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Abstract
Purpose The degree of cell proliferation is important for subclassification of breast cancers into prognostic and therapeutic 
groups. DTX3 has been identified as a driver of proliferation in luminal breast cancer. In this study, we describe DTX3 copy 
number in breast cancer primary tumours and corresponding axillary lymph node metastases, and studied associations with 
molecular subtype, proliferation and prognosis.
Methods Using fluorescence in situ hybridization, we assessed DTX3 and chromosome 12 centromere (CEP12) copy 
number in 542 primary breast cancers and 117 lymph node metastases, from a well-described cohort of Norwegian breast 
cancer patients. Proliferation was expressed as mitotic counts and Ki67 score. Associations between DTX3 copy number and 
molecular subtype and proliferation were assessed using Pearson’s χ2 test. We studied the effect of copy number increase on 
prognosis estimating cumulative incidence of breast cancer death and hazard ratios.
Results Mean DTX3 copy number ≥ 4 was found in 23 tumours (4%), and mean ≥ 5 in 9 tumours (1.7%). Copy number 
increase was found within all molecular subtypes except the 5 negative phenotype and the Luminal B (HER2 +) subtype. 
DTX3 copy number increase was not accompanied by an increase in CEP12. Point estimates showed that there were asso-
ciations between DTX3 copy number increase and high proliferation and poor prognosis; however, precision depended on 
copy number cut-off.
Conclusions DTX3 copy number increase was present in a small proportion of breast cancer cases. There was an association 
between copy number increase and high tumour cell proliferation and poor prognosis.

Keywords DTX3 · Breast cancer · Copy number increase · Proliferation · Prognosis

Introduction

Members of the Deltex (DTX) family have ubiquitin-protein 
isopeptide ligase activity [1], can regulate transcription [2], 
and are involved in neurogenesis and the Notch signalling 
pathway [2–4]. DTX3, one of the genes included in the 
DTX family, is located on the long arm of chromosome 12 

(12q13.3) [5]. In a recent study of oesophageal cancer, DTX3 
was found to increase degradation of NOTCH2 and reduce 
proliferation and migration of oesophageal cancer cells [4]. 
It was thus identified as an anti-oncogene in oesophageal 
cancer and a potential target for therapy [4].

Proliferation is one of the hallmarks of cancer [6, 7], and 
the degree of proliferation is important for subclassifica-
tion of breast cancer into the intrinsic molecular subtypes 
[8, 9]. Molecular subtyping can also be done using immu-
nohistochemistry (IHC) and in situ hybridization (ISH) as 
surrogates for gene expression analyses [10–13]. In many 
countries, the proliferation marker Ki67 is used to subdi-
vide luminal breast cancers into prognostic and therapeutic 
groups, but its use as a predictive biomarker is debated.

Given the key role of proliferation in breast cancer sub-
classification, prognostication, and management, identifica-
tion of new proliferation-associated genes could be impor-
tant. A previous study has shown that DTX3 is a driver 
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of proliferation in luminal (non-basal) breast cancer [14]. 
Furthermore, DTX3 amplification was associated with poor 
prognosis in this subgroup of breast cancer patients. Luminal 
tumours comprise a large proportion of all breast cancers, 
and identification of new prognostic markers within this het-
erogeneous group could prove to be of clinical use.

In this study, we used fluorescence in situ hybridization 
(FISH) on a historic, well-characterized cohort of Norwe-
gian breast cancer patients to characterize DTX3 copy num-
ber in 542 formalin-fixed, paraffin-embedded primary breast 
cancers and their corresponding lymph node metastases. We 
aimed to assess a possible association between DTX3 copy 
number status in the primary tumours, and molecular sub-
type, proliferation and prognosis. Furthermore, we studied 
whether there was an association between DTX3 copy num-
ber status in the primary tumours and in the corresponding 
lymph node metastases.

Material and methods

Patient characteristics

The cohort comprises 25,727 women from Nord-Trøndelag 
County, Norway, born between 1886 and 1928. They were 
invited to attend a clinical screening for the early clinical 
detection of breast cancer between 1956 and 1959 [15]. 
Information regarding incident breast cancers was obtained 
from the Cancer Registry of Norway. For follow-up data, 
the Norwegian cause of death registry [16] was used. The 
women were followed for breast cancer occurrence between 
1961 and 2008, and during this period, 1379 new breast 
cancers were registered. Of these, 909 were reclassified 
into molecular subtypes and described in a previous study 
[10]. From the time of diagnosis, patients were followed 
until death from breast cancer, death from other causes, or 
until 31 December 2015, whichever came first. Individual 
information regarding adjuvant treatment is unavailable for 
the study cohort. However, according to Norwegian guide-
lines at the time of diagnosis, none of the patients would 
have received targeted anti-HER2 treatment. Due to high 
patient age at diagnosis and the time of diagnosis, few would 
have qualified for antihormonal treatment and/or adjuvant 
chemotherapy.

Specimen characteristics

The primary tumours were previously reclassified into 
histological type and grade [10, 17]. Tissue microarray 
(TMA) blocks were made using the Tissue Arrayer Mini-
Core with TMA Designer2 software (Alphelys). From the 
periphery of FFPE primary tumours and from the lymph 
node metastases, three tissue cores (diameter 1 mm) were 

transferred to TMA recipient blocks. TMA Sections (4 μm) 
were cut and mounted on Superfrost + glass slides, dried 
overnight at 37 °C and stored in the freezer at − 20 °C. All 
primary tumours were reclassified into molecular subtypes 
[10]. The molecular subtypes were defined as follows: 
Luminal A (oestrogen receptor (ER) and/or progesterone 
receptor (PR)+, Human epidermal growth factor receptor 
2 (HER2)−, Ki67 < 15%), Luminal B  (HER2−)  (ER+ and/
or  PR+,  HER2−, Ki67 ≥ 15%), Luminal B  (HER2+)  (ER+ 
and/or  PR+,  HER2+), HER2 type  (ER− and  PR−,  HER2+), 
5 negative phenotype (5NP;  ER−,  PR−,  HER2−, Cytokeratin 
5 (CK5)− and Epidermal growth factor receptor (EGFR)−) 
and Basal phenotype (BP;  ER−,  PR−,  HER2−,  CK5+ and/or 
 EGFR+). ER, PR, Ki67, CK5 and EGFR status was deter-
mined by IHC. HER2 status was determined by chromogenic 
in situ hybridization (CISH) or IHC [10].

In the present study, only TMAs containing cores from 
tumours diagnosed mainly in the 1980s or later were 
included (n = 592) (Fig. 1). Of these, 37 were excluded due 
to unsuccessful FISH and 13 were excluded due to insuf-
ficient amounts of tumour tissue. Thus, 542 cases were 
suitable for DTX3 and chromosome enumeration probe 
12 (CEP12) copy number assessment. Of these, 181 had 
lymph node metastases, and lymph node tissue from 124 
cases was included in TMAs. Cases with unsuccessful FISH 
(n = 4) or insufficient amounts of tumour tissue (n = 3) were 
excluded. Hence, lymph node metastases from 117 cases 
were included.

FISH was done according to the manufacturer’s guide-
lines, using Dako Histology FISH Accessory Kit K 579911. 
TMA slides were de-waxed and rehydrated, and then 
boiled in a microwave oven for 10 min in Pre-Treatment 
Solution. The slides were cooled for 15 min, washed in 
Wash Buffer (2 × 3 min.), and protein digested with Pepsin 

Fig. 1  Overview of study population
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Solution at 37 °C for 30 min. Slides were then washed in 
Wash buffer (2 × 3 min.). Dehydration was done in etha-
nol for 2 min at each concentration (70, 80 and 95%), and 
the slides were air dried for 15 min at room temperature. 
DTX3 (3 μL, Empire Genomics) and CEP12 (1 μL, Abbott/
VYSIS) FISH-custom probes were mixed with hybridiza-
tion buffer (9 μL, Empire Genomics) and applied to the 
TMA slides. Slides were coverslipped and sealed with 
coverslip sealant (Dako). Denaturation was done at 83 °C 
for 3 min, and hybridization was done in a DAKO Hybrid-
izer at 37 °C overnight. After hybridization, TMA slides 
were rinsed in 0.4xSSC/0.3%NP-40 at 72 °C for 2 min, in 
2xSSC/0.1%NP-40 at room temperature for 15 s and air 
dried at 37 °C for 15 min. DAPI (15 μL, VYSIS. Abbott no. 
06J50-001) was applied and the slides were coverslipped.

Scoring and reporting

For each case, we examined all available tissue cylinders 
using a fluorescence microscope (Nikon Eclipse 90i). We 
recorded DTX3 and CEP12 copy numbers in 20 non-overlap-
ping and well-preserved tumour cell nuclei. For each case, 
we estimated mean DTX3 and mean CEP12 copy number 
per tumour cell. There are no established guidelines for sub-
classification of cases based on mean DTX3 copy number. 
Based on HER2 guidelines [18], the cases were initially sep-
arated into three categories: mean DTX3 copy number < 4; 
mean ≥ 4 < 6; and mean ≥ 6. The same subclassification 
was used for CEP12 copy number. Due to few cases with 
mean DTX3 ≥ 6 (n = 3), we also separated the cases into two 
groups for the prognostic studies; mean DTX3 copy num-
ber < 4 versus mean ≥ 4, and mean DTX3 copy number < 5 
versus mean ≥ 5. The REMARK criteria for tumour marker 
reporting were followed [19].

Statistical analyses

We used Pearson chi-square tests to compare DTX3 copy 
number status in the primary tumours across patient and 
tumour characteristics. Paired analysis (McNemar’s test) was 
used to compare copy number status in the primary tumours 
and the corresponding lymph node metastases.

We estimated cumulative incidence of death from breast 
cancer according to mean DTX3 copy number (mean < 4 
versus mean ≥ 4 and mean < 5 versus mean ≥ 5) in the prog-
nostic analyses. We defined death from other causes as a 
competing event and used Gray’s test to compare equality of 
the cumulative incidence curves. For assessment of relative 
risk, we used Cox proportional hazard models to estimate 
hazard ratios (HR) of breast cancer death with 95% confi-
dence intervals (CI), censoring at time of death from other 
causes. Adjustments were made for the following covariates 
in separate models: age at diagnosis (≤ 49, 50–59, 60–64, 

65–69, 70–74, ≥ 75), stage (I–IV), histological grade (I–III), 
and Ki67 status (< / ≥ 15%). There were no clear violations 
of proportionality in log-minus-log plots.

All statistical tests were two-sided, and statistical signifi-
cance was defined at 5% level. p-values between 5 and 10% 
were considered borderline significant. We used STATA 
version 15.1 (Stata Corp., College Station, TX, USA) in the 
statistical analyses.

Results

Mean age at diagnosis was 75.3 years, and mean follow-
up after diagnosis was 9.1 years (Table 1). Mean age at 
diagnosis was lower among cases with DTX3 copy number 
increase, compared to cases with low DTX3 copy number.

DTX3 in primary tumours and association 
with molecular subtype, proliferation 
and histological grade

Mean DTX3 copy number ≥ 4 < 6 was found in the primary 
tumours of 20 (3.7%) cases, and mean copy number ≥ 6 was 
found in only three (0.6%) cases. Mean DTX3 copy num-
ber ≥ 5 was found in the primary tumours of nine (1.7%) 
cases (Table 1, Fig. 2). Mean copy number ≥ 4 was found 
within all molecular subtypes except the 5NP, and mean 
copy number ≥ 5 was found within all molecular subtypes 
except Luminal B  (HER2+) and the 5NP. Mean copy num-
ber ≥ 6 was found in Luminal A, HER2 type and BP.

Point estimates showed that Ki67 levels were higher 
among cases with DTX3 copy number increase, compared to 
cases with low DTX3 copy number, regardless of cut-off for 
mean DTX3 copy number (Table 1). However, a statistically 
significant association between DTX3 copy number increase 
and Ki67 levels was only found using the < 4/ ≥ 4 cut-off. 
Point estimates also showed that mitotic counts were higher 
among cases with DTX3 copy number increase, regardless of 
cut-off. Statistically significant associations between DTX3 
copy number increase and mitotic counts were found using 
the < 4/ ≥ 4 < 6/ ≥ 6 and the < 4/ ≥ 4 cut-offs. Furthermore, 
point estimates showed that a higher proportion of cases 
with DTX3 copy number increase had histological grade 
III tumours, compared to cases with low copy number. 
Statistically significant associations between DTX3 copy 
number increase and histological grade were found using 
the < 4/ ≥ 4 < 6/ ≥ 6 and the < 4/ ≥ 4 cut-offs.

DTX3 and CEP12

CEP12 copy number was infrequent in our study population; 
only seven cases (1.3%) had mean CEP12 ≥ 4 < 6 and one 
case (0.2%) had mean ≥ 6 (Table 2, Fig. 3). Of the 23 cases 
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with mean DTX3 copy number ≥ 4, only four cases had a 
concurrent increase in CEP12 copy number.

DTX3 in lymph node metastases

Only one case with mean DTX3 ≥ 6 in the primary tumour 
had available tissue from the corresponding lymph node 
metastasis. For this case, mean DTX3 ≥ 6 was also found 
in the lymph node metastasis (Table 3). Among the six 
cases with mean DTX3 copy number ≥ 4 < 6 in the primary 
tumours, three (50%) also had mean ≥ 4 < 6 in the lymph 
node metastases.

DTX3 and prognosis

Ten years after diagnosis, the cumulative risk of death from 
breast cancer for cases with mean DTX3 copy number < 4 
was 29% (95% CI 26–33) (Table 4; Fig. 4a). For cases with 
mean copy number ≥ 4, the corresponding risk was 44% 
(95% CI 26–66). There were no clear differences in the rates 
of death between the two categories in the Cox regression 
analysis, although point estimates were higher for cases with 
mean copy number ≥ 4. Adjusting for age, stage, grade and 
Ki67 status had no clear impact on the results.

The cumulative risk of death from breast cancer for cases 
with mean DTX3 copy number < 5 was 29% (95% CI 26–33) 
ten years after diagnosis (Table 4; Fig. 4b). For cases with 
mean copy number ≥ 5, the corresponding risk was 67% 
(95% CI 38–92). In the Cox regression analyses, the rate of 

Fig. 2  a Breast cancer cell 
nuclei without copy number 
increase of DTX3 (red) and 
CEP12 (green). b Hematoxylin-
erythrosine-saffron (HES)-
stained section (× 600) of breast 
cancer tumour shown in a. Scale 
bar = 10 µm. c Breast cancer 
cell nuclei with copy number 
increase of DTX3 (red), and 
two copies of CEP12 (green). d 
HES-stained section (× 600) of 
breast cancer tumour shown in 
c. Scale bar = 10 µm

Table 2  DTX3 and CEP12 copy number in primary tumours

Mean DTX3 copy number (%)

 < 4  ≥ 4 < 6  ≥ 6 Total χ2 test

Mean CEP12 
copy number 
(%)

 < 4 515 (99.2) 17 (85.0) 2 (66.7) 534 p < 0.0001
 ≥ 4 < 6 3 (0.6) 3 (15.0) 1 (33.3) 7
 ≥ 6 1 (0.2) 0 0 1
 Total 519 20 3 542

Fig. 3  Scatterplot of DTX3 and CEP12 copy numbers. Red vertical 
lines indicate DTX3 copy number 4 (left) and 6 (right)
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Table 3  DTX3 status in primary tumours and lymph node metastases

a McNemar test: p = 0.65
b McNemar test: p = 1.0

Mean DTX3 copy number in primary tumours

 < 4  ≥ 4 < 6  ≥ 6 Total

Mean DTX3 copy number in lymph nodes 
(%)

 < 4 108 (98.2) 3 (50.0) 0 (0) 111
 ≥ 4 < 6 2 (1.8) 3 (50.0) 0 (0) 5
 ≥ 6 0 (0) 0 (0) 1 (100) 1
 Total 110 (100) 6 (100) 1 (100) 117

Mean DTX3 copy number in primary  tumoursa

 < 4  ≥ 4 Total

Mean DTX3 copy number in lymph nodes 
(%)

 < 4 108 (98.2) 3 (42.9) 111
 ≥ 4 2 (1.8) 4 (57.1) 6
 Total 110 (100) 7 (100) 117

Mean DTX3 copy number in primary  tumoursb

 < 5  ≥ 5 Total

Mean DTX3 copy number in lymph nodes 
(%)

 < 5 114 (99.1) 1 (50.0) 115
 ≥ 5 1 (0.9) 1 (50.0) 2
 Total 115 (100) 2 (100) 117

Table 4  Absolute and relative risk of death from breast cancer according to DTX3 status

CI confidence interval, HR hazard ratio

Mean DTX3 copy number

 < 4  ≥ 4

Number of cases (%) 519 (95.8) 23 (4.2)
Cumulative risk after 5 years (%) (95% CI) 20.4 (17.2–24.2) 30.4 (15.8–53.4)
Cumulative risk after 10 years (%) (95% CI) 29.2 (25.5–33.3) 43.5 (26.2–65.7)
HR, unadjusted (95% CI) 1.0 1.51 (0.82–2.78)
HR, adjusted for age (95% CI) 1.0 1.47 (0.79–2.74)
HR, adjusted for stage (95% CI) 1.0 1.63 (0.88–3.03)
HR, adjusted for grade (95% CI) 1.0 1.13 (0.60–2.12)
HR, adjusted for Ki67 (95% CI) 1.0 1.23 (0.67–2.29)

Mean DTX3 copy number

 < 5  ≥ 5

Number of cases (%) 533 (98.3) 9 (1.7)
Cumulative risk after 5 years (%) (95% CI) 20.5 (17.3–24.1) 44.4 (19.6–79.6)
Cumulative risk after 10 years (%) (95% CI) 29.2 (25.5–33.3) 66.7 (37.7–92.2)
HR, unadjusted (95% CI) 1.0 3.13 (1.47–6.68)
HR, adjusted for age (95% CI) 1.0 3.35 (1.55–7.26)
HR, adjusted for stage (95% CI) 1.0 4.37 (2.03–9.39)
HR, adjusted for grade (95% CI) 1.0 2.82 (1.32–6.03)
HR, adjusted for Ki67 (95% CI) 1.0 3.07 (1.44–6.57)
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death from breast cancer was higher among cases with mean 
DTX3 copy number ≥ 5, compared to mean < 5 (HR 3.1 (95% 
CI 1.5–6.7)). Adjusting for age, stage, grade and Ki67 status 
had no clear impact on the results.

Discussion

We identified DTX3 copy number increase in a low pro-
portion of breast cancer cases (4.2% of cases had mean 
DTX3 ≥ 4, and 1.7% of cases had mean DTX3 ≥ 5). It was 
seen in all molecular subtypes except the 5NP and the 
Luminal B  (HER2+). Point estimates showed that cases 
with DTX3 copy number increase had higher proliferation, 
higher histologic grade and a poorer prognosis than cases 
without copy number increase. However, whether the asso-
ciations were statistically significant depended on the choice 
of cut-off.

In this study, we initially subdivided tumours into three 
categories based on mean DTX3 copy number: < 4; ≥ 4 < 6; 
and ≥ 6. Since only three patients had tumours with mean 
DTX3 copy number ≥ 6, we subdivided patients into 
two groups (Mean DTX3 < 4 versus mean ≥ 4; and mean 
DTX3 < 5 versus mean ≥ 5) in the prognostic analyses. In 
the study by Gatza et al. [14], DTX amplification was iden-
tified in 5% of tumours in the METABRIC dataset, and in 
18% in the TCGA dataset. Thus, the frequency of tumours 
with copy number increase in our cohort was more similar 
to the METABRIC dataset, than to the TCGA dataset. Mean 
age at diagnosis was high in our study cohort (75 years), 
compared to the METABRIC (mean age 61 years) and the 
TCGA (mean age 58 years) datasets. In our cohort, mean 
age at diagnosis was lower among cases with DTX3 copy 
number increase compared to cases with low DTX3 (72.6 
versus 75.4 years using the < 4/ ≥ 4 cut-off). To elucidate 

whether the low proportion of DTX3 amplified tumours 
found in our study population could be associated with high 
age, it would be interesting to study DTX3 copy number 
using an in situ method such as FISH in a young cohort of 
breast cancer patients. In the study by Gatza et al., ampli-
fications were identified through SNP-based copy number 
analysis, whereas in our study, copy number assessment was 
done by FISH.

We identified mean DTX3 copy number ≥ 4 in all 
molecular subtypes except the 5NP, and mean DTX3 copy 
number ≥ 5 in all molecular subtypes except the 5NP and 
Luminal B  (HER2+). Gatza et al. however, found that ampli-
fications were restricted to highly proliferative luminal 
tumours. In our study, molecular subtyping was based on 
surrogate markers, and luminal tumours were defined as all 
tumours that were ER and/or PR positive [10]. In Gatza et al. 
molecular subtyping was done by gene expression analysis, 
and luminal tumours were defined as all tumours that were 
not basal [14, 20]. The definition of “luminal” was there-
fore different in the two studies. We found DTX3 copy num-
ber ≥ 4 in eight Luminal A cases. These tumours are by defi-
nition not considered highly proliferative [8, 10]. However, 
of these eight tumours, five were histological grade III and 
could possibly represent misclassified Luminal B tumours 
[12, 21]. Using the < 5/ ≥ 5 cut-off, high copy number was 
found in three Luminal A cases. Of these, one was histologi-
cal grade III. Similar to Gatza et al. we found an associa-
tion between DTX3 copy number increase and proliferation. 
We assessed proliferation through Ki67 levels and mitotic 
counts, whereas Gatza et al. used the PAM50 proliferation 
signature [9].

Gatza et al. found that DTX3 amplification was associ-
ated with a poor prognosis [14]. In our study, regardless 
of cut-offs for DTX3 copy number, point estimates showed 
that patients with DTX3 copy number increase had higher 

Fig. 4  Cumulative incidence of breast cancer death according to DTX3 copy number status. a Mean DTX3 < 4 versus mean ≥ 4 (Gray’s test: 
p = 0.17). b Mean DTX3 < 5 versus mean ≥ 5 (Gray’s test: p = 0.003)
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risks of death from breast cancer compared to cases without 
copy number increase. However, due to few cases within the 
high copy number groups, and wide confidence intervals, the 
results regarding prognosis must be interpreted with caution. 
By defining low copy number increase as mean copy num-
ber ≥ 4 and ≥ 5, we may have concealed some of the prog-
nostic effect of true DTX3 amplification. When subdividing 
cases into three categories (mean < 4; ≥ 4 < 6; ≥ 6), there was 
a higher rate of death among cases with mean DTX3 ≥ 6 
in the Cox regression analysis (HR 3.9, 95% CI 1.0–15.8). 
However, only three cases had mean ≥ 6, and using a higher 
cut-off was not feasible for our cohort.

In breast cancer, there is an association between high 
tumour proliferation and a poor prognosis [22, 23]. The 
prognostic effect of proliferation has been shown to be age 
dependent, with a stronger prognostic influence among 
younger breast cancer patients [24]. Therefore, if DTX3 
exerts its influence on prognosis through proliferation, a 
study of the prognostic effect of DTX3 copy number increase 
among younger breast cancer patients would be of interest.

DTX3 may play different roles in different cancers. The 
gene was suggested as a tumour suppressor gene in oesopha-
geal cancer [4], and it has been proposed as an endogenous 
control gene for gene expression analyses in colorectal can-
cer [25]. Further studies are needed to elucidate the role of 
DTX3 copy number increase on prognosis in breast cancer.

A strength of our study is the use of a well-characterized 
Norwegian breast cancer cohort, with unusually long follow-
up [10]. Long follow-up is important in studies of breast 
cancer prognosis, as breast cancer patients, especially those 
with hormone receptor-positive disease, may experience 
relapse decades after their primary diagnosis. Identification 
of patients included in this study and registration of follow-
up data were done through linkage with reliable national 
registries. In Norway, reporting of cancer is regulated by 
law [26], and reporting to the Cancer Registry of Norway 
is therefore near complete [27]. With regard to our choice 
of methodology, using an in situ technique such as FISH 
ensures that only invasive breast cancer cells are assessed. 
Furthermore, FISH is a well-established method, and com-
pared to modern multigene assays, it is time- and cost-effec-
tive and therefore feasible in most laboratories. Molecular 
subtyping of this series of tumours was done in a previous 
study, using the same subtyping algorithm, the same labora-
tory, antibodies and cut-off levels for all cases.

There are also some limitations to our study. We found 
few cases with DTX3 copy number increase in the primary 
tumours. Confidence intervals were wide in the prognostic 
analyses, and the results must therefore be interpreted with 
caution. Precision may be influenced both by the num-
ber of cases, the number of breast cancer deaths in the 

study population, and the distribution of cases between 
the categories of DTX3 copy number status [28]. The lack 
of individual information on breast cancer treatment is a 
limitation. Furthermore, we used TMAs for assessment 
of DTX3 and CEP12 copy number. Although studies have 
shown good concordance between TMAs and whole sec-
tions [29, 30], intratumour heterogeneity and thus repre-
sentativity may be a problem. Our TMAs were specifi-
cally selected from the periphery of the primary tumours. 
We observed that when DTX3 copy number increase was 
present, it was seen in the majority of cancer cells in all 
three TMAs. Thus, copy number changes were not as focal 
as previously observed for another proliferation marker 
(FGD5) in the same cohort [31]. However, bearing this in 
mind, the findings of the present study should be validated 
in a series of whole sections from breast cancer.

Expression of ER and PR, and overexpression of HER2, 
is much more frequent than copy number increase of this 
proliferation-associated gene in our study population. 
However, in the era of personalized medicine, and with the 
implementation of multigene classifiers, new prognostic 
markers that are less frequently observed than the estab-
lished breast cancer biomarkers could also prove to be of 
clinical relevance in the future.

In conclusion, we found that DTX3 copy number 
increase was present in a small proportion of breast cancer 
cases. Copy number increase was seen within all molecu-
lar subtypes except the 5NP and the Luminal B  (HER2+) 
subtype. Compared to cases without DTX3 copy number 
increase, point estimates showed that tumour prolifera-
tion and histological grade was higher, and prognosis was 
poorer for patients with DTX3 copy number increase.
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