
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Shahria Afrin

Partial-face Recognition using
Patch-based Deep Learning

An experiment of face recognition on masked
faces

Master’s thesis in Information Security - Technology
Supervisor: Guoqiang Li

June 2021

M
as

te
r’s

 th
es

is

Shahria Afrin

Partial-face Recognition using Patch-
based Deep Learning

An experiment of face recognition on masked faces

Master’s thesis in Information Security - Technology
Supervisor: Guoqiang Li
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

iii

Abstract

The need for partial-face recognition to recognize partial-faces from CCTV footages or other

pictures existed since the rise of technology. When attempting to do a crime, perpetrators cover

their face to conceal their identity from the law. They either tie a handkerchief or bandana while

committing crimes like robbery, kidnapping etc. The need to recognize these face covered

criminals has also created a need for partial-face recognition. But the need has increased in

today’s reality where wearing a face mask has become a necessity to stay healthy. Having a

partial-face recognition system with high efficiency will improve the security systems like

passport control, access control and biometric face authentication without the need for people

to remove their face masks. This thesis proposes a method using a patch-based approach on

deep learning for face recognition of partial-faces covered by face masks. The face areas of

masked covered faces are first patched, and the patches are then used to train a pre-trained deep

Convolutional Neural Networks (CNN), FaceNet. The models created after training the CNN

with these patches are then used for face recognition. Two fusion techniques (Score-level and

feature-level fusion) for the patches were used out of which Score-level fusion gave the best

results. The methods used in this thesis consists of using a 3D face masking tool to create

masked datasets, face detection and alignment, a patch-based transfer learning and fine tuning

of a pre-trained deep learning model (FaceNet), feature extraction using the trained models, and

score-level and feature-level fusion of the different patches. The final step of using the score-

level fusion gave promising results on both test datasets. It gave an accuracy of 86.75% and

EER of 13.25 % for FEI dataset, and accuracy of 91.395% and EER of 8.605% for TUFTS

dataset. This shows that partially covered faces by face masks can possibly be recognized by

using patch-based deep learning with high accuracy. We believe the performance can be

improved by using more diverse face image dataset with high number of images, and pose and

illumination variations for training the models. The method can also be improved by replacing

the triplet loss function with hierarchical triplet loss function or quadruplet loss function, and

by increasing the number of patches for the patch-based deep learning. In the future, this thesis

can be extended for face recognition of other partial-face images.

Keywords: Convolutional Neural Network, Transfer Learning, Finetuning, Patch-based, Deep

Learning, Partial-face Recognition, Support Vector Machine.

iv

v

Preface

The basis of this thesis came from my interest in biometrics. The idea of this thesis first

originated from my curious thought that if there were such better biometric systems why was

there no system to identify criminals from images if their faces were only partially covered.

Upon discussion of the possibility of such a system with my supervisor Guoqiang Li, and

professor Christoph Busch, they suggested that this can perhaps be done using patch-based deep

learning. Following this, the research questions for this thesis were formulated.

I would like to thank my supervisor for being available whenever I needed guidance. I would

also like to thank him for his valuable input and support in writing this thesis. Thanks, are also

due to my aunt, Shaharima Parvin, who has taught me how to write a good research paper, with

proper citations and no plagiarism. Finally, I would like to thank my partner and my parents

whose support and motivation has brought me this far.

vi

vii

Contents

1. INTRODUCTION .. 1

1.1 Problem Description .. 1

1.2 Research Questions .. 2

1.3 Proposed methodology .. 2

2. MOTIVATION AND RELATED WORK ... 5

2.1 Simulated masked face dataset .. 5

2.2 Face detection .. 5

2.3 Patch-based method ... 6

2.4 Deep Learning - Transfer learning and Fine Tuning ... 8

2.5 Partial face recognition .. 9

2.6 Support vector machine and Squared Euclidean distance ... 9

3. METHODOLOGY ... 12

3.1 Datasets used.. 12

3.1.1 KomNET: Face Image Dataset from Various Media for Face Recognition 12

3.1.2 FEI Face Database .. 12

3.1.3 Tufts-Face-Database... 13

3.2 Data Pre-processing ... 14

3.2.1 Masking .. 14

3.2.2 Face detection ... 15

3.2.3 Face alignment ... 17

3.2.4 Patching .. 19

3.3 Transfer learning and finetuning.. 21

3.3.1 FaceNet: A Unified Embedding for Face Recognition and Clustering 21

3.3.2 Transfer learning .. 22

3.3.3 Fine tuning.. 26

3.3.4 Feature extraction ... 28

3.4 Fusion strategy ... 28

3.4.1 Score-level fusion ... 28

3.4.2 Feature-level fusion .. 30

4. EXPERIMENTAL EVALUATION ... 32

4.1 SVM and Squared Euclidean Distance evaluation .. 32

4.2 Face recognition algorithm evaluation .. 35

4.2.1 Evaluation details ... 36

4.2.2 Score-level and Feature-level fusion evaluation .. 40

5. CONCLUSION ... 44

6. FUTURE WORK ... 46

7. REFERENCES ... 47

APPENDIX A: Codes

viii

List of figures

Figure 1: Flowchart of the proposed methodology .. 4

Figure 2 : Examples of Simulated masked face images ... 6

Figure 3: An example of a patch-based deep learning face recognition [6]............................... 7

Figure 4: Illustration of multi classification using OVO approach [42] 10

Figure 5: Examples of images of a single individual from the KomNET dataset [45] 12

Figure 6: Examples of images of a single individual from the FEI database [46]–[50] 13

Figure 7: Examples of images of a single individual from the Tufts-Face-Database [51]....... 14

Figure 8 : Face images before and after using the face mask renderer tool [26] 15

Figure 9 : RetinaFace single-stage pixel-wise face localization [9]. .. 17

Figure 10 : RetinaFace architecture with five level feature pyramid and independent context

module followed by multi-task loss for each positive anchor [9]. ... 17

Figure 11: Example of finding the angle from the triangle [59] .. 18

Figure 12 : Example of the face alignment and face extraction process of a face image 19

Figure 13 : Example of patching a masked face image .. 20

Figure 14 : Example of patching without adding the extra 10 pixels 21

Figure 15: Model Structure for FaceNet [60] ... 22

Figure 16: Triplet Loss maximization and minimization for training [60] 22

Figure 17: Comparison of Adam to Other Optimization Algorithms [72]............................... 24

Figure 18 : Graphs of training the top patch .. 25

Figure 19 : Graphs of training the top-left patch .. 25

Figure 20 : Graphs of training the top-right patch.. 26

Figure 21 : Graphs of fine tuning the top patch ... 27

Figure 22 : Graphs of fine tuning the top-left patch ... 27

Figure 23 : Graphs of fine tuning the top-right patch... 28

Figure 24: Flowchart of Score-level fusion .. 30

Figure 25: Example of feature level fusion of two feature vectors [78] 31

https://d.docs.live.net/c16e4d1378b47cec/university/thesis%20(2).docx#_Toc73380260
https://d.docs.live.net/c16e4d1378b47cec/university/thesis%20(2).docx#_Toc73380283

ix

List of tables

Table 1: Evaluated subjects .. 32

Table 2: Comparison of recognition results with CNN and SVM techniques for the top half of

the face or masked face. ... 34

Table 3 : Accuracies of the SVM classifier face recognition on the different patches of FEI

and TUFTS datasets. .. 34

Table 4: Accuracies of the Squared Euclidean distance face recognition on the different

patches of FEI and TUFTS datasets ... 35

Table 5: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the

different patches of FEI dataset .. 38

Table 6: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the

different patches of TUFTS dataset.. 39

Table 7: EER and Accuracy of the models on FEI and TUFTS dataset 40

Table 8: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of Score-

level fusion on FEI and TUFTS dataset ... 41

Table 9: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of

Feature-level fusion on FEI and TUFTS dataset .. 42

Table 10: EER and accuracy of score-level and feature-level fusion on FEI and TUFTS

dataset ... 43

x

xi

Abbreviations

CNN Convolutional Neural Network

BFM Base Face Model

EER Equal Error Rate

FNMR False non match rate

FMR False match rate

Leaky ReLU Leaky Rectified Linear Unit

MTCNN Multi-Task Cascaded Convolutional Networks

PCA Principal Component Analysis

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

SVM Support Vector Machine

xii

Partial-face Recognition using Patch-based Deep Learning

1

1. Introduction

Face recognition techniques have been around for years. In today’s world frontal face

recognition is widely used with high efficiency for security reasons and identification purposes

such as for Passports, ID cards, etc. But this usually requires a controlled environment with

proper lighting, good image quality, posture of the face and fully uncovered face image. Face

images with occlusion or partially covered faces have low recognition rates with these face

recognition systems [1].

Recently, due to the COVID-19 pandemic situation people are wearing face masks to reduce

the transmission of the virus. This is making almost everyone wear a mask. The current face

recognition techniques cannot perform face recognition on these masked faces. Moreover,

criminals like thieves and robbers cover their faces with masks or clothes when committing a

crime. And the current situation has given them a golden opportunity to blend in by wearing

COVID-19 masks and some criminals are taking it [2], [3]. Since the common state-of-the-art

algorithms for face recognitions cannot be used on partial faces with high accuracy, it is difficult

to identify these criminals even if we have a picture of them. Many criminals committing these

crimes also have previous records. This means that the law enforcement database has their images

which can be used as a reference image to match them to if we have a method for recognizing these

partial face images.

Face recognition can still be done with high accuracy when the nose is uncovered but has low

accuracy where only the eye and forehead area is uncovered [4]–[6]. Since, fully masked faces

have their nose covered we need a method which works for partial-faces with only the top half

uncovered.

1.1 Problem Description

Even though face recognition has attained a great progress in the last few years due to the use

of deep learning and other accomplished methods such as Principal Component analysis (PCA)

method, it still gives a low recognition rate when it comes to partial faces which are covered

with masks [4], [7]. As a result, it is easy for criminals to get away with crimes by concealing

their identity by a mere mask or scarf. The current pandemic situation has made it mandatory

to wear masks to control the infection rates and stop the spread of the virus. In situations like

this the community access control and face authentication fail [8] and people need to remove

Partial-face Recognition using Patch-based Deep Learning

2

their masks putting everyone at risk. It is therefore, very important to have a face recognition

system which can recognize partial-faces with high accuracy.

A good partial-face recognition method will help identify the criminals from partial-face images

helping the law enforcement agencies detect and catch them. This will reduce masked crime

rates due to the criminals’ fear of getting caught and also help the victim obtain justice. This

method could also benefit security checks in places like airports and passport control as this

may not require people to take off their masks for facial recognition.

1.2 Research Questions

The two main research questions for this thesis are:

• To what extent can partial-face or face covered with mask be recognized?

• Can patch-based deep learning be used for partial-face recognition?

1.3 Proposed methodology

For this thesis we require more than one dataset as one of them will be used for transfer learning.

The other datasets will be used for testing our proposed methodology. Since, people started

wearing masks recently, the number of masked datasets is limited. We therefore, need a method

to create these masked datasets.

After we have the datasets, we need to detect and extract faces from these datasets so that we

can only focus on the face. This will help with better feature extraction. Alignment of the face

also increases the face recognition rates [9].

Partial face images with only eye and nose area have low recognition rate. Using patched face

images in the training set increases the recognition rate [10]. Patched-based deep learning helps

the models extract more detailed features from the image than if the whole image is used.

Patching images therefore, improves the accuracy in some cases [11]. So, to increase the

accuracy we use a patch-based approach for this thesis.

Deep learning Face recognition has made tremendous progress in the last few years.

Convolutional Neural Network is one of the most successful deep learning methods. The CNN

method is effective in image classification [12], object detection [13], and voice print

recognition [14]. The CNN can learn abstract expression like a human brain by using a deep

Partial-face Recognition using Patch-based Deep Learning

3

architecture [15], [16]. It is also very successful in face recognition, as described in [17], “The

powerful aspect of Deep CNN is the fact that, given an ample training set, these large-scale

pattern recognition machines can be optimized end-to-end in order to develop features that

amplify the identity signal, while being robust to other PIE (pose-illumination-expression)

variations” The PIE problem is one of the problems other methods suffer from and is unable to

give good face recognition rates when there is large PIE variations like in [18].

CNN can be used in three ways, which is, training a network from scratch, fine-tuning an

existing model, or using off the shelf CNN features. Fine tuning an existing model is called

transfer learning [19]. Training a network from scratch requires huge amount of data and takes

a lot of time. It is therefore, more efficient to use pre-trained CNN models such as VGGFace,

VGG16, VGG19, FaceNet etc. [20].

Therefore, we choose to use transfer learning and fine tuning on a CNN based pre-trained model

for our feature extraction and face recognition.

Fusion techniques can be used to improve the accuracy of multiple biometric systems together.

There are four different levels of fusions: sensor level fusion, feature level fusion, score level

fusion and decision level fusion [21]. Score-level fusion is the fusion between the output scores

of multiple biometric systems and can be used to give a better accuracy using the fused scores

[22]. Feature level fusion is the fusion between the features from different biometric systems

before the scores are calculated. This is also used to improve accuracy for biometric

identifications [23]. For this thesis, we use score-level and feature-level fusion between the

patches.

So, to summarize, the overview of the proposed methodology is as follows:

• Due to lack of masked face datasets for training and evaluation, a mask tool is applied

to create masked datasets

• For each masked face image, face detection and face alignment are done to only get the

face area

• Each extracted and aligned face is then patched into 3 patches; top, top-left and top-

right patch

Partial-face Recognition using Patch-based Deep Learning

4

• Transfer learning and fine tuning on a pre-trained model (FaceNet) is then done using

the 3 patches from one of the datasets and three different models are generated

• Using these models, feature vector for each image from the other two datasets are

obtained

• Score-level fusion and feature-level fusion is then done using these feature vectors to

improve the accuracy and reduce the equal error rate.

A flowchart of the proposed methodology can be seen in Figure 1.

Figure 1: Flowchart of the proposed methodology

Using the new models

feature vectors are

extracted for each face

patch

Score-level Fusion and

Feature-level Fusion is

done using the feature

vectors

Top feature vectors

Top-left feature vectors

Top-right feature vectors

Score-level Fusion

Feature-level Fusion

F

A

C

E

N

E

T

Top patch

model

Top-left patch

model

Top-right

patch model

Masked dataset

Cropped and

aligned

Patched dataset

Fine-tune FaceNet with

each patch creating 3

models

Face dataset

Partial-face Recognition using Patch-based Deep Learning

5

2. Motivation and Related Work

This thesis is motivated by the need of a good face recognition technique for partial faces. The

current COVID-19 situation has increased the need of such system further for face biometric

authentication and security. The motivations for each area of the proposed methodology are

described in this section.

2.1 Simulated masked face dataset

Lack of masked face dataset has increased a need for methods to apply face masks digitally.

InsightFace is an open source 2D and 3D face analysis library that can be used in python [24].

They use a lot of face datasets for their projects. To improve and increase the data even more

they use data augmentation. One of the data augmentations they use is to add masks to faces.

This is done by using a library for 3D manipulation of the face, Face3D [25]. This can be

utilized for creating simulated masked face image datasets [26].

The masked face dataset explained in the paper “Masked Face Recognition Dataset and

Application” also used a simulated masked face images to increase the volume and diversity of

their dataset. They used Dlib library to mask their dataset using the face landmarks around the

lower region of the face [27].

Figure 2 shows samples of the two tools to apply face masks on faces.

2.2 Face detection

MTCNN (Multi-task Cascaded Convolutional Networks), RetinaFace and OpenPose are state

of the art algorithms to detect faces. Out of these, MTCNN and RetinaFace uses a pre-trained

model to detect eyes, nose, and mouth and produce a bounding box, while OpenPose uses ears,

eyes, nose, and neck without using a pre-trained model [28].

MTCNN is the most widely used face detection method. MTCNN method is used for face

detection efficiently in multiple projects as it uses a lightweight CNN architecture for real -time

performance combining the face detection and alignment into one [29]. RetinaFace gives a more

accurate placement of the five facial features and better accuracy in face detection than MTCNN

[9].

Partial-face Recognition using Patch-based Deep Learning

6

Examples of using InsightFace tool for masking faces [26]

Examples of using Dlib tool for masking faces [27]

Figure 2 : Examples of Simulated masked face images

MTCNN is done as a three stage CNN. Firstly, a shallow CNN is used to produce candidate

windows. The number of windows is then reduced using a more complex CNN and discarding

the windows with no faces. This reduces the number by a lot. Finally, a more powerful CNN is

used to get the final window with output which gives the five facial landmarks positions. By

reducing the number of window each time and increasing the complexity, this performs well

and faster compared to other algorithms in real-time [30]. The whole image can then be cropped

by increasing the output window by some pixel to incorporate the entire face as done in [31].

RetinaFace is a pixel-wise robust single-level face detector. It gives a bounding box and five

face landmarks, which can be used for face detection and alignment like MTCNN. RetinaFace

performs better than MTCNN in locating the face landmarks but requires more time than

MTCNN[9], [32].

2.3 Patch-based method

The paper, Patch-based face recognition from video proposes patch-based method of face

detection from a video. In this method they extract patches of the face from the video frames

and stitch them for reconstructing the face and then perform face recognition on it. The method

used in this paper, however, has a chance of having severe noise in the reconstructed image due

Partial-face Recognition using Patch-based Deep Learning

7

to self-occlusion and region rectification errors as the patches used in the reconstruction can

come from different views. The method can also fail in case of large changes in pose,

illumination and difference in expressions of the face [18].

In the patch-based face Recognition proposed by [33], face images are divided into patches and

these patches are converted into column vectors. These are then converted into “image matrix”

using which, the correlation between patches is calculated [33]. [33] uses this image matrixes

in a two-dimensional principal component analysis (PCA) framework calculating the

correlation of the patches. The projection matrix for feature extraction is then obtained. This

method has a better accuracy than one-dimensional PCA, two-dimensional PCA, and two-

directional two-dimensional PCA.

In [34], Gabor features were used along with patch-based face recognition and this gave

promising results dealing with the unreliability environment in small sample Face recognition

and an improves computational efficiency and computational speed. This overcomes the PCA

method which, even though has the most outstanding performance, is limited by the sample

size and requires a lot of time.

Figure 3: An example of a patch-based deep learning face recognition [6]

[7] uses Local binary patterns (LBP) as a local descriptor followed by Kernel-PCA method after

the image is divided into non-overlapping patches. Multiple sub-Support vector machine

classifiers are created randomly by a patch sampling technique. This gives good results for faces

Partial-face Recognition using Patch-based Deep Learning

8

in which the lower part is missing, like a face covered with mask. [35] also uses a similar

approach of using SVM but with alignment-based face recognition.

Patch-based method has proved to give good face recognition rate and has been used with many

methods. Although it fails to give good face recognition rate when there is a large change in

pose, illumination and expression using large poses and illumination in the training set will

improve the accuracy. Patch-based system will also be affective in partial face recognitions.

2.4 Deep Learning - Transfer learning and Fine Tuning

The paper “Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-

Level Fusion” proposes a color 2-dimentional principal component analysis named C2D-CNN.

This method combines the features extracted by CNN from the original pixels and then make

decision-level fusion. The CNN model in this paper consists of convolution layer,

normalization layer, layered activation function layer, probabilistic max-pooling layer, and

fully connected layer for feature extraction. This model provides a robust face recognition and

performed better than DeepFace, WSTFusion, COST-S1 and COTS-S1+S2 [15]. The training

time of the CNN layers noticed in [15], however, shows that it takes hours to train per layer.

As mentioned in the paper, Deep face recognition using imperfect facial data which uses

convolutional neural network (CNN) along with pre-trained VGG-Face model for recognizing

imperfect faces from CCTV cameras, partial faces containing only eyes, nose and cheeks

individually have low recognition rates. This can be improved slightly using individual parts of

the face as references. The face recognition is then done using Support Vector Machine and

Cosine similarity [20]. Convolutional neural network ‘deep’ structures were successfully used

by many to generate features needed for face recognition [36].

Good CNN models require large training data and huge amount of computational power to train

the models. Training these models with large data also requires a lot of time as seen from above.

Therefore, using pre-trained face models can help save time giving similar accuracy. The VGG-

Face model used in [10], [20] was trained on an enormous dataset containing 2.6M face images

of more than 2.6K individuals. This would take lots of resources and massive amount of time

to train from scratch without proper computational power. Therefore, it was used as a pre-

trained model [20].

Partial-face Recognition using Patch-based Deep Learning

9

A way to use the old weights from a pre-trained model for creating a new trained model with

the same domain is called transfer learning. During transfer learning we separate the feature

extraction layers from the classification layer and add a new classification layer. Training this

by freezing the feature extraction layers then tailors the model to our needs. Another transfer

learning technique is fine tuning. This is done after the previous transfer learning technique. In

this method we unfreeze all or parts of the feature extraction layers and train our new dataset

on it using very low learning rate to avoid destroying the pre-trained knowledge and overfitting

while improving the accuracy [37]–[39].

2.5 Partial face recognition

A dynamic feature matching approach which is a novel partial face recognition approach is

proposed in the paper Dynamic Feature Matching for Partial Face Recognition. This is a

combination of fully convolutional networks and sparse representation classification to address

partial face recognition problem regardless of various face sizes. A frame or still image can be

extracted from the video and different face recognition methods can be used on it to improve

the recognition results. The results in this method were more effective in terms of accuracy and

computation efficiency [4].

[18] also uses face detection on videos using patch-based face recognition. In the paper,

different partial face images from the video are stitched together to create a whole face image

used for face recognition [18].

Another, recent paper proposed a deep learning-based method and quantization-based

technique to deal with the recognition of the masked faces. They used a transfer learning

approach with a pre-trained CNN and a deep Bag of features layer for face recognition on

masked faces and achieve high accuracy [8].

[20] analyses face recognitions on different parts of the faces and partial face patches

individually. The paper states that face recognition on images with only eye area has low

recognition accuracy and can be improved by added the partial face patches while training the

pre-trained model VGGFace [20].

2.6 Support vector machine and Squared Euclidean distance

Face recognition can be done in multiple ways. The most common ways are to use a classifier

and a distance metric. The most effective method for this is using Support Vector Machine as

Partial-face Recognition using Patch-based Deep Learning

10

classifier and Cosine Similarity as distance metric. This two can separate different data more

accurately [20]. Squared Euclidean distance is a widely used distance metric which can be used

to find the distance between two points or in case of face recognition between two feature

vectors. Euclidean distance has been used for face recognition by [40] along with many other

image classification methods.

Support Vector Machine – SVM is a supervised machine learning algorithm which separates

data using hyperplanes into different classes. SVM can be used for both binary classification

and multi classification problems. In this project multi classification is required. This can be

done based on a One-vs-One (OVO) approach [41]. SVM is of two types linear and non-linear

kernel. In case of face recognition using linear SVM works better [20]. Figure 4 shows an

illustration of a multi classification using OVO approach. Each class separates itself from other

classes one by one. This finally creates multiple classes. This means, in the case below, red

separates itself from blue once then later the green and so on [42].

Figure 4: Illustration of multi classification using OVO approach [42]

Squared Euclidean Distance – As the name suggests Squared Euclidean distance is the square

of the Euclidean distance. Since, Euclidean distance has a square root, the square in the Squared

Euclidean distance cancels it. Square Euclidean distance is therefore, the sum of the square of

the distance between two vectors.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ (𝑥1 − 𝑥2)2

Partial-face Recognition using Patch-based Deep Learning

11

Squared Euclidean distance is used when the distances are very small and using square root

reduces it further [43]. Squared Euclidean distance has also been used in classification,

clustering, image processing, and other areas to save the computational expenses as it avoids

the computation of square root [44]. In case of feature vectors, the distances are very small and

using square root give an even smaller distance.

Partial-face Recognition using Patch-based Deep Learning

12

3. Methodology

3.1 Datasets used

3.1.1 KomNET: Face Image Dataset from Various Media for Face Recognition

This dataset is used for transfer learning and fine tuning the pre-trained model Facenet. KomNet

face image dataset is created for performing face recognition by using three different media

sources; mobile phone camera, digital camera, and social media. For this thesis, the images

from digital camera were used. The dataset consists of 50 individuals each of them having a

total of 24 images with different poses with frontal face images. The images were obtained

without conditions like as lighting, background, haircut, mustache and beard, head cover,

glasses, and differences of expression. The images were collected in Computer Laboratory,

Department of Electrical Engineering, Politeknik Negeri Bali, Bali, Indonesia. Samples of the

images from this dataset can be seen below[45].

Figure 5: Examples of images of a single individual from the KomNET dataset [45]

3.1.2 FEI Face Database

This dataset is used for the face recognition in this thesis and testing the fine-tuned model. The

FEI dataset is a Brazilian dataset which was created using faces of students and staff at the

Artificial Intelligence Laboratory of FEI. The individuals used were between 19 to 40 years old

with different appearance, hairstyle and adorns. It has 14 images for each individual in the

Partial-face Recognition using Patch-based Deep Learning

13

dataset. For this thesis, the 14th image which had almost no lighting was discarded as for some

individual no face was detected with MTCNN or RetinaFace. The images are of homogeneous

background consisting of frontal face images with profile rotation of up to 180 degrees. It has

two front faces images one with no expression and one smiling face image. The images

consisting of poses with 180-degree rotation to the left and right were discarded as well. This

was because during the pre-processing of the dataset i.e., adding face masks to them using a

tool by InsightFace (explained later in the paper), the face masks on these images were not

placed correctly and a part of their nose was not covered with a face mask. Examples of images

of different poses can be seen in the figure below [46]–[50].

Figure 6: Examples of images of a single individual from the FEI database [46]–[50]

3.1.3 Tufts-Face-Database

This data set is used for face recognition like the FEI face database. Unlike the previously

mentioned datasets this dataset consists of diverse individuals. The individuals are from more

than over 15 countries and have an age range of 4 to 70 years. The images collected were of

students, staff, faculty, and their family members at Tufts University. Each image was taken in

front of a neutral deep blue background and constant lighting conditions. The dataset consists

of frontal face images with one smiling image, one mouth opened image, one eyes closed image

and the rest neutral expression images. The poses of the images have a little rotation to the left

or right. For this thesis, two individuals were discarded as they contained only 4 images in total

while the rest had 8 images per person. This was done to keep consistent number of images of

Partial-face Recognition using Patch-based Deep Learning

14

all the individuals in train and test sets. Example of images in this dataset can be seen from the

figure below [51].

Figure 7: Examples of images of a single individual from the Tufts-Face-Database [51]

3.2 Data Pre-processing

3.2.1 Masking

Due to covid, everyone started wearing masks since 2020. There are not many datasets for face

recognition which contains all masked faces as this happened only recently. Most datasets with

masked faces have 3 to 5 images per person. When this is divided into train and validation set

the amount of data is not enough for transfer learning and does not give a good model. The

model in this case has low accuracy in predicting unknown or unseen images and hence is low

in accuracy for feature extraction and face recognition. To get a model which has better

accuracy in feature extraction and face recognition for unknown or unseen image we need a

dataset which has many images per person [37], [52].

This thesis requires more than one face image dataset with at least one of them having many

images per person as one dataset is used for transfer learning and fine tuning a pre-trained

model, as explained above, the more the amount of image per person the better the model. For

this reason, a masked face dataset was created using normal face recognition datasets with

frontal face images and a masking tool which is used to apply masks on these images.

Partial-face Recognition using Patch-based Deep Learning

15

InsightFace is a deep learning toolkit for face analysis based on MXNet deep learning

framework [24]. It has a tool created for adding masks to faces automatically which is used for

data augmentation while training their face recognition models [26]. This tool is created by

using face3d which is a python toolkit for processing 3D face. Face3d uses 3D68 model and

Base face model (BFM) which is a pre-trained model. The BFM is created using raw BFM

morphable model [53] and information from face profiling, 3DDFA (Face Alignment Across

Large Poses: A 3D Solution) [29], HFPE (High-Fidelity Pose and Expression Normalization

for Face Recognition in the Wild) [54] and UV coordinates from 3D Morphable Models as

Spatial Transformer Networks [25], [55]. Some examples of face images before and after face

masks are applied using this tool can be seen in Figure 8.

Before adding masks

After adding face masks

Figure 8 : Face images before and after using the face mask renderer tool [26]

3.2.2 Face detection

Before we can train our model, we need to extract faces from the images for better results of

face recognition. The most widely used method for this is the Multi-task Cascaded

Convolutional Networks (MTCNN) [29], [56]. MTCNN is a cascaded system which gives

Partial-face Recognition using Patch-based Deep Learning

16

quality results and is much faster than other methods [29], [56]. However, MTCNN was not

able to extract all the faces from our dataset due to the occlusion (face mask). It could not detect

faces from FEI dataset when the lighting used was very dim for the occluded faces. Another

issue with using MTCNN was that the five facial landmarks MTCNN detected was a little less

accurate which caused the face alignment performed in the next section to be less accurate.

RetinaFace, which is a robust single-stage face detector, on the other hand was able to extract

all the face images and also gave more accurate face landmarks than MTCNN. Based on our

pre-analysis of comparing MTCNN and RetinaFace, we decide to apply RetinaFace for face

detection on our masked datasets.

RetinaFace is a single-stage pixel-wise face detection framework using a state-of-the-art dense

face localization method. This is done by exploiting multi-task loses obtained from extra-

supervised and self-supervised signals. RetinaFace simultaneously predicts face score, face

box, five facial landmarks, and 3D position and correspondence of each face pixel [9]. In this

thesis, we used the face box output to extract faces and the five facial landmarks for alignment.

An example of RetinaFace architecture can be seen in Figure 9.

The implementation of RetinaFace can be seen in the figure below. RetinaFace is implemented

using a five level feature pyramids, denoted by Pn in Figure 10. The first 4 feature levels are

computed from the corresponding ResNet residual stages, denoted by Cn, as seen from the

figure. The last pyramid feature level P6 is computed through a 3×3 convolution with stride=2

on C5. Before the multi-task loss is calculated from each anchor independent context modules

are applied on the five level feature pyramid. This increases the receptive field and enhances

the rigid context modelling power. Then the multi-task loss is calculated for positive anchors

which are s (1) a face score, (2) a face box, (3) five facial landmarks, and (4) dense 3D face

vertices projected on the image plane [9].

Partial-face Recognition using Patch-based Deep Learning

17

Figure 9 : RetinaFace single-stage pixel-wise face localization [9].

Figure 10 : RetinaFace architecture with five level feature pyramid and independent context

module followed by multi-task loss for each positive anchor [9].

Face recognition rate from the paper ArcFace which uses MTCNN from face detection and

alignment increased on all databases when RetinaFace was used instead of MTCNN. Compared

to MTCNN RetinaFace also decreased the normalized mean error rate and failure rate in

locating the five facial landmarks [9].

Since face detection and alignment affects the performance of face recognition and using

RetinaFace locates the five facial features with better accuracy [9], RetinaFace was used for

this Thesis. It was implemented using InsightFace which is a deep learning toolkit for face

analysis based on MXNet deep learning framework [24], [57].

3.2.3 Face alignment

Face alignment is another important step which improves face recognition accuracy [9], [58].

Specially for this thesis it is important to align faces for the next step, face patching. Since, for

Partial-face Recognition using Patch-based Deep Learning

18

face images covered by masks we can only see the top half of the face. The patches we require

are of the top half. Alignment makes it easier for patching the faces.

From RetinaFace while we get the face bounding box and the five face landmarks. The eye

coordinates from the five face landmarks are selected for face alignment. After the alignment

the face is cropped from the image using the coordinated of the face box. The concept in which

the face is aligned is explained in the following paragraph.

First the two eye coordinates are located. Then a line is drawn connecting the two eyes. To align

the face images, we have to rotate the image to make this line parallel to the horizon [58], [59].

To get the angle needed to rotate the image we draw another dot using the left eye and right eye

coordinates and join the dots with two more lines, creating a triangle. Using this triangle, we

can find the angle of rotation θ. From Figure 11 we can see that tan θ can be calculated by

Δy/Δx. Therefore, to get the angle θ we need to calculate tan-1 (Δy/Δx). After the angle is

calculated, the image is rotated in that angle. Then the image is cropped using the face box

coordinated from RetinaFace and resized to 160 * 160 as the FaceNet pre-trained model

requires this image size. Figure 12 shows an example of all the steps used for face alignment

and face extraction.

Figure 11: Example of finding the angle from the triangle [59]

Partial-face Recognition using Patch-based Deep Learning

19

Original Image Eye landmarks

Line between eyes

Triangle

Rotated face image

Extracted face using Face box

Figure 12 : Example of the face alignment and face extraction process of a face image

For each dataset that is used in this thesis all faces are cropped and aligned before patching.

This gives almost similar and consistent patches for all the face image datasets. Since the

patches in the dataset used for transfer learning and fine-tuning the models is similar to the

patches used for testing the models, the accuracy of face recognition is higher than if there was

no alignment done.

3.2.4 Patching

The next step after face alignment is to patch the face images into multiple patches so that from

each patch, we can find out the important features of that patch and finally obtain features from

the entire image.

Partial-face Recognition using Patch-based Deep Learning

20

Since the face images in the datasets of this thesis are already extracted and aligned from the

previous steps, we can easily patch the face images. This is done by first cropping the face in

half + 10 pixels and considering the only top half for the first patch. As the face image is of n*n

size the top part after cropping contains the face not covered by mask. 10 pixels are added extra

during cropping as due to some individuals’ poses the area below the eye is cropped out. The

top patch is then divided into two more patches, one is the top left patch containing the left eye

and another the top right patch containing the right eye. An example of patching a masked face

image is shown in Figure 13.

Figure 13 : Example of patching a masked face image

Partial-face Recognition using Patch-based Deep Learning

21

Figure 14 : Example of patching without adding the extra 10 pixels

3.3 Transfer learning and finetuning

Pre-trained models are trained on large amount of data and can be used for a wide variety of

image classifications. If we want to perform a specific image classification and train models

from scratch for it, it will require large amount of data and computational capability which is

not practical for a normal home laptop. Therefore, we can use transfer learning and fine tuning

in such cases where we can use the knowledge from a pre-trained data and use our own data to

create a model which provides classification according to our needs.

3.3.1 FaceNet: A Unified Embedding for Face Recognition and Clustering

FaceNet is a system used for face recognition by directly learning to map face images to a

compact Euclidean space. Distance between these mapping corresponds to a measure of face

similarity which can be used for face recognition, verification and clustering. FaceNet takes in

color images as inputs and gives embeddings as outputs, which is a vector of size 128. This

output can be used as feature vector for face analysis. [60]

FaceNet uses a deep CNN network followed by L2 normalization. This gives, as outputs,

embeddings which is then followed by a triplet loss function during training. Triplet loss is a

function which minimizes the distance between an anchor and a positive and maximizes the

distance between an anchor and negative, A positive here is when both have same identity and

negative is when both has different identity. The dimensionality of the output is selected to be

128 as when the dimensionality is increased to get better result it requires more training to

achieve the same accuracy and therefore, even more than that to get better accuracy. [60].

Partial-face Recognition using Patch-based Deep Learning

22

Figure 15: Model Structure for FaceNet [60]

Figure 16: Triplet Loss maximization and minimization for training [60]

Inception based CNNs used for FaceNet reduces the model size giving comparable performance

as other CNN models [60]. Inception model have multi-branch architectures which has

powerful representation ability in its dense layers [61]. Residual model is good for training very

deep architecture. The hybrid of inception and ResNet thus give good efficiency [62], [63].

FaceNet implementation in “Face Recognition using FaceNet (Survey, Performance Test, and

Comparison)” is done using Inception ResNet v1 with training dataset as CASIA- WebFace

and VGGFace2 Inception both of which gave above 99% accuracy on LFW as test data [64].

Therefore, for this thesis FaceNet pretrained model based on Inception- ResNet hybrid CNN is

used. The pre-trained models in “Face Recognition using FaceNet (Survey, Performance Test,

and Comparison)” is trained using TensorFlow and can be used with TensorFlow [65] whereas

the FaceNet model by Hiroki Tainai is Keras based. Therefore, to use a Keras pre-trained model

for this thesis, the pretrained Keras FaceNet model by Hiroki Tainai is used. This pre-trained

model also uses an Inception ResNet v1 architecture and is trained on MS-Celeb-1M dataset. It

takes a color image input of size 160*160 pixels [66], [67]. Keras pre-trained model is chosen

instead of TensorFlow as Keras is easier than TensorFlow to code from scratch [68].

3.3.2 Transfer learning

Transfer learning is used for improving the performance on a related task by using the

knowledge from another set of tasks from an interrelated learning problem [69]. The training

Partial-face Recognition using Patch-based Deep Learning

23

data and future data in this interrelated learning problems or algorithms does not need to be of

the same feature space or have the same distribution [38].

The most common workflow of transfer learning is as follows [39]:

1. Taking layers from a pre-trained model

For this thesis, we take all the layers from the pre-trained model FaceNet except the last

two layers for our transfer learning.

2. Freeze the layers taken from the pre-trained model to preserve the knowledge it

learned from previous large dataset it was trained on

In this step, we freeze all the layers taken from the pre-trained model. As the base model

(FaceNet) contains Batch normalization layers we have to set the training of the layers

as training = False to keep it in inference mode during the next step. If this is not done

the non-trainable weights of the Batch-normalization layer will destroy the knowledge

of the model when the layers are unfrozen for fine tuning (next step) by updating the

weights [39].

3. Add new unfrozen layers on top to learn from the old features of the pre-trained

model and use it to predict new features on new dataset

For this thesis for the classification, 3 fully connected layers (Dense layers) are added

with Leaky ReLu activation where alpha was set to be 0.03. Leaky ReLu is same as

ReLu activation with an ability to go to the negative values depending on the alpha we

set. A leaky ReLu most of the time gives better results than ReLu [70]. For this thesis

Leaky ReLu gave better accuracy then ReLu activation, so the models were trained

using Leaky ReLu. The next layer added on top of the dense layers is a batch

normalization layer to accelerate training with less number of epochs. It also provides

regularization and reduces generalization error [71]. Since we used Batch

normalization, we do not use any Dropout here as using a dropout along with the batch

normalization reduced the accuracy of the models. This is because the combination of

these causes overfitting [71]. Lastly, another dense layer with SoftMax activation is

added on top; as the dataset, the models are trained on has a total of 50 classes.

4. Final step is to train the newly added layers using new dataset

Partial-face Recognition using Patch-based Deep Learning

24

For fitting the model and training it Adam optimizer is used. Adam optimizer performs

better in practice as it achieves good results with less training cost and iteration over

entire dataset as seen in Figure 17 [72]. The learning rate 0.001 of Adam was kept as

default learning rate in Keras and other deep learning libraries. This is suggested by the

original paper as a good default setting for machine learning problems [72].

Figure 17: Comparison of Adam to Other Optimization Algorithms [72]

Three models were trained using transfer learning, one for the top patch, two for the top

split in two (top-left and top-right patch). The KomNET dataset was used here for

training and validation. The dataset was split into a 70:30 ratio for the train and

validation sets. Before training, each input is normalized to -1 to +1 range from (0, 255)

as inception-resnet pre-trained models require the input to be normalized in this range.

This was done using the formula:

𝑁𝑒𝑤 𝑖𝑛𝑝𝑢𝑡 =
(𝑜𝑙𝑑 𝑖𝑛𝑝𝑢𝑡 − 𝑚𝑒𝑎𝑛)

𝑠𝑞𝑟𝑡(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

To avoid overfitting, number of epochs was set to 20 with early stopping. The Early

stopping was done based on the validation loss. If the validation loss is reduced the

model is saved and over written every time, we get a lower validation loss. If the

validation loss keeps decreasing for 3 consecutive epochs, we stop the training.

Partial-face Recognition using Patch-based Deep Learning

25

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 18 : Graphs of training the top patch

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 19 : Graphs of training the top-left patch

Number of Epochs Number of Epochs

Number of Epochs Number of Epochs

Partial-face Recognition using Patch-based Deep Learning

26

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 20 : Graphs of training the top-right patch

3.3.3 Fine tuning

Fine tuning is part of the transfer learning technique in which we unfreeze a few or all of the

layers from the pre-trained model after the previously shown steps of transfer learning. Fine-

tuning the model gives better accuracy than already pre-trained models from scratch as the new

model gets tailored to our requirements [73]. This can give meaningful improvements as it

adapts the pre-trained features to the new data incrementally [39].

For this thesis, we unfroze all the layers from the pre-trained model FaceNet after training the

newly added layers. Since, previously we set trainable to false, unfreezing the layer keeps the

Batch normalization layers in inference mode. Hence, their weights are not updated. A very low

learning rate is used here so that we do not overfit the model to our known test and validation

set as this will cause the model to extract features poorly on unseen dataset. The learning rate

used for fine-tuning our three models from the previous step is 1e-5. Increasing this gives good

training and validation accuracy but give low face recognition accuracy on unseen dataset.

Similar to the transfer learning step, we use the same early stopping method in this step to avoid

overfitting.

We can see from the graphs below; the train accuracy and validation accuracy almost remain

the same while fine tuning but the validation loss decreases. This gives better accuracy than if

the models were not fine-tuned.

Number of Epochs Number of Epochs

Partial-face Recognition using Patch-based Deep Learning

27

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 21 : Graphs of fine tuning the top patch

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 22 : Graphs of fine tuning the top-left patch

Number of Epochs Number of Epochs

Number of Epochs Number of Epochs

Partial-face Recognition using Patch-based Deep Learning

28

Train accuracy vs. validation accuracy Train Loss vs. validation loss

Figure 23 : Graphs of fine tuning the top-right patch

3.3.4 Feature extraction

Embeddings or feature vector of each image from the FEI and TUFTS dataset is obtained in

this step using the models created in the previous step. Each model takes an input of face patch

image in size 160*160. The output is taken from the second last layer of the models. This gives

an embedding of 128 values which is the feature vector. The top, top-right and top-left models

are used to extract top, top-right and top-left embeddings respectively. For face recognition

Squared Euclidean distance between the reference embedding and probe embedding is

calculated. When both reference and probe are of same person the Squared Euclidean distance

is small and it is large when they are different.

3.4 Fusion strategy

Score-level fusion and feature-level fusion are done using multiple samples to reduce the equal

error rate and improve the accuracy of biometric recognition [74], [75]. For this thesis both

score-level and feature-level fusion is done to compare which gives better accuracy in our case.

3.4.1 Score-level fusion

Score-level fusion is done by generating a new match score by combining the match scores

outputs from multiple biometric matchers. The match scores from every output are normalized

before combining them and a weight is used for each match score output [74]. Score-level

Number of Epochs Number of Epochs

Partial-face Recognition using Patch-based Deep Learning

29

fusion of multiple biometric systems gives a better accuracy than if only one biometric system

is used [76].

For this thesis, match scores for each patch were calculated separately i.e., top patch match

scores, top-left match score and top-right match scores, and saved as arrays. The match scores

in this case are the Squared Euclidean distances between the probe and reference face patches.

The three-match score arrays are then normalized using the min-max normalization

individually. The min-max normalizing normalizes the data to a range of 0 to 1. It can be

achieved by the following formula:

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Where x is the values to be normalized.

The normalized match scores are then combined using the following formula:

𝑠𝑐𝑜𝑟𝑒𝑓𝑢𝑠𝑒𝑑 = 𝑤1 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝 + 𝑤2 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝−𝑙𝑒𝑓𝑡 + 𝑤3 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝−𝑟𝑖𝑔ℎ𝑡

Where 𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 are weights assigned to each match score. And 𝑤1 + 𝑤2 + 𝑤3 = 1

Scorefused is the final similarity score which is then divided into Genuine scores and Imposter

scores. Where Genuine score is the distance between the same probe and same reference person

and Imposter score is the distance between different probe and reference person. From these

scores, similarity score for each pair is calculated. Which is then used for calculating the EER,

FNMR and FMR. The process is described in the next chapter.

Partial-face Recognition using Patch-based Deep Learning

30

3.4.2 Feature-level fusion

Feature-level fusion is relatively difficult to achieve in practice because different biometric

systems may have incompatible feature sets and may have unknown correspondence among

different feature spaces. Fusion in some cases may be very complicated [75], [77].

In this thesis, we have three feature types with similar feature space. All our features are from

face patches. So, feature fusion is easy in this case. For feature fusion each feature vector is

normalized first. In our case, min-max normalization is used. Then, the three normalized feature

vector is concatenated into one single feature vector [78]. For calculating the match score, the

Squared Euclidean distance between fused feature vector of probe and fused feature vector of

reference is calculated. This is then divided into Genuine scores and Imposter scores. From

Weight 1
Weight 2

Weight 3

Top-patch

Reference

Top-patch

Probe

Top-left

Reference

Top-left

Probe

Top-right

Reference

Top-right

Probe

Top-patch match score Top-left match score Top-right match score

MIN – MAX normalization

Top-patch score

normalized

Top-left score

normalized

Top-right score

normalized

Fused match score

Figure 24: Flowchart of Score-level fusion

Partial-face Recognition using Patch-based Deep Learning

31

these scores, score similarity score for each pair is calculated to determine the threshold for the

scores which gives the least equal error rate. The Scores below the threshold are rejected and

above the threshold are accepted by the system.

Figure 25: Example of feature level fusion of two feature vectors [78]

Partial-face Recognition using Patch-based Deep Learning

32

4. Experimental evaluation

The results from the experiment detailed above are discussed in this section. For evaluation of

the models, two feature comparator methods were used. First method used was the SVM

classifier and Squared Euclidean distance. It was used on the feature vectors which were

extracted using the three models respectively. Second method used was to set a threshold for

the similarity scores of the probe and references. The probes having low similarity scores than

the threshold was rejected and the ones having more were accepted by the system. For

improvement of the second method score-level and feature level fusion is done.

Table 1: Evaluated subjects

 FEI dataset TUFTS dataset

No. of evaluation subjects 109 109

No. of reference samples 872 545

No. of probe samples 327 327

4.1 SVM and Squared Euclidean Distance evaluation

SVM

The feature vectors of the reference samples are separated into different classes using

hyperplanes by SVM. The distance between the feature vector of each probe samples with the

classes created from the reference samples were calculated. The probe sample was classified as

the class it has the least distance with.

Squared Euclidean Distance

For Squared Euclidean Distance method the Squared Euclidean Distance between the feature

vectors of each probe and reference is calculated. The probe is classified as the class of the

reference it has the least Squared Euclidean Distance with.

For both SVM and Squared Euclidean Distance the accuracy is calculated by (the number of

correctly classified probes / the total number of probe samples) *100

Partial-face Recognition using Patch-based Deep Learning

33

The SVM classifier yielded 95.107% accuracy for the top patch of FEI dataset and 92.966%

accuracy for the top patch of TUFTS dataset. And Squared Euclidean distance for face

recognition, yields an accuracy of 95.413% for FEI dataset and 93.272% accuracy for TUFTS

dataset. This is better compared to the accuracy of top patch in the paper “Deep face recognition

using imperfect facial data”, which uses FEI dataset for training VGG-Face and LFW for

testing. They propose a similar method of adding face patches to their train set. The accuracy

their best algorithm yields is 90.2% which uses Cosine similarity [20]. Their method reaches

95% for three-fourth face images but since in our case we only have half of the face (fully

masked face) we compare the results to their top half face results from their paper. Another

paper that had a similar approach of performing face recognition on the top half of the face is

the “Dynamic Feature Matching for Partial Face Recognition” where the maximum accuracy

they gained for top half of the face is 46.3%. In paper “Efficient Masked Face Recognition

Method during the COVID-19 Pandemic” transfer learning and fine tuning of CNN was used

with Deep bag of features (BoF) technique. The result on this gave an accuracy of 88.9% on

Simulated Masked Face Recognition Dataset while the accuracy using CNN and SVM was

86.1% [8], [79]. Although this difference may be because their test dataset had more images

than the datasets used in this thesis. The SVM classifier test accuracies can be seen in Table 3

and Squared Euclidean distance face recognition accuracy can be seen in Table 4.

As it is observed from Table 3 and Table 4, in case of FEI datasets the accuracy improved for

the Squared Euclidean distance significantly. This is because FEI datasets contain poses with

faces rotated almost 180 degrees to left or right. When SVM is used, it is difficult for it to cluster

these into classes as face images with left or right profile have different face features than that

of forward-facing images. Same as the Cosine Similarity gave better results for face recognition

than SVM for partial face recognition in [20]. Our Squared Euclidean distance approach was

similar to the cosine similarity as both are distance metric.

Partial-face Recognition using Patch-based Deep Learning

34

Table 2: Comparison of recognition results with CNN and SVM techniques for the top half of

the face or masked face.

 Top patch accuracy

He et al., 2019 46.3%

Hariri, 2021, Almabdy and Elrefaei, 2019 86.1%

Elmahmudi and Ugail, 2019 90.2%

Proposed methodology accuracy

(Average of both dataset accuracies)

94.3%

Table 3 : Accuracies of the SVM classifier face recognition on the different patches of FEI and

TUFTS datasets.

 Patches Accuracy

FEI dataset

Top half 95.107

Top-left 74.924

Top-right 66.667

TUFTS dataset

Top half 92.966

Top-left 67.568

Top-right 76.147

Partial-face Recognition using Patch-based Deep Learning

35

Table 4: Accuracies of the Squared Euclidean distance face recognition on the different patches

of FEI and TUFTS datasets

 Patches Accuracy

FEI dataset

Top half 95.413

Top-left 86.238

Top-right 80.428

TUFTS dataset

Top half 93.272

Top-left 65.165

Top-right 73.700

4.2 Face recognition algorithm evaluation

For a real-life face recognition system, we cannot only depend on face recognition systems

using classifiers like SVM or distances like Cosine Similarity and Squared Euclidean distance.

If this is done, imposters will get accepted to the system as whichever reference the probe

imposter’s feature vector has minimum distance with. We, therefore, need to set a threshold for

rejecting maximum imposters and accepting genuine scores. This can be done by calculating

the Genuine attempts rejected (False non-match rate) and Imposter attempts accepted (False

Match Rate) for each threshold. Only reducing the Imposter attempts accepted will give a secure

system but the number of Genuine attempts rejected will also be high. This will decrease the

accuracy and efficiency of the system. Therefore, for a good system we choose the point where

the curves of Genuine attempts reject and Imposter attempts accepted meet. This is where the

genuine attempts rejected is minimum for the minimum imposter attempts accepted. This point

gives us the Equal error rate (EER) and setting the threshold to this point gives maximum

accuracy [21], [80].

Partial-face Recognition using Patch-based Deep Learning

36

4.2.1 Evaluation details

In order to compare the reference samples and probe samples, we calculate the distance between

their feature vectors. From these distances, the similarity score is calculated by 1- normalized

distance. Where, the distance is normalized using Min-Max normalization.

The similarity scores are saved as two separate text files, one with the genuine scores and the

other with the imposters scores. Genuine scores are scores between the same subjects and

imposter scores are scores between different subjects. The number of Genuine scores for the

FEI dataset is 2,616 and TUFTS dataset is 1,638 and the number of Imposter scores for the FEI

dataset is 282,528 and TUFTS dataset is 180,180.

The evaluation metrics are described below:

• False non-match rate (FNMR)

False non-match is when the biometric matcher categorizes a pair (probe and reference)

from the same individuals as coming from different individuals. The rate of false non-

match is false non-match rate [81].

False non-match rate is calculated for each threshold independently. Anything less than

threshold is rejected by the system. Therefore, genuine scores below the threshold also

gets rejected. Let, False non-match be the number of genuine scores which are less than

the threshold. So, the False non-match rate is equal to (False non-match /total no. of

genuine scores) *100.

• False match rate (FMR)

False match is when the biometric matcher categorizes a pair (probe and reference) from

the different individuals as coming from same individuals. The rate of False match is

the False match rate [82].

False match rate is calculated for each threshold independently. Anything equal to or

above the threshold is accepted by the system. Therefore, imposter scores equal to or

above the threshold also gets accepted. Let, False match be the number of imposter

scores which are greater than or equal to the threshold. So, the False match rate is equal

to (False match /total no. of imposter scores) *100.

Partial-face Recognition using Patch-based Deep Learning

37

• Equal error rate (EER)

Equal error rate is the point at which the False non-match rate is minimum for the

minimum False match rate. This point is where the graph of FNMR and FMR meet. So,

EER is the point at which FNMR = FMR. The threshold at this point is the most optimal

threshold.

• ROC

ROC curve is the plot of FMR which is the Imposter attempts accepted vs 1-FNMR

which is the Genuine attempts accepted [83].

The following graphs shows False non match rate vs. False match rate and ROC curves (ROC

curves also shows the EER and accuracy) for each of our patches before any fusion is done (for

better readability the following diagrams are presented in separate single pages):

Partial-face Recognition using Patch-based Deep Learning

38

Table 5: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the

different patches of FEI dataset

FEI dataset

Top patch

Top-left patch

Top-right patch

Partial-face Recognition using Patch-based Deep Learning

39

Table 6: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the

different patches of TUFTS dataset

TUFTS dataset

Top patch

Top-left patch

Top-right patch

Partial-face Recognition using Patch-based Deep Learning

40

Table 7: EER and Accuracy of the models on FEI and TUFTS dataset

 Patches EER

FEI dataset

Top half 13.4654

Top-left 28.1213

Top-right 29.1359

TUFTS dataset

Top half 9.3930

Top-left 19.2517

Top-right 17.6479

Contrary to the accuracy of SVM and Squared Euclidean distance on FEI dataset, this method

performed poorly on FEI dataset compared to TUFTS dataset. This is because, as mentioned

previously the FEI dataset have large differences in its poses. The feature vector of different

poses (left/right profile and front profile) are different. So, the distance between a left/right

profile image and front face image is large even though the images are of same person. Since,

the method depends on Squared Euclidean distance between probe and reference images it gives

high equal error rate for the FEI dataset compared to the TUFTS dataset.

4.2.2 Score-level and Feature-level fusion evaluation

To improve the accuracy and reduce the EER we used score-level and feature-level fusion. The

following graphs show False non match rate (FNMR) vs. False match rate (FMR) and ROC

curves (ROC curves also shows the EER and accuracy) for score-level fusion and feature-level

fusion of the three patch feature vectors:

Partial-face Recognition using Patch-based Deep Learning

41

Table 8: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of Score-

level fusion on FEI and TUFTS dataset

Score-level fusion

FEI dataset

TUFTS dataset

Partial-face Recognition using Patch-based Deep Learning

42

Table 9: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of Feature-

level fusion on FEI and TUFTS dataset

Feature-level fusion

FEI dataset

TUFTS dataset

Partial-face Recognition using Patch-based Deep Learning

43

Table 10: EER and accuracy of score-level and feature-level fusion on FEI and TUFTS dataset

Fusion Dataset EER

Score-level

FEI dataset 13.2489

TUFTS dataset 8.6052

Feature-level

FEI dataset 20.5321

TUFTS dataset 14.1753

For score-level fusion the weights for the three fused scores were determined by trial-and-error

method. It was seen that increasing the weight of the top patch and decreasing the top-left and

top-right patch improved the accuracy from weights (w1=0.5, w2=0.25, w3=0.25) till (w1=0.9,

w2=0.05, w3=0.05). After this the accuracy of FEI dataset started reducing. Weights of the

top-left and top-right patches were chosen to be the same as accuracy of these patches were

almost the similar to each other for both FEI and TUFTS dataset as it can be seen from the

results before.

Table 10 shows that the Score-level fusion gave a better accuracy than feature-level vector in

our case. Score-level fusion accuracy is also better than the accuracy we had before. Feature-

level fusion did not work in our case because the top-left and top-right accuracy was not good

compared to the top patch. For feature-level fusion we are fusing all the three features without

any weights which gives then all equal weights. Therefore, the accuracy drops due to the low

accuracies if top-left and top-right patch. On the other hand, for the score-fusion we set less

weights on the lower accuracy top-left and top-right patches. This therefore, gives us better

results.

Partial-face Recognition using Patch-based Deep Learning

44

5. Conclusion

The experimental evaluation of this thesis, we believe, confirms that patch-based transfer

learning and fine tuning a CNN based pre-trained model can be used for partial face recognition

with high accuracy. As seen from the experiments performed in this thesis, masked face

recognition can be successfully performed using deep learning. Face recognition for only parts

of the faces like top-left or top-right can also be done with an accuracy of up to 80% on some

databases. This answers our research questions: To what extent can partial-face or face covered

with mask be recognized? And can patch-based deep learning be used for partial-face

recognition.

This thesis incorporated the methods of using a 3D face masking tool to create masked datasets,

face detection and alignment on the masked datasets, a patch-based transfer learning and fine

tuning of a pre-trained deep learning model (FaceNet), feature extraction using the trained

models on different test datasets, and score-level and feature-level fusion of the different

patches.

KomNET dataset does not have too many pose variations i.e., there are no 180-degree rotation

side profiles, and more than half of the images in FEI are of left and right profiles. We separated

the training dataset and testing dataset by using two completely different datasets , KomNET

dataset for training and FEI dataset for testing, we think that is the main reason for the low

performances [18]. The left and right profiles gave different features than the front profiles.

Therefore, there were low similarity scores (large distances) between some pairs from the same

persons. The performance on datasets with large pose variations can be improved by using

datasets with large pose variations for training the models.

The performance on TUFTS dataset was better compared to the FEI dataset and gave a final

accuracy 91.3948 % which still has a large EER of 8.6052 %. Apart from the reason mentioned

above about having different train and test datasets, another reason for this might be because

the image quality of TUFTS is lower than the other datasets used. When it is scaled to 160*160

pixels some of the images are blurry. To have FaceNet perform better on low image qualities

we have to add low quality images while training [60]. This will help us improve the accuracy

further.

Partial-face Recognition using Patch-based Deep Learning

45

The lighting used in both FEI and KomNET datasets are similar, whereas the lighting used for

TUFTS dataset is different. Therefore, another way to improve the performance on datasets like

TUFTS can be to use light changes as data augmentation or use different lighting images while

training the models. As a difference in illumination causes the face recognition accuracy to drop

[18].

Even though our models were trained with only 50 classes consisting of 1200 images in total

(both train and validation together) our accuracy reached to 86.7511% for FEI and 91.3948 %

TUFTS. Thus, increasing the train data for the transfer learning and fine tuning will increase

the accuracy even further [37].

From the experiments in this thesis, we can conclude that partial face recognition can be

achieved with high accuracy using patch-based deep learning.

Partial-face Recognition using Patch-based Deep Learning

46

6. Future work

The performance of the methodology in this thesis used can be improved by increasing the

number of training images by:

• Using data augmentation while training the models specially for different lighting

conditions

• Increasing the number of classes and images per person while training the models

• Using a large variety of poses for the training dataset

• Using both good quality and bad quality images for the training

A way of possibly improving the method used in this thesis is to use a different loss function

than the triplet loss function in the model. As triplet loss function is highly sensitive to noise

using a hierarchical triplet loss function can possibly improve the accuracy [64], [84]. Using

quadruplet loss function can perhaps improve the accuracy as well as triplet loss function can

cause a relatively large intra-class variation and reducing this intra-class variation and

enlarging the inter-class variation can improve the model accuracy [85]–[87].

Increasing the number of patches and making them overlapping like in the paper “Patch strategy

for deep face recognition” can also improve the accuracy as the models will be able to learn

more underlying features [6].

An extension of this experiment can be to use the proposed methods on other partial face

images. This can be used for recognizing people from low resolution cameras or different angle

cameras like CCTV footages.

Partial-face Recognition using Patch-based Deep Learning

47

7. References

[1] N. Damer, J. H. Grebe, C. Chen, F. Boutros, F. Kirchbuchner, and A. Kuijper, “The Effect of

Wearing a Mask on Face Recognition Performance: an Exploratory Study,” BIOSIG 2020 -

Proc. 19th Int. Conf. Biometrics Spec. Interes. Gr., Jul. 2020, [Online]. Available:

http://arxiv.org/abs/2007.13521.

[2] “Criminals use coronavirus masks to conceal themselves,” Al Arabiya, 2020.

[3] D. Babwin and S. Dazio, “Coronavirus Masks a Boon for Crooks Who Hide Their Faces,”

NBC Miami, 2020.

[4] L. He, H. Li, Q. Zhang, and Z. Sun, “Dynamic Feature Matching for Partial Face Recognition,”

IEEE Trans. Image Process., vol. 28, no. 2, pp. 791–802, Feb. 2019, doi:

10.1109/TIP.2018.2870946.

[5] R. Weng, J. Lu, J. Hu, G. Yang, and Y.-P. Tan, “Robust Feature Set Matching for Partial Face

Recognition,” in 2013 IEEE International Conference on Computer Vision, Dec. 2013, pp.

601–608, doi: 10.1109/ICCV.2013.80.

[6] Y. Zhang, K. Shang, J. Wang, N. Li, and M. M. Y. Zhang, “Patch strategy for deep face

recognition,” IET Image Process., vol. 12, no. 5, pp. 819–825, May 2018, doi: 10.1049/iet-

ipr.2017.1085.

[7] I. Cheheb, N. Al-Maadeed, S. Al-Madeed, A. Bouridane, and R. Jiang, “Random sampling for

patch-based face recognition,” in 2017 5th International Workshop on Biometrics and

Forensics (IWBF), Apr. 2017, pp. 1–5, doi: 10.1109/IWBF.2017.7935104.

[8] W. Hariri, “Efficient Masked Face Recognition Method during the COVID-19 Pandemic,”

May 2021, doi: 10.21203/rs.3.rs-39289/v1.

[9] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-stage Dense

Face Localisation in the Wild,” arXiv, May 2019, [Online]. Available:

http://arxiv.org/abs/1905.00641.

[10] A. Elmahmudi and H. Ugail, “Experiments on Deep Face Recognition Using Partial Faces,” in

2018 International Conference on Cyberworlds (CW), Oct. 2018, pp. 357–362, doi:

10.1109/CW.2018.00071.

[11] D. Misra, C. Crispim-Junior, and L. Tougne, “Patch-Based CNN Evaluation for Bark

http://arxiv.org/abs/2007.13521
http://arxiv.org/abs/1905.00641

Partial-face Recognition using Patch-based Deep Learning

48

Classification,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12540 LNCS, Edinburgh,

United Kingdom, 2020, pp. 197–212.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi:

10.1145/3065386.

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp.

1137–1149, Jun. 2017, doi: 10.1109/TPAMI.2016.2577031.

[14] C. Sun, Y. Yang, C. Wen, K. Xie, and F. Wen, “Voiceprint Identification for Limited Dataset

Using the Deep Migration Hybrid Model Based on Transfer Learning,” Sensors, vol. 18, no. 7,

p. 2399, Jul. 2018, doi: 10.3390/s18072399.

[15] J. Li, T. Qiu, C. Wen, K. Xie, and F.-Q. Wen, “Robust Face Recognition Using the Deep C2D-

CNN Model Based on Decision-Level Fusion,” Sensors, vol. 18, no. 7, p. 2080, Jun. 2018, doi:

10.3390/s18072080.

[16] Y.-X. Yang, C. Wen, K. Xie, F.-Q. Wen, G.-Q. Sheng, and X.-G. Tang, “Face Recognition

Using the SR-CNN Model,” Sensors, vol. 18, no. 12, p. 4237, Dec. 2018, doi:

10.3390/s18124237.

[17] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep Face Recognition: A Survey,” in 2018

31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Oct. 2018, pp.

471–478, doi: 10.1109/SIBGRAPI.2018.00067.

[18] Changbo Hu, J. Harguess, and J. K. Aggarwal, “Patch-based face recognition from video,” in

2009 16th IEEE International Conference on Image Processing (ICIP), Nov. 2009, no.

December 2009, pp. 3321–3324, doi: 10.1109/ICIP.2009.5413935.

[19] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Transferring Mid-level Image

Representations Using Convolutional Neural Networks,” in 2014 IEEE Conference on

Computer Vision and Pattern Recognition, Jun. 2014, pp. 1717–1724, doi:

10.1109/CVPR.2014.222.

[20] A. Elmahmudi and H. Ugail, “Deep face recognition using imperfect facial data,” Futur.

Gener. Comput. Syst., vol. 99, pp. 213–225, Oct. 2019, doi: 10.1016/j.future.2019.04.025.

Partial-face Recognition using Patch-based Deep Learning

49

[21] M. J. Sudhamani, M. K. Venkatesha, and K. R. Radhika, “Revisiting feature level and score

level fusion techniques in multimodal biometrics system,” in 2012 International Conference on

Multimedia Computing and Systems, May 2012, pp. 881–885, doi:

10.1109/ICMCS.2012.6320155.

[22] F. Wang and J. Han, “Multimodal biometric authentication based on score level fusion using

support vector machine,” Opto-Electronics Rev., vol. 17, no. 1, Jan. 2009, doi:

10.2478/s11772-008-0054-8.

[23] Yongsheng Gao and M. Maggs, “Feature-Level Fusion in Personal Identification,” in 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

2005, vol. 1, pp. 468–473, doi: 10.1109/CVPR.2005.159.

[24] J. Guo and J. Deng, “InsightFace: a Deep Learning Toolkit for Face Analysis.”

http://insightface.ai/index.html (accessed Jan. 15, 2021).

[25] Y. Feng, “Face3d,” Github. https://github.com/YadiraF/face3d (accessed Jan. 16, 2021).

[26] InsightFace, “Face Mask Renderer tool,” Github.

https://github.com/deepinsight/insightface/tree/master/recognition/tools (accessed Jan. 15,

2021).

[27] Z. Wang et al., “Masked Face Recognition Dataset and Application,” Mar. 2020, [Online].

Available: http://arxiv.org/abs/2003.09093.

[28] J. J. Lee, U. J. Gim, J. H. Kim, K. H. Yoo, Y. H. Park, and A. Nasridinov, “Identifying

customer interest from surveillance camera based on deep learning,” in Proceedings - 2020

IEEE International Conference on Big Data and Smart Computing, BigComp 2020, Feb. 2020,

pp. 19–20, doi: 10.1109/BigComp48618.2020.0-105.

[29] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask

Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499–

1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342.

[30] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask

Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499–

1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342.

[31] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A Dataset for

Recognising Faces across Pose and Age,” in 2018 13th IEEE International Conference on

http://insightface.ai/index.html
https://github.com/YadiraF/face3d
https://github.com/deepinsight/insightface/tree/master/recognition/tools
http://arxiv.org/abs/2003.09093

Partial-face Recognition using Patch-based Deep Learning

50

Automatic Face & Gesture Recognition (FG 2018), May 2018, pp. 67–74, doi:

10.1109/FG.2018.00020.

[32] X. Guo and J. Nie, “Face Recognition System for Complex Surveillance Scenarios,” J. Phys.

Conf. Ser., vol. 1544, no. 1, May 2020, doi: 10.1088/1742-6596/1544/1/012146.

[33] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, and T.-H. Ma, “Patch-Based Principal Component

Analysis for Face Recognition,” Comput. Intell. Neurosci., vol. 2017, pp. 1–9, 2017, doi:

10.1155/2017/5317850.

[34] Z. Xu, Y. Liu, M. Ye, L. Huang, H. Yu, and X. Chen, “Patch Based Collaborative

Representation with Gabor Feature and Measurement Matrix for Face Recognition,” Math.

Probl. Eng., vol. 2018, pp. 1–13, 2018, doi: 10.1155/2018/3025264.

[35] A. Vijayan, S. Kareem, and J. J. Kizhakkethottam, “Face Recognition Across Gender

Transformation Using SVM Classifier,” Procedia Technol., vol. 24, pp. 1366–1373, 2016, doi:

10.1016/j.protcy.2016.05.150.

[36] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural network cascade for

face detection,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2015, vol. 07-12-June, pp. 5325–5334, doi: 10.1109/CVPR.2015.7299170.

[37] S. T. Krishna and H. K. Kalluri, “Deep learning and transfer learning approaches for image

classification,” Int. J. Recent Technol. Eng., vol. 7, no. 5S4, pp. 427–432, 2019.

[38] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl. Data Eng., vol.

22, no. 10, pp. 1345–1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.

[39] F. Chollet, “Transfer learning & fine-tuning,” Keras, 2020.

https://keras.io/guides/transfer_learning/.

[40] R. Ahdid, S. Safi, and B. Manaut, Euclidean and geodesic distance between a facial feature

points in two-dimensional face recognition system, vol. 14, no. 4A Special Issue. 2017.

[41] A. C. Lorena, A. C. P. L. F. de Carvalho, and J. M. P. Gama, “A review on the combination of

binary classifiers in multiclass problems,” Artif. Intell. Rev., vol. 30, no. 1–4, pp. 19–37, Dec.

2008, doi: 10.1007/s10462-009-9114-9.

[42] A. D. Back, “Multiclass Classification Using Support Vector Machines,” Baeldung, 2020.

https://www.baeldung.com/cs/svm-multiclass-classification (accessed Dec. 09, 2020).

https://keras.io/guides/transfer_learning/
https://www.baeldung.com/cs/svm-multiclass-classification

Partial-face Recognition using Patch-based Deep Learning

51

[43] N. H. Spencer, Essentials of Multivariate Data Analysis. Chapman and Hall/CRC, 2013.

[44] M. K. Hossain and S. Abufardeh, “A new method of calculating squared euclidean distance

(SED) using PTreE technology and its performance analysis,” in Proceedings of 34th

International Conference on Computers and Their Applications, CATA 2019, 2019, pp. 45–54,

doi: 10.29007/trrg.

[45] I. N. G. A. Astawa, I. K. G. D. Putra, M. Sudarma, and R. S. Hartati, “KomNET: Face Image

Dataset from Various Media for Face Recognition,” Data Br., vol. 31, p. 105677, Aug. 2020,

doi: 10.1016/j.dib.2020.105677.

[46] C. E. Thomaz and G. A. Giraldi, “A new ranking method for principal components analysis

and its application to face image analysis,” Image Vis. Comput., vol. 28, no. 6, pp. 902–913,

Jun. 2010, doi: 10.1016/j.imavis.2009.11.005.

[47] E. Z. Tenorio and C. E. Thomaz, “Analise Multilinear Discriminante De Formas Frontais De

Imagens 2D De Face,” in X Sbai - Simpósio Brasileiro de Automação Inteligente, 2011, vol. X,

pp. 1043–1048.

[48] V. do Amaral, C. Fígaro-Garcia, G. J. F. Gattas, and C. E. Thomaz, “Normalização espacial de

imagens frontais de face em ambientes controlados e não-controlados,” FaSCi-Tech, vol. 1, no.

1, 2009, [Online]. Available:

http://fatecsaocaetano.edu.br/fascitech/index.php/fascitech/article/view/9/8.

[49] V. Amaral and C. E. Thomaz, “Normalizacao Espacial de Imagens Frontais de Face -

Technical Report,” São Paulo, Brazil, 2008.

[50] L. L. de O. Junior and C. E. Thomaz, “Captura e Alinhamento de Imagens: Um Banco de Faces

Brasileiro - Undergraduate Technical Report,” São Paulo, Brazil, 2006.

[51] K. Panetta et al., “A Comprehensive Database for Benchmarking Imaging Systems,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 509–520, Mar. 2020, doi:

10.1109/TPAMI.2018.2884458.

[52] J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “How much data is needed to train a medical

image deep learning system to achieve necessary high accuracy?,” Nov. 2015, [Online].

Available: http://arxiv.org/abs/1511.06348.

[53] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3D Face Model for Pose

and Illumination Invariant Face Recognition,” in 2009 Sixth IEEE International Conference on

http://fatecsaocaetano.edu.br/fascitech/index.php/fascitech/article/view/9/8
http://arxiv.org/abs/1511.06348

Partial-face Recognition using Patch-based Deep Learning

52

Advanced Video and Signal Based Surveillance, Sep. 2009, pp. 296–301, doi:

10.1109/AVSS.2009.58.

[54] Xiangyu Zhu, Z. Lei, Junjie Yan, D. Yi, and S. Z. Li, “High-fidelity Pose and Expression

Normalization for face recognition in the wild,” in 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2015, vol. 07-12-June, pp. 787–796, doi:

10.1109/CVPR.2015.7298679.

[55] A. Bas, P. Huber, W. A. P. Smith, M. Awais, and J. Kittler, “3D Morphable Models as Spatial

Transformer Networks,” in 2017 IEEE International Conference on Computer Vision

Workshops (ICCVW), Oct. 2017, vol. 2018-Janua, pp. 895–903, doi:

10.1109/ICCVW.2017.110.

[56] E. Kaziakhmedov, K. Kireev, G. Melnikov, M. Pautov, and A. Petiushko, “Real-world Attack

on MTCNN Face Detection System,” in 2019 International Multi-Conference on Engineering,

Computer and Information Sciences (SIBIRCON), Oct. 2019, pp. 0422–0427, doi:

10.1109/SIBIRCON48586.2019.8958122.

[57] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “RetinaFace Face Detector,”

Github. https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace (accessed

Feb. 01, 2021).

[58] S. I. Sergil, “Face Alignment for Face Recognition in Python within OpenCV,” 2020.

https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/.

[59] D. Hacker, “How to align faces with OpenCV in Python,” 2020. http://datahacker.rs/010-how-

to-align-faces-with-opencv-in-python/.

[60] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face

recognition and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2015, vol. 07-12-June, pp. 815–823, doi:

10.1109/CVPR.2015.7298682.

[61] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception

Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2016, vol. 2016-Decem, pp. 2818–2826, doi:

10.1109/CVPR.2016.308.

[62] R. M. Kamble et al., “Automated Diabetic Macular Edema (DME) Analysis using Fine Tuning

with Inception-Resnet-v2 on OCT Images,” in 2018 IEEE-EMBS Conference on Biomedical

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace
https://sefiks.com/2020/02/23/face-alignment-for-face-recognition-in-python-within-opencv/
http://datahacker.rs/010-how-to-align-faces-with-opencv-in-python/
http://datahacker.rs/010-how-to-align-faces-with-opencv-in-python/

Partial-face Recognition using Patch-based Deep Learning

53

Engineering and Sciences (IECBES), Dec. 2018, pp. 442–446, doi:

10.1109/IECBES.2018.8626616.

[63] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the

Impact of Residual Connections on Learning,” 31st AAAI Conf. Artif. Intell. AAAI 2017, pp.

4278–4284, Feb. 2016, [Online]. Available: http://arxiv.org/abs/1602.07261.

[64] I. William, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, H. A. Santoso, and C. A. Sari,

“Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” in 2019

Fourth International Conference on Informatics and Computing (ICIC), Oct. 2019, pp. 1–6,

doi: 10.1109/ICIC47613.2019.8985786.

[65] D. Sandberg, “Face recognition using Tensorflow,” Github, 2018.

https://github.com/davidsandberg/facenet (accessed Feb. 27, 2021).

[66] J. Brownlee, Deep Learning for Computer - Vision Image Classification , Object Detection ,

and Face Recognition in Python UNLOCK Computer Vision With Deep Learning. 2019.

[67] H. Taniai, “Keras-facenet,” Github. https://github.com/nyoki-mtl/keras-facenet (accessed Mar.

01, 2021).

[68] S. Gadicherla, “Tensorflow Vs Keras? — Comparison by building a model for image

classification.,” Hackermoon, 2020. https://hackernoon.com/tensorflow-vs-keras-comparison-

by-building-a-model-for-image-classification-f007f336c519.

[69] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To Transfer or Not To

Transfer,” NIPS 2005 Work. Transf. Learn., 2005.

[70] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in

Convolutional Network,” May 2015, [Online]. Available: http://arxiv.org/abs/1505.00853.

[71] J. Brownlee, Better Deep Learning. Train Faster, Reduce Overfitting, and Make Better

Predictions, vol. 1, no. 2. 2018.

[72] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014, [Online].

Available: http://arxiv.org/abs/1412.6980.

[73] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant

Disease Detection,” Front. Plant Sci., vol. 7, Sep. 2016, doi: 10.3389/fpls.2016.01419.

[74] A. Ross and K. Nandakumar, “Fusion, Score-Level,” in Encyclopedia of Biometrics, Boston,

http://arxiv.org/abs/1602.07261
https://github.com/davidsandberg/facenet
https://github.com/nyoki-mtl/keras-facenet
https://hackernoon.com/tensorflow-vs-keras-comparison-by-building-a-model-for-image-classification-f007f336c519
https://hackernoon.com/tensorflow-vs-keras-comparison-by-building-a-model-for-image-classification-f007f336c519
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1412.6980

Partial-face Recognition using Patch-based Deep Learning

54

MA: Springer US, 2009, pp. 611–616.

[75] A. Rattani, D. R. Kisku, M. Bicego, and M. Tistarelli, “Feature Level Fusion of Face and

Fingerprint Biometrics,” in 2007 First IEEE International Conference on Biometrics: Theory,

Applications, and Systems, Sep. 2007, pp. 1–6, doi: 10.1109/BTAS.2007.4401919.

[76] P. Drozdowski, N. Wiegand, C. Rathgeb, and C. Busch, “Score Fusion Strategies in Single-Iris

Dual-Probe Recognition Systems,” in Proceedings of the 2018 2nd International Conference

on Biometric Engineering and Applications - ICBEA ’18, 2018, pp. 13–17, doi:

10.1145/3230820.3230823.

[77] A. A. Ross and R. Govindarajan, “Feature level fusion of hand and face biometrics,” in

Biometric Technology for Human Identification II, Mar. 2005, vol. 5779, no. March, p. 196,

doi: 10.1117/12.606093.

[78] S. K. Bhardwaj, “An Algorithm for Feature Level Fusion in Multimodal Biometric System,”

Int. J. Adv. Res. Comput. Eng. Technol., vol. 3, no. 10, pp. 3499–3503, 2014.

[79] S. Almabdy and L. Elrefaei, “Deep Convolutional Neural Network-Based Approaches for Face

Recognition,” Appl. Sci., vol. 9, no. 20, p. 4397, Oct. 2019, doi: 10.3390/app9204397.

[80] M. E. Schuckers, Computational Methods in Biometric Authentication. London: Springer

London, 2010.

[81] M. E. Schuckers, “False Non-Match Rate,” in Computational Methods in Biometric

Authentication, 2010, pp. 47–96.

[82] M. E. Schuckers, “False Match Rate,” in Computational Methods in Biometric Authentication,

2010, pp. 97–153.

[83] M. E. Schuckers, “Receiver Operating Characteristic Curve and Equal Error Rate,” in

Computational Methods in Biometric Authentication, 2010, pp. 155–204.

[84] W. Ge, W. Huang, D. Dong, and M. R. Scott, “Deep Metric Learning with Hierarchical Triplet

Loss,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2018, pp. 272–288.

[85] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond Triplet Loss: A Deep Quadruplet

Network for Person Re-identification,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Jul. 2017, vol. 2017-Janua, pp. 1320–1329, doi:

10.1109/CVPR.2017.145.

Partial-face Recognition using Patch-based Deep Learning

55

[86] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person Re-identification by Multi-

Channel Parts-Based CNN with Improved Triplet Loss Function,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2016, vol. 2016-Decem, pp. 1335–

1344, doi: 10.1109/CVPR.2016.149.

[87] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A Discriminative Feature Learning Approach for Deep

Face Recognition,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, pp. 499–515.

Partial-face Recognition using Patch-based Deep Learning

56

Appendix

Appendix A – Codes

Before running the codes use pip to install all the imported packages

A1- Code example of creating masked face dataset

• Download and install the libraries and models required following the instructions from

https://github.com/deepinsight/insightface/tree/master/recognition/tools

• Edit the code mask_renderer.py depending on your dataset, an example of the code used

for this thesis is given below.

this program is used to create masked face datasets

import os, sys, datetime

import numpy as np

import os.path as osp

import face3d

from face3d import mesh

from face3d.morphable_model import MorphabelModel

import cv2

class MaskRenderer:

 def __init__(self, model_dir, render_only=False):

 self.bfm = MorphabelModel(osp.join(model_dir, 'BFM.mat'))

 self.index_ind = self.bfm.kpt_ind

 uv_coords =

face3d.morphable_model.load.load_uv_coords(osp.join(model_dir,

'BFM_UV.mat'))

 self.uv_size = (224, 224)

 self.mask_stxr = 0.1

 self.mask_styr = 0.33

 self.mask_etxr = 0.9

 self.mask_etyr = 0.7

 self.tex_h, self.tex_w, self.tex_c = self.uv_size[1],

self.uv_size[0], 3

 texcoord = np.zeros_like(uv_coords)

 texcoord[:, 0] = uv_coords[:, 0] * (self.tex_h - 1)

 texcoord[:, 1] = uv_coords[:, 1] * (self.tex_w - 1)

 texcoord[:, 1] = self.tex_w - texcoord[:, 1] - 1

 self.texcoord = np.hstack((texcoord, np.zeros((texcoord.shape[0],

1))))

 self.X_ind = self.bfm.kpt_ind

 if not render_only:

 from image_3d68 import Handler

 self.if3d68_handler = Handler(osp.join(model_dir, 'if1k3d68'),

https://github.com/deepinsight/insightface/tree/master/recognition/tools

Partial-face Recognition using Patch-based Deep Learning

57

0, 192, ctx_id=0)

 def transform(self, shape3D, R):

 s = 1.0

 shape3D[:2, :] = shape3D[:2, :]

 shape3D = s * np.dot(R, shape3D)

 return shape3D

 def preprocess(self, vertices, w, h):

 R1 = mesh.transform.angle2matrix([0, 180, 180])

 t = np.array([-w // 2, -h // 2, 0])

 vertices = vertices.T

 vertices += t

 vertices = self.transform(vertices.T, R1).T

 return vertices

 def project_to_2d(self, vertices, s, angles, t):

 transformed_vertices = self.bfm.transform(vertices, s, angles, t)

 projected_vertices = transformed_vertices.copy() # using stantard

camera & orth projection

 return projected_vertices[self.bfm.kpt_ind, :2]

 def params_to_vertices(self, params, H, W):

 fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t = params

 fitted_vertices = self.bfm.generate_vertices(fitted_sp, fitted_ep)

 transformed_vertices = self.bfm.transform(fitted_vertices,

fitted_s, fitted_angles,

 fitted_t)

 transformed_vertices = self.preprocess(transformed_vertices.T, W,

H)

 image_vertices = mesh.transform.to_image(transformed_vertices, H,

W)

 return image_vertices

 def build_params(self, face_image):

 landmark = self.if3d68_handler.get(face_image)[:, :2]

 # print(landmark.shape, landmark.dtype)

 if landmark is None:

 return None # face not found

 fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t =

self.bfm.fit(landmark, self.X_ind, max_iter=3)

 return [fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t]

 def generate_mask_uv(self, mask, positions):

 uv_size = (self.uv_size[1], self.uv_size[0], 3)

 h, w, c = uv_size

 uv = np.zeros(shape=(self.uv_size[1], self.uv_size[0], 3),

dtype=np.uint8)

 stxr, styr = positions[0], positions[1]

 etxr, etyr = positions[2], positions[3]

 stx, sty = int(w * stxr), int(h * styr)

 etx, ety = int(w * etxr), int(h * etyr)

 height = ety - sty

 width = etx - stx

 mask = cv2.resize(mask, (width, height))

 uv[sty:ety, stx:etx] = mask

 return uv

 def render_mask(self, face_image, mask_image, params, auto_blend=True,

positions=[0.1, 0.33, 0.9, 0.7]):

Partial-face Recognition using Patch-based Deep Learning

58

 uv_mask_image = self.generate_mask_uv(mask_image, positions)

 h, w, c = face_image.shape

 image_vertices = self.params_to_vertices(params, h, w)

 output = (1 - mesh.render.render_texture(image_vertices,

self.bfm.full_triangles, uv_mask_image, self.texcoord,

 self.bfm.full_triangles,

h, w)) * 255

 output = output.astype(np.uint8)

 if auto_blend:

 mask_bd = (output == 255).astype(np.uint8)

 final = face_image * mask_bd + (1 - mask_bd) * output

 return final

 return output

if __name__ == "__main__":

 tool = MaskRenderer('assets_mask')

 # folder of the unmasked dataset

 folder = "F:/thesis/datasets/cropped_aligned_TUFTS_dataset"

 # folder to save the masked images

 folder_save = "F:/thesis/datasets/TUFTS"

 # the mask image you want to apply

 mask_image = cv2.imread("masks/black-mask.png")

 for i in os.listdir(folder):

 fold = os.path.join(folder, i)

 for filename in os.listdir(fold):

 image = cv2.imread(os.path.join(fold, filename))

 fold_s = os.path.join(folder_save, i)

 if image is not None:

 params = tool.build_params(image)

 mask_out = tool.render_mask(image, mask_image, params)

 # make new folders to sort each individual in diff folders

 if not os.path.exists(fold_s):

 os.makedirs(fold_s)

 cv2.imwrite(os.path.join(fold_s, filename), mask_out)

Partial-face Recognition using Patch-based Deep Learning

59

A2 – After masking the faces face detection, extraction and alignment is done. The following

code is used for that. Code consists of both RetinaFace and MTCNN incase one fails to detect

faces as they are not 100% accurate

MTCNN can be install by using pip and RetinaFace model can be found at

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace

This program uses MTCNN and RetinaFace to extract faces from the masked

face databases

If RetinaFace fails it uses MTCNN

import insightface

from matplotlib import pyplot

from mtcnn.mtcnn import MTCNN

import os

import numpy as np

import cv2

face detection and extraction

def extract_face(filename, folder_save, model, detector):

 # load image from file

 pixels = pyplot.imread(filename)

 # create the detector, using default weights

 img = cv2.imread(filename)

 model.prepare(ctx_id=-1, nms=0.4)

 bbox, landmark = model.detect(pixels, threshold=0.5, scale=1.0)

 if not bbox.any():

 # detect faces in the image

 results = detector.detect_faces(pixels)

 if not results:

 print(filename)

 return None

 else: # MTCNN is RetinaFace does not fine face

 # extract the bounding box from the first face

 x1, y1, width, height = results[0]['box']

 x2, y2 = x1 + width, y1 + height

 # sometimes these are negative so make them zero

 if y1 < 0:

 y1 = 0

 if y2 < 0:

 y2 = 0

 if x1 < 0:

 x1 = 0

 if x2 < 0:

 x2 = 0

 left_eye_center = results[0]['keypoints']['left_eye']

 right_eye_center = results[0]['keypoints']['right_eye']

 # align face before cropping

 rotated = align_face(img, left_eye_center, right_eye_center)

 rotated = rotated[y1:y2, x1:x2]

 rotated = cv2.resize(rotated, (224, 224))

 # cv2.imshow("image", rotated)

 # cv2.waitKey(0)

 cv2.imwrite(folder_save, rotated)

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace

Partial-face Recognition using Patch-based Deep Learning

60

 return rotated

 else: # RetinaFace

 x1, y1, x2, y2 = bbox[0][0:4]

 print(x1, y1, x2, y2)

 left_eye_x, left_eye_y = landmark[0][0]

 right_eye_x, right_eye_y = landmark[0][1]

 left_eye_center = (left_eye_x, left_eye_y)

 right_eye_center = (right_eye_x, right_eye_y)

 # align face before cropping

 rotated = align_face(img, left_eye_center, right_eye_center)

 # sometimes these are negative so make them zero

 if y1 < 0:

 y1 = 0

 if y2 < 0:

 y2 = 0

 if x1 < 0:

 x1 = 0

 if x2 < 0:

 x2 = 0

 rotated = rotated[int(y1):int(y2), int(x1):int(x2)]

 rotated = cv2.resize(rotated, (224, 224))

 # cv2.imshow("image", rotated)

 # cv2.waitKey(0)

 cv2.imwrite(folder_save, rotated)

 return rotated

Face alignment

def align_face(img, left_eye_center, right_eye_center):

 delta_x = right_eye_center[0] - left_eye_center[0]

 delta_y = right_eye_center[1] - left_eye_center[1]

 angle = np.arctan(delta_y / delta_x)

 angle = (angle * 180) / np.pi

 h, w = img.shape[:2]

 center = (w // 2, h // 2)

 M = cv2.getRotationMatrix2D(center, (angle), 1.0)

 rotated = cv2.warpAffine(img, M, (w, h))

 # cv2.imshow("image", rotated)

 # cv2.waitKey(0)

 return rotated

change the folder values for different datasets

folder = "F:/thesis/datasets/TUFTS"

folder_save = "F:/thesis/datasets/TUFTS"

model = insightface.model_zoo.get_model('retinaface_r50_v1')

detector = MTCNN()

for i in os.listdir(folder):

 fold = os.path.join(folder, i)

 folder_s = os.path.join(folder_save, i)

 for filename in os.listdir(fold):

 image = os.path.join(fold, filename)

 save = os.path.join(folder_s, filename)

 if image is not None:

 pixels = extract_face(image, save, model, detector)

Partial-face Recognition using Patch-based Deep Learning

61

A3 – An example of the code for patching the aligned faces, change the folder link to use with

any datasets

this program patches extracted faces and saves them in

folders for easy training of deep learning

import cv2

from PIL import Image

import os

import numpy as np

function to patch the face images

def patch_faces(image, filename, i):

 image = cv2.imread(image)

 # folders of the patched dataset

 folder_save_top = "F:/thesis/face_recog/TUFTS all/top"

 folder_save_topr = "F:/thesis/face_recog/TUFTS all/top_right"

 folder_save_topl = "F:/thesis/face_recog/TUFTS all/top_left"

 height, width, channels = image.shape

 crop_bot = image[int(height / 2):height, 0:width]

 crop_top = image[0:int(height / 2) + 10, 0:width]

 crop_top = Image.fromarray(crop_top)

 crop_top = crop_top.resize((160, 160))

 save_patches(crop_top, filename, i, folder_save_top)

 top_left = image[0:int(height / 2) + 10, 0:int(width / 2)]

 top_left = Image.fromarray(top_left)

 top_left = top_left.resize((160, 160))

 save_patches(top_left, filename, i, folder_save_topl)

 top_right = image[0:int(height / 2) + 10, int(width / 2):width]

 top_right = Image.fromarray(top_right)

 top_right = top_right.resize((160, 160))

 save_patches(top_right, filename, i, folder_save_topr)

function to save the patches in different folders

def save_patches(image, filename, i, folder_save):

 folder_save = os.path.join(folder_save, i)

 save = os.path.join(folder_save, filename)

 if not os.path.exists(folder_save):

 os.makedirs(folder_save)

 image = np.array(image)

 cv2.imwrite(save, image)

folder of the unpatched face dataset

folder = "F:/thesis/datasets/TUFTS"

for i in os.listdir(folder):

 fold = os.path.join(folder, i)

 for filename in os.listdir(fold):

 image = os.path.join(fold, filename)

 patch_faces(image, filename, i)

Partial-face Recognition using Patch-based Deep Learning

62

A4 – The following is the code to read the datasets from folders and saving it in a “.npz” format

to load and use later while feature extraction. Do this for all the datasets used for testing. Train

folder is the reference folder and validation folder is the probe folder.

from os import listdir

from os.path import isdir

from PIL import Image

from numpy import savez_compressed

from numpy import asarray

def resize_extracted_faces(filename, required_size=(160, 160)):

 image = Image.open(filename)

 image = image.convert('RGB')

 face = asarray(image)

 image = Image.fromarray(face)

 image = image.resize(required_size)

 face_array = asarray(image)

 return face_array

def load_faces(directory):

 faces = list()

 for filename in listdir(directory):

 path = directory + filename

 face = resize_extracted_faces(path)

 faces.append(face)

 return faces

def load_dataset(directory):

 X, y = list(), list()

 for subdir in listdir(directory):

 path = directory + subdir + '/'

 if not isdir(path):

 continue

 faces = load_faces(path)

 labels = [subdir for _ in range(len(faces))]

 print('loaded %d examples for class: %s' % (len(faces), subdir))

 X.extend(faces)

 y.extend(labels)

 return asarray(X), asarray(y)

change the folder links for different datasets

trainX, trainy = load_dataset("F:/thesis/face_recog/FEI

final/masked_full/train/")

print(trainX.shape, trainy.shape)

valX, valy = load_dataset("F:/thesis/face_recog/FEI

final/masked_full/validation/")

print(valX.shape, valy.shape)

savez_compressed("FEI.npz", trainX, trainy, valX, valy)

Partial-face Recognition using Patch-based Deep Learning

63

A5- The code below is to use transfer learning and fine tuning on pre-trained model FaceNet.

The model and model weights can be downloaded from https://github.com/nyoki-mtl/keras-

facenet

Change the folder links for the dataset and saving the graphs. The model is saved in the same

folder as the python file.

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

from keras.layers.normalization import BatchNormalization

from keras.models import load_model

from keras.models import Model

from keras.layers import Dense

from keras.layers import LeakyReLU

import numpy as np

from tensorflow import keras

import tensorflow as tf

from glob import glob

from keras.preprocessing.image import ImageDataGenerator

import matplotlib.pyplot as plt

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

 try:

 # Currently, memory growth needs to be the same across GPUs

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 logical_gpus = tf.config.experimental.list_logical_devices('GPU')

 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical

GPUs")

 except RuntimeError as e:

 # Memory growth must be set before GPUs have been initialized

 print(e)

train_path = 'F:/thesis/face_recog/more_val/top_left/train'

valid_path = 'F:/thesis/face_recog/more_val/top_left/validation'

folders = glob('F:/thesis/face_recog/more_val/top_left/train/*')

model = load_model('facenet_keras.h5')

model.summary()

print('Loaded Model')

model.load_weights('facenet_keras_weights.h5')

for layer in model.layers:

 layer.trainable = False

inputs = keras.Input(shape=(160, 160, 3))

x = inputs

norm_layer = keras.layers.experimental.preprocessing.Normalization()

mean = np.array([127.5] * 3)

var = mean ** 2

Scale inputs to [-1, +1]

x = norm_layer(x)

norm_layer.set_weights([mean, var])

removing last layers and adding new layers

model = Model(inputs=model.inputs, outputs=model.layers[-3].output)

https://github.com/nyoki-mtl/keras-facenet
https://github.com/nyoki-mtl/keras-facenet

Partial-face Recognition using Patch-based Deep Learning

64

x = model(x, training=False)

x = Dense(1024)(x)

x= LeakyReLU(alpha=0.03)(x)

x = Dense(512)(x)

x= LeakyReLU(alpha=0.03)(x)

x = Dense(128, activation='relu')(x)

x= BatchNormalization()(x)

outputs = Dense(len(folders), activation='softmax')(x)

model = keras.Model(inputs, outputs)

model.summary()

model.compile(optimizer='Adam', loss='categorical_crossentropy',

metrics=['accuracy'])

datagen = ImageDataGenerator()

training_set = datagen.flow_from_directory(train_path,

 target_size=(224, 224),

 batch_size=32,

 class_mode='categorical')

test_set = datagen.flow_from_directory(valid_path,

 target_size=(224, 224),

 batch_size=32,

 class_mode='categorical')

checkpoint = ModelCheckpoint("models/final_top_left_2.h5",

 monitor="val_loss",

 mode="min",

 save_best_only= True,

 verbose=1)

earlystop = EarlyStopping(monitor='val_loss',

 min_delta=0,

 patience=3,

 verbose=1,

 restore_best_weights= True)

callbacks = [earlystop, checkpoint]

r=model.fit_generator(

 training_set,

 validation_data=test_set,

 epochs=20,

 callbacks= callbacks,

 steps_per_epoch=len(training_set),

 validation_steps=len(test_set)

)

loss

plt.plot(r.history['loss'], label='train loss')

plt.plot(r.history['val_loss'], label='val loss')

plt.legend()

fig1 = plt.gcf()

plt.show()

fig1.savefig('F:/thesis/face_recog/more_val/top_left/LossVal_loss')

accuracies

plt.plot(r.history['accuracy'], label='train acc')

plt.plot(r.history['val_accuracy'], label='val acc')

plt.legend()

fig1 = plt.gcf()

plt.show()

Partial-face Recognition using Patch-based Deep Learning

65

fig1.savefig('F:/thesis/face_recog/more_val/top_left/AccVal_acc')

fine tuning with early stopping

model.trainable = True

model.compile(keras.optimizers.Adam(1e-5), loss='categorical_crossentropy',

metrics=['accuracy'])

r=model.fit_generator(

 training_set,

 validation_data=test_set,

 epochs=20,

 callbacks= callbacks,

 steps_per_epoch=len(training_set),

 validation_steps=len(test_set)

)

loss

plt.plot(r.history['loss'], label='train loss')

plt.plot(r.history['val_loss'], label='val loss')

plt.legend()

fig1 = plt.gcf()

plt.show()

fig1.savefig('F:/thesis/face_recog/more_val/top_left/LossVal_loss_fine_tune

')

accuracies

plt.plot(r.history['accuracy'], label='train acc')

plt.plot(r.history['val_accuracy'], label='val acc')

plt.legend()

fig1 = plt.gcf()

plt.show()

fig1.savefig('F:/thesis/face_recog/more_val/top_left/AccVal_acc_fine_tune')

Partial-face Recognition using Patch-based Deep Learning

66

A6 – This code is of feature extraction from the model created by the previous code

from numpy import load

from numpy import expand_dims

from numpy import asarray

from numpy import savez_compressed

from keras.models import load_model

import tensorflow as tf

from keras.models import Model

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

 try:

 # Currently, memory growth needs to be the same across GPUs

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 logical_gpus = tf.config.experimental.list_logical_devices('GPU')

 print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical

GPUs")

 except RuntimeError as e:

 # Memory growth must be set before GPUs have been initialized

 print(e)

def get_embedding(model, face_pixels):

 samples = expand_dims(face_pixels, axis=0)

 yhat = model.predict(samples)

 return yhat[0]

load the face dataset

data = load('npz and svm/TUFTS_top_random.npz')

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'],

data['arr_3']

print('Loaded: ', trainX.shape, trainy.shape, valX.shape, valy.shape)

model = load_model('models/final_top_2.h5')

model = Model(inputs=model.inputs, outputs=model.layers[-2].output)

model.summary()

print('Loaded Model')

convert each face in the train set to an embedding

newTrainX = list()

for face_pixels in trainX:

 embedding = get_embedding(model, face_pixels)

 newTrainX.append(embedding)

newTrainX = asarray(newTrainX)

print(newTrainX.shape)

convert each face in the test set to an embedding

newValX = list()

for face_pixels in valX:

 embedding = get_embedding(model, face_pixels)

 newValX.append(embedding)

newValX = asarray(newValX)

print(newValX.shape)

save arrays to one file in compressed format

savez_compressed('final/TUFTS_top_random_embeddings.npz', newTrainX,

trainy, newValX, valy)

Partial-face Recognition using Patch-based Deep Learning

67

A7 – The following Code is of using SVM after the feature extraction for accuracy calculation

from numpy import load

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import Normalizer

from sklearn.svm import SVC

load dataset

data = load('final/TUFTS_top_right_embeddings2.npz')

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'],

data['arr_3']

print('Dataset: train=%d, validation=%d' % (trainX.shape[0],

valX.shape[0]))

normalize input vectors

in_encoder = Normalizer(norm='l2')

trainX = in_encoder.transform(trainX)

valX = in_encoder.transform(valX)

label encode targets

out_encoder = LabelEncoder()

out_encoder.fit(trainy)

trainy = out_encoder.transform(trainy)

valy = out_encoder.transform(valy)

fit model

model = SVC(kernel='linear', probability=True)

model.fit(trainX, trainy)

yhat_train = model.predict(trainX)

yhat_val = model.predict(valX)

score

score_train = accuracy_score(trainy, yhat_train)

score_val = accuracy_score(valy, yhat_val)

summarize

print('Accuracy: train=%.3f, val=%.3f' % (score_train*100, score_val*100))

A8 – The following code is using Squared Euclidean Distance for accuracy calculation

from numpy import load

import numpy as np

data = load('final/TUFTS_top_right_embeddings2.npz')

trainX, trainy,valX, valy = data['arr_0'], data['arr_1'], data['arr_2'],

data['arr_3']

Correct=0

for x in range(valX.shape[0]):

 distances = list()

 for emb in trainX:

 distance = np.sum(np.square(emb-valX[x]))

 # if you want Euclidean Distance

 # distance = np.sqrt(np.sum(np.square(emb - valX[x])))

 distances.append(distance)

 min_dist = min(distances)

 max_dist = max(distances)

Partial-face Recognition using Patch-based Deep Learning

68

 distances = (distances-min_dist)/(max_dist-min_dist)

 distances = distances.tolist()

 min_dist = min(distances)

 min_index = distances.index(min_dist)

 if trainy[min_index] == valy[x]:

 Correct=Correct+1

total=valX.shape

Accuracy = (Correct/total[0])*100

print("Accuracy : " , Accuracy)

Partial-face Recognition using Patch-based Deep Learning

69

A9 – Saving the distances into two text files one for genuine scores and one for imposter score

for FNMR vs FMR and ROC curves to calculate EER and accuracy before fusion

from numpy import load

import numpy as np

import os

from sklearn.preprocessing import normalize

load face embeddings

data = load('final/TUFTS_top_embeddings.npz')

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'],

data['arr_3']

same_sub = list()

diff_sub = list()

for x in range(valX.shape[0]):

 for y in range(trainX.shape[0]):

 distance = np.sum(np.square(trainX[y] - valX[x]))

 # if you want Euclidean distance

 # distance = np.sqrt(np.sum(np.square(trainX[y] - valX[x])))

 if trainy[y] == valy[x]:

 same_sub.append(distance)

 else:

 diff_sub.append(distance)

same_sub = np.array(same_sub)

diff_sub = np.array(diff_sub)

conc=same_sub.shape[0]

normalizing the distances from 0 to 1

all_distances=np.concatenate((same_sub,diff_sub))

all_distances=all_distances.reshape(-1,1)

all_distances = normalize(all_distances, norm='l2', axis=0)

all_distances=all_distances.flatten()

same_sub=all_distances[0:conc]

diff_sub=all_distances[conc:]

np.savetxt('score_files_before_fusion/same_subject_scores_top_TUFTS.txt',

same_sub, fmt='%.5f', newline=os.linesep)

np.savetxt('score_files_before_fusion/different_subject_scores_top_TUFTS.tx

t', diff_sub, fmt='%.5f', newline=os.linesep)

Partial-face Recognition using Patch-based Deep Learning

70

A10 – This code is for feature level fusion

After fusion, saving the distances into two text files one for genuine scores and one for imposter

score for FNMR vs FMR and ROC curves to calculate accuracy and EER after fusion

from numpy import load

import numpy as np

import os

from sklearn.preprocessing import MinMaxScaler

load face embeddings

data_top = load('final/FEI_top_embeddings2.npz')

data_top_right = load('final/FEI_top_right_embeddings2.npz')

data_top_left = load('final/FEI_top_left_embeddings2.npz')

train_topX, train_topy, val_topX, val_topy = data_top['arr_0'],

data_top['arr_1'], data_top['arr_2'], data_top['arr_3']

train_top_rightX, train_top_righty, val_top_rightX, val_top_righty =

data_top_right['arr_0'], data_top_right['arr_1'], \

data_top_right['arr_2'], data_top_right['arr_3']

train_top_leftX, train_top_lefty, val_top_leftX, val_top_lefty =

data_top_left['arr_0'], data_top_left['arr_1'], \

data_top_left['arr_2'], data_top_left['arr_3']

transformer = MinMaxScaler()

rows, cols = train_topX.shape

cols = cols * 3 # 3 feature vector of same size concatenated

fused_features_train = np.zeros((rows,cols))

fusing train set

for x in range(train_topX.shape[0]):

 # normalize before fusion

 top = train_topX[x].reshape(-1, 1) # top feature

 top = transformer.fit_transform(top) # min-max

 top = top.flatten()

 top_right = train_top_rightX[x].reshape(-1, 1) # top_right

 top_right = transformer.fit_transform(top_right) # min-max

 top_right = top_right.flatten()

 top_left = train_top_leftX[x].reshape(-1, 1) # top_left

 top_left = transformer.fit_transform(top_left) # min-max

 top_left = top_left.flatten()

 fused = np.concatenate((top, top_left, top_right))

 fused_features_train[x] = fused

rows, cols = val_topX.shape

cols = cols * 3 # 3 feature vector of same size concatenated

fused_features_val = np.zeros((rows,cols))

fusing val set

for x in range(val_topX.shape[0]):

 # normalize before fusion

 top = val_topX[x].reshape(-1, 1) # top feature

 top = transformer.fit_transform(top) # min-max

 top = top.flatten()

Partial-face Recognition using Patch-based Deep Learning

71

 top_right = val_top_rightX[x].reshape(-1, 1) # top_right

 top_right = transformer.fit_transform(top_right) # min-max

 top_right = top_right.flatten()

 top_left = val_top_leftX[x].reshape(-1, 1) # top_left

 top_left = transformer.fit_transform(top_left) # min-max

 top_left = top_left.flatten()

 fused = np.concatenate((top, top_left, top_right))

 fused_features_val[x] = fused

same_sub = list()

diff_sub = list()

for x in range(fused_features_val.shape[0]):

 for y in range(fused_features_train.shape[0]):

 distance = np.sum(np.square(fused_features_train[y] -

fused_features_val[x]))

 if train_topy[y] == val_topy[x]:

 same_sub.append(distance)

 else:

 diff_sub.append(distance)

same_sub = np.array(same_sub)

diff_sub = np.array(diff_sub)

np.savetxt('score_files_after_fusion/feature_fused_same_FEI.txt', same_sub,

fmt='%.5f',

 newline=os.linesep)

np.savetxt('score_files_after_fusion/feature_fused_different_FEI.txt',

diff_sub, fmt='%.5f',

 newline=os.linesep)

Partial-face Recognition using Patch-based Deep Learning

72

A11- Score level fusion code

After fusion, saving the distances into two text files one for genuine scores and one for imposter

score for FNMR vs FMR and ROC curves to calculate accuracy and EER after fusion

from numpy import load

import numpy as np

import os

from sklearn.preprocessing import MinMaxScaler

load face embeddings

data_top = load('final/FEI_top_embeddings2.npz')

data_top_right = load('final/FEI_top_right_embeddings2.npz')

data_top_left = load('final/FEI_top_left_embeddings2.npz')

train_topX, train_topy, val_topX, val_topy = data_top['arr_0'],

data_top['arr_1'], data_top['arr_2'], data_top['arr_3']

train_top_rightX, train_top_righty, val_top_rightX, val_top_righty =

data_top_right['arr_0'], data_top_right['arr_1'], \

data_top_right['arr_2'], data_top_right['arr_3']

train_top_leftX, train_top_lefty, val_top_leftX, val_top_lefty =

data_top_left['arr_0'], data_top_left['arr_1'], \

data_top_left['arr_2'], data_top_left['arr_3']

print('Loaded: ', train_topX.shape,

train_top_leftX.shape,train_top_rightX.shape)

transformer = MinMaxScaler()

def calculate_dist(trainX, valX, trainy, valy):

 same_sub = list()

 diff_sub = list()

 for x in range(valX.shape[0]):

 for y in range(trainX.shape[0]):

 distance = np.sum(np.square(trainX[y] - valX[x]))

 if trainy[y] == valy[x]:

 same_sub.append(distance)

 else:

 diff_sub.append(distance)

 same_sub = np.array(same_sub)

 diff_sub = np.array(diff_sub)

 conc = same_sub.shape[0]

 all_distances = np.concatenate((same_sub, diff_sub))

 all_distances = all_distances.reshape(-1, 1)

 transformer = MinMaxScaler()

 all_distances = transformer.fit_transform(all_distances)

 all_distances = all_distances.flatten()

 same_sub = all_distances[0:conc]

 diff_sub = all_distances[conc:]

 return same_sub, diff_sub

calculate scores of all the patches

same_sub_top, diff_sub_top = calculate_dist(train_topX, val_topX,

train_topy, val_topy)

same_sub_top_left, diff_sub_top_left = calculate_dist(train_top_leftX,

Partial-face Recognition using Patch-based Deep Learning

73

val_top_leftX, train_top_lefty, val_top_lefty)

same_sub_top_right, diff_sub_top_right = calculate_dist(train_top_rightX,

val_top_rightX, train_top_righty,

 val_top_righty)

score level fusion

w1, w2, w3 = 0.8, 0.1, 0.1

same_sub= (w1*same_sub_top)+(w2*same_sub_top_right)+(w3*same_sub_top_left)

diff_sub= (w1*diff_sub_top)+(w2*diff_sub_top_right)+(w3*diff_sub_top_left)

np.savetxt('score_files_after_fusion/score_fused_same_FEI.txt', same_sub,

fmt='%.5f',

 newline=os.linesep)

np.savetxt('score_files_after_fusion/score_fused_different_FEI.txt',

diff_sub, fmt='%.5f',

 newline=os.linesep)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Shahria Afrin

Partial-face Recognition using
Patch-based Deep Learning

An experiment of face recognition on masked
faces

Master’s thesis in Information Security - Technology
Supervisor: Guoqiang Li

June 2021

M
as

te
r’s

 th
es

is

	1. Introduction
	1.1 Problem Description
	1.2 Research Questions
	1.3 Proposed methodology

	2. Motivation and Related Work
	2.1 Simulated masked face dataset
	2.2 Face detection
	2.3 Patch-based method
	2.4 Deep Learning - Transfer learning and Fine Tuning
	2.5 Partial face recognition
	2.6 Support vector machine and Squared Euclidean distance

	3. Methodology
	3.1 Datasets used
	3.1.1 KomNET: Face Image Dataset from Various Media for Face Recognition
	3.1.2 FEI Face Database
	3.1.3 Tufts-Face-Database
	3.2 Data Pre-processing
	3.2.1 Masking
	3.2.2 Face detection
	3.2.3 Face alignment
	3.2.4 Patching
	3.3 Transfer learning and finetuning
	3.3.1 FaceNet: A Unified Embedding for Face Recognition and Clustering
	3.3.2 Transfer learning
	3.3.3 Fine tuning
	3.3.4 Feature extraction
	3.4 Fusion strategy
	3.4.1 Score-level fusion
	3.4.2 Feature-level fusion

	4. Experimental evaluation
	4.1 SVM and Squared Euclidean Distance evaluation
	4.2 Face recognition algorithm evaluation
	4.2.1 Evaluation details
	4.2.2 Score-level and Feature-level fusion evaluation

	5. Conclusion
	6. Future work
	7. References

