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Background 

Under auto-voyaging for autonomous ships, the ship is usually set to follow a nominal path constructed 

prior to the mission. The nominal path is free of known static obstacles. During the voyage, unknown or 

dynamic obstacles may be detected along the path, forcing the vessel to deviate from the nominal path. 

Once the obstacle is passed the vessel typically returns to the nominal path. However, in many situations 

re-planning of the desired path may be a more natural choice. This may even be advantageous in presence 

of multiple obstacles, where re-planning may eliminate the need for multiple evasive maneuvers.  

The traditional maneuvering problem may be solved using a control Lyapunov function (CLF), with the 

vessel states (e.g., position, orientation, and velocity) and a scalar path variable 𝑠 ∈ ℝ as arguments. 

Safety (e.g., obstacle avoidance) may be ensured by combining the CLF with a control barrier function 

(CBF). In traditional CLF-CBF control designs, the CBF works in parallel with the CLF; that is, the CBF 

and the CLF act on the same control inputs. In such a setup the desired path remains unchanged during 

evasive maneuvers. Moreover, the CBF design must explicitly take the vessel dynamics into account, 

complicating the design process.  

In this project, we will instead use a two-dimensional path variable, 𝑠 ∈ ℝ2
, where 𝑠1 is the along-path 

distance and 𝑠2 is in the normal direction to the path. The desired vessel position 𝑝𝑑(𝑠(𝑡)) may then be 

interpreted as a virtual planar vessel. By employing CBFs to restrict the evolution of the path variable 

𝑠(𝑡) it may be ensured that the path traced out by the virtual vessel is safe. This enables using CBF-

designs for idealized kinematic vehicles, of which several solutions exist in literature.  

With the CBF acting on the guidance level, obstacle avoidance capabilities are achieved without requiring 

explicit knowledge of the vessel dynamics. However, safety is only ensured if the vessel can follow the 

virtual vessel with sufficient accuracy.  

 

 

Scope of Work 

1. Perform a background and literature review to provide information and relevant references on: 

• CLF-based control design, maneuvering control design, and path-following. 

• Collision avoidance algorithms for autonomous marine vehicles. 

• Control barrier functions (CBFs) for safety assurance, including applications for collision 

avoidance of autonomous robots.   

Write a list with abbreviations and definitions of terms and symbols, relevant to the literature study 

and project report. 

2. Establish a dynamic vessel model, for use in simulations. The vessel model shall contain uncertainty 

in the dynamics. This may for instance be a fully actuated 3-DOF maneuvering model with an 

unknown constant bias. Design a CLF-based controller that solves the traditional maneuvering 

problem for straight-line paths traced out by 𝑞 = 𝑝𝑑(𝑠).  

3. Design and implement CBF-based safety critical controllers for selected kinematic vessel models. 

This may for instance be particle models (with linear velocity or acceleration as control input), or 

unicycle models (with heading or heading rate as control input).  
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4. Modify the CLF-based controller from item 2 above to accommodate a 2-dimensional “path 

variable” 𝜉 ∈ ℝ2. Let the virtual point 𝑞 = 𝑝𝑑(𝜉) emulate the kinematic vessel considered in item 3, 

with the CBF-based safety-critical controller giving obstacle avoidance capabilities, i.e., design the 

desired dynamics 𝜉̇ = 𝑓𝑑(𝜉, 𝑡) according to your virtual vessel designs(s). Explore the feasibility of 

the path traced out by 𝑞(𝑡) = 𝑝𝑑(𝜉(𝑡)) for each virtual vessel model during obstacle avoidance 

maneuvers.  
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Abstract

During a voyage, autonomous ships usually follow a nominal path constructed prior to the
voyage. Known, static obstacles can be avoided in the planning process, but unknown or
dynamic obstacles cannot. Hence, such obstacles may force the vessel to deviate from the
nominal path, and typically return to the path after an evasive maneuver is performed. However,
it may be more advantageous to re-plan the desired path, particularly in situations with multiple
obstacles. This could eliminate the need for several evasive maneuvers. By implementing a
two-dimensional path variable with an along-path distance and a path normal distance, the
desired vessel position can be interpreted as a virtual planar vessel. By employing control barrier
functions to restrict the evolution of the path variable, the path traced out by the virtual vessel
can be ensured safe. Yet, safety is only ensured for the autonomous ship if it is able to follow the
path. Therefore, the feasibility of such paths must be investigated. A comparison of various
methods is of value to determine which provides a feasible path or the most feasible path.

A system consisting of a virtual vessel at guidance level, along with a line-of-sight guidance law
was created. Three virtual vessel models from literature have been implemented. These were a
first order particle model, a unicycle model, and a potential function. The virtual vessels’
safety-critical controllers employed barrier functions, referred to as control barrier functions
(CBFs), and quadratic programming to produce safe control inputs to the virtual vessel models.
The simulations were performed in MATLAB, and thus the MATLAB function “quadprog” was
used to perform quadratic programming optimization. Different CBFs from literature were
implemented depending on the virtual vessel model. These included both hybrid and non-hybrid
CBFs. The line-of-sight guidance produced a course angle reference for the autonomous ship
based on the cross-track error to the position of the virtual vessel. The autonomous ship should
perform trajectory tracking of the virtual vessel. A maneuvering model for an idealized ship was
therefore implemented. The control system consisted of a backstepping controller. A control
allocation was outside the scope of the thesis.

The results showed a varying degree of feasibility of the paths traced out. The most promising
result was produced by the unicycle virtual vessel model, with a non-hybrid CBF and a modified
obstacle in the safety-critical controller. This conclusion is largely based on the along- and
cross-track errors observed, and the magnitude and smoothness of the control inputs required to
perform trajectory tracking. The unicycle model with a hybrid CBF performed fairly well, but
experienced some switching back and forth between CBFs during the evasive maneuver. The
switching between CBFs caused undesirable transient response in the system. The particle
model, which employed linear velocities as control inputs, resulted in a path with sharp turns,
that the ship struggled to track to a certain degree. This resulted in sub-optimal behavior, that
may not be realistic, although the ship appeared to be able to track the virtual vessel during the
simulations. The potential function required unrealistically high forces and moment for the ship
to perform trajectory tracking. Hence, the path traced out was deemed infeasible.

Several improvements are discussed. Examples are further tuning of individual parameters in the
different methods, and the inclusion of a control allocation in the control system. In addition, an
extension into path following, and the addition of several, and potentially dynamic, obstacles
are of interest in future work. Furthermore, only current forces were added in the simulations.
Including more environmental forces is an important extension of the environment to make it
more realistic. However, such an extension would require the inclusion of an observer, which was
outside the scope of this thesis.
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Sammendrag

Autonome skip følger vanligvis en nominell bane under en reise. Denne banen planlegges gjerne
før reisen begynner. Kjente, statiske hindringer kan unng̊as gjennom planleggingen av den
nominelle banen, i motsetning til ukjente eller dynamiske hindringer. Slike hindringer kan derfor
tvinge skipet til å divergere fra den nominelle banen, og typisk returnere til banen etter at
hindringen er passert. Å returnere til banen er derimot ikke nødvendigvis optimalt. Å heller
replanlegge banen kan hindre flere unnamanøvre hvis det for eksempel er mange hindringer i
omr̊adet. Ved å implementere en todimensjonal banevariabel med en langsg̊aende banevariabel
og en normal banevariabel, s̊a kan den ønskede skipsposisjonen tolkes som et virtuelt skip. Ved å
benytte kontroll barriere funksjoner for å begrense utviklingen til banevariabelen s̊a kan banen
det virtuelle skipet tenger ut gjøres trygg. For at banen skal være trygg for det autonome skipet
s̊a m̊a banen i tillegg være mulig for skipet å følge. Derfor m̊a banens gjennomførbarhet i forhold
til skipets evne til å følge den undersøkes. En sammenligning av diverse metoder er verdifullt
slik at man kan bestemme hvilke metoder som resulterer i gjennførbare baner, og eventuelt til
hvilken grad.

Et system best̊aende av et virtuelt skip p̊a guidance niv̊a sammen med en line-of-sight guidance
lov ble designet. Tre virtuelle skipsmodeller fra literaturen ble ogs̊a implementert. De var en
partikkelmodell, en enhjulssykkelmodell og en potensialfunksjon. De virtuelle skipenes
sikkerhetskritiske kontrollere benyttet seg av barriere funksjoner, referert til som kontroll
barriere funksjoner (CBFer), samt kvadratisk programmering for å finne de trygge
kontrollinputene. Simuleringene ble gjennomført i MATLAB, og derfor ble den innebygde
funksjonen “quadprog” benyttet til å gjennomføre kvadratisk programmering. Forskjellige
CBFer fra literaturen ble implementert, avhengig av den virtuelle skipsmodellen. Disse var b̊ade
hybride of ikke-hybride CBFer. Line-of-sight guidance produserte en kursvinkel referanse for det
autonome skipet basert p̊a “cross-track” error til posisjonen til det virtuelle skipet. Det
autonome skipet skulle gjennomføre banesporing. En manøvreringsmodell for et ideelt skip ble
derfor implementert. Kontrolsystemet besto av en backsteppingkontroller. Kontrollallokering var
utenfor omfanget av denne oppgaven.

Resultatene viste en variende grad av gjennomførbarhet for banene. Det mest lovende resultatet
ble produsert av det virtuelle skipet modellert som en enhjulssykkelmodell med en ikke-hybrid
CBF og en modifisert hindring i den sikkerthetskristiske kontrolleren. Denne konklusjonen er i
stor grad basert p̊a sporingsavikene i langsg̊aende retning og normalt p̊a banen, samt størrelse p̊a
og glatthet i kontrollinputene til det autonome skipet. Enhjulssykkelmodellen med en hybrid
CBF utførte banesporing relativt bra, men med et par skifter frem og tilbake mellom CBFene
under unnamanøveren som for̊arsaket uønskede transienter i systemet. Partikkelmodellen som
benyttet seg av lineære hastigheter som kontrollinput, resulterte i en bane med skarpe svinger
som skipet til en viss grad hadde vanskeligheter med å spore. Dette resulterte i sub-optimal
oppførsel som ikke nødvendigvis er realistisk selv om skipet tilsynelatende klarte å spore det
virtuelle skipet under simuleringene. Potensialfunksjonen krevde urealistisk høye krefter og
moment for å gjennomføre banesporing.

Flere forslag til forbedringer diskuteres. Eksempler er å tune videre p̊a individuelle parametere i
de forskjellige metodene, og inkludere kontrollallokering i kontrollsystemet. I tillegg s̊a forsl̊as
det å utvide fra banesporing til banefølging, samt legge til flere og dynamiske hindringer. Videre
s̊a best̊ar miljøkreftene kun av strøm. Flere miløkrefter ville derfor gjort miljøet mer realistisk.
Dette krever en observer som var utenfor omfanget av dette arbeidet.
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Chapter 1

Introduction

1.1 Background and motivation

During auto-voyaging, autonomous ships usually follow a nominal path constructed prior to the
mission. This path is free of known static obstacles, yet unknown or dynamic obstacles may be
encountered during the voyage. These obstacles will force the vessel to deviate from the path.
Once the obstacles are passed the vessel usually returns to the nominal path. However, in many
cases, re-planning of the desired path could be advantageous, such as cases with multiple
obstacles present. It could eliminate the need for several evasive maneuvers.

The traditional maneuvering problem can be solved using a control Lyapunov function (CLF),
with the vessel states and a scalar path variable, s ∈ R, as arguments. By combining a CLF
with a control barrier function (CBF), safety can be ensured. Traditionally, the CBF works in
parallel with the CLF in CLF-CBF control designs, where the CBF and CLF will act on the
same control input. This leaves the desired path unchanged during evasive maneuvers. In
addition, the CBF design must take the vessel dynamics into account, which complicates the
design process. These limitations and complications motivates the topic of this thesis.

In the work, a two-dimensional path variable, ξ ∈ R2, will be used. ξ1 is the along-path distance
and ξ2 is the normal direction to the path. The desired position of the vessel, q = pd(ξ(t)), can
be interpreted as a virtual planar vessel. By employing a CBF to limit the evolution of the path
variable ξ(t), the path traced out by the virtual vessel is ensured safe. With the CBF acting on
the guidance level, obstacle avoidance capabilities are achieved without explicit knowledge of the
vessel dynamics. However, safety is only ensured if the vessel can follow the virtual vessel with
sufficient accuracy. Hence, several barrier functions and virtual vessel models will be explored,
and the feasibility of each combination will be investigated.

1.2 Objectives and scope of work

The objective of the thesis is to design a system where a vessel tracks trajectories traced out by
virtual vessels and explore the feasibility of the trajectories. During the voyage, an obstacle is
encountered and barrier functions are employed to restrict the evolution of the path variable,
ensuring that the virtual vessel trajectories are safe for the virtual vessel, at least. To achieve
this objective, the following tasks are defined:

1. Perform a background and literature review on:

• CLF-based control design, maneuvering control design, and path-following.
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• Collision avoidance algorithms for autonomous marine vehicles.

• CBFs for safety assurance, including applications for collision avoidance of autonomous
robots.

2. Establish a dynamic vessel model, for use in simulations. The vessel model shall contain
uncertainty in the dynamics.

3. Design a CLF-based controller that solves the traditional maneuvering problem for straight-
line paths traced out by q = pd(s)

4. Design and implement CBF-based safety critical controllers for selected kinematic vessel
models.

5. Modify the CLF-based controller from item 3 to accommodate a two-dimensional path
variable, ξ ∈ R2. Let the virtual point, q = pd(ξ), emulate the kinematic vessel considered
in item 4, with the safety-critical controller giving obstacle avoidance capabilities.

6. Explore the feasibility of the path traced out by q(t) = pd(ξ(t)) for each virtual vessel
model during obstacle avoidance maneuvers.

The scope of the thesis is limited by the assumptions and delimitation in Section 2.1.1.

1.3 Literature review

1.3.1 Control Lyapunov function based control design

Control Lyapunov functions can be employed to perform an integrator backstepping control
design. According to Fossen (2021), the idea of integrator backstepping appeared almost
simultaneously in Koditschek (1987), Sontag & Sussmann (1988), Tsinias (1989), and Byrnes &
Isidori (1989). Developments and extensions of these are found in many later publications, such
as ideas of adaptive and nonlinear backstepping designs which are described in Krstic et al.
(1995). Fossen (2021) focuses on practical designs with implementation considerations for
mechanical systems by exploring nonlinear properties of the systems. Fleischer (2020) uses
designs explored in Fossen (2011) in the backstepping design in her thesis. This design is
implemented with a one-dimensional path variable. Jensen (2020) uses a similar design with a
two-dimensional path variable, citing Skjetne (2020b). The backstepping design in Skjetne
(2020b) is a cascade-backstepping control design, which the control design in this thesis is based
on. Skjetne (2005) presents constructive designs based on ISS (input-to-state stable)
backstepping and adaptive backstepping to solve the maneuvering problem.

Another application of CLFs in control design is sliding mode control (SMC). Various methods
of SMC with applications to marine crafts exists and appears in e.g. Yoerger & Slotine (1985),
Healey & Lienard (1993), McGookin et al. (2000a) and McGookin et al. (2000b). Fossen (2021)
discusses conventional integral SMC and the adaptive-gain super-twisting algorithm (STA).
Conventional integral SMC can be used to design robust autopilots for heading, course, speed and
depth control. In addition to this, STA has the advantage that it drives the sliding variable and
its derivatives to zero in the presence of disturbances and uncertainties (Fossen 2021). Skjetne
(2005) also presents a design based on SMC to solve the maneuvering problem, in addition to
the backstepping designs mentioned above.

2



1.3. Literature review

1.3.2 Maneuvering control design and path-following

Skjetne (2005) states that in many applications the most significant objective is to steer an
object along a desired path. Control problems for these applications are usually divided into a
geometric and a dynamic task. The geometric task aims to force the output of the system,
usually the position, to reach and follow a desired output as a function of a path variable. The
dynamic task is usually a specified speed assignment. In the tracking problem, these tasks are
merged into one. In the path following problem the output should converge to and follow the
desired path without any dynamic requirements along the path. Skjetne (2005) focuses on
bridging the gap between these two concepts, resulting in the maneuvering control concept. In
maneuvering, the problem is separated into two tasks, where path following is the first and most
important task. The second task, which has a lower priority, is to satisfy a desired dynamic
behaviour along the path. It is satisfied when tracing the path perfectly. However, the dynamic
behaviour can be sacrificed if the vessel struggles to trace the path in order to achieve a more
accurate path following (Skjetne 2005). Skjetne (2005) focuses on a one-dimensional path
variable, while Skjetne (2020b) introduces a two-dimensional path variable in dynamic
positioning (DP) conditions, i.e. assuming low speeds and a fully actuated vessel. A fully
actuated vessel is able to control all its degrees of freedom (DOFs) (Fossen 2021). Jensen (2020)
uses the design in Skjetne (2020b) in harbour maneuvering.

Furthermore, several motion control scenarios are found in Fossen (2021), including path tracking
and path following. For the tracking problem, if there is no available information about the path
in advance, target tracking is possible. The goal is then to track a moving or stationary object
without information about the future motion of the object. Examples include line-of-sight (LOS)
guidance and pure-pursuit guidance. With regards to path following, Fossen (2021) presents
multiple design methods, such as linear design methods and LOS guidance laws for path following
using course autopilots. Examples of LOS guidance laws for path following is look-ahead- and
enclosure-based LOS steering, which are classifications of proportional LOS guidance laws made
in Breivik & Fossen (2009). Proportional LOS guidance laws are described in Fossen (2021, Ch.
12.4), and finds the desired course angle using a proportional gain (see (12.79) in Fossen (2021,
pp. 333)).

1.3.3 Collision avoidance algorithms for autonomous marine vehicles

Huang et al. (2020) defines collision avoidance (COLAV) as “a process in which one ship
(manned or unmanned) departs from its planned trajectory to avoid a potential undesired
contact a certain time in the future”. Techniques to avoid collisions are called collision
prevention techniques. Huang et al. (2020) offers an overview of collision prevention techniques
based on motion prediction, conflict detection and conflict resolution. Strengths and weaknesses
of COLAV methods are discussed, where limitations and new challenges are highlighted.
Examples of such methods include rule-based methods and re-planning algorithms. A rule-based
method could be incorporating the International Regulations for Preventing Collisions at Sea
(COLREG) (IMO 1972) into the rule system guiding collision avoidance. Examples of
re-planning algorithms are graph searching algorithms, where the goal is to find an optimal
collision-free path. In this regard, Huang et al. (2020) compares research done on manned and
unmanned ships, and how research in the domains can benefit from each other.

COLAV is also known as sense-and-avoid (Brekke et al. 2019). The COLAV system must perceive
surrounding obstacles in order to perform evasive maneuvers. Brekke et al. (2019) provide a
“bird-eye overview” of developments and experiments performed in the Autosea project focusing
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on algorithm design for target tracking and COLAV. According to Brekke et al. (2019), target
tracking is an important tool to perform evasive maneuvers, as the unknown motion of obstacles
must be estimated. Tracking methods perform data association to link detections made from
subsequent images, which can be used to establish tracks and their kinematic attributes. To
avoid obstacles, methods vary from path planning to reactive methods integrated into the control
system. Path planning methods are described as global methods where an obstacle-free path is
constructed prior to a mission. Reactive methods is a form of local methods where obstacles
are detected and avoided during a mission. A form of reactive COLAV is the implementation of
CBFs in the motion control system (Marley, Skjetne, Breivik & Fleischer 2020). Such a method
with CBFs based on COLREGS is proposed in Thyri et al. (2020). The COLREGS are used to
define a collision-free set. From this, a CBF is formulated and applied as an inequality constraint
in a Guidance, Navigation and Control (GNC) system, with an optimization-based trajectory
tracking or thrust allocation system.

1.3.4 Control barrier functions for safety assurance

Ames et al. (2019) provide an introduction to and overview of recent work on CBFs, and their
use to verify and enforce safety properties in the context of safety-critical controllers. According
to Ames et al. (2019), one of the main drivers of research on safety and CBFs is the recent
interest in autonomous systems, particularly as many are expected to operate in unknown or
unstructured environments. This makes enforcing safety properties difficult. The other is the
recent introduction of CBFs suggesting that many control design techniques based on Lyapunov
and control Lyapunov functions can be suitably modified to address safety considerations. Ames
et al. (2019) discusses applications of CBFs to several robotic systems, such as the “stepping
stone” problem, where a robot must walk safely on a series of stepping stones.

Marley, Skjetne, Breivik & Fleischer (2020) highlight the need for autonomous systems to be
resilient, that is the control system must be stable, robust, and safe. Of these, the paper focuses
on the concepts of safety and robustness, and proposes a CBF-based hybrid kinematic controller
for obstacle avoidance. The hybrid controller ensures robustness, while the CBF ensures safety.
The performance of the controller is illustrated by simulations using an underactuated ship. A
non-hybrid CBF is unable to ensure safety of vehicles required to maintain a non-zero forward
speed. This is due to vanishing control authority when the vehicle is pointed directly at the
obstacle (Marley et al. 2021). Marley et al. (2021) therefore proposes synergistic CBFs for
nonholonomic vehicles where the orientations with vanishing control authority are shifted,
inducing a penalty for passing an obstacle in one direction or the other. The preferred direction
is determined by a logic variable.

Basso et al. (2020) presents a unified framework for safety-critical control of ASVs for maneuvering,
dynamic positioning (DP), and control allocation, with safety guarantees in the presence of
unknown ocean currents. It utilizes CLF and CBF based quadratic programs (QP). Integral
action is added to the CLFs to counteract the effect of the currents. Current estimates are
constructed for robust CBF design, and analytic conditions under which the estimates guarantee
safety are defined. The framework is verified using simulations with a double-ended passenger
ferry.
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1.4 Contributions

The main contribution of this thesis is a comparison of different trajectories in trajectory tracking
during evasive maneuvers for an autonomous ship, focusing on the feasibility. The trajectories
are traced out by a virtual vessel (VS), and different VS models are explored in combination
with various barrier functions to activate the evasive maneuvers of the VS. That is, they are
incorporated into the VS control design to create the safety-critical controllers for the VS. The
feasibility of the trajectories are investigated through simulations in MATLAB with an OS
modelled as an idealized maneuvering model. The OS controller uses a backstepping design
method with a two-dimensional path variable. The thesis thus combines the exploration of various
VS models, (control) barrier functions (C)BFs, and a two-dimensional path variable to give an
indication of the feasibility of the different methods in trajectory tracking. The conclusions can
be used to determine the focus of further research into collision avoidance methods using virtual
vessels with safety-critical controllers based on (C)BFs, and two-dimensional path variables.

1.5 Outline

The report is structured as follows. Chapter 2 contains the problem formulation, with the
system description, assumptions and delimitation, and problem statement. Chapter 3 presents
a two dimensional path parametrization ξ. This is followed by Chapter 4, which presents the
different barrier functions and control barrier functions used to activate the evasive maneuvers
of the VS. The VS models, which trace out the trajectory q(t) = pd(ξ(t)), are presented in
Chapter 5. These include a particle model, a unicycle model, and a potential function. The
OS maneuvering model is described in Chapter 6. The simulation code algorithm, simulation
parameter values, and simulation results are presented in Chapter 7, with some discussions of
the individual results. The final discussion and conclusions are made in Chapter 8, along with
suggestions for further work.
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Chapter 2

Problem formulation

2.1 System description

The International Maritime Organization identifies four degrees of ship autonomy (IMO n.d.).
These are:

1. Ship with automated processes and decision support.

2. Remotely controlled ship with seafarers on board.

3. Remotely controlled ship without seafarers on board.

4. Fully autonomous ship.

Degree 4 is the subject of this thesis. IMO (n.d.) describes this as the case where “the operating
system of the ship is able to make decisions and determine actions by itself”. These vessels are
known as ASVs (autonomous surface vessel).

Marine crafts can in general be described to move in six DOFs. This requires six independent
coordinates to determine position and orientation of the craft (Fossen 2021). Fossen (2021)
defines the position in the North-East-Down frame (NED), and the orientation by the Euler
angles (roll, pitch and yaw). The Euler angles describes the orientation of the body-fixed
reference frame with respect to the NED-frame. The body-frame motions are defined as surge,
sway, heave, roll, pitch and yaw. An illustration of motions in 6-DOFs is included in Figure 2.1.
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Figure 2.1: 6-DOF motions of a surface vessel. Adapted from Fossen (2020).

In the case of an ASV, it is assumed metacentrically stable (Fossen 2021). That means that the
restoring forces will resist inclinations in heave, roll, and pitch away from the equilibrium points
(Fossen 2021, pp. 68). These are at zero inclination. It it thus reasonable to neglect motions in
heave, roll, and pitch. The result is a 3-DOF kinematic equation of motion,

η̇ = R(ψ)ν, (2.1)

where η := [x y ψ]> is the ASV’s position and orientation in the North-East-frame (NE).
ν := [u v r]> denotes the ASV’s linear and angular velocities in body-frame (SNAME 1950).
R(ψ) denotes the rotation matrix from body- to NE-frame.

R(ψ) :=

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.2)

For local navigation (navigation within a geographical area of about 10 km × 10 km), the
NE-frame is assumed inertial (Fossen 2021). Figure 2.2 shows the rotation from the inertial
NE-frame, denoted by {n}, to body-frame, denoted by {b}. This thesis concerns maneuvering at
open sea in the transit phase of the voyage. When the ship is not in an evasive state, the speed
is close to constant, and it is assumed that the speed in surge direction u is much larger than the
speed in sway direction v. Consequently the total speed of the ASV is Us =

√
u2 + v2 ≈ u. A

constant, irrotational (no angular velocity) current, is applied to the ASV in the simulations.
Figure 2.2 shows the effects of such a current. The angle between the true North and Us is
known as the course angle χ. The angle between the body-frame x-axis, xb, and Us is called the
crab angle, β, (also known as the drift angle), while the angle between xb and the total relative
speed between the ASV and the current, Ur, is the sideslip angle βs. The course angle is defined
as χ := ψ+ β. The relative course angle is defined as χr := ψ+ βs. If there is no current present,
βs = β as Ur =

√
u2r + v2r =

√
(u− uc)2 + (v − vc)2, as the current’s surge and sway velocities

uc = vc = 0. The ASV in this thesis is not exposed to any other environmental disturbances or
forces other than current during the simulations.
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Figure 2.2: Ocean current triangle in the horizontal plane. Adapted from Fossen (2021).

The control objective in the simulations is to make the ASV track a desired trajectory. From
now on the ASV will be referred to as the own-ship (OS). The term is from Huang et al. (2020),
where it refers to the ship under control. The trajectory is traced out by a virtual vessel (VS),
which is either defined by a particle model, a unicycle model, or a potential function. The
particle model is a first order particle model with linear velocities as control input. Linear
velocities are the control inputs in the potential function model as well, while the control inputs
in the unicycle models are the heading rate and linear acceleration in surge. The control inputs
are in the case of the particle model and unicycle model limited by a CBF, thus limiting the
evolution of the path variable ξ. The design with a potential function utilizes a barrier function
to limit the gradient of the potential function, and the control input is given by the negative
valued gradient of the potential function. The vessel models of the VSs and the OS are
addressed in Chapter 5 and 6 respectively, and therefore not discussed in detail in this section.
The OS control system is based on a backstepping control design (Section 6.3). A visual
overview of the total system in the form of a flow diagram is provided in Figure 2.3.

Guidance system Control system

Virtual

control

Virtual

ship
Control law

q, model-specific 
feedback

q, q�, �, �d, �d

�d �
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�, �, �
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Z

p

xe
p
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p

Figure 2.3: System flow diagram.
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The guidance system consists of the VS and a LOS guidance law. The VS outputs the desired
position q, the derivative of the desired position with respect to the path variable, qξ (ξ denotes
the path variable), the time derivative of the path variable, ξ̇, and the desired course rate χ̇d and
its derivative. The outputs is used as input to the control system. In addition, it outputs the VS
heading unit vector Z, which is used to compute the along-track and cross-track errors of the
OS with respect to the VS position. The tracking errors in combination with Z is utlized in the
LOS guidance law to find the desired course angle χd. The OS controller outputs the forces in
surge and sway, and moment in yaw in the vector τ . τ is used in the vessel model to determine
body-frame accelerations ν̇, which gives the body-frame velocities ν through Euler integration.
By (2.1), ν gives the NE-frame position and heading vector, η. η, ν and ν̇ is fed back to the
control system, while the OS position p is fed back to the LOS guidance law.

2.1.1 Assumptions and delimitation

The assumptions and delimitation of the system design and simulations are as follows:

• The OS is sufficiently metacentrically stable. This results in a 3-DOF, horizontal plane
vessel model with dynamics in surge, sway, and yaw. Motions in heave, roll, and pitch are
neglected.

• Local navigation results in an inertial NE-frame. Hence, the forces from the Earth’s rotation
are negligible (Fossen 2021).

• The ASV is assumed to be a rigid-body. This assumption removes the need to consider forces
acting between individual mass elements. According to Fossen (2021), this assumption,
along with the assumption of an inertial NE-frame, is necessary to derive the equations of
motion.

• The vessel model is extracted from Marley (2020b). This model is assumed fore-aft and
port-starboard symmetric. This ensures diagonal rigid-body and added mass matrices with
midship as reference point. The hydrodynamic damping matrix is also assumed diagonal.
These assumptions mean that the only coupling terms are due to Coriolis forces.

• The OS is assumed fully actuated in the horizontal plane. It can thus control all 3 DOFs
independently. There are no limitations on the surge and sway forces, and yaw moment
produced, as it is outside the scope of the thesis.

• The only environmental force, τenv, is the current force. It is not measured and acts as an
unknown bias.

• It is assumed that the obstacles encountered are static and that the OS is able to detect
the obstacles.

• The positions of the OS and the obstacle are measured perfectly, i.e. there is no uncertainty
or noise in the measurements.

• Inclusion of the COLREGS in the design of the barrier functions is outside the scope of
the thesis.

2.2 Problem statement

The research question addressed in the thesis is: To what degree are the paths traced out by the
virtual vessels feasible during obstacle avoidance maneuvers for the vessel model implemented,
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2.2. Problem statement

and how do they compare? The motivation for the thesis is explored in Section 1.1. In short, the
implementation of a two-dimensional path variable allows re-planning of the VS path. In
combination with barrier functions, such as CBFs, acting on a guidance level, the limitations
and complications of a traditional CLF-CBF design are eliminated. However, safety is only
ensured if the OS is able to track the trajectories traced out by the VS. Therefore, several
designs are explored and compared to determine which of the implementation(s) is(are) the most
feasible, and to what degree.

The nominal path is constructed from a known, initial position in the NE-frame. An obstacle is
placed on the path, with a specified safety radius. The vessels must stay outside this safety
radius. The (C)BF decides when the VS activates an evasive maneuver and when, or if, the VS
should return to the nominal path. The simulations end if the VS is unable to pass the obstacle,
or the OS reaches a specified point in the NE-frame along the trajectory it is tracking. The
implementations and simulations are performed in MATLAB and the flow diagram in Figure 2.3
is a good representation of the structure of the MATLAB code.

The guidance system consists of the safety-critical controller, the VS model, and the LOS
guidance law. Their purpose is to form the desired trajectory, and activate an evasive maneuver
if required. The safety-critical controller and VS model computes the desired position and
heading unit vector of the VS, along with other outputs fed to the OS controller. The evolution
of the path variable is limited by the (C)BFs implemented for each VS model. The purpose of
the LOS guidance law is to compute the desired course angle for the OS and feed it to the OS
controller. The computation is based on the cross-track error and the heading unit vector of the
VS.

The backstepping control design in the control system computes the generalized forces and
moments in each DOF based on the outputs from the guidance system and the feedback from
the OS vessel model. The control objective is to track the desired trajectory. An integral effect
is included in the control design to reduce the steady-state error in sway direction due to the
applied current.

The position, velocity, and heading of the OS and the obstacle are assumed known or perfectly
measured, and available at all times. With this assumption, no observer is implemented. Hence,
no navigation system block is included in the flow diagram, although this is part of a Guidance,
Navigation, and Control (GNC) system on an ASV. For simplicity, the system will still be
referred to as the GNC system.

All of the above systems and their implementations are presented in the following chapters.
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Chapter 3

Path parametrization

According to Skjetne (2005), the primary control objective of a control system is often to steer
an object towards a desired path, denoted the geometric task of the system. The dynamic task
of the system could be a speed assignment. In a tracking problem, such as the one addressed in
this thesis, these two tasks are merged into one. Skjetne (2005) presents the two tasks as follows:

1. Geometric task: force output y to converge to a desired path yd, parametrized by the path
variable s, such that

lim
t→∞
|y(t)− yd(s(t))| = 0.

2. Dynamic task: force ṡ to converge to a desired speed assignment v(s, t), such that

lim
t→∞
|ṡ(t)− v(s(t), t)| = 0.

3.1 Path planning and path generation

Before defining the path parametrization, a short introduction to path planning and path
generation is given. Path planning and generation are parts of the guidance system in a GNC
system where way-points (WPs), a reference speed ud, a reference heading ψref , and
lines/curves connecting the points are generated. The WPs are given as Cartesian coordinates in
the NE-frame (p = [x y]>), and their purpose is to “indicate changes in direction, speed, and
altitude along a desired path” (Fossen 2021). In order to facilitate a feasible path for the vessel
to follow, the WP generation must follow some restrictions related to the vessel’s specifications
and dynamics. An example is the turning rate that the vessel can perform, resulting in a limit
on the curvature of the path, where successive WP placement is significant. Re-planning of the
WPs can be done to consider changes in weather, or to perform evasive maneuvers. The path
generator connects the points using straight lines or curved paths. Fossen (2021) discusses
several methods for path generation, such as path generation using straight lines and inscribed
circles, and straight-line paths based on circles of acceptance. The first connects the WPs using
straight lines connected to circles with a specified radii surrounding the WPs. The downside of
this method is that the turning rate along straight lines equals 0, while it has a constant value
along the arc of the circle in steady-state. This results in a jump in the turning rate in the
transition phase between the straight line and the arc, leading to a small offset in cross-tracking.
The second method uses straight-line segments and a switching mechanism when the vessel
enters a radius of acceptance around the next WP, resulting in a jump to the following WP in
the list of WPs. Another possibility is to switch to the following WP when the vessel is within a
certain along-track distance. This may be a more intuitive and suitable switching mechanism.
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This thesis concerns straight-line nominal paths in trajectory tracking scenarios. The following
section presents a straight-line path parametrization using an along-path and path normal
variable. The path variable identifies where along a path, or path section, the vessel is located.
The path parametrization describes this mathematically.

3.2 Path parametrization using two path variables

This section is based on Skjetne (2020a) and Marley (2021b). An illustration of the path
parametrization with a two-dimensional path variable is included in Figure 3.1.

Define the two-dimensional path variable as ξ := [ξ1 ξ2]> ∈ R2. ξ1 ∈ R is the along-path variable
and ξ2 ∈ R is a path normal variable. Let d1, d2 ∈ R2 be the two points defining the straight line
path pd where q = pd(ξ) is the current position of the virtual ship (VS) tracing out the desired
path. Defining the unit tangent vector T ∈ S1 and the unit normal vector N ∈ S1 as

T :=
d2 − d1
|d2 − d1|

, N := ST =

[
0 −1

1 0

]
T, (3.1)

where S is a rotation matrix corresponding to a 90o counterclockwise rotation and S1 denotes
the unit circle. A straight-line can be parametrized by the along-path variable as

q := ξ1(d2 − d1) + d1. (3.2)

Introducing the path normal variable, the path parametrization becomes

q := ξ1(d2 − d1) + ξ2S(d2 − d1) + d1 = |d2 − d1|
[
ξ1

(d2−d1)
|d2−d1| + ξ2S

(d2−d1)
|d2−d1|

]
+ d1. (3.3)

Defining L := |d2 − d1| ∈ R (the norm of d2 − d1, i.e. the Euclidean distance between the two
points) and simplifying, the desired path is parametrized by

q := L(ξ1T + ξ2N) + d1. (3.4)

When ξ2 = 0, (3.4) reduces to (3.2). Differentiating (3.4) with respect to ξ gives

qξ =
[
qξ1 qξ2

]
= L

[
T N

]
∈ R2×2. (3.5)

The reference value for the derivative of the path variable (the speed assignment), ξ̇, is defined
as v(ξ) := [v1(ξ) v2(ξ)]

>. The derivative of q is

q̇(ξ) = qξ ξ̇. (3.6)

To maintain a constant reference speed ud, the requirement

|v(ξ)| = |ud|
L

(3.7)

is introduced. The speed assignment becomes

ξ̇ → v(ξ). (3.8)
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N

T

d2

d1

q
ud

1
2

1, 2 = 0

1 = 1,

2 = 0

Figure 3.1: Path showing q at an offset from the straight-line nominal path, such as during
evasive maneuvers, where ξ2 is activated.
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Chapter 4

Barrier functions

Ames et al. (2019) defines a safety-critical system as a system where safety is a major design
consideration. They distinguish the liveness property, or the requirement that “good” things
eventually happen, and safety, the requirement that “bad” things does not happen. An example
of a liveness property could be asymptotic stability as this means that an asymptotically stable
equilibrium point is eventually reached (see Theorem 4.1 in Khalil (2015) for definition of an
asymptotically stable equilibrium point). Invariance can be defined as a safety property as any
trajectory starting inside an invariant set will not reach the complement of the set being the
locus where “bad” things occur. According to Ames et al. (2019), the study of safety dynamical
systems, ż = f(z), dates back to the 1940’s with Nagumo’s Theorem, which gives the necessary
and sufficient conditions for set invariance (Nagumo 1942). Note that z refers to the state vector.
Given the system ż = f(z) with z ∈ Rn, assume that the safe set C is the superlevel set of a
smooth function h : Rn → R, that is, C = {z ∈ Rn : h(z) > 0}, and that ∂h

∂z (z) 6= 0 for all z
such that h(z) = 0. Then the necessary and sufficient conditions for set invariance is given by
Nagumo’s Theorem based on the derivative of h on the boundary of C:

C is invariant ⇔ ḣ(z) ≥ 0 ∀ z ∈ ∂C,

where ∂C is the boundary of C. In the 2000’s, barrier certificates were introduced in Prajna &
Jadbabaie (2004) and Prajna (2006), as a tool to formally prove safety of hybrid and nonlinear
systems (Ames et al. 2019). In that case, an unsafe set Cu and a set of initial states, C0 is
considered, along with a function B : Rn → R. B(z) ≤ 0 for all z ∈ C0 and B(z) > 0 for all
z ∈ Cu. B is a barrier certificate if

Ḃ(z) ≤ 0⇒ C is invariant.

By picking C = Ccu (safe set C is the complement of the unsafe set Cu) and B(z) = −h(z), the
barrier certificate becomes ḣ(z) ≥ 0, implying that C is invariant. These conditions reduce to
Nagumo’s Theorem on the boundary. In order to address open dynamical systems, such as
control systems given by ż = f(z) + g(z)U , where U is the control input, required moving from
invariant sets to controlled invariant sets (Ames et al. 2019). This requires a suitably designed
controller. The extension of the barrier certificate led to the first definition of a CBF in Wieland
& Allgwer (2007). The following section describes the barrier functions and CBFs utilized in the
control design in Chapter 5. Details regrading the controllers and the virtual vessel designs are
presented there, and therefore not discussed in this chapter.
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4.1 Simple control barrier function

A simple form of barrier function dependent on the virtual ship (VS) position q presented in
Marley, Skjetne, Breivik & Fleischer (2020) is

B(q) := |q − pobs| − rs. (4.1)

Note that (4.1) gives B(q) ≥ 0, i.e. the conditions above changes sign. This is a matter of
definition of B(q). (4.1) becomes a CBF with the condition

Ḃ(q) =
(q − pobs)>

|q − pobs|
(q̇ − ṗobs) =

(q − pobs)>

|q − pobs|
qξ ξ̇ =

(q − pobs)>

|q − pobs|
qξU =: LgB(q)U ≥ −α(B). (4.2)

LgB(q) is the Lie derivative of B(q) in the direction of g, as the affine control system is
q̇ = f(q) + g(q)U = qξ ξ̇ = qξU (Marley 2021b, Section 3.1.1). pobs is the position of the obstacle
in the NE-frame such that pobs = [xobs yobs]

>. Assuming that the obstacle is static, ṗobs = 0. rs
is the safety radius around pobs, of which the VS and OS must stay outside when passing the
obstacle. The control input U is defined as ξ̇. Along the straight-line path U = V , where V is
the nominal control input. However, when the CBF condition no longer holds with this control
input, U is determined through quadratic programming, such as presented in Thyri et al. (2020).
This is discussed further in Chapter 5. The safe set, C, for q is defined as

C := {q ∈ R2 : B(q) ≥ 0}, (4.3)

∂C := {q ∈ R2 : B(q) = 0}, (4.4)

α(B) in (4.2) is a class K function (strictly increasing and α(0) = 0 (Khalil 2015, pp. 144)),
which ensures forward invariance of the set C without restricting any sublevel set of C to be
forward invariant (any q belonging to C will remain in C for all future time instants) by allowing
Ḃ(q) to become increasingly negative as the value of B(q) increases (Thyri et al. 2020). Thyri
et al. (2020) also proposes a linear function such that

α(B(q)) = γB(q), (4.5)

where γ > 0 is a constant, sufficiently small to ensure a region 0 < B(q) < Blim. This restricts
U to reasonable inputs with respect to the own-ship (OS) dynamics, in an attempt to make the
trajectory traced out by the VS feasible for the OS to track.

Marley (2021a, Lemma 3) shows that a non-hybrid control law (hybrid dynamical systems are
introduced in Section 4.2) defined by quadratic programming, such as the above, has equilibrium
points along the boundary of the obstacle. That is, U = 0. This is not desirable, and hence
Marley (2021a) presents a synergistic CBF design based on Marley et al. (2021), which shifts the
undesired equilibria. Together with a QP based controller, this can render a compact set (closed
and bounded) UGAS (uniformly globally asymptotically stable) in the presence of obstacles
(Marley 2021a). Such a CBF design from Marley et al. (2021) is presented in the following
section.

4.2 Synergistic control barrier function

For vehicles required to maintain a non-zero forward speed, ordinary CBFs cannot be utilized to
ensure safety. This is due to vanishing control authority when the vehicle is oriented directly
towards the obstacle. Marley et al. (2021) therefore propose synergistic CBFs for obstacle
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avoidance for nonholonomic vehicles, such as rudder controlled ships. These are constructed by
shifting the orientations with vanishing control authority, which induces a penalty for passing the
obstacle clockwise or counterclockwise. A logic variable, l, determines the preferred direction.

The introduction of l means that the system becomes a hybrid dynamical affine control system
of the form

H :

{
ż = f(z) + g(z)U, z ∈ C,
z+ ∈ H(z), z ∈ D.

(4.6)

This is a special case of hybrid inclusions discussed in Goebel et al. (2012), where u denotes the
control input. The state z ∈ Rn may evolve in both continuous time (flow) and discrete time
(jumps). C refers to the flow set and D refers to the jump set. l ∈ L evolves in discrete time
only. The barrier function is given by B : Z→ R where Z ⊂ Rn is continuously differentiable
and defines the set

C := {z ∈ Z : B(z) ≤ 0}, (4.7)

∂C := {z ∈ Z : B(z) = 0}. (4.8)

Define Z := Z× L and let B be a continuously differentiable function B : Z → R. Then (4.3)
and (4.4) can be modified to include the logic variable l.

C := {(z, l) ∈ Int(Z) : B(z, l) ≤ 0}, (4.9)

∂C := {z, l) ∈ Int(Z) : B(z, l) = 0}, (4.10)

Denoting the control input as U , a requirement for B(z, l) to be a CBF for the control system is
that there exists an α(B), as mentioned in Section 4.1, such that

LfB(z, l) + LgB(z, l)U ≤ −α(B(z, l)), (4.11)

where LfB(z, l) and LgB(z, l) are the Lie derivatives (directional derivative) of B (see Khalil
2015, pp. 509-510). Marley et al. (2021) derive a synergistic CBF candidate as follows.

Synergistic CBF candidate
Let ψref be the heading of the VS. As mentioned, control authority vanishes if the VS is directed
directly towards pobs. Define ψv ⊂ Z as

ψv := {(z, l) ∈ Z : LgB(z, l) = 0 and LfB(z, l) ≥ 0}, (4.12)

where ψv is the set of ψref with vanishing control authority (set of critical orientations). Define

M(z) := min
l∈L

B(z, l). (4.13)

The synergy gap is consequently defined as

µ := inf
(z,l)∈ψv

(B(z, l)−M(z)). (4.14)

If µ > 0, then B is a synergistic CBF candidate for the system. Selecting a δ such that 0 < δ < µ,
the jump and flow sets become

D := {(z, l) ∈ Z : M(z)−B(z, l) ≤ −δ}, (4.15)

C := (Rn�D) ∪ ∂D. (4.16)
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The affine control system becomes

H :

{
ż = f(z) + g(z)U, l̇ = 0, (z, l) ∈ C,
l+ ∈ H(z), z+ = z, (z, l) ∈ D,

(4.17)

where H(z) := {l ∈ L : B(z, l) = M(z)}. If there exists an α(B) satisfying (4.11), B is a
synergistic CBF candidate.

The CBFs in Marley et al. (2021) consist of a non-hybrid CBF, which loses control authority
when the VS is directed directly towards pobs and a synergistic CBF with shifted orientations
clockwise or counterclockwise based on l, resulting in a preferred turning direction. The VS
model used in combination with these CBFs is a unicycle model, which is discussed in Section
5.3. These two CBFs are eventually combined into a new synergistic CBF, which ensures safety
even when the VS is in the interior of the safety radius rs. This extends the logic variable l such
that

l :=

[
l0
l1

]
∈ L0 × L1 =: L, (4.18)

where L0 := {0, 1} and L1 := {−1, 1}. When l0 = 1 the VS is in an evasive mode, while l1 assigns
preferred turning direction.

Non-hybrid CBF
The non-hybrid CBF is as follows:

B0(q, Z) := rs − |q − pobs| − t0ud
(q − pobs)>

|q − pobs|
Z, (4.19)

where B0 : Z × S1 → R (S1 := {Z ∈ R2 : Z>Z = 1} denotes the unit circle), Z ∈ S1 is the
unit heading vector, q is the position of the VS, rs is the safety radius around the obstacle
position pobs, and the last term is the relative velocity between the VS and the obstacle weighted
by a time constant t0 ∈ R>0. ud is the desired forward speed of the VS. Note that (4.19)
resembles (4.1), except it has the opposite sign and (4.1) does not take the relative velocity into
consideration.

The states of the system are therefore (q, Z, l) ∈ R2 × S1 × L, and with the unicycle modelling
described in Section 5.3, the affine control system is[

q̇

Ż

]
= f(Z) + g(Z)U, l̇ = 0, (4.20)

f(Z) :=

[
Zud

0

]
, g(Z) :=

[
0

SZ

]
. (4.21)

The Lie derivatives of B0 are

LfB0(q, Z) = −ud
(q − pobs)>

|q − pobs|
Z − t0

u2d
|q − pobs|

(
(q − pobs)>

|q − pobs|
S>Z

)2

, (4.22)

LgB0(q, Z) = −t0ud
(q − pobs)>

|q − pobs|
SZ. (4.23)
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Control authority vanishes for

ψv0 = {(q, Z, l) ∈ Z : LgB0(q, Z) = 0 and LfB0(q, Z) ≥ 0}, (4.24)

and this occurs when the VS is directed directly towards or away from the obstacle. The safe set
is defined by B0 as

C0 := {(q, Z, l) ∈ Int(Z) : B0(q, Z) ≤ 0}. (4.25)

ψv0 ∩ C0 6= ∅, motivating a hybrid CBF.

Synergistic CBF
The synergistic CBF B1 : Z× S1 ×L1 → R must be able to shift the set of critical orientations.
To enable this, Marley et al. (2021) introduces a function P : Z× S1 × L1 → [−1, 1],

P := P (q, Z, l1) :=
(q − pobs)>

|q − pobs|
R(Z l1k1)Z, (4.26)

with k1 ∈
(
0, π2

)
and

R(Z l1k1) :=

[
cos(l1k1) −sin(l1k1)

sin(l1k1) cos(l1k1)

]
. (4.27)

R(Z l1k1) shifts the critical orientations by l1k1 radians in the counterclockwise direction. B1 is
then defined as

B1(q, Z, l1) := rs − |q − pobs| − t1ud(P (q, Z, l)− sin(k1)). (4.28)

t1 ∈ R>0 is a time constant. sin(k1) ensures forward invariance of C1 (see proposition 3 in Marley
et al. (2021)), where B1 defines C1 as

C1 := {(q, Z, l) ∈ Int(Z) : B1(q, Z, l1) ≤ 0}. (4.29)

The directional derivatives of B1 are

LfB1(q, Z, l1) = −ud
(q − pobs)>

|q − pobs|
Z − t1udLfP (q, Z, l1), (4.30)

LgB1(q, Z, l1) = −t1udLgP (q, Z, l1), (4.31)

where the directional derivatives of P are

LfP (q, Z, l1) =
ud

|q − pobs|
(q − pobs)>

|q − pobs|
SZ

(q − pobs)>

|q − pobs|
R(Z l1k1)SZ, (4.32)

LgP (q, Z, l1) =
(q − pobs)>

|q − pobs|
R(Z l1k1)SZ. (4.33)

The set of critical orientations becomes

ψv1 := {(q, Z, l) ∈ Z : LgB1(q, Z, l1) = 0 and LfB1(q, Z, l1) ≥ 0}. (4.34)

The synergy for B1 is defined as

µ1 := inf
(q,Z,l)∈ψv1

{B1(q, Z, l1)−M1(q, Z)}, (4.35)

where
M1(q, Z) := min

l1∈L1
B1(q, Z, l1). (4.36)
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Combination of the non-hybrid CBF and the synergistic CBF
The final CBF combining the non-hybrid CBF and the synergistic CBF is

B(q, Z, l) := (1− l0)B0(q, Z) + l0B1(q, Z, l1), (4.37)

where the logic variable l0 decides whether B = B0 or B = B1, and therefore also the directional
derivatives of B. B defines the set

C := {(q, Z, l) ∈ int(Z) : B(q, Z, l) ≤ 0}. (4.38)

The critical orientations are defined as

ψv := {(q, Z, l) ∈ Z : LgB(q, Z, l) = 0 and LfB(q, Z, l) > 0}, (4.39)

and the synergy gap is
µ := inf

(q,Z,l)∈ψv

{B(q, Z, l)−M(q, Z)}, (4.40)

with
M(q, Z) := min

l∈L
B(q, Z, l). (4.41)

For the control input to be safe, the requirement is

LfB(q, Z, l) + LgB(q, Z, l)U ≤ −α(B(q, Z, l)), (4.42)

where α(B) is defined by (4.5).

With the assumptions that:

1. the set of control inputs is a compact convex set (a closed and bounded set, which contains
the entire segment connecting two points) containing a neighbourhood of the origin,

2. there exists a control law, which is continuously differentiable, such that the compact set
A ⊂ R2 is UGAS for the obstacle free system,

3. the intersection of A and the obstacle domain is empty,

Marley (2021a, Theorem 1) proves that A is rendered UGAS with a similar synergistic CBF
design as presented in this section.

4.3 Barrier function with modified obstacle

This section presents a barrier function which will be used in combination with a potential field
to steer the VS to a point, in this case the origin. The design is extracted from Marley (2020a).
Define d(q) : R2 → R≥0 as the distance from the VS to the obstacle,

d(q) :=

{
|q − pobs| − rs, |q − pobs| > rs

0, |q − pobs| ≤ rs,
(4.43)

and the barrier function B : R≥0 → R≥0 as

B(d(q)) :=

{
(d(q)− dlim)2 ln

(
dlim
d(q)

)
, 0 ≤ d(q) ≤ dlim

0, d(q) > dlim.
(4.44)
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dlim denotes the minimum distance away from the obstacle boundary before the barrier function
B is activated. The gradient of B is

∇B(d(q)) =
∂B(d(q))

∂d(q)
∇d(q), (4.45)

where the partial derivative of B with respect to d is

∂B(d(q))

∂d(q)
=


(d(q)−dlim)

d(q)

(
dlim − d(q) + 2d(q)ln

(
dlim
d(q)

))
, 0 < d(q) ≤ dlim

0, d(q) > dlim,
(4.46)

and the gradient of d(q) is

∇d(q) =

{
(q−pobs)
|q−pobs| , |q − pobs| > rs

0, |q − pobs| ≤ rs.
(4.47)

∂B(d(q))
∂d(q) is continuous for all d(q) > 0 and undefined for d(q) = 0, and ∇d(q) is continuous

everywhere except for on the obstacle boundary. As Section 5.4 will show, there is a saddle point
along the North-axis. All trajectories with q2 6= 0 will converge to the origin due to the potential
function, however all trajectories with (q1 ∈ [pobs + rs,∞), q2 = 0) will converge to the saddle
point. This can be prevented by creating a modified obstacle, which grazes the original obstacle
radius on one side, while adding a safety margin on the other side.

A logic variable l ∈ L := {−1, 1} is used to redefine the obstacle position as

pm := pobs +

[
0

lσ

]
, (4.48)

where σ > 0 is the additional safety margin. The switching logic for l is described in Section 5.4.
The obstacle radius becomes rm := rs + σ, and the modified distance dm : R2 × L → R≥0 is
defined by

dm(q) :=

{
|q − pm| − rm, |q − pm| > rm

0, |q − pm| ≤ rm.
(4.49)

The barrier function is thus

B(dm(q)) :=

{
(dm(q)− dlim)2 ln

(
dlim
dm(q)

)
, 0 ≤ dm(q) ≤ dlim

0, dm(q) > dlim.
(4.50)

4.4 Control barrier function with modified obstacle

Another possible CBF is a combination of the non-hybrid CBF, B0, presented in Marley et al.
(2021) with the modified obstacle presented in Marley (2020a). The modified obstacle position
pm and the modified radius rm is as defined in Section 4.3. With the inclusion of a modified
obstacle, (4.19) is defined as

B0(q, Z) := rm − |q − pm| − t0ud
(q − pm)>

|q − pm|
Z, (4.51)
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Chapter 4. Barrier functions

and the directional derivatives are

LfB0(q, Z) = −ud
(q − pm)>

|q − pm|
Z − t0

u2d
|q − pm|

(
(q − pm)>

|q − pm|
S>Z

)2

, (4.52)

LgB0(q, Z) = −t0ud
(q − pm)>

|q − pm|
SZ. (4.53)

The set of safe control inputs will be defined by

LfB0(q, Z) + LgB0(q, Z)U ≤ −α(B0(q, Z)), (4.54)

where α(B) is given in (4.5).
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Virtual vessel

The guidance system of the own-ship (OS) constitutes a virtual vessel (VS) and a line-of-sight
(LOS) guidance law. They produce the input to the control system. The OS control system aims
to track the trajectory traced out by the VS. This chapter presents the different models used
to simulate the motion of the VS, along with the safety critical controllers, which employ the
(control) barrier functions ((C)BFs) presented in Chapter 4. The LOS guidance law providing
input directly to the OS control system is presented in Chapter 6.

5.1 Quadratic programming

In a quadratic programming (QP) problem, the goal is to maximize or minimize an objective
function, which must satisfy some specified bounds, and linear equality and/or inequality
constraints. A general example of a minimization QP problem extracted from MathWorks (n.d.b)
is

f(x) = min
x

{
1

2
x>Qx+ f>x

}
, (5.1)

subject to
Aqpx ≤ bqp,
Aeqx = beq,

lb ≤ x ≤ ub.
(5.2)

The QP problem minimizes the objective function f(x) by minimizing the vector x. Q is a
positive definite matrix and f is a vector. Aqp and Aeq are matrices, and bqp and beq are vectors.
These describe the inequality and equality constraints. The problem bounds are given by lb and
ub, which denote the lower bound and upper bound respectively.

In the VS control designs, QP is used in most of the simulations to find a safe control input by
minimizing the difference between a nominal control input V and the safe control input U . That
is x = (U − V ), while f = 0.

5.2 Particle model

The particle model implemented is a first order particle model with linear velocities as control
inputs. The nominal control input, V , is defined by the time derivative of the path variable,
ξ̇. In the trajectory tracking scenarios in the simulations, there is no feedback from the vessel
states to the evolution of ξ, such that ξ̇ equals the speed assignment v(ξ). v1 = ud

L , where ud
is a desired surge speed, and L := |d2 − d1|. d1 and d2 are the first and last way-points (WPs)
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Chapter 5. Virtual vessel

of a path section. v2 is a negative signed hyperbolic tangent function dependent on the path
normal variable ξ2. The hyperbolic tangent function allows the VS to gradually return to the
nominal path if desirable. A constant k decides how rapidly the VS returns to the nominal path.
If k = 0 the VS will continue straight ahead after an evasive maneuver. To maintain a constant
reference speed, the requirement presented in (3.7) is |v(ξ)| = ud

L . Since V = v(ξ), then |V | = ud
L .

V2 is the negative signed hyperbolic tangent function weighted by k, and thus V1 is derived from
|V | =

√
V 2
1 + V 2

2 = ud
L (Marley 2021b).

V :=

[
V1
V2

]
=

[√
ud
L

2 − V 2
2

−ktanh(ξ2)

]
. (5.3)

When the vessel is travelling along the straight-line nominal path, the control input to the particle
model U equals the nominal control input V . However, during an obstacle encounter V is not
able to perform an evasive maneuver. QP is therefore employed to find a safe control input U
with a minimum difference from V . The objective function is

f(U − V ) = min
(U−V )

{
1

2
(U − V )>Q(U − V )

}
∈ R2 (5.4)

To encourage the vessel to turn rather than stop at the boundary of the obstacle, the Q-matrix
weights the control input corresponding to the surge velocity, U1 − V1, higher than the control
input difference corresponding to the sway velocity, U2 − V2. That is, Q11 > Q22. The
cross-diagonal terms, Q12 and Q21 are set to 0. Q12 and Q21 not equal to 0 will adjust the
equilibrium point along the boundary of the obstacle. Regardless of the weighting of the
diagonal terms, the VS stagnates at the equilibrium point. With the cross-diagonal terms set to
0, it is located on the axis running directly through the obstacle.

The QP inequality constraint is derived from the CBF as follows:

B(q) := |q − pobs| − rs, (5.5)

Ḃ(q) =
(q − pobs)>

|q − pobs|
(q̇ − ṗobs) =

(q − pobs)>

|q − pobs|
qξ ξ̇ =

(q − pobs)>

|q − pobs|
qξU ≥ −α(B), (5.6)

with α(B) := γB. γ = 1
TB

, where TB is a suitable time constant chosen such that both the VS
and the OS is able to start the evasive maneuver in time to avoid the obstacle. Switching the
sign of the inequality in (5.6) results in

−(q − pobs)>

|q − pobs|
qξU ≤ α(B). (5.7)

From (5.7), the set of safe control inputs is derived as

UB :=

{
U ∈ U : −(q − pobs)>

|q − pobs|
qξU − α(B) ≤ 0

}
, (5.8)

where U ∈ R2 is a set of control inputs. (5.7) is similar to the QP inequality constraint except

x = U − V , not U . By adding (q−pobs)>
|q−pobs| q

ξV on both sides, the following expression emerges,

−(q − pobs)>

|q − pobs|
qξ(U − V ) ≤ α(B) +

(q − pobs)>

|q − pobs|
qξV. (5.9)
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5.3. Unicycle model

The QP inequlity is
Aqp(U − V ) ≤ bqp. (5.10)

Aqp and bqp are thus

Aqp = −(q − pobs)>

|q − pobs|
qξ, (5.11)

and

bqp = α(B) +
(q − pobs)>

|q − pobs|
qξV. (5.12)

The QP problem is therefore to solve (5.4) subject to the linear inequality constraint

−(q − pobs)>

|q − pobs|
qξ(U − V ) ≤ α(B) +

(q − pobs)>

|q − pobs|
qξV. (5.13)

The QP problem is solved using the MATLAB “quadprog” function (MathWorks n.d.a). U is
found by adding V to the QP solution as it is solved for U − V . The path is parametrized as in
Section 3.2. The virtual vessel model with linear velocity as control input is therefore

q := L(ξ1T + ξ2N) + d1, (5.14)

q̇ = qξ ξ̇ = qξU = L
[
T N

]
U. (5.15)

ξ̇ = U such that
ξ = ξ + U∆t, (5.16)

where ∆t is the simulation time step. Recall that T is the path tangent vector and N is the path
normal vector. The unit heading vector is Z. This is given as

Z =

{
q̇
|q̇| , |q̇| > 0

T, |q̇| = 0
, (5.17)

where |q̇| is the speed of the VS. Effectively, (5.17) is a map from a particle model to a unicycle
model. This becomes obvious in the following section, where |q̇| corresponds to ud in (5.19).

5.3 Unicycle model

The unicycle model is implemented as presented in Marley et al. (2021). The unicycle kinematics
are given by

Ż = SZω, (5.18)

and
q̇ = Zud. (5.19)

Ż is the kinematic equation for motion along the unit circle, and q̇ is the linear x and y
velocities of the VS in NE-frame. ω = ψ̇ref is the heading rate, which along with the linear
acceleration in surge, u̇d, forms the control input U := [ω u̇d]

>. The unit heading vector
Z := [cos(ψref ) sin(ψref )]>, the desired forward speed ud, and the VS position q are found
through Euler integration:

Z =
Z

|Z|
+ Ż∆t,

ud = ud + u̇d∆t,

q = q + q̇∆t.

(5.20)
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Chapter 5. Virtual vessel

The forward speed ud is assumed constant such that u̇d = 0.
The affine control system is thus[

q̇

Ż

]
= f(Z) + g(Z)ω, l̇ = 0. (5.21)

l is the logic variable discussed in Section 4.2.

The safe control input U is found through quadratic programming (QP) from the objective
function defined in (5.4). The inequality constraint is determined based on the inequality in
(4.42), where U = U1 as U2 = 0 and constant. Hence, x = U1−V1 ∈ R and the objective function
is

min
(U1−V1)

{
1

2
(U1 − V1)>Q(U1 − V1)

}
∈ R (5.22)

The inequality constraint is derived as follows:

LfB(q, Z, l) + LgB(q, Z, l)U1 ≤ −α(B(q, Z, l)), (5.23)

with α(B) := γB where γ = 1
TB

. The set of safe control inputs is

UB := {U1 ∈ U : LfB(q, Z, l) + LgB(q, Z, l)U1 + α(B(q, Z, l)) ≤ 0}, (5.24)

where U ∈ R is a set of control inputs. By moving LfB(q, Z, l) to the right side of (5.23) and
subtracting LgB(q, Z, l)V1 on both sides the result is

LgB(q, Z, l)(U1 − V1) ≤ −α(B(q, Z, l))− LfB(q, Z, l)− LgB(q, Z, l)V1. (5.25)

Therefore,
Aqp = LgB(q, Z, l) (5.26)

and

bqp = −α(B(q, Z, l))− LfB(q, Z, l)− LgB(q, Z, l)V1. (5.27)

For the synergistic CBF presented in Section 4.2, the CBF employed depends on the logic variable
l0. If M(q, Z)−B(q, Z, l) ≤ −δ for δ > 0 and δ < µ (recall that µ is the synergy gap defined in
(4.40)), then l0 is toggled, i.e. it switches from 0 to 1 or vice versa. If l0 is toggled to 1, then
depending on (4.36), l1 may be toggled as well, i.e. l+1 = −l1. This decides the preferred turning
direction. The jump and flow sets are defined similarly to (4.15) and (4.16),

D := {(q, Z, l) ∈ Z : M(q, Z)−B(q, Z, l) ≤ −δ}, (5.28)

C := ((R2 × S1 × L)�D) ∪ ∂D. (5.29)

Recall that q ∈ R2, Z ∈ S1 and l ∈ L. To determine δ, a saturation limit for the heading rate
ωsat is chosen. ωsat should not be higher than what is a reasonable turning rate for the OS. The
time constant in B1 is selected such that t1 = ω−1sat. The time constant in B0 is given as
t0 = t1(sin(k1) + 1). This is based on proposition 5 in Marley et al. (2021), which states that B
has a non-zero synergy gap if t0 > t1(cos(k1) + sin(k1)) > 0, and if this is satisfied
µ = min{µ1, ud(t0 − t1(cos(k1) + sin(k1))} > 0. Thus, t0 = t1(sin(k1) + 1) yields µ = µ1 > 0.
This is because µ1 = t1ud(1− cos(k1)) ((58) in Marley et al. (2021)). A possible δ > 0, which is
used in the simulations, is δ = µ

4 .
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5.3. Unicycle model

In the case of the CBF with a modified obstacle, the CBF corresponding to l0 = 0 is utilized.
The modified obstacle position pm is adjusted based on a logic variable l ∈ {−1, 1}. The modified
safety radius rm creates a circle which graces the original safety radius rs on one side, while
adding an additional safety margin on the opposite side. This induces a preferred turning
direction towards the side where rm = rs + σ graces rs. The switching logic for l is given as

|q − pm(−l)| − |q − pm(+l)| ≤ −δ, (5.30)

with pm as defined in (4.48). Defining the set Q := R2 × L The jump and flow sets can thus be
defined as

D := {(q, l) ∈ Q : |q − pm(−l)| − |q − pm(+l)| ≤ −δ}, (5.31)

C := ((R2 × L)�D) ∪ ∂D. (5.32)

δ is determined differently in the case with a modified obstacle than in the case with a hybrid
synergistic CBF. The top figure in Figure 5.1 shows the modified obstacles and radii, in relation
to the original obstacle position, pobs, and the position of the VS, q. ζ := |pm − pobs| is the
Euclidean distance between the obstacle at pobs and the modified obstacle at pm. The bottom
figure in Figure 5.1 illustrates the switching logic, which is such that given ζ and a distance
βrm := dβ(rm + t0ud), where c =

√
(βrm)2 + (2ζ)2, a value ∆ := c − βrm is defined. δ is then

given as δ = −1
2∆. In this case, t0 = ω−1sat as t0 = t1 := ω−1sat if k1 = 0, which is the case if no

adjustment of the critical orientations is desired. dβ is a constant, which must be suitably tuned.

q

pobs

pm=pobs-�

pm=pobs+�

2�
C

|p - pm|

2�
c

�rm

Figure 5.1: Modified obstacles and switching logic triangle.

The upper and lower bounds of the QP problem depends on the saturation limit of the heading
rate ωsat. That is, ω ∈ [−ωsat, ωsat]. Since U1 = ω and the QP problem minimizes U1 − V1, the
upper bound is ub = ωsat − V1 and the lower bound is lb = −ωsat − V1.

The nominal control input V1 is determined in two ways in the simulations. The first is simply

V1 := −Z2 = −sin(ψref ). (5.33)
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Chapter 5. Virtual vessel

The second is the method presented in Marley et al. (2021), which uses the line-of-sight (LOS)
algorithm presented in Fossen (2021) with desired path along the North-axis (y = 0). The LOS
orientation vector is defined as in Marley, Skjetne, Breivik & Fleischer (2020) as

ZLOS =
1√

∆LOS + q22

[
∆2
LOS

−q2

]
∈ S1. (5.34)

∆LOS is the look-ahead distance. The desired orientation vector for the VS is the LOS orientation
vector rotated by the matrix containing the path tangent and path normal vectors,

Zd =
[
T N

]
ZLOS . (5.35)

When T = [1 0]> and N = [0 1]>, Zd = ZLOS . The nominal control law for V1 is in this case a
non-hybrid version of the hybrid kinematic feedback controller presented in Marley, Skjetne &
Teel (2020), such that

V1 := −ωsat
Z̃2√

1− λ2Z̃2
1

, (5.36)

where 0 < λ < 1 is a regularization parameter, which, if sufficiently high, makes V1 approximately
constant for most Zd ∈ S1, and

Z̃ =
[
Zd SZd

]>
Z = R(Zd)Z. (5.37)

R(Zd) ∈ SO(2) denotes a map from the unit circle S1 := {Z ∈ R2 : Z>Z = 1} to planar
rotations SO(2) := {R ∈ R2×2 : R>R = I, det(R) = 1}.

The QP problem is therefore to solve (5.22) subject to the linear inequality constraint

LgB(q, Z, l)(U1 − V1) ≤ −α(B(q, Z, l))− LfB(q, Z, l)− LgB(q, Z, l)V1 (5.38)

and the upper and lower bounds

lb = −ωsat − V1,
ub = ωsat − V1.

(5.39)

5.4 Potential function

The potential function presented in this section is described in Marley (2020a), which is based
on Sanfelice et al. (2006).

With no obstacle present, the potential function dependent on the position of the VS, q, is defined
as

P0(q) :=
1

2
(q21 + q22). (5.40)

The gradient with respect to q is

∇P0(q) =

[
∂P0(q)
∂q1

∂P0(q)
∂q2

]
=

[
q1
q2

]
. (5.41)
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The control input considered is the VS velocity, q̇. Choosing q̇ = −∇P0 results in the time
derivative of P0 in (5.42).

Ṗ0(q) = ∇P>0 q̇ = −∇P>0 ∇P0 = −(q21 + q22) ≤ 0. (5.42)

(5.42) implies global asymptotic stability (GAS) by Theorem 4.1 and Theorem 4.2 in Khalil
(2015). To include an obstacle, a new potential function P is defined, where the barrier function
B(d(q)) is presented in (4.44),

P := P0 +B(d(q)). (5.43)

The gradient of P with respect to q is

∇P = ∇P0 +∇B(d(q)), (5.44)

where

∇B(d(q)) =
∂B(d)

∂d
∇d(q). (5.45)

The partial derivative of B with respect to d and the gradient of d(q) is given in (4.46) and
(4.47) respectively. Like mentioned in Section 4.3, the partial derivative of B is continuous for all
d(q) > 0 and undefined for d(q) = 0. d(q) is continuous everywhere except for on the boundary
of the obstacle. Intuitively, if d(q) is undefined, then B(d(q)) is undefined as well. Choosing the
control input q̇ = −∇P gives Ṗ = −(∇P0 +∇B)>(∇P0 +∇B) ≤ 0, which implies stability by
Lyapunov theory (Khalil 2015, pp. 114). However, there is a saddle point at ∇P0 +∇B = 0.
This point is located along the North-axis. If a trajectory starts out along this axis, no incentive
will be given to diverge from the axis when the VS is closing in on the obstacle boundary as
q̇2 = 0. Hence, pobs must be shifted to induce a q̇2 6= 0, enabling the VS to perform an evasive
maneuver. Hence, the modified obstacle is introduced. dm(q) and B(dm(q)) is presented in (4.49)
and (4.50) respectively. The new potential function is

Pm(q) = P0 +B(dm(q)). (5.46)

This allows all trajectories starting near, or on, the North-axis to converge to the origin. The
logic variable deciding the preferred turning direction by adjusting pm one direction or the other,
toggles (l+ = −l) if the Euclidean distance between the VS position and the origin, |q|, is greater
than the Euclidean distance between the modified obstacle position and the origin, |pm|, and
lq2 > −µP |q|. µP = βP

σ
|pm| , where βP is a tuning parameter. The first condition ensures that the

VS is further away from the origin than the obstacle, that is, the VS has not passed the obstacle
yet. The second condition ensures that the VS chooses the most suitable turning direction, i.e. it
turns port when q2 is located on the port side of the modified obstacle, and starboard when q2 is
located on the starboard side. The flow and jump sets can therefore be defined as

D := {(q, l) ∈ Q : |q| > |pm|, lq2 > −µP |q|}, (5.47)

C := ((R2 × L)�D) ∪ ∂D. (5.48)

q is determined through Euler integration of q̇. The unit heading vector Z is given in (5.17).
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Chapter 6

Vessel model and controller

The “Ship” block in the flow diagram presented in Figure 2.3 represents the own-ship (OS)
maneuvering model. The model in this chapter is presented in Marley (2020b), which uses
models and principles from Fossen (2011) and Faltinsen (1993). The tracking controller uses
a line-of-sight (LOS) course reference, and the LOS guidance law is presented in Section 6.2.
Furthermore, it is based on a backstepping control design, and it provides the control input to
the maneuvering model. The control design is presented in Section 6.3.

6.1 Vessel model

Recall that the kinematic equation relating the body-frame velocities ν = [u v r]> and the OS
pose η = [x y ψ]> is given by

η̇ = R(ψ)ν, R(ψ) :=

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (2.1)

If there is no current present and the vessel is travelling along a straight line, the course angle χ
equals the yaw angle ψ. However, that is not the case in the simulations presented in Chapter 7.
Hence, a course angle χ and a crab angle β must be calculated. Let Us :=

√
u2 + v2 =

√
ẋ2 + ẏ2

be the ship speed. χ is derived from the fact that it satisfies[
ẋ

ẏ

]
=

[
Us cos(χ)

Us sin(χ)

]
. (6.1)

Thus tan(χ) = ẏ
ẋ and χ is given by

χ = atan2(ẏ, ẋ). (6.2)

The crab angle β is derived similarly where[
u

v

]
=

[
Us cos(β)

Us sin(β),

]
(6.3)

where tan(β) = v
u and therefore

β = atan2(v, u). (6.4)

atan2 maps to [−π π]. The course angle, yaw angle, and crab angle are related through

χ = ψ + β. (6.5)
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Chapter 6. Vessel model and controller

The ocean current triangle in Figure 2.2 illustrates the relationships in (6.1) to (6.5). x and y
corresponds to xn and yn respectively.

The simulations consider a constant, irrotational current, i.e. the speed Uc and flow direction βc
is constant. The current velocities in the inertial NE-frame {n} are given by

νnc =

uncvnc
rnc

 =

Uc cos(βc)

Uc sin(βc)

0

 , (6.6)

while the body-fixed current velocities are

νc =

ucvc
rc

 =

Uc cos(βc − ψ)

Uc sin(βc − ψ)

0

 . (6.7)

The relative velocity between the OS and the current νr = [ur vr rr]
> is defined as

νr := ν − νc =

u− ucv − vc
r

 . (6.8)

The relative accelerations become

ν̇r = ν̇ − ν̇c =

 u̇− Uc sin(βc − ψ)r

v̇ − Uc (−cos(βc − ψ))r

ṙ

 . (6.9)

U̇c = 0, β̇c = 0, and ψ̇ = r. The relative speed is defined as Ur :=
√
u2r + v2r . The angle between

the relative speed and the body-fixed x-axis is called the sideslip angle βs, and it satisfies

νr =

Ur cos(βs)

Ur sin(βs)

0

 , (6.10)

such that tan(βs) = vr
ur

. Hence,
βs = atan2(vr, ur). (6.11)

The equation of motion for the OS is given by

Mrbν̇ +Maν̇r + Crb(ν)ν + Caν +D(νr)νr = τ. (6.12)

Mrb is the rigid-body mass matrix, Ma is the added mass matrix, Crb is the rigid-body Coriolis
matrix, Ca is the added mass Coriolis matrix, and D is the damping matrix. The added mass
and rigid-body matrices are diagonal due to assumed port-starboard and fore-aft symmetry.
There are no centripetal forces when the rigid-body and added mass matrices are diagonal. The
damping matrix is also assumed diagonal. τ denotes the forces in surge and sway, and moment
in yaw. Collecting the mass terms into M := Mrb + Ma and solving (6.12) with respect to ν̇,
knowing ν̇r from (6.9), results in the following expression,

ν̇ = M−1(τ −D(νr)νr − Crb(ν)ν − Ca(νr)νr +Maν̇c). (6.13)
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6.2 Line-of-sight guidance

The OS controller receives a desired course angle, χd, from an LOS guidance law. The trajectory
that the OS should track is the trajectory traced out by the VS. Hence, the LOS guidance law
must use the cross-track error between the position of the OS, p, and the position of the VS,
q. Figure 6.1 visualizes LOS guidance with desired course angle χd. The cross-track error is
denoted ype . x

p
e denotes the along-track error. The superscript p refers to the path-tangential

coordinate system notation {p}. pni and pni+1 denotes the WPs of the path section, similar to d1
and d2 as mentioned earlier.

Figure 6.1: Line-of-sight guidance with desired course angle χd. Adapted from Fossen (2021).

The tracking error vector in the path tangential coordinate system is calculated as in (12.55) in
Fossen (2021), [

ype
xpe

]
=
[
Z SZ

]>
(p− q), (6.14)

where S is the rotation matrix corresponding to a 90o counterclockwise rotation, and [Z SZ]>

corresponds to the transposed rotation matrix of πp. πp is the angle between the inertial NE-
frame, {n}, and the path tangential frame, {p}. With the defined lookahead-distance ∆LOS , the
LOS orientation vector is given as in Marley, Skjetne, Breivik & Fleischer (2020),

ZLOS :=
1√

∆2
LOS + (ype)2

[
∆LOS

−ype

]
. (6.15)

The desired orientation vector in the inertial {n} NE-frame is

Zd =
[
Z SZ

]
ZLOS =

[
cos(χd)

sin(χd)

]
. (6.16)

resulting in the desired course angle

χd = atan2(Zd2, Zd1). (6.17)
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Chapter 6. Vessel model and controller

Figure 6.2 illustrates the the steps in (6.14) to (6.17), where the deviation in x- and y-direction
in the NE-frame is rotated to the path tangential frame to find the along- and cross-track errors.
These are subsequently used to find the LOS orientation vector, which must be rotated back to
the NE-frame before the desired course angle is extracted. To make the figure more compact, the
VS straight-line nominal path is along the East-axis. However, in the simulations the nominal
path is along the North-axis. The principle is the same in either case. A close-up of the details
in Figure 6.2 is included in Figure 6.3.

pobs

rs

ype
xpe

Zd

Z

q

p �LOS

xn

xn

�p

�p

�d

North

East

ΔLO
S

yp

xp

Figure 6.2: Line-of-sight guidance for OS trajectory tracking with desired course angle.

Figure 6.3: Close up of line-of-sight guidance for OS trajectory tracking with desired course
angle from Figure 6.2.
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6.3 Control design

Given the OS vessel model in (6.13), a control design model can be derived. This is a simplified
mathematical model, which is detailed enough to describe the main physical characteristics of
the system (Sorensen 2013). The model is given by

Mν̇ = τ −Dν +R(ψ)>b. (6.18)

b is a vector of bias estimates, usually provided by an observer. However, the simulations only
have an unknown bias from the current, for which there is no estimate. Hence, b = 0. M and
D is as specified in Section 6.1. Using this model, a control law enabling trajectory tracking is
designed using a backstepping design methodology. The control design constructs a feedback
control law through recursive construction of a control Lyapunov function (CLF) (Fossen 2021).
CLFs are defined in Section 6.3.1. Initially a control design using a one-dimensional path variable
is presented in Section 6.3.2. This is extended to a two-dimensional path variable in Section
6.3.3. Section 6.3.3 also introduces an integral term to compensate for the unknown current that
the OS experiences in the simulation studies.

6.3.1 Control Lyapunov functions

Definition 16.2 in Fossen (2021) defines CLFs as follows based on Artstein (1983) and Sontag
(1983):

Definition (Control Lyapunov function)
A smooth positive definite and radially unbounded function V : Rn → R≥0 is called a control
Lyapunov function for

ẋ = f(x, u), (6.19)

where x ∈ Rn and u ∈ Rr if

inf
u∈Rr

{
∂V

∂x
(x)f(x, u)

}
< 0, ∀x 6= 0. (6.20)

x is the state vector and u denotes the control input. Radially unbounded refers to the condition
that V (x) → ∞ as |x| → ∞ (Khalil 2015, pp. 123). Section 16.3.2 in Fossen (2021) gives a
simple example of an integrator backstepping design using CLFs as defined above. The steps of
that design is recognized in the control designs in the following sections.

6.3.2 Control design with one path variable

The backstepping control design goes through two steps to derive the control law for τ . Recall
that τ is the vector containing the generalized control forces and moment. The design presented
in this section uses the one-dimensional path variable, s. This is extended to the two-dimensional
path variable, ξ, in Section 6.3.3. The designs are based on Skjetne (2020b), Jensen (2020) and
Fleischer (2020), with adaptions to perform trajectory tracking.

Step 1 Initially, an error variable z1, which should be controlled to 0, is defined as

z1 = R(ψ)>[η − ηd(s)], (6.21)

where ηd is the desired path parametrized by s. Differentiating (6.21) with respect to time gives

ż1 = Ṙ(ψ)>[η − ηd] +R(ψ)>[η̇ − ηsdṡ] = −S(r)z1 + ν −R(ψ)>ηsdṡ, (6.22)
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Chapter 6. Vessel model and controller

where

S(r) =

0 −r 0

r 0 0

0 0 0

 (6.23)

and Ṙ(ψ)> = −R(ψ)>S(r). The step 1 CLF is

V1 :=
1

2
z>1 z1. (6.24)

Differentiating V1 with respect to time yields

V̇1 = z>1 ż1 = −z>1 S(r)z1 + z>1 ν − z>1 R(ψ)>ηsdṡ. (6.25)

The error variable for the second CLF is

z2 := ν − α1(t, s, η), (6.26)

such that
V̇1 = −z>1 S(r)z1 + z>1 z2 + z>1 [α1 −R(ψ)>ηsdṡ]. (6.27)

In trajectory tracking ṡ = v(s). To make V̇ < 0 (negative definite), the virtual control input is

α1 = −K1z1 +R(ψ)>ηsdv(s), K1 = K>1 > 0, (6.28)

and thus

ż1 = −S(r)z1 + z2 + α1(t, s, η)−R(ψ)>ηsdṡ = −K1z1 − S(r)z1 + z2, (6.29)

and
V̇1 = −z>1 K1z1 + z>1 z2, (6.30)

as

−z>1 S(r)z1 = −
[
z11 z12 z13

]0 −r 0

r 0 0

0 0 0


z11z12
z13

 (6.31)

= −
[
z11 z12 z13

]−rz12rz11
0

 (6.32)

= rz11z12 − rz11z12 + 0 = 0. (6.33)

Step 2 Recall that the error variable z2 := ν − α1(t, s, η) should be controlled to 0.
Differentiating with respect to time yields

ż2 = ν̇ − α̇1. (6.34)

Multiplying (6.34) by M , the term Mν̇ appears, which is given in (6.18), resulting in

Mż2 = τ −Dν +R(ψ)>b−Mα̇1. (6.35)

The second CLF is

V2 =
1

2
z>2 Mz2 + V1, (6.36)
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and V2 differentiated with respect to time yields

V̇2 = z>2 Mż2 + V̇1 = z>2 M(ν̇ − α̇)− z>1 K1z1 + z>1 z2. (6.37)

Substituting the term Mν̇ with (6.18) gives

V̇2 = −z>1 K1z1 + z>2 [z1 + τ −Dν +R(ψ)>b−Mα̇] (6.38)

yielding the control law

τ = −z1 +Dα1 −R(ψ)>b+Mα̇1 −K2z2, K2 = K>2 > 0. (6.39)

such that

V̇2 = −z>1 K1z1 − z>2 (K2 +D)z2 < 0, (6.40)

and thus the equilibrium point [z1 z2]
> = 0 is uniformly globally exponentially stable (UGES).

Tuning Let T1 = diag(Tx, Ty, Tpsi) be the diagonal matrix containing time constants for the
z1-subsystem. Set K1 = T−11 . To ensure that the z2-subsystem is faster than the z1-subsystem,
T2 should be less than T1. With T2ż2 = −z2, then inserting (6.39) into (6.35), results in an
expression for K2, where K2 = MT−12 −D + z1

ż2
T−12 .

6.3.3 Control design with two path variables

The simulation studies use a two-dimensional path variable ξ = [ξ1 ξ2]
> ∈ R2, and thus the

backstepping control design must be extended to include both the path tangent and path normal
variable. Note that the design in this section uses a heading reference. In the simulations, this is
replaced by a desired course angle produced by the LOS guidance law, and its derivatives. The
reason why a heading reference is not used in the simulations is explained in Chapter 7, and the
consequences are discussed.

In this design, the position and heading control is decoupled and later combined into a virtual
control α1. Therefore,

ηd(t, ξ) :=

[
pd(ξ1, ξ2)

ψd(t, ξ1, ξ2),

]
(6.41)

where q = pd(ξ) is the position of the VS and ψd is the heading reference. The speed assignment
is defined by

v(t, ξ) :=

[
v1(t, ξ1, ξ2)

v2(t, ξ1, ξ2)

]
. (6.42)

The rotation matrix R2(ψ) is defined as

R2(ψ) :=

[
cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

]
, (6.43)

such that

ṗ = R2(ψ)νp, νp :=

[
u

v

]
. (6.44)

The error variables of the two subsystems are
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Chapter 6. Vessel model and controller

z1,p := R2(ψ)>[p− q], z1,ψ := ψ − ψd(t, ξ1, ξ2), z1 := col(z1,p, z1,ψ), (6.45)

z2,p := νp − αp, z2,ψ := r − αψ, z2 := col(z1,ψ, z2,ψ), (6.46)

α1 := col(αp, αψ). (6.47)

Step 1 First, the tracking design for position is done. Differentiating z1,p with respect to time
gives

ż1,p = Ṙ2(ψ)>[p− q] +R2(ψ)>[ṗ− qξ1 ξ̇1 − qξ2 ξ̇2] (6.48)

= −S2(r)z1,p + z2,p + αp −R2(ψ)>[qξ1v1 + qξ2v2]. (6.49)

where

S2(r) =

[
0 −r
r 0

]
. (6.50)

The first CLF for position is

V1,p :=
1

2
z>1,pz1,p. (6.51)

Differentiating (6.51) with respect to time yields

V̇1,p = z>1,pż1,p = z>1,pz2,p + z>1,p(αp −R2(ψ)>[qξ1v1 + qξ2v2]). (6.52)

Recall that −z>1,pS2(r)z1,p = 0. The virtual control law αp is

αp = −K1,pz1,p +R2(ψ)>[qξ1v1 + qξ2v2], K1,p = K>1,p > 0, (6.53)

such that
V̇1,p = −z>1,pK1,pz1,p + z>1,pz2,p. (6.54)

Inserting αp into (6.49) gives

ż1,p = −S2(r)z1,p + z2,p −K1,pz1,p. (6.55)

Next, consider the heading control design. Assuming that ψ̇d is available, differentiating z1,ψ
with respect to time yields

ż1,ψ = ψ̇ − ψ̇d = r − ψ̇d = z2,ψ + αψ − ψ̇d. (6.56)

The first CLF for heading is defined as

V1,ψ :=
1

2
z21,ψ. (6.57)

Differentiated with respect to time, the resulting expression is

V̇1,ψ = z1,ψ ż1,ψ = z1,ψ[z2,ψ + αψ − ψ̇d]. (6.58)

Hence, the virtual control for heading is

αψ = −k1,ψz1,ψ + ψ̇d, k1,ψ > 0. (6.59)

Inserting (6.59) into (6.58) yields

V̇1,ψ = z1,ψz2,ψ − z1,ψk1,ψz1,ψ. (6.60)
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6.3. Control design

Step 2 The second CLF for position is

V2,p := V1,p +
1

2
z>2,pMpz2,p (6.61)

where Mp denotes the first two rows of the mass matrix M . The derivative of (6.61) yields

V̇2,p = V̇1,p + z>2,pMpż2,p = −z>1,pK1,pz1,p + z>2,pz1,p + z>2,pMp[ν̇p − α̇p]. (6.62)

Inserting Mpν̇p into (6.62) gives

V̇2,p = −z>1,pK1,pz1,p + z>2,p[z1,p −Dpνp +R2(ψ)>bp + τp −Mpα̇p]. (6.63)

The control law is thus

τp = −z1,p +Dpαp −R2(ψ)>bp +Mpα̇p −K2,pz2,p, K2,p = K>2,p > 0, (6.64)

such that
V̇2,p = −z>1,pK1,pz1,p − z>2,p(K2,p +D)z2,p. (6.65)

The second CLF for heading is

V2,ψ := V1,ψ +
1

2
z2,ψMψz2,ψ, (6.66)

where Mψ denotes the last row of the mass matrix. The time derivative of V2,ψ is

V̇2,ψ = V1,ψ + z2,ψMψ ż2,ψ = z1,ψz2,ψ − z1,ψk1,ψz1,ψ + z2,ψMψ[ṙ − α̇ψ]. (6.67)

Inserting for Mψ ṙ gives

V̇2,ψ = −z1,ψk1,ψz1,ψ + z2,ψ[z1,ψ −Dψr + bψ + τ −Mψα̇ψ], (6.68)

yielding the control law

τψ = −z1,ψ +Dψαψ − bψ +Mψα̇ψ − k2,ψz2,ψ, k2,ψ > 0. (6.69)

The total control law τ is therefore

τ = −z1 +Dα1 −R(ψ)>b+Mα̇1 −K2z2, K2 = K>2 > 0, (6.70)

which is familiar from (6.39). (6.70) requires α̇1, which is given by

α̇1 := col(α̇p, α̇ψ), (6.71)

where

α̇p = −K1,pż1,p + Ṙ2(ψ)>[qξ1v1 + qξ2v2] (6.72)

= −K1,pż1,p − S2(r)R2(ψ)>[qξ1v1 + qξ2v2] (6.73)

= K1,p(S2(r)z1,p − νp) + (K1,p − S2(r))R2(ψ)>[qξ1v1 + qξ2v2], (6.74)

with ż1,p as given in (6.49), and

α̇ψ = −k1,ψ ż1,ψ + ψ̈d (6.75)

= −k1,ψ(z2,ψ + αψ − ψ̇d) + ψ̈d (6.76)

= −k1,ψ(r − ψ̇d) + ψ̈d. (6.77)
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The OS is exposed to a constant, unknown current. As mentioned there is no bias estimate
available, thus b = 0. The current must be compensated for using an integral term in the control
law in (6.70). The resulting control law is

τ = −z1 +Dα1 +Mα̇1 −K2z2 −KIe1, KI = K>I > 0, (6.78)

where KI is the integral gain matrix. eI denotes the column vector containing the integrated
along- and cross-track errors, and the deviation from the heading reference ψd, such that

eI = eI + e∆t, e :=

x
p
e

ype
ψe

 . (6.79)

In practice, (6.78) becomes a PID-controller. This is no longer guaranteed UGAS, but should at
least be locally stable, and able to satisfy the tracking control objective.

Tuning The time constants for the z1,p-subsystem is given by T1,p = diag(Tx, Ty), and K1,p =
T−11,p . T1,ψ is the time constant for the z1,ψ-subsystem, where k1,ψ = T−11,ψ. The time constant
for the z2-subsystem is T2. For the z2-subsystem to be faster than the z1-subsystem, T2 <
diag(T1,p, T1,ψ). All time constants are determined by tuning. With T2ż2 = −z2, then inserting
(6.39) into (6.35), results in the expression for K2, where K2 = MT−12 −D + z1

ż2
T−12 .
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Chapter 7

Simulation studies

This chapter presents the simulation parameters, the simulation results, and discussions related to
the individual results. The final discussion and conclusions with regards to the research question
are made in Section 8.1. The simulations concern a virtual vessel (VS) following a straight-line
nominal reference path, on which an obstacle is placed. The obstacle has a circular boundary
surrounding it of which the VS must stay outside. This is ensured through the barrier functions
presented in Chapter 4. The control objective of the own-ship (OS) is to track the trajectory
traced out by the VS. The feasibility of each trajectory is the focus of the discussions. All the
figures discussed in the result sections are included in larger format in the Appendix A to G,
along with the remaining figures produced, which are not mentioned in the discussions. Note that
the LOS guidance presented in Section 6.2 produces a desired course angle, not a desired heading
angle. Hence, the OS controller controls the OS heading to the desired course angle. This results
in a steady-state offset between the heading output and the desired course angle input. However,
the resulting course angle goes to the desired course angle, and the cross-track errors goes to zero
as desired. Conversion to desired heading angle, ψd = χd− β = χd− atan2(v, u) was not possible
during the simulations due to an algebraic loop as the controller controls the sway velocity v as
well as the heading rate r, and thus the heading. That is, v depends on ψd and ψd depends on
v. The conversion is done after the simulation is completed and it is included in the simulation
plots. The desired heading rate is computed from rd = ψ̇d = χ̇d − β̇.
A code algorithm for the simulation file is included in Section 7.1.
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7.1 Code algorithm

Algorithm 1: main.m

Result: trajectory tracking simulation results
Define OS model parameters
input : VS model index identifier
while VS model index identifier 6= 1 or 2 or 3 or 4 do

input : VS model index identifier
end
input : Obstacle position
while Obstacle position /∈ R2×1 do

input : Obstacle position
end
if VS model index identifier 6= 2 then

input : End of path
while End of path /∈ R2×1 do

input : End of path
end
else

End of path = [0 0]> /∗ due to potential function ∗/
end
input : VS initial position
while VS initial position /∈ R2×1 do

input : VS initial position
end
Parametrize path
Create VS models
Set simulation parameter values
while Not end of path do

Compute q, qξ, ξ̇, Z
Compute tracking errors
Compute χd with LOS
Compute χ̇d
Compute ocean current values
Compute τ with backstepping control
Compute ν̇ for maneuvering model
η̇ = R(ψ)ν
ν = ν + ν̇∆t
η = η + η̇∆t
Store results
if q̇x < 10−5 then

break
end

end
Post-process results
Plot results
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7.2 Simulation parameters

The following subsections present the simulation parameters. Several of the parameter values are
extracted from relevant references from Chapters 4, 5 and 6.

7.2.1 Virtual vessel simulation parameters

Table 7.1 contains the simulation parameters and their values used in all the simulations. The
tables following Table 7.1 include the simulation specific parameters.

Table 7.1: Overview of simulation parameters for the virtual vessels and desired trajectory (*see
(7.16)).

Parameter Symbol Values Unit

Obstacle position pobs [1000 0]> m

Euclidean distance between subsequent WPs L 1 m

Path tangent vector T [1 0]> -

Path normal vector N [0 1]> -

Desired surge velocity ud 0.5ucrit
∗ m/s

Obstacle radius rs 100 m

Derivative of q with respect to path variable ξ qξ diag(1, 1) m

Derivative of ξ with respect to time ξ̇ q̇ m/s

qξ and ξ̇ are the result of the path parametrization where qξ = L[T N ] = diag(1, 1), and
q̇ = qξ ξ̇ = ξ̇.

Table 7.2: Overview of simulation parameters for the particle model with CBF.

Parameter Symbol Values Unit

Simulation time step ∆t 0.1 s

End of path WPend [2500 0]> m

Reference speed for path variable uref ud/L m/s

Constant forcing VS back to nominal path k 0.1uref m/s

CBF time constant TB 50 s

α(B) constant γ 1/TB s−1

QP positive definite matrix terms Q11, Q12, Q21, Q22 7, 0, 0, 1 -

Table 7.3: Overview of simulation parameters for the potential function with modified obstacle.

Parameter Symbol Values Unit

Simulation time step ∆t 0.01 s

Initial VS position d1 [2500 0]> m

End of path WPend [0 0]> m

Additional safety margin σ 0.4rs m

Distance to obstacle boundary when B is activated dlim 2rs m

Switching logic tuning variable βP 0.001 -
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Table 7.4: Overview of simulation parameters for the unicycle model with synergistic CBF.

Parameter Symbol Values Unit

Simulation time step ∆t 0.1 s

Initial VS position d1 [0 0]> m

End of path WPend [2500 0]> m

Saturation limit of angular velocity ωsat 2π/180 rad/s

Shift angle of critical orientations k1 π/2.5 rad

B1 time constant t1 ω−1sat s

B0 time constant t0 t1(sin(k1) + 1) s

Synergy gap µ t1ud(1− cos(k1)) m

Switching logic constant δ µ/4 m

LOS look-ahead distance ∆LOS 500 m

Regularization parameter λ 0.9 -

CBF time constant TB 50 s

α(B) constant γ 1/TB s−1

QP term Q 1 -

Table 7.5: Overview of simulation parameters for the unicycle model with modified obstacle.

Parameter Symbol Values Unit

Simulation time step ∆t 0.1 s

Initial VS position d1 [0 0]> m

End of path WPend [2500 0]> m

Saturation limit of angular velocity ωsat 2π/180 rad/s

B0 time constant t0 ω−1sat s

LOS look-ahead distance ∆LOS 500 m

Regularization parameter λ 0.9 -

CBF time constant TB 50 s

α(B) constant γ 1/TB s−1

Additional safety margin σ 0.4rs m

Switching logic distance constant dβ 10 -

QP term Q 1 -

Note that t0 equals t1 from Table 7.4, as k1 = 0, i.e. the critical orientations are not shifted.

7.2.2 Vessel model and controller simulation parameters

Table 7.6 contains the simulation parameters the OS and the current. The ship parameters
are extracted from Marley (2020b) where they are based on engineering judgement. The mass,
damping, Coriolis, and controller gain time constant matrices are presented at the end of the
section.
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Table 7.6: Overview of simulation parameters for the OS and the current.

Parameter Symbol Values Unit

Ship length L 100 m

Ship breadth B L/10 m

Ship draft D L/20 m

Fresh water density ρ 1000 kgm−3

Rigid-body mass m LBD × ρ kg

Inertia radius in yaw lr L/4 m

Reference surge velocity for linearized damping uo 6 m/s

Reference sway velocity for linearized damping vo 2 m/s

Reference yaw velocity for linearized damping ro 2π/180 rad/s

Drag coefficient in surge Cdx 0.5 -

Drag coefficient in sway Cdy 1 -

LOS look-ahead distance ∆LOS 100 m

Current speed Uc 1 m/s

Current direction in NE-frame βc π/4 rad

Notice that ud = 0.1ucrit is the desired surge velocity for the VS, not the OS, hence it is not
included in the above table.

The mass matrices are defined as

Mrb := diag(m,m,ml2r), (7.1)

Ma := diag(a11, a22, a33) = diag(0.05m, 0.3m, a22l
2
r), (7.2)

M := Mrb +Ma. (7.3)

Damping is selected as the sum of linear and quadratic damping. According to Marley (2020b),
the overall damping level may be unrealistically high. However, the chosen values presented next
are believed to give a reasonable ratio between damping level in the different DOFs. The surge
and sway quadratic damping terms are selected as

d11q :=
1

2
BDCdx × ρ, d22q :=

1

2
LDCdy × ρ. (7.4)

Yaw damping is found by integrating the yaw-induced sway force along the hull, resulting in the
following quadratic damping term

d33q := CdyD
L4

64
ρ. (7.5)

The linear damping terms are included through the quadratic damping force at the reference
velocities in Table 7.6.

d11 := d11quo, d22 := d22qvo, d33 := d33qro. (7.6)

The damping matrices are thus

Dl := diag(d11, d22, d33), (7.7)

Dnl(ν) := diag(d11q|ur|, d22q|vr|, d33q|r|), (7.8)

D(ν) := Dl +Dnl(ν). (7.9)
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Marley (2020b) derives the rigid-body and added mass Coriolis matrices as follows. The rigid-body
forces, evaluated in a rotating reference frame about the center of gravity, are given by

Mrbν̇ + Crb(ν)ν :=

m(u̇− vr)
m(v̇ + ur)

ml2r ṙ

 . (7.10)

With the assumption that there are no external forces

u̇ = vr, v̇ = −ur, (7.11)

such that, by (15) in Marley (2020b),
U̇s = 0. (7.12)

Hence,

Crb(ν)ν :=

−mvrmur

0

 =

0 0 −mv
0 0 mu

0 0 0


uv
r

 =

 0 −mr 0

mr 0 0

0 0 0


uv
r

 (7.13)

The added mass Coriolis forces are derived from the hydrodynamic inertia loads, which are given
by

Maν̇r + Ca(νr)νr :=

 a11u̇r − a22vrr
a22v̇r + a11urr

a33ṙ + (a22 − a11)urvr

 . (7.14)

Thus,

Ca(νr)νr :=

 −a22vrr
a11urr

(a22 − a11)urvr

 =

 0 0 −a22vr
0 0 a11ur

a22vr −a11ur 0

 νr, (7.15)

where the term (a22 − a11)urvr is the destabilizing Munk moment. Section 4 of Marley (2020b)
investigates the directional stability and the pivot point, which is the point around which the
ship is yawing (Fossen 2021, pp. 179). These are not elaborated on here, however the resulting
critical velocity for directional stability, i.e. the maximum surge velocity before the ship becomes
directionally unstable, is

ucrit =

√
d22d33

m11(a22 − a11)
, (7.16)

which is used to determine the desired surge velocity ud presented in Table 7.1.

The time constant matrices yielding the controller gain matrices K1 and K2 are

T1 = diag([T1,x T1,y T1,ψ]) =

30 0 0

0 10 0

0 0 15

 , (7.17)

T2 = diag([T2,p T2,y T2,ψ]) =

15 0 0

0 5 0

0 0 12

 , (7.18)
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The integral gain matrix is given as

KI =

0 0 0

0 500 0

0 0 0

 . (7.19)

The only non-zero term as the second diagonal term, as the intention of KI is to compensate for
the steady-state error in sway direction.

7.3 Particle model with control barrier function

The simulations presented in this section concern a VS modelled as a particle model with linear
velocities in surge and sway as control inputs. To ensure that the VS stays outside of the obstacle
boundary, the CBF in Section 4.1 is employed. Two cases are investigated. In the first case,
the VS, and hence the OS, stagnates at the obstacle boundary. In the second case, the VS
successfully avoids the obstacle, and the OS is able track the trajectory that the VS traces out.

7.3.1 Failed performance of evasive maneuver

This simulation effectively demonstrates a weakness in the VS particle model with the non-hybrid
CBF and the optimization based controller. The safe control input for the VS is determined by
quadratic programming (QP) through the minimization problem

min
(U−V )

{
1

2
(U − V )>

[
Q11 Q12

Q21 Q22

]
(U − V )

}
,

where the Q-matrix terms are as presented in Table 7.2. Hence, Q is a positive definite diagonal
matrix. Somewhere along the boundary of the obstacle there will be an equilibrium point. With
Q = diag(7, 1) and the obstacle situated on the nominal reference path, the equilibrium points is
located at the intersection between the nominal reference path and the obstacle boundary. This
results in stagnation for the VS, and therefore the OS, at the obstacle boundary as Figure 7.1
illustrates. Looking at Figure 7.2, this occurs because the safe control input produced by the QP
problem is U = [0 0]>. Figures 7.3, 7.4, 7.5, and 7.6 confirm that the OS velocities and control
inputs go to zero.

Close to the equilibrium point, the sway control inputs produced are very small, eventually
leading to stagnation at the boundary as well. Furthermore, there are initial conditions close to
these points where the VS is able to avoid the obstacle, but the maneuver is such that the OS
position, p, enters the safety radius of the obstacle. Hence, the VS must have an initial position
far enough away from the nominal path at the North-axis to enable the OS to track the VS
trajectory, while staying outside the obstacle boundary. This is at a distance of around two
meters on either side, approximately. Hence, the following section discusses a simulation with a
VS initial position, and thus a straight-line nominal path, of two meters east of the North-axis.

In all the simulation plots with surge and sway velocities, the velocities subscripted r refers to
the relative velocities with respect to the current. The velocities subscripted d is q̇ rotated by the
desired heading angle, which is calculated from the desired course angle after the simulation is
completed. Recall that the controller uses desired course angle, not desired heading angle. This
results in a steady-state offset between the actual and desired surge and sway velocities. The
offset is present throughout the simulations.
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Figure 7.1: VS and OS trajectory with VS as a particle model
starting at the North-axis.

Figure 7.2: VS control inputs with VS as a particle model
starting at the North-axis.

Figure 7.3: Surge and sway velocities with VS as a particle
model starting at the North-axis.
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Figure 7.4: Total speed and crab angle with VS as a particle
model starting at the North-axis.

Figure 7.5: Yaw angle and velocity with VS as a particle model
starting at the North-axis.

Figure 7.6: OS control inputs with VS as a particle model
starting at the North-axis.
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7.3.2 Successful performance of evasive maneuver

The VS is placed at a distance of two meters east of the North-axis. Figure 7.7 shows that VS is
able to perform a successful evasive maneuver and that the OS is able to track the trajectory.
The trajectory traced out by the VS follows the boundary of the obstacle closely. The proximity
to the obstacle boundary could be extended by increasing the CBF time constant TB, however
to make comparison between the different implementations easier, the simulation parameters
they have in common were kept the same. The particle model uses linear velocities in x- and
y-directions as control inputs (Figure 7.8), and thus does not consider yaw rate saturation such
as the unicycle models in Sections 7.5 and 7.6. The result is a sharp turn due to sudden changes
in the velocities. This sudden change induces a transient response in the system causing an
oscillation in the surge and sway velocities, which is observed in Figure 7.9. Figure 7.9 also
shows that the OS must reduce its surge velocity by approximately 1 m/s in order to perform
the evasive maneuver. This happens at between t = 350 s and t = 500 s, approximately. Looking
at Figure 7.10, it is clear that this reduction in surge speed results in increased tracking errors
in this time window. This behaviour is not optimal for a transit mode of operation where the
more realistic behaviour would be to keep the surge speed close to constant, and utilize the yaw
moment to perform the evasive maneuver. However, with the nature of the particle model, this
is not possible.

Figure 7.7: OS trajectory with VS as particle model starting east of the North-axis.
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Figure 7.8: VS control inputs with VS as particle model starting
east of the North-axis.

Figure 7.9: Surge and sway velocities with VS as particle model
starting east of the North-axis.

Figure 7.10: Tracking errors with VS as particle model starting
east of the North-axis.
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In addition to the development of the velocities, the OS also requires a much larger yaw moment,
see Figure 7.11, to perform the evasive maneuver compared to what is required by other VS
models presented in this thesis. This is due to the large and sudden change in desired course
rate, resulting from the LOS guidance dependence on the cross-track error. The OS is only
partially able to follow the desired course rate, and therefore the desired heading rate, at the
beginning of the evasive maneuver particularly, see Figures 7.12 and 7.13. Hence, the close up
of the trajectories in Figure 7.14 shows an overshoot before the OS is able to adjust and turn,
which is not desirable. Note that the OS appears to enter the obstacle boundary in Figure 7.14.
The dimensions of the plotted vessel polygon is not to scale based on the model. The purpose is
to give a visual representation of the vessel along its path with the corresponding heading.

Figure 7.11: OS control inputs with VS as particle model
starting east of the North-axis.

Figure 7.12: Course angle and velocity with VS as particle
model starting east of the North-axis.
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Figure 7.13: Yaw angle and velocity with VS as particle model
starting east of the North-axis.

Figure 7.14: Close up of OS and VS trajectories in Figure 7.7.
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7.4 Potential function with barrier function and modified
obstacle

This simulation models the VS as a potential function. The VS control input is
U := q̇ = −∇Pm = −(∇P0 +∇B(dm(q))), i.e. the gradient of the potential function. ∇P0 = q,
that is, the gradient of P0 equals the position of the VS. B refers to the barrier function in (4.50).
When the VS is far away from the path end, which is in the origin of the NE-frame in this case, q̇,
and therefore U , is large. Hence, the vessel is not able to track the VS trajectory as it is incapable
of producing large enough surge and sway forces. The figures included effectively illustrates this.
Figure 7.15 shows the trajectory plot with the potential field lines, Figure 7.16 shows the surge
and sway velocities, Figure 7.17 shows the yaw angle and rate, and Figure 7.18 shows the OS
control forces and moment. Since the simulations are conducted without limitations on the forces
and moments the OS controller produces high control outputs, however despite these, the OS is
still not able to track the trajectory. These outputs are not assumed realistic, but included to
show the infeasibility of the trajectory traced out by the VS.

Figure 7.15: OS trajectory with VS as a potential function. The potential field contours show√
P (q) to improve resolution around the origin.
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Figure 7.16: Surge and sway velocities with VS a as potential
function.

Figure 7.17: Yaw angle and velocity with VS as a potential
function.

Figure 7.18: OS control inputs with VS as a potential function.
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7.5 Unicycle model with synergistic control barrier function

This section concerns a VS modelled as a unicycle model, with angular velocity, ω, and linear
acceleration in surge, u̇d, as control inputs. The surge velocity is assumed constant such that
u̇d = 0. The angular velocity is therefore the control input determined through QP, as discussed
in Section 5.3. Two different nominal control inputs for ω, V1, are simulated. Method 1 is the
LOS guidance method presented in (5.34) to (5.37), and method 2 is V1 = −Z2 (see (5.33)). Z
refers to the unit heading vector. The CBF employed is the synergistic CBF from Section 4.2.

7.5.1 Successful performance of evasive maneuver with method 1

The nominal reference path for the LOS guidance law is along the North-axis. Figures 7.19 and
7.20 indicate that the trajectory traced out is feasible for the OS to track. The tracking errors in
Figure 7.21 are also fairly small, particularly the cross-track error. Looking at the velocities u
and v in Figure 7.22, some oscillations are observed. This is likely due to a transient response as
the VS control inputs, and thus eventually the OS control input, change rapidly when the logic
variable indicating the evasive mode, l0, is toggled. This switches the employed CBF from the
non-hybrid CBF, B0, to the hybrid CBF, B1, and vice versa. Using black circles, Figure 7.23
shows when l0 toggles. As the VS is approaching the obstacle, l0 toggles immediately. Note that
during the evasive maneuver, l0 toggles to 0 for a period of time when the vessel is far enough
away to satisfy the switching logic condition. However, it toggles back to 1 during the return to
the nominal path, before settling on l0 = 0 after the obstacle is passed. This is the source of the
sudden changes in the control inputs as the hybrid CBF utilized switches back and forth between
B0 and B1 during the evasive maneuver. It induces some sharp changes in the OS control input,
see Figure 7.24, particularly in the yaw moment (which is reflected in the desired yaw rate in
Figure 7.25) and sway force. However, the yaw moment required is much lower than in the
previous simulations, which makes the sudden increases or decreases more feasible, although not
optimal.

Figure 7.19: OS trajectory with VS as a unicycle model with a synergistic
CBF and LOS guidance.
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Figure 7.20: Close up of OS and VS trajectories in Figure 7.19.
.

Figure 7.21: Tracking errors with VS as a unicycle model with
a synergistic CBF and LOS guidance.

Figure 7.22: Surge and sway velocities with VS as a unicycle
model with a synergistic CBF and LOS guidance.

59



Chapter 7. Simulation studies

Figure 7.23: VS control inputs with VS as a unicycle model
with a synergistic CBF and LOS guidance.

Figure 7.24: OS control inputs with VS as a unicycle model
with a synergistic CBF and LOS guidance.

Figure 7.25: Yaw angle and velocity with VS as a unicycle
model with a synergistic CBF and LOS guidance.
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7.5.2 Successful performance of evasive maneuver with method 2

The following figures display a very similar behaviour as the previous subsection. The nominal
control input V1 = −Z2 is not plotted in the figure with the VS control inputs (Figure 7.30) as in
Section 7.5.1, because V1 is much larger than U1. Thus U1 is not discernible. Similar to the LOS
guidance law simulations, the VS control input changes rapidly during the evasive maneuver due
to deactivation and activation of B1 by l0. Comparing the OS control input figures, Figure 7.24
and Figure 7.31, the first figure produces the smoothest control inputs. Comparing Figures 7.23
and 7.30, which contain the VS control inputs, it is clear that Figure 7.23 shows the smoothest
control inputs as well. Thus, it is evident that the LOS method performs the best out of the
two methods given the conditions in these simulations. However, there is not a great difference.
Therefore, whether the desire is to return to the nominal reference path for the VS, or not, must
be considered before making a judgement of which method is the most suitable.

Figure 7.26: OS trajectory with VS as a unicycle model with a synergistic CBF and V1 = −Z2.
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Figure 7.27: Close up of OS and VS trajectories in Figure 7.26.

Figure 7.28: Tracking errors with VS as a unicycle model with
a synergistic CBF and V1 = −Z2.

Figure 7.29: Surge and sway velocities with VS as unicycle
model with a synergistic CBF and V1 = −Z2.
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Figure 7.30: VS control inputs with VS as a unicycle model
with a synergistic CBF and V1 = −Z2.

Figure 7.31: OS control inputs with VS as a unicycle model
with a synergistic CBF and V1 = −Z2.

Figure 7.32: Yaw angle and velocity with VS as a unicycle
model with a synergistic CBF and V1 = −Z2.
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7.6 Unicycle model with control barrier function and modified
obstacle

The simulations in Section 7.4 use a modified obstacle to induce a preferred turning direction for
the VS. However, as discussed, the potential function implemented does not produce a feasible
trajectory for the OS to track. The simulations conducted in this section, on the other hand,
use the modified obstacle in combination with the non-hybrid CBF B0 from the simulations in
Section 7.5. As in the previous section, the VS is modelled as a unicycle model, with angular
velocity ω and linear acceleration in surge u̇d as control inputs. The surge velocity is assumed
constant and thus u̇d = 0. The angular velocity is the control input determined through QP, and
two different nominal control inputs are simulated. The first method determines the nominal
angular velocity though the LOS guidance method presented in (5.34) to (5.37). The second
method determines the nominal angular velocity through V1 = −Z2 where Z refers to the unit
heading vector.

7.6.1 Successful performance of evasive maneuver with method 1

The VS nominal reference path is along the North-axis. Looking at the trajectory plots in Figure
7.33 and 7.34, this trajectory seems to be the most feasible for the OS to track compared to the
previous simulations in Section 7.3 to 7.5. The tracking errors are confirmed to be small in Figure
7.35. Furthermore, the VS and OS control inputs displayed in Figure 7.36 and 7.37 respectively,
are smooth, resulting in smooth surge and sway velocities in Figure 7.45, and yaw rate in Figure
7.39. In addition, Figure 7.37 shows that the yaw moment is utilized in a larger degree and
the sway force in a lesser degree to perform the evasive maneuver, compared to the previous
simulations. This utilization of sway force and yaw moment is more realistic with regards to real
life situations in the transit phase of a voyage.
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Figure 7.33: OS trajectory with VS as a unicycle model with a modified obstacle and LOS
guidance.
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Figure 7.34: Close up of OS and VS trajectories in Figure 7.33.

Figure 7.35: Tracking errors with VS as a unicycle model with
a modified obstacle and LOS guidance.

Figure 7.36: VS control inputs with VS as a unicycle model
with a modified obstacle and LOS guidance.
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Figure 7.37: OS control inputs with VS as a unicycle model
with a modified obstacle and LOS guidance.

Figure 7.38: Surge and sway velocities with VS as a unicycle
model with a modified obstacle and LOS guidance.

Figure 7.39: Yaw angle and velocity with VS as a unicycle
model with a modified obstacle and LOS guidance.
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7.6.2 Successful performance of evasive maneuver with method 2

The simulation in this section shows almost identical results compared to Section 7.6.1. The
major difference between the two, is whether or not the goal is to return to the nominal reference
path along the North-axis after the evasive maneuver is performed. If a return to the nominal
path is desired, the implementation with LOS guidance is suitable. However, if the goal is to
continue straight ahead after the obstacle is passed, the implementation with V1 = −Z2 seems
to perform well. Since both methods in this section seems feasible, further discussion of this
simulation is included in Section 8.1, where it is compared to the all the simulations conducted
in the thesis.

Figure 7.40: OS trajectory with VS as a unicycle model with a modified obstacle and V1 = −Z2.
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Figure 7.41: Close up of OS and VS trajectories in Figure 7.40.

Figure 7.42: Tracking errors with VS as a unicycle model with
a modified obstacle and V1 = −Z2.

Figure 7.43: VS control inputs with VS as a unicycle model
with modified obstacle.
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Figure 7.44: OS control inputs with VS as a unicycle model
with a modified obstacle and V1 = −Z2.

Figure 7.45: Surge and sway velocities with VS as a unicycle
model with a modified obstacle and V1 = −Z2.

Figure 7.46: Yaw angle and velocity with VS as a unicycle
model with a modified obstacle and V1 = −Z2.
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Chapter 8

Discussion, conclusions, and further
work

8.1 Discussion and conclusions

An introduction to path parametrization using a two-dimensional path variable ξ is given. This
is used to define the position of a VS, q = pd(ξ). Three different VS models are presented. These
are a particle model, a unicycle model, and a potential function. The VS traces out a trajectory
for the OS to track. Along the VS straight-line nominal reference path, an obstacle is
encountered. The VS must perform an evasive maneuver in order to allow the OS to avoid the
obstacle. This is done by employing a barrier function or a control barrier function, which
should ensure that the VS is able to evade the obstacle. Four different methods of employing
barrier functions with assigned VS models are presented. The thesis aims to investigate the
feasibility of the trajectories during obstacle maneuvers. In order to answer this research
question, the simulations in Chapter 7 were conducted.

The first simulation concerning a VS particle model has some challenges. The particle model
does not consider yaw dynamics, and thus utilizes surge and sway velocity to perform the
evasive maneuver. The OS is not able to replicate these sudden changes, causing an overshoot in
the initial phase. To perform the maneuver initiated by the VS, the OS requires a large yaw
moment as the tracking errors, particularly the cross-track error, increases. The LOS course
reference depends on the cross-track error, inducing a sharp change in the yaw rate. The system
also experiences sudden changes in surge and sway velocities, which causes transients. The result
is some oscillatory behaviour in the velocities, and a significant decrease in the surge velocity.
Hence, although the OS is able to track the trajectory, i.e. it is feasible under the conditions in
the simulations, it is not optimal with respect to real life operations. Furthermore, there is an
equilibrium point along the obstacle boundary, which can cause the vessels to stagnate.

The second simulation conducted uses a potential function to model the VS. This produced an
unfeasible trajectory as the VS speed in x- and y-directions are too large for the OS to be able
to track the trajectory. In addition, the potential function guides the VS to the origin. Hence,
adjustments have to be made to generalize the end of the path. However, such an adjustment
was not made as the trajectory is not feasible, and therefore the other methods are of greater
interest.

The unicycle model with a synergistic CBF performs fairly well. The path appears smoother and
the OS control forces and moment required to successfully perform trajectory tracking are much
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smaller than in the foregoing simulations. Due to toggling back and forth between evasive and
non-evasive mode, there are some transient response observed in the system. This occurs because
the switching logic condition for l0 is satisfied as the OS is far enough away from the boundary
at a point during the evasive maneuver. During the return to the nominal path, B1 is once again
activated. The two switches in l0 causes U1 to change rapidly as B0 and B1 produces different
control inputs in the QP based controller. These switches can be removed by decreasing the time
constant TB as this reduces the distance to the obstacle boundary before the evasive maneuver is
performed. Intuitively, this prevents the VS from journeying far enough away from the boundary
to toggle l0. However, it reduces the margin the OS has to the boundary. In addition, this path
closer to the boundary requires greater forces and moments from the OS to track the VS.

The second method with this VS model and CBF uses V1 = −Z2. It displays very similar results
compared to the LOS method. The difference is that the VS controller, and thus the OS
controller, changes control input even more rapidly as l0 is toggled. It is not a great difference
with regards to the OS control inputs, hence the most significant consideration concerning these
two methods is whether or not a return to the VS nominal reference path is desired. If a return
is desired, LOS guidance of the VS is the most suitable method.

The simulations conducted with a VS unicycle model, a modified obstacle, and a non-hybrid
CBF, seems to perform the best of the methods implemented. This is the case for both of the
VS nominal controllers, where V1 is based on LOS guidance in the first method, and V1 = −Z2

in the second method. Similar to the synergistic CBF simulations, the most suitable of these
two methods is determined by whether the desire is to return to the VS nominal reference path
along the North-axis after the evasive maneuver. Looking at the figures, these simulations has
the smallest tracking errors, the smoothest control inputs and resulting velocities, and hence the
conclusion is that these are the most feasible trajectories for the OS to track. In addition, the
VS path has softer turns allowing the simulated OS to perform more realistically with regards to
transit phase maneuvering around obstacles. That is, the surge speed is close to constant and
the evasive maneuver is to a larger degree performed using change in yaw angle, rather than
force in sway.

8.2 Further work

A clear point for further work is to extend the OS vessel model used in the simulations. The
vessel model implemented is the maneuvering model of an idealized ship from Marley (2020b).
The vessel is port-starboard and fore-aft symmetric, hence the mass and damping matrices are
diagonal. However, that is not the case for most real life vessels, which are usually only
port-starboard symmetric. In addition, the OS is only exposed to a constant current. A vessel in
transit will usually encounter various currents, as well as wave and wind forces. Such conditions
should be included to create a more realistic environment. Furthermore, the GNC system does
not include an observer, or a control allocation with limits on forces and yaw moment. It is
assumed that the required measurements are available and free of noise. However, that is not
realistic. In addition, a more accurate conclusion with regards to trajectory feasibility would be
possible with a control allocation and limits on the thrusters. Although such an extension is
outside the scope of the thesis, it would be an interesting and significant addition to the GNC
system.

With regards to the VS models and (C)BFs there are improvements to note for further work.
The particle model simulation has the issue that there is an equilibrium point at the intersection
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between the straight-line nominal path when the obstacle is located on the path. A solution
could be to create a hybrid Q-matrix in the QP problem. A hybrid Q-matrix means that
depending on the location of the VS relative to the obstacle, Q is shifted. Hence, the equilibrium
point along the obstacle boundary is shifted. Q should be tuned such that the equilibrium point
moves to a sufficient distance away from the point where the VS will make an evasive maneuver.
That is, the equilibrium point will not cause stagnation at the boundary.

Another issue with the particle model is that the transient behaviour the system experiences.
This is a result of the fact that the control inputs are the linear velocities in surge and sway, i.e.
it is a first order particle model. Implementing a second order particle model with linear
accelerations as control inputs could create smoother VS control inputs, which reduce the
transient response.

The time constant, TB, used to activate the CBFs through α(B) was kept constant throughout
the simulations. However, it was observed that tuning this variable to each simulation could
have improved the results for some of the simulations. By increasing TB in the particle model
simulation, the evasive maneuver is initiated at an earlier stage, preventing the OS from entering
the obstacle boundary at any time if the evasive maneuver is performed successfully by the VS.
The synergistic CBF simulation, on the other hand, yielded results resembling the results of the
simulations with the non-hybrid CBF and a modified obstacle, if TB was reduced. This initiated
the evasive maneuver at a later stage, hence the VS did not journey far enough away from the
obstacle boundary to toggle l0 out of the evasive mode. However, the required OS forces and
moments to track this trajectory were much higher. Thus, the conclusion that the simulations
with the non-hybrid CBF and a modified obstacle performs the best would have been unchanged.
One can also observe that the CBFs in (4.1) and (4.19) are very similar. The latter has an
additional term with the relative velocity between the obstacle and the VS, weighted by a time
constant t0. By including such a term in (4.19), a similar effect as increasing TB is achieved, and
so this could be considered as well.

These simulations only considers one static obstacle. The inclusion of more than one obstacle,
where some are dynamic, is possible. By including dynamic obstacles such as other vessels,
COLREGS (International Regulations for Preventing Collisions at Sea, (IMO 1972)) could be
included in the CBFs as well to ensure that the OS is in line with the regulations.

This thesis focused on trajectory tracking, i.e. there is no feedback from the OS’s states to the
evolution of the path variable ξ. However, this could be extended to look at maneuvering designs
using gradient-type update laws which provide such feedback. By implementing a gradient
update law influencing the evolution of ξ, issues regarding the OS’s ability to keep up with ξ,
such as the case with the potential function, could be reduced.
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