
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Cockpit m
odule for adm

inistration of Suricata ID
S

Anders Svarverud
Said-Emin Evmurzajev
Sigve Sudland
Sindre Morvik

Cockpit module for administration of
Suricata IDS

Bachelor’s project in IT-drift og informasjonssikkerhet (BITSEC)
Supervisor: Jia-Chun Lin

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Anders Svarverud
Said-Emin Evmurzajev
Sigve Sudland
Sindre Morvik

Cockpit module for administration of
Suricata IDS

Bachelor’s project in IT-drift og informasjonssikkerhet (BITSEC)
Supervisor: Jia-Chun Lin
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Section for Digital Security at NTNU has the main responsibility for detection, security analysis and
incident response. In an effort to establish a new cyber security center for research and education,
this section has entered a collaboration with Uninett AS and UiO CERT. One part of the cyber security
center is the ”Sensorplattform” which aims to build the next generation of network based IDS-sensors
for the education sector. The main goal of this project is to reduce the tedious administration and
operation tasks of Suricata IDS by developing a web-based module based on the administration inter-
face Cockpit. The module enables Suricata administrators to easily start, stop and restart the Suricata
service without having to use text-based commands. In addition, our module supports a user-friendly
graphical interface for administrating IDS-signatures. Administrators are also able to use our mod-
ule to easily check the current status of their Suricata services, view the corresponding service logs,
and get update on all the alerts generated by Suricata. This thesis begins with background informa-
tion about Intrusion Detection Systems, Suricata and Cockpit. Further on, we define requirements,
explain our development process, and how we designed and implemented the module. Lastly, we
discuss the evaluation of the module and conclude with our final thoughts on the project before we
discuss what can be improved with future work.

Sammendrag

Seksjon for Digital Sikkerhet ved NTNU har hovedansvaret for deteksjon, sikkerhetsanalyse og hende-
lsesrespons. I et forsøk på å etablere et nytt datasikkerhetssenter for forskning og utdanning, har sek-
sjonen ingått et samarbeid med Uninett AS og UiO CERT. Èn del av dette datasikkerhetssenteret er
«Sensorplattform» som har som mål å bygge den neste generasjon av nettverks baserte IDS-sensorer
for utdanningssektoren. Hovedmålet med denne oppgaven er å redusere langtekkelige administrative
og operasjonelle oppgaver med Suricata IDS ved å utvikle en web-basert modul basert på adminis-
trasjons grensesnittet Cockpit. Modulen tillater Suricata administratorer å enkelt starte, stoppe og
restarte Suricata tjenesten uten å måtte bruke tekst-baserte kommandoer. I tillegg til dette vil modu-
len vår støtte et brukervennlig grafisk grensesnitt for å administrere IDS-signaturer. Administratorer
vil også kunne bruke modulen vår til å enkelt se den nåværende status for deres Suricata tjenester,
se tilsvarende tjeneste logger, og få oppdatering på alle alarmer som er generert av Suricata. Denne
oppgaven begynner med å beskrive bakgrunns informasjon om IDS, Suricata og Cockpit. Videre vil
vi definere krav, forklare utviklingsprosessen, og hvordan vi designet og implementerte modulen. Til
slutt diskuterer vi evalueringen av modulen og konkluderer med våre tanker rundt prosjektet før vi
diskuterer hva som kan forbedres i videre arbeid.

Preface

The Cockpit module for Suricata IDS was developed by four students at Norwegian University of
Science and Technology in Gjøvik as a bachelor’s thesis during the spring semester in 2021.

We would like to thank Christoffer Vargtass Hallstensen for his help and insight during project meet-
ings.

We would also like to thank Jia-Chun Lin for her excellent guidance and feedback throughout this
project.

ii

Contents

Preface . ii
Contents . iii
Figures . v
Tables . vii
Code Listings . viii
Acronyms . ix
Glossary . xi
1 Introduction . 1

1.1 Problem Area . 1
1.2 Project Description and Goal . 1
1.3 Target Audience . 2
1.4 Limitations . 2
1.5 Project Group . 2
1.6 Thesis Structure . 3

2 Background . 4
2.1 Intrusion Detection System . 4
2.2 Suricata . 5

2.2.1 Signatures . 5
2.2.2 Suricata files . 7
2.2.3 Vendors . 8

2.3 Cockpit . 8
3 Requirements . 9

3.1 Functional Requirements . 9
3.2 Additional Features . 9
3.3 Non-functional Requirements . 10

3.3.1 Compatibility . 10
3.3.2 Reliability and maintainability . 10
3.3.3 Usability . 10

3.4 Use Cases . 11
4 Development Process . 24

4.1 Development Model . 24
4.2 Documentation . 24
4.3 Workflow . 25

5 Technical Design . 27

iii

iv Cockpit module for Suricata IDS

5.1 System Architecture . 27
5.2 Module Architecture . 28
5.3 Sequence Diagram . 29

5.3.1 The Service tab . 29
5.3.2 The Signatures tab . 31
5.3.3 The Logs tab . 35
5.3.4 The Alerts tab . 37
5.3.5 The Config tab . 38

6 Implementation . 40
6.1 Software License . 40
6.2 Development Environment . 41

6.2.1 Libraries . 43
6.3 Graphical User Interface of Our Module . 43

6.3.1 The Service tab . 43
6.3.2 The Signatures tab . 44
6.3.3 Logs . 48
6.3.4 Alerts . 50
6.3.5 Config . 51

6.4 Code . 58
6.4.1 Remove or add cells to table through user interface 65
6.4.2 Spawning processes . 66

7 Evaluation . 67
7.1 Self evaluation . 67
7.2 User evaluation . 69

8 Closing Remarks . 74
8.1 Discussion and learning outcome . 74
8.2 Conclusion . 75
8.3 Future Work . 75

Bibliography . 78
A Additional Material . 81

A.1 Project Survey . 83
A.2 Project Proposal . 91
A.3 Project Plan . 93
A.4 Project Agreement . 109
A.5 Time log . 113
A.6 Link to module on Github . 116

Figures

2.1 The Suricata logo . 5
2.2 An example of a Suricata signature . 6
2.3 The Cockpit logo . 8

3.1 Use Case Diagram of our module . 11

5.1 Overall system architecture of the module . 27
5.2 Module architecture . 28
5.3 Sequence Diagram for Service tab . 30
5.4 Sequence Diagram for Local rules subtab . 32
5.5 Sequence Diagram for Vendor subtab . 34
5.6 Sequence Diagram for Logs tab . 36
5.7 Sequence Diagram for Alerts tab . 37
5.8 Sequence Diagram for Config tab . 39

6.1 Module File Structure . 44
6.2 GUI-Signatures Tab . 45
6.3 GUI-Signatures Create File . 45
6.4 GUI-Signatures Upload File . 45
6.5 GUI-Signatures File Actions . 46
6.6 GUI-Signatures Edit File . 46
6.7 GUI-Signatures Vendors subtab . 47
6.8 GUI-Signatures Add Custom Vendor . 48
6.9 GUI-Signatures Add secret code . 48
6.10 GUI-Logs suricata.service subtab . 49
6.11 GUI-Logs stats.log subtab . 50
6.12 GUI-Alerts Tab . 51
6.13 GUI-Config Suricata.yaml . 52
6.14 GUI-Config Edit cell . 53
6.15 GUI-Config Edit file directly . 54
6.16 GUI-Config Edit suricata.yaml syntax error . 54
6.17 GUI-Config Edit file syntax error . 55
6.18 GUI-Config Update.yaml . 56
6.19 GUI-Config Config files . 57

v

vi Cockpit module for Suricata IDS

6.20 GUI-Config Config files menu . 58

7.1 Survey score graph . 71

Tables

3.1 Start service . 12
3.2 Stop service . 12
3.3 Restart service . 13
3.4 Add signature file . 14
3.5 Delete signature file . 15
3.6 Edit signature file . 16
3.7 Add custom vendor . 17
3.8 Remove custom vendor . 18
3.9 Delete secret code . 18
3.10 Fetch vendors . 19
3.11 Apply changes . 19
3.12 Show logs . 20
3.13 Show alerts . 20
3.14 Edit suricata.yaml . 21
3.15 Edit update.yaml . 22
3.16 Edit suricata-update config files . 23

7.1 Completion status of functional requirements . 67
7.2 User score description . 69
7.3 Questions in the survey . 69

A.1 User testing result from 5 participants . 88

vii

Code Listings

6.1 Snippet of package.json demonstration custom scripts 42
6.2 cockpit.file.read() . 59
6.3 cockpit.spawn([tail -f $logFile]) . 60
6.4 Defined objects in vars.jsx . 62
6.5 setupRecursiveObject . 62
6.6 addTrashToTable . 65
6.7 createSignatureFile . 66

viii

Acronyms

GPL GNU General Public Licence. 40, 41, 69

GUI Graphical User Interface. 28, 43, 72

IDS Intrusion detection system. 1, 2, 4, 5, 8, 9, 12, 13, 27, 28, 40, 43, 50, 67, 68, 75

MIT Massachusetts Institute of Technology. 40, 41

NTNU Norwegian University of Science and Technology. 2, 24

NTNU SOC Section for digital security at the Norwegian University of Science and Technology. 1, 2,
69

OISF Open Information Security Foundation. 5, 8, 19, 33

UiO CERT University of Oslo Computer Emergency Response Team. 1

ix

Glossary

API Application Programming Interface is a software intermediary that allows two applications to
talk to each other. 29, 35, 43, 58, 66

bisect A tool in git that helps find bad commits that introduced a bug in the code. 24

Cockpit Open web-based interface for Linux servers. 1, 3, 8, 10, 27, 28, 29, 31, 33, 35, 37, 40, 41,
43, 58, 66, 75, 76

copyleft The practice of granting the right to freely distribute and modify intellectual property with
the requirement that the same rights be preserved in derivative works created from that prop-
erty. 40

ELK "ELK" is the acronym for three open source projects: Elasticsearch, Logstash and Kibana [1].
68, 69

GNU/Linux is primarily referred to as the combination of the Linux kernel with the GNU compon-
ents that form the complete Linux operating system [2]. 1, 8, 10

IDS Sensors Scans the network or host for suspicious and unusual activity. 1

Indicators of compromise Serves as forensics evidence of potential intrusion on a host system or
network. 4

Intrusion Detection System A device or software application that monitors a network or systems
for malicious activity or policy violations. 1

JavaScript Object Notation JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write, and for machines to parse and generate [3].
7, 41

Node Package Manager A package manager that manages JavaScript packages. 42

open source Source code that is made freely available for possible modification and redistribution.
1, 5, 8, 24, 40, 42, 43, 69

xi

xii Cockpit module for Suricata IDS

Suricata Open source intrusion detection system. 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 20, 21, 27, 28, 29, 31, 33, 40, 41, 43, 44, 47, 48, 50, 51, 58, 61, 67, 68, 69, 70, 72, 75, 76

suricata-update A software tool for managing rules, filtering rules and download rules from vendors.
7, 10, 22, 23, 56, 57

symbolic link A term for any file that contains a reference to another file or directory in the form
of an absolute or relative path. 41, 42

systemd systemd is a Linux initialization system and service manager that includes features like
on-demand starting of daemons, mount and automount point maintenance, snapshot support,
and processes tracking using Linux control groups. systemd provides a logging daemon and
other tools and utilities to help with common system administration tasks [4]. 2, 27, 29, 35

Ubuntu Open source Linux distribution based on Debian operating system. 2, 10, 41

Uniform Resource Locator A Uniform Resource Locator (URL), colloquially termed a web address,
is a reference to a web resource that specifies its location on a computer network and a mech-
anism for retrieving it [5]. 8

unix socket A UNIX socket, AKA Unix Domain Socket, is an inter-process communication mechan-
ism that allows bidirectional data exchange between processes running on the same machine
[6]. 27

Chapter 1

Introduction

This chapter will cover the problem area, project description, target audience, project goal, and the
project group.

1.1 Problem Area

With the always present and ever-changing threat landscape in the digital world, there has been an
increasing focus on information security in all business sectors. The number of threats an organiza-
tion has to account for increases yearly, and for larger organizations, it can be increasingly difficult to
handle manually. Intrusion Detection System (IDS) is a popular way to automate detection of these
threats before they pose a larger problem.

Suricata [7] is an IDS that is popular due to its free and open source nature, multi-threading cap-
abilities allowing for better performance at higher traffic volumes, and support for application layer
protocols. Even so, the lack of a graphical interface can make administrating Suricata a daunting
task for administrators who are new to the IDS. Cockpit [8] is a web-based interface for GNU/Linux,
and it is designed to help administrate a server with a web browser. Cockpit facilitates the creation
of custom modules which can be added to its interface to provide a better user experience. However,
to our best knowledge, there is no such module for Suricata at the time of conducting this bachelor
project.

1.2 Project Description and Goal

This project was given by the Section for digital security at the Norwegian University of Science and
Technology in Gjøvik as part of a collaboration with Uninett AS and University of Oslo Computer
Emergency Response Team. The collaboration aims to establish a national cyber security center for
the education sector named ”Cybersikkerhetssenteret for Forskning og Utdanning”.

The objective of this project is to develop a module for Cockpit to further simplify the administration
of Suricata IDS. The module is requested for the ”Sensorplattform” which aims to be the next gener-
ation of network based IDS Sensors for the education sector, and is a part of the larger collaboration.

1

2 Cockpit module for Suricata IDS

First of all, the module should allow administrators to start, stop and restart the Suricata IDS service
via the web interface, and the interface should display the current status of the IDS service. Another
feature of the module is the ability to administrate IDS-signatures. This means that administrators
can add existing or custom signatures to their own Suricata and manage these signatures (such as
editing, deleting, enabling and disabling) from the web interface.

Secondly, the module should offer functionality for adding and removing signature vendors. Note
that a signature vendor is a third party providing different rule sets for Suricata IDS. A rule set is a
list of signatures used to match against when searching the network traffic for suspicious activity.

Lastly, the module should also be able to display relevant service logs to make troubleshooting easier.
All alerts issued by Suricata should be displayed properly, and can be sorted by different criteria e.g.,
severity, source IP, destination IP, etc. All in all the module aims to be a "one stop dashboard" for
administrating Suricata, and lower the entry barriers for administrators to easily perform adminis-
trative tasks on Suricata IDS sensors in their own organizations.

1.3 Target Audience

The project aims to lower the entry barriers for end users by offering a graphical interface that can
be accessed in a browser for Suricata IDS. Here the end users will typically be network and system
administrators who are relatively familiar with the administration of Suricata. The project could also
be of use to organizations who are in need of a more intuitive way to administrate Suricata.

1.4 Limitations

To streamline the development of the module, we have decided to use Ubuntu as our development
platform since it is one of the most commonly used Linux distributions [9]. We used the system and
service manager systemd for information regarding the status of services. This might cause some
troubles on more obscure Linux distributions that do not support systemd, but it should not be a
problem on the most popular distributions.

Furthermore the module will be more focused on the administrative parts of Suricata, and less on
the actual monitoring of alerts. As such, alerts will be displayed on the web interface in a simple list.

1.5 Project Group

The project was requested by Christoffer Vargtass Hallstensen, group leader at NTNU SOC, and Arne
Øslebø, Senior Technical Architect working for Uninett AS. Jia-Chun Lin, assistant professor at NTNU,
is our supervisor for the project.

The group consists of four bachelor students from IT-Operations and Information Security (BITSEC).
From the studies the group have gained knowledge in programming, networks, security, risk man-

Chapter 1: Introduction 3

agement and IT-operations. The bachelor project required us to learn more about web-development
with focus on HTML, CSS, JavaScript, React and UX/UI-design. Additionally the group had to learn
about Cockpit and Suricata.

1.6 Thesis Structure

• Chapter 1 - Introduction: Description of project, problem area, target audience, project goal
and project group.
• Chapter 2 - Background: This chapter will briefly explain all technologies and terminologies

used in the thesis.
• Chapter 3 - Requirements: In this chapter, we present the functional and non-functional re-

quirements as well as all use cases for the module.
• Chapter 4 - Development Process: Discussion around development model and explanation

of the workflow.
• Chapter 5 - Implementation: Explaining the development environment used in the project.
• Chapter 6 - Technical Design: This chapter covers the design of the graphical user interface

and the functions of the module.
• Chapter 7 - Evaluation: Evaluation of the module against the functional requirements and

user feedback.
• Chapter 8 - Closing Remarks: Conclusion, discussion and learning outcome for the project,

and suggestions for future improvements.

Chapter 2

Background

This chapter aims to give some background knowledge regarding all technologies and terminology
used in this thesis.

2.1 Intrusion Detection System

An Intrusion detection system (IDS) is a device or software that observes a network for unwanted
traffic and notifies administrators of the network activity by issuing an alert [10]. An IDS is usually
either network-based or host-based and use either a signature-based or an anomaly-based detection
method. Each of these types of IDSs are briefly introduced below.

Network-based IDS
With a network-based IDS, sensors are usually placed on strategic locations in the network to mon-
itor traffic to and from devices on the network. If traffic on the network matches to a library of
known attacks, or the IDS identifies unusual behavior or network traffic, an alert can be sent to the
administrator. One use case could be to place the IDS on the same subnet as the firewalls to monitor
if someone attempts to attack them [10].

Host-based IDS
A host-based IDS is placed on an individual host or device and will match against a snapshot of
important system files. If for example a word-processor starts exhibiting strange behaviours like
modifying the systems password database, a host-based IDS might pick up on it, and issue an alert
so that a system administrator is made aware [11].

Signature-based IDS
A signature-based IDS usually monitors inbound network traffic for attacks by comparing the traffic
with a list of known Indicators of compromise. The list might consist of specific network attack be-
haviours, known byte sequences, malicious domains, email subject lines and file hashes. Specific
sequences and patterns matching an attack signature may be found within network packet head-
ers, in sequences of data matching known malware or malicious patterns, in destination or source
network addresses, or in specific sequences of data or packets [12]. A significant drawback of a
signature-based IDS is that it does not detect unknown attacks e.g., zero-day attacks.

4

Chapter 2: Background 5

Anomaly-based IDS
Anomaly-based IDS is used to detect attacks by comparing incoming traffic to a model of trusted
activity and anything not found in the model is declared suspicious. Machine learning is often used
to create such models, and these models can be trained according to applications and hardware
configurations [10].

2.2 Suricata

Suricata [7] is a free and open source network threat detection engine that provides intrusion de-
tection, intrusion prevention and network security monitoring. The Suricata project is community
driven and focuses on security, usability and efficiency, and is owned and supported by the Open
Information Security Foundation (OISF). Suricata differentiates itself from other similar network
threat detection engines like Snort 1 by providing multi-threading which allows for better perform-
ances [13]. Additionally the rule language of Suricata makes it easier to match conditions in the
application layer protocol without a deeper understanding of packet and protocol structure.

Figure 2.1: The Suricata logo

2.2.1 Signatures

Signatures or rules are an important aspect of Suricata as this is what the IDS uses to detect suspi-
cious network activities. An administrator can use existing rule sets such as the one provided by OISF
2, but it is also possible to make custom signatures or modify existing ones [14]. Figure 2.2 shows
an example of a signature. The first part in red signifies an action to be taken if a network packet
matches the header represented in blue. The rule options in green are parameters that can be added
to the signature for deeper and more customized detection. More details about action, header and
rule options are described below.

1https://www.snort.org/
2https://openinfosecfoundation.org/rules/trafficid/trafficid.rules

6 Cockpit module for Suricata IDS

Figure 2.2: An example of a Suricata signature [15]

Action
Action is a property of the signature which decides what will happen when a network packet matches
a signature. An action can be one of the following four [16]:

• Pass: Suricata breaks off the scanning of the packet, and skips to the end of all the rules for
the current packet.
• Drop: Immediately stops the packet from being transmitted further. A corresponding alert will

be generated.
• Reject: The packet is rejected. The receiver and sender will receive a reject packet response.

An alert will be generated.
• Alert: The packet is treated like any other non-threatening packet, with the exception that an

alert will be generated by Suricata for the system administrators to examine.

Header
A header is composed by the protocol to match against, the source IP address and port number,
the destination IP address and port number, and a direction that says something about which way
the signature has to match. In Figure 2.2 we match against packets with the protocol tcp, source
IP address of $HOME_NET and source port of any. The direction is a right arrow, this means only
packets going from the source to destination will be matched. To match it both ways we would need
to replace ”->” with ”<->”.

The destination to match against has an IP address $EXTERNAL_NET and a port of any. $HOME_NET
and $EXTERNAL_NET are variables defined in ”suricata.yaml” which contain IP addresses. If we want
to match against other packets with different properties, we need to change the values in the differ-
ent fields of the header so they correlate [14].

Rule Options
Rule options defines the specifics of a rule. The rule options are closed within a parenthesis, and

Chapter 2: Background 7

each option is separated by a semicolon. Options usually contains a keyword separated by settings,
however some options only need the keyword [17]. In Figure 2.2 the green text represents the rule
options, and the first option uses the msg keyword with the text as shown below.

msg:"ET TROJAN Likely Bot Nick in IRC(USA +..)";

This specific option will give information about the signature and the possible alert [18].

2.2.2 Suricata files

This section will give a brief overview of the important Suricata files. Some of these files are used
for configuration, while others contains logs and alerts.

• suricata.yaml Suricata uses a file named ”suricata.yaml” for its configuration [19]. In this file
one can for example configure network settings and the type of output to generate.

• eve.json Suricata provides an output facility called EVE that outputs all alerts, anomalies,
metadata, file info and protocol specific records through JavaScript Object Notation. This out-
put can be accessed through the ”eve.json” file. For example if you want information about an
alert that happened in a specific time frame you can find it in ”eve.json” [20].

• stats.log Interesting statistics regarding Suricata such as memory usage and packet loss can
be found in the ”stats.log” file. By default the statistics will be produced every 8 seconds and
appended to ”stats.log” [21]. However it is possible to change the interval at which statistics
are produced, and to overwrite ”stats.log” instead of appending new data to it. These changes
have to be made in the ”suricata.yaml” file [22].

• suricata.rules All rules are by default merged into a single file called ”suricata.rules” [23].

• update.yaml Suricata has a rule download and management tool called suricata-update. When
this command is invoked it reads configuration from a file which by default is called ”up-
date.yaml”. This file specifies the path to the different rule filter configuration files as well as
local and remote sources to be used [24].

• suricata-update configuration files There are four suricata-update config files which by de-
fault are called ”disable.conf”, ”enable.conf”, ”drop.conf” and ”modify.conf” [25]. In these
files we specify the rules to apply the filters to by using rule matching specifiers. Rules can be
matched using the signature ID, filename, rule group or regular expressions [26]. The functions
of the different rule filter configuration files are [27]:

◦ disable.conf: Rules matching the specifiers in this file will be disabled
◦ enable.conf: Rules matching the specifiers in this file will be enabled
◦ drop.conf: Rules matching the specifiers in this file will be converted to drop rules. Pack-

ets that match the drop rules will be dropped, and an alert will be generated.
◦ modify.conf: Rules matching the specifiers in this file will be modified. A modification

can for example change rule action from drop to alert.

8 Cockpit module for Suricata IDS

2.2.3 Vendors

Suricata IDS provides the functionality to add and use rule sets from different vendors. In this thesis,
we categorize vendors into custom vendors and default vendors, and we define them as follows:

• Custom vendors are manually added by providing Uniform Resource Locators to the custom
vendors’ source files.
• Default vendors are the vendors defined in the ”index.yaml” source 3 file provided by OISF and

comes with Suricata by default.

Some vendors are not publicly available and require a secret code. Without the secret code the vendor
source files will not be usable by Suricata.

2.3 Cockpit

Cockpit [8] is an open source web-based interface for managing and monitoring GNU/Linux servers.
It is included in most of the major distributions and can be installed from the distributions’ pack-
age manager. Cockpit’s graphical interface makes it a good entry point for new Linux users while
remaining useful for more experienced users. With Cockpit, an administrator can accomplish a large
range of tasks such as starting containers, administer storage, configure networks, inspecting logs
and more [8].

Additionally the Cockpit team supports the creation of custom modules using Cockpit’s own inter-
face. To help kick-start the process and encourage the building of new modules they have created
the Cockpit Starter Kit 4. There is already a long list of optional and third-party applications 5 that
can easily be added to the Cockpit interface.

Figure 2.3: The Cockpit logo

3https://www.openinfosecfoundation.org/rules/index.yaml
4https://cockpit-project.org/blog/cockpit-starter-kit.html
5https://cockpit-project.org/applications.html

Chapter 3

Requirements

This chapter discusses the functional requirements, additional features that we decided to imple-
ment, non-functional requirements, and use cases of the module.

3.1 Functional Requirements

In this section we introduce all the functional requirements requested by the client. The module must
satisfy the following requirements:

1. The module must allow the administrators to start, stop and restart the Suricata service via the
click of the respective buttons on a web interface.

2. The module should allow the administrators to view IDS signatures.
3. The module must enable administration of IDS signatures. The administrators should be able

to add signatures by uploading local files or creating new files. The administrators should be
able to edit or delete signatures.

4. The module must allow the administrators to download IDS signatures from a vendor and use
them.

5. The module must display logs related to the Suricata service.
6. The current status of Suricata service should be displayed.
7. The module must display the alerts generated by the Suricata IDS. The alerts can be sorted by

date and time, priority, protocol, category and id.
8. The module must be licensed as open source.

3.2 Additional Features

In this section we introduce all the additional features that were added during development of the
module. Some of the additional features were suggested by the client while others came naturally
during development.

1. The module allows the administrators to search and sort log entries using the fields of a log
entry (e.g., date and time).

9

10 Cockpit module for Suricata IDS

2. The module allows the administrators to manage vendors that requires secret code.
3. The module allows the administrators to configure Suricata and suricata-update.
4. Changes made to the ”suricata.yaml” and ”update.yaml” files are checked for valid YAML syn-

tax.
5. Edit the suricata-update configuration files (described in 2.2.2) which are used for modifying,

dropping, disabling and enabling rules in rule sets obtained from vendors.

3.3 Non-functional Requirements

This section defines a set of non-functional requirements that are used to specify the quality attributes
of the module.

3.3.1 Compatibility

The module will be developed and tested with the Ubuntu operating system, but it is expected to
work with many other distributions. This module is developed for Suricata v6.0.1, but might work
with older and newer versions of Suricata as well. Cockpit is developed for and routinely tested with
Mozilla Firefox, Google Chrome and Microsoft Edge. According to the documentation [28], Cockpit
might also work with other browsers. With this in mind we take the same approach and focus our
development for those three browsers.

3.3.2 Reliability and maintainability

Taking a modular approach and following coding standards ensures maintainability of the module.
The module is separated into smaller pieces in order to make the job of finding and fixing bugs in
the code easier. This will also help increase the readability of the code. The airbnb 1 style guide is
followed and together with ESLint this will reduce the chance of making mistakes and introducing
bugs in the code.

3.3.3 Usability

The goal of the module is to make it easy to use. In other words, end users should be able to admin-
istrate Suricata with minimal knowledge of the Suricata service. The interface of Cockpit is a good
starting point and we attempt to design our module in a way that blends well with that. An intuitive
graphical interface will go a long way to ease up the demanding technological knowledge otherwise
needed to administrate Suricata through a GNU/Linux terminal. We will implement input valida-
tion to ensure that valid values are entered and provide suitable error messages. Some detrimental
changes, e.g., deleting a file through the module, will prompt the administrator with a confirmation
dialogue. To further increase the usability, we will add tool tips to explain important elements.

1https://github.com/airbnb/javascript

Chapter 3: Requirements 11

3.4 Use Cases

Figure 3.1 represents the system administrator’s interaction with the module in form of use cases.
For example from the figure we can interpret that the system administrator can start the Suricata
service from the web interface.

Actor

System
Administrator

Start/stop/restart
service

Web
Interface

Edit configuration
files

Add/remove
vendor

Show service state

Show signatures

Update signatures

Add/Remove
signature sources

Show logs

Show alarms

Fetch vendor

Figure 3.1: Use Case Diagram of our module

12 Cockpit module for Suricata IDS

In Figure 3.1 to 3.16 a more detailed description of each use case is presented. The detailed Use
Cases explain the steps an administrator has to take to achieve the desired goal.

Table 3.1: Start service

Start service

Actor: System Administrator

Goal: Start the Suricata service

Description: The system administrator presses the ”Start” but-
ton located under the ”Service” tab. The Suricata
IDS service will be started.

Pre-condition: Service tab is active

Sequence of Events: Press ”Start” button

Table 3.2: Stop service

Stop service

Actor: System Administrator

Goal: Stop the Suricata service

Description: The system administrator presses the ”Stop” but-
ton located under the ”Service” tab. The Suricata
IDS service will be stopped.

Pre-condition: Service tab is active

Sequence of Events: Press ”Stop” button

Chapter 3: Requirements 13

Table 3.3: Restart service

Restart service

Actor: System Administrator

Goal: Restart the Suricata service

Description: The system administrator presses the ”Restart”
button located under the ”Service” tab. The Sur-
icata IDS service will be restarted.

Pre-condition: Service tab is active

Sequence of Events: Press "Restart" button

14 Cockpit module for Suricata IDS

Table 3.4: Add signature file

Add signature file

Actor: System Administrator

Goal: Add signatures to Suricata

Description: The system administrator adds a rule set to the
signature list

Pre-condition: Signatures tab is active

Sequence of Events: 1. Press ”Local rules” subtab
2. Press ”File” dropdown menu
3. Select ”Upload file”
4. Drag and drop a file into the popup or browse
the file system.
5. Press ”Upload”
6. Press ”Apply changes” to update and reload
Suricata.

Alternative Events: 3. Select ”Create file”
4. Enter a name for the new file
5. Press ”Create”
6. To add content to the file, the file must be ed-
ited, see use case 3.6.

Chapter 3: Requirements 15

Table 3.5: Delete signature file

Delete signature file

Actor: System Administrator

Goal: Delete a signature file

Description: The system administrator deletes a rule set from
the signature list

Pre-condition: Signatures tab is active

Sequence of Events: 1. Press ”Local rules” subtab
2. Press the ”Action” dropdown menu besides the
file to be deleted.
3. Select ”Delete file”
4. Press ”Yes” to confirm the action
5. Press ”Apply changes” to update and reload
Suricata.

Alternative Events: 4. Press ”No” to deny the action

16 Cockpit module for Suricata IDS

Table 3.6: Edit signature file

Edit signature file

Actor: System Administrator

Goal: Edit signature file

Description: The system administrator edits a rule set from
the signature list

Pre-condition: Signatures tab is active

Sequence of Events: 1. Press the ”Local rules” subtab
2. Press the ”Action” dropdown menu besides the
file to be deleted.
3. Select ”Edit file”
4. Make changes to the file
5. Press ”Save changes”
6. Press ”Apply changes” to update and reload
Suricata.

Chapter 3: Requirements 17

Table 3.7: Add custom vendor

Add custom vendor

Actor: System Administrator

Goal: Add signature source

Description: Add signature sources from vendors

Pre-condition: Signatures tab is active

Sequence of Events: 1. Press the ”Add custom vendor” button
2. Fill in the name of the vendor
3. Fill in the source URL for the vendor
4. Press ”Submit”
5. Press ”Apply changes” to update and reload
Suricata.

18 Cockpit module for Suricata IDS

Table 3.8: Remove custom vendor

Remove custom vendor

Actor: System Administrator

Goal: Remove custom vendors

Description: The system administrator can remove custom
vendors. Note that default vendors can not be
removed.

Pre-condition: The ”Signatures” tab is active

Sequence of Events: Press ”Remove” on the vendor

Table 3.9: Delete secret code

Delete secret code

Actor: System Administrator

Goal: Delete secret code

Description: The system administrator can delete secret code
that are required for some vendors

Pre-condition: 1. Signatures tab is active
2. A secret code has been stored

Sequence of Events: 1. Find the specific vendor on the list
2. Press ”delete secret code”

Chapter 3: Requirements 19

Table 3.10: Fetch vendors

Fetch vendors

Actor: System Administrator

Goal: Fetch the default vendors

Description: OISF provides an index [29] of default vendor
sources. If the index is updated the administrator
can fetch the default vendors

Pre-condition: Signatures tab is active

Sequence of Events: Press the ”Fetch vendors” button

Table 3.11: Apply changes

Apply changes

Actor: System Administrator

Goal: Apply changes made to the signatures

Description: The system administrator presses the Apply
changes button on the Signatures tab after mak-
ing changes to the signatures. The signatures will
be updated and reloaded.

Pre-condition: Signatures tab is active

Sequence of Events: Press ”Apply changes”

20 Cockpit module for Suricata IDS

Table 3.12: Show logs

Show logs

Actor: System Administrator

Goal: Monitor logs relevant to the Suricata service.

Description: The system administrator presses the ”Logs” tab
to display all relevant logs in real-time or from a
specific time period.

Pre-condition: Logs tab is active

Sequence of Events: Press ”suricata.service” subtab

Alternative Events: Press ”stats.log” subtab

Table 3.13: Show alerts

Show alerts

Actor: System Administrator

Goal: Monitor alerts

Description: The system administrator monitors the alerts
generated by Suricata. The total amount of alerts
triggered is also displayed, as well as the amount
of times each individual alert has been triggered.

Pre-condition: Alerts tab is active

Chapter 3: Requirements 21

Table 3.14: Edit suricata.yaml

Edit suricata.yaml

Actor: System Administrator

Goal: Configure Suricata

Description: The system administrator edits the ”sur-
icata.yaml” configuration file

Pre-condition: Config tab is active

Sequence of Events: 1. Press ”suricata.yaml” subtab
2. Find property to edit
3. Edit the selected properties of suricata.yaml
4. Save changes

Alternative Events: 2. Press ”edit directly” button to edit sur-
icata.yaml directly

22 Cockpit module for Suricata IDS

Table 3.15: Edit update.yaml

Edit update.yaml

Actor: System Administrator

Goal: Configure suricata-update

Description: The system administrator edits update.yaml con-
figuration file

Pre-condition: Config tab is active

Sequence of Events: 1. Press ”update.yaml” subtab
2. Find property to edit
3. Edit the selected properties of update.yaml
4. Save changes

Alternative Events: 2. Press ”edit directly” button to edit up-
date.yaml directly

Chapter 3: Requirements 23

Table 3.16: Edit suricata-update config files

Edit suricata-update config files

Actor: System Administrator

Goal: Configure suricata-update files

Description: The system administrator edits suricata-update
configuration files

Pre-condition: Config tab is active

Sequence of Events: 1. Press ”suricata-update config files” subtab
2. Open the dropdown menu
3. Select a configuration file to edit
4. Edit file
5. Press ”Save changes”

Chapter 4

Development Process

This chapter describes the development model used for developing the module, and the tools and
processes used for managing our workflow.

4.1 Development Model

The group decided on using Kanban [30]. Kanban’s agile nature allows us to operate with a continu-
ous workflow and optimize the work being done by capitalizing on each group member’s strengths.
Kanban gives us a better overview of our progress and makes for easier task delegation, as each
member mainly choose tasks themselves.

4.2 Documentation

This section discusses the tools and processes used to document our work.

Work Management
Kanban was used as a workflow management method to structure and assign tasks in the group. This
approach helps us organize and manage tasks more efficiently, and will help us recognize bottlenecks
during development.

Thesis writing
The thesis will be written using the software system LaTeX commonly used to write scientific docu-
ments in academia. We use the template that 1 NTNU provides for bachelor, masters and PhD theses.
To create the diagrams in the thesis we will be using the free online diagram software ”diagrams.net”
(formerly draw.io) 2.

Source code
The source code of the project will be managed and tracked with Git [31] which is a free open
source version control system for projects of all sizes. Git helps us easily bisect bad code that has

1https://github.com/COPCSE-NTNU/thesis-NTNU
2https://app.diagrams.net/

24

Chapter 4: Development Process 25

been pushed.

Meetings
Each Wednesday we had status meetings with our supervisor where we presented our weekly pro-
gress and our plans for the next week. In the meetings we were given feedback on the progress and
tips for how to proceed. Additionally we had meetings with our client to make sure we were on the
right track with what they had envisioned. The group met three times per week over Discord to work
collectively on the project.

Meeting minutes
Minutes from each meeting were kept to make sure no information was lost during the project. Every-
one was responsible for writing notes about what they had done during the week. For the weekly
status meetings with our supervisor, we prepared slides detailing what had been done, what we
wanted help with, and any challenges we faced.

Time management
The time management software Clockify 3 was used to keep track of the time each member spent
on the project. The time tracking was further split into different tasks to see where the time was spent.

4.3 Workflow

There were five roles used within the group:

Group Leader: Sindre Morvik (vara: Sigve Sudland)
Responsible for structuring the workload and making sure everyone knew what tasks needed to be
done.
Secretary: Anders Svarverud, Said-Emin Evmurzajev
Responsible for taking notes during meetings with our supervisor and client as well as writing a short
summary of the work done each week.
Overleaf technician: Sigve Sudland
Responsible for the LaTeX document.
Thesis leader: Sindre Morvik
Responsible for overseeing the writing of the thesis.
Development leader: Sigve Sudland
Responsible for overseeing the work on the module.

The group decided on a few rules and routines to follow in order to have some transparency about
what is expected of each member. We kept track of the time used by each member by using the time
tracking application Clockify. This was done in part to include a time sheet in the thesis and to make
sure that each member kept within the expected weekly hours. This allowed us to make sure that
our delegation of tasks was fair and that overtime was not a regular occurrence.

3https://clockify.me

26 Cockpit module for Suricata IDS

To manage the tasks during the project period, we used the online tool Trello 4 to make a Kan-
ban board. All the tasks related to the project were added to the board, and members could pick
and choose whichever task they felt most comfortable with. This could lead to some tasks not being
picked because no member felt comfortable doing them. To make sure no tasks were left in limbo
too long we had regular meetings to discuss the workload with an emphasis on making sure that
members could work with what they wanted, as long as that was possible.

We used the VoIP-program Discord for our main communication platform. Most meetings the group
had were organized and carried out here. Members were expected to keep a close eye and be avail-
able on Discord during regular working hours. For communication and meetings with our supervisor
and client we used Microsoft Teams.

Git, a distributed version control system, was used to keep track of the development of the mod-
ule and to allow us to work on different tasks from the same code base.

4https://trello.com

Chapter 5

Technical Design

This chapter aims to explain the design and functionality of our Cockpit module for Suricata IDS.
The chapter will start by describing the overall system architecture before going into more detail
about the module architecture.

5.1 System Architecture

Figure 5.1 shows the overall system architecture of the Cockpit module for Suricata. Cockpit and
Suricata are both installed on the same Linux machine and uses systemd services to request the
status of the Suricata service, and to start, stop or restart Suricata. Cockpit will use the unix socket
to reload the signatures when they have been updated.

Cockpit

Suricata

Internet

Unix
Socket

systemd
services

Our module

Linux Machine

Figure 5.1: Overall system architecture diagram of the module

27

28 Cockpit module for Suricata IDS

5.2 Module Architecture

The module is implemented as a web user interface with five tabs namely Service, Signatures, Logs,
Alerts, and Config. Figure 5.2 illustrates the architecture of the module. The different tabs of the
module are colored grey while information displayed on the tabs are represented in purple. All but-
tons of the module are displayed with a blue color in the figure, and Linux commands used for some
of the functionality are represented as brown. The cases where the module accesses files is colored
green.

The Service tab displays the current state of the Suricata IDS service. In addition, this tab provides
three buttons to start, stop and restart Suricata. The Signatures tab allows system administrators to
manage signature sources and update rule sets. The Logs tab shows relevant service logs from the
Suricata IDS service and the Alerts tab displays alerts issued by Suricata. The Config tab allows the
system administrator to configure Suricata through Cockpit’s GUI.

Show the state of
Suricata

Start

Stop

Restart

Add
source/vendor

Systemd log

suricata.log

Systemctl start
Suricata

Systemctl stop
Suricata

Systemctl restart
Suricata

Suricata-update

Systemctl status
Suricata

Suricatasc reload-
rules

Fetch vendors

Show alarms

eve.json

Show logs

Show rulesets

*.rules

Suricata.yaml

Module

Suricata-update
config files

Local rules

File

Create file

Upload file

Apply changes

Vendors Edit file

Delete file

Show vendors

Enable/Disable

ConfigAlarmsLogsService Signatures

Delete key

Edit configura�on

Edit directly

Update.yaml

Edit config

Edit configura�on

Edit directly

drop.conf

Edit configEdit config

enable.conf

disable.conf

modify.conf

Tab

Display

Button

Command

File

Figure 5.2: The architecture diagram of our module

Chapter 5: Technical Design 29

5.3 Sequence Diagram

This section will depict the involved objects and the interactions between them to carry out the
functionality for each tab of the module.

5.3.1 The Service tab

Figure 5.3 shows the sequence diagram for the service tab of the module. The diagram accounts for
all functionality available on the tab. Once the service tab is selected, the Cockpit API [32] sends
a DBus message to systemd in order to start monitoring the suricata.service unit on the server in
real-time. When a property has been updated on the service, systemd returns the selected properties
to Cockpit before an update function displays the new data on the service tab. After this the service
calls the Cockpit API spawn function to execute the ”suricata --build” command in order to obtain
build info from Suricata. The Suricata version is then displayed on the service tab while the rest of
the result from the ”suricata --build” command is filtered out.

In the next steps the Cockpit API for file access is used to read and return the contents of suricata.rules
file. The service tab then displays all active signatures by counting the lines in suricata.rules. In the
last steps the user can choose to start, stop or restart the Suricata process. The sequence being run
is mostly identical no matter what choice the user makes except for one string in the call argument.
The service uses Cockpit API to send a "DBus" message to systemd describing how to handle the ser-
vice. In the next run-through of the sequences Cockpit will be notified of the status of this operation
thanks to the monitoring loop in step three and update the data that way.

30 Cockpit module for Suricata IDS

Service

5.Return Suricata sub state

1. Select Service tab

systemdCockpit

2. cockpit.dbus('org.freedesktop.systemd1')
.call((...),'suricata.service')

9.display
data

Suricata

3.Start monitoring service

4.Return Suricata active state

10.cockpit.spawn("suricata --build")

11. Get suricata build info

12. Return suricata build info

16. cockpit.file
(suricata.rules).read()

17. Return content
18. Count number

of lines
in suricata.rules

13. Return suricata build info

15. Display
suricata version

14. Find
Suricata version of

build info

19. Display active
signatures

[Start service]

20. cockpit.dbus('org.freedesktop.systemd1')
.call((...),'StartUnit','suricata.service')

21. Start unit 22. Start process

[Stop service]

23. cockpit.dbus('org.freedesktop.systemd1')
.call((...),'StopUnit','suricata.service')

24. Stop unit 25. Stop process

[Restart service]

26. cockpit.dbus('org.freedesktop.systemd1')
.call((...),'RestartUnit','suricata.service')

27. Restart unit 28. Restart process

7.Return Suricata name
6.Return Suricata unit file preset

8. Update displayed data

[suricata.service properties changed]Loop

Alt

Figure 5.3: Sequence Diagram for the Service tab

Chapter 5: Technical Design 31

5.3.2 The Signatures tab

Figure 5.4 shows the sequence diagram for "Local rules" subtab, which is the default selected subtab
on the signatures tab. Cockpit’s spawn function is called with ”ls /etc/suricata/rules” which returns
and displays the local signatures in a sortable list on the subtab. The next step depends on whether
the administrator chooses to ”create file”, ”upload file”, ”edit file”, ”delete file” or ”apply changes”.

To create a file the cockpit.spawn(”touch ${fileName}”) is called where fileName is input from the
administrator. To upload, edit or delete a file, the cockpit.file().modify() function is called with the
fileName variable as argument. ”Apply changes” will spawn a process with the command suricata-
update that checks if any changes have been made. Once this is done the Suricata service is reloaded
in order to make use of the new changes. The output of the process will then be returned to the
subtab and shown to the administrator. Finally, the cockpit.spawn() function is called one last time
to display all the files in the /etc/suricata/rules directory.

32 Cockpit module for Suricata IDS

alt

Signatures
(Local rules)

1. Select Signatures tab

SuricataCockpit

3. return list of files

2. Cockpit.spawn(ls
/etc/suricata/rules)

[create file]

[upload file]

[edit file]

[delete file]

20. Cockpit.spawn(ls
/etc/suricata/rules)

21. return list of files

7. cockpit.spawn("touch $fileName")

6. input
$fileName

8. input
$fileName

File content
$string9. cockpit.file($fileName).modify($string)

10. File
content
$string

11. cockpit.file($fileName).modify($string)

12. User
confirmation

13. cockpit.file($fileName).modify()

5. Sort table

4. Display table files

22. Display table files

[Sort selected row]

[apply
changes] 14. cockpit.spawn("suricata-update")

[if changes have been made]

19. return output

[else]

15. Append local rules
to suricata.rules

16. Reload rules

18. Return status
17. Apply

suricata.rules

opt

alt

Figure 5.4: Sequence Diagram for the Local rules subtab

Chapter 5: Technical Design 33

Figure 5.5 shows the subtab ”Vendors” in the signature tab which lists available vendors. When the
subtab is selected, Cockpit’s spawn function is called to execute the ”ls /var/lib/suricata/update/-
sources” command to obtain the list of vendors which is then displayed in a table that can be sorted
alphabetically. In the next steps the administrator can:

• Add vendor source
• Remove vendor source
• Enable vendor
• Remove secret key
• Disable vendor
• Fetch vendors
• Apply changes

The above options are executed similarly, in the sense that they use cockpit.spawn to spawn suricata-
update with different arguments based on the chosen option. The main differences are with fetch
vendors and apply changes. The fetch vendor fetches the index file from OISF, if an index file already
exists it will be overwritten by the newly fetched one.

Apply changes will spawn a process with the command suricata-update that checks every vendors if
they have been enabled or disabled, and if any custom vendors have been added or removed. When
the check is done the next step is to download the enabled vendors and unpack their compressed
files to the suricata.rules file. Once this is done the Suricata service is reloaded in order to make use
of the updated suricata.rules file. Lastly, the output of Suricata update will be returned to the subtab
and displayed in a dialogue window. The output will notify the administrator about whether or not
the changes were successfully applied.

34 Cockpit module for Suricata IDS

alt

opt

alt

alt

4. return list of vendors

2. Select Vendors subtab

Signatures
(Vendors)

1. Select Signatures tab

SuricataCockpit Vendor

8. cockpit.spawn("suricata-update
add-source $source")

[add
custom
vendor]

[enable
vendor]

[disable
vendor]

[fetch
vendors]

7. input
$source

3. Cockpit.spawn(ls
/var/lib/suricata/update/sources)

9. input
$source10. cockpit.spawn("suricata-update

remove-source $source")

13. input
$source

18. cockpit.spawn("suricata-update
disable-source $source")

17. input
$source

[remove
custom
vendor]

19. cockpit.spawn("suricata-update
update-sources")

[if requires secret code]
11. input

$key , $source12. cockpit.spawn("suricata-update enable-
source $source secret-code=$key")

14. cockpit.spawn("suricata-update
enable-source $source")

else

[remove
secret code]

[if code exists]
15. input
$source16. cockpit.spawn("suricata-update

remove-source $source")

[apply
changes]

22. cockpit.spawn("suricata-update")

[if changes have been made]

29. return output

[else]

20. fetch index list
21. Return index list

23. fetch compressed files

24. Return compressed files

25. Unpack files

26. Reload rules

28. Return status

27. Apply
suricata.rules

6. Sort table

5. Display table vendors

[Sort selected row]

32. Display vendors

31. return list of vendors

30. Cockpit.spawn(ls
/var/lib/suricata/update/sources)

opt

Figure 5.5: Sequence Diagram for the Vendor subtab

Chapter 5: Technical Design 35

5.3.3 The Logs tab

Figure 5.6 shows the sequence diagram for the module’s Logs tab, which is responsible for display-
ing different log files. The user navigates to the Logs tab and can then choose to display logs for
systemd or stats.log from the respective subtabs. To read the systemd logs, systemd’s journalctl util-
ity is spawned using Cockpit’s API [33] for spawning processes. The stats.log file is initially read and
displayed using Cockpit’s API that provides the functionality to read files with cockpit.read(). The
file is then monitored and read by spawning the tail process. It is also possible to filter the logs from
systemd and stats.log. In the end the result will be displayed on the web interface.

36 Cockpit module for Suricata IDS

1. Select Logs tab

Cockpit Logs

2. Select subtab

systemd

[subtab = systemd]

3. cockpit.spawn(journalctl,
_SYSTED_UNIT="suricata.service")

4. Get suricata.service logs

5. Return data

[If new entries]

6. Send data

8. display
data

[subtab = stats.log]

12. cockpit.watch(stats.log)

13. Return stats log data[If new entries]

15. Display
data

9. cockpit.read(stats.log)

10. Return stats log data

11. display
data

[Filter by date]

14. Select from and
to date to show

7. Select
time window

[Filter by time]

Opt

Loop

Opt

Loop

alt

Figure 5.6: Sequence Diagram for the Logs tab

Chapter 5: Technical Design 37

5.3.4 The Alerts tab

Figure 5.7 shows the sequence diagram for the module’s Alerts tab. When the user navigates to the
Alerts tab, Cockpit reads the eve.json file and returns its content. The content is then parsed and every
alert is displayed in a table. Recurring alerts is counted and shown in a new table with the amount
of times they have been triggered. Both tables can be sorted.

1. Select Alerts tab

Cockpit Alerts

2. cockpit.file(eve.json).read()

5. Display
every alert in

a table

3. Return eve.json content

4. Parse JSON

6. Count
recurring alert

entries
7. Display

recurring alerts
in a new table

[Sort selected row]

8. Sort table

opt

loop

Figure 5.7: Sequence Diagram for the Alerts tab

38 Cockpit module for Suricata IDS

5.3.5 The Config tab

Figure 5.8 shows the sequence diagram for the module’s Config tab. If selecting either ”suricata.yaml”
or ”update.yaml” subtab, the configuration is copied into an object and the text to an editable win-
dow that can be accessed by the ”Edit directly” button. When copying is done it will start iterating
the object to determine how it should be displayed. If the nested object is an array, it will display the
array as a table. If the nested object represent a string it will display an editable form.

If selecting the ”config files” subtab the administrator can modify the content of any rule filtering files
used by Suricata [25]. At the end the administrator has the option to edit any of the configuration
files and save the changes.

Chapter 5: Technical Design 39

alt

alt

Recursive loop

1. Select Config tab

Cockpit Config

[Iterate through nested object]

7. Create table of
array

[If object is array]

10. Display
array of

forms/tables

[if object contains strings]
8. Create form of

object

9. Append form/table
to array

3. Return content

5. Parse
yaml content

6. Append to object

[suricata.yaml and update.yaml]

4. Save content
to "Edit directly"

form

[subtab: suricata.yaml
or update.yaml]

[subtab: config files]

12. cockpit.file(configFile).read()

13. Return config file content

15. Edit
content

[Save changes]
16. cockpit.file(configFile).modify(content)

[Edit text or toggle switches]

14. Display
config file content

11. select
config file

2. cockpit.file(yamlFile).read()

Opt

Opt

Loop

Figure 5.8: Sequence Diagram for the Config tab

Chapter 6

Implementation

This chapter describes how the Cockpit module for Suricata IDS was implemented. It starts off by de-
scribing important decisions we made regarding the software licence and development environment.
Then the graphical user interface is described, followed by key code snippets of the implementation.
Finally the chapter ends with the documentation of the module.

6.1 Software License

The Cockpit module for Suricata will be open source and in communication with our client we agreed
upon one of the following two licences:

• GNU General Public Licence (GPL):
The GNU General Public Licence [34] is a license meant to allow users to study, share, run and
modify the software freely. Any work based on the original can only be distributed using the
same or equivalent license terms. Currently GPL consists of three different versions:

◦ GPLv1:
The first version requires distributors to also publish the human-readable source code
along with their binary files under the same licensing terms.

◦ GPLv2:
The second version states that a distributor can use other licenses to publish a work
covered by GPL if the license satisfies all of GPL’s terms.

◦ GPLv3:
The third version further increased GPL’s compatibility with other free software licences,
and generally aims to make the rules about GPL-compatible licenses clearer [35]. Addi-
tionally changes were done regarding software patents, what defines ”source code”, and
to reduce the restriction that hardware can have on software modifications.

• Massachusetts Institute of Technology (MIT):
The MIT license is a permissive license and is therefore compatible with many copyleft licenses
including GPL, due to its focus on few restrictions on reuse. This means MIT licensed software

40

Chapter 6: Implementation 41

can be integrated with, or re-licensed as GPL software, but not the other way around [36].

We wanted to ensure that the freedom of our software does not get restricted by the users it gets
distributed to, so we opted for GPL over MIT. Coincidentally, Cockpit is licensed under GPLv2 with
a clause that says "or any later version" to allow the flexible optional use of either version 2 or 3.
Since we use some of Cockpit’s code, and we have used Cockpit Starter Kit (which is under the same
license), our module must be distributed under the same or equivalent license terms. Our module
will therefore be using the GPLv2 license with the "or any later version" clause.

6.2 Development Environment

This section describes the development environment that was used to develop and test our module.
It talks about the operating system, module location and different tools we used when developing
the module.

Operating System

We decided to develop our module on Ubuntu because it is one of the more commonly used Linux
distributions that is supported by both Suricata and Cockpit.

Cockpit module location

Our module is separated into various directories with a combination of HTML, JavaScript and JavaS-
cript Object Notation files. The directory name coincides with the name of the module as it is shown
on the Cockpit dashboard. For Cockpit to locate the module, they need to be placed in, or a symbolic
link needs to be made to, one of three default locations:

• $HOME/.local/share/cockpit/
• /usr/local/share/cockpit/
• /usr/share/cockpit/

Modules in $HOME/.local/share/cockpit/ directory are only available to the owner of the home
directory. While modules in the ”/usr/local/share/cockpit/” and ”/usr/share/cockpit/” are available
to all system users.

Cockpit Starter Kit

A production ready project has a lot of requirements, such as using linting to analyze the code for
errors, a modern framework like React and a build system. Cockpit provides a starter kit [37], which
enabled us start coding straight away instead of learning the details of all these requirements first.
The starter kit also provides a simple example project as starting point to build on. Martin Pitt has
written an article on this and explains how to get started 1.

1https://cockpit-project.org/blog/cockpit-starter-kit.html

42 Cockpit module for Suricata IDS

npm

Node Package Manager (npm) is a package manager tool for JavaScript, which is bundled with
NodeJs. Our module in itself does not require NodeJs, but npm is dependent on NodeJs when ex-
ecuted. The tool uses package.json as its configuration file which includes the needed packages and
additional custom scripts. With custom scripts we have it set up to build with webpack and other
convenient entries like executing Eslint linter seen in Code listing 6.1.

Code listing 6.1: Snippet of package.json demonstration custom scripts

"scripts": {
"watch": "webpack --watch --progress",
"build": "webpack",
"eslint": "eslint --ext .js --ext .jsx src/",
"eslint:fix": "eslint --fix --ext .js --ext .jsx src/"

},

Webpack

Webpack [38] is an open source JavaScript module bundler. When webpack processes an application
it internally builds a dependency graph which maps every module the project needs and generates
one or more bundles, which in turn allows us to use a modular approach. By using webpack config-
uration we can specify plugins that can help optimize and implement debugging during the build of
our module.

GNU make

GNU make [39] is a utility that run tasks defined in a file named Makefile. In our case running the
make command will compile our code with webpack. To automatically compile webpack on code
change, the command ”make watch” can be used. These changes will only be visible to the user that
ran the command because the webpack generated output has a symbolic link to $HOME/.local/share/cockpit
directory. To make the changes available to all system users, the command ”make install” needs to
be executed. The command will copy the output to /usr/share/cockpit directory making the module
available system-wide.

ESlint

ESlint [40] is used to automatically analyze code for problems, e.g., if the coding style is breaking the
defined rules. It helps us make our code more consistent and avoid bugs. It is run at every build using
webpack loader, but can also be run manually with the command ”npm run eslint”. If ESlint finds
rule violations, they can be fixed using the command ”npm run eslint:fix”. The rule configuration
can be found in the .eslintrc.json file.

Packages

Our module uses packages that are managed by npm. To see all the packages we use for our module,
check out the package.json file in the github repository 2.

2https://github.com/Sudland/cockpit-suricata/blob/master/package.json

Chapter 6: Implementation 43

6.2.1 Libraries

React
React [41] is an open source, front end, JavaScript library for building user interfaces. React allows
us to build reusable components that can be combined to create complex user interfaces.

PatternFly
PatternFly [42] is an open source design system created to enable consistency and usability by provid-
ing clear standards, guidance, and tools that help designers and developers work together more ef-
ficiently. Cockpit’s current interface is built using PatternFly. By using PatternFly, our module blends
in well with the rest of Cockpit’s layout.

Puppeteer
Puppeteer [43] is a Node library which provides an API to control Chrome or Chromium. Puppeteer
runs in the background and can be programmed to follow instructions. We used Puppeteer to create
a testing environment for doing things we would have to do manually in a browser, e.g., log in to
Cockpit, navigate through different tabs and so forth.

6.3 Graphical User Interface of Our Module

In this section we will introduce the GUI that we have made for the module. We decided to make the
GUI for the module as close as possible to the design of Cockpit. We designed the interface with the
help of PatternFly since this is what Cockpit uses [44].

6.3.1 The Service tab

Figure 6.1 shows the Service tab, which is the tab the administrator will be presented with when first
accessing the module on Cockpit. On this tab the administrator can start, stop and restart Suricata by
pressing the corresponding buttons. Below the buttons is information about the current status of the
Suricata IDS service as well as information about which version is in use and how many signatures
are active.

44 Cockpit module for Suricata IDS

Figure 6.1: The front page of the module

6.3.2 The Signatures tab

Figure 6.2 shows the signatures tab consisting of the ”Local rules” and ”Vendors” subtabs. On the
”Local rules” subtab the administrator can create, upload, edit and delete rule sets used by Suricata.

Chapter 6: Implementation 45

Figure 6.2: The Local rules subtab on the Signatures tab

In order to create a rule set the administrator can press the ”File” drop-down menu and select ”New
file”. If the administrator wants to create a new rule set, he or she needs to enter a name for the file
followed by the ”.rules” extension and press the ”Create” button which can be seen in Figure 6.3.

Figure 6.3: The dialogue window for the create file operation

To upload a rule set the administrator selects the ”Upload file” from the ”File” drop-down menu and
can either drag and drop or browse the file system to add an existing file, as shown in Figure 6.4.
The file name must end with ”.rules” to be able to upload the file.

Figure 6.4: The dialogue window where an administrator can upload an existing file

To delete or edit the content of the file the administrator can press the ”Action” drop-down menu

46 Cockpit module for Suricata IDS

shown in Figure 6.5 and select ”Delete file” or ”Edit file”. The ”Edit file” action will open up the file
in an editable text panel as shown in Figure 6.6. The ”Delete file” action prompts the administrator
with a dialogue window asking if they really want to delete the file.

Figure 6.5: The actions an administrator can perform on a file

Figure 6.6: The text box window where an administrator can edit a file

Chapter 6: Implementation 47

Figure 6.7 shows the ”Vendors” subtab where the administrator can ”Add custom vendor”, ”Fetch
vendors” and enable or disable signature sources.

If the module can not find ”/var/lib/suricata/update/cache/index.yaml”, an alert is given in the
top right corner telling the administrator that the index.yaml file is missing, and that they can press
fetch vendors to fix it. When the administrator presses the fetch vendors button, the module will
download the rule sets from https://www.openinfosecfoundation.org/rules/index.yaml

The administrator has the option to enable and disable rule sets by clicking on a rule set’s ”Click
to enable” or ”Click to disable” button, depending on that rule set’s current state. ”Click to disable”
buttons are green to indicate that those rule sets are currently enabled. ”Click to enable” buttons are
blue and those rule sets are currently disabled.

For any changes in the Signatures tab to take effect the ”Apply changes” button has to be pressed.
Once the button is pressed, the Suricata service is reloaded in order to make use of the new changes.
A dialogue window showing whether the changes were successfully applied or not is then shown to
the administrator.

Figure 6.7: Shows the Vendors subtab on the Signatures tab

48 Cockpit module for Suricata IDS

Figure 6.8 shows what happens when the ”Add custom vendor” button is pressed. The administrator
gives the custom vendor a name and provides the URL for the vendor before pressing ”Submit”. The
source is then added to the list of vendors. The source URL must be a valid URL to be able to submit.

Figure 6.8: The dialogue window where an administrator can add a new vendor source to Suricata

A vendor might require a secret code to enable it. In that case a key will be shown on the ”Click to
enable” button. When the button is pressed the administrator will be prompted to enter the secret
code as shown in Figure 6.9. Vendors with required secret code that previously was enabled will
store the key and give the administrator the option to delete the stored secret key.

Figure 6.9: How to add a secret code

6.3.3 Logs

Figure 6.10 shows the ”suricata.service” default subtab under the Logs tab. This subtab shows the
systemd logs for the Suricata service. The administrator can choose which time period to show logs
by selecting from the drop-down menu seen in Figure 6.10. The choices are ”Everything”, ”Current
boot”, ”Previous boot”, ”Last 24 hours” and ”Last 7 days”.

Chapter 6: Implementation 49

Figure 6.10: Shows the suricata.service subtab on the Logs tab

Figure 6.11 shows the ”stats.log” subtab under the Logs tab. This subtab shows the content of the
stats.log file in a table. The stats.log file grows with time, as new entries are appended to the file at
given intervals. In order to be able to see earlier entries, or see entries in a specific time period, the
administrator can sort the table by using the from and to date fields. Below the from and to date
fields are from and to time fields to compare the difference between the given times. This difference
can be seen in parenthesis in the ”Value” column. The administrator can also have the table updating
in real-time by checking the ”Update table live” box.

50 Cockpit module for Suricata IDS

Figure 6.11: Shows the stats.log subtab on the Logs tab

6.3.4 Alerts

Figure 6.12 shows the module’s ”Alerts” tab. This tab first displays how many alerts have been
triggered in total. Below that is a table of which alerts have been triggered, and a count for how
many times they have been triggered. Lastly it shows all alerts triggered by the Suricata IDS service
in the bottom table. The table is automatically updated when a new alert is triggered, but in order
to not overload the browser, only the latest fifty alerts are shown in the table. There is a ”Click to
expand” button at the bottom of the table which shows the next fifty alerts when clicked.

Chapter 6: Implementation 51

Figure 6.12: Shows the Alerts tab

6.3.5 Config

Figure 6.13 shows the ”Config” tab consisting of the ”suricata.update”, ”update.yaml” and ”suricata-
update config files” subtabs.

By default the ”suricata.yaml” subtab is selected. In this subtab the administrator can make changes
to Suricata’s configuration file called suricata.yaml. This file has many options that can be set and
changed. Our module allows the administrator to edit this file directly by clicking the ”Edit directly”

52 Cockpit module for Suricata IDS

button or via a more user friendly interface as seen in the figure.

One of these options is address-groups. The administrator can use the vars switch to enable or disable
the option. Enabling and disabling the file is equivalent to commenting and uncommenting the option
in the suricata.yaml file. The administrator can edit or delete the existing entries to the address-
groups by clicking on the respective pen or trash symbols on the far right. New entries can also be
added using the plus symbol below the last entry.

Figure 6.13: Shows the Config tab

When the administrator clicks on the pen symbol to edit an existing field, the administrator is allowed
to change the fields of that entry. Figure 6.14 shows how this looks for the first entry with the name
”DNP3_CLIENT”. The changes can be confirmed by clicking the check mark symbol or discarded by
clicking the cross symbol. However, for the changes to be saved to the file, the administrator must
click the ”Save changes” button. Note that the ”Save changes” button will change color from grey to
blue and be clickable only when changes are made.

Chapter 6: Implementation 53

Figure 6.14: Edit cell in a table

If the administrator clicks on the "Edit directly" button in Figure 6.13, the administrator will be
allowed to edit the file directly through the text box shown in Figure 6.15. When the input is invalid
YAML syntax the administrator will be warned and also be prevented from saving changes with
wrong syntax as shown in Figure 6.16. Therefore ”Save changes” button will only be clickable when
changes with valid YAML syntax have been made as seen in Figure 6.17.

54 Cockpit module for Suricata IDS

Figure 6.15: Edit the file directly

Figure 6.16: Message if invalid syntax inputted

Chapter 6: Implementation 55

Figure 6.17: Message if valid syntax inputted

Figure 6.18 shows the ”update.yaml” subtab, which is responsible for making changes to the ”up-
date.yaml” file. The administrator can enable and disable the configuration files update.yaml refers
to by turning the switch on and off. Other possibilities are to change the path to the different ”.conf”
files or edit the update.yaml file directly, similar to suricata.yaml, as can be seen in Figure 6.15.

56 Cockpit module for Suricata IDS

Figure 6.18: Shows the Update.yaml subtab

Figure 6.19 shows the ”suricata-update config files” subtab. This is used by to edit configuration file
rules used by ”suricata-update”. This however does not support syntax checking and can be seen
stated in the figure.

Chapter 6: Implementation 57

Figure 6.19: suricata-update configuration files

Figure 6.20 shows the drop-down menu where the administrator can select which file to edit. The
user interface for editing the different files in the menu is identical.

58 Cockpit module for Suricata IDS

Figure 6.20: Drop-down menu of configuration files

6.4 Code

Read and monitor Suricata files In order for us to get the data to be displayed in the module we
needed some way to read data that Suricata uses and logs that are generated by Suricata.

Our solution to read the necessary files was to use Cockpit’s file API read(). The read() function can
read the file and return the file’s content back to our module. We also have the need to make it
read continuously to keep track of live changes in some specific files such as eve.json and stats.log
generated by Suricata.

We tried using Cockpit’s file API watch(). watch() works by monitoring a file for any changes and
sends a callback with the file’s content and can be used to input new data on our module. However
this solution started to cause problems. Problems being that in a large network environment Suricata
can generate thousands of alerts to eve.json every second, making watch() keep on sending the whole
file’s content repeatedly on every change. This can cause severe network bandwidth usage for the
client and the server, which in turn will lead to the module becoming unresponsive for the client.

A better way to monitor Suricata files was to use another API called process (this will be explained
more thoroughly in section 6.4.2). By doing this we can spawn built-in applications in Linux that are
more suited for monitoring files. The application we use for this is called tail and can also monitor
the file, but in this case it can be told to only return newly written data sparing both the client and
the server for excessive bandwidth usage.

Chapter 6: Implementation 59

Code listing 6.2 shows how the cockpit.file.read() is implemented in alerts.jsx.

Code listing 6.2: cockpit.file.read()
1 cockpit
2 .file(this.logFile, { max_read_size: 1024 * 1024 * 1024, superuser: ’try’ })
3 .read()
4 .then((content) => {
5 if (!content.includes(’"event_type":"alert"’)) return;
6 const { isNew, rows, nrOfAlerts } = this.state;
7 const newRows = rows[’signature-table’];
8 const newRowsCount = [];
9 const jsonArray = content.split(’\n’).filter((x) => x.includes(’"event_type":"alert"’));

10
11 if (!isNew) {
12 for (let i = 0; i < jsonArray.length; i += 1) {
13 let entry;
14 try {
15 entry = this.pushAlert(JSON.parse(jsonArray[i]));
16 } catch {
17 console.log(jsonArray[i]);
18 }
19 if (entry != null) newRows.unshift(entry);
20 }
21 } else {
22 jsonArray.forEach((el) => {
23 const elObj = JSON.parse(el);
24 if (elObj.event_type == ’alert’) {
25 newRows.unshift(this.pushAlert(elObj));
26 }
27 });
28
29 this.setState({ isNew: false });
30 }
31 if (newRows.length != nrOfAlerts) {
32 // Update if theres new entries
33 /// Count alerts
34 const counts = {};
35 newRows.forEach((x) => {
36 counts[x[5]] = (counts[x[5]] || 0) + 1;
37 });
38
39 Object.keys(counts).forEach((x) => {
40 newRowsCount.push([x, counts[x]]);
41 });
42 // Count alerts
43 rows[’repeated-table’] = newRowsCount;
44 rows[’signature-table’] = newRows;
45
46 this.setState({ nrOfAlerts: newRows.length, rows }, () => {
47 this.updateSort(’repeated-table’);
48 this.updateSort(’repeated-table’);
49 // BUG needs to run updateSort() twice to avoid elements not being sorted correctly
50 });
51 }
52 });

60 Cockpit module for Suricata IDS

Code listing 6.3 shows how the cockpit.spawn(’tail -f this.logFile’) is monitoring a file implemented
in alerts.jsx.

Code listing 6.3: cockpit.spawn([tail -f $logFile])
1 cockpit.spawn([’tail’, ’-f’, this.logFile], { superuser: ’try’ }).stream((content) => {
2 if (!content.includes(’"event_type":"alert"’)) return;
3 const { isNew, rows, nrOfAlerts } = this.state;
4 const newRows = rows[’signature-table’];
5 const newRowsCount = [];
6 const jsonArray = content.split(’\n’).filter((x) => x.includes(’"event_type":"alert"’));
7
8 if (!isNew) {
9 for (let i = 0; i < jsonArray.length; i += 1) {

10 let entry;
11 try {
12 entry = this.pushAlert(JSON.parse(jsonArray[i]));
13 } catch {
14 console.log(jsonArray[i]);
15 }
16 if (entry != null) newRows.unshift(entry);
17 }
18 } else {
19 jsonArray.forEach((el) => {
20 const elObj = JSON.parse(el);
21 if (elObj.event_type == ’alert’) {
22 newRows.unshift(this.pushAlert(elObj));
23 }
24 });
25
26 this.setState({ isNew: false });
27 }
28 if (newRows.length != nrOfAlerts) {
29 // Update if theres new entries
30 /// Count alerts
31 const counts = {};
32 newRows.forEach((x) => {
33 counts[x[5]] = (counts[x[5]] || 0) + 1;
34 });
35
36 Object.keys(counts).forEach((x) => {
37 newRowsCount.push([x, counts[x]]);
38 });
39 // Count alerts
40 rows[’repeated-table’] = newRowsCount;
41 rows[’signature-table’] = newRows;
42
43 this.setState({ nrOfAlerts: newRows.length, rows }, () => {
44 this.updateSort(’signature-table’);
45 this.updateSort(’signature-table’);
46 // BUG needs to run updateSort() twice to avoid elements not being sorted correctly
47 });
48 }
49 });

Chapter 6: Implementation 61

Creating editable forms and tables At the start we tried specifying every configuration setting
which was fairly easy with update.yaml file being reasonably small, however the suricata.yaml file
proved to be too extensive and complex to setup. Instead of specifying every form and tables static-
ally, we chose a more dynamic solution to help ease the setup in the "Config" tab.

The solution was to create a recursive function called setupRecursiveObject shown in Code listing 6.5.
The function traverse through every nested object and builds an array of HTML code that gets re-
turned to be displayed and made editable for the administrator.
The object was built by merging both suricata.yaml and update.yaml into one big object that our func-
tion uses at start. In the function for building the array we perform checks to see if the object path is
matching one of our fixed objects called global.suricataYamlTables and global.suricataYamlToggleable
in Code listing 6.4.

If the first object matches the object path the function will construct a table of the array with the
right columns specified in global.suricataYamlTablesColumns. If the second object matches the object
path, it will create an on and off button that administrator can choose to be applied or not in the
configuration file.

This function will also make it easier to add new configuration settings in suricata.yaml and up-
date.yaml followed by newer Suricata releases with only needing to include their new properties in
Code listing 6.4.

62 Cockpit module for Suricata IDS

Code listing 6.4: Defined objects in vars.jsx

1 global.suricataYamlToggleable = {
2 pfring: [’bpf-filter’, ’bypass’, ’checksum-checks’],
3 stats: [’decoder-events’, ’decoder-events-prefix’, ’stream-events’],
4 };
5
6 // Specify which is a table
7 global.suricataYamlTables = {
8 vars: { ’address-groups’: [], ’port-groups’: [] },
9 ’rule-files’: [],

10 ’af-packet’: [],
11 pcap: [],
12 };
13 global.suricataYamlTablesColumns = {
14 vars: { ’address-groups’: [’Name:’, ’IP-address:’],
15 ’port-groups’: [’Name:’, ’Ports:’] },
16 ’rule-files’: [’Filename’],
17 ’af-packet’: [
18 ’Interface’,
19 ’Cluster-id’,
20 ’Cluster-type’,
21 ’defrag’,
22 ’use-mmap’,
23 ’mmap-locked’,
24 ’tpacket-v3’,
25 ’ring-size’,
26 ’block-size’,
27 ’block-timeout’,
28 ’use-emergency-flush’,
29 ’checksum-checks’,
30 ’bpf-filter’,
31 ’copy-mode’,
32 ’copy-iface’,
33],
34 pcap: [
35 ’Interface’,
36 ’Buffer-size’,
37 ’bpf-filter’,
38 ’checksum-checks’,
39 ’threads’,
40 ’promisc’,
41 ’snaplen’,
42],
43 };

Code listing 6.5 show how it utilizes some of the declared objects in 6.4 explained earlier.

Code listing 6.5: setupRecursiveObject

1 this.setupRecursiveObject = (obj, objPath, html) => {
2 if (html.length == 0) {
3 obj.forEach((key) => {
4 if (typeof textInputValue[key] == ’undefined’) textInputValue[key] = ’’;
5 html.push(
6 <FormGroup
7 id={key}
8 label={key}
9 labelIcon={this.setupSwitch(key)}

Chapter 6: Implementation 63

10 style={{
11 fontWeight: ’bold’,
12 }}>
13 {typeof _.get(textInputValue, [key]) != ’object’ && (
14 <TextInput
15 id={key}
16 value={_.get(textInputValue, [key])}
17 onChange={(nil, e) => {
18 this.handleTextInputChange(nil, e, [key]);
19 this.setState({ updateYamlChanges: true });
20 }}
21 />
22)}
23 </FormGroup>,
24);
25 if (typeof _.get(textInputValue, [key]) == ’object’)
26 this.setupRecursiveObject(_.get(textInputValue, key), [key], html);
27 });
28 return html;
29 }
30 const id = objPath.toString().replaceAll(’,’, ’.’);
31 const indent = objPath.length;
32
33 if (typeof obj == ’object’ && obj) {
34 if (Array.isArray(_.get(global.suricataYamlTables, objPath))) {
35 if (_.get(rows, objPath).length == 0)
36 Object.keys(_.get(textInputValue, objPath)).forEach((key) => {
37 if (/^[0-9]*$/.test(key)) {
38 if (typeof _.get(textInputValue, objPath)[key] == ’object’) {
39 const buildArr = [];
40 _.get(global.suricataYamlTablesColumns, objPath).forEach((key2) => {
41 buildArr.push(_.get(textInputValue, [...objPath, key, key2.toLowerCase()]));
42 });
43 _.get(rows, objPath).push(
44 this.setupNewRow(buildArr, _.get(rows, objPath).length, objPath),
45);
46 } else {
47 _.get(rows, objPath).push(
48 this.setupNewRow(
49 _.get(textInputValue, [...objPath, key]),
50 _.get(rows, objPath).length,
51 objPath,
52),
53);
54 }
55 } else
56 _.get(rows, objPath).push(
57 this.setupNewRow(
58 [key, _.get(textInputValue, objPath)[key]],
59 _.get(rows, objPath).length,
60 [objPath],
61),
62);
63 });
64 html.push(
65 <div
66 style={{
67 ’padding-left’: ‘${indent}em‘,
68 }}>
69 <Table

64 Cockpit module for Suricata IDS

70 id={id}
71 onRowEdit={this.updateEditableRowsnew}
72 aria-label="Editable␣Rows␣Table"
73 variant={TableVariant.compact}
74 cells={_.get(global.suricataYamlTablesColumns, objPath)}
75 rows={_.get(rows, objPath)}>
76 <TableHeader />
77 <TableBody />
78 </Table>
79 <Button
80 icon={<PlusIcon />}
81 style={{ marginRight: ’auto’ }}
82 variant="none"
83 className="pf-c-button␣pf-c-plain"
84 onClick={() => {
85 const emptyBlocks = [];
86 _.times(_.get(global.suricataYamlTablesColumns, objPath).length, () =>
87 emptyBlocks.push(’’),
88);
89 _.get(rows, objPath).push(
90 this.setupNewRow(emptyBlocks, _.get(rows, objPath).length, objPath),
91);
92 this.setState({ rows }, () => {
93 this.addTrashToTable(objPath);
94 });
95 }}
96 />
97 </div>,
98);
99 } else {

100 Object.keys(obj).forEach((key) => {
101 const name = /^-?\d+$/.test(key) ? obj[key] : key;
102 const newPath = [...objPath, key];
103 html.push(
104 <div
105 style={{
106 ’padding-left’: ‘${indent}em‘,
107 }}>
108 {name.toString()}:
109 {typeof _.get(textInputValue, newPath) != ’object’ && (
110 <TextInput
111 id={id}
112 value={_.get(textInputValue, newPath)}
113 onChange={(nil, e) => {
114 this.handleTextInputChange(nil, e, newPath);
115 this.setState({ updateYamlChanges: true });
116 }}
117 />
118)}
119 </div>,
120);
121 if (typeof _.get(textInputValue, newPath) == ’object’)
122 this.setupRecursiveObject(_.get(textInputValue, newPath), newPath, html);
123 });
124 }
125 }
126 return null;
127 };

Chapter 6: Implementation 65

6.4.1 Remove or add cells to table through user interface

PatternFly version 4 has a feature that can make cells in tables editable, but no built-in function-
ality options to add or remove cells. To make it possible to add new cells we added a plus icon on
every table to give the administrator convenient way to add a new cell. For the remove function we
developed a function that is called addTrashToTable(id) which adds a trash icon next to the pen in
tables shown in Figure 6.13, which can be clicked on to delete the selected cell. This function gets
called when:

• The table is created on the page
• The administrator presses the plus icon
• The administrator presses the trash icon

The code works by getting the id of the table displayed on the page as an argument, then uses built-in
methods to get the element by id. When found, the table will start iterating through all the cells and
insert the icon element next to the pen icon.

Code listing 6.6: addTrashToTable

1 addTrashToTable(id) {
2 const { rows, textInputValue } = this.state;
3 try {
4 _.get(rows, id).forEach((_el, index) => {
5 const button = (
6 <Button className="pf-c-button␣pf-m-plain" id={‘${id}deleteButton${index}‘}>
7 <TrashIcon />
8 </Button>
9);

10 const deleteButton = document.createElement(’div’);
11 deleteButton.style.width = ’0px’;
12 deleteButton.onclick = () => {
13 // Delete element from table displayed
14 _.set(
15 rows,
16 id,
17 _.get(rows, id).filter((_nil, i) => i !== index),
18);
19 // Delete element from object list
20 const copy = _.get(textInputValue, id);
21 const newObject = {};
22 Object.keys(copy).forEach((item, loopIndex) => {
23 if (index !== loopIndex) {
24 newObject[item] = copy[item];
25 }
26 });
27 _.set(textInputValue, id, newObject);
28 this.setState(
29 () => ({
30 rows,
31 updateYamlChanges: true,
32 textInputValue,
33 }),
34 () => {
35 this.updateTable(id);
36 },
37);
38 };

66 Cockpit module for Suricata IDS

39 deleteButton.innerHTML = ReactDOMServer.renderToString(button);
40 if (
41 document.getElementById(‘${id}row${index}‘) != null &&
42 document.getElementById(‘${id}deleteButton${index}‘) == null
43)
44 document.getElementById(‘${id}row${index}‘).parentElement.appendChild(deleteButton);
45 });
46 } catch {
47 return null;
48 }
49 return null;
50 }

6.4.2 Spawning processes

In this project we have had the need to spawn processes and retrieve its output. Cockpit makes this
easy by providing us with an API to spawn processes [32]. The function that spawns a process is
called spawn() and it returns a promise that will complete if the process exits successfully, or fail if
there’s a problem.

One example where we needed to spawn a process is to create a signatures file using touch. Touch is
command used in UNIX/linux operating systems to create, change and modify timestamps of a file
[45]. In our case we needed to create an empty file. We did not use Cockpit’s file API here because
it does not provide functionality to create an empty file.

Figure 6.7 shows the code for creating the file with touch. All it does is spawn touch to create a file,
and provide feedback to the administrator on success or failure.

Code listing 6.7: createSignatureFile

1 this.createSignatureFile = () => {
2 const { textInputValue1 } = this.state;
3 cockpit
4 .spawn([’touch’, ‘${surRulesPath}/${textInputValue1}‘], { superuser: ’try’ })
5 .done(() => {
6 this.addAlert(0, ’success’,
7 successfully created file: {textInputValue1});
8 })
9 .catch((error) => {

10 this.addAlert(
11 0,
12 ’danger’,
13 <>
14 <div>
15 Failed creating file: {textInputValue1}
16 </div>
17 <div>
18 Error: {error.message}
19 </div>
20 </>,
21);
22 });
23 };

Chapter 7

Evaluation

In the first part of this chapter we will evaluate our module against all the functional requirements
mentioned in the Requirements chapter. In the second part we present the feedback received from
the surveys that our client and his colleagues took after testing the module.

7.1 Self evaluation

The following table summarizes whether or not the functional requirements were completed, and
detailed descriptions are also presented as below.

Table 7.1: Completion status of functional requirements

Requirement Status
1. The module must allow the administrators to start, stop and restart the Suricata
service via the click of the respective buttons on a web interface

Done

2. The module should allow the administrators to view IDS signatures Partly done
3. The module must enable administration of IDS signatures. The administrators
should be able to add signatures by uploading local files or creating new files. The
administrators should be able to edit or delete signatures.

Done

4. The module must allow the administrators to download IDS signatures from a
vendor and use them.

Done

5. The module must display logs related to the Suricata service. Done
6. The current status of Suricata service should be displayed. Done
7. The module must display the alerts generated by the Suricata IDS. The alerts
can be sorted by date and time, priority, protocol, category and id.

Done

8. The module must be licensed as open source. Done

67

68 Cockpit module for Suricata IDS

Requirement 1: The module must allow the administrators to start, stop and restart the Sur-
icata service via the click of the respective buttons on a web interface
Our module fulfills this requirement. The Service tab has three buttons (start, stop, restart), which
are able to start, stop and restart the Suricata service respectively.

Requirement 2: The module should allow the administrators to view IDS signatures
Our module meets this requirement partly. Administrators can view and edit signatures that are
stored locally. The administrator can also view signatures provided by vendors by opening the link
next to vendor in the ”Vendors” subtab which will redirect the administrator to the file containing the
signatures. This can be a cumbersome process if the administrator wants to find and view a single
signature by itself, and we therefore classify this requirement as partly done.

Requirement 3: The module must enable administration of IDS signatures. The administrators
should be able to add signatures by uploading local files or creating new files. The adminis-
trators should be able to edit or delete signatures
Our module meets this requirement. Administrators can either create a new file or upload an existing
file when adding signatures. These files can be edited or deleted from the interface.

Requirement 4: The module must allow the administrators to download IDS signatures from
a vendor and use them
Our module fulfills this requirement. The module allows downloading of IDS signatures from vendors.
An URL to the vendor’s signature source must be provided.

Requirement 5: The module must display logs related to the Suricata service
Our module meets this requirement. Under the Logs tab, administrators have the option to view sys-
temd logs related to Suricata or the Suricata generated stats.log file. The systemd logs can be filtered
to display logs from ”everything”, ”current boot”, ”previous boot”, ”last 24 hours” or ”last 7 days”.
The tab which displays the stats.log content can be set up to compare data from different time frames.

Requirement 6: The current status of Suricata service should be displayed
Our module fulfills this requirement. The current status of Suricata is displayed on the service tab in
real-time with colors on the text to help identify the status with a quick glance.

Requirement 7: The module must display the alerts generated by the Suricata IDS. The alerts
can be sorted by date and time, priority, protocol, category and id
Our module meets this requirement. The module displays all the alerts generated by Suricata IDS
in the Alerts tab and allows them to be sorted by date and time, priority, protocol, category and id.
However to prevent the browser from using too much resources, only a set of alerts are displayed
at one time. To display older alerts the administrator can click on the ”Click to expand” button at
the bottom of the table. Depending on the amount network traffic and other factors, thousands of
alerts can be generated every second. Hence it is not practical to display all the alerts in a table,
instead one should aggregate the data and display it in a useful format. To take a step in that dir-
ection our module displays a list of repeated alerts. However our client is currently using an ELK
Stack for monitoring alerts triggered by Suricata. With this stack the client already has the ability

Chapter 7: Evaluation 69

to easily search, aggregate and visualise the alerts. For this reason we decided to not prioritize the
alerts tab as much as the other tabs. If we had more time we would like to implement much of
the ELK stack’s functionality into the Suricata module. Additionally we would like to add filtering
capabilities so that the administrator can search for specific alerts using the different fields of an alert.

Requirement 8: The module must be licensed as open source
This requirement is met. The module is copyrighted by NTNU SOC and released under the GPL-2.0-
or-later [34] license, which is an open source license.

7.2 User evaluation

In this section we discuss the feedback we received from our client and his colleagues. We provided
them with a survey and a test environment to test the module. The questions and testing were fo-
cused around the functional requirements, and some of the additional features added to the module.
Five people tested our module and filled out the survey.

We were most interested to know how easy and understandable the different components of the
module were, and as such most of the questions were focused on this. The survey included the
possibility to come with more general feedback and specific wishes in a longer textual answer. Table
7.2 describes what the scores for the survey means, while Table 7.3 shows each question we asked
in the survey.

Table 7.2: User score description

Score 1 2 3 4 5

Description
Very difficult
Very bad
Not useful

Difficult
Bad
Less useful

Neutral
Neutral
Neutral

Easy
Good
Somewhat useful

Very easy
Very good
Useful

Table 7.3: Questions in the survey

1 How well acquainted are you with the administration of Suricata IDS?
2 How easy was it to to start, stop and restart Suricata using our module?
3 How easy was it to find information about the status of Suricata in module?
4 How do you think the presentation of signatures was in our module?
5 How easy was it to add signatures using our module?
6 How easy was it to edit signatures using our module?
7 How easy was it to delete signatures using our module?
8 How easy was it to fetch signatures from a vendor?
9 What do you think of the way we present logs?
10 What do you think of the way we present alarms?
11 How easy was it to configure Suricata using our module?
12 How useful did you find the tooltips given by the module?

70 Cockpit module for Suricata IDS

13 How was your experience using the module?
14 Which web browser did you use when testing the module?
15 What is your overall impression of the module? Feel free to come up with suggestions

for what could have been better. Are there any other features you would like to see
in the module?

The first thing we wanted to know was each of the participants experience with the administration of
Suricata IDS (i.e., Question 1 listed in Table 7.3). This was done in order to gain an understanding of
whether administrators having less experience with Suricata could use the module effectively. Most
of the participants answered that they were well acquainted with administration of Suricata.

All of the participants reported that it was very easy to start, stop, and restart the Suricata service
from our module (i.e., Question 2). Similarly, we got good feedback on whether or not it was easy
to find information about the status of the Suricata service (i.e., Question 3). Two of the participants
answered that they experienced it as easy while three answered that it was very easy.

In question 4, we wanted to know whether the presentation of signatures in the module was sat-
isfactory. One of the participants reported that they were neutral, while three of them thought it
was good, and one very good. The add, edit and delete signature features (see Questions 5-7) were
mostly well received and thought of as easy to use with an average score of 4 out of 5. All of the
participants reported that it was very easy to fetch signatures from a vendor (i.e., Question 8), which
was no surprise considering all the administrator has to do is press the ”Fetch vendors” button.

In question 9, We asked the participants what they thought about the way we present logs. Here
the average score was 4,4 out of 5 and falls into the category between good and very good. On the
similar question regarding alarms (i.e., Question 10), the participants generally thought the way we
present alarms is good.

On a question on how easy it was to configure Suricata using our module (i.e., Question 11), the
average score was 4.2 out of 5 meaning that it was easy to very easy for the participants. The stand-
ard deviation range for Question 12 is considerably big, which tells us that most participants found
tooltips to be somewhat useful and some others less useful. The average score was 3,8 meaning it
was somewhat useful.

Chapter 7: Evaluation 71

Figure 7.1 shows the average score and standard deviation for the short answer questions from the
survey.

1 2 3 4 5 6 7 8 9 10 11 12 13

2.5

3

3.5

4

4.5

5

5.5

Question

A
ve

ra
ge

sc
or

e

Figure 7.1: Survey score graph

In Question 13 we wanted to know the overall experience the participants had when using the mod-
ule. The average score turned out to 4,4 out of 5 which falls into the good to very good category.

We asked the participants which web browser they used when testing the module (i.e., Question 14).
This was to gain a certain idea of the module’s performance on different browsers. The participants
used Safari, Google Chrome, Microsoft Edge and Mozilla Firefox.

72 Cockpit module for Suricata IDS

In the last question we wanted the participants to give a more comprehensive answer about their
overall impression of the module, and whether they had any suggestions for improvements or addi-
tional features that could be added. The participants answered as follows:

• Respondent 1:
Overall good, some features a little unfinished.

• Respondent 2:
This seems like a nice module. It seems to simplify administration of a single sensor. It would
be nice to store the configuration in a git-repo as well, so it can be replicated across multiple
sensors.

• Respondent 3:
No answer

• Respondent 4:
I love the idea of doing the configuration and ID management from a graphical interface. I think
it has great potential to improve the general understanding of how Suricata is configured and
present alerts in such a way that is more understandable by the mass and not just by people
with deep understanding of the service. I don’t think that being able to configure Suricata in the
interface as it is now is necessarily better or worse. You still need to understand how Suricata
work and what it is you wish to achieve. Also if you administrate Suricata, chances are you
also know how to use a terminal and flat text configuration files. So unless there is something
added like for example an easy to reach description of what each setting does and how it can be
used or validation/error checking individual settings, the GUI does not add anything in terms
of how easy it is to configure of Suricata. I still love the idea and it has massive potential, but I
personally feel the potential lays in automating adding/removing rules, adding rules manually
and helping the person "choose the right things" when creating a rule and fleet management
(being able to see data/rules for all the Suricata nodes in your network).

• Respondent 5:
I would like an easy way to disable a rule. A way to see each rule with in the rulefiles could be
nice, maybe with a view of alerts from said rule.

The general response was mostly positive and indicated to us that we were on the right track. The
idea of doing the configuration and ID-management of Suricata from a graphic interface was well
received and believed to have great potential in improving the general understanding of how Sur-
icata is configured.

From the feedback we gathered that the current version of the module does not necessarily make
the configuration of Suricata better or worse. It is still necessary for the administrator to understand
how Suricata works, and know what they want to achieve. Another good point was that unless better
descriptions of what each setting does and how the setting can be used, the graphical user interface
does not make the configuration of Suricata any easier. This is especially true for administrators who
already have experience with Suricata as they are already familiar with using a terminal and flat text

Chapter 7: Evaluation 73

configuration files.

One participant told us that some features seemed a little unfinished which is a fair assessment as
some features in the Config and Alerts tab could need a fair bit of work. One suggestion we received
was the ability to store the configuration in a git repository so that it could be replicated across mul-
tiple sensors. Another participant suggested an easier way to disable a rule, and the possibility to see
each rule within the signature files, perhaps with a view of alerts from said rule.

Chapter 8

Closing Remarks

In this chapter we will discuss our thoughts on the project as a whole and talk about what we have
learned.

8.1 Discussion and learning outcome

The group members have worked as a group in earlier projects and as such knew each others
strengths and weaknesses, and how we work as a group. There has always been good communication
between the members which resulted in a constructive work environment, with no major disagree-
ments within the group. The disagreements that did occur were focused on specific project related
choices and were handled by voting.

Due to the pandemic the group members are located in different cities. The group made a decision to
work remotely using different tools like git, overleaf and discord, described in Chapter 4. However
we agreed to meet physically if working remotely caused any major issues. Fortunately for us there
were no such issues.

The group had regular meetings with the supervisor every Wednesday, where we presented our
weekly progress. These meetings were extremely important as the group received feedback on pos-
sible improvements. To ensure that we were developing a module that met the client’s expectations,
we had occasional meetings with our client. Additionally the group met three times per week to work
collectively. These meetings were valuable because the members could share their thoughts on how
to solve the different tasks, and make decisions together as a group. Since we worked in parallel on
the development and thesis writing, the meetings served to update each other on the progress made
to either task.

To distribute the tasks we initially split up the group where two members focused on the devel-
opment while the other two focused on writing the thesis. However there were times the group
needed more focus on development, and times where more focus was needed on writing the thesis.
In these situations adjustments were made to have three or all members work on development or
writing the thesis. In our weekly meetings we discussed if we needed to add or reprioritize tasks.

74

Chapter 8: Closing Remarks 75

One of the biggest challenges our group had was time management as we had initially miscalcu-
lated how much time we would need to develop the module. This meant that we had to delay the
writing of some parts of the thesis until the necessary functionality in the module was ready. This
was especially true for the implementation chapter as many of the pictures and code snippets would
be outdated by the time they were written.

The main reasons for the delay on the development was due to scope creep and the fact that no
one on the group had any experience with React prior to this project. While developing the module
we saw that we could add features that would improve the usability of the module. This led to us
spending a lot of time developing these features. At some point we decided on a new deadline for
the development and made a priority list of what was being worked on.

In our project plan we had originally planned to take a testing first approach to the development.
However, we abandoned this approach as we needed to allocate more time to develop the module.

None of our members had much experience with the technologies we had to use and as such had to
spend some time early in the project to brush up on those. We knew about some of the fundamentals
behind Intrusion Detection Systems, but had never actually used one before this project. Diving into
the intricacies of Suricata helped us gain a better understanding of IDS. React is a framework none
of the group members had used before, and as such had to spend some time to learn about and get
accustomed to.

8.2 Conclusion

The main goal of the project was to develop a module for the web-based interface Cockpit that would
simplify the management of Suricata IDS. After nearly six months of work on the bachelor project
we can confidently say that we are happy with the resulting product. The module meets all the initial
requirements as well as some additional features that we believe increases the general usefulness of
the module.

There is no doubt that the module can be improved upon and we have listed our suggestions for
improvements in the next section ”Future Work”. All the new technologies we learned and experi-
ence we gained by working on this project will undoubtedly serve us well in the future.

8.3 Future Work

The module is finished and functional as per the requirements set by our client, however there are
possibilities for some improvements and additions that could make the module even better. These
improvements came to us during development and in conversations with the client, but had to be
set aside due to time constraints.

• Add error checking when process output stream prints standard error
When the administrator presses the ”apply changes” button, the spawned process will be out-

76 Cockpit module for Suricata IDS

put in a window for the administrator to see how the process is doing. This can be achieved
by redirecting standard error to its own stream output notifying the administrator.

• Improve Config tab code
The Config tab is currently acting as a prototype since it was not one of our initial requirements.
The code handling reading ”suricata.yaml” and ”update.yaml” recursively is not written optim-
ally, so a rewrite could help readability and clear out some bugs.

• Add outline and a search bar in config tab
Covering all the ”suricata.yaml” config options fill the page with too many options making it
unorganized and overwhelming to use. An idea to fix this is to add an outline bar to help nav-
igate the administrator and add a search bar for the more experienced administrator to quickly
filter out the unwanted options.

• Integrate Puppeteer with Jest
For now the tests needs to be executed manually. By integrating our tests with Jest it would
help managing our tests better without doing it manually.

• Add more testing
Currently we have only written one test that checks for three things:

◦ Logging into Cockpit
◦ Select Suricata module
◦ Tests all buttons in Service tab

We planned to have tests on every tab and their subtabs, but due to time constraint we only
managed to create one test that can be used as a template to help develop more tests.

• ”Create file” adds .rules extension on its own
In the current implementation the administrator has to add the ”.rules” extension manually
when creating a new file. As there are no other extensions allowed in this specific case we
could save the administrator some time by adding the extension automatically.

• Visual representation
We really wanted to represent some of the data in a more meaningful way. This would be the
case for statistical records from Suricata’s ”stats.log” file. Data like packet loss, kernel loss,
memory usage and alerts detected, etc., could be shown in graphs so that it is easier to get a
quick overview of what is happening.

• Tool tips
Another nice addition would be to have the possibility to hover over e.g., the counters in the
statistics to get a short summary of what they mean. This would be helpful for administrators
not as familiar with Suricata.

• Better presentation of alerts

Chapter 8: Closing Remarks 77

For now the alert tab is almost featureless when it comes to the visual presentation of alerts
and filtering. It would be tremendously helpful for the administrator to have a way to filter
displayed alerts by having the ability to search for alerts and specify matching columns such
as date, priority, ports, and the source or destination of the IP-address. To represent the data
in a simplified manner, we wanted to use diagrams that are interactive with the filter bar to
display alerts on a diagram. The diagram could also be exportable as an image file.

• Exportable data
To assist the administrators with statistics, it would be helpful to make alerts exportable to a
CSV file. These can then be processed on other math software. The filter ability can also help
with separating unwanted data from the CSV.

• Localize signatures
With many signatures active it can be a struggle to manage and fix potential signature issues.
By making every cell in the "Id" column interactive such that clicking them would point the
administrator to where the signature originates from, either a local rule file or a vendor, it
could help administrators localize the signature. This feature would allow the administrator
to easily find where the signature is defined and take further actions (e.g., edit the signature).

Bibliography

[1] E. B.V., What is the elk stack? https://www.elastic.co/what-is/elk-stack, n.d.

[2] What is gnu/linux? https://www.techopedia.com/definition/15759/gnulinux, n.d.

[3] Introducing json, https://www.json.org/json-en.html, n.d.

[4] Linode, What is systemd? https://www.linode.com/docs/guides/what-is-systemd/, 2020.

[5] Wikipedia contributors, Url — Wikipedia, the free encyclopedia, https://en.wikipedia.org/
w/index.php?title=URL&oldid=1015459310, [Online; accessed 20-May-2021], 2021.

[6] pQd, What is the difference between unix sockets and tcp/ip sockets? https://serverfault.
com/a/124518, 2010.

[7] suricata, Suricata, https://suricata-ids.org/, n.d.

[8] cockpit-project, Cockpit, https://cockpit-project.org/, n.d.

[9] Distrowatch, Major distributions, https://distrowatch.com/dwres.php?resource=major,
n.d.

[10] W. contributors, Intrusion detection system, https://en.wikipedia.org/w/index.php?
title=Intrusion_detection_system&oldid=1015627231, 2021.

[11] W. contributors, Host-based intrusion detection system, https://en.wikipedia.org/w/index.
php?title=Host-based_intrusion_detection_system&oldid=1015627294, 2021.

[12] M. Rezek, What is the difference between signature-based and behavior-based intrusion detection
systems? https://accedian.com/blog/what-is-the-difference-between-signature-
based-and-behavior-based-ids/, 2020.

[13] Bricata, What is suricata? intro to a best of breed open source ids and ips, https://bricata.
com/blog/what-is-suricata-ids/, 2021.

[14] O. I. S. Foundation, Suricata rules, https://suricata.readthedocs.io/en/suricata-
6.0.2/rules/intro.html, n.d.

[15] O. I. S. Foundation, Suricata rules, https://redmine.openinfosecfoundation.org/projects/
suricata/wiki/Suricata_Rules, n.d.

[16] O. I. S. Foundation, Suricata yaml, https://suricata.readthedocs.io/en/suricata-
6.0.2/configuration/suricata-yaml.html?highlight=suricata.yaml#action-order,
n.d.

[17] O. I. S. Foundation, 6.1. rules format, https://suricata.readthedocs.io/en/suricata-
6.0.0/rules/intro.html#rule-options, n.d.

78

https://www.elastic.co/what-is/elk-stack
https://www.techopedia.com/definition/15759/gnulinux
https://www.json.org/json-en.html
https://www.linode.com/docs/guides/what-is-systemd/
https://en.wikipedia.org/w/index.php?title=URL&oldid=1015459310
https://en.wikipedia.org/w/index.php?title=URL&oldid=1015459310
https://serverfault.com/a/124518
https://serverfault.com/a/124518
https://suricata-ids.org/
https://cockpit-project.org/
https://distrowatch.com/dwres.php?resource=major
https://en.wikipedia.org/w/index.php?title=Intrusion_detection_system&oldid=1015627231
https://en.wikipedia.org/w/index.php?title=Intrusion_detection_system&oldid=1015627231
https://en.wikipedia.org/w/index.php?title=Host-based_intrusion_detection_system&oldid=1015627294
https://en.wikipedia.org/w/index.php?title=Host-based_intrusion_detection_system&oldid=1015627294
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids/
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids/
https://bricata.com/blog/what-is-suricata-ids/
https://bricata.com/blog/what-is-suricata-ids/
https://suricata.readthedocs.io/en/suricata-6.0.2/rules/intro.html
https://suricata.readthedocs.io/en/suricata-6.0.2/rules/intro.html
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules
https://suricata.readthedocs.io/en/suricata-6.0.2/configuration/suricata-yaml.html?highlight=suricata.yaml#action-order
https://suricata.readthedocs.io/en/suricata-6.0.2/configuration/suricata-yaml.html?highlight=suricata.yaml#action-order
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html#rule-options
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html#rule-options

Bibliography 79

[18] O. I. S. Foundation, 6.2.1. msg (message), https://suricata.readthedocs.io/en/latest/
rules/meta.html#msg-message, n.d.

[19] O. I. S. Foundation, 10.1. suricata.yaml, https://suricata.readthedocs.io/en/latest/
configuration/suricata-yaml.html, n.d.

[20] O. I. S. Foundation, Eve json output, https://suricata.readthedocs.io/en/suricata-
6.0.0/output/eve/eve-json-output.html, n.d.

[21] O. I. S. Foundation, Statistics, https://suricata.readthedocs.io/en/suricata-6.0.0/
performance/statistics.html, n.d.

[22] O. I. S. Foundation, 10.1.8.10. stats, https://suricata.readthedocs.io/en/suricata-
6.0.0/configuration/suricata-yaml.html?highlight=stats.log#id1, n.d.

[23] O. I. S. Foundation, 7.1.3. controlling which rules are used, https://suricata.readthedocs.
io/en/suricata-6.0.0/rule-management/suricata-update.html?highlight=suricata.
rules#controlling-which-rules-are-used, n.d.

[24] O. I. S. Foundation, Suricata-update - update, https://suricata-update.readthedocs.io/
en/latest/update.html, n.d.

[25] O. I. S. Foundation, Suricata-update, https://github.com/OISF/suricata-update#files-
and-directories, n.d.

[26] O. I. S. Foundation, Rule matching, https://suricata-update.readthedocs.io/en/latest/
update.html#rule-matching, n.d.

[27] O. I. S. Foundation, Example configuration files, https://suricata-update.readthedocs.
io/en/latest/update.html#example-configuration-files, n.d.

[28] cockpit-project, Running cockpit, https://cockpit-project.org/running.html, n.d.

[29] OISF, Index.yaml, https://www.openinfosecfoundation.org/rules/index.yaml, n.d.

[30] D. Radigan, What is kanban? https://www.atlassian.com/agile/kanban, n.d.

[31] Git, Git, https://git-scm.com/, n.d.

[32] cockpit-project, Cockpit.js: Spawning processes, https : / / cockpit - project . org / guide /
latest/cockpit-spawn, n.d.

[33] cockpit-project, Api: Base1, https://cockpit-project.org/guide/236/api-base1.html,
n.d.

[34] W. contributors, Gnu general public license, https://en.wikipedia.org/w/index.php?title=
GNU_General_Public_License&oldid=1015788252, 2021.

[35] B. Smith, A quick guide to gplv3, https://www.gnu.org/licenses/quick-guide-gplv3.html,
2007.

[36] Wikipedia contributors, Mit license — Wikipedia, the free encyclopedia, https://en.wikipedia.
org/w/index.php?title=MIT_License&oldid=1014888256, [Online; accessed 20-May-
2021], 2021.

[37] M. Pitt, Cockpit-project / starter-kit, https://github.com/cockpit-project/starter-kit,
n.d.

https://suricata.readthedocs.io/en/latest/rules/meta.html#msg-message
https://suricata.readthedocs.io/en/latest/rules/meta.html#msg-message
https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html
https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html
https://suricata.readthedocs.io/en/suricata-6.0.0/output/eve/eve-json-output.html
https://suricata.readthedocs.io/en/suricata-6.0.0/output/eve/eve-json-output.html
https://suricata.readthedocs.io/en/suricata-6.0.0/performance/statistics.html
https://suricata.readthedocs.io/en/suricata-6.0.0/performance/statistics.html
https://suricata.readthedocs.io/en/suricata-6.0.0/configuration/suricata-yaml.html?highlight=stats.log#id1
https://suricata.readthedocs.io/en/suricata-6.0.0/configuration/suricata-yaml.html?highlight=stats.log#id1
https://suricata.readthedocs.io/en/suricata-6.0.0/rule-management/suricata-update.html?highlight=suricata.rules#controlling-which-rules-are-used
https://suricata.readthedocs.io/en/suricata-6.0.0/rule-management/suricata-update.html?highlight=suricata.rules#controlling-which-rules-are-used
https://suricata.readthedocs.io/en/suricata-6.0.0/rule-management/suricata-update.html?highlight=suricata.rules#controlling-which-rules-are-used
https://suricata-update.readthedocs.io/en/latest/update.html
https://suricata-update.readthedocs.io/en/latest/update.html
https://github.com/OISF/suricata-update#files-and-directories
https://github.com/OISF/suricata-update#files-and-directories
https://suricata-update.readthedocs.io/en/latest/update.html#rule-matching
https://suricata-update.readthedocs.io/en/latest/update.html#rule-matching
https://suricata-update.readthedocs.io/en/latest/update.html#example-configuration-files
https://suricata-update.readthedocs.io/en/latest/update.html#example-configuration-files
https://cockpit-project.org/running.html
https://www.openinfosecfoundation.org/rules/index.yaml
https://www.atlassian.com/agile/kanban
https://git-scm.com/
https://cockpit-project.org/guide/latest/cockpit-spawn
https://cockpit-project.org/guide/latest/cockpit-spawn
https://cockpit-project.org/guide/236/api-base1.html
https://en.wikipedia.org/w/index.php?title=GNU_General_Public_License&oldid=1015788252
https://en.wikipedia.org/w/index.php?title=GNU_General_Public_License&oldid=1015788252
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://en.wikipedia.org/w/index.php?title=MIT_License&oldid=1014888256
https://en.wikipedia.org/w/index.php?title=MIT_License&oldid=1014888256
https://github.com/cockpit-project/starter-kit

80 Cockpit module for Suricata IDS

[38] webpack.js.org, https://webpack.js.org/, n.d.

[39] GNU.org, Gnu make, https://www.gnu.org/software/make/, 2020.

[40] O. Foundation and other contributors, Find and fix problems in your javascript code, https:
//eslint.org/, n.d.

[41] Wikipedia contributors, React (javascript library) — Wikipedia, the free encyclopedia, https://
en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1017634608,
[Online; accessed 20-May-2021], 2021.

[42] reactjs, About patternfly, https://www.patternfly.org/v4/get-started/about, n.d.

[43] Puppeteer, Puppeteer, https://pptr.dev/, n.d.

[44] cockpit-project, Contributing, https://cockpit-project.org/external/wiki/Contributing.
html, n.d.

[45] B. Rani, Touch command in linux with examples, https://www.geeksforgeeks.org/touch-
command-in-linux-with-examples/, 2021.

https://webpack.js.org/
https://www.gnu.org/software/make/
https://eslint.org/
https://eslint.org/
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1017634608
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1017634608
https://www.patternfly.org/v4/get-started/about
https://pptr.dev/
https://cockpit-project.org/external/wiki/Contributing.html
https://cockpit-project.org/external/wiki/Contributing.html
https://www.geeksforgeeks.org/touch-command-in-linux-with-examples/
https://www.geeksforgeeks.org/touch-command-in-linux-with-examples/

Appendix A

Additional Material

81

Chapter A: Additional Material 83

A.1 Project Survey

Cockpit module for administration

of Suricata IDS

We would like your feedback regarding the module.

The survey should not take more than 10 minutes :)

Answers with a scale from 1 to 5 have the following representation:

1 2 3 4 5

Very difficult Difficult Neutral Easy Very easy

Very bad Bad Neutral Good Very good

Not useful Less useful Neutral Somewhat useful Useful

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is
not responsible for the privacy or security practices of its customers, including those of this form owner. Never

88 Cockpit module for Suricata IDS

Table A.1: User testing result from 5 participants

Survey parti-
cipants

#1 #2 #3 #4 #5

How well ac-
quainted are
you with the
administration
of Suricata IDS?

5 4 3 3 5

How easy was
it to start, stop
and restart Sur-
icata using our
module?

5 5 5 5 5

How easy was
it to find in-
formation about
the status of
Suricata in
module?

4 5 5 4 5

How do you
think the
presentation
of signatures
was in our
module?

4 4 5 3 4

How easy was
it to add signa-
tures using our
module?

5 4 5 3 4

How easy was
it to edit signa-
tures using our
module?

4 4 5 5 4

How easy was it
to delete signa-
tures using our
module?

4 4 5 5 4

How easy was
it to fetch sig-
natures from a
vendor?

5 5 5 5 5

Chapter A: Additional Material 89

What do you
think of the
way we present
logs?

3 5 5 4 5

What do you
think of the
way we present
alarms?

3 5 4 4 4

How easy was
it to configure
Suricata using
our module?

4 5 4 3 5

How useful did
you find the
tooltips given
by the module?

5 4 3 2 5

How was your
experience us-
ing the module?

4 5 4 4 5

Which web
browser did
you use when
testing the
module?

Safari,
Chrome,
Mi-
crosoft
Edge

Firefox Safari Firefox

90 Cockpit module for Suricata IDS

What is your
overall impres-
sion of the
module? Feel
free to come
up with sugges-
tions for what
could have been
better. Are there
any other fea-
tures you would
like to see in the
module?

Overall
good,
some
features
a little
unfin-
ished.

This seems
like a nice
module. It
seems to
simplify ad-
ministration
of a single
sensor. It
would be
nice to store
the config-
uration in
a git-repo
as well,
so it can
be replic-
ated across
multiple
sensors.

I love the idea of doing the
configuration and ID manage-
ment from a graphical inter-
face. I think it has great poten-
tial to improve the general un-
derstanding of how Suricata is
configured and present alerts in
such a way that is more un-
derstandable by the mass and
not just by people with deep
understanding of the service.I
don’t think that being able to
configure suricata in the inter-
face as it is now is necessar-
ily better or worse. You still
need to understand how Sur-
icata work and what it is you
wish to achieve. Also if you
administrate Suricata, chances
are you also know how to use
a terminal and flat text config-
uration files. So unless there is
something added like for ex-
ample an easy to reach descrip-
tiopn of what each setting does
and how it can be used or valid-
ation/error checking individual
settings, the gui does not add
anything in terms of how easy
it is to configure of Suricata.I
still love the idea and it has
massive potential, but I per-
sonally feel the potential lays
in automating adding/remov-
ing rules, adding rules manu-
ally and helping the person
"choose the right things"" when
creating a rule and fleet man-
agement (being able to see
data/rules for all the Suricata
nodes in your network)."

I would like
an easy way
to disable a
rule. A way
to see each
rule with in
the rulefiles
could be
nice, maybe
with a view
of alerts
from said
rule.

Chapter A: Additional Material 91

A.2 Project Proposal

Cockpit modul for administrasjon av Suricata IDS

Seksjon for Digital sikkerhet ved NTNU har ansvaret for deteksjon, sikkerhetsanalyse og
hendelseshåndteringen ved NTNU. Over en periode siden 2016 har seksjonen bygget opp et
sensornettverk for å oppdage brudd på sikkerheten til NTNU hvor en av
hovedkomponentene i denne løsningen er basert på det åpne kildekode
intregningsdeteksjonssyetemet Suricata [1]. Seksjonen er en partner i et
samarbeidsprosjekt for å etablere et nasjonalt cybersikkerhetssenter for kunnskapssektoren
døpt «Cybersikkerhetssenteret for Forsking og utdanning» eller kortversjonen «EduCSC-
NO». Dette prosjektet er et samarbeid imellom Uninett AS, UiO CERT og NTNU SOC.
Modulen ønskes utviklet med bakgrunn av arbeidspakken «Sensorplattform» som har som
mål å bygge den neste generasjonen av nettverksbaserte IDS-sensorer for
kunnskapssektoren.

Oppdragsgiver
Seksjon for Digital sikkerhet ved NTNU har ansvaret for deteksjon, sikkerhetsanalyse og
hendelseshåndteringen ved NTNU. Oppdraget gis på vegne av satsningen ved å etablere
«Cybersikkerhetssenteret for Forskning og utdanning».

Kontaktperson 1 (Hovedkontaktperson):
Navn: Christoffer Vargtass Hallstensen
Tittel: Gruppeleder, NTNU SOC
Epost: christoffer.hallstensen@ntnu.no
Tel: 611 35 145 / 481 35 180

Kontaktperson 2:
Navn: Arne Øslebø
Tittel: Senior teknisk arkitekt, Uninett AS
Epost: arne.oslebo@uninett.no

Oppgavens mål
Oppgaven går ut på å utvikle en plugin/modul til administrasjonsgrensesnittet cockpit
(https://cockpit-project.org) som forenkler administrasjon av Suricata IDS/NSM
(https://suricata-ids.org) sensorer ved å tilby et grafisk brukergrensesnitt som kan
aksesseres i en nettleser. Målet med dette er å senke terskelen for at sluttbruker kan gjøre
enkle administrative oppgaver på sensorer plassert ute i egen organisasjon.

Oppgavens krav
Modulen som utvikles må tilfredsstille følgende krav:

• Starte, restarte og stoppe tjenesten suricata
• Kunne administrere IDS-signaturer
• Vise helsetilstanden til tjenesten

Vise relevante tjenestelogger
• Vise alarmer
• Produktet må lisensieres som åpen kildekoden

Chapter A: Additional Material 93

A.3 Project Plan

Project Plan

Sindre Morvik, Anders Svarverud,
Sigve Sudland, Said-Emin Letsjievitsj Evmurzajev

February 2, 2021

1

Contents

1 Background and goals 4
1.1 About us . 4
1.2 Background . 4
1.3 Project Goals . 4

2 Scope 4
2.1 Subject Area . 4
2.2 Task Description . 5
2.3 Requirements . 5

2.3.1 Functional requirements . 5
2.3.2 Non-functional requirements . 5

2.4 Limitations . 6
2.4.1 Operating System . 6
2.4.2 Testing in production environment . 6
2.4.3 BitBucket pipeline . 6

3 Project Organization 6
3.1 Roles and Responsibilities . 6
3.2 Workflow and Group Rules . 7

3.2.1 Workflow . 7
3.2.2 Group Rules . 7

4 Planning and Reporting 8
4.1 Main Project Sections . 8

4.1.1 Development Model . 8
4.1.2 Method and Approach . 8

4.2 Status Meetings and Decision Points . 8

5 Quality Control 9
5.1 Documentation, Standards and Source Code . 9
5.2 Configuration Management . 9
5.3 Risk Analysis . 9

6 Project Plan 10
6.1 Work Breakdown Structure . 10
6.2 Module architecture . 11
6.3 Interface mock-up . 12
6.4 Overall system architecture . 12
6.5 Gantt Diagram . 13
6.6 Deadlines . 14
6.7 Deliveries . 14

2

3

1 Background and goals

1.1 About us

We are four students in our last semester of the study program IT-Operations and Information
Security at the Norwegian University of Science and Technology (NTNU) in Gjøvik. We are a
varied group with many different interests and therefore, have some differences in which subjects
we chose. We see the varied experiences of our members as a strength in a big project like this.

1.2 Background

Section for Digital Security at NTNU (NTNU SOC) has since 2016 built a sensor network based
on the open source Intrusion detection system (IDS) Suricata to help with identifying security
incidents. NTNU SOC is currently in cooperation together with Uninett AS and UiO CERT on
a project to establish a national cyber security center for the education sector named ”Cyber-
sikkerhetssenteret for Forskning og Utdanning”. One part of this project is the ”Sensor platform”
which has as a goal to build the next generation of network based IDS-sensors for the education
sector. The Cockpit module for Suricata IDS is developed as a part of this.

Cockpit is an interactive server administration interface. It is free, easy-to-use, integrated,
glanceable, and open web-based.[1]
It is mainly used to provide a graphical web interface for services that are otherwise managed
from a terminal.

An Intrusion Detection System (IDS) is described by Wikipedia as ”a device or software appli-
cation that monitors a network or systems for malicious activity or policy violations.” [2] When
suspicious activity is discovered by the system an alert is generated and sent to the administra-
tors.

1.3 Project Goals

This project should result in a Cockpit module for administrating Suricata, and is developed
with the goal of making the administration easier by implementing a graphical web interface.
The project should also result in a thesis that reflects on the process of creating the module,
and the decisions that were made.

2 Scope

2.1 Subject Area

The project will touch several different areas within software engineering, web-development,
security and IT-Operations fields.

• Developing a Cockpit module

– Create a plugin for the Cockpit User Interface to easily manage Suricata.

• DevOps CI/CD

– Develop pipeline for testing newly committed code pushed by a developer by running
real life scenario testing procedures and validating the output before deployment.

• Web design and development

– Cockpit plugin uses Javascript, HTML and CSS files for structure and layout.

• Information security

– Avoid creating vulnerabilities while developing the module.

4

2.2 Task Description

Our task is to develop a module for the web-based interface tool for server administration, Cock-
pit, that will simplify the administration of Suricata IDS. The end product should be a graphical
user interface for Suricata that can be accessed in a web browser. The goal of the project is to
reduce the threshold for end users to do simple administrative tasks on sensors within their own
organizations. The end user can vary from organization to organization, but in this project we
will assume that the end user is a system administrator.

2.3 Requirements

2.3.1 Functional requirements

1. The module should allow the user to start, stop and restart the Suricata service via the
click of the respective buttons.

2. The module should allow the user to view IDS signatures in a readable format.

3. The module should enable easy administration of IDS-signatures. IDS-signatures are the
rule sets/patterns used by the IDS to detect suspicious activity.

4. The module should allow the user to easily download IDS signatures from a vendor and
use them.

5. The module should display logs related to the Suricata service.

6. It should be possible to search and sort the log entries using the fields a log entry consists
of (e.g. priority, time).

7. The status of Suricata service should be displayed on the cockpit web interface.

8. The module should display the alarms generated by the IDS.

9. The module should allow the displayed alarm entries to be searched and sorted, using fields
the entry consists of.

2.3.2 Non-functional requirements

2.3.2.1 Compatibility
Cockpit is supported and tested on the following operating systems: [3]

• Fedora

• Red Hat

• Fedora CoreOS

• Project Atomic

• CentOS

• Debian

• Ubuntu

Cockpit is developed for and routinely tested for the following web browsers:[3]

• Firefox

• Google Chrome

• Microsoft Edge

With this in mind we will take the same approach and focus our development for those three
browsers. According to the documentation[3] Cockpit might also work with other browsers.

5

2.3.2.2 Reliability and maintainability
In order to increase the maintainability of the module, we will strive to have good documen-
tation and comments in the code. Taking a modular approach to the code will also improve
maintainability.

By following best practices and taking a testing first approach we will reduce the chance of us
making mistakes and introducing bugs in the code.

2.3.2.3 Security
By following coding and security best practices we will reduce the attack surface of the module.

2.3.2.4 Usability
The underlying goal of the module is to make it easy to use. Our thought process is that end
users should be able to administrate Suricata with minimal knowledge of the service. To make
this possible we will leverage research done on the topic of web design. Cockpit’s interface is
already a good starting point and we will attempt to design our module in a way that blends
well with that. An intuitive graphical interface will go a long way to ease up the demanding
technological knowledge otherwise needed to administrate Suricata through the terminal. We
will implement input validation to ensure that valid values are entered, and provide suitable
error messages.

2.4 Limitations

2.4.1 Operating System

To streamline the development of the module, we have decided to use Ubuntu as the main
development platform. We will not take other Linux distributions into consideration, but this
should not have any serious impact on the end product. We will use the system and service
manager systemd [4], for information regarding the status of services. This might cause some
troubles on more obscure Linux distributions that do not support systemd, but it should not be
a problem on most popular distributions.

2.4.2 Testing in production environment

As we do not have access to the live sensors placed in NTNU’s locations we can only test
the module using publicly available pcap files to simulate network traffic. This should work
fine for our purposes, despite not having the possibility to test the module in the production
environment.

2.4.3 BitBucket pipeline

In our student BitBucket plan subscription we are currently limited to 500 build minutes per
month. Instead of running the pipeline for every commit, we have changed it to run on pull
requests to conserve the time.

3 Project Organization

3.1 Roles and Responsibilities

Project Leader: Sindre Morvik
Vara Leader: Sigve Sudland
Secretaries: Said-Emin Evmurzajev and Anders Fjeldheim Svarverud

6

3.2 Workflow and Group Rules

3.2.1 Workflow

We use Clockify to keep track of time spent by each member on different tasks related to the
project. All tasks that need to be done will be added to Trello and each member moves the task
they are working on to the ”In Progress” stage. After a member is done working with a task
they will move it to the ”Peer Review” stage where every member will quality check each others
work. After the ”Peer Review” is done, the task will be moved on to ”In Test” stage where we
try to integrate it into our test environment. When everything is working like it should the task
is finally moved to the ”Done” stage.

When a developer wants to push changes to our git repository in Bitbucket they will need
to work on a separate branch and create a pull request for other members to review. During the
review of the pull request a CI pipeline will be automatically started to validate the new changes
does compile without warnings/errors, linting and acceptance testing. It is very important for
the developer to create meaningful commit messages that explains the changes like fixes, typos
and added/removed features. This way we can quickly track down the broken changes.

We have created a Discord channel that we use for voice and text communication between the
group member. Communication with our client and our supervisor is to be done via Microsoft
Teams, meetings included.

3.2.2 Group Rules

3.2.2.1 Scheduled Meetings Every Monday from 12:30 the group meets for a status report
and to make ready for the meeting with our supervisor. Each Wednesday we meet with our
supervisor 11:00 - 11:30. After the meeting with our supervisor we will again meet to discuss
the feedback we got from 11:30-12:30. Each Friday we meet to work together from 10:00-17:00.
Every member can call in for extra group meetings should they see the need for it. There should
be a minimum of 2 days notice for meetings outside the regular scheduled plan.

3.2.2.2 Workload Every group member is expected to work between 25 - 30 hours per week
until the project deadline.

3.2.2.3 Absence If a member is not able to show up to meetings or is unable to work due
to e.g. illness the group should be notified in advance. If necessary tasks will be assigned to
another group member.

3.2.2.4 Securing the project report We will use Overleaf’s integrated version control
system to keep track of changes to the project report and related documents. The group will
also sync the overleaf project to a GitHub repository which will act as a secondary backup.

3.2.2.5 Logging Every group member logs their time used on the project on Clockify, a
simple time tracker and timesheet app. We will keep meeting minutes from our weekly meetings
with our supervisor, from every meeting we have with our client, and from our own scheduled
meetings. Additionally everyone in the group has to write a recap of all the work they do during
the week.

3.2.2.6 Rule violations If a member commits a violation of the rules, he will be notified
by the other members of the transgression. Repeated violations will result in a written and oral
warning. If any member receives three warnings, all members will be called in for a meeting
with our supervisor. In the meeting we will discuss what needs to be done to prevent further
violations. All warnings given to members of the group must be documented.

7

4 Planning and Reporting

4.1 Main Project Sections

4.1.1 Development Model

When deciding on a development model we discussed using either Waterfall, Scrum, eXtreme
Programming or Kanban. Due to the nature of our project we decided to use Kanban with some
elements from eXtreme Programming. The reasoning behind our choice was that it is very agile
allowing new tasks to be added to the backlog and to be worked on immediately. In contrast to
scrum that has us locked into a cycle which we did not find beneficial for this project. We also
decided multiple functions can be developed in parallel, which makes the sequential waterfall
model unsuitable for us.

Kanban has a concept called WIP limit. If a state/column e.g. ”in progress” has a WIP
limit of three that column can not have more than three cards (i.e. tasks) in it. When a column
is maxed out the team focuses on those cards so they can be moved forward. The WIP limits
expose bottlenecks in the workflow and can be used to improve the workflow and make it more
efficient [5]. At the moment we have decided to put WIP limit of eight on the work in progress
stage, WIP limit of four on the peer review stage and a WIP limit of three on the testing stage.
It is the group’s first time using Kanban, and it is hard to decide the limits that will work best
for us, therefore, these limits might be modified later on to better fit us.

We also chose to include test-driven development from eXtreme programming in our Kanban de-
velopment model [6]. Test driven development focuses on writing the tests based on the client’s
requirements before writing the code.

4.1.2 Method and Approach

The final module should provide a graphical web interface. To achieve this, we will first make a
mock-up of how we want the interface to look. The mock-up will then be shown to our clients
for them to provide us with some feedback as to how they think it should be. From the feedback
we can ascertain a shared vision of how the final product will look. The work on the interface
will most likely be a very iterative process with several additional changes along the way. We
will follow this same process until we have an interface that will satisfy the client and provide
end users with an easy entry-point into Suricata administration.

As for the development and testing we will have to be careful. Due to confidentiality concerns we
might not be able to gain access to the real data gathered from NTNU’s use of Suricata. Because
of this we will use our own networks or downloaded pcap files to simulate an environment in
which Suricata runs, at least in the start of the development. As we go further along, we could
have a need for data from NTNU SOC in order to properly satisfy the requirements. In this
case we will communicate our wishes to the client and see if something can be arranged.

4.2 Status Meetings and Decision Points

Every Wednesday we have a short meeting with our supervisor Jia-Chun Lin (hereby Kelly)
from 11:00 - 11:30. In these meetings we will present what we have done during the week, and
what we plan to do going into the next meeting. Kelly will offer us advice, steer us in the right
direction and answer questions should we have any. Every Monday from 12:30 to 13:30 the group
will meet and discuss what each of us did in the previous week. After each guidance meeting the
group will meet again to discuss the plan going forward and any decision points will be made
at this meeting. We have a direct communication line to our client that can be used to ask
questions that might not need a face-to-face meeting. The group can call the client to meetings
on Teams if necessary.

8

5 Quality Control

5.1 Documentation, Standards and Source Code

All work relevant to the bachelor thesis should be documented in the project report. Each mem-
ber must also comment their code to make it more readable and easier to use.

The group will follow best practices described for each of the technologies we use. This includes
standards for commenting and structuring the code. For Javascript we will follow the JSDoc
commenting convention [7]. For the HTML and CSS we will follow W3C standards. We will use
LATEX templates for Bachelor Thesis provided to us by NTNU[8].
In addition we will use Cockpit’s starter kit[9] to make sure we follow the standard/recommended
steps for building a module. It allows us to focus on development rather than focusing on all
the small details.

5.2 Configuration Management

We will use Overleaf which is a version control system to write our thesis. It allows us simulta-
neously write on the thesis as well as keep track of the changes. For code management Git with
Bitbucket will be used, which allows us to collaborate and keep track of changes in an efficient
manner. We will also be using the pipeline functionality Bitbucket provides. During the review
of the pull request a CI pipeline will be automatically started to validate the new changes does
compile without warnings/errors, linting and acceptance testing.

5.3 Risk Analysis

Type: Project
Risk: Data loss
Likelihood: Low
Impact: High
Action: Backups of the repository and Overleaf documents are created using Git and stored on
Github and BitBucket.

Type: Project
Risk: Unable to meet deadlines
Likelihood: Low
Impact: High
Action: Following our project plan will help reduce the chances of this happening. Weekly
meetings with our supervisor will help us evaluate our progress.

Type: Project
Risk: Scope creep
Likelihood: Low
Impact: Medium
Action: To prevent scope creep we will be following the project plan. The requirements needs
to be agreed upon in detail with the client before implementation starts.

Type: General
Risk: Client unavailable for longer periods
Likelihood: Low
Impact: Medium
Action: Contact supervisor and explain the situation.

Type: General
Risk: Sickness in group
Likelihood: Medium
Impact: Low
Action: The affected member will have to notify the group if a sickness will cause delay in their

9

scheduled work or if they are unable to attend meetings. The workload will in this case be split
between the other members.

Type: General
Risk: Monthly pipeline build minutes runs out
Likelihood: Low
Impact: Low
Action: By setting the pipeline only to run on pull requests and set a reasonable time limit to
avoid broken pipelines that deadlock all the minutes, this way we can reduce the build minutes
used. If we do run out, we will have to run the test pipeline manually.

Type: General
Risk: Disagreement between members
Likelihood: Low
Impact: Low
Action: Project leader calls in disagreeing parties to meeting to discuss how to solve the issue.
The supervisor can be invited to help us resolve the issue.

6 Project Plan

6.1 Work Breakdown Structure

Our work down structure consists of three sections; research, thesis and cockpit module for Suri-
cata. Before we start we have to do research that will help us in implementing the plugin.We
need to figure out the tools needed for collaboration and development, and how to set up the
development environment. Then do research on how to write a good bachelor thesis by reading
other students bachelor theses.

The second section is about writing the thesis itself. We have to submit a draft before the final
submission. Therefore, it is important that we write enough in the first draft so we can get good
feedback from our supervisor. This will help us improve the thesis before the final submission.

Last section focuses on setting up the development environment. This includes setting up the
pipeline on Bitbucket, infrastructure on Openstack with a heat template as well as our local
environment. Finally, we have to develop and test the plugin.

10

Figure 1: Work Breakdown Structure

6.2 Module architecture

The module consists of a web page with four tabs namely Service, Signatures, Logs, and Alarms.
The Service page will present three buttons, start, stop and restart. This same tab will also
display the state of the service.The next tab, Signatures, will be used to manage signature sources
and update rule-sets. The Logs tab will show relevant service logs from the Suricata service and
the Alarms tab will display alerts issued by Suricata. Signatures, Logs and Alarms tabs will
have functionality for sorting by a relevant ”field name”.

Figure 2: Module architecture

11

6.3 Interface mock-up

The following figures are our first drafts of the user interface mock-up. It is subject to change,
and will not be an accurate representation of the final module.

(a) Service (b) Signatures

(c) Logs (d) Alarms

Figure 3: Mock up of the module

6.4 Overall system architecture

Cockpit and Suricata are installed on the same Linux machine. systemd services requests the
status of the Suricata service and starts, stops and restarts Suricata. Cockpit will use the Unix
socket to reload the signature rules when it’s been updated. Information to display in the
Cockpit module is extracted from the files generated by Suricata, these are represented by the
green boxes on figure 4. Suricata uses the ”suricata.yaml” file for configuration settings and
Cockpit will also read the ”yaml” file to understand where the rules and logs are located.

Figure 4: Overall System Architecture

12

6.5 Gantt Diagram

Figure 5: Gantt chart

13

6.6 Deadlines

• Group agreement: February 1st

• Project Plan: February 1st

• First draft thesis: March 31st

• Thesis: May 20th

6.7 Deliveries

• Function: Start, restart, stop suricata service: February 12th

• Function: Show state of service: February 12th

• Function: Administrate IDS-signatures: February 26th

• Function: Show relevant logs: February 26th

• Function: Show alarms: February 26th

14

References

[1] Cockpit-project, 2021. https://cockpit-project.org/.

[2] Wikipedia contributors. Intrusion detection system, 2021. https://en.wikipedia.org/w/

index.php?title=Intrusion_detection_system&oldid=998288803.

[3] cockpit project. Running cockpit, 2020. https://cockpit-project.org/running.html.

[4] freedesktop. systemd system and service manager, 2020. https://www.freedesktop.org/

wiki/Software/systemd/.

[5] Dan Radigan. What is kanban?, 2021. https://www.atlassian.com/agile/kanban.

[6] Alexander Sergeev. Tests in extreme programming, 2016. https://hygger.io/blog/

tests-in-extreme-programming/.

[7] 2021. https://javascript.info/comments#good-comments.

[8] Ivar Farup. thesis-ntnu, 2020. https://github.com/COPCSE-NTNU/thesis-NTNU.

[9] Martin Pitt. Starter kit - the turn-key template for your own pages, 2018. https:

//cockpit-project.org/blog/cockpit-starter-kit.html.

15

Chapter A: Additional Material 109

A.4 Project Agreement

Chapter A: Additional Material 113

A.5 Time log

Sindremorvik's workspace Created with Clockify 1

Summary report
01/01/2021 - 12/31/2021

Total: 1608:31:25 Billable: 00:00:00 Amount: 0.00 USD

Project

Bachelor 1608:31:25 100.00%

Task

(Without Task) 395:19:21 24.58%

Development - Bachelor 431:44:45 26.84%

Generelt(møter, mails, kontaktpersoner) - Bachelor 75:05:26 4.67%

Prosjektplan - Bachelor 93:07:45 5.79%

Read other bachelor thesis' - Bachelor 01:30:26 0.09%

Sindremorvik's workspace Created with Clockify 2

Research - Bachelor 18:10:16 1.13%

Thesis - Bachelor 593:33:26 36.90%

Project / Task Duration Amount

Bachelor 1608:31:25 0.00 USD

(Without Task) 395:19:21 0.00 USD

Development 431:44:45 0.00 USD

Generelt(møter, mails, kontaktpersoner) 75:05:26 0.00 USD

Prosjektplan 93:07:45 0.00 USD

Read other bachelor thesis' 01:30:26 0.00 USD

Research 18:10:16 0.00 USD

Thesis 593:33:26 0.00 USD

116 Cockpit module for Suricata IDS

A.6 Link to module on Github

The module for Cockpit is open source and available on Github from the link provided here: https:
//github.com/Sudland/cockpit-suricata/

https://github.com/Sudland/cockpit-suricata/
https://github.com/Sudland/cockpit-suricata/

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Cockpit m
odule for adm

inistration of Suricata ID
S

Anders Svarverud
Said-Emin Evmurzajev
Sigve Sudland
Sindre Morvik

Cockpit module for administration of
Suricata IDS

Bachelor’s project in IT-drift og informasjonssikkerhet (BITSEC)
Supervisor: Jia-Chun Lin

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Problem Area
	Project Description and Goal
	Target Audience
	Limitations
	Project Group
	Thesis Structure

	Background
	Intrusion Detection System
	Suricata
	Signatures
	Suricata files
	Vendors

	Cockpit

	Requirements
	Functional Requirements
	Additional Features
	Non-functional Requirements
	Compatibility
	Reliability and maintainability
	Usability

	Use Cases

	Development Process
	Development Model
	Documentation
	Workflow

	Technical Design
	System Architecture
	Module Architecture
	Sequence Diagram
	The Service tab
	The Signatures tab
	The Logs tab
	The Alerts tab
	The Config tab

	Implementation
	Software License
	Development Environment
	Libraries

	Graphical User Interface of Our Module
	The Service tab
	The Signatures tab
	Logs
	Alerts
	Config

	Code
	Remove or add cells to table through user interface
	Spawning processes

	Evaluation
	Self evaluation
	User evaluation

	Closing Remarks
	Discussion and learning outcome
	Conclusion
	Future Work

	Bibliography
	Additional Material
	Project Survey
	Project Proposal
	Project Plan
	Project Agreement
	Time log
	Link to module on Github

