

E.7. CREATE A TILE 181

Fast Fourier Transform The FFTs can be generated using the same input
types as the previous paragraph describes, and toggling between the two options
is done the same way. Additionally, the sample spacing of the data must be
provided. This is the time interval between data point or 1

f , where f is the
sampling frequency. The sample spacing variable must be provided for both
input types. Figure E.26 shows FFT configuration for an acceleration sensor
with sample spacing of 0.01, i.e. sample frequency of 100 Hz.

Figure E.26: Add a fast Fourier transform

Spectrogram Spectrograms can be generated from a datasource or file as in
Figure E.27. If a datasource is selected as input, select duration of the sensor
data that should be used for spectrogram generation. The duration could either
be provided in seconds, which generated a spectrogram of the most recent data
for this interval. Otherwise, one can select an interval by clicking ”Set time”
instead of ”Most recent” and select date and time for start and end times of the
data to be used. If a file is selected as input, the sample frequency of the dataset
must be provided.

182 APPENDIX E. USER GUIDES

(a) Create spectrogram from datasource (b) Create spectrogram from file

Figure E.27: Adding new spectrogram from datasource and file respectively

Statistics Statistical information could be displayed as histogram(s) visualizing
the variation of the data values or in a table with statistical information such as
mean value, variance etc, and the buttons ”Histogram” and ”Statistical Summary”
toggle the selection. Configuration of a histogram is identical to configuration
of a statistics summary. Figure E.28 shows configuration of a histogram tile
using a datasource. Fill inn desired sensor(s) and select a duration of the
historgram/statistical summary. If you desire to retrieve statistical information
from a file, there is no need to select duration, the statistical information from
the whole time series of the file will be used.

E.7. CREATE A TILE 183

Figure E.28: Configuration of a statistics tile

3D models If you desire to add a model to the dashboard, Figure E.29 shows
the configuration. Simply select format of the model file (FMU or FMM) and
upload the required file(s). An FMU upload requires one file, an FMU file. The
FMM format requires an FMM file and then corresponding FTL-files.

184 APPENDIX E. USER GUIDES

Figure E.29: Adding a model to the dashboard

E.8 Tile Settings

To open the Tile settings, click on the hamburger menu in the top right corner
of the tile as seen in Figure E.30. The settings window will open, and it looks
like in Figure E.31.

E.8. TILE SETTINGS 185

Figure E.30: Curve plot tile

Figure E.31: Settings for a real-time curve plot

186 APPENDIX E. USER GUIDES

E.8.1 Adding and removing sensor values from tiles

The selected sensors in a tile are displayed at the bottom in colors corresponding
to the plotting colors. If you want to remove a sensor from the plot, simply click
on it. Clicking on accelerationAccelerationX in Figure E.30 removes it from the
plot. Only accelerationAccelerationY will remain. If you want to add it again,
open the settings as described in the previous paragraph. Below ”Add sensors”,
it is possible to add more sensors by selecting a datasource and one or more of
its sensors.

NB! Adding and removing sensors is only possible for tiles made with
datasources as input. Tile types that can add and remove sensors include
real-time and historical plots and statistics.

E.8.2 Downloading data from Tiles

Open the tile settings. If the tile provides this functionality, there will be a ”Do
you want to download the data?” header. Click ”Export csv” or ”Export xlsx”
to download the data on the format illustrated in Figure E.18. Video streams,
maps and models do not provide this functionality.

E.8.3 Adjust number of data points in plot

In the tile settings, adjust the number of points displayed in the plot at all times
by changing the input field below the header ”How many points do you want to
display”.

E.9 Event triggers and notifications

E.9.1 Create Event Trigger

From the project page, click on the Notification tab framed in Figure E.32 and
then the ”Add event trigger” button.

E.9. EVENT TRIGGERS AND NOTIFICATIONS 187

Figure E.32: Notifications page

The event trigger window will show up looking like Figure E.33a. Select a
datasource. The channels of the datasource will appear below the source. Select
one or more sensors to add event trigger for these sensors. For each sensor,
minimum and maximum values, description for each of them and severity must
be filled in. A completed event trigger configuration can look like Figure E.33b.
Click on ”Submit form”.

(a) Add event trigger window (b) Event trigger Configured

Figure E.33: Initial add event trigger window and completed configuration of an
event trigger

E.9.2 See Current Event Triggers

The event trigger will not appear in the list of the notifications page in Figure
E.32, but if you click on ”See current event triggers” to the right of ”Add event
trigger”, the event trigger should be in the list. Figure E.34 shows the event
trigger that was just made. Delete the event trigger by clicking on ”Delete event
trigger”.

188 APPENDIX E. USER GUIDES

Figure E.34: List of current event triggers

E.9.3 See Notifications

If sensor values above maximum or below minimum are registered, a notification
will be generated. The notification will appear in the list on the notifications
page. To view a plot of the occurence, click on the down arrow. A graph like the
one in Figure E.35 will appear with a plot of the sensor and the trigger value.
To change the duration of the plot, use the ”+/- Xs” buttons, where X is 5, 10,
30 and 60. Other sensors from the same datasource can be added the same way
sensors are added to a tile by clicking on the hamburger menu on the top right.
To download the data from the event, click on ”Download data” at the bottom
of the settings.

Figure E.35: Plot from an event in the notifications list

Appendix F

Installation Guide

This guide is contains information about required downloads, installations and
steps to set up the front and back ends to facilitate further development of the
project.

F.1 Downloads and Installations

In order to run the project, both back-end and front-end, there are some required
installations. They are listed below along with a link to the download page.
Zookeeper is also required, but it is included in the Kafka download. The Kafka
download file should be unpacked.

Name Link

node.js https://nodejs.org/en/download/
java https://www.java.com/en/download/
kafka https://kafka.apache.org/quickstart
python https://www.python.org/downloads/

F.2 Guide

Parts of the commands will be different on mac and windows operating systems,
but they are included in the setup below.

189

190 APPENDIX F. INSTALLATION GUIDE

F.2.1 Send data from the torsion bar rig to the back-end
solution

To send data from the torsion bar suspension rig to the back-end solution, it
is necessary to start Catman in the computer located next to the torsion bar
suspension rig. Follow the steps in Jensen 2019 to set up Catman with the
correct settings. The data is sent from Catman to the server’s IP address by
using UDP communication. The back-end solution receives the data and makes
it available to the users of the platform.

F.2.2 Back-end

In order to run the back-end, do the following steps:

1. Download the back-end solution by running the following command in the
terminal:
git clone https://github.com/erikkjernlie/digtwin backend

2. Run the command ‘pip install –r requirements.txt’ in the downloaded
folder to install the necessary requirements.

3. Download and install Kafka. Kafka requires java, so download if it is not
already installed.

4. Open a new terminal window, navigate to the Kafka folder and run the
following command depending on the operating system:
Mac: bin/zookeeper-server-start.sh config/zookeeper.properties
Windows: bin\windows\zookeeper-server-start.bat config\zookeeper.properties
This starts a Zookeeper server, which is required by Kafka.

5. Open a new terminal window, navigate to the Kafka folder and run the
following command depending on the operating system:
Mac: bin/kafka-server-start.sh config/server.properties
Windows: bin\windows\ kafka-server-start.bat config\server.properties

• Running Kafka might result in the following Java-error: “Please install
or use the JRE or JDK that contains tehse missing componenets.
Error: missing ‘server’ JVM at . . . ”

• If this error occurs, do the following:

F.2. GUIDE 191

– Go into your “Java” folder. This is typically something like
’C:/Program files/java’

– Go into jre7/8 directory and go into the bin folder

– Create a folder called “Server”

– Now go into the C:/Program files/java/jre8../bin/client folder

– Copy all of the files in this folder into the Server folder

6. Navigate to the repo that was cloned in step 1. Set necessary ports in
the settings.py file. The default port for the Kafka server should be set to
“9092”.

7. Run the script “main.py” to run the back-end.

F.2.3 Front-end

When the back-end is running, the front-end can be started

1. Download the back-end solution by running the following command in the
terminal:
git clone https://github.com/erikkjernlie/digtwin backend

2. Run the command ’npm install’ or ’yarn’ from the digtwin backend folder
in the terminal to install the required libraries.

3. Run the following command: ’npm start’ or ’yarn start’. The application
will start, and generate a local address which can be pasted into the
browser.

192 APPENDIX F. INSTALLATION GUIDE

Appendix G

Front-end deployment

The client of the platform is hosting using Surge. Surge makes it easy to deploy
projects for free through npm, by only writing a few lines of code in the command
line. The process of deploying the front-end application to surge is shown in
Listing G.1. The only prerequisite is the latest version of node.js, which can
be downloaded from https://nodejs.org/en/download/. First, the application is
built. In the build folder, the index.html file is duplicated and called 200.html.
Then, surge is installed and run. The final step is to select a domain name and
press enter. The project is hosted at ”project-name.surge.sh”.

1 npm run build

2 cd build

3 cp index.html 200. html

4 npm install --global surge

5 surge

Code lising G.1: Deployment from the terminal when the current directory is
inside the front-end solution

193

