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Abstract. Human action recognition is a very challenging problem due to 
numerous variations in each body part. In this paper, we propose a method for 
extracting optical flow information from skeleton data to address the problem of 
body part movement variation in human action recognition. The additional arm 
part information was also analyzed how valuable it was. Then, different machine 
learning methods are applied such as k-Nearest Neighbors (KNNs) and deep 
learning to recognize human actions on the UTKinect-Action 3D dataset. We 
then design and train different KNNs models and Deep Convolutional Neural 
Networks (D-CNNs) on the obtained image and classify them into classes. 
Different numbers of features from histogram data collection are used to 
recognize 10 categories of human actions. The best accuracy we obtained is about 
88%. The proposed method had improved accuracy to almost 97% with only 5 
classes. These features are representative to describe the human action and 
recognition which does not rely on plenty of training data. Results of experiments 
show that using deep learning can lead to better classification accuracy. 
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1 Introduction 

Action classification is one of the challenging problems because different persons 
perform the same action differently which leads to variation in body part movement 
and variation from frame to frame in videos.  However, this problem caught attention 
from various application areas e.g. video surveillance, healthcare system and robotics. 

With the development of depth map, researchers began to apply it to human action 
recognition since it provides 3D data instead of 2D. In particular, depth data based 
human skeleton tracking technology achieves outstanding precision and stimulates the 
research on human action recognition to use skeleton data [1]. So far, skeleton-based 
action recognition has been widely studied where input data is 3D skeleton data (RGB 
images and depth map) in general.  
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Moreover, different approaches have been utilized for higher efficiency. Histograms 
of 3D joint locations (HOJ3D) extracted from Kinect 3D skeletal joint locations by 
using Linear Discriminant Analysis (LDA) projection to represent poses and then 
modelling by discrete hidden Markov models (HMMs) gives more than 90% accuracy 
[2]. Using skeleton data extracted via RGBD sensors has shown promising 
classification results on five different datasets where clustering and Support Vector 
Machine (SVM) classification has been used [3]. Converting dissimilarity space with 
3D skeleton joints to torso-PCA- frame (TPCAF) coordinate system have shown 
equivalent performance with other methods on available datasets [4]. However, 
skeleton-based methods have two major obstacles: inaccurate skeleton estimation and 
intra-class variation in human actions. Nowadays, there are many open source skeleton 
extraction algorithms available. OpenPose is one of the well-known algorithms that has 
been proposed to detect 2D pose of multiple people in images or videos with great 
performance [5]. DRPose3D is another algorithm that used depth information together 
with 2D human joint locations and Convolutional Neural Networks (CNNs). It 
exceeded state-of-the-art method (KNNs) on Human3.6M dataset [6]. 

As deep learning gains more attention recently, there are many poses estimation-
based research on it. Some solved the action classification problem by using CNNs on 
the MPII Human Pose dataset. Both [7] and [8] achieve state-of-the-art accuracy by 
using multiple stacked hourglass modules and combining heatmaps and regression 
respectively. Even some researchers have introduced unsupervised learning for human 
action recognition and use generative adversarial networks which has discriminator for 
this purpose to improve accuracy and let the generator learn more conceivable features 
for pose estimation. The first network improvised two discriminators and a multi-task 
pose generator which is robust to occlusions and human body distortion while the 
second network possesses identical discriminator and generator with the aid of 
heatmaps that help improve the prediction accuracy [9-10]. 

Skeleton-based action recognition can also be solved by using the deep learning 
approach. Inputting 3D skeleton data to CNNs with Long Short Term Memory (LSTM) 
regularization improves the accuracy from the-state-of-the-art method [11]. Separating 
the skeleton data into five parts before entering it into each subnet and hierarchically 
merging body parts back to the output layer of the recurrent neural network (RNN) 
accomplished both good performance and low computation time [12]. Besides the 
skeleton-based approach, videos can also be used as input data for training. Video 
representations learned by CNNs with long-term temporal convolutions (LTC) with 
flow help improve the performance over RGB and results in accurate optical flow 
estimation with a superior performance than state-of-the-art [13]. 

Optical flow is a major feature used in motion estimation alone or together with other 
aids. Spatial and temporal CNNs architecture trained on optical flow achieved good 
performance on the UCF-101 dataset [14]. Training only Farneback optical flow from 
RGB visualizations with CNNs on the KTH dataset showed assuring results. That is, 
the accuracy is good but still does not reach state of the art from using only a single 
feature [15]. In addition, applying neural networks enhance the performance of the 
flow. Fine tuning the different flow algorithms showed that action recognition accuracy 
correlates with flow near the boundary and small movements [16]. Using spatial 
gradients of feature maps and temporal gradients obtained from different frames as a 
feature to train the network have achieved very high accuracy on UCF-101 dataset [17]. 
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 Using optical flow as a feature with KNNs and Principal Component Analysis 
(PCA) achieved 100% accuracy on the KTH dataset [18]. On the other hand, KNNs 
have shown slight improvement of the accuracy with SVM than SVM alone on 
Wizeman dataset [19]. Based on the review provided so far, it is clear that optical flow 
helps obtain better results than state of the art and hence in this paper, we propose to 
train KNNs and deep learning with optical flow data extracted from skeleton data to 
classify human actions in videos with human activities. 

This paper is organized as follows. Section 2 describes our methodology. Section 3 
introduces the dataset and discusses the experimental results. Section 4 concludes the 
paper and also presents the future works. 

2 Methodology 

Fig. 1 illustrates the overall process of our method. In this section, we will provide an 
explanation of the processes in our method. 

 
Fig. 1. Flowchart of our method. 

2.1 Skeleton 

In this project, OpenPose [5, 20, 21] is used to extract skeleton data from the frames. 
OpenPose is one of the open sources available (https://github.com/CMU-Perceptual-
Computing-Lab/openpose) and it is the first real-time multi-person system to jointly 
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detect human body, hand, facial, and foot keypoints (in total 135 keypoints) on single 
image. It efficiently detects the 2D pose of multiple people in an image by using a non-
parametric representation, referred to as Part Affinity Fields (PAFs) to learn to associate 
body parts with individuals in the image [5]. 

In our experiments, OpenPose represents a person by 25 body parts with 18 different 
colors. These 18 colors are regarded as the key body parts for human action recognition. 
Fig. 2 shows the sit down example and its skeleton result, the key body parts contain 
18 different colors where the lower leg and foot are illustrated by the same color. In 
this paper, the input data of OpenPose is RGB images and it renders the skeletons on a 
black background as the output data to eliminate the undesired influence from the 
background. The user can modify the setting of OpenPose to have a different 
combination of key points in the output results. For example, different output format 
and keypoint ordering, body skeleton output, face keypoint output, hand keypoint 
output, and so on. 

 
Fig. 2. The result of skeleton by OpenPose. 

2.2 Optical Flow 

The extracted skeleton images are combined back to the .avi video by ImageJ [22] with 
7 frames/second and converted to a .mov file which is compatible with Matlab in the 
Macintosh operating system. 

Then, each frame is converted to grayscale before estimating the optical flow from 
the consecutive frames using the Farneback method. The result of the optical flow 
extraction process is shown in Fig. 3 where the left one displays the skeleton data 
obtained from OpenPose in the video of carry category and the right represents the 
optical flow of the video by the blue arrows. The larger the arrow is, the greater the 
movement of that part. 
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Fig. 3. Optical flow procedure: Left - original skeleton data and Right - optical flow.   

After that all flows are collected from all videos, but this optical flow combines four 
properties: Vx, Vy, Orientation and Magnitude where the first two are the X and Y 
components of velocity respectively and the last two are the phase angles in radians and 
the magnitude of optical flow in 480x640 pixels. If all the flow information is exploited, 
the features’ size will be larger and further extend the complexity of training. Also 
Orientation and Magnitude are more meaningful so they are chosen to use as the 
features.  

Every frame of the video is extracted into different parts by using 18 color pixels but 
the size of the body in the image varied, therefore, the centroid of each part is found to 
represent the overall. The centroids of all 18 different parts can be seen in green 
compared to the whole skeleton in purple in Fig. 4. Then, the mean values of orientation 
and magnitude of each part of the continuous frames in each video are calculated as the 
features. Each video is composed of 18 orientation points and followed by another 18 
magnitude points as features. As arm movements are very essential to distinguish 
between actions like wave hands and clap hands, two left and right points to the 
centroid of 4 arm parts are collected in order to get both orientation and magnitude for 
additional information. The comparison of 18 and 26 body parts will be demonstrated.  

 
Fig. 4. Centroids of all parts are shown in green color where the skeleton is shown in pink. 
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After that, angle histogram is plotted from each video and every 10, 30, 60 and 90-
degree data are collected to be the features. In total, there are 26 parts (18 from all body 
parts and 8 from enhanced arm parts) so each sequence has 26x36 = 936 features for 
10 degree, 26x12 = 312 features for 30 degree, 26x6 = 156 features for 60 degree and 
26x4 = 104 features for 90 degree. 

2.3 KNNs for Human Action Recognition 

k-Nearest Neighbors (KNNs) algorithm is a non-parametric method used for 
classification and regression [23]. It is mostly used for action recognition because it 
does not require any learning processes and it is invariant to view-point, spatial and 
temporal variations [18]. For classification, an object is classified by a majority vote of 
its k nearest neighbors. For example, to find out which human action a query belongs 
to, we use correlation distance to decide the k closest neighbors and k = 3 to 10 are used 
to generate the classification models. Then, a query will be assigned to a class which is 
the most common among those k neighbors. 

2.4 Deep Learning 

Deep learning, as a part of machine learning methods, based on artificial neural 
networks, has become a hotspot of big data and artificial intelligence. Deep learning is 
self-learning by building a multilayer model and training and evaluating the model 
using big amounts of data. When the data are complex and large, usually this method 
improves the accuracy of the classification, leading to better prediction [24]. The 
network architecture used is a simple network with one dense hidden layer, having 216 
output units using the ReLU activation function, followed by an output layer with the 
softmax activation function, using a multi-class cross-entropy loss function 
(MCXENT) as optimization objective. To avoid the overfitting problem, we set up l2 
regularization that “penalizes” the network for too large weights and prevents 
overfitting. The proposed solution is implemented using Waikato Environment for 
Knowledge Analysis (WEKA 3.8) [25]. The training parameters are introduced as 
follows, epochs are 10, batch size is 100 and learning rate is 0.001. 10-fold cross 
validation is implanted to partition the sequences into training set and testing set. 

2.5 Evaluation 

The UTKinect-Action 3D dataset is used in this paper and the detailed information is 
given in section 3.1. [1-4, 26, 27] had been tested with the same dataset and leave-one-
out-cross-validation (LOOCV) was chosen to evaluate the recognition results. 
Therefore, to compare our method with the previous works, LOOCV is applied and the 
model is trained on all the sequences except the testing one.  
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3 Results and Discussion 

3.1 Dataset 

The UTKinect-Action 3D dataset [2] is composed of 10 different subjects (9 males and 
1 female) performing 10 actions twice, which are walk, sit down, stand up, pick up, 
carry, throw, push, pull, wave hands, and clap hands. The dataset contains 4 parts, 
which are RGB images (480x640 pixels), depth images (320x240 pixels), skeleton joint 
locations and labels of action sequences. 

A number of 199 sequences are available because one sequence (action: carry) is 
not labeled. This dataset is challenging because the length of sample actions ranges 
from 5 to 120 frames, occlusions of objects on the human or invisibility of body parts 
also have been demonstrated and the sequences are captured from different views. 
Since the link for downloading the description of the skeleton joint locations does not 
work, we cannot understand the meaning of the data in the skeleton file. Hence, 
OpenPose is employed to extract skeleton information. OpenPose can achieve desirable 
accuracy but our results with it had shown a false negative of the body in few images. 
This might also affect the result of our method. 

3.2 Features Extraction 

After getting the skeleton image from OpenPose, the optical flow of each image in the 
video and the centroids of each part are found and compared to collect only the 
orientation and magnitude information. The additional arm parts are also treated 
similarly for supportive differentiation in the arm area. Then, the features are collected 
every 10, 30, 60 and 90 degrees from the angle histogram of each video. Therefore, 
there are features from 18 and 26 body parts with 4 different angle histograms to 
compare. 

3.3 Recognition Results 

This section presents the principal findings of the experiment. The results obtained from 
analyzing the performance of KNNs and correlation distance classifiers are summarized 
in Table 1 and Table 2. LOOCV is applied to evaluate our method. The 198 sequences 
are randomly selected as training data and the one remainder is used for testing. Table 
1 and Table 2 present the recognition accuracy using different k values for KNNs 
classifier and different collecting frequency from histogram. What stands out in Table 
1 is that the highest accuracy in the dataset with 18 body parts is 77.32% (k=6 and 30 
degree), whereas, 26 body parts we obtain the highest accuracy 87.98% with k=4 and 
30 degree. This can be explained by the fact that 26 body parts provided more 
information in the arm areas that can distinguish the actions using hands like pushing 
and pulling better. The overall accuracy is depending on the frequency of collecting 
data as features.  Applying 90 degree during feature extraction, less features are 
extracted and for this reason the accuracy is degraded in both 18 and 26 body parts. 
What stands out from the comparison between all feature selection methods, is the 
significant improvement in accuracy for the dataset with higher number of features, 



8 

 
 

except the 10 degree, where irrelevant features are presented reducing the overall 
accuracy of classifiers. 

Table 1. The accuracy (%) of features of 18 body parts with different angle histograms. 

k-nearest neighbors Per 10 Per 30 Per 60 Per 90 
k =3 65.71 75.79 71.76 63.66 
k =4 68.79 76.84 74.82 62.21 
k =5 69.74 74.23 73.26 65.13 
k =6 70.24 77.32 73.29 65.63 
k =7 70.74 74.76 73.24 62.58 
k =8 71.71 75.26 76.29 62.08 
k =9 72.71 75.24 73.26 61.58 
k =10 74.21 77.23 75.79 61.61 

Table 2. The accuracy (%) of features of 26 body parts with different angle histograms. 

k-nearest neighbors Per 10 Per 30 Per 60 Per 90 
k =3 82.32 85.37 83.32 75.68 
k =4 83.37 87.98 83.32 77.76 
k =5 80.76 84.84 83.84 75.16 
k =6 80.34 83.37 82.29 78.16 
k =7 79.79 84.34 82.82 76.11 
k =8 81.32 84.42 79.76 74.61 
k =9 80.29 85.32 81.29 74.13 
k =10 81.23 82.32 81.29 74.13 

 
In order to analyze the accuracy for each class of the dataset, the confusion matrix 

of the best accuracy of each scheme is calculated and illustrated in Fig. 5. With only 18 
body parts, the accuracy of throw class is the lowest. Push and pull classes also show 
misclassification between classes. This also happened with classification of carry class 
that confused with walk class. On the other hand, including additional arm parts in the 
feature using 26 body parts has improved the overall accuracy but not the accuracy of 
throw class. 

Table 3. The accuracy (%) of classifying 5 human actions with features of 26 body parts every 
30 degree. 

k-nearest neighbors Accuracy (%) 
k =3 93.79 
k =4 96.95 
k =5 93.74 
k =6 94.89 
k =7 94.84 
k =8 92.84 
k =9 91.68 
k =10 90.74 

 
The results from our experiments are compared with previous works where the same 

dataset is used. Authors in [3] had chosen only 5 classes (walk, sit down, stand up, pick 
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up and carry) to train with only AAL (Active and Assisted Living) related activities 
and achieved 96.7% accuracy, while we reached slightly better accuracy at 96.97% 
(almost 97%), as Table 3 lists, with 26 body parts, 30 degree histogram collection and 
KNN with k=4, meaning that our method is comparable and even better. Meanwhile, 
the accuracy is enhanced significantly from 10 classes to 5 classes, as Table 4 lists. This 
improvement happens from less confusion between classes and obvious differentiation 
between these 5 actions. 
 

 

Fig. 5. The confusion matrix on the UTKinect-Action 3D dataset with the best accuracy for (A) 
10 actions and 18 body parts, (B) 10 actions and 26 body parts. 
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These features had been used to build the model based on deep learning in order to 
compare the results from the proposed method as well. The results are presented in 
Table 4. Only 5 actions have significantly higher accuracy in both 18 and 26 body parts 
because the selected classes are less confused between them. With 18 body parts, deep 
learning performs better on 10 actions while the proposed method provides higher 
accuracy with 5 classes and reaches largest accuracy at 93.79%. On the other hand, 26 
body parts, which include the additional information in the arm areas, performs better 
in all classes. The accuracy is approximately 88% even for the dataset with 10 classes, 
whereas KNNs performs slightly better on 5 actions dataset. 

Table 4. Comparison of proposed methods based on KNNs and deep learning. 

Accuracy KNNs Deep learning 
18 body parts 5 classes 93.79 89.90 

10 classes 77.32 85.93 
26 body parts 5 classes 96.95 95.96 

10 classes 87.98 88.44 
 

Table 5 summarizes the results of our method and the proposed algorithms for 
UTKinect Action 3D dataset and LOOCV. The accuracy of all proposed algorithms are 
above 90%. However, our algorithm obtained 87.98% accuracy with KNNs for the 
dataset with 10 classes. [3] obtained the best accuracy 96.7% for 5 classes and it 
introduced 3D skeleton data and SVM to classify human actions. Since only 2D 
skeleton data is included in our algorithm, the less information is provided for training 
the model. Also, SVM is supervised learning for classification and regression. On the 
other hand, using a deep learning method for 5 classes we obtained 95.96% accuracy. 
The accuracy and performance of a classifier is depending on the method used for 
feature extraction and number of features. To accurately develop an efficient human 
action recognition system, different ML methods should be considered for finding the 
method that better fits the needs, as these systems are much related to the data set 
characteristics. 

Table 5. Comparison of the proposed method with other ML techniques. 

Algorithm Nr. of 
classes 

Methods Accuracy 

Our method  10 KNNs 87.98 
Our method  5 KNNs 96.95 
Our method  5 Deep Learning 95.96 
Xia et al. [2] 5 Hidden Markov Models 90.9 
Theodorakopoulos et al. [4] 5 Dissimilarity Space 90.95 
Ding et al. [26] 10 Support Vector Machine 91.5 
Jiang et al. [1] 10 Random Forests 91.9 
Liu et al. [27] 10 Coupled hidden conditional 

random fields 
92.0 

Cippitelli et al. [3]  5 Support Vector Machine 96.7 
Cippitelli et al. [3]  10 Support Vector Machine 95.1 
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4 Conclusions and Future Work 

Human action recognition is a very challenging problem. The aim of this study is to 
introduce a solution by collecting histogram information from the optical flow of 
extracted skeleton data. Then, applying KNNs and deep learning methods with LOOCV 
on the UTKinect-Action 3D dataset. Skeleton extraction provides some false data 
which can lead to wrong optical flow, so we extract only from the centroid to avoid this 
problem and also decrease the data size. The supplementary features from arm parts 
have improved the accuracy remarkably. The additional data from histogram helps 
improve the accuracy where every 30 degree presented the best performance. Using 
KNNs classifier, the best accuracy obtained is 88% with k=4. However, only 5 classes 
display much better accuracy at about 97% with the same k value for KNN. The results 
are also compared with deep learning with 26 body parts. The proposed method is 
simpler and more efficient since those features in a sequence are characteristics to 
define the action, so it is not a necessity of inputting numbers of training data. The 
experimental results showed that by selecting the most significant features, can lead to 
better classification accuracy. 

To improve our algorithm and classification accuracy, in the future, we will try to 
define the indicative position in a body part for each human action instead of taking 
optical flow of the centroid body part. Also, in this paper, all the features are given the 
same weight, we think the ideal way should be giving different weights to the features 
according to which body parts can exhibit the specific human action better. Finally, the 
SVM method will be considered for recognition. 
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