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Abstract 
Today we are seeing over 350,000 [1] malicious and so called potentially unwanted 

applications every day. The amount is so overwhelming that analysts are not able to 

process and analyse all these samples. In addition, we have several successfully attacks 
the later years by for instance the 1. March 2019, when the Norwegian aluminium and 

renewable energy company Norsk Hydro was attacked with the ransomware 

“LockerGoga” [4], the 1. September 2020 when the Norwegian Parliament Stortinget 
announced that they have had a data breach [3], and the 22. October 2020 when the 

European technology consulting company Sopera Steria had had a data breach, including 
their Norwegian department in Stavanger [2]. It is therefore necessary to either be able 

speed up the existing methods or develop new once, since it does not matter if you have 

been hit once, you can still be hit twice. Like the Norwegian Parliament Stortinget who 
was hit again in the beginning of March, due to the Microsoft Exchanged vulnerability 

CVE-2021-26857 [2], leading to a data breach. They were not the only once this time, 
there were several companies in Norway like the public transport company AtB, Andøy 

municipal in Norway, among others all over the world [3]. It is therefore necessary to 

find mitigation techniques that are able to help the analysts by processing the malicious 
files, in order for them to be able to focus on the malicious samples that poses the 

biggest treat, like the once described above. One solution to this problem is to let 
computers do the job, by utilizing machine learning. In this master thesis will therefore 

investigate the approach called STAtic Malware-as-Image Network Analysis (STAMINA). 

This approach converts malicious and benign files into grayscale images, and then uses a 
machine learning algorithm that is trained to identify objects like cats, dogs, houses, 

cars, etc. and learns this algorithm to detect the benign and malicious images. 
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Sammendrag 
Vi ser daglig over 350,000 [1] skadevarer eller såkalte potensielt uønskede 

applikasjoner. Omfanget er så stort at det ikke er mulig for analytikere å prosessere og 

analysere alle disse filene. I tillegg så har vi flere vellykkede angrepet det siste åre med 
for eksempel den norske aluminiums og fornybare energi bedriften Norsk Hydro, som ble 

angrepet 1. mars 2019 med løspengeviruset “LockerGoga” [4], det norske parlamentet 

Stortinget som meddelte at de hadde blitt utsatt for ett dataangrep 1. september 2020, 
og det europeiske teknologiselskapet Sopra Steria som hadde ett datainnbrudd, inkludert 

deres norske avdeling i Stavanger den 22. oktober 2020. Det er derfor nødvendig å 
enten øke hastigheten på eksisterende metoder eller å utvikle nye, siden det hjelper ikke 

om du har vært utsatt for angrep tidligere, da det fremdeles kan skje igjen. Ett eksempel 

her er det norske parlamentet Stortinget, som igjen var angrepet i begynnelsen av mars, 
på grunn av en sårbarhet i Microsoft Exchanged CVE-2021-26857, som medførte ett 

datainnbrudd. De var ikke de eneste som ble angrepet denne gangen, det var flere 
selskaper i Norge som kollektivselskapet AtB og Andøy kommune, i tillegg til andre over 

hele verden [3]. Det er derfor nødvendig å finne teknikker som kan hjelpe analytikerne 

med å prosessere skadevare filer, for at de skal kunne fokusere på de filene som utgjør 
den største trusselen, som de beskrevet i eksemplene over. En løsning på dette 

problemet kan være å la datamaskiner ta seg av jobben, ved å ta i bruk maskin læring. I 
denne masteroppgaven vil vi derfor se nærmere på metoden som heter STAtic Malware-

as-Image Network Analysis (STAMINA). Denne metoden gjør om skadevare og vanlige 

filer til gråskala bilder, for deretter å bruke en maskin lærings algoritme som er trent til å 
gjenkjenne objekter som katter, hunder, hus, biler osv. Deretter trenes denne algoritmen 

til å detektere vanlige filer og skadevare som bilder.   

 

  



vii 

 

Acknowledgements 
I would like to thank my supervisor Geir Olav Dyrkolbotn and my co-supervisor Trygve 

Brox at NorthernLifeLock, for the guidance during the writing of this master thesis. I 

would also like to thank my fellow student Alexander Daniel Forfot for our discussions in 
this field, a good friend and teammate! Thanks to Åsmund Kamphaug as well, for giving 

me a broader understanding of machine learning. Finally, I would also like to thank my 

friends and family for all the support I have received.   
 

 

 



viii 

 

  



ix 

 

Table of Contents 
List of Figures ................................................................................................ xi 

List of Tables ................................................................................................. xi 

List of Abbreviations (or Symbols) ................................................................... xiii 

1 Introduction ............................................................................................... 14 

1.1 Topics covered .................................................................................... 14 

1.2 Keywords ........................................................................................... 14 

1.3 Problem description ............................................................................. 15 

1.4 Justification, motivation and benefits ...................................................... 15 

1.5 Research questions .............................................................................. 16 

1.6 Planned contributions ........................................................................... 17 

1.7 Thesis outline ..................................................................................... 17 

2 Background theory and related work .............................................................. 18 

2.1 Malware ............................................................................................. 18 

2.1.1 Types ............................................................................................. 18 

2.1.2 Obfuscation ..................................................................................... 21 

2.1.2.1 Obfuscation techniques ............................................................... 21 

2.1.2.2 Obfuscation detection ................................................................. 23 

2.2 Malware analysis ................................................................................. 25 

2.3 Artificial Inteligence (AI), Machine Learning (ML) and Deep Learning (DL) ..... 26 

2.3.1 Machine Learning (ML) ...................................................................... 27 

Classification and validation ..................................................................... 28 

Classification ........................................................................................... 28 

Validation ............................................................................................... 29 

2.3.2 Deep Learning (DL) .......................................................................... 32 

2.4 STAtic Malware-as-Image Network Analysis (STAMINA).............................. 33 

2.4.1 Preprocessing .................................................................................. 34 

2.4.1.1 Pixel conversion ......................................................................... 34 

2.4.1.2 Reshaping and resizing ............................................................... 34 

2.4.2 Transfer learning .............................................................................. 36 

2.4.2.1 Pre-trained Deep Neural Network .................................................. 36 

3 Methodology .............................................................................................. 38 

3.1 Dataset ............................................................................................. 38 

3.2 Preprocessing the dataset ..................................................................... 38 

3.2.1 Header analysis, extracting .exe magic bytes, PE signature and CPU 

architecture ............................................................................................... 39 

3.2.2 Sample entropy, image conversion and reshaping .................................. 41 

3.2.3 Packer and encryption signatur detection.............................................. 41 

3.2.4 Packing our own samples ................................................................... 42 

3.3 Create and train machine learning (ML) models ........................................ 42 



x 

 

3.4 Evaluate the machine learning (ML) models and results .............................. 44 

Evaluating the results ................................................................................. 45 

4 Experiments and results ............................................................................... 46 

4.1 Environment ....................................................................................... 46 

4.2 Experiment setup ................................................................................ 47 

4.2.1 Machine learning performance ............................................................ 47 

4.2.2 Entropy and packer signature detection ................................................ 51 

5 Discussion ................................................................................................. 56 

5.1 Implementation of STAMINA and performance .......................................... 56 

5.2 STAMINA vs entropy analysis and packer signature detection ...................... 57 

5.3 What STAMINA detects ......................................................................... 57 

5.4 Future work ........................................................................................ 58 

6 Conclusion ................................................................................................. 60 

Appendices ..................................................................................................... 62 

References ...................................................................................................... 90 

 

  



xi 

 

List of Figures 
Figure 1.1: Shows STAMINA implementation by Chen [7] ............................... 16 
Figure 2.1: Visualization of the Cyber Kill Chain by Hutchins et al. [10] and their 

description of each of the steps ..................................................................... 19 
Figure 2.2: Shows the difference between an unpacked executable to the left 

and a packed executable to the right. The figure is an illustration from Sikorski 

[9] ................................................................................................................ 21 
Figure 2.3: Showing how the command md5 'NTNU_Master_2018-12-

17_EN.dotx' in a Mac Terminal gives us a file hash for the master thesis 
template used in this paper. .......................................................................... 26 
Figure 2.4: Stacked Venn diagram showing the relation between AI, ML and DL [31] ... 26 
Figure 2.5: Stacked Shows how data is clustered into two clusters, one for 
children and one for adults [33]. .................................................................... 27 
Figure 2.6: Shows how Machine Learning and supervised learning works [34] 27 
Figure 2.7: Shows a basic neural network [35] ............................................... 27 
Figure 2.8: Confusion matrix for TP, FP, FN and TN ......................................... 29 
Figure 2.9: Confusion matrix benign and malicious, packed and not packed for 
TP, FP, FN and TN .......................................................................................... 29 
Figure 2.10: Show the processes within a k-fold and (also applicable for a 
stratified k-fold) described by Brownlee [43] ................................................. 30 
Figure 3.1: Shows a decision tree of how the header analysis is performed and which hex 

values we are looking for described in the following sections .................................... 39 
 

 

List of Tables 
Table 1.1: Shows a simplified version of a PE file structure [15] ............................... 20 
Table 2.2: Shows the formula for calculating Shannon´s entropy .............................. 23 
Table 2.3:  Shows the average entropy scores that paper [24] has concluded 

with .............................................................................................................. 24 
Table 2.4: Shows an example of a packer signature from the packer UPX version 2.93, 

used by the packer identifier PEiD [18] [25] .......................................................... 24 
Table 2.5: Shows how a k-fold cross validation split for k 10 is done, each row represents 

an iteration k, from [1-k], and each cell either belongs to the training or validation set. 31 
Table 2.6: Shows how a stratified k-fold with k = 10, seeks to preserving the 
percentage of samples for each class (benign and malicious). Here 8 of 10 are 

preserved, and 2 of 10 where not possible. For simplicity, the samples in this 

visualization are not shuffled. ........................................................................ 31 
Fig 1.7: Shows how Deep Learning works [34] ............................................... 32 
Fig 1.8: Shows two images of the same image, where data augmentation and 
horizontal flipping is applied. Here we can see that the method is applicable, 

because the image still shows buildings, and can be represented this way by a 

photographer, resulting in two samples, instead of one. ................................. 33 
Fig 2.9: Shows the first three steps of the STAMINA method, Figure 1. From 

paper [6] ...................................................................................................... 33 
Fig 2.10: Shows how the first 56 bytes of a given binary sample is converted to 

a one-dimensional array (here marked in grey), reading 8 bits, converting them 

to decimals ................................................................................................... 34 
Table 2.11: Shows the relationship between pixel file size and image width, where the 

image with is the number of bytes (now pixels) at each row, and the  [6] .................. 34 
Fig 2.12: Grayscale with one channel [46] ...................................................... 35 
Fig 2.13: Shows how the first 56 bytes of a given binary sample can be 

converted to three one-dimensional arrays, one for red, one for green and one 
for blue (RGB) ............................................................................................... 35 



xii 

 

Fig 2.14: Shows how a red, green and blue (RGB) looks like with three channels 

(0, 1, 2) [46] ................................................................................................. 35 
Fig 2.15: Shows how a car image (to the left) is impacted by being resized by 

nearest neighbour (in the middle) and bilinear interpolation (to the right). Here 

the compressed images are magnified 930%. Tabora [50] .............................. 36 
Fig 2.16: Shows the sample with sample_id = 8074 in dataset 1, original file to 

the left and scaled file to the right ................................................................. 36 
Fig 2.17: Shows a feature extraction model, with 4 output layers [52] ............ 37 
Fig 2.18: Shows a pre-trained CNN with fine-tuning with two output nodes [53]

 ..................................................................................................................... 37 
Fig 3.1: Showing the main tasks and subtask ADD SUBTASKS TO THE FIGURE . 38 
Table 3.2: Shows how the .exe magic bytes are found in a hex editor. ............. 39 
Table 3.3: Shows how the e_lfanew pointer is found at location 0x3C (here marked in 
dark blue), and that the offset points to the PE signature 50 45 00 00 (here in light 

green), in a hex editor. ..................................................................................... 40 
Table 3.4: Shows the table COFF File Header (Object and Image) [17] ............ 40 
Table 3.5: Shows the table Machine Types from [17] ...................................... 41 
Table 3.6: Shows how the CPU architecture (here x86) is found in a hex editor ........... 41 
Fig 3.7: Shows how brew is installing UPX ...................................................... 42 
Fig 3.8: Showing the last layers in the Inception V3 model, where layer 299 is 
marked in green as trainable and layer 298 in purple as the last frozen layer.  

The model Inception V3 [55] model is then added to a sequential model, with an average 

polling layer and a dens layer with one output node. The chosen optimiser is Adam.  
Layers frozen until: conv2d_93 ..................................................................... 43 
Fig 1.8: Showing the Convolutional Neural Network ........................................ 43 
Table 3.10: Shows the k-fold splits, learning rate, number of epochs and early 

stopping for dataset1 .................................................................................... 43 
Table 3.11: Shows how an ML model is related to the number of k in k-fold cross 

validation split for k 10, each row represents an iteration k, from [1-k], and each cell 

either belongs to the training or validation set. ...................................................... 44 
Table 3.12: Shows the formula for calculating the true positive rate .......................... 45 
Table 3.13: Shows the formula for calculating the true negative rate ......................... 45 
Table 3.14: Shows the formula for calculating the false positive rate ......................... 45 
Table 3.15: Shows the formula for calculating the false negative rate ........................ 45 
Table 3.16: Shows the formula for calculating the accuracy ..................................... 45 
Table 3.17: Shows the formula for calculating the precision / positive predictive value . 45 
Table 3.18: Shows the formula for calculating the recall .......................................... 45 
Fig 4.1: Showing the performance of our 5 trained ML models ......................... 47 
Table 4.2: Showing the training and validation loss and binary accuracy for the 

five models ................................................................................................... 47 
Table 4.3: Showing the progression of each model and epoch (3 per model), and 

that the validation is only done for the last model  Machine learning benign and 

malicious classification .................................................................................. 48 
Table 4.4: Showing how we predict that a sample is benign or malicious [39] . 48 
Fig 4.5: Shows the confusion matrix for benign and malicious samples ........... 49 
Fig 4.6: Shows the Benign TN and FN, malicious TP and FP ............................. 49 
Table 4.7: Shows how the accuracy, false positive rate, precision and recall is 

calculate for the machine learning models ...................................................... 49 
Fig 4.8: Showing Benign True Negative and Malicious True Positive ................ 50 
Fig 4.9: Shows the confusion matric for the packed and not packed benign and 
malicious samples ......................................................................................... 50 
Fig 4.10: Showing the benign packed TN and FN, and the malicious packed TP 

and FP .......................................................................................................... 51 
Fig 4.11: Show a confusion matrix for packed and not packed samples in 

Dataset 1 by using entropy and packer signature detection............................. 52 
Fig 4.12: Shows the packed TP and FP and not packed TN and FN, when using 
file entropy and packer signature detection .................................................... 52 



xiii 

 

Table 4.13: Shows Fig xx Showing the accuracy, precision and recall for the file 

entropy and packer signature detection ......................................................... 53 
Fig 4.14: Showing a confusion matrix for benign to the left and malicious to the 

right ............................................................................................................. 54 
Fig 4.15: Showing benign packed TP and FP, benign not packed TN and FN, 
malicious packed TP and FP, and malicious not packed TN and FN ................... 55 
Table 1.5: Shows how a fine-tuning model can be coded in Python [69], [73], [74] ..... 76 
Table 1.1: Shows how getting the .exe magic bytes can be coded in Python ............... 79 
 

 
 

 

 
 

 



 

 

This chapter introduces the topics covered in this thesis. Then presents a description of 

the problem, the motivation for conducting this research project, the research question, 

and what the thesis seeks to contribute with.   

 

1.1 Topics covered 

 
The 1. March 2019, the Norwegian aluminium and renewable energy company Norsk 

Hydro was attacked with the ransomware “LockerGoga” [4], the 1. September 2020 the 

Norwegian Parliament Stortinget announced that they have had a data breach [3], and 
the 22. October 2020 the European technology consulting company Sopera Steria had 

had a data breach, including their Norwegian department in Stavanger [2].  These are 
just some of the headlines in 2019-2020 and shows that the numbers of attacks are 

increasing rapidly. On the contrary, this phenomenon is not new. More than 350,000 are 

daily observed of malicious and so called potentially unwanted applications [1]. Another 
example from last year that shows how fast the development of malicious application can 

go, is the malware “GoSearch22”, who was discovered by VirusTotal [4] in December 

[5], targeting Apples new Silicon platform who was released November 10. This platform 
is also sharing the same architecture as the Apple iPhone and iPads, meaning that it 

would not only be able to infect Macs with their new Silicon, but could potentially reach a 
broader audience. The start of the news year 2021 is not different, by looking at the 

beginning of March, the Microsoft Exchanged vulnerability CVE-2021-26857 [2] leading 

to a data breach at the Norwegian Parliament Stortinget again, the public transport 
company AtB, Andøy municipal in Norway, among others all over the world [3]. This 

shows that if you have been attacked once, you still can be attack twice, and that the 
number of new samples is far above the capacity of malware analysts to handle by their 

own. It is therefore necessary to find mitigation techniques that are able to help the 

analysts by processing the malicious files, in order for them to be able to focus on the 
malicious samples that poses the biggest treat, like the once described above. One 

solution to this problem is to let computers do the job, by utilizing machine learning. 
In this master thesis will therefore investigate the approach called STAtic Malware-as-

Image Network Analysis (STAMINA). This approach converts malicious and benign files 

into grayscale images, and then uses a machine learning algorithm that is trained to 
identify objects like cats, dogs, houses, cars, etc. and learns this algorithm to detect the 

benign and malicious images.  

 

1.2 Keywords 
 

Malware, malware classification, static analysis, image analysis, machine learning, deep 
transfer learning 
  

1 Introduction 



 

1.3 Problem description 
 

In reverse engineering and malware analyses, one of the problems that we are facing 
today, is the overwhelming amount of new malware samples discovered every day. This 

number is according to AV- TEST.org, over 350,000, consisting of new malwares and so 

called potentially unwanted applications [1]. When we take this into account, and the fact 
that malware often is obfuscated by packing or encryption, in either one or several 

rounds, there is just not enough resources, and time to analyse them all. Therefore, it is 

necessary to either increase the performance of existing methods or invent new ones. 
Because the analyst needs to be able to focus his or her energy on the new malware 

samples that really matters. The ones that pose the biggest threat, which could be 
samples that has never been seen before, or existing ones that has gain new and more 

dangerous features, like the ability to infect other computers by taking the advantages of 

a new an unknown vulnerability, also known as a zero-day.  

1.4 Justification, motivation and benefits 
 

This research is motivated by a paper called “STAMINA: Scalable Deep Learning 

Approach for Malware Classification” written by Intel Labs and Microsoft Threat Protection 
Team, Li Chen, Ravi Sahita and Jugal Parikh, Marc Marino [6]. The concept of this paper 

is to convert benign and malicious samples into images and then apply machine learning 
with deep transfer learning, to be able to identify the benign and malicious samples in 

their dataset.  

However, the paper does not go into depth and clearly explain how they are measuring 
the performance of their machine learning algorithm. They claim that this approach also 

works with malware that are obfuscated by for instance packing or encryption, but they 
are not providing any results or explanation of how they have drawn this conclusion. For 

the machine learning algorithm, to be able to detect packed and encrypted samples, they 

might have used an approach where both some of the benign and malicious samples are 
packed with the same packers, and some of the benign and malicious samples are 

encrypted with the same encryption algorithm. In order to make the machine learning 

algorithm aware that benign files or software also might be packed and or encrypted. 
Otherwise, it is not possible to be sure that the actual result here is that the machine 

learning algorithm detected a packed or encrypted malware. It could in fact actually be 
that the machine learning algorithm only detected that specific packer type and or 

version, or encryption algorithm and or version. Hence it is not actually detecting if a 

sample is benign or malicious. It would also be beneficial if they had provided their code 
samples, dataset, and test environment, in order to be able to repeat and validate their 

result. 

In this thesis we will therefore try to conduct the same experiment as they did, as closely 

as possible, but rather be focusing on if it is possible to detect packed and encrypted 

malware samples, by using the suggested approach above. We will also be providing the 
necessary theory to explain how the research is conducted and why, code, ML, and 

resized image samples. Along with the result of the experiment, in order for others to be 

able to redo, extend and or validate the founding’s in this thesis. 

  

  



 

1.5 Research questions 
 

The primary goal of this thesis is to evaluate the validity and the reliability of the claims 
in [6] that STAMINA is well suited to detect packers. We want to investigate if we are 

able to recreate STAMINA and recreate similar results (reliability) and is STAMINA 

detecting packed malware or the packer, regardless of benign and malicious content 
(validity). In order to do this, we will look into the following questions: 

 

1)  How can STAMINA be implemented and used to detect packed malware? 
2)  What is the performance of the approach? 

3)  How does the performance compare with other methods, such as entropy 
 analysis and packer signature detection? 

4) What is being detected by STAMINA? 

 
 

In order to limit the scoop of this master thesis, we will only be looking at the first 
implementation of STAMINA [6] by Chen [7] and not the approach involving the File size 

gate. In short, this approach is implemented in order to remove files that are skewed due 

to their file size distribution when they are resized, and therefore uses file size gate, to 
sorted out files by their file size,  described in more details in [6]. The implementation by 

Chen [7] is here shown in his figure below.    

 
 

 
 
Figure 1.1: Shows STAMINA implementation by Chen [7]  



 

1.6 Planned contributions 
 

Other researchers [6] have looked into how malware can be converted to images by 
reading the malware sample byte by byte, converting every byte into a value between 0 

and 255. This one-dimensional array of pixels would then be divided into a two-

dimensional matrix, based on the file size and an empirical validated table. They convert 
both malicious and benign images, and then resize them by using the algorithm nearest 

neighbour or bilinear interpolation. The resizing is recommended to be either 224x224 or 

299x299 (height x width) depending on the input shape of the pre trained deep neural 
network. Then they have applied transfer learning to a pre trained deep neural network 

of natural images, to take the advantages of transfer learning, saving time by only 
retraining the last few layers of the network, to be able to classify malicious and benign 

images. However, I have not been able to find any research that presents this whole 

process in code, for others to be able to revalidate their findings, investigate other 
approaches in this domain, or to build further on. Earlier research also points out that 

this method is able to detect packing and encryption, without showing to any results. The 
goal of this master thesis will therefore be to repeat, recreate and apply the approach 

suggested by Chen et al. in [6]. Our focus will be on the claim by [6] that their method 

can detect packed and encrypted malware. The research will also document this process, 
provide both code samples and resized benign and malicious images, for other 

researchers to be able to repeat and verify the results found in this thesis. This will 

ensure that it is easy for future scientists to check the validity and reliability of our 
contribution and to build upon it to potentially improve a much-needed detection 

capability. This should go without saying, but as the article by Chen et al. in [6] shows, 

this is not always the case. 

 

1.7 Thesis outline 
 
This section describes the outline of the thesis and gives a short description of each 

chapter.  

 

• Chapter 2: This chapter presents the necessary background theory in order to 

understand why we later on are applying different kinds of methods and teqnices, 
as well as to understand the terminology used in this thesis along with the 

existing litterature and related work. 

• Chapter 3: This chapter presents the methodology used to answer this master 
thesis and the research questions presented in the introduction. We will here 

divide the this chapter into preprocessing, create and train ML models and lastly 
ecaluate the trained ML models and results. In the preprocessing section we will 

be looking at creation of a database, header analysis, sample image conversion 

and reshaping, packer and encryption signature detection, and packing our own 
samples. In the Create and train ML models we will explain how we created and 

trained the machine learning models. Lastly in the evaluate the trained ML models 
and results, we will discuss how we are able to evaluate the performance of the 

machine learning models and other results. 

• Chapter 4: Experiments. Presents the hardware and software setup used to 
conduct this experiment, along with how the experiment is conducted and the 

obtained result. 

• Chapter 5: Discussion. Discusses the results obtained during the experiment. 

• Chapter 6: Conclusion. Draws a conclusion based on the findings and future 

works. 



 

 

This chapter presents the necessary background theory in order to understand why we 

later on are applying different kinds of methods and teqnices, as well as to understand 

the terminology used in this thesis along with the existing litterature and related work. 

2.1 Malware 
 

Malware is defined by Oxford Languages as: “Software that is specifically designed to 

disrupt, damage, or gain unauthorized access to a computer system.” [8]  

2.1.1 Types 
 

There exist several types of malware [9]  such as backdoors, viruses, worms, 

ransomware, and others. Our categorization here is based on [9], who categorize 
malware based on how they are behaving / what kinds of actions they are performing on 

the computer they are installed on. A malware sample may have more than one behavior 
(e.g., backdoor and botnet) and therefore belong to more than one category. Some 

common categories and their behaviour are: 

 

• Adware: Shows unwanted advertisements usually based on browser history  

• Backdoor: Allows the attacker access with little or no authentication to a computer 

• Botnet: Devices managed by a command-and-control server (backdoors installed) 

• Downloader: Allows the attacker to download and install additional malicious code 

• Virus: Copying itself after a user interaction to other computers, infecting them 

• Worm: Copying itself without user interactions to other computers, infecting them 

• Spyware: Steals information from a given computer 

o Keylogger: Reads every stroke from the keyboard 

o Password hash grabbers: Steal’s password hashes from disk, RAM, etc. 

o Sniffer: Monitors and collects internet traffic 

• Trojan Horse: Legitimate software combined with malicious code (mislead users)  

• Ransomware: Encrypts the users files and demand money to release them 

• Rootkit: Designed to conceals itself, allows remote access, usually consist of other 

malware, like backdoor 

 
The type of malware selected by an attacker, usually depends on what their goals and 

motivations are. Motivation can e.g., be economic / financial gain, opportunistic or 

targeted. The malware functionality needed will depend on the stage of the attack. 

Hutchins et al. describes in [10] an attack as a seven-stage process: Reconnaissance, 

Weaponization, Delivery, Exploitation, Installation, Command and Control (C2), and 

Actions on Objectives. This model is called the Cyber Kill Chain and Hutchins et al. 

descriptions are found in the figure below. 

2 Background theory and related work 



 

 

 

 

Figure 2.1: Visualization of the Cyber Kill Chain by Hutchins et al. [10] and their 

description of each of the steps 

 

Malware can be written in any programming and scripting language. They can target 

anything from mobile phones, computers, cameras, washing machines, to components in 

an industrial control system, controlling things like the pumps in a wastewater treatment 

facility for instance. Malware therefore has to be written in a format that the targeted 

device will be able to understand, called a file format, in order for it to be able to 

7. Actions on Objectives

Only now, after progressing through the first six phases, can intruders take actions to achieve their original objectives. Typically, this objective is data exfiltration which 
involves collecting, encrypting and extracting information from the victim environment; violations of data integrity or availability are potential objectives as well. 

Alternatively, the intruders may only desire access to the initial victim box for use as a hop point to compromise additional systems and move laterally inside the network. 

6. Command and Control (C2)

Typically, compromised hosts must beacon outbound to an Internet controller server to establish a C2 channel. APT malware especially requires manual interaction 
rather than conduct activity automatically. Once the C2 channel establishes, intruders have “hands on the keyboard” access inside the target environment. 

5. Installation

Installation of a remote access trojan or backdoor on the victim system allows the adversary to maintain persistence inside the environment. 

4. Exploitation

After the weapon is delivered to victim host, exploitation triggers intruders’ code. Most often, exploitation targets an application or operating system vulnerability, but it 
could also more simply exploit the users themselves or leverage an operating system feature that auto-executes code. 

3. Delivery

Transmission of the weapon to the targeted environment. The three most prevalent delivery vectors for weaponized payloads by APT actors, as observed by the 
Lockheed Martin Computer Incident Response Team (LM-CIRT) for the years 2004-2010, are email attachments, websites, and USB removable media. 

2. Weponization

Coupling a remote access trojan with an exploit into a deliverable payload, typically by means of an automated tool (weaponizer). Increasingly, client application data files 
such as Adobe Portable Document Format (PDF) or Microsoft Office documents serve as the weaponized deliverable. 

1. Reconnaissance

Research, identification and selection of targets, often represented as crawling Internet websites such as conference proceedings and mailing lists for email addresses, 
social relationships, or information on specific technologies. 



 

interpret and perform the desired action. A file format has a given structure, called a file 

structure. There are exists several types of file formats from proprietary formats where 

the file structure is not publicly known, to file formats like Executable and Linkable 

Format (ELF) [11] and Portable Executable (PE) where the file structure is known [12]. In 

this paper we will only be focusing on the Portable Executable (PE) file format who we 

will be describing next.  

 

Portable Executable (PE file) 

The Portable Executable File format (PE format) were introduced by Microsoft as a part of 

the original Win32 specifications, but comes from the operating system [13] called 
VAX/VMS introduced in the late 1970s [14] and is derived from the Common Object File 

Format (COFF) [12]. The reason for this was due to that the original Windows NT team 
came from the company Digital Equipment Corporation, who was the developer behind 

the VAX/VMS operating system. [14] It was therefore easy for these developer to use the 

existing code that they were used to program in [12]. The intent behind the term 
Portable Executable was to have a common file format for all versions of Windows and 

supported CPUs. [12] Today this format is still used for Windows executables in 32 and 
64-bit Windows operating systems and can the most common formats EXE (also known 

as .exe) files, .NET executable and DLLs [15]. The only difference between an EXE file 

and a DLL, is a single bit, indicating if it should be treated as a DLL or an EXE file. (DLLs 
can also have the .OCX and .CPL extension instead of .DLL) [12]. The data structures 

that are on disk are the same data structure when a PE file is loaded into the memory 
[12]. To give some background information on the file structure itself. The structure can 

be seen in figure xx. The file starts with a small MS-DOS executable, printing that 

Windows is required, if the program were executed on another machine than Windows 
[12]. The MS-DOS header is the first bytes of the PE file and is also called 

IMAGE_DOS_HEADER. Here the e_magic and e_lfanew values can be found. The first 

value e_magic needs to be 0x5A4D in hexadecimal values or MZ in the ASCII character 
encoding [16] and indicates that the file is an EXE file. It is also referred to as 

IMAGE_DOS_SIGNATURE and EXE magic bytes. The second value e_lfanew is a pointer 
to where the file offset of the PE header is found in the file itself, and we will come back 

to these too values several times in this paper and give a little more detailed descrition of 

them in the section 3.2.1 Header analysis, extracting .exe magic bytes, PE signature and 
CPU architecture in chapter 3 Methodology. [12]. An whole overview of the file format 

can be found at the Windows Developer Documentation [17]. 

 

PE File   
Header 

 

DOS Header 

PE Header 

Optional Header 

Section Table 

   

Sections 

Code 

Imports 

Data 
 

 

 

Table 2.1: Shows a simplified version of a PE file structure [15] 

  



 

In this paper, we will not be moving further down in the PE File structure than the header 

and to the optional header. The method we are using here consists of looking at the 
values found in the header, called a PE header analysis. These values can then be 

extracted and contains information about the given file as described above, such as if the 

file is a EXE file, but also what processor architecture it is running on, along with packers 
cryptos and compiler signatures. These signatures can either be located in the header 

itself, or pointers from the header to other section in the file that holds this information. 

We will not here ourself detect packers cryptos and compiler signatures by writing code 
that looks for these signatures in the PE File, but the tool PEiD [18] will perform such 

operations for us. The PEiD [18] tool will be further described under the section 2.1.3.2 
and Packers, cryptos and compiler signatures  

 

2.1.2 Obfuscation 
 

A technique that can be used by malware writers to avoid detection and or make analysis 
of a given malware sample more complicated, is called obfuscation. There are several 

ways to obfuscate files, but in this paper, we will only be looking at the two techniques 
called packing and encryption. The main purpose behind these two techniques are not in 

themselves malicious but they are commonly used by malware writers [9]. The two next 

sections will therefore be obfuscation techniques, where we are describing packing and 
encryption, and the next section obfuscation detection, where we will describe the two 

detection techniques, called file entropy and packers, cryptos and compiler signature 

detection. 

2.1.2.1 Obfuscation techniques 

 

Packing 

According to Sikorski [9] packed programs are when a malicious program is compressed 
by the malware writer, and therefore cannot be analyzed. Running a packed program will 

result in a decompressing of the packed file, by a small wrapper program, and then an 

execution of the unpacked file [9]. A visualization of an original executable and a packed 
executable can be seen in fig 2.2, and as we can see, Strings are hidden when a program 

is packed, and there for a search for Strings in a packed program should result in few 

Strings compared to the not packed program. If we compare legitimate programs and 
malicious programs, a compress malicious program usually contains few strings, as 

oppose to legitimate programs, who usually contains many strings [9]. Packed files also 
often either include the functions LoadLibrary and GetProcAddress (if Strings are 

searched for in the executable), who are used to be able to load and gain access to 

additional functions. We will not go into details about this in this paper and more 

information can be found in [9].  

 

Original Executable 

 

 
 

 

(Strings and other 

information visible) 

 

Wrapper Program 

Packed Executable 
 

(Strings and other 

information not  

visible) 

 

Figure 2.2: Shows the difference between an unpacked executable to the left and a 

packed executable to the right. The figure is an illustration from Sikorski [9] 

  



 

Encryption 

In a non-technical term, encryption can be described as a way of scrambling data, in 
order for only authorized parties to interpret the information [19]. The goal of the 

encryption process is to alter the readable data, so it appears random, even though 

encryption proceeds in a logical and predictable way. Described in a technical term, it is 
the process of converting plaintext into ciphertext (incomprehensible text) [19], and 

requires a cryptographic key, who can be described as a set of mathematical values, that 

both participants of the encrypted message has agreed on [19]. Like a physical key it 
unlocks (decrypt) and locks (encrypts) the data for someone with the right key. Data can 

be encrypted while it is in transit, described as being transmitted to somewhere else or 
at rest, described as when it is stored. In order for a third party to not guess the key and 

break the ciphertext by for instance guessing all possible values called brute force, a 

complex enough key should be used [19]. The two most common encryption types today 
are symmetric and asymmetric encryption (also known as public key encryption). 

Asymmetric encryption uses two keys, one for encryption and a different key for 
decryption. Opposed to symmetric encryption, who only uses one (same secret) key that 

all communicating participants is using for both decryption and encryption [19].     

 
The reason for using encryption can for instance be due to privacy, security, data 

integrity authentication and regulations as described by [19]: 
 

Privacy: Ensuring that either the rightful data owner or intended recipient is the only 

one that can read stored data or in transit.  For instance, to prevent anyone from 

eavesdropping (listen) in like Internet service providers, ad networks and attacker.  

Security: Ensures that data on disk is still secure if a hard drive or computer is lost or 

when communicating parties exchange sensitive data. Prevents data breaches (that 
someone steels the data) on disk or in transit.  

 
Data integrity: Ensures that the data that the recipient receives har not been altered or 

tampered with on the way to him or her.  

 
Authentication: For instance, TLS certificate for ensuring that a given user is connected 

to the real website and to establish a secure communication between his or her device to 
the website server. 

 

Regulations: GDPR, HIPAA, PCI-DSS etc. are examples of compliance standards and 
regulatory, required by for instance government regulations and industry against 

companies to keep data encrypted, if they handle user data. 

  



 

2.1.2.2 Obfuscation detection 

 

There are several approaches being discussed in existing literature [20], [21], [22], [23] 

on how obfuscation of packed and encrypted malware can be detected. But here we are 

only looking at two of these methods. The first method is by calculating the file entropy 
and the second method is by utilizing a packer detection tool. In the two next sections, 

we will therefore describe file entropy and packers, cryptos and compiler signature 

detection, along with the approaches being discussed in the existing literature. 

 

File entropy 
In malware analysis, one measurement that is used to indicate whether a malware 

sample is packed or encrypted, is the entropy of the file. A file that is encrypted or 

packed, will have a higher entropy, than a malware sample that is not packed or 
encrypted. The entropy will be in the range [0-8] here, since we are basing our 

calculation on 8 bits, where 0 will be indicating that the file sample is not packed or 
encrypted, and the closer the value is to 8, the higher the probability would be that the 

file is encrypted or packed. The file entropy can be calculated by using Shannon´s 

entropy: 

 

Formula for calculating Shannon´s entropy  

The formula for Shannon´s entropy: 

𝑯(𝑿) = − ∑ 𝑷(𝒙𝒊)

𝒏

𝒊=𝟏

 𝒍𝒐𝒈𝒃 𝑷(𝒙𝒊) = − ∑ 𝑷(𝒙𝒊)

𝒏

𝒊=𝟏

 𝒍𝒐𝒈𝟐 𝑷(𝒙𝒊) 

b = the base, is here two (since a bit is either 1 or 0) 

 

Table 2.2: Shows the formula for calculating Shannon´s entropy  

 

File Entropy is based upon the hypothesis that the entropy of a packed file is different 

than the entropy of an unpacked file. This hypothesis may be stronger or weaker 
depending on what is included in calculating the entropy. There are several papers such 

as [20], [21] and [24],  discussing how file entropy can be calculated. In paper [20] they 

used a blockwise entropy score of byte features of executables, to see if they were able 
to sort out the packed files. Their proposed method takes malware and benign files that 

are not packed, packs them with the same packers and then calculates their blockwise 

entropy score. Their conclusion was that their proposed method was capable of 

identifying packing.  

The method used in [20] only focuses on one round of packing also called single layer, 
but malware can be packed in several rounds, for instance either re-packed with the 

same algorithm or multilayer packed with two algorithms. In paper [21], they used 

entropy analysis, to detect multi-layer packing. Their approach was to use symbolic 
aggregate approximation on the entropy of the executables. They also claim that this 

method is applicable for this kind of tasks. Paper [23] has a four step verification 
approach for packing and encryption detection, that we will described in a whole under 

the section packers, cryptos and compiler signature detection, since it fits better there.  

But we would here like to mention one of these verification processes that only are 
calculating the entropy of the entry point section, by using Shannon’s entropy formula, 

and coming back to way later on.  

In paper [20], [21] and [23] they all have in common that they are using Shannon’s 
entropy as the ground formula for calculating the entropy, but what they are calculating 

the entropy of differs.  
 

In this paper we will for simplicity stick to the original Shannon’s entropy, where the 



 

input file will be read in as binary, and we are creating an array in the range [0-255]. 

Every time we see a given binary value, the array at that position will be increased by 
one. After that we are using Shannon’s formula to calculate the entropy of the array.  

But we will keep in mind the findings in [23], when it comes to benign unpacked files and 

false positives and benign packed files and false negatives described in the next section. 

In order to determine where we should set the threshold for when a file is packed and 

encrypted, we are using the paper [24] and the their given table 2.3: 

 Average entropy 

Plain text 4.347 

Native executables 5.099 

Packed executables 6.801 

Encrypted executables 7.175 
 
Table 2.3:  Shows the average entropy scores that paper [24] has concluded with 

Packers, cryptos and compiler signature detection 

In section 2.1.2.1 Obfuscation and under packing, we described how the content of an 
executable file is being hidden by the packer program, revealing a small wrapper 

program. This means that we instead can try to analyse the packer program, in order to 

determine what packer we suspect that the given file has been packed with. Like a PE 
file, where we can find information about what file type it is .EXE, DLL, .NET etc., what 

compiler version that has been used to create the file, when the file was created, the 
processor architecture, etc., a packer or encryption program also applies a similar 

approach, outside the packed or encrypted part. The reason for this is in order for the 

packer or encryption program to be able to detect what encryption or packing algorithm 
and version, that has been used, called a packer or encryption signature. This signature 

can be compared to a compiler signature in executable files, and it is therefore possible 
to extract, in order to trying to detect packers or cryptos. When this process of detecting 

such a signature is performed by a program, the program is called a packer identifier. 

 

UPX 2.93 Hex signature from the packer identifier PEiD [18] 
[UPX 2.93 (LZMA)] 

signature = 60 BE ?? ?? ?? ?? 8D BE ?? ?? ?? ?? 57 89 E5 8D 9C 24 ?? ?? 

?? ?? 31 C0 50 39 DC 75 FB 46 46 53 68 ?? ?? ?? ?? 57 83 C3 04 53 68 ?? 

?? ?? ?? 56 83 C3 04 53 50 C7 03 03 00 02 00 90 90 90 90 90 

ep_only = true 

 

Table 2.4: Shows an example of a packer signature from the packer UPX version 2.93, 

used by the packer identifier PEiD [18] [25] 

 

In the example above, we have the signature name, the signature and a variable called 

ep_only, who here is true. Where the ep means entry point, or in other words, if the 

signature is found in the entry point of PE file, or if we have to look thru the entire file in 
order to find the signature pattern. According to the Windows Developer Documentation 

and under the PE Format, the address to the entry point, as Microsoft calls 

AddressOfEntryPoint, can be found by looking in the Optional Header Standard Fields 
(Image Only) [17].  

 
In the literature [22] by Mi-Jung et al., they discuss an approach consists of a four-step 

verification, in order to determine if the given sample is malicious and packed. The first 

verification is to look at det entry point section of the file for a packer signature (like we 
are describing above), then they are looking for the WRITE attribute [23] in the entry 

point section, the third verification is an entropy calculation of the entry point section 



 

only by using Shannon’s entropy formula (as described in the File Entropy section), and 

the last one is a conclusion based on their findings. A file is labelled packed, if any of the 
mentioned verification tests above yields true [23]. The assumptions are that if there is 

no entry point section, the file is packed due to their findings showing that some packers 

scramble this section intentionally or hides it. The decision to only calculate an entropy 
score for the entry point section is according to [23] due to that the entropy calculation is 

to width (using the whole file for the entropy calculation) and that they on a benign file 

would get a false positive when the entropy value is low, and a false negative when the 
benign file is packed and have a hight entropy score. [23] Therefore this entropy 

calculation method and the WRITE attribute are according to [23] essential in reducing 
false positives, because a packed file needs permission to WRITE to be able to perform 

an unpacking, before the file is executed.    

2.2 Malware analysis 
 
The proccess of analysing a malware sample, to understand how the malicious software 

is able to cause a disruption, damage or gained unauthoized access, is called malware 
analysis. The goal of the analysis is to find out what functionallity the sample has, or in 

other words what malicious action the software is capable of performing, on or to a given 

computer or computers, network and networks, what the potetial impact is, if such an 
event should occure, who is the sender and programmer behind this malicous code (if 

possible). The analysing proccess can be divided into static and dynamic analysis [9].   

Static analysis examins the malicious sample without running it and can further be 
divided into basic static analysis and advanced static analysis [9].  In basic static analysis 

we are examining a given executable file, without looking at the actual program 
instructions. Instead we are trying to determine the programs functionality by using 

antivirus tools like VirusTotal [4] where the file either can be uploaded, or we can 

calculate a file hash (as described below) for the given sample and search by the hash 
[9]. Another method in basic static analysis is to search for Strings in the malicious 

sample, who can give valubale information like messages that the program prints, URLs, 
IP addresses, Windows functions, etc. [9]. Information that we can extract from the PE 

file header or header information for other file types are also a part og basic static 

analysis, along with file entropy calculation of the whole file or parts of the file.   
Advanced static analysis, is on the other hand looking at the actual program instructions, 

by using a dissasembler program [26] in order to find out what capabilites that the 

program has [9].  
 

Dynamic analysis on the other hand, consists of actually running the malicious samle, 
trying to detect what changes it makes to the computer it is running on, by utilizing 

logging and communication capture tools. Dynamic analysis is also divided into basic and 

advanced. The goal of basic dynamic analysis is according to [9] to produce an effective 
signature, remove the infection or both, by observing how the malicious samples is 

behaving when been executed. In advanced dynamic analysis we are taking it a step 
further by using a debugger [27] to examine the internal state of a malicious sample 

during executing, with the goal of extracting more detailed information [9]. We will in 

this paper only introduce the term dynamic analysis in order for the reader to understand 
that an analysis process can be divided into static and dynamic, and that a dynamic 

analysis is more time-consuming than a basic static analysis, hence an analyst 
performing dynamic analysis will be able to process a lower number of samples. More 

information about both dynamic and static analysis can be found in the book [9]. Next, 

we will describe the method call hashing can. 
 

Hashing is a method that is commonly used to uniquely identify malicious samples. The 

unique hash that identifies that particular malicious sample is produced by running the 
malware through a hashing program [9]. There exists several hash function algorithm 

that can be used to create a hash, and in this paper we have implemented both The 



 

Message-Digest Algorithm 5 (MD5) and the Secure Hash Algorithm 256 (SHA-256). The 

reason for this is due to that the datasets that we are using, who contains the benign and 
malicious files, have named them with either a MD5 or SHA-256 hash. Hashes can also 

be used to see if someone else already has analysed and identified that particular file 

sample [9], and we will here use the service VirusTotal [4], to retrive such information.  
In this thesis we will also using hashing and hashes to uniquely identify a particular 

sample during our experiment. For example when we are packing samples in chapter 3. 

Methodology, the sample that is beeing packed will keep the file hash it had before it was 
packed as its filename. This is done in order to be able to find the unpacked filename, so 

that we are able to compare them against each other later on. We wil also continue the 
naming convention with a hash as the filename for images that we are generating during 

the experiment, for other researchers to be able to verify our findings by beeing able to 

calculate the same hashes.    

 

Terminal command md5 'file_name': md5 'NTNU_Master_2018-12-17_EN.dotx' 

MD5 file hash: 130bf9f28dd52637656e7e0558419ac2 

 

Figure 2.3: Showing how the command md5 'NTNU_Master_2018-12-17_EN.dotx' in a 

Mac Terminal gives us a file hash for the master thesis template used in this paper. 

 

2.3 Artificial Inteligence (AI), Machine Learning (ML) and Deep 
Learning (DL) 

 

Any human-like intelligence exhibited by a robot, computer or any other machine, is in 

computer science defined as artificial intelligence (AI). In popular usage, it is defined as 

learning from experience and examples, making decisions, understanding and responding 

to language, recognizing objects, solving problems, and combining these and other 

capabilities. In other words, the ability for a machine or computer to mimic the 

capabilities of the human mind. AI is today a part of our everyday lives, due to its ability 

to process large amount of data in a more efficient and accurate way than a human can. 

They are built into speech recognizing virtual assistants like Amazons Alexa [28], who we 

can ask for directions, to play the next song on our playlist etc., completing words and 

sentences as we for instance is composing an e-mail by using Gmail [29], or in self 

driving cars to detect objects (cars, humans, houses etc.), road markings and signs, etc. 

to be able to autonomously drive a car like in Tesla´s Autopilot [30]. Artificial intelligence 

can be thought of as an umbrella, as seen in figure 2.4 [31]. Next, we will explain 

Machine Learning (ML) under section 2.3.1 and Deep Learning under section 2.3.2.  

 

 
 

Figure 2.4: Stacked Venn diagram showing the relation between AI, ML and DL [31] 
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2.3.1 Machine Learning (ML) 
 
Machine learning is divided into unsupervised and supervised learning. Unsupervised 

learning is when the algorithm is given a huge amount of data that is not labelled and 
given the task to label it. The machine learning algorithm then tries to understand the 

meaning behind the given data by classifying it based on clusters or patterns that it is 

detecting [32]. Clusters are data that the unsupervised learning algorithm has 
segmented into groups of examples, while patterns are when they are group by features. 

[32]. In that sense the labels are defined by the unlabelled data. Supervised learning on 
the other hand, is when the algorithm is given data that is labelled, hence the algorithm 

gets a certain understanding of how the data is classified [32]. The machine learning 

tries to find patterns in the data, that can be applied to an analytics process. The 
meaning behind the data are their labels [32]. 

 

 

 
 
 
Figure 2.5: Stacked Shows how data is clustered into two clusters, one for children and 

one for adults [33]. 

 

 
 
Figure 2.6: Shows how Machine Learning and supervised learning works [34] 

 

 
 

 
 

Figure 2.7: Shows a basic neural network [35] 



 

 

Classification and validation 
 

In order to be able to say something about how well the approach STAtic Malware-as-
Image Network Analysis is performing by its own, and compared to entropy analysis and 

packer signature detection, we need to introduce some measurement techniques. These 

techniques will further help us to interpret, describe and illustrate the performance. We 

will further divide this intro classification and validation. 

Classification 
Samples are in this paper classified into benign and malicious, packed benign, not packed 

benign, malicious packed and malicious not packed. When we later on are using a 

machine learning algorithm to classify these results, we need to introduce the following 
terms:   

 

True Positive (TP): A sample is 1, and predicted to be 1 
 

False Positive (FP): A sample is 0, but predicted to be 1 (also called a Type 1 Error) 
 

False Negative (FN): A sample is 1, but predicted to be 0 (also called a Type 2 Error) 

 
True Negative (TN): A sample is 0, and predicted as 0 

 
Accuracy: How often the predicted value are equals the correct value (correct count / 

total) in percentage [36] 

 
Binary accuracy: Same as Accuracy, but is used for binary labels (in this paper benign 

or malicious), resulting in that the predicted value is the probability of the prediction 
being equal to 1. 1 is assigned if the probability is above the threshold, else it is 0. Are 

the predicted value equal the correct value, it is considered accurate [36]. For instance in 

the neural network library Keras, the threshold is default 0.5 [36].  
 

Binary cross entropy: Can be either 0 or 1, compares each of the predicted 

probabilities to the actual class [37] 
 

Precision: Looking at the positive identifications, and what proportion that was actually 
labelled correct. Here a model with no false positives will result in a precision 1.0 [38] 

 

Recall: Looking at the actual positives that was identified correctly and in what 
proportion. Here a model with no false positives will result in a recall 1.0 [38] 

 
Sigmoid: Activation function (also known as logistic function) used to calculate the 

output of the neural network, returns a value between 0 and 1. Meaning that we based 

on the output would sort the output into class 1 or class 0. In our case, benign will be 0 
and malicious will be 1, hence if the returning value from the Sigmoid function is below 

0.5, we sort into class 0, benign. Otherwise, we sort it into class 1, malicious [39]. 

According to Karakaya [40] the Sigmoid is mostly used in binary classification, due to 
that it is equivalent to a Softmax function [40] with two elements, there the second 

element is assumed to be zero.  
 

Adam: Is the optimiser used for the convolutional neural network [41]. 

 
Confusion matrix 

The above measurements for TP, FP, FN, TN can be combined into a confusion matrix, in 

order to better visualize the result: 



 

 

  Actual  

  1 0  

Predicted 
1 TP FP  

0 FN TN  

     

 

Figure 2.8: Confusion matrix for TP, FP, FN and TN 

 

In our case the 1s and 0s in the matrix above would then be replaced by malicious and 

benign, packed and not packed, resulting in: 

 

  Actual   Actual 

  Malicious Benign   Packed Not packed 

Predicted 
Malicious TP FP Predicted Packed TP FP 

Benign FN TN Not packed FN TN 

 

Figure 2.9: Confusion matrix benign and malicious, packed and not packed for TP, FP, FN 

and TN 

 

Validation 

In machine learning, in order to be able to say something about how well the algorithm 

performing / working, we need to introduce the following terms: 

Overfitting 

When a machine learning model is modelling the training data to well. [42] The model 
here learns the random fluctuations or noise in the training data as concepts by the 

model. What the model then has picked up as concepts does then not apply to new data, 

hence therefore impacting the model’s ability to generalize negatively [42].  

Underfitting 

In contrast to overfitting, underfitting is when the model neither generalize to new data, 
nor model the training data [42]. The model will have poor performance on the training 

data and not result in a suitable model. According to [42] it is easy to detect with a good 

performance metric.  
 

K-fold cross validation 
To estimate how well machine learning models are performing in order to be able to 

compare and select a model, a common statistical method used in the machine learning 

field, is cross-validation. [43] The reason for this is that it is relatively easy to 
implement, understand and is a method that have a lower bias when it comes to skill 

estimation in general according to Brownlee [43] due to its more strict estimation, 
compared to for instance a train / test split like 70 % for training and 30 % for validation 

[43]. One of these cross-validation methods is called k-fold cross-validation and we will 

now further describe how this method is estimating the skill of machine learning models, 
by first presenting the model, then how we select the k value for a given dataset and 

lastly describe a variant of k-fold cross validation called stratified k-fold cross validation.   

 
The k-fold cross-validation method is used to estimate the skill of a machine learning 

model on unseen data. Or in other words a prediction of how well the machine learning 



 

model is expected to be performing in general, when the model is presented data that it 

has not seen before [43]. A k-fold divides the entire dataset into smaller groups where x 
groups are used to training and x groups are used for validation as seen in fig. 2.10. The 

number of groups that a k-Fold is divided into is based on a parameter called k. This k 

value can also be used instead of the k when the method is describe like a 10-fold cross-
validation for a k with the value 10, or a 5-fold cross validation for a k with the value of 

5, etc [43]. The k-fold method can be divide into the sub steps: Randomly shuffle the 

dataset, splitting the dataset into k groups,  (each unique group: holding a group as 
validation data, use the rest as training data, fit the model on training data, evaluate on 

validation set, keep its evaluation scores, repeat the process for the next ML model), and 
lastly estimate the skill of the model by summarizing the models evaluation scores [43]. 

A visualization of the process can be seen in fig. 2.10. below.        
 

 

 

 

Figure 2.10: Show the processes within a k-fold and (also applicable for a stratified k-

fold) described by Brownlee [43] 

 

The selection of a k value is important, in order to not give a falsely impression of how 

the model is performing. According to [43], a such score can for instance be a high bias 
(the performance of the model is overestimated) or a high variance (the data used to fit 

the model varies very much). In order to mitigate this, Brownlee [43] suggests three 
tactics: 1. The chosen k value is large enough to be statistically representative of the 

broader dataset. 2. Setting k = 10, resulting in a model performance estimate with 

modest variance and low bias. 3. Setting the k = n, where n is the number off samples in 
the dataset, letting every test sample be in the validation dataset, called leave-one-out-

cross-validation [43]. He also describes the common range for k as [5-10], where a 
larger k will result in differences between the validation and training sets gets smaller, 

resulting in a lower bias for each increase [43]. 

 



 

Dataset  

(100%) 

Train  

(90%) 

Val 

(10%) 

 

Val Train Train Train Train Train Train Train Train Train 

Train Val Train Train Train Train Train Train Train Train 

Train Train Val Train Train Train Train Train Train Train 

Train Train Train Val Train Train Train Train Train Train 

Train Train Train Train Val Train Train Train Train Train 

Train Train Train Train Train Val Train Train Train Train 

Train Train Train Train Train Train Val Train Train Train 

Train Train Train Train Train Train Train Val Train Train 

Train Train Train Train Train Train Train Train Val Train 

Train Train Train Train Train Train Train Train Train Val 

 

Table 2.5: Shows how a k-fold cross validation split for k 10 is done, each row represents 

an iteration k, from [1-k], and each cell either belongs to the training or validation set. 

Stratified k-fold follows the same splitting technique as an ordinary k-fold, seen in table 

2.5, but it also seeks to preserve the percentage of samples for each classes (in our case 

benign and malicious) in the given dataset [44]. Table 2.6 shows a simplified 

visualization of a stratified k-fold, with a dataset of 20 samples, where 8 are benign and 

12 malicious. Since there are more malicious than benign samples in our example here, 

the stratified k-fold will only manage to keep the percentage of samples for benign and 

malicious in 8 out of 10 folds, hence 2 out of 10 folds are not kept. The visualization does 

not show how the distribution within each fold are shuffled accordingly to an ordinary k-

fold.  

 

8
 b

e
n

ig
n

  

1
2

 

m
a
li

c
io

u
s
 Dataset  

(100%)  

 

Benign Benign Benign Benign Benign Benign Benign Benign Malicious Malicious 

Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious 

8
 o

f 
1

0
 f

o
ld

s
 Train  

(90%) 

 

 

Val 

(10%) 

 

Benign Benign Benign Benign Benign Benign Benign Malicious Malicious Benign 

Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious 

2
 o

f 
1

0
 f

o
ld

s
 Train  

(90%) 

 

Val 

(10%) 

 

 

Benign Benign Benign Benign Benign Benign Benign Benign Malicious Malicious 

Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious Malicious 

 

Table 2.6: Shows how a stratified k-fold with k = 10, seeks to preserving the percentage 

of samples for each class (benign and malicious). Here 8 of 10 are preserved, and 2 of 10 

where not possible. For simplicity, the samples in this visualization are not shuffled.     
  



 

2.3.2 Deep Learning (DL) 
 
Deep learning is a subset of machine learning, who without human intervention, with 

increasingly great accuracy, teaches itself to perform a specific task. These models are 
based on neural networks with several hidden layers, who each forwards their result / 

calculations to the next layer, called forward propagation. It is also possible to identify 

errors in these calculations, assigns them weighs, and then sends them back to previous 
layers, called backpropagation, who is used for either training or refining the model. 

These models are therefore called deep neural networks (DNN )and can work with both 

labelled and unlabelled data, unsupervised or supervised learning [31].    

 

 

 
 
Fig 2.7: Shows how Deep Learning works [34] 

 

Convolutional Neural Network (CNN) 
 

Conventional Neural Networks are inspired by how the animal visual cortex is organized 
and the individual neurons are organized so that they respond to overlapping regions 

that are tilting the visual field [45]. It is a type of feed-forward neural network that are 

composed of three types of layers, fully connected, convolutional and polling [45]. 

 

Deep Transfer Learning (DTL) 

 
Deep transfer learning is an approach that has been applied in several fields these days, 

due to the fact that training a new deep neural network from scratch, takes an awful lot 
of time and resources. The concept here is to borrow knowledge used in another domain 

and apply it to the new domain, resulting in reduced time and effort spent on training the 

neural network, and the benefit of yielding a high classification performance. This 
approach can also be beneficial, when the new domain has a relatively small dataset due 

to for instance lack of data in that particular field (called a limited dataset, due to its 
size), compared to the borrowed domain. The analogy often used to describe Transfer 

Learning, is that one person can transfer his or her knowledge to another person.    

Data augmentation 
 

One approach that can be used when we have a limited dataset (few sample images of 
the specific task that we are trying to solve), and therefore also might be very applicable 

in transfer learning, is called data augmentation. The goal of this concept is to create a 

more diverse dataset, to reduce overfitting. The common approaches here is to apply 
horizontal flipping, cropping or padding to the sample images in the dataset. Resulting in 

more samples, without actually collecting new data. But this is not always applicable, due 

the approaches described above. For instance, it can be applicable to pictures of houses, 
because if we flip a picture of a house horizontally, it is still an image of a house, if we 

crop the images, it would still be a part of the house etc. A photographer might have 



 

intentionally or unintentionally created such images. But if either of these approaches 

was used on benign and malicious samples converted to images, this would not be 
applicable at all, since these samples would not be represented in this way in the real 

world. 

 

      

 

Fig 2.8: Shows two images of the same image, where data augmentation and horizontal 

flipping is applied. Here we can see that the method is applicable, because the image still 

shows buildings, and can be represented this way by a photographer, resulting in two 

samples, instead of one. 

 

2.4 STAtic Malware-as-Image Network Analysis (STAMINA) 
 

STAtic Malware-as-Image Network Analysis (STAMINA) is the name Intel Labs and 

Microsoft Threat Protection Intelligence Team, gave their approach of static malware 

classification. They use deep transfer learning from computer vision, to find a deep 

learning technique with high accuracy and low false positives, compared to time-

consuming manual feature engineering [6]. The concept here is to convert malware 

samples into images and take the advantages of transfer learning and a pretrained deep 

neural network used to classifying natural images or objects. This is done by retraining 

the last layers on “images” converted from malicious and benign files. The entire process 

can be divided into pre-processing, transfer learning and evaluation [6], as seen in figure 

2.9 and explained next. 

 

 
Fig 2.9: Shows the first three steps of the STAMINA method, Figure 1. From paper [6]  



 

2.4.1 Preprocessing 
 
The purpose of the pre-processing step is to convert malicious and benign files into 

images of the specific format needed to train the Deep Neural Network in the step 2.4.2.  
The pre-processing step is divided into pixel conversion and reshaping and resizing.  

2.4.1.1 Pixel conversion 

 
One way of converting a binary sample, into an image is by reading the malware sample 

byte by byte. The reason for doing so, is due to the fact that a byte is represented as 8 
bits, resulting in 28 possible combinations or 256 choices, which is the same as a 

grayscale image, which only has one channel see figure 2.12, consisting of grey scale 

pixel values in the range [0-255]. Each and every byte will then directly become a shade 
of grey. The outcome of the pixel conversion process, will be a one-dimensional array of 

decimal values, as seen in figure 2.10, which we will reshape and resize in the next pre-

processing step [6]. 
 

 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 

Binary 01001101 01011010 10010000 00000000 00000011 00000000 00000000 

Decimal 77 90 144 0 3 0 0 

 

Fig 2.10: Shows how the first 56 bytes of a given binary sample is converted to a one-

dimensional array (here marked in grey), reading 8 bits, converting them to decimals 

2.4.1.2 Reshaping and resizing 

 
From the pixel conversion step above, the outcome is a one-dimensional array of decimal 

values, that each and every one is representing a grey scale pixel value. In order to 
create an image, we would need to reshape this long array of decimal values into a two-

dimensional array, since an image has a width and a height e.g., two dimensions. We 

therefore start by determine the image width and height by the empirically validated 
table shown below, suggested by paper [6]. The reason for using this table is to be able 

to keep the relation between the image width and height linearly scaled. The pixel file 

size is the actual file size and is here calculated by getting the length of the one-
dimensional array. Once the width is determined by the table, the height is calculated by 

dividing the one-dimensional array by the width, and if the result is a decimal number, it 
is rounded up, and the extra pixels are padded as zeroes. The result from this step, 

would now be a sample converted into an image [6]. 

(Pixel) File Size Image Width 

Between 0 to 10 32 

Between 10 and 30 64 

Between 30 and 60 128 

Between 60 and 100 256 

Between 100 and 200 384 

Between 200 and 1000 512 

Between 1000 and 1500 1024 

Greater than 1500 2048 

 

Table 2.11: Shows the relationship between pixel file size and image width, where the 

image with is the number of bytes (now pixels) at each row, and the  [6] 
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Fig 2.12: Grayscale with one channel [46] 

 

The last pre-processing step is to resize the image according to the Deep Neural 

Networks input requirement, in order for the neural network to be able to interpret the 
images it is given. The input requirement is referred to as the input shape and written in 

the format (224, 224, 3), where the two first values are representing the image height 

and width and the third value is referred to as the number of colour channels that the 
deep neural network model is supporting. The third value in the input shape is set to 3 

when the model is requiring three colour channels, meaning that it is requiring a colour 
image, who has the three channels: red, green, and blue (RGB). If the model is requiring 

a grayscale images, the third value in the input shape will be set to 1, since a greyscale 

image only has one channel as mentioned earlier. It is here important to understand that 
the input shape is the deep neural network models requirement, we cannot therefore 

send a grayscale image directly to a model that is requiring a colour image as an input, 

however a grayscale image can be converted into a colour image by repeating the one-
color channel three times [7], see figure 2.13. In that way, we are not limited to 

selecting a model that is only supporting grayscale images. The reason for mentioning 
this here is, due to the fact that paper [6] is using the model Inception-v1, who has the 

input shape (224, 224, 3) [47], and if we are following the references in [6] we see that 

Chen [7] is converting the grayscale image into a colour image in his paper from 2018, 
before passing it to the deep neural network, by following the one-color channel three 

times replication described above.  

 

 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 

Binary 01001101 01011010 10010000 00000000 00000011 00000000 00000000 

Red 77 90 144 0 3 0 0 

Green 77 90 144 0 3 0 0 

Blue 77 90 144 0 3 0 0 

 

Fig 2.13: Shows how the first 56 bytes of a given binary sample can be converted to 

three one-dimensional arrays, one for red, one for green and one for blue (RGB) 

 

 Row 

(width) 

0 1 2 

C
o
lu

m
n

  

(
h

e
ig

h
t)

 0 255 98 32 

1 0 70 56 

2 4 43 7 
 

 Row 

(width) 

0 1 2 

C
o
lu

m
n

  

(
h

e
ig

h
t)

 0 255 98 32 

1 0 70 56 

2 4 43 7 
 

 Row 

(width) 

0 1 2 

C
o
lu

m
n

  

(
h

e
ig

h
t)

 0 255 98 32 

1 0 70 56 

2 4 43 7 
 

 

Fig 2.14: Shows how a red, green and blue (RGB) looks like with three channels (0, 1, 2) 

[46]   



 

Paper [6] recommends that the image is resized to either 224 by 224 or 299 by 299 

(height x width). This does not only limit the scoop of models to choose from, but also 
means that we are losing some of the information in the original image, due to the 

resizing. They are in [6] further suggesting that the resizing algorithm used should either 

be nearest neighbour [48] or bilinear interpolation [49]. We will not here be describing 
how the nearest neighbour [48] and bilinear interpolation [49] algorithms are working, 

but rather show an image to give an impression of how the quality of an image is after 

compression by either of them, as seen in fig 2.15. According to [6] either of these 
resizing algorithms will not impact classification results or pattern matching techniques to 

for instance detect malware from the same family, due to the extraction of deep-
represented features by the deep neural network. 

 

 
 

Fig 2.15: Shows how a car image (to the left) is impacted by being resized by nearest 

neighbour (in the middle) and bilinear interpolation (to the right). Here the compressed 
images are magnified 930%. Tabora [50] 

 

    

 

Fig 2.16: Shows the sample with sample_id = 8074 in dataset 1, original file to the left 

and scaled file to the right 

 

2.4.2 Transfer learning 
 
Transfer learning is in our case when a pre-trained convolutional neural network is used 

as the base model, in order to take the advantages of that models previous learning and 

apply them to the new domain we are trying to solve. In our case benign and malicious 
classification. Transfer learning can be divided into pre-trained deep neural network and 

retraining the deep neural network, explained next.  

2.4.2.1 Pre-trained Deep Neural Network 

 

The purpose of pre-training is to avoid needing to train the whole deep neural network 
from scratch, by taking the advantages of that previous model’s learnings. There are 

several ways to apply transfer learning such as feature extraction and fine-tunning. We 

will explain the two methods relevant for this paper, feature extraction and fine-tuning, 
in next. 



 

2.4.2.1.1 Feature extraction 

 
The approach feature extractor consists of keeping the whole pre-trained network, except 

for the last fully connected layer, who is replaced with a new layer. The new layer is 

usually a dense layer, meaning that this layer will receive the output from all of the 
previous layers in the pre-trained network. The dense layer can for instance be given the 

sigmoid function [39], if the result is one of two desired outcome, also called binary 

classification, or the softmax function [51], if there are more than two desired outcomes, 

also called multi-classification [6]. 

 
 
 

Fig 2.17: Shows a feature extraction model, with 4 output layers [52] 

2.4.2.1.2 Fine-tunning  

 

Fine-tuning is when you keep the pre-trained convolutional neural network and add a 
new classification on top of the already existing network, as shown in figure 2.18, where 

they have added a new classification layer to detect if the image is of a car or a truck. 
The newly added layers and some of the layer behind the newly added layers are then 

fine-tuned, meaning that we freeze all the other layers except for them, in order to not 

train the whole model, but only some parts. To not overfit the model, this is done with a 
low learning rate. The idea behind not training all the layers of the network, is that if the 

model has been trained on enough images in our case, the last layers should be 

generalized enough to be able to be apply to the new problem we are trying to solve.    
 

 

 

 

Fig 2.18: Shows a pre-trained CNN with fine-tuning with two output nodes [53] 

 

 

 

 



 

 

This chapter presents the methodology used to answer this master thesis and the 

research questions presented in the introduction. We will here divide the this chapter into 
preprocessing, create and train ML models and lastly ecaluate the trained ML models and 

results. In the preprocessing section we will be looking at creation of a database, header 

analysis, sample image conversion and reshaping, packer and encryption signature 
detection, and packing our own samples. In the Create and train ML models we will 

explain how we created and trained the machine learning models. Lastly in the evaluate 

the trained ML models and results, we will discuss how we are able to evaluate the 
performance of the machine learning models and other results. 

 

 

 

3.1 Dataset 
 

In this thesis we are using a small dataset referred to a as Dataset 1. This dataset 
consisting of 10204 malicious files (originaly 1082 samples, and the malware family’s 

agent, hupigon, obfuscator, onlinegames, renos, small, vb, vbinject, vundo, zlob. Where 

each families is 1000 samples, except for vuno who is 823) and 4388 benign files. There 
are 2176 benign packed samples, where we packed 1860 with UPX 3.96, and 4886 

samples where 430 where packed by us with UPX 3.96. The benign files were gathered 
by Sergii Banin [54] in September 2019, and is a collection of software that is free and 

portable downloaded from Portabelapps.com. The method used to download the software 

is a grab-it-all approach, meaning that he was downloading all the samples he managed 
to get his hands on from their website. The software downloaded is Windows applications 

that is possible to run from a USB-stick, without installation. In Banins [54] dataset we 
removed duplicates and files that were not .exe by our suggested approach in the in this 

section.   

 

3.2 Preprocessing the dataset 
 

The pre-processing of the dataset can be divided into the five main tasks: creation of a 

database, header analysis, sample image conversion and reshaping, packer and 
encryption signature detection, and packing our own samples, as seen in figure 3.1 

where each main topics also have their own subtasks. The main goal here is to reduce 
the number of times that we would need to pre-process the entire datasets. Saving us 

time later on when we are creating the machine learning models and performing our 

experiment, starts a new one or tries to re produce an existing experiment.  
 

 

 
 
Fig 3.1: Showing the main tasks and subtask ADD SUBTASKS TO THE FIGURE 

 

 

1. Preprocessing 2. Create and train ML models
3. Evaluate the trained ML models 

and results

1. Creat database 2. Header analysis
3. Sample entropy, image 
conversion and reshaping

4. Packer and encryption 
signature detection

5. Packing our own samples

3 Methodology 



 

Creating a database 

The first thing that we are creating in the pre-processing stage is a database, in order to 
be able to save the outcome of the pre-processing stage such as the results of the 

header analysis, the name of the converted images, the detected packer and encryption 

signatures, along with the name of the files that we packed ourselves etc. Another 
benefit by this approach is that we later on can extract information much easier and 

share the gathered information with others. 

An ER-diagram (a drawing of the database structure), showing what tables the database 
consists of and what datatypes the different fields are like: plaintext, numbers, dates, 

etc. can be found in appendix 24.   
 

3.2.1 Header analysis, extracting .exe magic bytes, PE signature and CPU 

architecture 
 

The header analysis is performed to limit the scoop of this thesis to only PE files for Intel 

x86 and AMD x64 CPU architectures, and to verify what type of file that we are 

processing. The header analysis is further divided into a three-step verification process, 
in order to gather as much relevant information as possible about the file, before a 

decision is made. The first step is to read the .exe magic bytes, then we are looking for a 
PE signature, and lastly, we are extract the machine type field. As seen in figure 3.1, if 

the preceding step fails, we will not be able to move further one and extract any of the 

other values in the later steps. This is due to the assumption that if the .exe magic bytes 
are not found, the file is not a .exe file and we will therefore not be able to retrieve any 

of the other values. A drawback by this assumption is that if someone else changes these 

to any other values than .exe magic bytes, our detection will fail. Nevertheless, in this 
experiment we have not been able to find any sample that has failed our detection by the 

earlier described scenario, and therefore here for this experiment concludes that the 
method holds. 

 

 
 

Figure 3.1: Shows a decision tree of how the header analysis is performed and which hex 

values we are looking for described in the following sections   

 
Step 1. .exe magic bytes: The header analysis starts by reading the first 64 bytes of 

the given file sample, due to performance. This saves time by not having to read the 

whole file, when the values that we are interested in the both the first, and the start of 
second step, are found in this range. We will come back to how we have calculated this 

value in the second step. Extracting the .exe magic bytes (4D 5A in hex) are done by 

reading the first 2-bytes from the given file sample, in read binary mode in Python, and 
for instance converting it to hex values, as seen here:  

 
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 

00000000 4D 5A               

 

Table 3.2: Shows how the .exe magic bytes are found in a hex editor.  

 

Step 2. PE signature: According to Microsoft Windows Developer Documentation, the 

PE signature can be found in the following way: 

4D5A

50450000

14C or 8664         

False 

False



 

1. Look at the offset location 0x3C, here there is a pointer called e_lfanew, who has a 4-

byte offset to the location of the PE signature. This is the reason for why we are starting 
by reading 64 bytes instead of 2-bytes or the whole file. There are several ways to show 

how we get 64 bytes, like counting the cells in the first row, times number of rows 

(16*4=64), but here we have followed the Microsoft Windows Developer Documentation, 
and converted the hex value 0x3C to decimal, who is 60 and then added 4 bytes, giving 

us 64. The values are here written in little endian, meaning that if we look at the table, 

we have 0x00D00000 giving us D000000 that we need to start reading from right to 
extract the e_lfanew pointer. So, we read the values on the 63 and 64 positions, the 62 

and 63 positions, the 61 and 62 positions and the 60 and 61 positions, giving us 
0000D000. We then convert the value to decimal, here 53248 to get the start position 

and 53248 + 4 = 53252 to get the end position [53248, 53252]. Resulting in that we 

now can read the binary file until 53252 + 2, since we later will look for the CPU 
architecture. 

 
2. At the offset location, the signature PE\0\0 in ASCII or 50450000 in hex would be 

found [17]. 

 
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 

00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 

00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 00 00 

00000040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 

00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F 

00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 

00000070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00       00 

00000080 09 C9 D5 DF 4D A8 BB 8C 4D A8 BB 8C 4D A8 BB 8C 

00000090 CE A0 E6 8C 4E A8 BB 8C 4D A8 BA 8C 49 A8 BB 8C 

000000A0 48 A4 DB 8C 4C A8 BB 8C 48 A4 E1 8C 4C A8 BB 8C 

000000B0 52 69 63 68 4D A8 BB 8C 00 00 00 00 00 00 00 00 

000000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

000000D0 50 45 00 00 4C 01 02 00 BE 08 97 48 00 00 00 00 

 
Table 3.3: Shows how the e_lfanew pointer is found at location 0x3C (here marked in 

dark blue), and that the offset points to the PE signature 50 45 00 00 (here in light 

green), in a hex editor. 

Step 3. CPU architecture: According to Microsoft Windows Developer Documentation, 
the CPU architecture is found in the COFF File Header (Object and Image), starting right 

after the PE signature [17]:  
 

Offset Size Field Description 

0 2 Machine The number that identifies the type of target machine. For 
more information, see Machine Types. 

 
Table 3.4: Shows the table COFF File Header (Object and Image) [17] 
 

The table states here that there is no offset, and that the two preceding bytes is the field 
Machine. Or in other words, that the two bytes immediately after the PE signature, is the 

Machine Types. Jumping further down the Windows Developer Documentation to the 

Machine Types table, we can see the value for both x64 and x86 in hex [17]: 
 

Constant Value Description 

IMAGE_FILE_MACHINE_AMD64 0x8664 x64 

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or later processors and compatible 

processors 



 

Table 3.5: Shows the table Machine Types from [17] 

 

Using the same example as before we then had added 2 in decimal in order to be able to 
retrieve the Machine Type. We then just look for the values 4C01 (x86) or 6486 (x64) at 

the end. 
 
Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 

00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 

00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 00 00 

00000040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 

00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F 

00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 

00000070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00       00 

00000080 09 C9 D5 DF 4D A8 BB 8C 4D A8 BB 8C 4D A8 BB 8C 

00000090 CE A0 E6 8C 4E A8 BB 8C 4D A8 BA 8C 49 A8 BB 8C 

000000A0 48 A4 DB 8C 4C A8 BB 8C 48 A4 E1 8C 4C A8 BB 8C 

000000B0 52 69 63 68 4D A8 BB 8C 00 00 00 00 00 00 00 00 

000000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

000000D0 54 45 00 00 4C 01 02 00 BE 08 97 48 00 00 00 00 

 

Table 3.6: Shows how the CPU architecture (here x86) is found in a hex editor 

3.2.2 Sample entropy, image conversion and reshaping 
The first thing we are starting with after we have done the header analysis is to create a 

file hash of the given file with the hashing algorithm MD5, in order to have a unique key 
representing that sample. We are also when the pre-processing data is inserted into the 

database creating a unique primary key (unique integer value) that we are using to 

referring to the given sample within the database structures itself. This is done because it 
is much clearer to follow an integer value across different kinds of tables in the database, 

in opposite to a long hash value. Another benefit by this approach is that we are saving 
storage space, due to a shorter length of the integer value. After the hash is created, we 

are calculating the file entropy of the given file sample and stores it in the database, in 

order to be able to use it for a comparison later on when we are evaluating the STAMINA 
[6] approach against entropy and packer and encryption signature detection.  

 

Then we are as mention earlier, following the suggested approach by STAMINA [6] and 
how they are pre-processing their dataset, by first reading the given benign or malicious 

sample in binary, read each and every byte value that directly becomes a pixel value, 
before this array of pixel (byte) values is reshape and resized according to [6] in order to 

be a grayscale image, describe in detail under section 2.4.1.2. During this process, we 

will first be creating the grayscale image for the given benign or malicious sample. Then 
we are making a copy of the newly created grayscale image, and resizing it according to 

the Inception V3 [55] models requirement, who is an input shape of (299, 299, 3), 
meaning as we described earlier in section 2.4.1.2 an image with the height and width of 

299, and a colour image. The method used here to resize the grayscale images is bilinear 

[56] referring to Bilinear interpolation [49], who is the default algorithm that the 
framework TensorFlow [57] is using. Both the full dimension grayscale image and the 

resize version is being hashed, in order to create a unique filename to each of the 
images, and these names are saved in the database. The whole process described in this 

section is first applied to all the benign samples, and then all the malicious samples.     

 

3.2.3 Packer and encryption signatur detection  
In order to be able to detect if a given sample is packed or encrypted, NortonLifeLock 
[58] have extracted reports on all the samples in dataset 1 and dataset 2 in the data 

format JSON [59] from VirusTotal [4]. The extraction was done by hashing the given 



 

benign or malicious sample by using the MD5 hash algorithm, and sending the hash as a 

JSON [59] request to the API VirusTotal [4] provides, getting a JSON [59] result in 
return. More information about the JSON format and how this process is done in details 

can be found here [60]. Then the JSON files was looped thru for each sample, looking for 

if the compiler, packer and crypto signature detecting tool called PEiD [18] was 
referenced in any of these reports. The whole process described in this section is as in 

the previous section first applied to all the benign samples, and then all the malicious 

samples.     
 

3.2.4 Packing our own samples 
Since we here are investigating if we are able to detect packed and encrypted samples by 

using the method STAtic Malware-as-Image Network Analysis [6], we here packed some 
benign and some malicious samples in both dataset 1 and dataset 2. The chosen packer 

was UPX [61] version 3.96 because it is easy to install and due to the fact that many 

malware authors are using this algorithm to pack their malicious files with, as seen in 
both dataset 1 and dataset 2. UPX [61] was installed by first installing the Package 

Manager tool (a tool that lets you install programs directly from the console / terminal) 
Homebrew [62] for macOS. Then we installed the latest version of UPX by writing the 
command: brew install upx [63] in the terminal as seen in fig xx. We tried to extract 

an convert all the benign samples and 2000 malicious samples that not already where 

samples we had labelled either packed or encrypted by the reports from VirusTotal [63] 
in the previous section.  

 

 
 
Fig 3.7: Shows how brew is installing UPX 

 

3.3 Create and train machine learning (ML) models 
When we are creating the machine learning (ML) models we are trying to follow paper 
[6] as closely as possible, and their recommended approach for transfer learning called 

fine-tunning, as describe in more detail under section 2.4.2.1.2. According to paper [7], 

all the layers before the last polling layers should be frozen, before we are retraining the 
transfer learning model, referred to as the base_model in the code samples in the 

appendix. Since we are applying transfer learning to the Inception V3 model, we are 
freezing all the layers before layer 299 marked here in fig 3.8 in green and the last 

frozen layer marked in purple, by setting the layers before this layer to not trainable by 
this code snippet: layer.trainable = False. 

 
__________________________________________________________________________________________________ 

batch_normalization_92 (BatchNo (None, 8, 8, 384)    1152        conv2d_92[0][0]                   

______________________________________________________________________________________________________________________ 
conv2d_93 (Conv2D)              (None, 8, 8, 192)    393216      average_pooling2d_8[0][0]         

__________________________________________________________________________________________________ 

batch_normalization_85 (BatchNo (None, 8, 8, 320)    960         conv2d_85[0][0]                   

__________________________________________________________________________________________________ 

activation_87 (Activation)      (None, 8, 8, 384)    0           batch_normalization_87[0][0]      

__________________________________________________________________________________________________ 

activation_88 (Activation)      (None, 8, 8, 384)    0           batch_normalization_88[0][0]      

__________________________________________________________________________________________________ 

activation_91 (Activation)      (None, 8, 8, 384)    0           batch_normalization_91[0][0]      

__________________________________________________________________________________________________ 

activation_92 (Activation)      (None, 8, 8, 384)    0           batch_normalization_92[0][0]      

__________________________________________________________________________________________________ 

batch_normalization_93 (BatchNo (None, 8, 8, 192)    576         conv2d_93[0][0]                   

__________________________________________________________________________________________________ 

activation_85 (Activation)      (None, 8, 8, 320)    0           batch_normalization_85[0][0]      

__________________________________________________________________________________________________ 

mixed9_1 (Concatenate)          (None, 8, 8, 768)    0           activation_87[0][0]               



 

                                                                 activation_88[0][0]               

__________________________________________________________________________________________________ 

concatenate_1 (Concatenate)     (None, 8, 8, 768)    0           activation_91[0][0]               

                                                                 activation_92[0][0]               

__________________________________________________________________________________________________ 

activation_93 (Activation)      (None, 8, 8, 192)    0           batch_normalization_93[0][0]      

__________________________________________________________________________________________________ 

mixed10 (Concatenate)           (None, 8, 8, 2048)   0           activation_85[0][0]               

                                                                 mixed9_1[0][0]                    

                                                                 concatenate_1[0][0]               

                                                                 activation_93[0][0]               

================================================================================================== 

Total params: 21,802,784 

Trainable params: 395, 777 

Non-trainable params: 21,409,056 

 

Fig 3.8: Showing the last layers in the Inception V3 model, where layer 299 is marked in 

green as trainable and layer 298 in purple as the last frozen layer. 
 

The model Inception V3 [55] model is then added to a sequential model, with an average 
polling layer and a dens layer with one output node. The chosen optimiser is Adam. 

 
Layers frozen until: conv2d_93  

Model: "sequential"  

_________________________________________________________________  

Layer (type)                 Output Shape              Param #     

=================================================================  

inception_v3 (Functional)    (None, 8, 8, 2048)        21802784    

_________________________________________________________________  

global_average_pooling2d (Gl (None, 2048)              0           

_________________________________________________________________  

dense (Dense)                (None, 1)                 2049        

=================================================================  

Total params: 21,804,833  

Trainable params: 395,777  

Non-trainable params: 21,409,056  

_________________________________________________________________  

 
Fig 3.9: Showing the Convolutional Neural Network 

 
The next step is to divide the dataset into training and validation sets by first applying a 

stratified k-fold split with shuffling. Meaning that each class samples is also shuffled 

before the dataset is divided into smaller pieces called batches, by setting the 
shuffle=True in the stratified k-fold [44]. We will come back to the reason for the 

shuffling and why we are using a stratified k-fold split under section 2.3, but for now, the 

reason is to divide the dataset into training and validation sets. The machine learning 

algorithm is not able to process all the samples it is been giving if we have a large 
dataset, hence it is divided into x smaller pieces, that it is being served one after the 

other, until the last one. The creation of these smaller pieces, batches is the next process 

after the k-fold split. When we are creating these batches, we are also applying a random 
shuffling. Each and every image is here converted according to Chen [7] from grayscale 

images to RGB by replicating the one colour channel three times. Here in this paper, we 
are letting the TensorFlow [57] framework take care of this by using the method 
tf.io.image.decode_png(image, channels=3) [64], where the image is the grayscale 

image, and the three channels represents RGB as described earlier under section 2.4.1.2.  

 
Then we are creating a machine learning model for each k in the k-fold and starts to train 

the first model by iterating thru the training and validation set with a low learning rate, 

the number of epochs and early stopping according to table 3.10, in order to not overfit 
the model. This is done for all k (number of) models.   

 

Datasets K-fold splits Learning rate Number of epochs Early stopping 

Dataset 1 5 0.01 1 1 
  

Table 3.10: Shows the k-fold splits, learning rate, number of epochs and early stopping 
for dataset1 



 

3.4 Evaluate the machine learning (ML) models and results 
In this section we will be describing how we can measure the performance of machine 

learning (ML) algorithms and the predictions from these models. 
 

We have here chosen to use a stratified k-fold split, in order to be able to evaluate how 

well the machine learning models are performing by measuring them against each other. 
The reason for not using an ordinary k-fold, is due to the ratio in our dataset between 

benign and malicious samples, where we have a lot more samples of malicious files, 

compared to benign files, as described in section 3.1 Dataset. Therefore, in order ensure 
that each of the k folds are both trained and validated on benign and malicious samples, 

we have selected a stratified k-fold split, who seeks to preserve the ratio of benign and 
malicious samples in each fold as closely as possible, as described under section 2.3 and 

visualized in the table 3.11. We are creating a machine learning model for each k in the 

k-fold split, as seen in the visualization in the table below for an ordinary k-fold, (due to 
a simpler drawing), but also applies for a stratified k-fold. This means that the result of 

the performance for the whole dataset can only be seen by looking at the validation sets 
for all models. Here 1-10.    

 
 Dataset  

(100%) 

ML Train  

(90%) 

Val 

(10%) 

 

ML 1 Val Train Train Train Train Train Train Train Train Train 

ML 2 Train Val Train Train Train Train Train Train Train Train 

ML 3 Train Train Val Train Train Train Train Train Train Train 

ML 4 Train Train Train Val Train Train Train Train Train Train 

ML 5 Train Train Train Train Val Train Train Train Train Train 

ML 6 Train Train Train Train Train Val Train Train Train Train 

ML 7 Train Train Train Train Train Train Val Train Train Train 

ML 8 Train Train Train Train Train Train Train Val Train Train 

ML 9 Train Train Train Train Train Train Train Train Val Train 

ML 

10 

Train Train Train Train Train Train Train Train Train Val 

 

Table 3.11: Shows how an ML model is related to the number of k in k-fold cross 
validation split for k 10, each row represents an iteration k, from [1-k], and each cell 

either belongs to the training or validation set.   

We will then get how well each machine learning algorithm is performing by the loss and 
binary accuracy, and the average.  

  

  



 

Evaluating the results  

The formulas used to calculate the true positive, true negative, false positive and false 
negative rate. The accuracy, precision and recall. To able to say something about how 

accurate the machine learning model is, its precision and performance.  

  

Calculating the True Positive Rate 

𝑻𝑷𝑹 = 𝑷(𝑨|𝑰) =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

  

Table 3.12: Shows the formula for calculating the true positive rate 

Calculating the True Negative Rate 

𝑻𝑵𝑹 = 𝑷(¬𝑨|¬𝑰) =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

  

Table 3.13: Shows the formula for calculating the true negative rate 

Calculating the False Positive Rate 

𝑭𝑷𝑹 = 𝑷(𝑨|¬𝑰) =
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

  

Table 3.14: Shows the formula for calculating the false positive rate 

Calculating the False Negative Rate 

𝑭𝑵𝑹 = 𝑷(¬𝑨|𝑰) =
𝑭𝑵

𝑭𝑵 + 𝑻𝑷
 

  

Table 3.15: Shows the formula for calculating the false negative rate 

Calculating the Accuracy 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

  

Table 3.16: Shows the formula for calculating the accuracy 

Calculating the Precision / Positive Prediction Value 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

  

Table 3.17: Shows the formula for calculating the precision / positive predictive value 

Calculating the Recall 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

  

Table 3.18: Shows the formula for calculating the recall 

 

 



 

 

This chapter presenst how the experiment was conducted and the results. The chapter is 

divided into environment and experiment setup. Where the environment describes the 
hardware and software used. The experiment setup the results from the machine 

learning models, and the results entropy and packer signature detection.   

 

4.1 Environment 
 

Hardware: 

The experiment was performed on a MacBook Air 13-inch Mid 2013 with the following 

specification: 

• Operating system: macOS Big Sur Version 11.4 Beta (20F5046g)  

• CPU: 1.3 GHz Dual-Core Intel Core i5  

• Memory: 4GB 1600 MHz DDR3  

• Graphics: Intel HD Graphics 5000 1536 MB  

• SSD: 128 GB  

• HDD: 1 TB External Western Digital Elements 

 

Software: 

The software installed on the MacBook Air and Windows PC to perform the experiment 

was: 

• brew (Homebre version 3.1.8 git revision 2d4d7b2e8e: last commit 2021-05-22) 

• dbdiagram.io: Web-tool for drawing Entity-Relationship diagrams (ER diagrams),  

or in other words visulaizing how the the database structure looks like    

• DB Browser for SQLite version 3.12.1: Database tool for viewing data and write 

SQL queries 

• PyCharm 2021.1.1 (Community Edition) Build #PC-211.7142.13: Python IDE  

• Visual Studio Code Version 1.55.2 (Universial) 

• Python version 3.8.7. 

o Installed Packages see Appendix 23 

• UPX version 3.96 

 

  

4 Experiments and results 



 

4.2 Experiment setup 
 

Dataset 1 was trained with a k = 5, hence we trained 5 models, each model was trained 
with an epoch of 3, and a learning rate of 0.01. There are total 14624 samples in the 

dataset where 11680 samples was in the training set and 2944 samples was in the 

validations set. The last frozen layer was 299 (here conv2d_187). In the ML models there 
are 21,804,833 parameters in total, we froze 21,409,056 and trained 395,777 

parameters.   

4.2.1  Machine learning performance 
 

The bar chart below in fig 4.1 shows that each of the 5 machine learning models are 

performing more or less equal, as we also can see by the numbers in table 4.2 below, 
that the plotted bar chart is based on. However, we see that the model is performing a 

little bit better on the training set, than on the validation set and the loss function. 

 

 

 
Fig 4.1: Showing the performance of our 5 trained ML models 

 

 Training Validation 

 Loss  Binary accuracy Loss Binary accuracy 

ML 1 0.15 0.95 0.16212 0.9458 

ML 2 0.1338 0.951 0.1743 0.9444 

ML 3 0.1242 0.9543 0.1791 0.934 

ML 4 0.1389 0.9478 0.1432 0.9527 

ML 5 0.1345 0.95 0.1477 0.9502 

Average 0.13628 0.95062 0.161284 0.94542 

 
Table 4.2: Showing the training and validation loss and binary accuracy for the five 
models 
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The table below shows the progress for each epoch. The 5 machine learning models were 

only trained for 3 epochs each. We can here see that there is a significant improvement 
in loss from the 1 epoch until the 2 epochs, but between the 2 epoch and the 3 epoch, 

there are not so much improvement.  

 Training Validation 

ML / Epoch Loss  Binary accuracy Loss Binary accuracy 

ML 1                        1 0.2905 0.8889   

2 0.1575 0.9428   

3 0.15 0.95 0.16212 0.9458 

ML 2                        1 0.3457 0.8671   

2 0.1773 0.9378   

3 0.1338 0.951 0.1743 0.9444 

ML 3                        1 0.3189 0.8757   

2 0.1578 0.9415   

3 0.1242 0.9543 0.1791 0.934 

ML 4                        1 0.3134 0.8806   

2 0.1634 0.9397   

3 0.1389 0.9478 0.1432 0.9527 

ML 5                        1 0.3040 0.8816   

2 0.1774 0.9356   

3 0.1345 0.95 0.1477 0.9502 

 
Table 4.3: Showing the progression of each model and epoch (3 per model), and that the 

validation is only done for the last model 

 

Machine learning benign and malicious classification 

As described under the definition of the Sigmoid function in the background theory in 

chapter 2, we will get a result from our binary classification that is in the range [0-1], 
hence we here say that a benign file will be 0 and malicious file will be 1. When we then 

get the result from the Sigmoid function, the threshold will therefore be that if the return 

value is below 0.5, the file is categorised as benign, otherwise it is categorised as 
malicious [39].  

 

Benign  Predicted value from the Sigmoid function < 0.5 

Malicious Predicted value from the Sigmoid function  0.5 

 
Table 4.4: Showing how we predict that a sample is benign or malicious [39] 

 

 

  Actual   Actual 

  Malicious Benign   Malicious Benign 

Predicted 
Malicious TP FP Predicted Malicious 9861 343 

Benign FN TN Benign 428 3960 



 

Fig 4.5: Shows the confusion matrix for benign and malicious samples 

 

By following fig xx and fig xx, by looking at the benign and malicious samples, we 
therefore get for the benign samples TN = 3960, FN = 428, and for the malicious 

samples TP = 9861, FP = 343 by the following SQL 1 Appendix 1. By visualizing the 
confusion matrix in a chart, we get the two following in pie charts. It is important here to 

remark that these results are calculated by the confidence interval for benign 0 < 0.5 
and malicious 1  = 0.5. Meaning that the closer the value is to 0, the machine learning 

model would think that sample is benign and the closer the value is to 1, the machine 
learning model would think that the sample is malicious. Within these two intervals there 

will therefore be values that are close to 0.5 in both cases. 

 

 

 

Fig 4.6: Shows the Benign TN and FN, malicious TP and FP 

 

The pie chart 4.6 above to the left shows that there are 90% of the benign files that are 

correctly classified and 10 % that are wrongly classified malicious. The pie char 4.6 
above to the right show that 97% of the malicious files are correctly classified, while 3% 

er wrongly classified as malicious.   

 
In order to later be able to compare Inception V1 [47] and the results from STAMINA [6] 

with our Inception V3 [55] model, we calculated the accuracy, false positive rate, 

precision and recall in table 4.7 below as in paper [6]. 

 

Benign and malicious samples 

Accuracy False positive rate Precision Recall 

9861 + 3960

9861 + 3960 + 343 + 428
= 𝟎. 𝟗𝟒𝟕 

 

343

343 + 3960
= 𝟎. 𝟎𝟕𝟗 

 

9861

9861 + 343
= 𝟎. 𝟗𝟔𝟔 

9861

9861 + 428
= 𝟎. 𝟗𝟓𝟖 

 
Table 4.7: Shows how the accuracy, false positive rate, precision and recall is calculate 

for the machine learning models 

 

In order to better show how the models are performing, we have drawn the chart below 

in figure 4.8. Here it is possible to see how many samples in either cases that are close 

90%

10%

BENIGN 

True Negative False Negative

97%

3%

MALICIOUS

True positive False positive



 

to their respectively boundaries categorization them either benign or malicious, and how 

they are evolving in both directions. This figure shows the benign samples where the 
values below 0.5 is the Benign True Negative and continues as the Benign False 

Negative, from greater than or equals 0.5 to 1. It also shows the malicious samples 

where the values in the range from greater than or equal 0.5 to 1 is the Malicious True 

Positive and the values in the range 0 to lower than 0.5 is the Malicious False Positives.  

 

 
Fig 4.8: Showing Benign True Negative and Malicious True Positive 

 

In fig 4.8 there might be files that are very close to either side of 0.5 and this might not 
mean that they are wrongly classified, due to the fact that a benign file might have the 

same code as a malicious file, the only difference is that the malicious file uses the code 

for malicious actions, were the benign file is not. Like everything else code / programs 
can also be used for the greater good. But it also actually be the case that they are 

wrongly classified do too that they are too close to the threshold.   

 

Machine learning packed benign and malicious classification 

Looking at the benign packed samples that was labelled benign, and how many of them 
that was labelled malicious. Then we did the same for the malicious files. Benign: TN = 

1890, FN = 286. Malicious: TP = 4649, FP = 237, by the following SQL 2 Appendix 2. 

 

 

  Actual   Actual 

  Packed Not 

packed 
  Packed Not packed 

Predicted 

Packed TP FP Predicted Packed 4649 237 

Not 

packed 
FN TN 

Not packed 
286 1890 

 
Fig 4.9: Shows the confusion matric for the packed and not packed benign and malicious 

samples 
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Fig 4.10: Showing the benign packed TN and FN, and the malicious packed TP and FP  

 

Looking closer at the 237 malicious packed false positive (FP) samples, counting the 
different packers and grouping packers that uses the same algorithm, the packer UPX, is 

the only one that has an occurrence over 8, giving us 155 samples. For the true positive 

(TP) samples that are malicious, we get ASProtect 1294 samples, UPX 1085 samples, 
PECompact 433 samples and ASPack 306 samples. The other once are below 133 in 

count. In the benign true negative (TN) packed samples, we have UPX 1748 samples, 
and the rest is below 40 in count. In the false negative (FN) benign samples, we have 

UPX with 269, the rest is below 7 in count. (Here used SQL 3 Appendix 3 and 4 Appendix 

4 )    

4.2.2 Entropy and packer signature detection  

 
If we are only looking at the file entropy and packer signature detection, by using the 

table from paper [24]. we get the following confidence interval: not packed [0.0-6.800] 
and packed or encrypted executable [6.801-8.0]. In order to get all samples that are 

predicted packed and actually are packed, we will use the confidence interval and the 
detected packers by VirusTotal [4], but discard any packer names that contains 

“Microsoft” and “.NET” in TP and TN, in order to remove these compilers (not packed 

samples). We then get TP = 5570 by following the SQL query 5. seen in the Appendix 5 
with the optional arguments 3 and 4. In order to get the samples that are labelled 

packed, but are not packed, we take alle the samples that has the entropy range [6.801-

8.0] and subtracts the samples that are packed. The SQL 5 Appendix 5 with argument 3, 
gives us all the samples 10872 – 5570 = 5302 FP. The predicted not packed samples 

that are packed, are found by getting all the samples that are predicted as not packed 
[0.0-6.800] and then selecting the packed samples. By using the SQL 5 Appendix 5 and 

argument 4 we get the 963 samples in that range that are packed, hence FN. To get the 

true negative we take all not packed [0.0-6.800] samples and removes the FN samples, 
and then the compilers containing “Microsoft” and “.NET”. Using the SQL 7 Appendix 7 

and the argument 4, we get 3716 samples that are labelled as not packed, subtracting 
3716 – 963 gives us 2753. Removing the compilers containing “Microsoft” and “.NET”, 

respectively 362 and 5 = 367, by the SQL 6 Appendix 6 and including argument 5 we get 

all compiler signatures for “Microsoft” and, making a new query with argument 2 for the 
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True Negative False Negative

95%

5%

MALICIOUS PACKED
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“.NET”. We therefore get 2753 – 367 = 2386 TN, resulting int the confusion matrix in 

figure 4.11 below.   

 

 

  Actual   Actual 

  Packed Not 

packed 
  Packed Not packed 

Predicted 

Packed TP FP Predicted Packed 5570 5302 

Not 

packed 
FN TN 

Not packed 
963 2386 

 
Fig 4.11: Show a confusion matrix for packed and not packed samples in Dataset 1 by 

using entropy and packer signature detection 

 

The confusion matrix can be visualized in chart two pie charts, one for packed and on for 

not packed. As we can see, there are 49% of the packed files that were predicted packed 
but not were packed. When it comes to the not packed samples, there are 29% that are 

detected as not packed, but was packed.  

 

 

 
Fig 4.12: Shows the packed TP and FP and not packed TN and FN, when using file 

entropy and packer signature detection 

 

Calculating the accuracy, precision and recall for the file entropy and packer signature 

detection in the table 4.13 below 

Benign and malicious samples 

Accuracy Precision Recall 

5570 + 2386

5570 + 2386 + 5302 + 963
= 𝟎. 𝟓𝟓𝟗 

 

5570

5570 + 5302
= 𝟎. 𝟓𝟏𝟏 

5570

5570 + 963
= 𝟎. 𝟖𝟓𝟐 
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Table 4.13: Shows Fig xx Showing the accuracy, precision and recall for the file entropy 

and packer signature detection 
 

 

  



 

Looking further into the packed and not packed samples, and the benign and malicious 

samples in each one, we get the following. For the benign samples, we can calculate the 
true positive (TP) by using the same approach as above but including the argument 2 

and 1 as the file_type_id, hence 5 in SQL Appendix 5, argument 2, 3, and 4, resulting in 

1755 TP. For malicious samples we do the same, but set argument 2, file_type_id = 2, 
giving us 3815 TP. Continuing with the FP for benign and malicious samples, we seek the 

samples that are labelled packed, but are not packed, we take alle the samples that has 

the entropy range [6.801-8.0], and benign or malicious and subtracts the samples that 
are packed. The SQL 5 Appendix 5 with argument 2, file_type_id = 1 and argument 3, 

gives us for all the benign samples 2190 – 1755 = 435 FP, and for the malicious samples 
file_type_id = 2, giving 8682 – 3815 = 4867 FP. Then we get the false negative (FN) for 

bot benign and malicious samples by getting all the samples that are predicted as not 

packed [0.0-6.800], either benign or malicious and then selecting the packed samples. 
By using the SQL 5 Appendix 5 and argument 2 as file_type_id = 1 and argument 4, we 

get 415 FN for benign and by using file_type_id = 2, we get 548 malicious FN. Lastly 
getting the true negative (TN) for both benign and malicious samples we then take all 

not packed [0.0-6.800] samples benign and malicious and removes the FN samples, and 

then the compilers containing “Microsoft” and “.NET”. Using the SQL 5 Appendix 5 and 
the argument 2 as file_type_id = 1 and argument 4, we get 2195 benign samples that 

are labelled as not packed, subtracting 2195 – 415 = 1780. For malicious we get 1521 
malicious samples that are labelled as not packed by file_type_id = 2, giving us   1521 – 

548 = 973. Then we need to remove the compilers containing “Microsoft” and “.NET”, for 

benign 67 and 5, for malicious 295 and 0 by SQL 5 Appendix 5 and including argument 1 
and argument 2 for benign file_type_id = 1 and malicious file_type_id = 2, we get all 

compiler signatures for “Microsoft” and, making a new query with argument 5 for the 

“.NET”. Benign TN will then be 1780 – (67 + 5) = 1708, and malicious 973 – 295 = 678 
TN. This results in the confusion matrixes below in figure 4.14 for benign and malicious 

samples. 

 

 

Benign  Actual Malicious  Actual 

  Packed Not 

packed 
  Packed Not packed 

Predicted 

Packed 1755 435 Predicted Packed 3815 4867 

Not 

packed 
415 1709 

Not packed 
548 678 

 
Fig 4.14: Showing a confusion matrix for benign to the left and malicious to the right 

 
Visualizing the confusion matrix in fig. 4.14, we get the pie charts below in fig. 4.14. We 

can here see that the approach with calculating the entropy according to paper [24] and 
including a packer signature detection, this works best for benign files and not so good 

for malicious files for our small dataset. 



 

    
 
Fig 4.15: Showing benign packed TP and FP, benign not packed TN and FN, malicious 

packed TP and FP, and malicious not packed TN and FN 
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This chapter discusses the results presented in chapter 4, and tries to discover any 

strengths and wekneses that might have been affecting the experiments we have 
performed and therfore the results we have gain by our method. We therefore start by 

discussin the implementation of STAMINA and performance, then STAMINA vs entropy 

analysis and packer signature detetcion, what STAMINA detects and lastly future works. 

 

5.1 Implementation of STAMINA and performance 
 

STAMINA were here implemented by using the open-source machine learning software 
library TensorFlow [57], who again uses the deep learning API Keras [65]. In Keras, 

there are several deep learning models that are available called Keras Application to for 

instance fine-tuning 

, feature extraction or predictions [66]. According to [6] they used Inception V1 as there 

fine-tuning model, but that model is not available in Keras Applications [66], hence we 
used the Inception V3, in order to at least be using a model that is based on the same 

model as Inception V1. Based on Bensaoud [67], who compared which machine learning 

models that was best suited for malware detection (Windows PE binaries) and binaries 
converted to grayscale images. His results shows that the VGG16 is the least accurate 

model with 15.92 % accuracy, oppose to Inception V3, who was in the other end of this 
scale, at the top with an accuracy of 99.24 %. The second worst model were ResNet50 

with 35.10%, then the nine other models (not included Inception V3) range from 

77.22%-99.11%. The best models based on his research looks to be convolutional neural 
networks, with the range 98%-99.24% [67]. Based on Bensaoud [67], we therefore does 

not think that choosing Inception V3 has had any negative impact on our experiment, 
oppose to if we have used Inception V1. In order to try to verify this, we calculated the 

same measures as STAMINA [6], were their results are 99.07% accuracy with a false 

positive rate 2.58%, the precision 99.09% and a recall at 99.66%. Opposed to our 94.7 
% accuracy, 7.9% false positive rate, 96.6 % precision and 95.8% recall, as show in 

table 4.7 Our performance are not as good as their machine learning model, but 
considering that our test set consists of 14592, divided into 4388, and 10204, where 

they have 157837 + 39781 = 197618 benign samples and 495077 + 89529 = 584606 

malicious samples, it is not so bad after all. According to the stratified k-fold cross-
validation results in fig 4.1, our models are generalizing well, but due to such a small 

dataset, it is not possible to conclude that this is the case in general. The models are also 

here only training for 3 epochs in order to not overtrain them, compared to STAMINA 
where they picked their best model at the 10th epoch, to avoid overfitting [6]. We saw 

that only 1 epoch gave a dramatic increase in accuracy on our small dataset, but from 
the 2 epochs to the 3 epochs, there was not much improvement in the accuracy 

according to table 4.2.  

 

  

5 Discussion 



 

5.2 STAMINA vs entropy analysis and packer signature 
detection 

 

Comparing STAMINA against entropy analysis and packer signature detection, we see 

that the entropy analysis and signature detection results for the packed samples TP = 51 
% and FP = 49 %. So not very good. Looking at the not packed samples, it works better 

with a TN = 71% and FN = 29%. By dividing it into benign and malicious samples, we 
see in figure xx that we get benign packed TP = 80%, FP = 20%, not packed TN = 80% 

and FN = 20%. For the malicious packed samples, we got TP = 44% and FP = 56%, and 

not packed TN = 55% and FN = 45%. It looks therefore like this is working better for the 
benign files, than the malicious files. This can be because there are more packed 

malicious files than there are packed benign files, hence they are more often associate 
with a packer. Another possibility is that the threshold values used from paper [24] were 

to wide. When it comes to STAMINA and we have malicious packed TP = 95% and FP = 

5, benign packed TN = 87% and FN = 13%. It therefore looks like STAMINA is 
performing much better, but it is hard to conclude that, due to not have a representative 

enough benign set to compare it against, almost only UPX packing. Another consideration 

here is that the dataset is to small to be able to generalize.  The four-step verification 
approach mention in paper [22] might also be a better compression method, due to their 

method who is checking the entry point section of the file, then looks for a packer 
signature, then the WRITE attribute, and lastly performs an entropy analysis of the entry 

point section only.   

 

5.3 What STAMINA detects 
 

Our machine learning models shows that STAMINA is capable of detecting benign and 
malicious samples based on fig 4.6. It looks based on the bar chart in figure 4.1 that the 

models are generalizing well, due to the high accuracy and low loss on each model, and 

that they are very close to each other. However, the small dataset here makes it difficult 
to alone draw that conclusion in general. Most likely it has not generalized enough due to 

too few samples and will therefore have a poor performance in a real-world situation, by 

presenting the machine learning models to new samples that are far away from the 
samples in the training and validation set. It might also look like STAMINA is detecting 

packing, but again here we have to little samples, in this case that are packed in the 
benign set, in order to draw that conclusion. We can see from the pie chart 4.10 for the 

benign packed samples that TN = 87% and FN = 13 %, and the pie chart 4.10. for the 

malicious packed samples, that TP 95% and FP = 5%. Overall, very good result. Taken 
into consideration that we here only have looked at the benign samples that were 

correctly labelled benign, and how many that were packed, and then how many benign 
files that were wrongly labelled malicious and packed. Lastly doing the same for the 

malicious files, these numbers would just be indicating that STAMINA might detect 

packers. If we look at the packer UPX we see that TP = 1085 samples and TN = 1748 FN 
= 269, we might therefore say that there is a small trend, at least when it comes to the 

UPX packer, but there is also a bias, since the benign samples are mostly packed with 

UPX. Else we can see that in the TP we have 1294 samples that are from ASProtect, 433 
samples PECompact and 306 samples that are from ASPack. The rest of the benign and 

malicious samples that are packed have too few occurrences.    

 

Another consideration here is that in order to be able to detect packed samples, we here 

used reports from VirusTotal  [4], who again bases their results on a tool called PEiD 
[18], in order to detect packers, cryptos and compiler signatures. This was a convenient 

way to gain such information in a short amount of time, due to the easiness of extraction 
from VirusTotal [4] and the JSON reports on each file sample. However, it is not 

necessarily the best approach, because we here only are relaying on one single tool to do 



 

the job, hence it might not alone be up to the task, due to the limitations of the tool. In 

this case, it might not have all the signatures that we have in our dataset, hence packed 
and encrypted samples would go under the radar. A better approach would have been to 

relay on several tools, measuring them against each other, and also to self be writing the 

code that looks for the compiler signature, since the PEiD [18] signature database can be 
located here at GitHub [25], and newer signatures could also be added. Due to our 

limited time and resources, using several packer identifiers or to implement code to look 

for the signature by our self was not applicable, hence VirusTotal [4] was chosen instead.  
Another aspect that needs to be considered here is the fact that one signature might not 

necessarily be unique for the given compiler version. Hence for instance a UPX packer 
version 3.96 might be detected as 2.90, since they have the same signature, or that we 

are missing a part of the signature in order to detect and reveal that the newer version 

actually is 3.96. Therefore, we treated all the files from the same packer vendor as the 
same packer, hence UPX 2.90 and 3.96 is just UPX.   

 

5.4 Future work 
 

After the implementation of STAMINA and this experiment, there are a few things we 

think that further research should look into, divided into the entopy analysis described in 
paper [22], our implementation of a stratified k-fold cross-validation, how to train 

machine learning models with early stopping, and comparing fine-tuning vs feature 

extraction.     

Our entropy analysis is not performing very well and further research should look into if 

the suggested approach in paper [22] is a better measurement against STAMINA, due to 
its four step verification tests to determine if the malware sample is packet or not. The 

test consists of first checking the entry point section of the file, then looks for a packer 

signature, then the WRITE attribute, and lastly it will perform an entropy analysis of the 
entry point section only. 

 
Here we implemented a stratified k-fold cross-validation in order to be able to measure 

the performance of STAMINA. Another approach that might also be beneficial in order to 

get the best performing machine learning model, would be to train a model until it has a 
good performance (low loss and a hight accuracy), and first then use a stratified k-fold 

cross-validation to validate if that is true or not. The stratified k-fold cross-validation 

should then create k models from the good performance model, in order to validate and 
test them. We therefore think that this method is worth looking into and compare against 

our stratified k-fold cross-validation.   
 

There are several approaches that can be applied when training a model in order to not 

be overfitting the model. Here, since we were fine-tuning a pre-trained neural network, 
we adjusted either the learning rate or the number of epochs manually, by increasing or 

decreasing these values (one at the time), in order to be able to predict how long the 
training of the model would take, due to that we have a limited time frame to do our 

research. Another approach that needs to be looking further into is called early stopping, 

and our framework therefore has that built in. The ability to set an early stop, is by the 
early patience variable in the model class. In our framework we set it to monitor the 

binary_accuracy, but this can be change to the val_loss etc. [68]. For instance, the early 
patience can be set to 3, meaning here with our binary_accuracy that means that if we 

are not improving in 3 epochs (then min_delta = 0.001 e.g. the binary_accuracy must be 

at least improving by 0.001 to count as an improvment) it will stop [68]. It is also then 
important to set a high epoch like 100, otherwise it might stop before on the set epoch 

[69]. 

 
According to [6] a feature extraction model is not applicable to use with STAMINA, 

eventhog that is out of the scoup for this thesis, we implementes a feature-extraction 



 

model in our framework, so other researchers would be able to further investigate this. 

There is also possible to switch out the Inception V1 and replace it with an other model 
from Keras as seen in the list here [66] for fine-tuning or for feature extraction from 

from TensorFlowHub [70].   



 

 

In this master thesis we were able to recreate STAtic Malware-as-Image Network 

Analysis (STAMINA) by using the open-source machine learning software library 

TensorFlow [57] and the deep learning API Keras [65]. This is a valuable contribution for 

future research into this method, by giving a valuable insight into many of the challenges 

faced during the implementation and when using STAMINA. Our contribution will 

therefore give researchers the benefit of getting STAMINA quick and easy up and 

running, in order to be able to focus on the method. The proposed method in this paper 

shows that we are able to get a 94.7 % accuracy, 7.9% false positive rate, 96.6 % 

precision and 95.8% recall, on our small dataset, compared to STAMINAs [6] much 

larger dataset, and their performance 99.07% accuracy, with a false positive rate 2.58%, 
the precision 99.09% and a recall at 99.66%. 

 

We were also able to detect the packer UPX in both the benign and malicious samples, 

with a TP = 1085 and a TN = 1748 described in section 4.2.1. For the malicious files we 

also saw ASProtect with 1294 samples, PECompact with 433 samples and ASPack with 

306 samples, the other packers and cryptos where too few to be able to draw any 

conclusion about. However, this result is not representative enough. In order to get a 

better detection, we would also recommend other researchers to implement a packer 

signature detection tool themselves, by using the information found under section xx. 

describing how a packer signature detection tool, either looks at the entry_point or the 

whole file, in order to detect a compiler, crypto or packer signature. By using this 

information and the PEiDs [18] database [25], it is possible to achieve this. The reason for 

this recommendation is to better have control of the packer signature detection process 

and be able to add new compiler, crypto and packer signatures, along with the ability to 

tag them also, as for instance compiler, crypto and packer. This will make it easier later 

on when comparing results and prevent having to add ask for all files containing 

“Microsoft” and “.NET” like we had to, in order to remove files that were not packed.   

 

There is not enough information in our small dataset to say if STAMINA is better than 

entropy and packer signature detection when it comes to packer detection, it looks that 

way from pie chart 4.10, but there are not enough benign packed files and packed files in 

general to draw that conclusion. However, we can see that STAMINA has a better 

performance when it comes to detecting benign and malicious files, with an accuracy of 

0.947 compared to 0.559. We can conclude that STAMINA detects benign and malicious 

files and has a great performance on our small dataset. We also see a small trend when it 

comes to detecting the packer UPX, but since the benign dataset has very few other 

packers, and is very small in general, this result is not representative. However, this result 

gives us a pinpoint on that this should be further looked into by other researchers. The 

dataset should then be closer in size to the one in STAMINA and if possible, have a 50/50 

6 Conclusion 



 

benign malicious ratio. Along with several different packers for both benign and 

malicious samples.     

 



 

Appendix 1: SQL getting all samples that are benign or malicious 
 

# SQL 1. Looking at all samples   

 Base SQL with optional arguments [2-5] below, here for experiment 7 

1 SELECT *  

FROM sample_filtype_view, experiment_results 
WHERE sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

2 AND sample_filtype_view.file_type_id = 2 

 Get all samples that are predicted packed and are packed 

3 AND sample_filtype_view.original_file_entropy >= 6.801 AND 

sample_filtype_view.original_file_entropy <= 8.0 

 Get all the samples that are predicted as not packed 

4 AND sample_filtype_view.original_file_entropy >= 0 AND 

sample_filtype_view.original_file_entropy <= 6.800 

  

Appendices 



 

Appendix 2: SQL for getting TP, FP, FN, TN for benign and malicious packed samples 

 

# SQL 2. Gets True Positive (TP), False Positive (FP), False negative (FN), 

and True Negative (TN) for benign and malicious packed samples 

 Base SQL below, here for experiment 7 

 SELECT *  

FROM sample_filtype_view, virus_total_packer_cryptor_compiler_view, 

experiment_results 

WHERE sample_filtype_view.sample_id  = 

virus_total_packer_cryptor_compiler_view.sample_id 

AND sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

1 AND sample_filtype_view.file_type_id = 1 

 Here we then get the following:  

Benign  TN = percentage < 0.5 FN = percentage >= 0.5  
Malicious TP = percentage  0.5 FP = percentage < 0.5 AND percentage 

>= 0 

2 AND experiment_results.malicious_percentage < 0.5 

 
 

  



 

Appendix 3: SQL finding all packers 

 

# SQL 3. Finding packers 

 Base SQL with optional arguments [2-5] below, here for experiment 7 

1 SELECT *  

FROM sample_filtype_view, virus_total_packer_cryptor_compiler_view, 

experiment_results 

WHERE sample_filtype_view.sample_id  = 

virus_total_packer_cryptor_compiler_view.sample_id 

AND sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

2 AND sample_filtype_view.file_type_id = 1 

 Here we then get the following:  
Benign  TN = percentage < 0.5 FN = percentage >= 0.5  
Malicious TP = percentage  0.5 FP = percentage < 0.5 AND percentage 

>= 0 

3 AND experiment_results.malicious_percentage < 0.5 

 
  



 

Appendix 4: SQL for counting packers 

 

# SQL 4. Counting packers 

 Base SQL with optional arguments [2-5] below, here for experiment 7 

1 SELECT virus_total_packer_cryptor_compiler_view.name, 

COUNT(virus_total_packer_cryptor_compiler_view.name)  

FROM sample_filtype_view, virus_total_packer_cryptor_compiler_view, 

experiment_results 

WHERE sample_filtype_view.sample_id  = 

virus_total_packer_cryptor_compiler_view.sample_id 

AND sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

2 AND sample_filtype_view.file_type_id = 1 

 Here we then get the following:  

Benign  TN = percentage < 0.5 FN = percentage >= 0.5  
Malicious TP = percentage  0.5 FP = percentage < 0.5 AND percentage 

>= 0 

3 AND experiment_results.malicious_percentage < 0.5 

 Group by packer and count descending  

4 GROUP BY virus_total_packer_cryptor_compiler_view.name 

ORDER BY COUNT(virus_total_packer_cryptor_compiler_view.name) DESC; 

 
  



 

Appendix 5: SQL for getting packed samples entropy and packer signature detection 

# SQL 5. Looking at packed samples  

 Base SQL with optional arguments [2-5] below, here for experiment 7 

1 SELECT *  

FROM sample_filtype_view, virus_total_packer_cryptor_compiler_view, 
experiment_results 

WHERE sample_filtype_view.sample_id = 

virus_total_packer_cryptor_compiler_view.sample_id 
AND sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

2 AND sample_filtype_view.file_type_id = 2 

 Exclude the compiler signatures containing Microsoft and .NET  

3 AND virus_total_packer_cryptor_compiler_view.name NOT LIKE ‘%Microsoft%’  

AND virus_total_packer_cryptor_compiler_view.name NOT LIKE ‘%.NET%’ 

 Get all samples that are predicted packed and are packed 

4 AND sample_filtype_view.original_file_entropy >= 6.801 AND 

sample_filtype_view.original_file_entropy <= 8.0 

 Get all the samples that are predicted as not packed 

5 AND sample_filtype_view.original_file_entropy >= 0 AND 

sample_filtype_view.original_file_entropy <= 6.800 

 

 

  



 

Appendix 6: SQL for getting all samples associated with Microsoft compiler signatures 

# SQL 6. Get all samples associated with Microsoft compiler signatures 

 Base SQL with optional arguments [2-5] below, here for experiment 7 

1 SELECT *  

FROM sample_filtype_view, virus_total_packer_cryptor_compiler_view, 
experiment_results 

WHERE sample_filtype_view.sample_id = 

virus_total_packer_cryptor_compiler_view.sample_id 
AND sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

2 AND sample_filtype_view.file_type_id = 2 

 Get all samples that are predicted packed and are packed 

3 AND sample_filtype_view.original_file_entropy >= 6.801 AND 

sample_filtype_view.original_file_entropy <= 8.0 

 Get all the samples that are predicted as not packed 

4 AND sample_filtype_view.original_file_entropy >= 0 AND 

sample_filtype_view.original_file_entropy <= 6.800 

5 Get all the compiler signatures containing Microsoft  

 AND  virus_total_packer_cryptor_compiler_view.name LIKE  '%Microsoft%' 

6 Get all the compiler signatures containing .NET 

 AND  virus_total_packer_cryptor_compiler_view.name LIKE  '%.NET%' 

 

 

 

 

 

 

 

 

 
 

 

 

  



 

Appendix 7: SQL for getting TP, FP, FN, TN for benign and malicious samples 

# SQL 7. Gets True Positive (TP), False Positive (FP), False negative (FN), 

and True Negative (TN) for benign and malicious samples 

 Base SQL below, here for experiment 7 

 SELECT *  

FROM sample_filtype_view, experiment_results 

WHERE sample_filtype_view.sample_id = experiment_results.sample_id 

AND experiment_results.experiment_id = 7 

 Get only benign samples by setting 1 and only malicious samples by 

setting 2 

1 AND sample_filtype_view.file_type_id = 1 

 Here we then get the following:  

Benign  TN = percentage < 0.5 FN = percentage >= 0.5  
Malicious TP = percentage  0.5 FP = percentage < 0.5 AND percentage 

>= 0 

2 AND experiment_results.malicious_percentage < 0.5 

 

 

  



 

Appendix 8: Python source code can be found here:  

https://github.com/robinntnu/STAMINA 
 

 

  



 

Appendix 9: Python code showing how Shannon’s entropy formula can be implemented  

Python code implementation for calculating Shannon´s entropy of a file 
def calculate_shannons_entropy(file_path): 

  entropy = 0 

  # 1. Opens the file in the file_path as read binary and reads it 

  # to the variable binary_data 

  with open(file_path, ‘rb’) as binary_file: 

    binary_data = binary_file.read() 

   

  # Calculate the file size 

  file_size_in_bytes = len(binary_data) 

   

  # 2. Creates a one dimensional array from the buffer, where the  

  # return type is unsign 8-bit integers, meaning in range [0-255] 

  one_dimensional_pixel_stream = np.frombuffer(binary_data, 

                                   dtype=np.unit8) 

  # 3. Creating an array with the length 256 to hold the found values 

  array = [0] * 256 

   

  # 4. Looping thru the one dimensional_pixel_stream and icrement  

  # the array position by one, for every matching value we find   

  for i in one_dimensional_pixel_stream: 

    array[i] += 1 

 

  # 5. Calculating the entropy according to Shannon´s formula  

  for i in array: 

    p = i / file_size_in_bytes 

    if p > 0: 

      entropy += p * log2(p) 

 

  # 6. Returns the entropy 

  return -entropy 

 

 

  



 

Appendix 10: Python code showing how a binary file can be converted to an image [71] 

Python code implementation for images conversion 
def convert_binary_file_to_an_image(file_path, output_path, 

                                    image_file_name): 

  # Opens the file_path as read binary and reads it to a variable 

  with open(file_path, ‘rb’) as binary_file: 

    binary_data = binary_file.read()  

   

  # Creates a one dimentional array with values in range [0-255] 

  one_dimensional_pixel_stream = np.frombuffer(binary_data, 

                                               dtype=np.uint8)  

 

  # Converting the on dimensional array into a two dimensional 

  # Getting the size of the on dimensional array 

  one_dimensional_pixel_stream_size = len(one_dimensional_pixel_stream) 

   

  # Calculating the width according to the table above 

  if 0 >= one_dimensional_pixel_stream_size and 

          one_dimensional_pixel_stream_size <= 10: 

    image_width = 32 

  if 10 >= one_dimensional_pixel_stream_size and 

           one_dimensional_pixel_stream_size <= 30: 

    image_width = 64   

  if 30 >= one_dimensional_pixel_stream_size and 

           one_dimensional_pixel_stream_size <= 60: 

    image_width = 128    

  if 60 >= one_dimensional_pixel_stream_size and 

           one_dimensional_pixel_stream_size <= 100: 

    image_width = 256    

  if 100 >= one_dimensional_pixel_stream_size and 

            one_dimensional_pixel_stream_size <= 200: 

    image_width = 384    

  if 200 >= one_dimensional_pixel_stream_size and 

            one_dimensional_pixel_stream_size <= 1000: 

    image_width = 512   

  if 1000 >= one_dimensional_pixel_stream_size and 

             one_dimensional_pixel_stream_size <= 1500: 

    image_width = 1024    

  if one_dimensional_pixel_stream_size > 1500: 

    image_width = 2048 

   

  # Calculate the image height (height / one_dimensional)  

  image_height = int(ceil(one_dimensional_pixel_stream_size / 

                          image_width)) 

   

  # Calculate the image height (width * height) – one_dimensional 

  length_of_extra_pixels_as_zeros = (image_width * image_height) -  

                                     one_dimensional_pixel_stream_size  

   

  # Adding the extra zero pixels to the one_dimensional_pixel_stream 

  one_dimensional_pixel_stream_with_padding = np.hstack( 

  (one_dimensional_pixel_stream,  

   np.zeros(length_of_extra_pixels_as_zeros, np.uint8))) 

   

  # From 1D pixel strem to a 2D pixel stream 

  two_dimensional_pixel_stream = np.reshape( 

      one_dimensional_pixel_stream_with_padding,  

      (image_height, image_width))      

   

  # Save to path 



 

  save_to_path = output_path + ‘/’ + image_file_name + ‘.png’ 

  cv2.imwrite(save_to_path, two_dimensional_pixel_stream) 

   

  # Returns where the image is saved 

  return save_to_path 

 

 

  



 

Appendix 11: Python code showing how an image can be resized [69] 

Python code implementation for images resizing   
def resize_image(file_path, output_path, image_name,  

                 image_scale_width=299, image_scale_height=299): 

  # Reads the given image from the given file_path 

  image = tf.io.read_file(file_path) 

   

  # Converts the given image into a tensor, channels=3 is RGB 

  image = tf.image.decode_png(image, channels=3) 

   

  # Converts the color channels from [0-255] to [0-1] 

  image = tf.image.convert_image_dtype(image, tf.float32) 

   

  # Resize the image to default 299 x 299 or custum size 

  image = tf.image.resize(image, size=[image_scale_width, 

                          image_scale_height]) 

 

  # Path to store the resized image 

  save_to_path = output_path + ‘/’ + image_name + ’.png’ 

   

  # Returns the image from tensors to png 

  tf.keras.preprocessing.image.save_img(save_to_path, image) 

   

  # Returns where the resized image is saved 

  return save_to_path 

 

 

  



 

Appendix 12: Python code showing how a MD5 or SHA-256 file hash can be calculated from the 

given file [72] 

Python code implementation for calculating a MD-5 and SHA-256 file hash 
# Calculates a hash for the given file in file_path and desired hash_out 

def calculate_hash(file_path, hash_out): 

  # Creates a variable to build / hold the MD5 / SHA-256 hash 

  if hash_out == ‘MD5’: 

    hash_builder = hashlib.md5() 

  elif hash_out == ‘SHA-256’ 

    hash_builder = hashlib.sha256() 

 

  # Opens the file and reads it in binary mode 

  with open(file_path, ‘rb’) as binary_file: 

    # Reads 512 bytes at a time 

    for read_bytes in iter(lambda: binary_file_read(512), b””): 

      hash_builder.update(read_bytes)  

 

  # Returns the hash in HEX 

  return hash_builder.hexdigest() 

 

 

  



 

Appendix 13: Python code showing a feature extraction model [69], [73] 

Python code implementation for a feature extraction model   
# Input types 

model_input_types = [«Benign», «Malicious»] 

 

# Benign and malicious 

output_shape = len(model_input_types) 

 

# URL to the pretrained CNN model 

feature_extractor_model = “https://tfhub.dev/google/tf2-

preview/inception_v3/feature_vector/4” 

 

# Creates a sequential model with a dense output layer 

model = tf.keras.Sequential( 

      [hub.KerasLayer(feature_extractor_model, output_shape=[2048], 

           trainable=False), # Freezing the convolutional base 

      tf.keras.layers.Dense(output_shape), # 2 

                           activation=’sigmoid’)]) # Sigmoid for binary 

 

# Builds the model, batch input is none, image width and height is 299 

# and color channels are 3 due to RGB (this is the image input shape) 

model.build([None, 299, 299, 3]) 

 

# Compiling the model 

model.compile(optimizer=keras.optimizers.Adam(),  

              loss=keras.losses.BinaryCrossentropy(from_logits=True), 

              metrics=[keras.metrics.BinaryAccuracy()],) 

 

  



 

Appendix 14: Python code showing a fine-tuning model [69], [73], [74] 

Python code implementation for a fine tuning model   
# Input types 

model_input_types = [«Benign», «Malicious»] 

 

# Benign and malicious 

output_shape = len(model_input_types) 

 

# Sets the base learning rate (low, since we are fine-tunning) 

base_learning_rate = 0.01 

 

# Base model 

base_model = InceptionV3(input_shape=(299, 299, 3), # Image input shape 

                         weights=’imagenet’, # Weights from ImageNet   

                         include_top=False)# Not include classifier 

 

# Looping thru the layers and freezing every layer before number 300 

index = 0 

for layer in base_model.layers: 

  if index == 300: # Last pooling layer 

    break 

  # Set the layer to not be trainable 

  layer.trainable = False 

  # Incrementing the index 

  index += 1 

   

# Creates a sequential model with a dense output layer 

model = tf.keras.Sequential([base_model,  

                             tf.keras.layers.GlobalAveragePolling2D(), 

                             tf.keras.layers.Dense(units=output_shape,  

                             activation=’sigmoid’)]) 

 

# Compiling the model 

model.compile(optimizer=keras.optimizers.Adam(base_learning_rate),  

              loss=keras.losses.BinaryCrossentropy(from_logits=True), 

              metrics=[keras.metrics.BinaryAccuracy()],) 

Table 0.1: Shows how a fine-tuning model can be coded in Python [69], [73], [74] 

 

  



 

Appendix 15: Python code showing how a simple .exe verification can be coded 

 

Python code implementation for extracting the 
def is_exe_file(file_path): 

  # Read the first 64 bytes 

  binary_data = read_number_of_bytes_from_file(file_path, 64) 

   

# If the first bytes are 0x4d or 0x5a or 4D 5A in HEX and MZ in ASCII  

# code, the file is EXE 

if binary_data[0:1].hex().upper() == ‘4D’ and   

   binary_data[0:1].hex().upper()== ‘5A’: 

    # Getting the pointer to the PE signature 

    e_lfanew = get_e_lfanew(binary_data) 

    # Gets the PE signature position in the binary_data 

    pe_signature_position = get_pe_signature_position(e_lfanew) 

    # Reads the last position of the PE signature + 2 to get the 

    # executable type 

    binary_data = read_number_of_bytes_from_file(file_path,  

                  pe_signature_position[1] + 2) 

    # Gets the executable type 32 or 64 bit 

    executable_type = executable_is_32_or_64_bit(     

                      pe_signature_position, binary_data) 

    # The PE Signature is 50450000 is found 

    if binary_data[pe_signature_position[0]: 

                 pe_signature_position[1].hex().upper() == ‘50450000’]:  

       # We are only interested in intel x86 and x64 e.g. 

       # 64 AA = Arm, hence executable_type can be None 

       if executable_type: 

          return [True, executable_type] 

 

  return [False, None] 

 
  



 

Appendix 16: Python code showing how x number of bytes can be read from a given file 

 

Python code implementation for reading x bytes from a file 
def read_number_of_bytes_from_file(file_path, byte_length): 

  # Read the first 64 bytes 

  with open(file_path, ‘rb’) as binary_file: 

    binary_data = binary_file.read(byte_length) 

  # Returns the read data 

  return binary_data 

 

 

  



 

Appendix 17: Python code showing how to read the .exe magic bytes 

 

Python code implementation for extracting the .exe magic bytes 
# Read the first 64 bytes 

binary_data = read_number_of_bytes_from_file(file_path, 64) 

# If the first bytes are 0x4d or 0x5a or 4D 5A in HEX and MZ in ASCII 

# code, the file is EXE 

if binary_data[0:1].hex().upper() == ‘4D’ and   

   binary_data[0:1].hex().upper()== ‘5A’: 

Table 0.2: Shows how getting the .exe magic bytes can be coded in Python 

 

 

  



 

Appendix 18: Python code showing how to get the e_lfanew pointer 

Python code implementation for getting the e_lfanew pointer 
def get_e_lfanew(binary_data): 

  return f’ binary_data[63:64].hex().upper()  

            binary_data[62:63].hex().upper()’ \ 

         f’ binary_data[61:62].hex().upper()  

            binary_data[60:61].hex().upper()’   

 

  



 

Appendix 19: Python code showing how the PE Signature position can be found 

Python code implementation for getting the PE Signature position 
def get_pe_signature_position(e_lfanew): 

  # Removes whitespace and converts the hex values to decimal 

  start_position = int(hex_to_decimal(e_lfanew.replace(‘ ’, ‘’))) 

  end_position = start_position + 4 

  return [start_position, end_position] 

 
  



 

Appendix 20: Python code showing how to convert a HEX value to decimal 

 

Python code implementation for converting a HEX value to decimal 
def hex_to_decimal(hex_value): 

  return int(hex_value, 16) 

 
  



 

Appendix 21: Python code showing how to get the PE Signature  

 

Python code implementation for getting the PE Signature 
# Gets the PE signature position in the binary_data 

pe_signature_position = get_pe_signature_position(e_lfanew) 

 

# Reads the last position of the PE signature + 2 to get the 

# executable type 

binary_data = read_number_of_bytes_from_file(file_path,  

              pe_signature_position[1] + 2) 

 

# The PE Signature is 50450000 is found 

if binary_data[pe_signature_position[0]: 

             pe_signature_position[1].hex().upper() == ‘50450000’]: 

 

 
  



 

Appendix 22: Python code showing how the CPU architecture is extracted 

 

Python code implementation for getting the CPU architecture x86 and x64 
def executable_is_32_or_64_bit(pe_signature_position, binary_data): 

  # Gets the executable signature 

  executable_type_signature = binary_data[pe_signature_position[1]: 

    pe_signature_position[1] + 2].hex().upper() 

  # x86 or x64 

  if executable_type_signature == ‘4C01’: # x86 signature 

    return ‘x86’ 

  if executable_type_signature == ‘6486’: # x64 signature 

    return ‘x64’ 

 

 

  



 

Appendix 23: Python libraries and their version number  

Package                   Version 

------------------------- --------- 

absl-py                   0.11.0 

altgraph                  0.17 

astunparse                1.6.3 

attrs                     20.3.0 

cachetools                4.2.1 

capstone                  4.0.2 

certifi                   2020.12.5 

chardet                   4.0.0 

click                     7.1.2 

cmd2                      0.9.12 

colorama                  0.4.4 

cycler                    0.10.0 

Flask                     1.1.2 

flatbuffers               1.12 

future                    0.18.2 

gast                      0.3.3 

gnureadline               8.0.0 

google-auth               1.26.1 

google-auth-oauthlib      0.4.2 

google-pasta              0.2.0 

grpcio                    1.32.0 

h5py                      2.10.0 

idna                      2.10 

itsdangerous              1.1.0 

Jinja2                    2.11.3 

joblib                    1.0.1 

Keras-Preprocessing       1.1.2 

kiwisolver                1.3.1 

macholib                  1.14 

Markdown                  3.3.3 

MarkupSafe                1.1.1 

matplotlib                3.3.4 

numpy                     1.19.5 

oauthlib                  3.1.0 

opencv-python             4.5.1.48 

opt-einsum                3.3.0 

pefile                    2019.4.18 

Pillow                    8.1.0 

pip                       21.1.1 

protobuf                  3.14.0 

py-aho-corasick           1.1.0 

pyasn1                    0.4.8 

pyasn1-modules            0.2.8 

pyinstaller               4.3 

pyinstaller-hooks-contrib 2021.1 

pyparsing                 2.4.7 

pyperclip                 1.8.2 

python-dateutil           2.8.1 

PyYAML                    5.4.1 

requests                  2.25.1 

requests-oauthlib         1.3.0 

rsa                       4.7 

scikit-learn              0.24.1 

scipy                     1.6.0 

setuptools                49.2.1 

six                       1.15.0 

sklearn                   0.0 



 

tensorboard               2.4.1 

tensorboard-plugin-wit    1.8.0 

tensorflow                2.4.1 

tensorflow-estimator      2.4.0 

tensorflow-hub            0.11.0 

termcolor                 1.1.0 

threadpoolctl             2.1.0 

typing-extensions         3.7.4.3 

unicorn-unipacker         1.0.3b7 

unipacker                 1.0.6 

urllib3                   1.26.3 

wcwidth                   0.2.5 

Werkzeug                  1.0.1 

wheel                     0.36.2 

wrapt                     1.12.1 

yara                      1.7.7 

yara-python               4.1.0 

  



 

Appendix 24: The Entity-Relationship diagram (ER-diagram) for the SQL result database 

 

 
 

The SQL database can be viewed here: https://dbdiagram.io/d by copy pasting in the 

syntax code below: 

 
// File type benign or malicious 

Table file_type { 

  id int [pk, increment] // auto-increment 
  name varchar(9) 

} 
// Sample benign or malicious 

Table sample { 

  id int [pk, increment] // auto-increment 
  original_sample_file_hash varchar(255) 

  image_file_hash varchar(255) 
  scaled_image_file_hash varchar(255) 

  original_file_entropy float(4,2) 

} 
 

// Sample and file type 

Table sample_file_type { 
  sample_id int [ref: > sample.id] // inline relationship (many-to-one) 

  file_type_id int [ref: > file_type.id] // inline relationship (many-to-one) 
} 

 

// CPU architecture x86 or x64 
Table cpu_architecture { 

  id int [pk, increment] // auto-increment 
  architecture char(3) 

https://dbdiagram.io/d


 

} 

 
// Sample and its CPU architecture 

Table sample_cpu_architecture { 

  sample_id int [ref: > sample.id] // inline relationship (many-to-one) 
  cpu_architecture_id int [ref: > cpu_architecture.id] // inline relationship (many-to-one) 

} 

// Virus Total packers, cryptors and compilers 
Table virus_total_packer_cryptor_compiler { 

  id int [pk, increment] // auto-increment 
  name varchar(255) 

} 

// Sample Virus Total 
Table virus_total { 

  id int [pk, increment] // auto-increment 
  sample_id int [ref: > sample.id] // inline relationship (many-to-one) 

  virus_total_packer_cryptor_compiler_id int [ref: > 

virus_total_packer_cryptor_compiler.id] // inline relationship (many-to-one) 
} 

 
// Entropy Table 

Table entropy { 

  id int [pk, increment] // auto-increment 
  name varchar(255) 

  average_entropy float(4,3) 

} 
 

// Transfer learning model 
Table transfer_learning_model { 

  id int [pk, increment] // auto-increment 

  name varchar(255) 
  file_hash varchar(255) 

  epochs_top_layer int 
  top_layer_loss float(4,2) 

  top_layer_binary_accuracy float(4,2) 

  epochs_fine_tune_layer int 
  fine_tune_learning_rate decimal 

  fine_tune_loss float(4,2) 

  fine_tune_binary_accuracy float(4,2) 
} 

 
// Transfer learning model and training sample 

Table transfer_learning_model_train_samples { 

  transfer_learning_model_id int [ref: > transfer_learning_model.id] // inline relationship 
(many-to-one) 

  sample_id_id int [ref: > sample.id] // inline relationship (many-to-one) 
} 

 

// Transfer learning model and validation sample 
Table transfer_learning_model_val_samples { 

  transfer_learning_model_id int [ref: > transfer_learning_model.id] // inline relationship 
(many-to-one) 

  sample_id_id int [ref: > sample.id] // inline relationship (many-to-one) 

} 
 

// Experiment 

Table experiment { 



 

  id int [pk, increment] // auto-increment 

  name varchar(255) 
  start timestamp 

  end timestamp 

} 
 

// Experiment and transfer learning model 

Table experiment_transfer_learning_model { 
  experiment_id int [ref: > experiment.id] // inline relationship (many-to-one) 

  transfer_learning_model_id int [ref: > transfer_learning_model.id] // inline relationship 
(many-to-one) 

} 

 
// Experiment and results 

Table experiment_results { 
  experiment_id int [ref: > experiment.id] // inline relationship (many-to-one) 

  transfer_learning_model_id int [ref: > transfer_learning_model.id] // inline relationship 

(many-to-one) 
  sample_id_id int [ref: > sample.id] // inline relationship (many-to-one) 

  benign_percentage double 
  malicious_percentage double 

} 
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