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Abstract

The serviceable and convenient nature of the Face Recognition System (FRS)
makes it a preferred way for access control and authentication for a wide range
of application areas, from biometric passport, surveillance system, health care,
law enforcement, banking services to user verification in the smartphone. Most of
the current day FRS have a number of open challenges such as weaker liveness
detection, makeup attacks, morphing attacks and privacy issues. As the FRS do
not actively query for the liveness of the subject and verify if the person is alive.
Taking the advantage of the vulnerabilities in current day FRS, intruders can fool
the FRS using the presentation attacks (PA) (a.k.a spoofing attacks). An attacker
can mimic being an authentic user by presenting a spoof biometric data (e.g.,
printed photo, face videos, 3D face mask). Such an attack can be addressed by
adding a layer of security to the FRS to detect them and these approaches are
generally called Presentation Attack Detection (PAD). In this work, we propose
Remote Photoplethysmography (rPPG) based PAD to distinguish presentation at-
tacks (spoofing attempts) between the real face and 3D mask face videos. Remote
photoplethysmography has been used to determine the liveness of a subject in
PAD by biological signals such as pulse from the face videos. In this thesis, we
propose a set of complementary features for making the PAD better against 3D
face masks. We evaluate the performance of the proposed approach on two pub-
licly available 3D mask datasets - 3DMAD [1] and HKBVMarsV1+ [2] using the
standard protocols. The proposed approach outperforms the performance under
similar protocols as against the state-of-the-art. Further, the thesis also investig-
ates the use of proposed approach for cross dataset evaluation by training on one
kind of 3D face masks and test on unseen data 3D mask types in an effort towards
generalization.
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Chapter 1

Introduction

1.1 Introduction

Every person has unique physiological and behavioural characteristics such as
face, fingerprint, iris and way of walking [3]. In computer science, the measure-
ment and statistical analysis of solitary person characteristics are referred to as
biometrics [3]. Based on the biometrics data, a biometric recognition system is
perceived, which refers to the identification and authentication of the user using
the unique biometrics traits, e.g. retinas, irises, voices, facial characteristics, and
fingerprints [4]. Among the biometrics trait for user authenticity, face biometrics
is common and widely acceptable in the biometrics recognition system. The Face
Recognition System (FRS) refers to identifying or verifying the user authenticity
with their facial characteristics. It aims to extract distinctive details from the face
and verify user identity based on the facial features such as distance between the
shape of the chin, depth of eye sockets, the distance between forehead to chin,
contours of lips, ears and chin or chin mapping face into three dimensional geo-
metric. The research work on the Face Recognition System (FRS) can be traced
back to the 1960s, and studied its relevancy in 1990s evolving the computer vis-
ion technology [5]. Analyzing the current biometrics recognition scenario, face
biometrics traits are the ones with the highest economic and social impact since it
is widely used approach after fingerprints and adopted it in unique identification
documents such as International Civil Aviation Organization (ICAO)-compliant
biometrics passport [6], national ID cards, border access control, surveillance,
banking services, smartphone authentication and so on [5].

The upsurge increases in technological advancement have their own cost of sever-
ity. As the deployment and applicability of Face Recognition System (FRS) soar
up, attacks on face biometric security are now not limited to theoretical scen-
arios but emerging with a severe threat. The majority of research work on face
recognition is focused on improving the performance at the verification and iden-
tification task (dealing with occlusions, illumination, low resolution and so on)
[5]. In the past few years, the study based on security vulnerabilities on biomet-

1



2 R.Katwal: Liveness Detection for 3D Face Mask Attacks

rics traits has become the foremost concern, since several attacks (photo attack,
face video, 3D face mask etc) can evade the biometric recognition system such
as Presentation Attack. The attacks in the biometrics system presented at the bio-
metric sensor level are called Presentation Attack (PA). In these type of attacks,
attackers present the biometric data which are obtained directly from a person or
furtively from online sources (e.g. face printed photo or a printed iris image) and
synthetic generation (e.g. face silicone mask, synthetic fingerprint), to circumvent
the biometric recognition system by mimicking as a genuine user. Presentation At-
tack Detection provides the security on biometric systems to distinguish whether
the presented biometric data is a real biometric trait or Presentation Attack (PA).
Since Face Recognition System (FRS) is mainly concerned with user authenticity
(difference between the real users), instead of determining the presented face bio-
metrics traits is genuine or fake, it eases the intruders to perform the Presentation
Attack (PA). Here the fake represents the PA biometrics traits while genuine rep-
resents the biometrics traits from a living subject. The security layer able to detect
fake face and genuine face presented in FRS is called the face Presentation Attack
Detection (PAD) [4].

Figure 1.1: Pipeline of face recognition system with Presentation Attack (PA)
scenario (inspired by figure Hernandez-Ortega et al. [5])

Ramachandra and Busch [7] classify the face Presentation Attack Detection (PAD)
in two categories: hardware-based (characteristics of human face detected us-
ing hardware component integrated with FRS) [8] [9] and software-based (al-
gorithm determining fake face sample and live face sample) [10] [11]. Among the
software-based techniques in face Presentation Attack Detection (PAD), liveness
detection of person is a functional approach, where the physiological parameter
estimation such as Heart Rate [12], Respiratory Rate [12], blood oxygen satura-
tion [13], and so on, is undertaken to verify the user liveness. The physiological
parameters estimated by Photoplethysmography (PPG) [14] approach is based on
the assumption that light is attenuated when illuminated on the skin surface, and
the attenuated light shows variations, which depend upon the volume of blood
under the observable skin surfaces [14]. The attenuation of light depend on the
skin surface, skin structure, blood oxygen saturation, skin temperatures [14].
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Figure 1.2: Optical heart rate sensing. Left: lower pressure pre-
ceding the pulse wave means narrower arteries and less absorp-
tion (higher reflectivity) of the green light source. Right: a higher
blood pressure pulse causes wider arteries and more light absorption
(lower reflectivity)(figure taken from https://theconversation.com/
how-reliable-is-your-wearable-heart-rate-monitor-98095)

The estimation of PPG can be achieved by placing optoelectronic sensors on the
skin. Alternatively, contactless acquisition of the PPG signal is also possible by es-
timating it from the videos/images captured from digital cameras. The contactless
acquisition of pulse-based physiological parameters estimation built upon the con-
cepts of photoplethysmography is popularly known as Remote Photoplethysmo-
graphy . Other popular names based on the literature are video-based PPG, i-PPG,
contactless PPG [15] based on the estimation approach employed. The Remote
Photoplethysmography (rPPG) approach can be integrated into Face Recognition
System (FRS) as face PAD to detect the liveness of the user; as a result, FRS can
detect the presentation attacks.

1.2 Keywords

Remote photoplethysography (rPPG), Presentation Attacks (PA), Presentation At-
tack Detection(PAD), Face Detection, Region of Interest, signal Preprocessing, Fre-
quency Spectrum, Machine learning

1.3 Problem Description

The Face Recognition System (FRS) is explicitly designed to capture the face vari-
ability which is caused due to illumination, occlusion, orientation and, to some
extent, to detect facial makeup and face grooming rather than dealing with genu-
ine and fake face biometrics [5]. So, the FRS framework dealing with only face
variability leaves the door open to Presentation Attack (PA). The biometrics data
(e.g. photos and videos) are now heavily exposed at different social media sites,
revealing the faces, voice and personal behaviour [5]. Attackers are taking ad-
vantages from such biometrics traits, and operate to evade FRS by presenting a

https://theconversation.com/how-reliable-is-your-wearable-heart-rate-monitor-98095
https://theconversation.com/how-reliable-is-your-wearable-heart-rate-monitor-98095
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printed photo [16], or replay face videos [17], or 3D mask [18]. The other pos-
sibilities to deceive FRS are using makeup [19] or plastic surgery. However, using
photographs and videos are the most common type of attack due to its availability
(social sites and video surveillance) and low cost. Among these type of attacks, the
3D masks are more likely to succeed due to the high realism of the presentation
attack samples. With the advancement of 3D based face reconstruction, realistic
3D face mask can be created at affordable cost, imitating the complete structure
of the face. Recently, the rapid development of 3D face printing and reconstruc-
tion technology is generating highly realistic 3D mask. This kind of technology
not only the model 3D structure but also construct detailed facial textures such as
hair, wrinkle, or even eye vessels, which even makes it difficult for human eyes to
identify whether it is fake or genuine[20]. For Face Presentation Attack Detection
(PAD) there arises a challenge against a 3D mask attack resulting in difficulty de-
tect it whether it is a Genuine face or Presentation Attack [5]. As a result, PAD is
of utmost importance for secure and reliable biometric recognition 3D mask PAD.

1.4 Justification, Motivation and Benefits

Integration of biometrics to secure digital security systems shows its applicabil-
ity and effectiveness; hence, high-security systems adopting a biometrics-based
security system. With the loose ends created by PA, put FRS security risk and vul-
nerable to access control, leading to devastating threat scenario. The PA with a
face image or video are two spoofing methods that can be conducted through a
digital screen or high-quality prints. Significant efforts and research works have
been devoted to face PAD based on print face and video attacks[20]. Analyzing
the threats caused by the 3D face attacks, the thesis is motivated to devise better
approaches to detect and classify the attacks from genuine face video. Specific-
ally, the thesis focuses on detecting the 3D mask attacks by investigating the rPPG
approach in the Face Recognition System (FRS). The feature set of rPPG signal
estimated from the face region has been well studied and has been demonstrated
to distinguish a given face video sample genuine face or 3D face mask videos.
However, we note the performance limitations of the existing methods []. Motiv-
ated by such a limitation, the thesis intends to seek for alternative features from
estimated rPPG signals to make the PAD better.

1.5 Research Questions

In order to make the PAD better to detect the 3D masks, tis thesis aims formulates
two critical research questions on Remote Photoplethysmography (rPPG) based
3D mask Presentation Attack Detection (PAD):

1. What are the complementary feature(s) from rPPG based pulse signal to
improve classification of the given input face videos as a genuine or 3D face
mask?
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2. Can these complementary features help in detecting cross-dataset attacks
when the different attack data is unseen during the training?

1.6 Contribution

The thesis work focuses on the use of Remote Photoplethysmography (rPPG) sig-
nal for 3D face mask Presentation Attack Detection (PAD). To cope with the spatial
noise, the spatial average of all the skin pixels from the Region of Interest (ROI)
is computed along with preprocessing step, which governs the series of the noise
filtering process. The pulse or rPPG signal is estimated, with low effect from the
spatial noise and subject motion. To cope with the subject in motion, a face track-
ing algorithm is employed, tracking the face (single face) across the video frames.
The contribution of the thesis work was highlighted below:

• The thesis provides a better understanding and extensive analysis about the
Remote Photoplethysmography (rPPG) based 3D mask Presentation Attack
Detection (PAD).

• We introduce ten complimentary features defining a pulse signal generated
by the proposed rPPG approach, from which we were able to distinguish
between genuine face videos from 3D mask attack videos. The proposed
feature set uses the biological parameters estimated from the face videos.

• The extensive analysis of the proposed approach against State-of-the-art is
conducted on two 3D face mask dataset, with publicly available 3DMAD
[1] and HKBVMArsV1+ [21] dataset. The proposed approach gains a per-
formance EER of 7.9± 4.3% in 3DMAD [1] and EER of 18.18± 11.11 % in
HKBVMArsV1+ [21].

• To generalize the proposed methodology, complementary feature is also
evaluated under cross dataset evaluation on publicly available 3DMAD [1]
and HKBVMArsV1+ [21] resulting favourable results. The proposed approach
gains a performance of EER of 14.7%for cross-dataset evaluation.

1.7 Thesis Outline

This section provides an overview of every chapter that is presented in the thesis
work. The thesis chapters initiated with the literature and background knowledge
of 3D mask based PAD, background methodology, proposed methodology, exper-
iment result, discussion, conclusion and future work sequentially.

1. The second chapter details the information about,concepts on PA and PAD,
metrics for Presentation Attack Detection (PAD), background knowledge
and related works on Presentation Attack (PA),Presentation Attack Detec-
tion (PAD) and face PAD approaches. The chapter start by presenting the
conceptual knowledge on PA and PAD. The second section describes the met-
rics that are used to determine the performance of PAD. The third section
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provides the details of five distinctive approaches on 3D mask based Present-
ation Attack Detection. The fourth section provides information about rPPG
based pulse estimation in three categories, namely, face video processing,
estimation of rPPG signal and Machine Learning (ML) approach. In the last
section, details about the literature survey about feature vectors extracted
from the rPPG signal can distinguish between real and fake face videos.

2. The third chapter enlightens about the background methodology of the
thesis work. The chapter comprised of seven sections; the first section in-
forms about the face detection and tracking algorithm to detect the face
from the face videos in the proposed method; the second section provides
the information colour channel and Region of interest selection for the best
extraction of rPPG signal, third section details on the signal preprocessing
of raw rPPG signal, fourth selection informed about the rPPG signal extrac-
tion method from the RGB colour space, the fifth section introduced spectral
method on rPPG signal, the sixth section includes brief background about
the binary classifier.

3. The fourth chapter provides information about the proposed methodology.
The first section explains the implementation of existing face extraction
and tracking technique to detect and track the face sequence and the video
frames. The second section informs about the Region of Interest (ROI) se-
lection from detected faces across face videos, and the third section details
the signal preprocessing steps implemented in the proposed methodology.
In the fourth section, introduced frequency domain analysis for feature ex-
traction of the rPPG signal in the proposed methodology. The last section
informs about learning the machine learning classifiers to distinguish genu-
ine face videos and 3D mask face videos in the proposed methodology.

4. The fifth chapter informs about the experiment and result that were ob-
tained from the proposed methodology. The first section introduces a brief
description of the dataset included to conduct the experiment. In the second
section, the experimental evaluation of each dataset is included. The last
section reports the result from each dataset, produced from the proposed
methodology.

5. The sixth chapter provides the analysis and discussion of the proposed meth-
odology. The first section discuss about the rPPG approach for face PAD,
second section discuss about the proposed methodology and results ob-
tained, third section discuss about the knowledge guided in thesis work and
societal consequences of proposed methodology is discussed.

6. The seventh chapter details the summary and significant finding about the
research question from the proposed methodology.

7. The eighth chapter provides information about the possible future work,
which can improve the proposed methodology.



Chapter 2

Related Work

This chapter provides brief information on PA and Presentation Attack Detection
(PAD), background knowledge and literature survey about the metrics on PAD,
Presentation Attack (PA), Presentation Attack Detection (PAD) approaches spe-
cified on the 3D mask, machine learning approaches for pulse estimation and rPPG
signal based feature selection. The section The first section provides details the
concepts on PA and PAD. In the second section, the evaluation metrics on Present-
ation Attack Detection (PAD) is described based on the literature’s; the third sec-
tion provides the information about related works on 3D mask based Presentation
Attack Detection (PAD). Similarly, in the fourth section Remote Photoplethysmo-
graphy (rPPG) signal estimation techniques based on the two key stages and liter-
ature survey on Machine learning approaches on rPPG. In fifth section, literature’s
on the feature group selection for Presentation Attack Detection (PAD) based on
Remote Photoplethysmography (rPPG) signal is described.

2.1 Presentation Attack and Presentation Attack Detec-
tion

The biometric recognition system has one particular system vulnerabilities, called
the Presentation Attack (PA), where a subject A attempts to impersonate the vic-
tim subject B using synthetic biometric data, e.g. (printed photo, videos or 3D
mask, fingerprints etc.) to biometrics sensor. The biometrics traits used for the
Presentation Attack (PA) is also called the Presentation Attack Instrument (PAI).
Taking the scenario for face Presentation Attack Detection (PAD), Ming et al. [22],
face PA can be classified into two categories: (a) impersonation (spoofing) attacks
(b) obfuscation attacks. Imposters or intruders generally perform impersonation
attacks to impersonate legitimate users; this kind of attack can be achieved with
photo attacks, video replay attack, highly realistic 3D mask. On the other hand
obfuscation attacks, aims to trick the Face Recognition System (FRS) to avoid be-
ing recognized, which can be performed by facial makeup, plastic surgery or face
occlusion (use of scarves, glasses, masks). A taxonomy of different kind of attacks

7
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on FRS can be seen in Figure 2.5.

Figure 2.1: Face Presentation attack topology[22].

In the photo print attack, it is initiated by presenting the face photo, which can
be hard copy printed on the paper or the digital screen to biometric sensor. The
photo print attack is more common, due to readily available of biometric face
traits on different social media sites or video surveillance data etc. Similarly, bio-
metric sensor can be evade with the face video attack and can be more successful
than print attacks. As high definition face video sequence consists subject motion,
which can mimicry the subject liveness by subject motion in the videos (unless
PAD is challenge-response). To circumvent the FRS, face video is presented on the
biometric sensor with use of digital display such as smartphone display/tablet dis-
play/ laptop display etc. The 3D face mask represent the synthetic face construc-
tion with paper and more realistic by silicone. With the information about a set of
face in various angles or view, the 3D based face reconstruction is performed. The
results of 3D face build up highly realistic face mask, imitating complete structure
of faces. The Presentation Attack (PA) initiated with 3D face mask is called 3D face
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mask attack. The highly realistic face reconstruction approach makes difficult for
PAD to detect 3D face mask attack.

Figure 2.2: Integrated PAD with Face Recognition System (FRS) [5]

To ensure a secure biometric recognition system,it must detect and reject fake
biometric traits. The PAD approach is defined as a technique that can detect and
distinguish between the real biometrics traits and synthetic or forged biometrics
traits presented in biometric sensor [5]. Hernandez-Ortega et al. [5] reported that
PAD could be achieved in four different ways: (i) biometric sensor able to detect
genuine biometric traits signal pattern (ii) hardware to detect evidence of genuine
biometric attempts (iii) challenge-response system, where the PAD challenge the
user to interact in a specific way and analyzing user response (iv) deploying re-
cognition algorithms intrinsically robust against attacks. Detailed review related
to PAD is presented in section 2.3.
Among the multiple face PA categories, 3D face mask creates a real threat on Face
Recognition System (FRS) due to its appearance. This thesis focuses only on PAD
approaches for detection of 3D face mask Presentation Attack (PA) on FRS using
Remote Photoplethysmography (rPPG) based PAD approach.

2.2 Metrics for Presentation Attack Detection (PAD)

This section defines the evaluation of the PAD system in terms of PAD metrics,
which tells how well the Presentation Attack Detection (PAD) is performing to
detect and classify genuine and fake biometric data. In the domain of PAD, there
are two types of biometric traits; genuine biometric samples and fake biomet-
rics(related with Presentation Attack (PA)). As Presentation Attack Detection (PAD)
aims to detect and distinguish between the given biometric sample is genuine or
fake, it can be treated as a binary classification problem1. The two major types
of error rates subjected to binary classification problem are False Positive(positive
sample labelled as negative samples) and False Negative (Negative example la-
belled as positive samples). The corresponding error rate with False Positive is
called False Positive Rate(FPR), which is the ratio between False Positive to a total

1classification tasks that have two labels.
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number of negative samples as opposed False Negative Rate is the ratio of False
Negative to a total number of positive examples. Moreover, there are other two
error rates called True Positive Rate (TPR), which refers to the ratio of correctly
classified positive samples and True Negative Rate (TNR), which corresponds to
correctly classified negative samples, these metrics(notation) are more prevalent
in terms of binary classification.
To compute the error rate, the system needs to calculate the decision threshold
τ, which is the decision boundary between the genuine attempts and Presenta-
tion Attack (PA). τ is the trade-off between the FPR and FNR and often desired to
choose its optimal values. Most common and popular to determine the threshold
is Equal Error Rate (EER), whereτEER ensures that the difference between FPR
is slight as possible. The optimal threshold is also called Operating Point (OP),
which is determined using the data in the development set.

τEER = ar gmin[F PRτdev − FNRτdev] (2.1)

Once the evaluation criteria τEERis determined, Half Total Error Rate (HTER) de-
cided on the test set.

HT ER(τtest) = ar gmin[(F PRτtest − FNRτtest)/2] (2.2)

Receiver Operating Curve (ROC) is a popular approach for visualizing the per-
formance of binary classification problem, which plot the trade-off between the
FPR and TPR depending on different threshold values. The corresponding ter-
minology along with the ROC is Area Under Curve (AUC), which measures the
entire two-dimensional area underneath ROC. Further, AUC also provides com-
prehensive performance measurement across all possible thresholds. Detection
Error trade-off (DET) plot the trade-off between the FPR and FNR depending on
different threshold values
In the domain of PAD, positive samples or genuine samples are named bonafide
samples and negative or fake samples are named as Presentation Attack (PA). Ac-
cording to ISO standards2, performance assessments of PAD are renamed into dif-
ferent terminology. In terms of PAD performance metrics, FPR is termed as Attack
Presentation Classification Error Rate (APCER), and False Negative Rate (FNR)
is termed as Bona-Fide Presentation Classification Error (BPCER) The APCER is
calculated as follows:

APC ER=
1

NPAIS

NPAIS
∑

i=1

(1− RESi) (2.3)

WhereNPAIS represent the number of attack presentation from the given Presenta-
tion Attack Instrument (PAI).The value of RESi is 1 if the i th presentation classifies
as attack presentation and 0 if presentation classifies as Bona Fide presentation

2https://www.iso.org/standard/67381.html
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[23]. Similarly, the BPCER is calculated as:

BPC ER=
1

NBF

NBF
∑

i=1

RESi (2.4)

WhereNBF represent the number of Bona Fide presentation from the given Present-
ation Attack Instrument (PAI).The value of RESi is 1 if the i th presentation classi-
fies as attack presentation and 0 if presentation classifies as Bona Fide presentation
[23]. The Average Classification Error Rate (ACER) is defined as the average of
APCER and BPCER, which can be represented as:

AC ER=
APC ER+ BPC ER

2
(2.5)

2.3 Approaches on face Presentation Attack Detection

This section details the information about and literature survey on the approaches
of Presentation Attack Detection (PAD). Although there is not any straight forward
neat topology on existing face PAD approaches [20]. Ramachandra and Busch [7]
categorize the face PAD algorithms into two categories, namely, Hardware-Based
(physical devices to capture or detect presentation attack ) and Software-Based
(program or algorithm-based PAD detection). Inspired from Ramachandra and
Busch [7], Ming et al. [22] proposed thoroughly on a face PAD into five category;
liveness cue-based,texture cue based methods, 3D geometric cue-based methods,
multiple cues-based methods and methods using new trends.Jia et al. [24] pro-
posed reflectance/multi-spectral properties based, texture based, shape based,
deep features based, and other cues/liveness based methods based on the 3D mask
PAD. Following Ming et al. [22] and Jia et al. [24], we present 3D mask PAD into
five categories: liveness clue-based methods, texture clue-based methods, deep
learning methods, 3D geometric clue-based methods and multiple/hybrid clue-
based methods.

2.3.1 Liveness clue-based methods

Figure 2.3: rPPG signal from genuine face and mask face (figure taken from Liu
et al. [25])
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Liveness clue-based methods aim to detect a physiological sign of life such
as eye blinking, head movement, mouth open/close, face expression changes, lip
movement, and pulse from the capture face image(s). Based on liveliness clues,in
2016 Li et al. [26] proposed the first facial PAD with pulse-based estimation. In Li
et al. [26] work, the video frames are decomposed into RGB colour space, applied
temporal filtering, and used FFT to convert RGB signal into the frequency domain.
Based on the assumption that when RGB signal projects in Power Spectrum Dens-
ity Curve (PSD) spoofed or fake videos contain multiple random peaks with low
power labels, opposing live videos contain dominant peaks [26]. Six-dimensional
features from each RGB color channel were extracted and then input for training
Support Vector Machine (SVM) classifier. Li et al. [26] reported the result of EER
and HTERof 4.71% and 7.94% resp in 3DMAD [1] and EER and HTERof 4.29%
and 1.58% in their private high Quality REAL-F Mask [26] Attack. A similar ap-
proach is followed by Hernandez-Ortega et al. [10], but compute the rPPG signal
in each second across the video sequence. Hernandez-Ortega et al. [10] applied
the feature set same as [26] and implemented SVM classifier. To report the res-
ult, Li et al. [26] implemented 3DMAD [1] with EER of 22.1% and 40.1% in their
private HR database [10]. In 2019, Morales [27] proposed an improved version of
their work [10] by integrating combination of skin detection module and CHROM
[28], method to extract the rPPG signal. Results were based on 3DMAD [1]and
private BidaHR [10] with the EER of 18.8% and 26.2%.
In 2016,Liu et al. [2] proposed a novel approach for 3D mask face anti-spoofing
with a local rPPG correlation model. Liu et al. [2] extracted the rPPG signal from
the local face region and model the local rPPG pattern by directly extracting the
features of signal, such as the signal-to-noise ratio (SNR), maximum amplitude,
or power spectrum density [2]. Then this feature are fed into the classifier to made
the final decision about the genuine and fake face video attempts. Liu et al. [2]
conducted the experiment on COMB (combined 3DMAD and self created Sup-
plementary Dataset) dataset and Supplementary dataset(SUP) [2]. Liu et al. [2]
reported the result achieving EER of 9.9%, HTER of 9.7± 12.6%, AUC of 95.5%
in COMB datasset, while EER of 16.2%, HTER of 14.7%± 10.9%, AUC of 91.7%
in SUP dataset. In 2017 Nowara et al. [29], proposed PPGSecure, where the rPPG
extracted from five faces ROIs, two from the background region and three from
the face region(left cheek, right cheek and forehead). The background ROI is sub-
tracted from the face ROI for robustness against noise due to illumination fluc-
tuation. For the feature vectors, the magnitude Fourier spectrum is selected from
each filtered rPPG signal from ROI [29]. Then feature vectors were fed into SVM
and Random Decision Forest Classifier for facial PAD [29]. On the replay attack
dataset, [29] reported accuracy of 100%.
In 2020 Liu et al. [30] proposed the rPPG based fast 3D mask face PAD. Liu et al.
[30] assumed that extracted the local rPPG signal from the live face in terms of
their shape phase and amplitude properties. However, for a face mask, this prop-
erty was different. Based on this assumption Liu et al. [30] introduced TSrPPG
Feature Operator to measure the similarity using the distance metrics(Euclidean
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distance). Besides, to boost the discriminability between genuine and fake face
videos, Liu et al. [30] also take the background ROI, with the assumption rPPG
signal for the masked faces should be identical with the rPPG signal extracted from
the background region since both have random noise. In contrast, for the genu-
ine face there is a lesser similarity. Afterwards, the TSrPPG feature from between
local facial regions and background regions is concatenated. The three sets of
local rPPG similarity feature fed into SVM for the classification [30]. In 3DMAD
[1] dataset Liu et al. [30] reported HTER of 13.4 ± 11.2%, EER of 13.3%, AUC
of 93.8%, similarly on HKBU-MARsV1+ dataset, reported HTER of 22.3± 8.8%,
EER of 22%, AUC of 85.2%.

Reference Contribution Database Performance
Nowara et
al. [29]

face and back-
ground regions
from each face
and calculated the
spectral density on
green channel.

Replay-Attack Acccuracy 100%

Li et al. [26] green signal as a
pulse signal

3DMAD,REAL-
F Mask Attack

EER-3DMAD=4.73%,
HTER(3DMAD)=7.94%,
EER(REAL-F
mask)=4.29%,
HTER(REAL-F Mask)
= 1.58%

Hernandez-
Ortega et al.
[10]

compute the rPPG
signal in each
seconds across the
video sequence

3DMAD,HR EER-3DMAD =
22.1%,EER-HR = 40.1%

Morales
[27]

combination of
skin detection
module and
CHROM a method
to extract the rPPG
signal

3DMAD,BidaHR EER-
3DMAD=18.8%,EER-
BidaHR= 26.2%
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Reference Contribution Database Performance
Liu et al.
[2]

local rPPG cor-
relation model.

COMB,SUP EER(COMB) = 9.9%

HTER(COMB)=9.7± 12.6%
AUC(COMB) = 95.5%%
EER(SUP) = 16.2%
HTER(SUP)=14.7%± 10.9%
AUC(SUP)= 91.7%

Heusch
and
Marcel
[31]

long-term spec-
tral statistical
features of the
pulse signal to
discriminate
the attack.

Replay-
Attack,Replay-
Mobile,MSU-
MSFD,3DMAD

HTER(ReplayAttack)=13%,

HTER(Replaymobile)=25.7%
HTER(MSU-MSFD)=20.6%
HTER(3DMAD)=19%

Liu et al.
[30]

local rPPG
signal from
the live face in
terms of their
shape phase
and amplitude
properties

3DMAD,
HKBU-MARsV2

EER(3DMAD) =13.3%

HTER(3DMAD)= 13.4±11.2%
AUC(3DMAD)=93.8%
EER(HKBUMARsV+)=22.0%
HTER(HKBUMARsV+)=22.3±
8.8%
AUC(HKBUMARsV+)=85.2%

Table 2.1: Related work about liveness clue based 3D face mask Presentation
Attack Detection (PAD)

2.3.2 Texture clue based methods

Unlike liveness clues, texture clue methods explore the micro-textual properties of
the biometric face samples presented on Face Recognition System (FRS). Analyz-
ing micro-textual properties, texture clue method performed binary classification
among genuine and fake faces.The most popular and widely used texture clues-
based method to overcome face Presentation Attack (PA) is Local Binary Pattern
(LBP) [32]. LBP-based does not rely on any physical model ( Lambertian models
[33]) but captures local primitives (LBP features) due to the differences between
the surface properties and light reflection between a real face and a plane photo
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attack.

Figure 2.4: Texture based LBP with histogram calcula-
tion(figure taken from https://towardsdatascience.com/
face-recognition-how-lbph-works-90ec258c3d6b)

Kose and Dugelay [11] first implement the static texture-based approach in PAD
to detect 3D mask attacks, make used of texture or depth maps of the input im-
age to distinguish 3D mask or live input. Kose and Dugelay [11] achieved 88.1%
accuracy using the Morpho database. The Kose and Dugelay [34] proposed an
improved version of their previous work by score level fusing of both texture im-
ages and depths maps. Thus, accuracy increased by 93.5% with the same Morpho
database. Erdogmus and Marcel [35] also proposed their work, based on various
LBP operators with different classifiers(Linear Discriminant Analysis and Support
Vector Machine). The result from their proposed method showed that classifica-
tion of block-based LBP features with the Linear Discriminant Analysis gives the
best results for both colour and depth images [18].
In 2014,Raghavendra and Busch [36] proposed a novel approach for detecting 3D
spoofed attempts; both local features, which corresponds to the eye (periocular)
and nose region that is expected to provide a clue on the presence of the mask
and micro-texture variation as a global feature were extracted using Binarized
Statistical Image Features. Raghavendra and Busch [36] showed satisfactory per-
formance with Half Total Error Rate (HTER) of 0.03% on a linear Support Vector
Machine (SVM) in 3DAMD [1] using the weighted sum rule before making the de-
cision about a real face or an artefact [36]. Similarly, Siddiqui et al. [37] combine
with motion estimation using the Histogram of Oriented Optical Flow features on
both 2D and 3D face spoofed attempts and achieve an Equal Error Rate (EER) of
0% on the 3DMAD [1] database. Pinto et al. [38] introduce new concepts aiming
to detect photo, videos and 3D masks. In their work, a discriminative signature
from noise and artefacts while recapturing biometrics samples is generated and
characterize these artefacts by extracting time-spectral feature descriptors from
the video as low-level feature descriptors. Pinto et al. [38] use the visual code-
book concept to find mid-level feature descriptors computed from the low-level
ones. Pinto et al. [38] result the accuracy of 96.16% on the 3DMAD [1]. Agarwal
et al. [39] proposed block-wise Haralick texture features from redundant discrete
wavelet transformed frames obtained from a video, showing the satisfactory per-
formance on HTER of 0% on 3DMAD.

https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b
https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b
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Reference Contribution Database Performance
Kose and Du-
gelay [11]

Multi-sacle LBP texture
images

Morpho Accuracy = 88.1%

Multi-sacle LBP depth
map images

Accuracy = 86.0%

Kose and Du-
gelay [34]

score level fusing of
both texture images and
depths maps

Morpho Accuracy = 93.5%

Erdogmus and
Marcel [18]

block-based LBP features
for both color and depth
image

3DMAD HTER = 0.95%

Raghavendra
and Busch [36]

local features and global
feature using Binar-
ized Statistical Image
Features

3DMAD HTER = 0.05%

Siddiqui et al.
[37]

motion estimation using
the Histogram of Ori-
ented Optical Flow fea-
tures

3DMAD EER = 0%

Pinto et al. [38] time-spectral feature
descriptors and visual
codebook concept to
find mid-level feature
descriptors

3DMAD Accuracy=
96.16%

Agarwal et al.
[39]

block-wise Haralick tex-
ture features

3DMAD EER = 0%

Table 2.2: Brief information about texture based 3D face mask PAD.

2.3.3 Deep learning methods

Deep learning methods are implemented to abstract the distinguish between the
discriminative appearance features for the 3D face mask and genuine face. Menotti
et al. [40] proposed two approaches for detecting spoofed attempts: hyperpara-
meter optimization of network architecture (AO) and learning filter weights via
backpropagation (FO). Menotti et al. [40] conduct the AO approach on the 3DMAD
dataset and achieve EER 0%, while FO approaches and combination of AO+FO
scheme achieved HTER of 24% and 40%, respectively. Similarly, Lucena et al. [41]
proposed FAS-Net, which is based on transfer learning using pre-trained VGG-16
model architecture. Menotti et al. [40] showed the excellent performance of 0%
HTER on the 3DMAD dataset. Feng et al. [42] proposed the hybrid approach for
both 2D and 3D spoofing detection and combined image quality ques(Shearlet)
and motion cues(dense optical flow) with the use of hierarchical network archi-
tecture. The result from their network achieved 0% HTER in the 3DMAD [1]. Man-
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jani et al. [43] introduced the first silicone mask database and proposed a novel
multilevel deep dictionary which is formulated to learn by efficient greedy layer
by layer training approach followed by SVM to classify the genuine and spoofing
attacks. Results from their work are promising with 0% HTER on 3DMAD and
13.44% HTER on SMAD [43]. Liu and Kumar [44] introduce convolution neural
networks based on 3D face masks under visible and near-infrared(multi-spectral)
illumination using two separate sensors. The results from their experiment indic-
ate that near infrared-based imaging of the 3D mask is better as compared under
visible illumination.

Figure 2.5: Convolution Neural Network(CNN) based 3D face masks under vis-
ible and near infrared (multi-spectral)(Figure taken from Liu and Kumar [44])
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Reference Contribution Database Performance
Menotti et
al. [40]

hyper-parameter op-
timization of network
architecture(AO)
and learning filter
weights via back
propagation(FO)

3DMAD HTER =
0%(AO),HTER
= 0%(BO),HTER
= 40%(AO + FO)

Lucena et al.
[41]

FAS-Net transfer
learning using pre-
trained VGG-16
model

3DMAD HTER = 0%

Feng et al.
[42]

Combine image qual-
ity ques(Shearlet)
and motion
cues(dense optical
flow) with the use of
hierarchical network
architecture

3DMAD HTER= 0%

Manjani et
al. [43]

multilevel deep dic-
tionary learning

3DMAD
SDMAD

HTER(3DMAD)
= 0.95%
HTER(SDMAD) =
13.1%

Liu and Ku-
mar [44]

convolution neural
networks based 3D
face masks under
visible and near in-
frared(multispectral)
illumination

Private data ACER = 3.19%

Table 2.3: Brief information about deep learning based 3D face mask Presentation
Attack Detection (PAD)

2.3.4 3D geometric clue-based methods

Three-dimensional geometric cues calculate 3D geometric features from presenta-
tion images distinguishing genuine and fake face images. Basically, with a genuine
face presented biometric sensor possess better 3D structure characteristics than 2D
planer Presentation Attack (PA) (e.g., photo attack or video replay attack). Tang
and Chen [46] applied 3D shape analysis based on principle curvatures meas-
ures that describe the meshed facial surface. The experiment was conducted on
Morpho3, and FRGcv2 dataset, with the EER of 6.91%. Hamdan and Mokhtar
[47] proposed Angular Radial Transformation to extract a feature vector from the
whole image and input it to a Maximum Likelihood classifier for discriminating

3www.morpho.com
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Figure 2.6: 3D Morphable shapes of face (figure taken from Zhou et al. [45])

between genuine and fake faces. Results were achieved using a 3DMAD with the
HTER of 0.91% [47]. The same author Hamdan and Mokhtar [48] proposed an-
other Presentation Attack Detection (PAD) against mask spoofing attacks, with a
combination of Legendre Movements Invariants decomposition and the linear dis-
criminant analysis for characteristic features extraction, and the maximum likeli-
hood for classification on the 3DMAD dataset. The obtained spoof false acceptance
rate was close to 65%, which proves that approach is vulnerable to 3D masks at-
tack [48]. Wang et al. [49] proposed novel methods to detect 3D spoofed attempts,
which combines texture as well as shape features. Precisely, geometry cues are re-
constructed from RGB images through 3D Morphable Model. Then, hand-crafted
elements and deep ones are extracted to represent texture and shape differences
between real and fake faces with EER 0%.

Reference Contribution Database Performance
Tang and
Chen [46]

principle curvatures
measures which de-
scribes the meshed facial
surface

Morpho and
FRGcv2

EER = 6.91%

Hamdan
and
Mokhtar
[47]

Legendre Movements
Invariants(LMI) decom-
position and the linear
discriminant analysis for
characteristic features
extraction,

3DMAD SFAR = 65%

Wang et al.
[49]

reconstruct geometry
cues from RGB images
through 3D Morphable
Model

3DMAD EER= 0%

Table 2.4: Brief information about 3D geometric based 3D mask detection.
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2.3.5 Multiple/Hybrid clues-based methods

Multiple clues, in other words, a hybrid approach, combine multiple clues to ad-
dress facial PAD. Assume a multi-modal system that is more difficult to spoof than
a uni-modal system. In 2017, Pan et al. [50] proposed the two collaborative ap-
proaches; liveness clues (eye-blinking detection model) based on Conditional Ran-
dom Field (CRF) and texture clues (check the coherence between LBP features
of background region of the subject and actual background of the reference im-
age). Another hybrid clues approach is proposed by Feng et al. [42], where static
texture-Shearlet based image quality features [51] [52],and a scenic motion clues,
face motion based on dense optical flow [53], trained into neural network and
then fine-tune with PAD datasets. In 2018, Liu et al. [54] used CNN Recurrent
Neural Network (RNN) architecture and fused Remote Photoplethysmography
(rPPG) cue and pseudo-depth map clue for face Presentation Attack Detection
(PAD). Similarly, Atoum et al. [55] fused patch-based texture clue and pseudo-
map clue in two-stream CNN for facial Presentation Attack Detection (PAD).

Figure 2.7: Liveness clue (Eye-blinking detection model) and texture clue based
hybrid approach(Figure taken from Pan et al. [50]).

2.4 Remote Photoplethysmography based pulse measure-
ment

This section describes essential steps for raw PPG extraction, which is concerned
with face detection, Region of Interest selection, colour channel decomposition for
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raw rPPG extraction. Remote Photoplethysmography is a contact-less approach for
the physiological measurement of human signs(Pulse Rate, Pulse Rate Variability,
Heart Rate, Heart Rate Variability, Respiratory Rate). The idea behind this ap-
proach is: when the skin surface is illuminated with light, then there is a subtle
change in colour variations due to the blood pulse. Sikdar et al. [56], classify Re-
mote Photoplethysmography estimation techniques into two classes:(1) Image-
guided techniques (2) motion-guided techniques. In the image-based technique,
the pulse signal is estimated from colour variation due to the change in the intens-
ity of light from the skin surface in each cardiac cycle, in opposing motion-based
technique extracted the pulse signal from the subtle head oscillations, which oc-
curs due to blood pluming to the aorta in each cardiac cycle. We followed the
image-based technique for rPPG signal extraction, presented in literature Rouast
et al. [15], and Wang et al. [57], we subdivided rPPG signal extraction framework
into two key stages: Face video processing, Estimation of rPPG signal.

2.4.1 Face video processing

The digital camera used to take the videos are mainly web cameras and portable
device cameras. According to the Nyquist-Shannon sampling theorem, the min-
imum frame rate to capture the Heart Rate(HR) is eight frames per second(fps).

Face detection and Region of Interest selection

Raw rPPG signal extraction starts with Region of Interest detection; the idea is
to detect the face or subregion(s) of the face in a video frame, where the rPPG
signal is rich to found. The step proceed with the face detection, in most of the
rPPG approach [58] [59][60] [61] [62] [63] used Viola and Jones [64] as a face
detector algorithm is. Viola-Jones [64] which is used a cascade of features to clas-
sify faces and returned bounding box of the face. It is also available in OpenCV
Computer Vision4. The ROI might be the combination sub-region(s) of the face
such as cheek, face, forehead. In the preliminary phase of the rPPG study, ROI
bounding boxes were selected manually from one frame to another [65]. Altern-
ative to ROI bounding box, skin detection method is usually applied, where skin
region pixel is extracted within the bounding box of the face extracted using face
detection algorithm [66][67][68]. In a recent study, ROI optimization is under-
taken to improve the raw signal, where the ROIs are captured in smaller patches
from the forehead or cheek regions. Then quality indices(SNR) is evaluated from
all patches and determine the candidate ROIs [69][70] [71] [72]. To deal with
the subject in motion, accurate localization and tracking of facial landmarks in
the video frames are crucial. Simple approach of ROI tracking is to re-detect ROI
from every video frame, this approach is followed by[73][74][75][76][77].
In [67] [78], Kanade-Lucas-Tomasi(KLT) [79] face tracking algorithm was imple-
mented to localize the face in every frame of the video which is more automatic

4https://opencv.org/
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then re-detecting ROI(s). Li et al. [21] and Kumar et al. [70] fused good-feature-to-
track [80] for selecting good feature points and KLT to track these features across
the video. Similarly Feng et al. [81] implemented Speeded-up-robust-feature [82]
for the facial feature point selection and KLT for tracking these feature during the
subject in motion. To update or track the face skin pixel across the frame Lee et al.
[68] used kernel [83] approach. Another new approach is applied by Wang et al.
[84] used tracking-by-detection with kernels [85] to compensate the rigid subject
motion across the video frames.

Colour channel for raw rPPG signal extraction

In the colour-based method, raw signal extraction depends on the colour pixel
value captured by the camera. Based on the existing literature for raw signal
extraction, the colour pixel value from the Region of Interest (ROI) across the
video frame is calculated mainly on three colour space Red-Green-Blue(RGB),
Hue-Saturation-Intensity(HSI), and YCbCr, where Y stands for the luminance com-
ponent, Cb, Cr refer to blue-difference and Red-difference chrominance compon-
ents respectively. Tsouri and Li [86] used H channel for raw pulse signal extrac-
tion. Sahindrakar et al. [87] investigate the pulse detection in the YCbCr channel
and conclude YCbCr produces a better result than HSI. Among the three colour
channels, RGB colour space is much popular raw pulse signal extraction. Based
on literature survey [73][66] [65] implement RGB channels for the raw rPPG
estimation, while [21] [74][70] [72] use green channel and [77][88] combine
Red and green channel to estimate pulse signal. A novel approach is proposed
by Rahman et al. [63], the RGB colour space was converted into three independ-
ent signal Lab, where L represents the lightness of the images and a (red/green)
and b (yellow/blue) represent the combination of other colour channels. After
the pixel(intensity) value estimation, from the ROIs in each frame, the value of
each colour channel is calculated by averaging each colour pixel value from frame
ROI. The method is also called spatial pooling or spatial average. Spatial aver-
age is most common in raw pulse extraction and followed in different literature’s
[74][67][70]

2.4.2 Estimation of rPPG signal

Upon reaching this step, raw RGB signal is estimated; it is assumed that the signal
consists of illumination and motion noise which need to be removed. As men-
tioned above, extracted raw RGB signal is coupled with unwanted noise caused
by illumination variation, subject motion, and another factor. Hence it is necessary
to exclude those unwanted noises from the signal for robust and accurate pulse
measurement. Most researchers use one or more filters based on the literature,
which is a design based on noise frequencies and range of Heart Rate frequencies.
Wang et al. [57] classify the noise reduction filter into two types a) temporal filters
(remove the irrelevant information from the signal, thus including colour frequen-
cies with the range of heart beat) (b) Background noise estimation(undertaking
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background signal to remove the illumination noise). The temporal filtering in-
cludes bandpass filters, detrending, and moving averages. In addition to that, stat-
istical methods such as centralization, normalization, detrending, and mean aver-
age techniques were also introduced. Both centralization and normalization are
applied to remove, periodicity of the signal; centralizing refers to mean values of
the signal that are calculated first and are subtracted from the individual values;
the normalization technique adds the step of dividing the signal with standard
deviation. The bandpass filter is applied within the range of HR frequencies based
on blood pulse per minute. There is no concise Heart Rate for the measurement as
Heart Rate changes per human age, health condition; due to this, HR frequency is
also not concrete, so assume different frequency ranges. However, most of the fre-
quency range is within 0.6Hz to 4Hz [10][26][89]. Similarly, the moving average
filter sliding window size is defined, and the average value is calculated within that
sliding window. Detrending is more applicable for signal smoothness by removing
the long-running trend from the signal.Verkruysse et al. [65], Balakrishnan et al.
[59] , Irani et al. [60], Kumar et al. [70] applied butter-worth bandpass filter in
fourth-order butter-worth coefficient in phase neutral digital filter5. One or more
filters were applied for noise reduction,De Haan and Van Leest [90] applied nor-
malization and bandpass filter;Li et al. [21] fused three filters detrending, moving
average, and bandpass filters. Similarly McDuff et al. [75] introduced detrending
and normalization. Adaptive filters correspond with the concept of background
noise estimation, which assumes that, first, ROI(s)and background share the same
white light and background remain static. Based on this assumption Feng et al.
[81], Feng et al. [91] applied the adaptive bandpass filters.
RPPG methods follow the noise reduction step; basically, the rPPG method refers
to rPPG signal extraction from the pre-processed colour channel(common to the
RGB colour channel). Based on the rPPG category presented on Wang et al. [28]
, we categorize the rPPG method into two groups: Dimension reduction/BSS ap-
proach and Model-based methods.

• Dimension reduction/BSS approach
A dimensional reduction algorithm applied as rPPG signal extraction meth-
ods since rPPG is concatenated with a linear combination with different
sources. The classical linear algorithms for dimensionality reduction are
Blind Source Separation(BSS) methods included two popular approach: In-
dependent Component Analysis [92] and Principal Component Analysis(PCA)
[93]. In ICA, linear separation of the sources is accomplished by maximizing
the statistical independence of the sources. Joint Approximate Diagonaliza-
tion of Eigen-matrices (JADE) [94] among the ICA algorithms implemented
by Poh et al. [61]. The work followed on the ICA approach [73] [75] [90].
Compared with ICA Principal Component Analysis (PCA), compute to find-
ing the direction, on the data which have maximum variance. Based on
PCA [59][60] proposed for detecting pulse signal in motion-based method,

5filtfilt in MatLab
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where the frequency spectra of PCA with the highest periodicity is selected.
To handle multiset(colour channel signal from multiple facial sub-regions),
Joint BSS(JBSS) methods had introduced in Guo et al. [95] apply Inde-
pendent Vector Analysis(IVA) to analyze the colour signal from the multiple
sub-regions.

• Model based methods
As oppose to dimensional reductions, model-based methods use the inform-
ation about colour vectors components to assure the demixing of the sources.
Among the various approaches based on the model-based methods, start
with the simplest method called the Green method. In works [21][74] [70]
[78], it has been reported that the green channel provides the strongest PPG
signal. It is the simplest method because it calculates the average colour in-
tensity of the green channel value from the averaging RGB colour channel
in ROI(s). In 2013 De Haan and Jeanne [66] proposed the novel method
CHROM, which reduces the dimensionality of demixing by eliminating the
specular component (colour or illuminate with no pulse signal) by the col-
our difference. With the same goal as CHROM in 2016 Wang et al. [28] intro-
duce Plane-Orthogonal-to-Skin(POS), which define the plane orthogonal to
skin tone in a temporarily normalized RGB plane. Similarly, in 2014 De Haan
and Van Leest [90] proposed a novel Blood Volume Pulse(PBV) method,
which utilized the signature of blood volume change by restricting all the
colour variations to the pulsatile direction. In 2018, Pilz et al. [96] proposed
the novel method called the Local Group Invariance (LGI) method to find a
new feature space from the raw colour signal in which the rPPG method is
most robust to subject movements and lightness variations. Wang et al. [97]
Spatial Subspace Rotation" (2SR or) SSR, which is based on the assumption
of 1) spatially redundant pixel-sensors of a camera and 2) a well-defined
skin mask, our core idea is to estimate a spatial subspace of skin-pixels and
measure its temporal rotation for pulse extraction, which does not require
skin-tone or pulse-related priors in contrast to existing algorithms.

2.4.3 Machine learning approach for rPPG estimation

In a recent development, rPPG based HR estimation is applied with machine learn-
ing techniques. Song et al. [98] classify the existing ML-based rPPG method into
two categories: feature-decoder and end-to-end methods. According to Song et
al. [98] feature-decoder method needs to define hand-crafted feature, and over-
all performance depends on the quality of feature maps. Niu et al. [99] proposed
the feature decoder approach. In their proposed network, ImageNet [100] is im-
plemented, thus generating a large amount of synthetic rhythm spatial-temporal
maps to pretrain deep heart rate regression model. Then the pre-trained Model
was transferred to the real HR estimation task. Similarly, Niu et al. [101] also
generates spatial-temporal maps from small video clips sampled from the original
video using a fixed sliding window; afterwards, the data augmentation method is
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applied and feed into ResNet-18 [102] architecture to estimate the HR per video
clip. In Qiu et al. [103] applied a different approach and fused Eulerian Video
Magnification (EVM) [104] and CNN; specifically, EVM is used to extract the fea-
ture image that corresponds to the heart rate information within a time interval.
The extracted feature is fed into a CNN is then applied to estimate HR from the
feature image, which is formulated as a regression problem. However, in end-
to-end methods learns the feature from the network itself, the overall Model is
interpreted as the black box referring hard to interpret every step. In 2018 Chen
and McDuff [105] first, propose the end-to-end system called DeepPhys to es-
timate the HR from the video; authors introduced a soft attention mask to learn
simultaneously, thus improving the estimation. Another approach based on the
end-to-end method is introduced by Špetlıék et al. [106] with a two-step Neural
Network(NN). The first step is called the extractor step. The sequences of images
produce a sequence of scalar output called an NrPPG signal; afterwards, this sig-
nal is fed into the second step called the estimator, which outputs the HR. The
input of the network is T-frame face images with RGB channels. Similarly, Yu et
al. [107] proposed spatial-temporal networks for rPPG estimation; the network is
designed with several convolutions and pooling operations and feed with T-frame
face images in RGB channels [107]. Finally, the latent manifolds are projected
into signal space using channel-wise convolution operation with 1× 1× 1 kernel
to generate the predicted rPPG signal length.

2.5 Remote Photoplethysmography for face PAD

This section is a review of the feature set from the rPPG signal, which can dis-
tinguish fake and genuine face videos when feeding into the binary classifier. The
feature set was extracted from the genuine videos and fake videos provided with a
binary label. From the estimated rPPG signal, features need to be extracted to clas-
sify whether the pulse signal is estimated with the spoofed face videos or genuine
face videos. In 2016 Li et al. [26] proposed the first facial PAD with pulse-based
estimation. Li et al. [26] works projects the video frames into RGB colour space,
and computed Power Spectrum Density (PSD) Curve.Li et al. [26] assumed that
spoofed or fake videos contain multiple random peaks with low power labels in
opposing genuine video contain dominant peaks. Based on this assumption, two
features were extracted from each colour channel projecting into PSD: maximum
power value and the ratio of maximum value to the total Power. Altogether, Li
et al. [26] created selected six-dimensional features from each RGB colour space
and input for training the SVM classifier.
A similar approach is followed by Hernandez-Ortega et al. [10], the distinctive
approach followed by them, are Hernandez-Ortega et al. [10], compute the rPPG
signal in each second across the video sequence. Hernandez-Ortega et al. [10], ap-
plied the feature set same as [26] and implemented an SVM classifier. The same
author Morales [27] proposed an improved version of their work in 2019 and
implemented a combination of skin detection module and CHROM De Haan and
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Jeanne [66], a method to extract the rPPG signal [27]. The nine different fea-
tures based on time and frequency domain feature rPPG signal is introduced on
their proposed method. In the time domain features, Morales [27] introduced two
features zero-crossing rate (Number of times the signal crossed the zero value)
and quotient between the temporal maximum and minimum. Similarly, in the
frequency domain, Morales [27] introduced seven features: maximum power re-
sponse from the rPPG signal in the PSD curve, the ratio of maximum Power and
the total Power in (0.6–4) Hz frequency range, mean value of rPPg signal, Mean
value of each frequency component multiplied by its magnitude, Sum of the N
biggest values of the frequency signal divided by N, sum of the energy between 0
Hz and 4 Hz and sum of the energy between 2 Hz and 4 Hz.
In 2016, Liu et al. [2] proposed a novel approach for 3D mask face anti-spoofing
with a local rPPG correlation model. The rPPG signal is extracted from the local
face region and model the local rPPG pattern by directly extracting the features
of the signal, such as the signal-to-noise ratio (SNR), maximum amplitude, PSD
[2]. Then this feature is fed into the classifier to made the final decision about
the live and spoofed video attempts. In 2017, Nowara et al. [29], proposed PP-
GSecure, where the rPPG signal was from extracted the face five ROI, two from
the background region and three from the face region (left cheek, right cheek and
forehead). With the background ROI, Nowara et al. [29] subtract the face ROIs
for robustness against noise due to illumination fluctuation. For the feature vector,
Nowara et al. [29] selected the magnitude Fourier spectrum of each filtered PPG
signal and concatenated these spectral features from three facial regions and two
background regions to obtain spectral feature vector for classification [29].
In 2018, a new approach was proposed by Heusch and Marcel [31] which utilizes
long-term spectral statistical features of the pulse signal to discriminate the attack.
Heusch and Marcel [31] applied DFT in each window to calculate the DFT coef-
ficient vector. When a DFT coefficient is lower than 1, it is clipped to 1 such that
the log-magnitude remains positive. Afterwards, Heusch and Marcel [31] com-
pute the mean and variance of the (Discrete Fourier Transform) DFT coefficient
of each window. Then mean and variance vectors of each window were concaten-
ated to represent a single feature vector. The features vector is then fed into SVM
to classify a given video sequence as fake or live.
In 2020 Liu et al. [30] proposed the rPPG based fast 3D mask face PAD. Liu et al.
[30] assumed that extracted the local rPPG signal from the live face in terms of
their shape phase and amplitude properties; however, for a masked face, this prop-
erty was different. Based on this assumption, Liu et al. [30] introduced the TSrPPG
feature operator to measure the similarity using the distance metrics (Euclidean
distance). Afterwards, the TSrPPG features: amplitude, gradient and phase, from
between local facial regions and background regions are concatenated.
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Background Methodology

The chapter enlightens about the background methodology of the thesis work.
The chapter comprised of seven sections; the first section informs about the face
detection and tracking algorithm to detect the face from the face videos in the pro-
posed method; the second section provides the information about colour channel
and ROI selection for the best extraction of rPPG signal, third section details on
the signal preprocessing of raw rPPG signal, fourth selection informed about the
rPPG signal extraction method from the RGB colour space, the fifth section in-
troduced spectral method on rPPG signal for feature extraction, the sixth section
includes brief background about the binary classifier.

3.1 Principle of rPPG and applicability for 3D mask PAD

The rationale behind Remote Photoplethysmography (rPPG) approach is when the
light source(s) illuminates skin, then some portion of the light penetrates through
skin layers reach the capillary vessel; based on the amount of haemoglobin in the
blood, that small portion of the light is absorbed, causing subtle colour change(
also depend upon the volume of blood under the observable skin surface). The
two distinctive approaches for rPPG signal extraction is motion-based and colour-
based, where colour based focuses on extracting the rPPG signal by determining
the colour variation caused by blood volume. In contrast, the motion-based ap-
proach focuses on head motion caused by the pulse and other involuntary head
movements. The intensity-based approach is more popular and widely used in the
research field as opposed to motion-based. We followed Rouast et al. [15], gen-
eral classification of existing rPPG signal extraction on colour-based method. The
general framework for the rPPG from the face video includes face detection, ROI
selection, ROI tracking, Raw rPPG signal extraction, signal preprocessing (filter-
ing and rPPG signal extraction methods). Since we are focusing on 3D face mask
PAD, we tried to obtain only pulse signal from the face region and exclude out the
heart rate estimation computation. The main principle to implement the pulse
signal is describes as; from the genuine faces pulse signal is generated with high
amplitudes as the light sources directly illuminate the skin surface as opposed, on
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Figure 3.1: Comparison of rPPG from the genuine face and mask face (figure is
taken from Liu et al. [20]).

mask attack; first, the light sources need to penetrate the masked surface before
reaching to the skin and blood capillaries which result in very noisy pulse signal
with low amplitude Liu et al. [20]. Based on this principle, we proposed the rPPG
based PAD for 3D mask face videos. The mathematical approach is presented by
Liu et al. [20] on the analysis of rPPG signal for genuine and 3D mask face videos.
For the genuine face light(s) directly illuminates the skin surface and reach to ca-
pillary vessel and rPPG signal penetrates skin to be observed.The observed rPPG
signal from genuine face is represented as:

ŝl = Ts Is+ ε (3.1)

where ŝl represent observed rPPG signal, s represent the raw rPPG signal from ca-
pillary vessel, Ts represent the transmittance properties of skin, I denotes, mean
intensity of facial skin pixel and ε represent environmental noise [20].
For the mask face, the light(s) need to penetrate first face mask layer before reach-
ing to skin surface and capillaries. Also, rPPG signal need to penetrate the face
mask again to capture by camera.

ŝm = TsTm Ims+ ε (3.2)

Im = Tm I (3.3)

Combining above equation:
ŝm = ŝmT2

m + ε (3.4)

where ŝm represent observed rPPG signal from face mask, Tm represent the trans-
mittance properties of skin, Im = Tm I denotes mean intensity of skin under face
mask [20].

3.2 Selection of face detection and tracking algorithm

The selection of faces from the video is a critical factor influencing the rest of the
framework as selection non skin pixel result poor rPPG signal estimation. Hence, it
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is essential to detect the best face region frame across face videos. Taking video as
an input, it is necessary to detect the faces across the video frames; as mentioned
in chapter 2, based on the existing literature’s, most of the research work adopted
the Viola-Jones [64] algorithm for face detection.

3.2.1 Multi-Task Cascaded Convolution Neural Network

One of the popular approaches based on the deep learning method achieving state-
of-art results on the range of benchmark datasets is Multi-Task Cascaded Convo-
lution Neural Network (MTCNN) [108]. Zhang et al. [108] highlighted that the
network could handle pose variations in images, occlusion, illuminations, and ex-
treme lighting to some extend. The network architecture is comprised of three
networks in a cascade structure, where the outputs from the previous steps are
fed as input to the next stage before feeding the image onto the networks [108].
Initially, it does some preprocessing where the input image is resized to different
scales to build an image pyramid [108].

Stage 1

The First stage is called the Proposal Network (P-net), a complete convolution
network candidate facial window is obtained with their bounding box regres-
sion vectors [108]. The obtained window is calibrated according to the estimated
bounding box regression vector [108]. After that, highly overlapped candidates
are merged with Non-Maximum Suppression (NMS) [108].

Stage 2

The output from the first step is then fed into another Convolution Neural Net-
work (CNN) called Refine Network, also called R-Net. In this stage, false candid-
ates generated from the P-net are rejected and further calibration with bounding
box regression and Non-Maximum Suppression. This stage is called the O-Net or
Output Network, where it refine the image with more detailed face regions [108].

Stage 3

Lastly, similar with respect to second stage, but more of action in this stage to
describe the face in more detail manner [108]. The network in this stage output
five facials landmark’s positions [108].
Zhang et al. [108] mentioned three major task to train the their CNN detectors;
face/non-face classification , bounding box regression and facial landmark loc-
alization. The facial landmark localization is formulation as binary classification
problem, where each sample x i make use of entropy loss:

Ldet
i = −(ydet

i log(pi) + (1− ydet
i )(1− log(pi))) (3.5)
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Figure 3.2: Cascaded Network architecture in MTCNN. Figure taken from Zhang
et al. [108].

pi indicates probability value produced by the network to a real face andydet
i ∈

0,1 denotes the ground truth label [108].
The bounding box bounded the face in four regions left top, height and width
localizing the face in each candidate window [108]. For the learning objective re-
gression problem is formulated with the euclidean loss for each sample x i [108].
With the similar approach of regression problem and euclidean loss function, fa-
cial landmark coordinates were obtained. The five facial landmarks obtained from
the MTCNN techniques are left eye, right eye, nose, left mouth corner and right
mouth corner.

3.2.2 Kalman filter for face tracking

According to Welch, Bishop et al. [109], Kalman filter estimates the face tracking
process with a feedback control environment; first, the Kalman filter estimates the
process state at some time and then obtain the feedback from that process state in
the form of a noisy environment [109]. The Kalman filter equation in-cooperate
two steps cycle: time update equation (predictor) and measurement update equa-
tions (corrector) [109]. The time update equation aims to project the current state
into forwarding time state; concurrently, error covariance is computed to obtain
a prior estimate for the next step [109]. The measurement update equation aims
to provide feedback to obtain an improved predicted time equation.

Derivation of state matrix

In the kalman filter the state of an object is represent with the state matrix and
process covariance matrix. The step of Kalman filter start with the state estima-
tion of discrete-time controlled process x ∈ ℜn which is governed by the linear
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stochastic difference equation:

xk = Axk−1 + Buk +wk−1 (3.6)

with the measurement z ∈ ℜm

zk = H xk + vk (3.7)

In the above equation vk and wk − 1 represent the process covariance noise and
measurement covariance noise. Similarly n× n matrix A defines state at previous
time step k-1 to the current time step, and the absence of either a driving function
or process noise [109]. The n× l matrix B defines optional control input u ∈ ℜl to
the state x and m× n matrix H represent that state to the measurement zk, might
changes with each time step [109].

New predicted state

The state matrix is demonstrated by two state: first, prior state cxk
− estimate at

step k given knowledge of the process prior to step k, and second posterior statecxk
estimate at step k in a given measurement. Then a priori estimate error covariance
is:

Pk
− = APk−1AT +Q (3.8)

Then a posteriori estimate error covariance is:

Pk = (I − KkH)Pk
− (3.9)

In Welch, Bishop et al. [109], find the equation that computes a posterior state as
a linear combination of a prior state and a weighted difference between an actual
measurement zk. In more simplified version, the equation is represented by

x̂k = x̂k
− + K(zk −H x̂k

−) (3.10)

The difference zk−H x̂k
− also called innovation or the residual and reflect the dis-

crepancy between the predicted measurement H x̂k
−and the actual measurementzk.

Kalman gain

The kalman gain or blending factor minimized the a posteriori error covariance,
which is obtained by taking derivative of the equation Pk with respect to K and
setting that result equal to zero then solving for K.

Kk = Pk
−HT (HPk

−HT + R)−1 (3.11)

In Qian et al. [110] implement the Kalman filter as the face tracking algorithm.
With the face detection algorithm, the location and size of the face are extracted
out. Assume that face center position xc , yc and size of face is (w,h). Then Kalman
filter smooth temporal projector in the face centre position xc , yc and size of the
face is (w,h) [110].
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Figure 3.3: Complete Operation of Kalman filter. Figure taken from Zhang et al.
[108]

3.3 Selection of face colour channel and ROI

As the face is detected from the frames and tracked across the videos, it is essen-
tial to select those facial regions (s) that can provide the most informative signal
components to estimate the raw pulse signal. Region of Interest (ROI) selection is
a critical process for rPPG estimation and prevents face segmentation errors, re-
duces noise, and ultimately preserves reliable pulse detection components. From
related work in chapter 2, most of the predefined rectangular coordinates of face
region(s) include the forehead, cheeks, nose and lower face regions for ROI. In
addition to rectangular coordinates-based ROI selection, another approach called
skin detection module [111] is also implemented in Hernandez-Ortega et al. [89]
work. In the skin detection algorithm proposed by Kolkur et al. [111], first, the
given image is converted into the two-dimensional matrix, with width and height
values of images. Each entry of the matrix represents the pixel of the picture. Then
ARGB value is calculated by representing each image pixel as a 32-bit value. The
alpha value is calculated by shifting right by 24 bit of red, green, blue, and al-
pha (opacity channel) and getting alpha value. A pixel with a value of 0 % in its
alpha channel represents transparency. In comparison, a value of 100 % in the
alpha channel represents an opaque pixel. Similarly, to compute the red value,
they shift by 16 bits; for the green matter in the pixel, they change by 8 bits. The
remaining value in the pixel is the blue colour. The shifting procedure is applied to
each pixel of the image. To make the design more robust, ARGB value is converted
into HSV as well as YCbCr value using conversion factors and built-in functions
[111]. To decide whether the pixel is a skin pixel or not, a comparative analysis
of the HSV, YCbCr, and ARGB values of each pixel is done with typical values of
a skin pixel. According to [111] algorithm, range of skin pixel in different colour
space are represented as:

0.0<= H <= 50.0 and 0.23<= S <= 0.68 and

R> 95 and G > 40 and B > 20 and R> G and R> B
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and |R− G|> 15 and A> 15

From the selection of ROI(s), most of the literature has implemented RGB col-
our signals. At the same time, some researchers extracted the green channel from
the RGB colour channel [26]. Since RGB colour space is popular and practical to
implement to extract pulse components, then YCbCr and HSV signal. RGB colour
space is a widely used colour space for representing digital images consisting of
three primary colours Red, Green, and Blue. Any other colour can be obtained by
mixing each base colour.

3.4 Choice of signal preprocessing filters

Here, filtering represents the processing of the mean RGB signal extracted from
ROI(s) to suppress noise and other artefacts, thus keeping relevant rPPG informa-
tion in the signal. In addition, the filter neither adds any types of frequency com-
ponents nor change signal component frequencies. However, there some chnages
changes the amplitude or phase relationships. Most of the rPPG search work com-
bination of more than one filter was used to minimize the noise from the mean
RGB signal. A commonly used suppressing filtering operation is bandpass pass fil-
ters, which can cut off frequency components outside the heart rate bandwidth.
The bandpass filters which are widely adopted for rPPG estimation are:

3.4.1 Butterworth IIR bandpass filter

Infinite Impulse Response (IIR) have a non-linear phase response causing fre-
quency related signal delay but faster then FIR when designed with low cut-off
frequency. The difference equation represented by the IIR filter is [112]:

y[n] = −
N
∑

k=1

a[k]y[n− k] +
M
∑

k=0

b[k]y[n− k] (3.12)

The transfer function defined by the difference equation is[112]:

H(z) =
b0 + b1z−1+ ....+ bM z−M

1+ a1z−1+ a2z−2+ .....+ aN z−N
(3.13)

H(z) =
B(z)
A(z)

(3.14)

where

B(z) =
M
∑

n=0

b[n]z−n (3.15)

A(z) =
N
∑

n=0

a[n]z−n (3.16)
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Combining the equation

H(z) =
z−M
z−N

.
b0zM + b1zM − 1+ b2zM − 2+ ....+ bM

zn + a1z−1+ a2z−2+ .....+ aN z−N
(3.17)

Now, the zeros represent the numerator of equation

b0zM + b1zM − 1+ b2zM − 2+ ....+ bM (3.18)

the poles represent the denominator of equation

zn + a1z−1+ a2z−2+ .....+ aN (3.19)

Here, the IIR filter design is based on an analog prototype transfer function. The
transfer function maps the s-plane poles and zeros of the analog filter into the z-
plane using bilinear transformation [112]. With bilinear transformation, there is
a non-linear relationship between the analog frequency ωa and digital frequency
ωd and also s-domain is mathematically transform from s-domain to the Z-domain

z = e jωT

Preserving the frequency characteristics [112].

s =
2
T

1− z−1
1+ z−1

(3.20)

s = jωa (3.21)

combining the equation

ωa =
2
T

tan
ωd T

2
(3.22)

Before designing an IIR filter, it is necessary to tangentially wrap the cut-off fre-
quencies of a digital filter compared with the cut-off frequencies of an analog filter
citekim2018design. The position of the poles impacts the stability of the IIR filter
system. To get the desired frequency response, all the poles must lie within the
unit circle on the z-plane [112]. By deviating the poles from the unit circle on the
z-planes, the stability of the IIR filter deteriorates.

3.4.2 Moving average bandpass filter

The sliding window is defined in moving average filter, which calculates average
signal covered by the sliding window, introducing a new average signal value to
each window. The small sliding window on the moving average filters results in
a smoothing effect on the signal; as opposed, a wide sliding window generates
the general trend of the signal [113]. The previous work on rPPG signal presents
the moving average for removing high-frequency noise and intermittent motion
artefact. However, it is difficult to remove a large amplitude motion artefact; also
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higher sliding window degrades the quality of the waveform [113]. The equation
of moving average filter is represented by [113]:

y[n] =
1
N

N−1
∑

i=0

(x[n− i]), n= N , N + 1, ......, L (3.23)

Where N is the window size, L denotes data length.

3.4.3 Detrending

Detrending refers to the removal of a general trend in the signal by improving
fluctuation. The extraction of the rPPG signal results in unevenly sampled RR
interval time series [114].

z = (R2 − R1, R3 − R2, ....RN − RN−1) (3.24)

Discrete event RR series can be represented with two components [114]:

z = zstat + zt rend (3.25)

where zstat denotes nearly stationary RR series of interest and zt rend refers to
low frequency aperiodic trend component. Further the trend components can be
modeled with the linear equation

zt rend = Hθ +υ (3.26)

where H is the observation matrix, θ is the regression parameters and υ is the ob-
servation error. Now the task is to fit the parameter in such a way that zt rend = Hθ ,
can estimate the trend [114]. The procedure strongly depend upon the column
of the matrix, often called basis vectors in the fitting. The widely used solution to
estimate the theta is the least square method. [114] introduced regularized least
square solution for θ estimation:

θλ = (H
T H +λ2HT DT

d Dd H)−1HT z (3.27)

zt rend = Hθ +λ (3.28)

3.5 Choice of rPPG method

This section describes reflection model of rPPG signal or pulse signal estimation
by introducing three popular rPPG methods: Blind Source Separation(BSS) [66],
Model-based approach [66], and Data-driven method [66].
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3.5.1 Reflection model of rPPG

Consider a light source to illuminate the skin area, and a remote colour camera
captures the reflection of light from the skin area. Further, assume that the light
source is composed of constant spectral composition but varies on intensity and
intensity of reflected light from the skin surface captures by the camera. The re-
flected light to the camera depends on the distance between the camera sensor
and the skin tissue. The skin colour measured by the camera sensor is the combin-
ation of the intensity of the light source, intrinsic skin colour, and sensitivities of
the colour channel, which varies over time as motion-induced intensity /specular
variations and pulse-induced subtle colour changes [28].

Figure 3.4: The skin reflection model illuminating with light source with specular
and diffuse reflection.Figure taken from Wang et al. [28]

.

According to the dichromatic model, reflection from each skin pixel recorded in
an image sequence can be defined as a time-varying function in the RGB colour
channel:

Ck(t) = I(t).(Vs(t) + Vd(t)) + vn(t) (3.29)

where Ck(t) represent RGB channels which is ordered in column of the k-th skin-
pixel, I(t) denotes the luminance intensity label, and it variate according to change
of intensity due to lights sources, distance changes from the camera and skin
pixels, subject in motion, absorption of intensity by skin tissue. I(t) is modu-
lated by two major components; specular reflection vs(t) and diffuse reflection
vd(t),and the last component vn(t) is quantization noise caused by the camera
sensor. The specular reflection, is mirror like reflection, in the sense that most
of the light are reflected from the skin surface, containing color of illumination
and do not contain any information of pulse signal. It can be represented in the
general equation:

vs(t) = us(s0) + s(t) (3.30)
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where us refers unit color vector of light spectrum, s0 and s(t) refers the stationary
and time varying specular reflection. In diffuse reflection on the other hand, some
part of the light intensity traverse into the skin surface, due to the absorption of
light by haemoglobin and melanin, resulting subtle change in color change by
cardiac cycle (blood pulse). Time varying vd(t) is indicated as the pulse changes
in each cardiac cycle.

vd(t) = ud(d0) + upp(t) (3.31)

where, ud refers unit color vector of the skin pixel, d0 refers strength of stationary
reflection, up denotes pulsatile strength in RGB channels and p(t) refers pulse
signal. Substituting the value of vd(t) and vs(t)

Ck(t) = I0(1+ i(t))(uc .c0 + us.s(t) + up.p(t)) + vn(t) (3.32)

where uc represent unit color vector of the skin reflection and co represent re-
flection strength. In the existing rPPG methods, with the exception of 2SR [97],
spatially average RGB values of skin-pixels is calculated, resulting temporal RGB
signal for pulse estimation. The spatial pixel averaging procedure reduce quant-
ization noise caused by the camera sensor. Additionally, it is assumes that color
vectors are not dependent on skin pixels position in an image thus the equation
becomes:

C(t) = (ucc0 I0 + ucc0 I0.i(t) + us.I0−s(t) + up.I0p(t)) + vn(t) (3.33)

The task of the overall existing rPPG method is to pulse signal p(t) from the de-
composition equation C(t)

3.5.2 Local Group Invariance

Pilz et al. [96] introduce Local Group Invariance(LGI), implemented the prior
knowledge about the invariance for estimating HR from the face videos, which is
tolerant to motion noise, nuisance factors, facial noise and natural illumination
factor. The invariance is model into two categories, feature space and model space,
with it’s property to remain constant on each equivalence class [96]. In the context
of heart rate estimation from the face videos, the features are generally computed
as the pixel intensity value aligned in face regions and model space over a set of
suitable frequencies [96]. The feature invariant is described with the group of rigid
transformations, the Special Euclidean group SE(3) and a stochastic frequency
representation invariant concerning the quasi-periodic nature and non-stationary
of Heart Rate [96].

Feature Space

The equation of RGB optical sensor signal, as spatial expectation over a skin op-
erator s and function time t expressed as [96]:

~p ∈ ℜn = R, G, B, n= 3 (3.34)
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~x(t) =

∞
∫

0

E[~p|s(~o)]d t (3.35)

Since the local variance of blood volume changes with respect to the function of
time for each input feature ~x(t). The input feature undergoes transformations of
a differential local group of local transformation LT [96].

∂

∂ T
|T=0 = f (LT , ~x(t)) = 0 (3.36)

The covariance matrix of the observation ~x i : i = 1, ...., l with the above local trans-
formation LT .

C =
1
l

l
∑

i=1

(
∂

∂ T
|T=0 LT , ~x i))(

∂

∂ T
|T=0 LT , ~x i))

T (3.37)

Which results the corresponding symmetric eigen value problem:

CV = VΛ (3.38)

With the derivation of operator P with corank k = 1, the corresponding feature
vector ~x(t) can be expressed as:

lim
l→∞

P = I − V V T (3.39)

~xv(t) = P. ~v(t) (3.40)

where I is the identity matrix ~xv(t) is a new feature space.

3.6 Spectral analysis for rPPG signal

The section present the spectral analysis for transforming time domain signal to
frequency domain signal. Fast Fourier Transform [115] and Welch method [116]
were detailed for spectral analysis.

3.6.1 Fast Fourier Transform

Fourier Fourier transform [115] is applied to transform the time domain into fre-
quency domain [117]. To obtain frequency spectrum from the continuous func-
tion, first the continuous function is decompose into discrete function [117]. Fast
Fourier Transform(FFT) [115] is applied to compute the Discrete Fourier Trans-
form (DFT) [118] based on the spectrum forming the frequency component of the
signal. DFT is defined by the equation of [117]:

Y (k) =
n−1
∑

k=0

X (k)W nk, k = 0,1, ...N − 1 (3.41)

W = ex p
− j2π

N
(3.42)
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3.6.2 Welch Periodogram

Welch method [116] is an averaging modified periodogram aim to calculate the
power spectrum [116]. In the welch method, the time-series signal is split into
overlapping segments or window, then the periodogram is calculated in each win-
dow seperatly[119]. Lastly, averaging the periodograms, welch periodogram is
calculated.

Pl( f ) =
1
M

1
P

M
∑

n=1

[v(n)x l(n)e
− j2π f n]2 (3.43)

The Welch’s power spectrum is formulized from the average of these modified
periodograms as [119]:

Pw( f ) =
1
S

s
∑

l=1

Pl( f ) (3.44)

where, Pl( f ) is the periodogram of each window signal,Pw( f ) is the Welch PSD.

3.6.3 Physiological Parameter estimation from rPPG

After the successful rPPG signal extraction, the second sub-framework comes to
play, named as ML classifier. Since the rPPG signal features from the 3D face mask
and genuine face videos are different in various features point, which can classify
whether the input videos are genuine or 3D face mask videos. Poh et al. [12], in-
troduced the two physiological parameter estimation from rPPG PSD curve terms
as high-frequency component and low-frequency component. Poh et al. [12] state
low-frequency component is computed as the area under the PSD curve corres-
ponding to (0.04 - 0.15) Hz and, the component is modulated by the baroreflex
activity, which includes both sympathetic and parasympathetic influence.
Similarly, the high-frequency component is computed as the area under the PSD
curve corresponding to the (0.15 - 0.4)Hz [12]. This component reflects the para-
sympathetic influence on the heart through efferent vagal activity [12]. It is con-
nected to respiratory sinus arrhythmia (RSA) [12]. Respiratory Sinus Arrhythmia
is a cardiorespiratory phenomenon characterized by Inter Beat Interval (IBI) fluc-
tuations in phase with inhalation and exhalation [12]. Another physiological para-
meter is the ratio of the term as LF/HF, which is simply the ratio of Low-Frequency
component to High-frequency component; the LF/HF ratio is considered to mirror
sympatho/vagal balance reflect sympathetic modulations [12]. Li et al. [26] state,
PSD patterns of genuine face video has a dominant peak in PSD corresponding to
the pulse frequency as opposed to the 3D mask face video. A PSD usually contain
multiple random noise peaks at a much lower level. The ratio of the utmost value
of power to sum of total power in PSD as two feature work [26]. Li et al. [26] say
fake video has multiple random noise peaks at a much lower level.
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3.7 Selection of Machine Learning(ML) classifier

The feature of the pulse signal is extracted from the given face videos; now, it is
necessary to estimate whether the input video is genuine or 3D face mask videos.
Now, we can achieve this goal based on the Machine Learning (ML) classifier. More
specifically, the label of the feature set is two (genuine or 3D face mask videos);
we employed a binary classifier. Binary classifier refers to those classification tasks
where the unknown set is classified only into two labels based on the classification
rule. We have planned to use Support Vector Machine as a binary classifier to
classify genuine or 3D face mask videos.

3.7.1 Support Vector Machine

Support Vector Machine (SVM) is designed for dichotomization between two class.
In the case of more classes, the classification problem is divided into sub-problems.
One class is discriminated against by the rest of the classes. The SVM method un-
dertakes provided attributes of the object, even if some of them do not have much
importance, so it essential beforehand to perform the attribute selection(choosing
appropriate attribute). In addition, SVM methods are suitable for learning with
an extensive training set, possibly with many features.
The basic principle of SVM methods is to place an optimal hyperplane in the
space of attributes for classifying the labels. The optimal hyperplane is equally
distant from the nearest learning examples of both labels. These closest learning
examples to the hyperplane are called the support vectors. Moreover, the distance
between the hyperplane and its support-vector is called the margin. The optimal
class separating hyperplane is selected such that it is nearest to support vectors.
Selecting this hyperplane strengthens the SVM prediction of unseen examples.
This underlying concept is also called a maximum-margin hyperplane. Although
the maximum-margin hyperplane makes the SVM more robust and classy the un-
known samples to their correct label, the case is not always the same. In contrast,
the learning examples contain an error. The SVM misclassify the erroneous data
to incorrect label or wrong side of the hyperplane. To handle a case like this, the
SVM algorithm must be tuned with a soft margin, which allows erroneous data
to push their way through the separating hyperplane without affecting the final
result [120]. Introducing a wide range of soft margin allow SVM to misclassify
the data, so it has to be tuned according to erroneous learning examples in the
dataset. Another critical point in SVM is the kernel function. This mathematical
computation projects the data from low-dimensional space to a higher dimension.
The kernel function not always projects the data to a higher-dimensional space but
also reduces the soft margin. We should also consider the very high dimensional
space problem called the "curse of dimensionality."
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Figure 3.5: Support vector machine for binary classification.
(figure undertaken from https://towardsdatascience.com/
https-medium-com-pupalerushikesh-svm-f4b42800e989)

https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989




Chapter 4

Proposed Methodology

The chapter provides information about the proposed methodology. The proposed
methodology is described according to its pipeline first it explains the implement-
ation of face extraction and tracking technique to detect and track the face se-
quence across video frames. Second, it informs about the Region of Interest (ROI)
selection from detected faces across video frames. Third it details about signal
preprocessing steps, fourth, frequency domain analysis for feature extraction of
the rPPG signal and last machine learning classifiers to distinguish genuine face
videos and 3D mask face videos in the proposed methodology.

Figure 4.1: Framework of the proposed methodology.

43
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4.1 Proposed Approach

This section describes the proposed functional framework that is carried out for
the experiment. To better understand its granularity, we divided the proposed
framework into two available units: rPPG feature signal extraction and ML clas-
sifier. The first part of the proposed method contributes to rPPG signal extraction
from the video input. The proposed method is inspired by the pyVHR1 framework
developed by Boccignone et al. [121]. In the second part ML classifier, correspond-
ing features vectors extracted from the rPPG signal; we take the classification as
a binary classification as video inputs consist of genuine and 3D face mask video
attempts. The feature vector for the genuine face videos was labelled as 1, and
the 3D face mask video was labelled as 0. To know its granularity, we divided the
rPPG feature signal extraction into six sub-functional-units:

4.1.1 Face extraction and tracking

The process starts by taking in face video as an input; for simplicity, assume that
the input video sequence is v(t), where t is video length in seconds. Each input
video is processed frame by frame. To accomplished this task, we integrated the
scikit-video2 a python package to read the video file and load it frame-by-frame.
We also extracted the video metadata such as video frame rate, total frames in
a video, total video duration, and video coding from this module which provides
general information about the input video. After the video is split up in the frame,
the face portion of the image corresponding to each frame is extracted with the
face detector approach. We had undertaken the assumption; face video contains
a single face across the face video sequence. In the framework, we integrated
MTCNN 3 [108] from the python library as a face detector.
The MTCNN [108] detects face from the corresponding frames across the video
sequence. The face detector MTCNN [108] has proven its effectiveness when faces
present in spatial or appearance distortions [121]. MTCNN localized face within
the bounding box, and the face region is cropped following the size of the bound-
ing box.
We coherent Kalman filter to track the face in the video frames to handle the sub-
ject motion across the video frames. As the face is detected from the first frame(the
first frame refers to the first face detected from the video frame), the Kalman fil-
ter exploited the coordinates from the face bounding box and then updated the
face bounding box coordinates in subsequent frames. Here we administer, Kal-
man Filter from the OpenCV 4 python package . From the face extraction and face
tracking, the signal c(t)(which is the cropped face images from each frame t =
1,2,3,....., T) is computed with the dimension w × h × r × d, w and h are width

1https://github.com/phuselab/pyVHR
2http://www.scikit-video.org/stable/modules/generated/skvideo.io.vreader.html#

skvideo.io.vreader
3https://pypi.org/project/mtcnn/
4https://pypi.org/project/opencv-python/

http://www.scikit-video.org/stable/modules/generated/skvideo.io.vreader.html#skvideo.io.vreader
http://www.scikit-video.org/stable/modules/generated/skvideo.io.vreader.html#skvideo.io.vreader
https://pypi.org/project/mtcnn/
https://pypi.org/project/opencv-python/
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(a) Face detection from the genuine face
video frame.

(b) Face detection from the 3D face mask
video frame.

Figure 4.2: Face detection from the face videos using MTCCN. A random frame
across the video in undertaken to demonstrate the genuine and 3D face mask
detection approach.

and height of the bounding box containing face, D represent the depth, accord-
ing to the time window and r represent 3 channels being coded in the RGB-color
space.

4.1.2 Region of Interest Processing

The ROI processing starts by taking the cropped faces that are generated from the
face detection and tracking. This step aims to detect the skin pixels that are rich
with pulse information. It is the most crucial process in the framework because
selecting inaccurate skin pixels from the face regions leads to poor rPPG signal
computation. Prior work of rPPG signal extraction is mainly based on the rectan-
gular ROIs and skin detection module. Among them, rectangular ROIs is much
expected in the context of rPPG signal extraction. The rectangular region indic-
ates the extraction of skin pixels from predefined rectangular patches, for instance,
forehead, nose, or cheeks. Skin detection module instead of rectangular ROI; skin
detection module, cut-off non-skin regions such as (beards, hair, background) and
tries to extract only skin pixels from the face. Among these two techniques, we
performed skin detection modules for each cropped face image; precisely, from
the face-cropped image in the ith frame is transferred into the HSV colour space,
at the same time lower and upper threshold of the HSV value is defined. The ra-
tionale to set the threshold value is that most pixel values will belong to the skin;
thus, the threshold value should cut off all non-skin pixel [121]. From each frame
t=1,2,3................, T, where T is the end frame of the video. The detected face
across the video frame, the skin region is distinguished from the non-skin area;
from the selected skin region, we average over all the selected skin pixels to com-
pute corresponding RGB values (frame by frame); this process continues the end
of video frames. We denote the summed RGB signal from the skin pixel can be
represented q(t).



46 R.Katwal: Liveness Detection for 3D Face Mask Attacks

(a) Skin detection from genuine video frame. (b) Skin detection from 3D face mask video
frame.

Figure 4.3: Skin detection module distinguish the skin and non skin pixel from
face region in HSV color space from video frame.

4.1.3 Signal Preprocessing and rPPG Estimation

As the process reaches the third step, it started with the prepossessing of RGB sig-
nal extracted from ROI. The preprocessing integrates with three-step, firstly, re-
moving noise and other redundant artefacts by moving the average filter. Second,
removing the trend from the signal, third suppressing the signal within HR band-
width (ranging from 40 to 220 BPM) from the signal q(t).In the first step, the
signal q(t) is averaged by moving window fashion where we set the moving aver-
age window of size 3, then detrending5 filter from the sciPy6 package is applied.
The aim of detrending in RGB signal is to minimize the deficient frequency trend
components present in RGB signal, which can distort the low-frequency compon-
ents in spectrum [121]. To exclude the frequency outside the blood pulse, we
integrated Butterworth IIR bandpass filter, Butter7 module is implemented from
the sciPY8 package, the filter is designed with the order of six, and the frequency
range is set to (0.60 to 4.0)Hz. According to Wang et al. [28], the main principle

(a) Remote Photoplethysmography (rPPG) signal
estimated from the genuine face video frames.

(b) rPPG signal estimated from the 3D face mask
video.

Figure 4.4: The rPPG signal is extracted from the LGI method across the video
frames.

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html
6https://www.scipy.org/
7https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#

scipy.signal.butter
8https://scipy.org/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html
https://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://scipy.org/


Chapter 4: Proposed Methodology 47

of existing rPPG methods is to extract the rPPG signal based on the skin reflec-
tion model. Among the existing rPPG arithmetic principles, the LGI [96] method
is integrated into the framework to compute the rPPG signal. The algorithm is
explained in section 3.4(LGI method). From the preprocessed c(t) signal, the new
rPPG signal is estimated is calculated by :

P = I − V V T (4.1)

y(t) = P.c(t) (4.2)

4.1.4 Frequency Domain Analysis For Feature Extraction

In this point, clean rPPG signal is extracted from the face videos, now correspond-
ing feature vectors computed from the extracted rPPG signal. Since our aim de-
viates from calculating accurate HR measurement to extract the distinct features
vectors to distinguish between genuine face video and 3D mask attack. Keeping
that in mind, we have selected distinct features from the rPPG signal spectrum and
also decided to use the features from Li et al. [26]. Based on Li et al. [26], we trans-
formed preprocessed RGB signal into the frequency domain. The Power Spectrum
Density is calculated from each R, G and B colour signal.We integrated Welch9 py-
thon package provided by SciPY. Welch’s method estimated the PSD by dividing
the data into a segment and computing a periodogram from each segment. Lastly,
averaging the periodogram value, the hamming window is implemented with the
each segment size, and FFT value is set to 2048. The welch PSD returns power as
a function of the frequency
According to the assumption proposed by Li et al. [26], in the face video, there
will be the dominant peak in PSD patterns to the pulse frequency as opposed to
fake videos; the PSD patterns usually contains just multiple random noise peaks
with much low power level. Under this assumption,Li et al. [26] also construc-
ted the two features set from each RGB colour channel. The first features are the
maximum value of power P at the frequency range of [0.6,4.0] and the second
feature, R, represents the ratio of maximum power P to the sum of power in the
frequency range [0.6,4.0] [26].

R=
P
∑

∀ f ∈[0.6,4] p( f )
(4.3)

The process is executed in each on the color channel producing six dimensional
feature vector[Pr , Pg , Pb, Rr , Rg , Rb]. With the same spirit, Li et al. [26] P and R are
evaluated on the RGB signal with the frequency range of [0.6,4]. We introduce
these first six feature set in our proposed methodology.

9urlhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch
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Feature vector Description
Pr Maximum power value on the frequency range

[0.6,4] in Red channel.
Pg Maximum power value on the frequency range

[0.6,4] in Blue channel.
Pb Maximum power value on the frequency range

[0.6,4] in Green channel.
Rr Ratio of maximum power P to the sum of power in

the frequency range [0.6,4.0] in red channel.
Rg Ratio of maximum power P to the sum of power in

the frequency range [0.6,4.0] in green channel.
Rb Ratio of maximum power P to the sum of power in

the frequency range [0.6,4.0] in blue channel.

Table 4.1: Brief information about feature vector of computed in Li et al. [26]

(a) PSD curve of genuine face video rPPG sig-
nal with the frequency range of 0.6-4.0 Hz using
Welch method

(b) PSD curve of 3D face mask rPPG signal with
the frequency range of 0.6-4.0 Hz using Welch
method

Figure 4.5: PSD curve from the genuine face video show a dominant peak as
apposed 3D mask face videos curve show a random low level noise like rPPG
signal

4.1.5 Rationale behind the complementary feature vector

The complementary feature computed from the proposed methodology mainly de-
scribe the physiological parameter estimation. Poh et al. [12] proposed the quan-
tification of physiological parameter estimation based rPPG principle. Basic as-
sumption about the complementary feature is; rPPG signal is simulated with the
amount of blood flow under the skin, under this scenario physiological parameters
estimation becomes more informative, and possess high energy value. As apposed
to 3D face mask, light(s) need to passed, first into masked then reaching to skin
surface generating rPPG signal with less energy. Furthermore, 3D mask does not
coherent any types of biological feature, although its realistic face reconstruction
technique. Hence, We consider the three feature as the physiological parameter
estimated by Poh et al. [12], High Frequency Component informs the breathing
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activity and Low Frequency Component informs about baroreflex activity generat-
ing significant peak in PSD spectrum. On third, we consider LF/HF feature vector
which is the ratio of Low Frequency Component to High Frequency Component
represent reflect the sympathetic modulation. Similarly the dominant peak of HF
and LF component in the PSD curve from the genuine face regions,contains high
energy value. So, we consider the sum of LF and HF component. According to
Liu et al. [20], rPPG signal produced from the genuine face have high dominant
peak as apposed 3D face mask videos generated random small peak. Hence area
under PSD curve is computed based on the assumption that genuine face generate
significant area in PSD than 3D face mask. We followed Liu et al. [20] compute
the ratio of maximum power to total power from PSD of BVP signal. The standard
deviation and mean from the estimated pulse signal to improve the generalization
features of pulse signal.we decided to add the physiological parameter specified in
subsection 3.5.4 as the complementary feature vector to improve the classification
of genuine and 3D mask face rPPG signal. In total, we proposed ten complement-
ary feature vector; the first three feature vector were undertaken as physiological
parameter explains in Poh et al. [12] and the rest seven vectors were proposed to
more generalize the rPPG signal.

• The AUC_LF feature vector corresponds to the low-frequency component of
the rPPG signal with in [0.04,0.15] frequency range, and PSD is estimated
on the given frequency range.

AUC_LF =

x
∫

0

y(t)d t (4.4)

y(t) is the rPPG in frequency range of [0.04,0.15] where x is the maximum
frequency in y(t) signal.

• The AUC_HF feature vector corresponds to high-frequency component of
rPPG signal with in range of [0.15,4] Hz and area under PSD are calculated.

AUC_HF =

x
∫

0

y(t)d t (4.5)

y(t) is the rPPG in the frequency range of [0.15,4.0]where x is the maximum
frequency in y(t) signal.

• The LF/HF feature vector is the ration of AUC_LF and AUC_HF.

LF/HF =
AUC_LF
AUC_HF

(4.6)

• Sum of low frequency power component from the PSD in frequency range
[0.04,0.15]

SumLF =
∑

Pl f ( f ) (4.7)

P_lf (f) is the power in PSD within frequency range [0.04,0.15]
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• Sum of high frequency power component from the PSD in frequency range
[0.15,4.0]

SumHF =
∑

Phf ( f ) (4.8)

P_hf (f) is the power in PSD within frequency range [0.15,4.0]
• The feature vector M represent Mean of the obtained rPPG signal from face

video in the frequency range of [0.6,4].

M =
y(1)......y(t)

T
(4.9)

where T is the total length of y(t)
• The feature vectorσrPPG represent Standard deviation of the obtained rPPG

signal from face video in the frequency range of [0.6,4].

σrPPG =

√

√

∑

(y(t)−M)
T

(4.10)

• P_rPPG feature vector represent maximum power value in the PSD curve
on frequency range of [0.6,4] in the rPPG signal.

• R_rPPG is the ratio of maximum power value to sum of power value in the
PSD curve on the frequency range of [0.6,4] in the rPPG signal.

RrPPG =
P
∑

∀ f ∈[0.6,4] p( f )
(4.11)

• AUC_rPPG is the Area under the PSD curve in the frequency range of
[0.6,4] in the rPPG signal

AUC_rPPG =

x
∫

0

y(t)d t (4.12)

(a) PSD curve of low frequency component in
the 3D face mask video rPPG signal with the fre-
quency range of [0.04,0.15]

(b) PSD curve of low frequency component in the
genuine face video rPPG signal with the frequency
range of [0.04,0.15]

Figure 4.6: PSD curve of Low Frequency component from the rPPG signal from
3d mask and genuine face video, within the range of 0.015 to 4.0 Hz.
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(a) PSD curve of high frequency component in
the 3D face mask video rPPG signal with the fre-
quency range of [0.15,4.0].

(b) PSD curve of high frequency component in the
genuine face video rPPG signal with the frequency
range of [0.15,4.0].

Figure 4.7: PSD curve of high frequency component from the rPPG signal from
3d mask and genuine face video, within the range of 0.15 to 4.0 Hz.

Feature vec-
tor

Description

AUC_LF Area under the PSD curve within frequency range of
[0.04,0.15]

AUC_HF Area under the PSD curve within the frequency range of
[0.15,4]

Sum_LF Sum of power in the PSD within frequency range [0.04,0.15].
Sum_HF Sum of power in the PSD within frequency range [0.15,4.0].
LF/HF Ratio of AUC_LF and AUC_HF
M Mean of rPPG signal within frequency range of [0.6,4].
σrPPG Standard deviation of rPPG signal in the frequency range of

[0.6,4].
P_rPPG Maximum power value within frequency range [0.6,4].
R_rPPG Ratio of maximum power P to the sum of power in the fre-

quency range [0.6,4.0].
AUC_rPPG Area under the PSD curve within frequency range of [0.6,4.0].

Table 4.2: Brief information about ten complementary feature vector of rPPG
signal in the proposed methodology.

4.1.6 Learning and classification

From the first functional proposed method results in sixteen different feature vec-
tor. We implemented the binary classifier to distinguish the genuine and 3D mask
face videos based on the computed feature set. We allocate the label ’0’ for the
genuine face video feature set and label ’1’ for the 3D mask face video feature set.
The feature set is standardized with Sklearn python module Standard scaler10,

10https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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before feeding into the classifier. We integrated SVM 11 classifier from the sklearn
python package. The Radial Basis Function(RBF) kernel with the fixed cost para-
meter 1000 is undertaken as an SVM parameter.

11https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Chapter 5

Experimental Result

This chapter includes information about the result from two different experi-
mental evaluation protocol. The first section describes the two 3D mask dataset,
the second section informs about two experimental evaluation protocol; intra-
dataset testing and cross dataset testing. From the intra-dataset testing and cross
dataset testing, results were reported following the respective dataset protocol.

5.1 Dataset

This section gathered the information about two 3D mask dataset; 3DMAD [1]
and HKBU-MARsv1+ [2]. From each dataset samples, rPPG estimation and cor-
responding feature vectors were extracted from the proposed methodology. The
computed feature set is trained with SVM classifier to distinguish the 3D mask
attack and genuine face.

5.1.1 3D Mask Attack Database(3DMAD)

Nesli and Marcel [1] introduced a public database called 3D Mask Attack Data-
base (3DMAD), which is composed of genuine face video and 3D mask face videos
of 17 different subjects recorded by Microsoft Kinect sensor. In the 3DMAD data-
base, Nesli and Marcel [1] utilized ThatsMyFace.com for facial reconstruction and
transformed 2D portraiture into 3D sculptures. The 3D face is constructed only
after seconds of uploading frontal and profile face images of the person. Nesli and
Marcel [1] uploaded one frontal and two profile images of 17 different subjects
on ThatsMyFace.com and ordered a life-size wearable mask and a paper cut mask
for each. The 17 wearable masks are made out of a hard resin which is composed
of full 24-bit colour with holes at the eyes, and the nostrils [1].
The recording of all the dataset is performed using Microsoft Kinect for the Xbox
360 sensor, which generated both RGB(8-bit) and depth data(11-bit) of size 640×
480 at 30 frames per second [1]. The videos collected in three different sessions;
two real access sessions composed two weeks apart and a third session which is
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Figure 5.1: Face masked used by the subjects in 3DMAD dataset.Figure taken
from Nesli and Marcel [1].

mask attacks performed by a single person (attacker) [1]. The recording environ-
ment in all three sessions was well-controlled; the background scene is uniform,
and light is set up to minimize the shadows cast on the face [1]. In each session,
subjects correspond to frontal-view and neutral expression, 17 subject records 5
videos of length 10s. The first two sessions are composed to real access of 170
videos altogether and the third sessions organized to fake videos of 85 videos
overall.

5.1.2 HKBU-MARsv1+

Figure 5.2: Sample mask images in the database HKBU-MARsv1+. (a)-(f) are
ThatsMyFace masks and (g)-(l) are Real-F masks [2]. Figure taken from Liu et al.
[2].
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Li et al. [21] introduced 3D mask attack public database,a subset of HongKong
Baptist University 3D Mask Attack with Real World Variations(HKBU-MARs) [2].
The dataset is composed of 12 subjects, with two different types of mask at-
tacks,ThatMYFace and REAL-F, which increases the diversity of mask types in data-
base[21]. Li et al. [21] introduced a web camera Logitech C92 is used to record
the face videos with resolution of 1280× 720) and frame rate of 25fps. Li et al.
[21] recorded the data under room light.

5.2 Experimental Evaluation Protocol

This section covers the two experiment evaluation protocol: Intra dataset eval-
uation and cross dataset. We had followed the evaluation protocol based on the
respective dataset 3DMAD [1] and HKBU-MARsv1+ [2]. In addition, to report the
result, we had included the three Presentation Attack Detection (PAD) perform-
ance metrics: APCER, BPCER ACER, EER and AUC.

5.2.1 Intradataset testing

In the intradataset testing, the train, development and test samples were gen-
erated within the same dataset. At, first datasets samples were spilt into train,
development and test samples. The train samples were used to train the Machine
Learning (ML) model; the development set is used to tune parameters and hy-
perparameters of the Machine Learning (ML) model to reproduce the best results
while testing the Machine Learning (ML) model with test samples were under-
taken. Test samples remain unknown to the Machine Learning (ML) model, which
generalises the Machine Learning (ML) model as a real-world scenario. In our ex-
periment, we followed the evaluation protocol based on the 3DMAD dataset and
HKBU-MARsv1+ dataset.

Protocol for 3DMAD

In the 3DMAD experiment, leave one out cross-validation(LOOCV) protocol is
implemented, which selects one testing subject from each iteration and divides the
rest subjects into training and development sets [26]. Similarly, 17 folds of cross-
validations are implemented in the 3DMAD dataset where one subject samples
wer left for testing. In contrast, the remaining 16 samples are divided into two
subject-disjoint halves as training and development sets, respectively [26].

Result for 3DMAD

From every 17 folds, APCER, BPCER ACER, EER and AUC. are computed in the
development and test set. The results from each fold are average with a confid-
ence interval of 95%. Based on the development set of 3DMAD, we succeeded
in obtaining the EER of 7.1% with a confidence interval of 1.4% , APCER of 8.2
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% with a confidence interval of 0.8% , BPCER of 8.85 % with a confidence in-
terval of 1% , ACER of 13.2% with a confidence interval of 10.3% and AUC of
95.01% with a confidence interval of 0.4%. Similarly, on the testing set, we ob-
tained the favourable outcome with an EER of 7.9% with a confidence interval of
4.3%, APCER of 7.6% with a confidence interval of 4.08%, BPCER of 10.8% with
a confidence interval of 6.5%, ACER of 9.3% with a confidence interval of 4.9%
and AUC of 95% with a confidence interval of 0.06%.

Method EER-dev
(%)

APCER-
dev
(%)

BPCER-
dev
(%)

ACER-
dev
(%)

AUC-dev
(%)

Li et al. [26] 2.31 - - - -
proposed 7.1± 1.4 8.02 ±

0.8
8.85± 1 13.2 ±

10.3
95±0.01

Table 5.1: Result for intra-dataset protocol on the 3DMAD dataset for develop-
ment set and comparing the result with existing approach

Method EER-test
(%)

APCER-
test
(%)

BPCER-
test
(%)

ACER-
test
(%)

AUC-test
(%)

Morales
[27]

18.18 - - - -

Hernandez-
Ortega et al.
[10]

22.1 - - -

Liu et al.
[30]

13.3 - - 93.8

Liu et al.
[25]

6.54 - - 97.6

Li et al. [26] 4.71 - - - -
method 7.9± 4.3 7.6 ±

4.08
10.8 ±
6.5

9.3± 4.9 95±0.06

Table 5.2: Result for intra-dataset protocol on 3DMAD dataset for testing set and
comparing the result with existing approach

Protocol for HKBU-MARsv1+

In HKBU-MARsv1+, we conducted leave one out cross-validation (LOOCV) pro-
tocol since subject 8 taken out due to privacy issues. We only undertook the 11
subjects; we selected one testing subject from each of 11 fold iterations and di-
vided the rest subjects into training and development sets. We randomly selected
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(a) Average ROC curve of 3DMAD development
set in 17 folds. (b) ROC curve of 3DMAD test set

Figure 5.3: Average ROC curve for training and testing set in 17 3DMAD fold.

(a) DET curve of 3DMAD development set in 17
3DMAD fold.

(b) DET curve of 3DMAD test set 17 3DMAD fold..

Figure 5.4: Average DET curve for training and testing set in 17 fold 3DMAD.

5 subjects in each fold for development and 5 subjects in each fold for the testing
set.

Result for HKBU-MARsv1+

The HKBU-MARsv1+ data samples were split into test, train and development into
11 folds. From every 11 folds APCER, BPCER, EER, ACER and AUC were computed
in the development and test set. The results from each fold are average with a
confidence interval of 95%. Based on the development set of HKBU-MARsv1+,
we succeeded in obtaining the EER of 28.48% with a confidence interval of 2.9%,
APCER of 27.27% with a confidence interval of 2.7%, BPCER of 25.43% with a
confidence interval of 4.2 % and AUC of 78% with a confidence interval of 0.03%.
Similarly, on the testing set, we obtained the favourable outcome with EER of
18.18% with a confidence interval of 11.11%, APCER of 19.1% with a confidence
interval of 11.22%, BPCER of 37.2% with a confidence interval of 21.2% , ACER
of 25.2% with a confidence interval of 12.4% and AUC of 81% with a confidence
interval of 17%.
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Method EER-dev
(%)

APCER-
dev
(%)

BPCER-
dev
(%)

ACER-
dev
(%)

AUC-dev
(%)

proposed 28.48 ±
2.9

27± 2.7 25.43 ±
4.2

26.7± 2 78±0.03

1

Table 5.3: Result for intra-dataset protocol on HKBU-MARsv1+ dataset for de-
velopment set

Method EER-test
(%)

APCER-
test
(%)

BPCER-
test
(%)

ACER-
test
(%)

AUC-test
(%)

Liu et al.
[25]

4.4 - - - 99.3

Liu et al.
[30]

22 - - - 85.2

proposed 18.18 ±
11.11

19.1 ±
11.22

37.2 ±
21.2

25.2 ±
12.4

81±0.17

Table 5.4: Result for intra-dataset protocol on the HKBU-MARsv1+ dataset for
testing set and comparing the result with existing approach

(a) ROC curve of test set of HKBU-MARsv1+ in
11 folds.

(b) ROC curve dev set of HKBU-MARsv1+ in 11
folds.

Figure 5.5: Average ROC curve for development set and test set in 11 fold HKBU-
MARsv1+ dataset.

5.2.2 Cross Dataset Testing

In the cross dataset training protocol, we use a different set of datasets for training
and testing the ML model, which can simulate generalised scenarios. In our cross
dataset experiment, we undertake HKBU-MARsv1+ and 3DMAD; we select data
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(a) DET curve of test set of HKBU-MARsv1+
(b) DET curve development set of HKBU-
MARsv1+

Figure 5.6: Average DET curve for development set and test set in 11 fold HKBU-
MARsv1+ dataset.

samples from one dataset, computes the feature vectors from the proposed meth-
odology and trained ML model with those generated feature vectors. For testing,
another dataset is taken to produce the feature vectors and with these feature
vectors ML model was tested upon.

Protocol for HKBU-MARsv1+ and 3DMAD

For cross data setting, we undertook HKBU-MARsv1+ and 3DMAD as the com-
bined dataset.The observed generability result from the proposed method, the ML
classifier is train and test within two datasets; we used 17 subjects from 3DMAD as
training and 11 subjects from the HKBU-MARsv1+ dataset samples as a testing set.
Since the subjects, experimental setup, video acquisition device were completely
different among these two dataset, which, from which we proposed method is
tested upon with generability environment.

Result for HKBU-MARsv1+ and 3DMAD

The results were produced on training the SVM model with 17 subjects from
3DMAD and tested upon 11 subjects from the HKBU-MARsv1+. With this exper-
imental protocol, we succeeded obtaining the EER of 14.7 %, APCER of 14.7 % ,
BPCER of 10.6 %, ACER of 12.6 % and AUC of 89.62% with a confidence interval
of 2%.
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Method EER (%) APCER
(%)

BPCER
(%)

ACER
(%)

AUC (%)

Liu et al.
[25]

5.884 - - - 98

proposed 14.7 14.7 10.6 12.6 89.62

Table 5.5: Result for cross-dataset protocol HKBU-MARsv1+, where HKBU-
MARsv1+ is taken as training and 3DMAD as testingand comparing the result
with existing approach.

Figure 5.7: ROC curve for cross dataset 3DMAD and HKBU-MARsv1+, where
HKBU-MARsv1+ is taken as training and 3DMAD as testing.
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Figure 5.8: DET curve for cross dataset 3DMAD and HKBU-MARsv1+, where
HKBU-MARsv1+ is taken as training and 3DMAD as testing.





Chapter 6

Discussion

6.1 Discussion about rPPG approach for face PAD

The severity of the face recognition system is due to overexposure of the personal
biometrics data, specifically photos and videos with clear front face view. Taking
advantages of this kind of biometric traits, attackers can circumvent the face re-
cognition system, also called presentation attacks. Nowadays, presentation attacks
are limited by photographs and videos but highly realistic 3D masks. With this per-
suasive approach resulted from the 3D mask, the face recognition system may fail
to detect the spoofed face biometrics traits, resulting in unauthorized users ac-
cessing the system. For countermeasure of the 3D mask, we proposed a liveness
based presentation attack detection with the rPPG method. The rationale behind
Remote Photoplethysmography (rPPG) approach is when the light source(s) illu-
minates skin, then some portion of the light penetrates through skin layers reach
the capillary vessel; based on the amount of haemoglobin in the blood, that small
portion of the light is absorbed, causing subtle colour change( also depend upon
the volume of blood under the observable skin surface). Since we are focusing on
face PAD, we tried to obtain only pulse signal from the face region. Based on this
approach, pulse signal from the genuine faces presented to generated with high
amplitudes as the light sources directly illuminate the skin surface as opposed, on
mask attack; first, the light sources need to penetrate the masked surface before
reaching the skin and blood capillaries which result in very noisy pulse signal with
low amplitude. Based on this principle, we proposed the rPPG based PAD for 3D
mask spoofing.

6.2 Discussion about proposed methodology

In our proposed methodology, we developed an end-to-end pipeline and sub-
divided the proposed method into two functional units: rPPG signal estimation
and Machine Learning (ML) classifier to distinguish the genuine or fake face

63



64 R.Katwal: Liveness Detection for 3D Face Mask Attacks

videos. We initiate by taking face video as an input and then decompose the video
into respective frames. From the face videos, it is necessary to extract face regions
where we can locate rich rPPG signal. To find the face regions from the video,
we implemented MTCNN [108] as a face detector. First, the input video is de-
composed into the frame by frame; from the frame, we extracted the face using
MTCNN [108]. With the n video frames, rather than re-detecting the face on each
frame, we implemented the face tracking algorithm to track the face across the
videos. We implemented a Kalman filter [109] for face tracking along the video
sequence. Another reason to implement the face tracking algorithm is to reduce
the subject motion’s effect while calculating the rPPG signal. The face detection
is followed by a selection of skin regions enriched with the rPPG signal. Most of
the literature introduced selective skin patches(forehead, cheeks, nose and lower
lips), expecting these regions a good source for rPPG signal. We introduced the
skin detection module rather than selecting the skin patches (distinguishing the
skin and non-skin pixel). From all the skin pixels in each frame, the RGB value
from each skin pixels is average and producing a raw RGB signal. Since the raw
RGB signal is concatenated with noise artefacts, we passed it into series of filters
as a preprocessing step. First, the moving average filters are introduced with the
sliding window of size 3, which aims to remove high-frequency noise and intermit-
tent motion artefact. After signal detrending is performed to remove the general
trend in the signal improving the signal fluctuation; lastly, the signal is passed
through bandpass filters which can cut off the frequency components outside the
pulse range bandwidth. We designed the 6 order Butterworth IIR bandpass filter
and allocated the frequency range of 0.6 Hz to 4.0 Hz. After the preprocessing
step, a clean RGB signal is produced and input the obtained RGB signal into LGI
[96] rPPG method. The LGI [96] method compute the pulse signal, in which the
energy of the blood volume signal is re-arranged in vector space with a more con-
centrated distribution. The rPPG signal is estimated from LGI rPPG methods; we
intended to determine the differences between the rPPG signal based on the vari-
ous feature vectors. With the assumption 3D mask face videos produced have low
rPPG signal energy-generating random and low-value noise in the power spec-
trum, while real videos aims has high energy generating high values spikes in the
power spectrum, we performed frequency analysis in the rPPG signal projecting
time domain into the frequency domain. Then PSD is calculated with the welch’s
method [116].
The first function unit completes with rPPG signal estimation; now, the feature
group defining the rPPG signal is computed and trained the ML model to distin-
guish genuine face videos and 3D mask face videos. We extracted sixteen feature
vector from the rPPG signal to determine the genuine and 3D mask face rPPG sig-
nal properties. The feature sets include maximum power and ratio of maximum
power to sum of the total power of each RGB values, Area under the PSD curve
of high frequency and low-frequency rPPG signal component, the ratio of high
to low-frequency components, mean and standard deviation of rPPG signal, max-
imum power of rPPG signal in the power spectrum, the ratio of maximum power
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to sum of total power and Area under PSD for rPPG signal frequency(0.6 to 4)
Hz. Similarly, we in-cooperate the 3DMAD and HKBV-MARsv1+ dataset to com-
pute the result—both of these data composed of real videos and fake videos(3D
masks). We implemented an SVM classifier with RBF kernel, and the Cost para-
meter is fixed to 1000 in all experiments. The results are calculated based on PAD
metrics, and the best work from the proposed method is obtained in the 3DMAD
dataset EER of 7.9% with a confidence interval of 4.3%.

6.3 Discussion about knowledge guided on thesis work

The overall goal of conducting this thesis work is to acquire meaningful concepts
and State of the art on 3D mask face PAD. Keeping in that direction, we had to
review scholarly research articles, research works, conference papers, book, web-
site, and other related academic documents to draw close attention to the PAD
approach. In the background section, we talked about the current approaches on
the PAD, which provides a robust foundation on the existing PAD approach. The
thesis enlightens the concepts about the security vulnerabilities in Face Recogni-
tion System (FRS) and the State of the art method. Although the current approach,
improvised to detected the photo attacks, video attacks, most of them is complex
highly accurate 3D masks attacks since most of the PAD approaches is based on
textures clues and challenges responses to detect the liveliness. Based on the re-
cent advancements in the research work on 3D mask face PAD, we choose to adopt
rPPG based PAD, aiming to provide attack detection on 3D face masks. Moreover,
rPPG based approach is embraced to compute the heart rate from the face videos;
we generalize the concepts to tackle 3D mask face PA by generating rPPG or pulse
signal. It is essential to perceive the ideas on the principle of rPPG methodology
and how rPPG signals detect the masks attacks. Undergoing rPPG based approach
or developing the pipeline, thesis procure tangible notion on face detection and
training approaches—a comprehensible face detection technique MTCNN [108]
which can also be implemented in various face detection application. Secondly,
thesis work implemented a face tracking algorithm through Kalman filter [109].
The State of art approaches for the pulse or rPPG signal extraction methodologies
becomes more apparent. As mentioned above, the thesis focused on computing
the implementation of rPPG methods on 3D masks; these approaches may suf-
fer from illumination noise and motion noise. To handle noise artefacts, thesis
work enlightens about signal processing by introducing moving average, detrend-
ing and bandpass filter concepts. Furthermore, ideas about the transformation of
the time domain to the frequency domain and the calculation of Power Spectrum
Density are highlighted. Lastly, the thesis work guided the concepts of Machine
Learning, metrics about binary classifier and implementation of Machine Learning
(ML) classifier (SVM)
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6.4 Discussion about pros and cons about thesis work

Any proposed methods or the framework comes along with the pros and cons
within it. The pros, our proposed plans, we were succeeded in producing the ERR
of 6.15% with the confidence interval of 4.77% on the 3DMAD dataset; an ML
model is also cross-validated with two different datasets to see the generalizabil-
ity of the proposed framework, which computes the EER of 14.1% and ACER of
12.4%. As opposed to pros, all the dataset we had implemented in the framework
were produced in the adjusted experimental environment. The whole environ-
ment setup is changed with lighting, background noise, and other factors. Hence,
the thesis was not able to examine subjects from real-world scenarios. Another
con in this approach is the time complexity of face detection algorithm detection;
MTCNN consumes a little longer time to perform face detection than other face
detection approaches. So, if we had an opportunity to redo this thesis again, we
will examine the results on the more wild and realistic dataset. And to improve
the applicability of the pipeline, we will try to reach out to some other face detec-
tion techniques to reduce the time complexity.

6.5 Discussion about societal consequences

The proposed method is designated to detect and distinguish genuine and 3D
face mask, result in a robust and secure Face Recognition System (FRS). With the
Remote Photoplethysmography (rPPG) even the super realistic 3D face mask can
be detected by the FRS adding security towards 3D face mask threats.



Chapter 7

Conclusion

The main proposal of the master thesis is to achieve Presentation Attack Detection
(PAD) on the 3D mask attack. Among the approaches based on PAD, we proposed
rPPG based face PAD and analysed its effectiveness on 3D face mask detection.
To reduce the effect on spatial noise, the proposed method integrates the spatial
average of skin pixel from Region of Interest (ROI) and introduced three prepro-
cessing filters moving average, detrending and bandpass filter. From each filter,
the raw RGB signal is prepossessed to produce a much clear RGB signal. The mov-
ing average for removing high-frequency noise and intermittent motion artefact.
Detrending refers to the removal of a general trend in the signal by improving
fluctuation. And bandpass filter suppresses noise and other artefacts, keeping rel-
evant pulse information in the signal.
To handle subject motion, Kalman filters are introduced to track face across the
video. From the first video frame, the face is detected from the MTCNN face de-
tection generating the facial boundary and landmark localization; based on the
facial coordinates produces from the MTCCN, Kalman filters track face coordin-
ates across video frame. The proposed design seems much robust towards the
spatial and subject motion, creating a clean rPPG signal. At the end of the thesis
work, we succeeded in answering the research question:

1. What are the complimentary feature(s) of the pulse signal, estimated by
rPPG approach to classifying the given input videos as a genuine or 3D face
mask?
The estimated pulse signal from the proposed methodology is essential to
distinguish between the pulse generated by genuine face videos and 3D
face mask videos. Following the principle that pulse signal generated from
3D face mask videos produced low energy level in the PSD compared to
genuine face videos. Ten complimentary features were introduced to better
generalise the estimated pulse signal to distinguish between genuine and 3D
face videos. The SVM classifier was undertaken with cost parameter 1000
and RBF kernel to classify the features computed feature vector produced
from the proposed methodology. The experiment is conducted on the two
databases 3DMAD and HKBV MARsv1+, following the experimental pro-
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tocol. The results are calculated based on PAD metrics, and the best work
from the proposed method is obtained with EER of 7.9± 4.3% in 3DMAD
[1] and EER of 18.18± 11.11 % in HKBVMArsV1+ [21].

2. Can these complimentary features help in detecting cross-dataset attacks?
From the proposed method, sixteen features sets were introduced, among
them ten features were proposed complimentary features. The features set
are performed in the cross dataset set testing, taking 17 subjects from 3DMAD
and tested upon 11 subjects from the HKBU-MARsv1+ .To generalize the
proposed methodology, complementary feature is also evaluated under cross
dataset evaluation on publicly available 3DMAD [1] and HKBVMArsV1+
[21] resulting favourable results. The proposed approach gains a perform-
ance of EER of 14.7%for cross-dataset evaluation. The result show the fea-
tures set show genearability towards the cross dataset analysis.
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Future Work

The resilience of any framework or methodology is not possible in all perspective.
Similarly, in our proposal, there were some aspects which can be further improved.
The dataset we had employed in this work is recorded in the experimental setting
rather than a real-world scenario; hence the proposed methodology is deprived of
the vital information on how well it adapts in real scenarios. As the combination
of the two datasets resulted in a total of 29 subjects and they do not necessarily
represent all different ethnic variations of the face, the bias factor needs to be
studied. And more importantly, we are focused only on the 3D mask attack scen-
arios. At the same time, some other face presentation attacks remain untouched by
our methodology, such as face occlusions, highly accurate silicone mask attacks,
extreme makeups, and morphing attacks. All these attacks needs to be studied in
a joint manner in future works.
In addition, most of the real face videos we have employed are stable (with no or
less facial movement) and a clear frontal view. Based on these kind of facial input
videos, we determined the rPPG signal. But it is not always the case in the real-
time application or real-world scenario; the subject possesses inherent motion and
face occlusion may be encountered by the face detection approach. These aspects
needs to be studied in the future works in the-wild setting.
Another aspect is the continuous detection of attacks in a cohesive manner as our
framework needs a set of frames before making a decision. The need for a set of
frames may hinder the use in real-time scenario. A trust factor based continuous
authentication can be integrated to improve the applicability of the face PAD in
real-time scenarios.
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Appendix A

Additional Material

A.1 Multispectral Latex Mask based Video Face Present-
ation Attack Database(MLFP)

Agarwal et al. [122] introduced first public face presentation attack database,
where all the videos were recorded in three different spectrums: visible(VIS),
near-infrared (NIR) and thermal. The database is collected from the 10 subjects
among them 4 were females and 6 were males, the age of the subject falls in
the range of 23-38 years[122]. In total there are 1350 videos from 10 subjects,
among them 1200 videos are attacks videos(mask videos) and remaining 150
videos are without mask(real videos)[122]. Altogether Agarwal et al. [122] cap-
tured 200,000 frames. Agarwal et al. [122] collected the dataset in two indoor
and outdoor, over a three months period and the environmental temperature ran-
ging from (-15 to 15) degree celsius. In MLFP database, two types of masks were
utilized: 3D latex masks and 2D paper masks.The properties of 3D Latex Masks
were soft and they conform to the subject’s face shape and allow life-like move-
ments [122].While, 2D paper masks were created using high resolution images on
high quality card paper [122]. In ten session, each suject weared seven 3D latex
Masks(six masks over entire face and seventh mask cover the face region below
the eyes) and three 2D paper masks[122].
The videos were collected in two different acquisition environments: indoor and
outdoor with two different backgrounds: fixed and random in visible and thermal
spectrum [122]. Agarwal et al. [122] utilized three devices were utilized un-
der three different spectrum’s. For visible spectrum videos collection Agarwal et
al. [122] used Android smartphones 8 megapixels camera at frame resolution
of,280×720 pixels. Agarwal et al. [122] used LIR ONE thermal imager for An-
droid for thermal data collection,on the operating temperature range of 32°F to
95°F with 640×480video resolution. Lastly, Agarwal et al. [122] collected the
videos in NIR spectrum using Microsoft Kinect for Windows V23with output video
resolution of 424×512.
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A.1.1 Experimental protocol for MLFP

We followed the experimental protocol represent in1. The MLFP database is di-
vided into a sbuject and unseen mask for training and testing protocol. The dat-
baase in divided into three random subjects folds were selected where each subject
masks has 10 mask vidoes. Out of these 9 mask,since tenth mask is half mask and
utilized in the testing set, one paper mask and two latex mask were randomly
chosen in the training fold for three subject, and for the testing set consists of
remaining subjects.

Figure A.1: Experiment protocol on MLFP Agarwal et al. [122]

A.1.2 Results for MLFP Dataset

For the evaluation protocol, we followed the experimental protocol presented on
MLFP [122]. The subject is divided into three folds, for training and testing. For
each training fold three mask(one paper mask and two latex mask ) were chosen
and for testing remaining seven subjects were undertaken.

Method APCER
%

BPCER% ACER EER% AUC%

proposed 46.16 ±
4.418

42.03 ±
31.35

46.36 ±
10.21

46.16 ±
4.418

55±0.01

Table A.1: Result for MLFP dataset

1http://iab-rubric.org/resources/mlfp.html

http://iab-rubric.org/resources/mlfp.html
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Figure A.2: ROC curve following the experiment protocol on MLFP Agarwal et
al. [122])

A.2 Cross dataset testing

A.2.1 Results for 3DMAD and MLFP

For the evaluation protocol we undertaken,firs we train Machine Learning (ML)
model with 3DMAD dataset and test with MLFP dataset. In second, we train Ma-
chine Learning (ML) model with MLFP dataset and test with 3DMAD dataset.

Method APCER
%

BPCER% ACER EER% AUC %

proposed 49.1 52.7 50.0 49.1 50.0

Table A.2: Result for 3DMAD as training and testing as MLFP dataset

Method APCER
%

BPCER% ACER EER% AUC%

proposed 39.7 39.4 39.6 39.7 69

Table A.3: Result for MLFP as training set and testing set as 3DMAD dataset

A.2.2 Results for 3DMAD and HKBVMarsv1+

The result is presented by training the SVM classifier with 3DMAD dataset and
test upon with HKBVMarsv1+ dataset.
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(a) ROC curve for 3DMAD as training set and test-
ing set as MLFP dataset

(b) ROC curve for MLFP as training and testing as
3DMAD dataset

Figure A.3: ROC curve for cross data testing in 3DMAD and MLFP

Method APCER
%

BPCER% ACER EER% AUC%

proposed 50.8 60 55.4 50.8 62

Table A.4: Result for 3DMAD as training and testing as HKBVMarsv1+ dataset

Figure A.4: ROC curve for 3DMAD as training dataset and testing as HKBV-
Marsv1+ dataset

A.2.3 Results for MLFP and HKBVMarsv1+

The result is presented by training the SVM classifier with MLFP dataset and test
upon with HKBVMarsv1+ dataset. In second, we train Machine Learning (ML)
model with HKBVMarsv1+ dataset and test with we dataset
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Method APCER
%

BPCER% ACER EER% AUC%

proposed 54.2 53.6 53.9 54.3 48

Table A.5: Result for MLFP as training and testing as HKBVMarsv1+ dataset

Method APCER
%

BPCER% ACER EER% AUC%

proposed 40.6 42.5 41.5 40.6 62

Table A.6: Result for HKBVMarsv1+ as training and testing as MLFP dataset

(a) ROC curve for MLFP as training and HKBV-
Marsv1+ testing as dataset

(b) ROC curve for HKBVMarsv1 as training and
testing as MLFP dataset

Figure A.5: ROC curve for cross data testing in HKBVMarsv1+ and MLFP

A.2.4 Results for development set on HKBVMarsv1+

The result is reported on the development set on HKBVMarsv1+. The evaluation
protocol is highest in section 5.1.2. This section
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Figure A.6: ROC curve for HKBVMarsv1+ on development set
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