
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

H
øgli, Lygre, M

ałecki, M
arjara

Autoenum

Høgli, Sander
Lygre, Jarl Tengesdal
Małecki, Wojciech
Marjara, Avleen Singh

Autoenum

Automatic mapping and exposure analysis of
network endpoints

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erjon Zoto

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Høgli, Sander
Lygre, Jarl Tengesdal
Małecki, Wojciech
Marjara, Avleen Singh

Autoenum

Automatic mapping and exposure analysis of
network endpoints

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erjon Zoto
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

IT-security has never been as important as it is now, with threat agents becoming
more sophisticated by the second. This forces us to work hard to keep up and
secure our services. The NTNU SOC wanted to implement a service (Autoenum)
that would help them scan a network periodically from the Internet and/or an
internal network. The project group was tasked to create this system, which would
contain a scanner, a database and API to help give the system its functionality. The
scanner should scan a network to look for hosts and open ports, which would be
checked for vulnerabilities. The scan result would be saved in a database and
would be made available through an API. The group used Scrum as their software
development framework. Scrum helped the group with its agile approach, which
includes sprints that were set up throughout the project period. Autoenum has
evolved a lot during the project period. It now delivers everything the NTNU SOC
asked for and some more as well. The group hopes Autoenum will be of value
when NTNU SOC is conducting their work of keeping the NTNU network secure.

iii

Sammendrag

IT-sikkerhet har aldri vært like viktig som det er nå, med trusselagenter som blir
mer sofistikerte for hver sekund som går. Vi må jobbe hardt for å holde følge og
sikre tjenestene våre. NTNU SOC ønsket å implementere en tjeneste (Autoenum)
som skulle hjelpe dem med å skanne et nettverk med jevne mellomrom fra In-
ternett og / eller et internt nettverk. Prosjektgruppen hadde fått i oppgave å lage
dette systemet, som skulle inneholde en skanner, en database og API for å gi funk-
sjonaliteten til systemet. Skanneren vil skanne et nettverk for å se etter maskiner,
åpne porter, som vil bli sjekket for sårbarheter. Resultatet fra skannene blir lagret
i en database og blir gjort tilgjengelig via en API. Gruppen brukte Scrum som
rammeverk for programvareutviklingen. Scrum hjalp gruppen med sin smidige
tilnærming, som inneholder sprinter som ble satt opp gjennom hele prosjektperi-
oden. Autoenum har utviklet seg mye i løpet av prosjektperioden. Den leverer nå
alt NTNU SOC ba om og litt mer. Gruppen håper Autoenum vil være av verdi for
NTNU SOC, når de skal utføre arbeidet sitt for å sikre NTNU-nettverket.

iv

Preface

The members of this bachelor project, Wojtek Malecki, Sander Høgli, Avleen Singh
Marjara and Jarl Tengesdal Lygre, would like to thank Christoffer Vargtass Hall-
stensen, representing NTNU SOC for presenting us with an interesting task. Chris-
toffer provided us with many valuable ideas and tips along the way, of which we
are grateful. We would also like to thank our supervisor, Erjon Zoto for guiding
us through the project and giving us a lot of valuable feedback throughout the
project period.

v

Contents

Abstract . iii
Sammendrag . iv
Preface . v
Contents . vi
Figures . ix
Tables . x
Code Listings . xi
Acronyms . xii
Glossary . xiv
1 Introduction . 1

1.1 Project Background . 1
1.2 Purpose . 1
1.3 Target groups . 2
1.4 Group background and competence . 2
1.5 Constraints . 3
1.6 Roles . 3
1.7 Project goals . 4
1.8 About the report . 4

2 Theory . 6
2.1 Software Development Life Cycle . 6
2.2 Scrum . 6
2.3 Infrastructure as code . 8
2.4 Automation . 9

2.4.1 Ansible . 9
2.5 Network mapping . 10

2.5.1 Scanning . 10
2.5.2 Scan types . 11
2.5.3 Vulnerability . 11

2.6 Databases . 12
2.7 Containers . 13
2.8 RESTful API . 13

3 Methodology . 16
3.1 Digital workspace . 16
3.2 Scrum . 18

vi

Contents vii

3.3 Similar projects . 19
3.4 Report structure . 20
3.5 Technology . 21

4 Design . 24
4.1 Requirements . 24

4.1.1 Scanner . 25
4.2 Architecture . 26
4.3 Components . 27
4.4 Licence . 27

5 Implementation . 28
5.1 Github repository . 28

5.1.1 Open source tools . 28
5.2 Overview . 29

5.2.1 Scanner . 29
5.2.2 Autoenum MongoDB . 33
5.2.3 Autoenum API . 34
5.2.4 Autoenum screengrabber . 36
5.2.5 Autoenum web interface . 37
5.2.6 CVE database . 39
5.2.7 CVE API and search . 39
5.2.8 CVE Redis . 40
5.2.9 Volumes . 40

5.3 Setup and deployment . 41
5.3.1 Recommendations . 42

6 Testing . 44
6.1 Test environment . 44

6.1.1 Overview . 44
6.1.2 Topology . 44
6.1.3 Services . 46
6.1.4 Roles . 47
6.1.5 Deployment . 47

6.2 Testing . 48
6.3 Beta test . 48

7 Discussion . 50
7.1 Decisions . 50

7.1.1 Docker . 50
7.1.2 Scanner . 50
7.1.3 Database . 51
7.1.4 Structure . 51

7.2 Purpose and usefulness . 52
7.2.1 Detection and incident management 52

7.3 Results . 53
7.4 Deviations . 53
7.5 Project criticism . 54

Contents viii

8 Conclusion . 55
8.1 Work ethic . 55
8.2 Further work . 55
8.3 Conclusion of the work . 56

Bibliography . 57
A Task description . 62
B Scanner code . 64

B.1 scanner.py . 64
B.2 cve_lookup.py . 69

C Docker . 70
C.1 Screengrabber . 70
C.2 API . 71
C.3 Web interface . 72
C.4 docker-compose . 75

D Playbooks . 78
D.1 Setup and deploy Autoenum . 78
D.2 Playbooks for test environment . 79

E Code for test environment . 83
E.1 heat.yaml . 83
E.2 env.yaml . 89
E.3 manager_boot.bash . 90
E.4 windows_boot.ps1 . 91

F Sample API response . 92
G Database . 102

G.1 Schema . 102
G.2 Document . 104

H Web interface screenshots . 107
I Gantt diagram . 110
J Repository structure . 112
K Sprint reviews . 114
L Preliminary report . 120
M Time report . 139

Figures

2.1 The Scrum Framework[28] . 7
2.2 URI example [46] . 14

3.1 Snippet of scrum board in Trello . 17
3.2 Planned sprints . 18
3.3 SDLC illustration . 20

4.1 Flowchart for scanner . 25
4.2 Architecture detailed . 26

5.1 Example of calling MAC endpoint and response 35
5.2 Web site hosted on web server in test environment 36
5.3 Response from screengrabber . 37
5.4 Web interface: Home. More screenshots in appendix H 38
5.5 Making request to CVE API and receiving response 39
5.6 CVE search web interface . 40

6.1 Topology of test environment . 45
6.2 Flowchart deployment of test environment 47

H.1 Web interface: Detailed view 1/3 . 107
H.2 Web interface: Detailed view 2/3 . 108
H.3 Web interface: Detailed view 3/3 . 108
H.4 Web interface: List view . 109
H.5 Web interface: Search . 109

ix

Tables

1.1 Relevant competence . 3

5.1 The different repos for the different parts of the project 28
5.2 Open source tools used in the project 28
5.3 Sample database schema . 34
5.4 API endpoints . 34

6.1 Instances in OpenStack test environment 45
6.2 Services running on the instances . 46
6.3 Roles used in project . 47

x

Code Listings

5.1 perform_host_discovery() . 29
5.2 perform_portscan() . 30
5.3 perform_tcp_scan() . 30
5.4 perform_udp_scan() . 31
5.5 merge_results() . 31
5.6 take_screengrab() . 32
5.7 insert_db() . 33
5.8 Code for MAC endpoint . 35
5.9 Code snippet screengrabber . 36
5.10 MVC of web interface . 37
5.11 Setup . 41
5.12 Running . 41
5.13 Possible configuration variables for Autoenum 42
5.14 Adding username and password to mongoDB 42
6.1 Bash-commands to launch test environment 48
B.1 scanner.py . 64
B.2 cve_lookup.py . 69
C.1 Screengrabber - app.py . 70
C.2 API - app.py() . 71
C.3 index.js/server.js . 72
C.4 hosts.js . 72
C.5 Docker compose . 75
D.1 Main playbook to setup Autoenum . 78
D.2 Main playbook to setup Docker . 78
D.3 Playbook for Windows machines in test environment 79
D.4 Main playbook Linux based machines in test environment 82
E.1 heat.yaml - HEAT template test environment 83
E.2 env.yaml - Environment variables . 89
E.3 manager_boot.bash . 90
E.4 windows_boot.ps1 . 91
F.1 Sample API response . 92
G.1 Sample database schema . 102
G.2 Sample database document . 104
J.1 Directory . 112

xi

Acronyms

ACK Acknowledgement. 11, 29

API Application Programming Interface. 1–3, 13, 21, 24, 34, 48, 51

ARP Address Resolution Protocol. 29

Bash Bourne Again Shell. xi, 2, 21, 48

CPE Common Platform Enumeration. 24, 30, 45

CVE Common Vulnerabilities and Exposures. 12, 25, 29, 46

GRC Governance, Risk and Compliance. 1

HOT Heat orchestration template. 44

HTML Hypertext Markup Language. 13, 23

HTTP Hypertext Transfer Protocol. 13

IaaS Infrastructure as a service. xvi

IaC Infrastructure as code. 8, 9

ICMP Internet Control Message Protocol. 11, 29

IEEE Institute of Electrical and Electronics Engineers. xvii

IP Internet Protocol. xiv, xv, 10, 24, 29, 50

JSON JavaScript Object Notation. 3, 12, 13, 19, 24, 31

MAC Media access control. xiv, xv, 10, 24, 30, 34

NTNU Norges teknisk-naturvitenskapelige universitet (Norwegian university of
science and technology). 1, 2, 27, 51

OS Operating system. xiv, xv, xvii, 10, 25, 30, 34, 40, 44

xii

Code Listings xiii

POSIX Portable Operating System Interface. 10

REST Representational state transfer. 1, 3, 13, 24, 34

SDLC Software Development Life Cycle. 4, 6, 20, 51

SOAP Simple Object Access Protocol. xviii

SOC Security Operations Centre. 1, 2, 56

SQL Structured Query Language. 12

SSH Secure Shell. 10, 46

SSL Secure sockets layer. 30

SYN Synchronize Sequence Number. 11, 29

TCP Transmission Control Protocol. 11, 25, 29, 30, 51

UDP User Datagram Protocol. 11, 26, 31

UUID Universally Unique Identifier. 34

VM Virtual machine. 13, 44, 46, 48

XML Extensible Markup Language. 13

YAML YAML Ain’t Markup Language. 10, 54

Glossary

Access control list is the mechanism which provides access control for a system.
This can be done by explicitly listing IPs of hosts or networks which are
allowed to pass through the access control (whitelisting), or by listing the
ones who are denied access (blacklisting) [1]. 43

Address Resolution Protocol is a protocol used to find MAC addresses associ-
ated to IP addresses. xii

Ansible is an open-source software provisioning, configuration management, and
application-deployment tool enabling infrastructure as code. xvii, 3, 9, 24,
41, 47

Application Programming Interface is a computing interface that defines inter-
actions between multiple software intermediaries. xii, 13

Bootstrap is an open source Cascading Style Sheets framework . 27

Bourne Again Shell is a command language often used for Unix based machines.
xii

Cascading Style Sheets is a language used to design the visual layout of Hyper-
text Markup Language. xiv

Cloud is the availability of computer resources over the Internet, especially stor-
age and computing power, without direct active management by the user.
The term is generally used to describe massive data centers that is available
to users [2]. 8

Cluster is multiple computers that work together, but is viewed as one single unit.
8

Common Platform Enumeration is a structured notation when writing OS’ and
software [3] . xii

Common Vulnerabilities and Exposures "is a list of publicly disclosed computer
security flaws. When someone refers to a CVE, they mean a security flaw
that’s been assigned a CVE ID number." [4]. xii

xiv

Glossary xv

Container is a standard unit of software that packages up code and all its de-
pendencies so the application runs quickly and reliably from one computing
environment to another [5]. xv, 13, 22, 29, 33, 48

cron is a utility used to schedule tasks, such as running a command or a script
on a Unix-based OS. 41

Discord is a VoIP, instant messaging and digital distribution platform designed
for creating communities. 16

Dockerfile is the document that has all the necessary commands to build the
desired Image [6]. xv

Dockerize is the process of preparing, deploying and running of applications in a
Container. The process includes building a docker Image based on a Dock-
erfile which then can be deployed. 26, 33, 50

Extensible Markup Language is a language to encode documents in a tree-structure.
The format is human and machine readable. xiii

Flavor is a tier used to describe the size of disk, number of CPU cores and RAM-
size in OpenStack. 45

GET is a HTTP method used to get data from a specified resource. 34

GitHub is a provider of Internet hosting for software development and version
control using Git. 16, 39, 41, 47

Heat is the main project in the OpenStack Orchestration program, it implements
an orchestration engine to launch infrastructure based on templates [7]. xv,
18

Heat orchestration template is a template format supported by the Heat. xii

Heat stack is the collection of the resources created when running the HOT tem-
plate. Resources can include: networks, routers, servers, network interfaces,
storage devices and more . 48

Host object is our definition of all the aggregated data on one particular host.
Includes IP address, MAC address, Ports etc.. . 27, 31, 33, 34, 51

Hypertext Markup Language is the World Wide Web’s core markup language
and is widely used for documents designed to be displayed in a web browser
[8]. xii, xiv

Hypertext Transfer Protocol is a protocol for transferring text and other media
on the World Wide Web. xii

Glossary xvi

Image is a copy of computer system which can be used to start a new instance of
a system [9]. xv, 45

Infrastructure as a service is a cloud computing model that delivers computing,
network and storage resources. xii

Infrastructure as code is an approach to infrastructure automation based on
practices from software development. It emphasizes consistent, repeatable
routines for provisioning and changing systems and their configuration. xii,
8

Internet Control Message Protocol "is a supporting protocol in the Internet pro-
tocol suite. It is used by network devices, to send error messages and oper-
ational information indicating success or failure when communicating with
another IP address" [10]. xii

Internet Protocol is a unique address on a private network or on the Internet.
xii, xviii

JavaScript Object Notation is a language independent data-interchange format.
xii

Library is "resources used by computer programs, often for software develop-
ment. These may include configuration data, documentation, help data,
message templates, pre-written code and subroutines, classes, values or type
specifications" [11]. 29

Media access control is the layer that controls the hardware responsible for in-
teraction with the wired, optical or wireless transmission medium. xii

Microservice is an architectural style for making a distributed application, where
each component of the application acts as an independent service[12] . 3,
24, 27

MongoDB is a document database, which means it stores data in key-value pairs
as opposed to traditional relational databases which use tables. 12, 51

Nmap is a free and open-source network scanner. 10, 29, 39, 52

OneDrive is a file hosting and sharing service by Microsoft [13] often used or-
ganizations. 16

OpenStack is an open standard cloud computing platform, often used to deploy
infrastructure as part of IaaS [14]. xvii, 24, 44, 48

Overleaf is a collaborative online LaTeX editor used for writing, editing and pub-
lishing scientific documents [15]. 16

Glossary xvii

Playbook is Ansible’s blueprint of automated tasks to preform [16]. 4, 10, 41, 44,
48, 49

Port is a logical construct which is a communication endpoint in a network. Used
to distinguish between different network services. xv, 1, 25, 29, 30, 44, 53

Portable Operating System Interface is a family of standards for maintaining
compatability between OS’ specified by IEEE in 1988 [17]. xiii

Python is an interpreted high-level programming language. The groups language
of choice in this project. 2, 27, 29

Representational state transfer is a standard for a software architecture for in-
teractive applications that typically use multiple Web services. xiii, 13

Scrum is an agile software development framework. 3, 16

Secure Shell is a network protocol used to connect from one network device to
another. The established connection in encrypted [18]. It works on devices
on the same network or over the Internet . xiii

Secure sockets layer is a security standard technology for securing an internet
connection between two systems by encrypting the transmitted data.. xiii

Security Operations Centre is a digital security and emergency preparedness
function and reception center located under the section for digital security
at the IT department and coordinates the operational digital security work
at NTNU. xiii, 1

Simple Object Access Protocol is a messaging protocol specification used to ex-
change structured data [19]. xiii

SkyHiGh is NTNUs OpenStack implementation. 44, 47

Software Development Life Cycle is "a process for planning, creating, testing,
and deploying an information system." [20]. xiii, 6

Structured Query Language is a programming language used by nearly all re-
lational databases to query, manipulate, and define data, and to provide
access control [21]. xiii

Taskgiver is equivalent of the norwegian "oppdragsgiver". 2, 3, 22, 24, 44, 48,
51, 53, 56

Teams is a communication and file sharing service by Microsoft commonly used
by universities and companies. 16

Toggl is a time tracking software created and developed by Toggl OÜ. 16

Code Listings xviii

Transmission Control Protocol "is a transport protocol that is used on top of IP
to ensure reliable transmission of packets" [22]. xiii

User Datagram Protocol "is a lightweight data transport protocol that works on
top of Internet Protocol" [23]. xiii

Virtual machine is a technology that allows emulation of a computer. One can
think if it as running a computer inside another computer [24]. xiii, 13

WinRM is a SOAP-based protocol supported by Windows to allow it to commu-
nicate with another server. 10

YAML is a human-readable data-serialization language [25], often used for writ-
ing configuration files. xiii

1. Introduction

1.1 Project Background

NTNU has a section for digital security based in Gjøvik. This section works pro-
actively, actively and reactively around digital and information security at sev-
eral levels in the organization. It consists of the Security Operations Centre (SOC)
which specializes in detection, security analysis and incident response. It also con-
tains an advisory service Governance, Risk and Compliance (GRC) which works
with proactive safety advice, risk management and security architecture.
When operating a large network such as the NTNU network, keeping track of
hosts, open Ports, running services and potential vulnerabilities in the network
can be a difficult task. This is especially challenging while doing it over time. By
having a system that keeps track of the aforementioned hosts, including its open
ports and vulnerabilities over time, the section for digital security can easily have
access to historical information on each discovered host on the NTNU network.
Having a system that simply scans the network without organizing or saving the
results is not that challenging or useful. The section for digital security therefore
needs a system that organizes the results and saves them, so that it can be used
for detection and security analysis over time. Having this data easily available be
can be useful in an incident response context as responders then have access to a
baseline of the network.

1.2 Purpose

Our group was tasked with creating Autoenum. Autoenum is a system which
periodically scans a network to discover hosts, open ports and running services.
Additionally the scope was expanded to look for potential vulnerabilities linked
to the services or the host. The system should be able to perform in both a test
environment and the real world. The data gathered from the scans should be
stored in a database.
All the data aggregated by Autoenum will have to be exposed through a REST
API for integration with NTNU SOC’s existing systems. The data will be used in
detection and exposure analysis, therefore the data has to be saved in a manner
where it is easy to query. The database should also be able to store a lot of data,
as the scans will be performed periodically. Furthermore Autoenum should be

1

Chapter 1: Introduction 2

integrated with several tools for data collection and analytic purposes.

1.3 Target groups

The primary target group for the project is our Taskgiver, the NTNU SOC. They
will have an interest in the practical side of the report, which includes the use
of the code base for our scanner. The open source community is also included in
the target demographic. Our project might serve as an inspiration to other parties
who are trying to implement a system with similar functionalities.
Some secondary target groups that might have an interest in the theoretical aspect
of the project are fellow students and researchers. Students might be interested in
the project, because it can help them with their own bachelor projects or similar
assignments. Researchers that are working on research papers of a similar nature
might also be interested in how our approach to the report is. They might also be
interested in the result of Autoenum and the report.
The last target group that might be interested in the project are system adminis-
trators. Our network scanner can be deployed on any Debian1-based machine and
used to scan the network and process the data. Since the code is public, anyone
can use it or modify it so it fits their needs.

1.4 Group background and competence

We are a group of four students who share the program of study, IT-Operations
and Information Security2 at NTNU Gjøvik. The group was already organized and
prepared to work together when we started to prioritize available bachelor pro-
jects. When prioritizing the available projects, the group agreed on which project
to give the highest priority. We chose to prioritize this project because it was in
our area of interest. Additionally the group members have relevant prior know-
ledge and experience in many of the areas of competence this project requires. The
courses listed in table 1.1 are courses with relevance to this project. The group has
an adequate understanding of these areas to combine the central concepts from
each of the areas into a bigger project.
The group’s relevant background competence from the courses listed in 1.1 in-
cludes: Scripting in Bash, Python and Powershell, virtualization, Docker, Nmap,
networking, NoSQL databases, system development, infrastructure, automation,
risk assessment, APIs, Puppet and software development models.

1a Linux distribution composed of free and open-source software
2https://www.ntnu.no/studier/bitsec/studiets-oppbygging#year=2018&programmeCode=

BITSEC

https://www.ntnu.no/studier/bitsec/studiets-oppbygging#year=2018&programmeCode=BITSEC
https://www.ntnu.no/studier/bitsec/studiets-oppbygging#year=2018&programmeCode=BITSEC

Chapter 1: Introduction 3

Course code Course name
IDG2001 Cloud Technologies
IMT2006 Computer Networks
IMT2007 Network Security
IMT2008 ITSM, Security and Risk Management
IMT2243 Software Engineering
IMT2282 Operating Systems
IMT2571 Data Modelling and Database Systems
IMT3003 Service Architecture Operations
IMT3004 Incident Response, Ethical Hacking and Forensics
IMT3005 Infrastructure as code

Table 1.1: Relevant competence

1.5 Constraints

The Taskgiver gave us some specific constraints which we have noted below. We
have also mentioned some of our own limitations in terms of experience and
knowledge.
The configuration has to be done through Ansible. Ansible ensures that Autoenum
can easily be integrated into the taskgiver’s infrastructure, which already uses
Ansible as the preferred automation tool. Autoenum has to use open source code.
Open source code is a type of licensing agreement that permit users to modify and
use existing code in other projects. The code we produce has to be open source,
as it will be published publicly to NTNU open, this will make it available for the
public. The service has to support Microservice architecture.
As a proof of concept, the service should include a basic web interface which
enables the user to search for the stored data. This is not a major part of the
project, but it is an easier way of interacting with the aggregated data. The primary
method of extracting data from the system is through a RESTful API, responses of
which should be in JSON.
The deadline to finish the project was May 20th of 2021. We chose to divide our
time during the project using Scrum. It is an agile development framework which
helped us divide the project into several parts, where one has to be finished before
the other can begin.

1.6 Roles

The Taskgiver is the NTNU SOC, represented by Christoffer Vargtass Hallstensen.
Christoffer is also the product owner. The supervisor is Erjon Zoto, employed as
a lector at the institute of Information Security and Communication Technologies
at NTNU. Before starting the project, we defined roles for each of the group mem-

https://www.ntnu.edu/studies/courses/IDG2001#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2006/2018#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2007/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2008/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2243/2018#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2282/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT2571/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3003/2019#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3004/2020#tab=omEmnet
https://www.ntnu.edu/studies/courses/IMT3005/2020#tab=omEmnet

Chapter 1: Introduction 4

bers. The following roles were to be treated as main area of responsibility and
does not mean that the member with the respective role would work exclusively
with that area:

• Avleen Singh Marjara - Group leader: in charge of the code for Autoenum
and communication with taskgiver
• Sander Høgli - Group secretary and scrum master: in charge of writing

meeting minutes and sprint review documents.
• Jarl Tengesdal Lygre - In charge of scheduling meeting and communication

with supervisor.
• Wojciech Małecki - In charge of code for test environment and writing

Playbooks

1.7 Project goals

The desired goals of the project are described below:

• To provide a usable system that has the functionality the taskgiver
needs and has requested. Autoenum will follow the functionality men-
tioned in section 1.2.
• Improving the security of the NTNU network. We hope that by using Au-

toenum or taking inspiration from it, the SOC is able to improve their level
of security.
• Provide a report that acts as supporting source for Autoenum. This

means that the report should provide good written documentation about
the system and that it should contain a good mix between theoretical know-
ledge and practicality.
• The report and Autoenum should be relevant for future work. The code

base should be easily maintainable and modifiable by the taskgiver and
other individuals tasked with this activity. The report should provide readers
with inspiration, knowledge and support with similar tasks.

1.8 About the report

This report is written in LATEX, which provides formatting and the ability to link
and reference different chapters. In this report, clicking an acronym will show the
reader the full word. If the word in the acronym list includes a link, the reader
can click and receive the glossary list with an explanation. The glossary includes
words that are explained and is linked the first time it is mentioned in the given
context. Other links include where glossary words are mentioned in the report,
references, tables and figures. In addition to references we are using footnotes as
small comments where a link or small description is needed. Below we provide a
brief overview related to the structure of the report. The way the report is struc-
tured is slightly inspired by the SDLC in terms of how we decided to order the

Chapter 1: Introduction 5

different sections and chapters.

Chapter 1 Introduction

This chapter provides a general overview regarding the background, purpose, tar-
get groups, our competence and project goals.

Chapter 2 Theory

This chapter provides information and a abbreviated introduction about the dif-
ferent concepts, theories and expressions used in the report. This should provide
readers basic knowledge and understanding to comprehend more of the report.

Chapter 3 Methodology

This chapter provides information related to our methods, how we chose to work,
and which framework we used as inspiration for the structure of the report.

Chapter 4 Design

This chapter provides a description of the architectural design and how the dif-
ferent components of Autoenum are connected.

Chapter 5 Implementation

Describes and discusses our thoughts and methods on how we implemented differ-
ent components throughout Autoenum and which technology we ended up using
and how we use them. It also includes a description of how to deploy Autoenum.

Chapter 6 Testing

Describes and gives an overview of our test environment and how we tested Au-
toenum.

Chapter 7 Discussion

Reflects on the potential usefulness of the technology. This means trying to meas-
ure the significance in relation to detection and incident management. This section
will also relate to the theory section, previous reflections and project results.

Chapter 8 Conclusion

Concludes the report, discussing if we meet the project goals and explore further
work.

2. Theory

This chapter will provide general theory about software development frameworks
and describe some relevant theory about the technologies we used in the project.
It will be an overall overview and the use of the technologies will come in chapter
5 Implementation.

2.1 Software Development Life Cycle

Simply explained, Software Development Life Cycle (SDLC) is the shortened and
oversimplified version of different development processes used when going from
requirements to delivering a finished product and maintaining it[26]. These pro-
cesses are very generic and simplified. The different processes are often called and
divided into: requirements definition, design, implementation, testing and main-
tenance. This almost always begins with an idea to solve some kind of problem
or make something easier and more efficient. An idea develops to some require-
ments where different considerations must be discussed and defined in detail.
These requirements must be realistic and possible with the technologies available
today. In the design phase one must establish a basic overall architecture while
still consider all the requirements in the previous phase. In the implementation
and testing stages the software is functional and is tested to ensure it meets the
requirements.

2.2 Scrum

In "The Scrum Guide™", Scrum is defined like this: "A framework within which
people can address complex adaptive problems, while productively and creatively
delivering products of the highest possible value"[27]. Scrum consists of the fol-
lowing components:

• The Scrum Team Consists of the product owner, the development team
and the Scrum master. The product owner’s job is to manage the product
backlog. The development team are the ones doing the development of the
product. The Scrum master follows the Scrum guide and makes decisions
regarding Scrum in general during the project.
• Scrum Events Consists of the sprint, sprint planning, daily Scrum, sprint

6

Chapter 2: Theory 7

review and sprint retrospective. The sprint is a period of time which lasts a
month or less where usable product increments are created. Sprint planning
is where the different sprints are planned, how long and what to work on.
Daily Scrum is a meeting held every day during the sprint. In this meeting,
there will either be questions or discussion on what has been done or what
will be done and how. The sprint review is held at the end of each sprint.
The Scrum team goes through what was done in the sprint, based on the
changes to the product backlog, it is discussed what will be done next. The
sprint retrospective is when the Scrum team inspects itself and creates a
plan for how they can perform better at the next sprint.
• Scrum artifacts Consists of product backlog, sprint backlog and increment.

Product backlog is a list of everything that should be in a product. It lists
all functions and features of the product, the requirements and everything
else that should be recorded. Sprint backlog contains what functionality the
development team thinks will be in the next increment and the work that
needs to be done to finish it. The Increment is the sum of all the product
backlog items which were completed during a sprint. It is also the value of
the increments of the previous sprints.

Figure 2.1: The Scrum Framework[28]

The framework has Scrum teams, these teams have different roles, events, artifacts
and rules. Every part of the framework serves a purpose as a whole in the Scrum
framework. Scrum in practise consists of several "sprints", of which each is a time
slots where you work with certain things during the project, i.e. the first sprint is
planning and lasts for three weeks. This makes it so that everything in the project,
from planing to testing gets an adequate amount of time each.
If we compare Scrum to a non-agile software development strategy such as the

Chapter 2: Theory 8

waterfall approach, you can see why Scrum is called agile. The waterfall model is
linear sequential, and it is therefore harder to make changes midway throughout
the project. When developing software with the waterfall model, each phase can
only begin when the previous phase is done. This approach has many disadvant-
ages compared to scrum, such as: not suited for requirement changes in ongoing
projects and generally higher risk in terms of failure and delivery of the finished
product[26].

2.3 Infrastructure as code

Infrastructure as code (IaC) is useful because in the modern day we need systems
and services that can respond fast to scaling and changes over time. We need to
have efficient methods to operate different services in the Cloud. By using the
cloud and IaC principles we can lower the barrier to update, deploy, scale and
configure services faster and more efficient. IaC also helps to keep systems and
services consistent and more reliable because of different methods for testing and
validation[29].
IaC is a way to go about infrastructure development as one develops software in
the modern world. We want to reuse and have consistency in our code. In IaC,
having consistent and repeatable code and routines for changing, deploying and
configuration on multiple machines is important. Changes are made to definitions
and afterwards released to systems through processes that include exhaustive val-
idation[29]. The main goal in using IaC principles is to automate and minimize
the additional work with deploying, configuration and testing which otherwise
has to be done manually on every machine in a network of servers.
This takes us to the basic principals in IaC. As Kief Morris describes in[29],

1. Systems needs to be easy to reproduce. This means at any time the in-
frastructure can be rebuilt at any time without any risk of failing or making
configuration mistakes.

2. Systems are disposable. They can easily be deleted, created, moved or
scaled.

3. Systems are consistent. This means that two servers in a Cluster, should
behave almost the same if they are serving a similar service.

4. Processes are repeatable. This means that every action you take in your
infrastructure should be repeatable. This can be scripts or other tools that
keeps you from changing something manually on multiple machines.

5. Design is always changing. This emphasizes that when a system or ser-
vice is developed, it is almost impossible to know everything about how
the system or service is going to be used or changed with time or future
requirement requests.

Chapter 2: Theory 9

2.4 Automation

Automation is in the IT sense of things, "..the use of instructions to create a re-
peated process that replaces an IT professional’s manual work.."[30]. Automation
helps realize changes, deployments and configurations for systems as described in
the previous section, which leads to the system administrators having to do less
manual work. Automation also helps many other aspects, including some of the
following:

• Vulnerability Management "is the process of identifying, analyzing, triaging
and resolving computer security vulnerabilities"[31]. Building an effective
vulnerability management program is a five-step process which includes the
following steps:

1. Checking for vulnerabilities
2. Identifying vulnerabilities
3. Evaluating the vulnerabilities
4. Resolving vulnerabilities
5. Reporting & patching vulnerabilities

Automation helps realise a small portion of vulnerability management, primar-
ily checking for vulnerabilities and identifying them. This can be done by
automating a network scanner which both checks for vulnerabilities in a
network and then identifies them with the help of a known vulnerability
database. Having these processes automated makes the tasks a lot less te-
dious to do. It also allows for the processes to be done several times a day
which increases the security level of the network.

• Deployment automation is strongly related to IaC where it should be pos-
sible to take down a server and have it up and running within a short period
of time. This short period of time is achieved thanks to deployment auto-
mation. Deployment automation makes the application deployment process
automated, saving a lot of time and resources if done correctly. Application
deployment is used in tandem with IaC.

• Security and compliance can both be directly linked to automation. Most
of the breaches on IT infrastructures are because of human errors[32]. Auto-
mation can help prevent these if done correctly, having a complete config-
uration that has been tested multiple times ready to be launched. Security
monitoring can be realized with automation as well, monitoring such as
network scanning and vulnerability scanning.

2.4.1 Ansible

To fulfill the basic principles of IaC discussed in section 2.3 and to keep consistency
across deployments and configurations, one should use an IT automation system.
Ansible is such an IT automation system, which can be used both for configuration
management and application deployment. Ansible is agent-less, as opposed to

Chapter 2: Theory 10

many other popular systems such as Puppet[33] and Chef[34]. Instead of agents,
Ansible relies on the use of SSH by default to push out commands to the managed
nodes. This drastically reduces the overhead compared to an agent based system,
which has higher overhead due to agents installed on each managed node. These
agents have to periodically pull configurations from the manager or master node
rather than having the configuration pushed to the nodes.
Having no agent introduces another advantage. In an agent-less model there is
no prior configuration required for the managed nodes, other than ensuring that
they have an SSH-server installed and that the manager has the SSH-key to the
managed node.
Ansible introduces some concepts that are important to grasp:

• Playbooks: When running commands on your managed nodes, Ansible uses
a list of multiple commands defined by the user. This collection of commands
is referred to as play. The plays can be things like installing software, running
an executable file, copying files or restarting the machine. The plays reside
in what’s called an Ansible Playbook. In other words the playbook is just a
list of plays. Playbooks are written in YAML, which is easy for humans to
read and understand[35].
• Roles: A role is a way of standardising and sharing file structures in Ansible.

A role makes it possible to divide Playbooks into logical components, which
then can be used to construct more advanced mechanisms. Usually, a role
is a set of instructions, used to perform a specific task, i.e. to automatically
install and configure a service on a host[36].
• Compatibility: In addition to Unix-like systems Ansible also supports Win-

dows. However when using Ansible with Windows it is recommended to use
WinRM instead of SSH. The reasoning behind this is that Windows as an OS
is non-POSIX-compliant, and that the way Ansible interacts with Windows
is fundamentally different from the way it interacts with POSIX based sys-
tems. Ansible version 2.8 added support for SSH for Windows, but it is only
experimental[37].

2.5 Network mapping

2.5.1 Scanning

When scanning a network we often use tools that have already been developed,
are accessible and trusted by many. One example is Nmap. As mentioned in[38]
by Gordon Lyon, this is a free and open source utility for network exploration and
security auditing. There are many tools that can be used to explore a network.
Usually a scanner finds which hosts are on the network. After finding the hosts,
the scanner looks for more details, such as: IP addresses, MAC addresses, open
ports, services and products running on the ports.

Chapter 2: Theory 11

2.5.2 Scan types

There are three basic scan types:

1. TCP: This is one of the most used communication protocols that manages
the exchange of messages in networks. The main goal of every TCP con-
nection is to provide a reliable flow of data and if something goes wrong,
inform the sender about a failed transmission. TCP Connect scans are based
on the TCP "Three-way handshake", which is a process of communication
between two network-enabled devices. The "Three-way handshake" is the
only method that provides real reliability. "Three-way handshake" consists
of 3 stages that need to be performed between two counterparts. The first
stage starts when a client tries to establish connection with a server, by
sending a SYN to inform the server about upcoming communication and
to synchronize sequence numbers between devices. When server receives
the SYN message, it responds with a message flagged with SYN+ACK sig-
nal bits, which means that the server confirmed the synchronization and
is ready for upcoming messages. The connection is concluded with another
ACK message coming from client, after that the data transfer can begin[39].

2. TCP SYN "Half-open": This scan works slightly differently compared to TCP
connects scans, but uses the same three-way handshake principle. The only
difference between the scan types is that instead of using a full three-way
handshake, concluding the process with a "ACK", it sends a message flagged
with "RST". The "RST" resets the transmission and prevents it from complet-
ing.
A SYN scan is often also called as a "Half-open" or "Stealth" scan. It is called
"Stealth" because SYN scans could bypass some of the older Intrusion De-
tection systems that were configured to look for completed transmissions.
SYN are also significantly faster than standard TCP Connect scans[40].

3. UDP: These scans are stateless, it means that there is no reliable commu-
nication between the sender and the recipient. When packets are sent to an
open port, no response will come back and the port will be marked with
"open|filtered" label. If the port is closed, the targeted machine will send a
ICMP (ping) with a "Port unreachable" error message. Since there is no way
to know for sure if a port is open, UDP scans are way slower than the rest.
Therefore they are used to scan a small number of ports, usually the most
known ones[40].

2.5.3 Vulnerability

Different kinds of vulnerabilities will always be present, as new vulnerabilities are
discovered every day and are growing in numbers. A vulnerability can be defined
as follows:

"A weakness in the computational logic (e.g., code) found in software
and hardware components that, when exploited, results in a negative

Chapter 2: Theory 12

impact to confidentiality, integrity, or availability. Mitigation of the vul-
nerabilities in this context typically involves coding changes, but could
also include specification changes or even specification deprecations (e.g.,
removal of affected protocols or functionality in their entirety)"[41].

A vulnerability does not indicate that there is some kind of risk. This is because
a risk exists when there are some kind of assets that needs to be protected. This
can be user data, financial information, personal information, classified data or
privilege escalations. If a vulnerability exists but there are no assets of value that
must be protected, it is just classified as an exploitable vulnerability.
Almost all discovered vulnerabilities get registered in databases, helping the pub-
lic and affected organizations. One of these records of common vulnerabilities is
called CVE. This is a list of common vulnerabilities and exposures that has been
discovered. These get assigned a number based on when they were discovered
with a brief description and related references. To become a CVE vulnerability, it
must meet some criteria. First of all the vulnerability can be fixed independent of
other bugs. It also has to be acknowledged by the vendor or shared through doc-
umentation. Finally it can only affect one code base, because each vulnerability
gets a separate CVE number[4].

2.6 Databases

Databases are one of the most common components of an IT system. They are
used to store and collect different types of information or data. Usually there is a
database management system that is used to control the database. A database is
usually structured in columns and rows, which makes the data easily accessible to
different applications, users and it makes querying more efficient. Some key ele-
ments is that the data is easily accessed, managed, modified, updated, controlled
and organized. Right now there are many different types of databases and even
types that do not use SQL. These are called non-relational databases. Contrary a
well-know database is MySQL, which refers to an open source relational database
management system based on SQL[21].
Examples of NoSQL databases include MongoDB. These databases do not use re-
lational structure but instead use different kind of methods to organize data. Mon-
goDB is a document based database, which structures data similar to JSON. In a
MongoDB database every document has a field for an unique value. This is used
to identify a unique entry in the document hierarchy. In relation to SQL databases,
this is comparable to the primary key. Other data related to that unique id is em-
bedded within that id, and is not stored in a separate table. This is one of the ways
it differs from traditional SQL databases.

Chapter 2: Theory 13

2.7 Containers

Kief Morris explains in[42] that Containers are a way to install and run applic-
ations in an alternative way. Using containers provides a way to standardize a
format to run services and applications on servers. These containers are used to
collect and define an environment for a process. Docker is one of these tools and is
used to package software. The process can also be called containerization. Docker
uses dockerfile to define what kind of dependencies are needed to run the ap-
plication on a server. This file is used to create a container image, which contains
all things needed to run a certain system. By bundling all needed dependencies,
containers can be easily repeated to create a runtime environment.
Using containers is an alternative way to run multiple instances of an application
and are often compared to Virtual machine (VM). One of the main differences
between VMs and containers is that each VM has a guest operating system on top
of the host operating system. Container services like Docker share the host oper-
ating system, including the kernel. Because of this it is often the most lightweight,
compared to virtual machines.

2.8 RESTful API

API is short for Application Programming Interface and are services that facilitates
communication between different applications. To understand how an API works,
one can compare it to visiting a web site. When a user requests a web site, the
HTML for the web site is sent to the users device. The HTML is then rendered into
a web page with pictures, videos and other graphic elements. It is common for APIs
to run over HTTP, in which case they work similarly as a web site. The difference
is that the API is optimized for an application to understand the received data[43].
The request to the API is often made by an application. Since the application has to
be able to understand the response of the APIs, the response are in formats which
are easy for machines to understand. JSON and XML are examples of formats
which are typically used as a response from an API.
REST is short for Representational state transfer, and is an architectural style for
distributed hypermedia systems [44]. It allows a service running on the web to
represent its resources (e.g. picture or file) as text. In order to be classified as a
RESTful API, the service must follow these constraints [44][45]:

• Stateless: Interaction between the client and server should be stateless,
meaning that everything needed to handle the request should be included
in the request itself.
• Cacheable: Communication between the client and server should be cacheble,

meaning that the server should be able to store copies of frequently used
data, in order to speed up the future requests.
• Layered system: There can be multiple layers between the client and the

server, but the client will only be aware of the immediate layer. This means

Chapter 2: Theory 14

that proxies or load balancers can be placed between the client and the
server without having to update client-side or server-side code. This also
means that API A which the user is making requests to can request resources
from API B without the user knowing it.
• Client–server: The system is comprised of servers and clients. The clients

and servers are independent of each other. The servers should handle back-
end tasks such as databases, while client handle the front-end tasks such as
user interfaces.
• Uniform interface: All devices should communicate with API the same way.

In other words the way they interact with the API should be uniform. This
means that using the API with e.g. Ubuntu or Windows based machine
should be exactly the same. Uniform interface has its own constraints:

◦ Identification of resources: Each resource should be identified uniquely
with a Uniform Resource Identifier (URI). Example URI in figure 2.2.

Figure 2.2: URI example [46]

◦ Manipulation of resources (through representations): The resources
are manipulated when represented. This means that the user does not
interact with i.e. a database directly, but the data (the resource) in the
database is represented by the API. This makes the decoupling of cli-
ents and server easier, as one can change the implementation without
affecting the client. E.g. if moving from SQL database to a NoSQL data-
base, the representation of the resource does not need to change.
◦ Self-descriptive messages: Request and responses must include ad-

equate information for the receiver to understand it in an isolated
context. The message must have the right media type, e.g. applica-
tion/json, so that the receiver knows that the response should be parsed
as JSON.
◦ HATEOAS - Hypermedia as the engine of application state: Hyper-

media can be a part of the response object for a resource which the
client can traverse or use to request another resource[47]. This is com-
parable to accessing a web page and using the links on the web page
to navigate to other pages or resources.

If an API implements the aforementioned constraints, it can be classified a RESTful

Chapter 2: Theory 15

API. Requesting resource from a RESTful API is done by making a HTTP request
(figure 2.2) with the following methods being used most frequently[48]:

• GET: used to request the specified resource
• POST: used to add an entity to the resource
• PUT: used to update a resource
• DELETE: used to delete a resource

3. Methodology

This chapter contains the different types of methods we are using throughout
the project, from our software development framework, what research we did,
how we decided on our report structure and how we have chosen to work on the
project. It also contains what technologies we are using and why we chose to use
them.

3.1 Digital workspace

At first our plan was to work as a group physically together at school. This plan
did not materialize because of the ongoing pandemic. We chose to rather work
on the bachelor project from home, as this is what felt the most safe. During the
project we have almost exclusively worked together at fixed times and days in the
week while writing the report and working on the code. We decided to do this
because it made it possible to discuss, elaborate and get more involved with each
others work. We knew from previous experience that nobody would be able to be
involved with everything as tasks are delegated throughout the group. With this
method we were able to share and hopefully learn from each other throughout
the project. Another reason is because it is more fun and sociable than working
alone. We experienced that our productivity level rises when we worked together.
Before the project began we decided on which tools we were going to use to
manage the project:

• Communication: We used Discord for our internal meetings/work-sessions
and Teams for our meetings with the taskgiver and supervisor
• File sharing: For file sharing internally in the group, we used OneDrive. The

OneDrive contained notes from meetings, contracts and documents related
to scrum.
• Code repository: We have set up our code repository on GitHub, which is

used to store the code and enables easier collaboration. GitHub is also used
to easily deploy all the code in the test environment.
• Text editor: We wrote the report using the LATEXeditor Overleaf.
• Time tracking: To keep track of our working hours we used Toggl. By the

end of the project, we generated a listing in Toggl which shows how many
hours each student has worked.
• Scrum board: We used Trello to create a Scrum board. The Scrum board

16

Chapter 3: Methodology 17

contained all tasks related to the report and the code. The Scrum board
is divided into four sections: To do, In progress, Review and Done. This
helped us to organize and prioritize the right tasks at the right time. The
Scrum board was also used as a final checklist for the project. Figure 3.1
shows our Scrum board.

Figure 3.1: Snippet of scrum board in Trello

Chapter 3: Methodology 18

3.2 Scrum

We identified that our service could easily be broken down into smaller parts, as
the taskgiver required that the service should be able to run in a microservice
architecture. We chose Scrum, as the service should potentially be ready for de-
ployment at the end of each sprint. The Scrum model also allowed us to adapt
more easily to new changes during the project period.

Figure 3.2: Planned sprints

Sprints

All sprints (figure 3.2) started off by having a sprint review of the previous sprint
(see Gantt diagram in I). As we had an agile approach to this project, we began
testing while coding. This was done to ensure that the product was "shippable" at
the end of each sprint. Our sprints began on Mondays and ended on Friday the
week after the beginning of the sprint, making each sprint last twelve days. The
weekend between sprints were used as a buffer that could be used to extend the
sprint if there were any delays or extra time was needed. We decided from the
beginning to write a lot of the report while we worked on the technical aspects
of the project, and we did stick to that plan throughout the project. This enabled
us to better document the choices we made, and have continuous progress and
distribute the amount of work.

• Sprint 1 - Prepare test environment: This includes making Heat tem-

Chapter 3: Methodology 19

plates for consistent and repeatable deployment of our test infrastructure
in SkyHigh, setting up Ansible to install dependencies on machines in infra-
structure
• Sprint 2 - Prototype of the scanner: Make a prototype of the scanner

which includes the most basic functionalities and outputs the result to a file
in JSON-format.
• Sprint 3 - Scanner improvements: After testing the prototype we will add

more features to the scanner.
• Sprint 4 - Handling output and database design: After adding additional

functionality to the scanner we will know what data the scanner outputs.
We will then design the database and implement a JSON parser and insert
the data to the database
• Sprint 5 - Analysis pipeline and containerization: All gathered data needs

to be thoroughly analysed, to make it more scalable, we are going to contain-
erize the process and implement REST API. This sprint is one week longer
to account for lost working time due to easter vacation.
• Sprint 6 - Web interface and final test: Making a small web interface as

a proof of concept. This web interface will primarily include functions for
searching the saved data in the database. After making the web interface
we will test to see if the whole service works as intended
• Sprint 7 - Polishing code and report: The last sprint will be used to polish

the code (if needed) and make the finishing touches to the report.

After each sprint, there was a sprint review (appendix K). The sprint review con-
sists of discussing what was done during the previous sprint and we discussed
if the increment we created in the previous sprint was adequate. In cases where
we completed the sprint before the deadline, the sprint review meeting would be
held prematurely to make sure that we did not miss anything important. If it was
confirmed that we had completed everything within the sprint early, we would
start with the next sprint ahead of time.

3.3 Similar projects

At the start of the project, we tried to find similar projects for inspiration and ideas.
We wanted to find tools and solutions that had same or similar functionalities to
Autoenum, use them and see how they perform. We found a few tools, and we
successfully managed to compare all of them. This allowed us to see what func-
tionalities and features we would like to have in Autoenum. One of the first tools
we found was Reconnoitre1, which is a open-source, multithreaded, information
gathering tool. At first, we thought about integrating it in our system, but after
reading the documentation and testing, we realised that Reconnoitre was using
tools that were causing too much traffic in the network. One of the other tools

1https://github.com/codingo/Reconnoitre

https://github.com/codingo/Reconnoitre

Chapter 3: Methodology 20

was DirBuster2, which is a tool used for brute-forcing directories. Since Recon-
naitre was using tools such as DirBuster, it was more of a vulnerability scanner,
that is why we decided to not go forward with it. At this point, we knew that
Autoenum should be a fast, reliable network scanner and based on Reconnaitre’s
performance, we knew what we should avoid.
The next tool that we researched was IVRE3, which is a network recon framework.
It is very similar to Autoenum, but much more advanced. All the functionalities
that we had to implement in Autoenum, are implemented in IVRE, so we took
some inspiration from this software.

3.4 Report structure

The structure of our report has changed a lot during the project. Towards the end
of the project we decided on the structure that is present in the report now. It
consists of eight chapters and is slightly inspired by the SDLC. We took inspiration
from the five stages of the SDLC’s life cycle: requirement definition, design,
implementation, testing and maintenance. The stages are depicted in figure
3.3. We chose not to include maintenance as we will be only be responsible for
developing the system and not maintaining it.

Figure 3.3: SDLC illustration

2https://github.com/KajanM/DirBuster
3https://ivre.rocks/

https://github.com/KajanM/DirBuster
https://ivre.rocks/

Chapter 3: Methodology 21

Requirement definition is the initial step in every development process based
on the SDLC. In our case, this step began with discussing and documenting all
software requirements, and then conducting a preliminary project, which was de-
livered to the taskgiver for approval. This can be found in chapter 4.
Design is the next stage in the SDLC model. The design part started with the group
discussing what kind of architecture would suit our system the best. After a couple
of tries, we decided on the one we show in the report. This part of the report shows
that we are able to plan and look forward with software development in mind.
Implementation is the next chapter (5). Here we go in to detail on the tech-
nical aspects of the project. Implementation started early in the project when we
began coding Autoenum and setting up the database and the API that it uses. This
chapter shows that we are able to discuss and properly show our code and it is
functionality in an easy to understand way.
Testing is the last section of the SDLC. Testing was done simultaneously with the
implementation, as the code needed to be tested while it was written. Chapter 6
shows the test environment of Autoenum and describes how we tested it.

3.5 Technology

In this part of methodology, we will be looking at the various technologies we
chose to use during the development of Autoenum. We will be describing what
we use and why we use it.

Python and Flask

When choosing the programming and scripting language for the project, our choice
quickly fell on Python largely due to Python’s many community made modules.
Although we discussed using Bash, some of the mentioned Python modules are
doing exactly what we need, and instead of making our own modules from the
ground up we have used some modules which have been tried and tested by a
large community. Flask is a web framework written in Python and we are using it
for our API and screengrabber. Screengrabber is the term we use to describe one of
the functionalities required by the task description. Simply explained it captures a
image of the relevant website. We chose to use Flask over another web framework
because it was easy to use and suited our needs.

Nmap

When we were choosing the technology for our scanner, Nmap was the first thing
that came to mind. It is the staple of network scanning, it is free, opensource,
reliable and easy to use. If we look at Nmap’s official website[38], it is described
as flexible, powerful, portable, easy, free, well documented, supported, acclaimed
and popular. We had some prior experience with Nmap, from which we knew that
Nmap would fit our purpose well.

Chapter 3: Methodology 22

MongoDB

We ended up using the NoSQL MongoDB for our database service. The main
reason why we chose MongoDB over a SQL database like i.e. MySQL is that we
don’t have to worry about relations in the database. MongoDB uses documents
in a JSON-like format[49] while a SQL database like MySQL uses tables. Because
we are working with documents instead of relations in the database, we do not
need to alter the schema if we decide to save more data at a later time. This is also
in line with our agile approach, where we have to release a potentially shippable
product at the end of each sprint. By using MongoDB we do not have to spend
time altering the schema every time we add new functions in Autoenum.

Docker

Docker is a major part of Autoenum. Docker is well suited for a system like this,
where it consist of several microservices. The way we have implemented the sys-
tem, the scanner can partially work without some of the containers. i.e.: the scan-
ner can work without the screengrabber or the CVE database. As an added point
of reliability, Docker will automatically restart the containers if they fail. All the
previous points contribute to Autoenum becomming more robust and reliable.
In addition to using Containers, we are using volumes. The use of volumes in
a Docker environment allows for sharing files between multiple containers and
the host they are running on. More importantly they provide data persistency.
Without volumes, the data inside the container would be deleted when stopping
the container. This would not be acceptable in the case of a database. When using
volumes in Docker, the volume is mounted both on the host and in the container.
When the container is stopped the data is still saved on the host, and when re-
starting the container it mounts to the same path. This enables the new container
to access data that was saved to the path by the old container.

Ansible

The Taskgiver requires that Ansible must be used to set up Autoenum. In addition
to using it for Autoenum, we have chosen to use Ansbile to configure the test envir-
onment as well because this will help us achieve consistency across deployments
as discussed in section 2.4.

NodeJS

None of the group members had any prior experience in making web applica-
tions. Even though the web interface is just supposed to be a proof of concept, we
wanted it to have some useful functionality. The main reason our choice fell on
NodeJS is that it was easy to learn due to the vast amount of online resources,
but at the same time provided everything we needed. Additionally it is easy to set
up with MongoDB. We combined NodeJS with Express, which is a standard web

Chapter 3: Methodology 23

application server framework made for building websites, in order to write the
server-side code[50]. We also used EJS, a templating language for generating the
HTML for web pages by using JavaScript[51].

Redis

Redis is a data structure store that runs in the memory of a system. It can be
used as a stand alone database or it can act as a cache for another database. The
advantage of using cache like Redis is that it is much faster to read from memory
than from a disk. When a query is made the first time, Redis will retrieve the
data from the database and store it in memory. If the same query is made again
the response will be sent directly from Redis instead of the database. In larger
systems where the same query might be performed several times in a short time
period, the workload of the database will be significantly reduced at the same
time increasing the response times.

4. Design

This chapter describes the requirements for Autoenum. It also gives a general
overview of the design and describes some of the different components.

4.1 Requirements

Functional requirements include all the functionalities the service or product must
include to enable the end-users tasks. The requirements we mention will hopefully
end with a system that behave as wanted under specific conditions.
Technical and operational requirements include how the system is built, what
kind of standards, language and operating system is used. Some of our technical
requirements include that the service must use Ansible to configure and automate
the deployment of the service. This is a strict technical requirement. All the servers
should be able to be deployed with the use of OpenStack. The language used to
develop code and scripts must be widely used and have a rather large community.
It is an advantage if it already have a large database of modules and example
code in relation to network scanning and discovery. The service has to support
Microservice architecture, meaning that components get separated into smaller
parts with everything it needs to function. The requirements have been developed
in consultation with the Taskgiver and are listed below:

• Open source: All code used in the project must have an open source licence.
The finished product must be licensed as open source.
• Microservice architecture: The service must support microservice archi-

tecture, preferably by using containers.
• Automation: The solution should be configurable and deployable using

Ansible. This means the service developed must be easy to deploy into ex-
isting infrastructure and not require rewriting or manual configuration. It
should be easily deployed and automated with the use of Ansible.
• API: A RESTful API must be implemented in the service to allow for integ-

ration with the taskgivers existing services. The API responses should be in
JSON. API must be implemented with CPE, IP and MAC as valid queries.
• Web interface: As a proof of concept the service should include a web inter-

face for searching the saved data. When entering the IP address associated
with the web view, the user should get an overview over the different hosts
from all the previous scans. Some information will be shown in the preview

24

Chapter 4: Design 25

for each host, but to get a more detailed view including screengrab, the user
must click on preferred IP address. On this site the user should be able to do
a basic search, which contains IP, MAC, CPE or date. It is important to note
that this is only a proof of concept and will most likely not be emphasized
as one of the main parts of the functionality of the service.
• CVE: Hosts that are found by the scanner should have their open Ports and

OS’ checked for CVEs in a CVE database.

4.1.1 Scanner

The main function of Autoenum is the scanner. The scanner takes a network ad-
dress as an input and use it as its target. This should be defined in a separate file
for ease of use, and when the network changes. The network scanner runs on a
machine within the network and the IP of the machine has to be excluded before
every scan. Every scan needs to be registered and saved in the database where it
can be used for further analysis. Every scan needs to be saved and not overwritten,
this is critical for further use of the collected data. While we will not process or
analyse the data, the database needs to be exposed through the REST API as the
taskgiver will use it to get information from the database. The REST API is used to
get information associated with one object so it can be used for further analysis.

Figure 4.1: Flowchart for scanner

The scanner needs to be separated into different stages (see figure 4.1), described
below:

• Host discovery: This is where IPs on the network are discovered.
• Port scan: All IPs found in stage 1 will be used when the port scan is pre-

formed. This finds open ports.
• TCP scan: If predefined ports are open, a TCP scan will be preformed on

IPs with open ports.

Chapter 4: Design 26

• UDP scan: If predefined ports are open, a UDP scan will be preformed on
IPs with open ports.
• Find CVE: This stage uses the CPE to find CVE.
• Screengrab: If predefined ports are open, a screenshot will be taken.
• Insert to database: All the data will then be aggregated and put into the

database.

4.2 Architecture

Based on meetings with the taskgiver and his requirements we developed the
following architecture as seen in 4.2. Autoenum consists of several components as
stated in the task description (appendix A). Some of the components are running
locally on the host whilst the majority of the components have been Dockerized
to support microservice architecture.

Figure 4.2: Architecture detailed

Chapter 4: Design 27

4.3 Components

Below we describe some of the most notable components in greater detail:

• Autoenum MongoDB: The database runs in a container to support Mi-
croservice architecture. The container is connected to a volume to ensure
data persistency. The data saved in the database is grouped by Host object.
• Autoenum API: The API will be the primary way to interact with Autoenum.

It is written in Python by the use of the Flask framework, and is Dockerized.
As a minimum requirement, it must have an endpoint for finding hosts based
on CPE. The API responds to GET-requests only, as there is no need to manu-
ally add data to the database. The API responses will be in JSON format,
which enables the user to integrate the API in existing systems. In addi-
tion to sending data from the database, the API will send the screengrabs
when requested by the web interface. In order to send the screengrabs, the
respective containers have to share a volume.
• Autoenum Screengrabber: The screengrabber runs in a container and is

written in Python/Flask. The scanner will send a GET-request containing
the IP-address of the host to screengrab, and the screengrabber will perform
the grab by using imgkit and wkhtmltopdf. The response will be in JSON
and include filename, time and date. The image itself will be saved to the
volumed shared with the API and not in the database.
• Autoenum Web interface: The web interface provide an easy way of view-

ing and searching through the data in the database. It is Dockerized, but
will be made using NodeJS, Express, EJS and Bootstrap. This is only used
to show the actual data and is not a major part of the requirements.
• CVE Database and API: Autoenum will have a local instance of a CVE data-

base running to reduce the amount of outbound network traffic generated
while the system is scanning. The CVE search Autoenum will use1, has its
own API to facilitate implementation with the scanner. The API will be con-
nected to Redis to speed up the data retrieval. Additionally it comes with a
web interface that can be used by the user to read the details of the CVE.

4.4 Licence

One of the requirements in the task description was that the code we produce
must have an open source licence. During the development of Autoenum, we have
been inspired by many open source projects and we have benefited greatly from
the open source community. As a way of showing appreciation to the community
we chose to give the project a BSD-3-clause licence. We also feel that the BSD-3
licence is in line with NTNU’s motto: "Knowledge for a better world". By issuing a
copy-left licence like the BSD-3 licence, we hope that the open source community
can benefit from Autoenum and continue building on it.

1https://github.com/cve-search/CVE-Search-Docker

https://pypi.org/project/imgkit/
https://wkhtmltopdf.org/
https://github.com/cve-search/CVE-Search-Docker

5. Implementation

This chapter describes and discusses our thoughts and methods on how we imple-
mented the chosen technologies throughout Autoenum. It contains explanations
of some code snippets. It also contains a detailed explanation on how to setup and
deploy Autoenum which might be useful for our target groups in section 1.3.

5.1 Github repository

The code for our project is published on different repositories. Table 5.1 describes
the different repositories.

Used for URL
Code for Autoenum https://github.com/asm492/autoenum
Code for deploying test environment https://github.com/asm492/auto
Configuration for test environment https://github.com/Monastyr/

autoenum-TestENV

Table 5.1: The different repos for the different parts of the project

5.1.1 Open source tools

Our project relies on other open source code and projects. The projects listed in
5.2 are used in Autoenum.

Name Licence
Nmap [52] Based on GNU GPLv2
python3-nmap v1.5.0 [53] GPL-3.0
wkhtmltopdf [54] LGPLv3
imgkit [55] MIT
Flask v1.1.2 [56] BSD-3-Clause
PyMongo v3.11.3 [57] Apache-2.0
CVE-Search-Docker [58] GPL-3.0
pywinrm v0.3.0 [59] MIT

Table 5.2: Open source tools used in the project

28

https://github.com/asm492/autoenum
https://github.com/asm492/auto
https://github.com/Monastyr/autoenum-TestENV
https://github.com/Monastyr/autoenum-TestENV

Chapter 5: Implementation 29

5.2 Overview

When writing the code for Autoenum, we discovered that we had to make some
changes to the architecture that was initially planned. The changes mainly con-
sisted of moving the code for the enrichment Container in to the scanner. Addi-
tionally some containers were added to support the CVE database. After making
the changes we ended up with the architecture shown in figure 4.2.

5.2.1 Scanner

The scanner is the core of Autoenum. It is written in Python and interfaces with
the other components. The main functionality of the scanner is implemented us-
ing Python Nmap, which is a Python Library which enables Nmap commands to
be executed from Python1. The scanner relies on the other containers to get addi-
tional data about the scanned host, but can potentially run without utilizing the
functionality provided by the containers in case one of the containers shuts down.
However the data from that specific container would be missing. The output of the
scanner might not be saved if the database container shuts down. The containers
therefore play an important part in the data gathering process.
As shown in figure 4.1 the scanner works by dividing the scanning process into
seven stages, which will be explained in the subsequent paragraphs. The code for
the scanner is attached in appendix B.1.

Stage 1.0 - Host discovery

The first stage of the scanner is to find hosts. By using the -iL argument, Nmap
reads the IPs of the hosts or networks from the target.txt file. To reduce the num-
ber of hosts that will be port scanned in the later stages we first perform a host-
discovery scan in order to determine if a given host responds. If a host does re-
spond, its IP is sent down to stage 2. The host discovery is done by sending a TCP
SYN packet to Port 443, TCP ACK to port 80, ICMP timestamp request and ARP
request[60] to all the IP addresses specified in the target file.

Code listing 5.1: perform_host_discovery()

1 def perform_host_discovery():
2 # Stage 1
3 logging.debug('[HOST DISCOVERY] started')
4 nmap = nmap3.NmapHostDiscovery()
5 res = nmap.nmap_no_portscan(
6 None, args="-sn --excludefile exclude_ip.txt -iL target.txt")
7 res = remove_keys(res)
8 logging.debug(res)
9 f = open("ips_to_scan.txt", "w")

10 for ip in res:
11 logging.debug('Found IP: ' + ip)
12 if res[ip]['state']['state'] == "up":
13 f.write(ip + "\n")

1https://pypi.org/project/python3-nmap/

https://pypi.org/project/python3-nmap/

Chapter 5: Implementation 30

14 f.close()
15 logging.debug('[HOST DISCOVERY] done')

Stage 2.0 - Fast port scan

This step takes the hosts that responded to the scan from previous stage and scans
for common open Ports (22, 443, 80 etc.)2 3. The results are then sent to another
function(find_interesting_ip()) which loops through the scan result to check if
one of the ports is open. If one of the ports is open then the IP is written to a new
file(ips_to_scan.txt) which is used by the next stage to scan more thoroughly.

Code listing 5.2: perform_portscan()

1 def perform_portscan():
2 # Stage 2
3 logging.debug('[FAST PORTSCAN] started')
4 nmap = nmap3.NmapHostDiscovery()
5 res = nmap.scan_top_ports(None, args="-F -iL ips_to_scan.txt")
6 res = remove_keys(res)
7 logging.debug(res)
8 find_interesting_ip(res)
9 logging.debug('[FAST PORTSCAN] done')

10 return res

Stage 3.0 - Full TCP scan

This stage performs a full TCP scan of the IPs in ips_to_scan.txt(generated in
Stage 2.0). This is arguably the most important stage of the scanner, because it
gathers the majority of data about the hosts. The result of this scan includes:

• Port status
• Service name
• Product name and version
• IP address
• MAC address
• Hostname
• OS detection
• CPEs
• SSL-certificates.

Code listing 5.3: perform_tcp_scan()

1 def perform_tcp_scan():
2 # Stage 3
3 logging.debug('[TCP SCAN] started')
4 nmap = nmap3.Nmap()
5 result = nmap.nmap_version_detection(
6 None, "-sV -p- --script ssl-cert -vv -O -iL ips_to_scan.txt")

2https://pypi.org/project/python3-nmap/
3https://nmap.org/book/nmap-services.html

https://pypi.org/project/python3-nmap/
https://nmap.org/book/nmap-services.html

Chapter 5: Implementation 31

7 remove_keys(result)
8 print(result)
9 logging.debug(result)

10 logging.debug('[TCP SCAN] done')
11 return result

Stage 4.0 - UDP scan

This stage performs a UDP scan on a limited number of ports. It scans the same
IP addresses as the TCP scan. Since UDP is a stateless protocol, we had to reduce
the number of ports to scan as running a full scan would take a long time. We
therefore settled on scanning UDP ports that are often exploited in amplification
attacks[61] [62]. Some of these ports include port 123 for NTP and port 445 for
SMB. NTP stands for Network Time Protocol which provides time sync between
computers and network systems. SMB stands for Server Message Block which is a
communication protocol for providing shared access in a network[63] [64].

Code listing 5.4: perform_udp_scan()

1 def perform_udp_scan():
2 # Stage 4
3 logging.debug('[UDP SCAN] started')
4 nmap = nmap3.NmapScanTechniques()
5 result = nmap.nmap_udp_scan(
6 None, "-iL ips_to_scan.txt -p53,67,68,123,137,138,161,445,5000")
7 remove_keys(result)
8 logging.debug('[UDP SCAN] done')
9 return result

Stage 5.0 - Find CVEs

This stage merges the results from the scans and enriches the results further with
screengrabs and CVEs. This step does not perform any scans. After running the
previous scans, the results from the TCP-scan (listing 5.3) and UDP-scan (listing
5.4) have to be merged so we create one single Host object. The results from
the Nmap scans are in Python dictionaries, which essentially are key-value pairs
and resemble JSON. The results are sent to the merge_results() function (listing
5.5), which creates a separate host object for each of the hosts in the previous
scan results.

Code listing 5.5: merge_results()

1 for i in t:
2 os = t[i]['osmatch']
3 t_ports = t[i]['ports']
4 u_ports = u[i]['ports']
5 ports = t_ports + u_ports
6
7 # OS CPE :
8 for j in t[i]['osmatch']:
9 if 'cpe' in j:

10 if j['cpe']:

Chapter 5: Implementation 32

11 oscve = []
12 oscpe = j['cpe']
13 oscve = cve_lookup.find_cve(oscpe)
14 j['cve'] = oscve
15
16 for port in ports:
17 cve = []
18 for script in port['scripts']:
19 s = script['data']
20 s.pop(0, None)
21 if 'cpe' in port:
22 if 'cpe' in port['cpe'][0]:
23 cpe = port['cpe'][0]['cpe']
24 cve = cve_lookup.find_cve(cpe)
25 port['cpe'][0]['cve'] = cve
26
27 screengrab = take_screengrab(i)
28 if 'Filename' in screengrab:
29 port['screengrab'] = screengrab
30 hostname = t[i]['hostname']
31 macaddress = t[i]['macaddress']
32 state = t[i]['state']
33 stats = {'scandate': startdate, 'scantime': starttime}
34
35 uid = str(uuid.uuid4())
36 host = {'uuid': uid, 'ip': i, 'hostname': hostname, 'macaddress':

macaddress,
37 'osmatch': os, 'ports': ports, 'state': state, 'scanstats': stats}
38 insert_db(host)

In the process of creating separate host objects, the code tries to find CVEs based
on CPEs (5.5 calls find_cve() in appendix B.2) and performs a screenshot (5.5
calls 5.6)

Stage 6.0 - Screengrab

The take_screengrab() function (5.6) makes a HTTP-request to the container
running the screengrabber (listing C.1). If the screengrab is successful on the re-
quested IP, the screengrabber returns the filename, date and time of the screengrab
to the scanner in JSON-format.

Code listing 5.6: take_screengrab()

1 def take_screengrab(ip):
2 url = 'http://localhost:3000/takescreengrab/'
3 url += ip
4 urllib3.disable_warnings()
5 requests.packages.urllib3.disable_warnings()
6 resp = {}
7 try:
8 resp = requests.get(url, verify=False, timeout=1).json()
9 except requests.exceptions.HTTPError as errorHTTP:

10 logging.debug("[SCREENGRAB] Http Error: ", errorHTTP)
11 except requests.exceptions.ConnectionError as errorConnection:
12 logging.debug("[SCREENGRAB] Error Connecting: ", errorConnection)
13 except requests.exceptions.Timeout as errorTimeout:
14 logging.debug("[SCREENGRAB] Timeout Error: ", errorTimeout)

Chapter 5: Implementation 33

15 except requests.exceptions.RequestException as errorRequest:
16 logging.debug("[SCREENGRAB] ERROR: ", errorRequest)
17
18 return resp

Stage 7.0 - Database insertion

When all the data is collected, the remaining step is to insert the data into the
database. The code-snippet shown in 5.7 connects to the database, and inserts
the record. The scanning is now complete and the data can be viewed through
the API or the web interface.

Code listing 5.7: insert_db()

1 def insert_db(res):
2 myclient = pymongo.MongoClient(DBLINK)
3 mydb = myclient["mydb"]
4 mycol = mydb["scans"]
5 mycol.insert_one(res)

Commandline arguments for scanner

The scanner script can be started with different command line arguments:

• -v/–verbose enables output to screen.
• -t/–test does not run a scan. Reads scan results of previous scan from JSON.

It is used to test the enrichment process and saving to database (Stage 5.0
- 7.0).
• -w/–write writes new JSON files of scan.
• -s/–skip skips host discovery and fast port scan (Stage 1.0 - Stage 2.0). As

described in figure 4.1, the scanner by default ignores the hosts that do not
have one of the most common ports open. This option ensures that the host
will be scanned even if the most common ports are closed. By enabling this
option the scanner uses significantly more time, but performs full scan of
all hosts.

5.2.2 Autoenum MongoDB

The database itself is also Dockerized. The database relies on a volume to assure
data consistency whenever the Container is stopped or restarted. Although the
data saved on each Host object varies based on what the scanner finds, we have
created a schema. The schema consists of the data listed in 5.3. All host objects
have the keys in the table header. The different values associated to the keys will
be put in place after the scan is done. The schema mainly consists of nested objects,
which are essentially objects inside other objects.
Sample schema and database document are included in appendix G.
Each of the keys in the schema (table 5.3) contain the following:

Chapter 5: Implementation 34

ObjectId UUID IP Hostname macaddress osmatch ports state scanstats
ObjectId UUID String Object Objects Objects Objects Object Object

Table 5.3: Sample database schema

• ObjectId The mongoDB object id for the database document
• UUID: UUID for the object. Queryable
• IP: IP address of the scanned host. Queryable
• macaddress: Contains MAC address, vendor and address type
• Hostname: Contains the name of the host and which method is used to find

the name.
• osmatch: Array of objects. The objects contain data regarding OS matches

which include: OS name, accuracy, CPEs and CVEs.
• ports: Array of objects which include: port protocol, port number, port state,

service name, product name, version, CPEs and CVEs
• state: State of host and time to live
• scanstats: Date and time of scan

5.2.3 Autoenum API

We have made a RESTful API with ten different endpoints (table 5.4).

Method Endpoint Returns
GET / a helper message to show that the API is

working
GET /all the whole database
GET /log scanner log for debug purposes (Not JSON)
GET /<cpe> all host objects with the given CPE
GET /uuid/<uuid> the host object with the given UUID
GET /ip/<ip address> all host objects with given IP address
GET /date/<YYYYMMDD> all host objects scanned on a given date
GET /mac/<mac address> all host objects with the given MAC address
GET /picture/<filename> the requested image for viewing in web in-

terface
GET /viewpicture/<filename> the requested image for download

Table 5.4: API endpoints

All of the endpoints are called by using the GET method, as there is no need to
add or update data by using the POST method. The different endpoints enable a
user to find Host objects based on data he or she already possesses. In the case
where one does not have any data, the whole database can be returned by calling
the /all endpoint.
When calling an endpoint, a query is designed based on the respective endpoint

Chapter 5: Implementation 35

and the parameter (listing 5.8). After the query has been designed, the query is
passed on to find_in_db() as a parameter. The function then connects to the
database, queries the database and finally returns the results.

Code listing 5.8: Code for MAC endpoint

1 @app.route("/mac/<string:macaddr>/", methods=['GET'])
2 def mac(macaddr):
3 query = { "macaddress.addr" : macaddr }
4 return find_in_db(query)

Figure 5.1 shows a GET-request being made to the MAC endpoint (5.8). The re-
sponse from the API contains the results from the database in JSON format along
with HTTP status code 2004, which means that the request made has succeeded.

Figure 5.1: Example of calling MAC endpoint and response

Caching has been implemented in the API to speed up the response time in cases
where the same request is made to the API within 5 minutes of the last one. Full
code for API can be found in listing C.2.

4https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#successful_responses

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#successful_responses

Chapter 5: Implementation 36

5.2.4 Autoenum screengrabber

The screengrabber (5.9) responds to GET-requests made by the scanner (5.6). The
request includes the IP address of the host to screengrab.

Code listing 5.9: Code snippet screengrabber

imgkit_options= { 'quiet' : ''}
response = {}
response['date'] = date
response['time'] = time

try:
imgkit.from_url(ip, path, options=imgkit_options)

except ConnectionRefusedError:
response['Message'] = "Connection refused"

except IOError:
response['Message'] = "IOError on"

else:
response['Filename'] = filename

return jsonify(response)

The screengrabber then proceeds to download the HTML for the requested IP and
renders the result into an image. The image is saved onto a volume shared with
the API. The filename is generated based on the current time and date, and a
random number is added to the filename.

Figure 5.2: Web site hosted on web server in test environment

The filename, time and date is sent back to the scanner in a JSON response as
shown in 5.3. The scanner saves the details about the image in the database along
with the scan results for the given host. A sample screengrab is shown in figure
5.2.

Chapter 5: Implementation 37

Figure 5.3: Response from screengrabber

5.2.5 Autoenum web interface

The web interface is inspired by the Model-View-Controller pattern, also known
as MVC. The MVC is a software designing pattern, which separates code into three
separate sections. Each of those sections has a purpose and depends on the rest.
As seen in 5.10:

• Model is not fully implemented as there is no need to manually add data.
scan.js is the schema for the database. If it had been properly implemented
it would be used to ensure the format and data types before being saved to
the database.
• Views directory: contains all the views for the web interface and they are

written in EJS. These are only templates which will be rendered by the con-
trollers.
• Controllers: /server.js and /routes/hosts.js. The controllers render the views

when requested by the user. When a user wants to access detailed data about
a host the controller is responsible for retrieving the data from the database
and creating the view that is requested by the user.

Code listing 5.10: MVC of web interface

auto/Docker/website/
|-- Dockerfile
|-- models
| `-- scan.js
|-- node_modules [...]
|-- package.json
|-- package-lock.json
|-- routes
| `-- hosts.js
|-- server.js
`-- views

|-- banner_logo.png
|-- details.ejs
|-- header.ejs
|-- index.ejs
|-- list.ejs
|-- Logo.png
|-- search.ejs
`-- searchresults.ejs

Chapter 5: Implementation 38

The web interface (code in appendix C.3) allows the user to interact with the data
aggregated by the system. However the web interface is not the preferred way of
interacting with the data. There are some limitations on what data is displayed
compared to the API, which essentially returns the whole host object. The web
interface is a proof of concept, but with many core functionalities implemented:

• Home page (figure 5.4) where basic information such as IP addresses, MAC
addresses, Ports about all host objects is displayed as cards
• Basic information displayed in list format (figure H.4)
• A detailed view of each host object (figure H.1). Displays all results from

OS-detection, ports, hostname, state, screengrabs, CVEs with links to the
CVE search web interface (figure 5.6) and a button to get the host object
from the database in JSON
• Host object search based on IP, MAC, UUID, CPE and date (figure H.5).

Figure 5.4: Web interface: Home. More screenshots in appendix H

The web interface can not be used to modify or add data. It simply displays some
data about each host object in the database.

Chapter 5: Implementation 39

5.2.6 CVE database

The CVE search relies on a database to store all the CVEs. The GitHub repository
used for the CVE search5 includes database dumps.
When looking for CVEs in the network, we could have easily used a Nmap script.
The challenge by doing this is that there would be a lot of unnecessary network
traffic in order to get the data. The solution to this problem is to host a local copy
of the CVE database. By hosting it on our local system, the responses will likely be
quicker. However, the biggest downside to hosting the database ourselves, is that
we must ensure that the database is always up to date.

5.2.7 CVE API and search

This container provides both the API and web interface for CVE search. When the
scanner calls the API, the CPE is sent in the GET-request. The API then queries the
CVE database for the provided CPE.

Figure 5.5: Making request to CVE API and receiving response

The matches in the database are returned to the scanner in JSON. The response
includes the CVE itself, along with other details about the CVE. The scanner keeps
the CVEs and stores them in the host object. The other details will not be saved,
but can be accessed through the CVE search web interface when searching for a
CVE.
The CVE search web interface (5.6) provides the user with an easier way of read-
ing the details about a CVE, and the aforementioned ignored details can be read
on the web interface.

5https://github.com/cve-search/CVE-Search-Docker

https://github.com/cve-search/CVE-Search-Docker

Chapter 5: Implementation 40

Figure 5.6: CVE search web interface

5.2.8 CVE Redis

The Redis container is used to cache the responses from the database. When the
API checks the database for CVEs it checks the Redis cache first to see if there are
any entries there. If it does not find anything there it checks the database directly.
This is exactly why the CVE search uses Redis. It reduces the latency when the
same query is made multiple times, something which is highly likely when looking
for CVEs in a large network where multiple servers are running the same OS or
applications.

5.2.9 Volumes

Autoenum creates volumes for the different containers to achieve data persistency
and allow the containers to share files with each other and the host. Figure 4.2
explains which container interacts with which volume:

1. Autoenum MongoDB, CVE Redis and CVE DB have their own volumes for
data persistency

2. Autoenum API and the scanner share a volume. This is simply so that the
user can access the scanner log through the API, and doesn’t have to log in
to the host and find the file

3. Autoenum API and Autoenum Screengrabber share a volume, so that the
API can access the pictures the screengrabber takes.

Chapter 5: Implementation 41

5.3 Setup and deployment

Ansible is the tool that we used to configure the testing environment and to in-
stall the application. As mentioned in 2.4.1 we made a set of Ansible roles and
Playbook (appendix D.1) to automate the deployment. The playbook was based
on the repositories listed in table 6.3.

Setup

Before deploying Autoenum, some prerequisites have to be installed (listing 5.11).
After installing the prerequisites and Ansible, the code must be cloned from the
GitHub repository and copied to the roles directory (directory tree appendix J.1).
The last step is to add the network or the IP the user wants to scan.

Code listing 5.11: Setup

Prerequisites for Ansible
sudo apt install git
sudo apt install python3.8
sudo apt install python3-pip -y
sudo apt-get install ansible -y

Clone code
mkdir -p /etc/ansible/roles && cd /etc/ansible
git clone https://github.com/asm492/autoenum
cp -r autoenum/autoenum /etc/ansible/roles

Adding targets
echo "192.168.1.0/24" > /etc/ansible/autoenum/scanner/target.txt

Running

The next step is to run the Playbook which installs the dependencies for Autoenum
and starts the containers. Finally when the containers are running, the scanner can
be started. The scanner can be started directly from the command line, but the
preferred way of running the scanner is through a job scheduler like cron.

Code listing 5.12: Running

Run the Playbook
ansible-playbook /etc/ansible/autoenum/example-playbook.yml

Check if containers are running
docker ps

Output should be similar to this
CONTAINER ID STATUS PORTS NAMES
c39fd8f11198 Up 5 days 0.0.0.0:443->5000/tcp files_cve_search_1
e10043e5b54b Up 5 days 0.0.0.0:8080->8080/tcp autoenum-webgui
5a41b27408df Up 5 days 27017/tcp files_mongo_1
3cef26891b1e Up 5 days 0.0.0.0:3000->3000/tcp autoenum-screengrab
503901e3e48b Up 5 days 0.0.0.0:27018->27017/tcp autoenum-mongodb
07c432a1cb83 Up 5 days 6379/tcp files_redis_1
8c89cc44cfc8 Up 5 days 0.0.0.0:5001->5001/tcp autoenum-api

https://github.com/asm492/autoenum

Chapter 5: Implementation 42

Create a cronjob, save and quit. Example runs at midnight every Wed:
crontab -e
0 0 * * 3 python3 /etc/ansible/scanner.py

Configuration

Listing 5.13 shows some of the variables of interest in Autoenum. One might like
to change them before deploying Autoenum.

Code listing 5.13: Possible configuration variables for Autoenum

Options/settings
autoenum/autoenum/files/api/app.py:

DB_URL = "mongodb://autoenum-mongodb:27017/"
DB_NAME = "mydb"
COLLECTION_NAME = "scans"
CACHE_TIME = 300

autoenum/autoenum/scanner/scanner.py
DB_URL = 'mongodb://localhost:27018/'
DB_NAME = "mydb"
COLLECTION_NAME = "scans"
TARGETFILE = "target.txt"
LOG_FORMAT = "%(name)s %(asctime)s - %(message)s"
Path and name of log:
FILENAME = "/var/lib/docker/volumes/files_log-volume/_data/Scanner.log"

autoenum/autoenum/scanner/cve_lookup.py
LIMIT = "10" # Limits the number of CVEs returned by CVE API

5.3.1 Recommendations

After running Autoenum, it will effectively produce a complete map of the net-
work or at least the scanned hosts. If someone with the wrong intentions gets
access to the data, they will have knowledge of how to attack the different hosts.
The following recommendations should be met before deploying Autoenum in a
production environment:

• Secure database: As a minimum requirement, there should be implemen-
ted a user account with a strong password as shown in listing 5.14.

Code listing 5.14: Adding username and password to mongoDB

#Add this to Docker compose file
environment:
MONGO_INITDB_ROOT_USERNAME: root
MONGO_INITDB_ROOT_PASSWORD: databasepassword

• Data replication: To make sure that the data collected by Autoenum stays
intact, a database should be redundant. It means that the data should be
held in at least two different places simultaneously, so the data is not lost
when one of the databases loses its availability. In our case, the easiest way
to achieve data redundancy is to replicate the database, using Docker con-
tainers spread across different hosts. It would also be wise to frequently

Chapter 5: Implementation 43

back up the database, so the data stays intact if a critical situation occurs.
Those steps should provide a persistent data integrity.
• Access Control List: There should be an Access control list blocking un-

authorized hosts from connecting to the machine where Autoenum is de-
ployed.

6. Testing

This chapter gives an overview of the testing environment in OpenStack and how
it was used throughout the development process of Autoenum. The last part of
this chapter was included to discuss the results from a beta test conducted by the
Taskgiver.

6.1 Test environment

In this part of the chapter we go more in depth and give an overview of our
testing environment, some tables and figures for visualizing with more detailed
information and descriptions. To be able to verify that Autoenum could do what
it was supposed to do, we had to create a test environment.

6.1.1 Overview

We created our test environment in SkyHiGh. The testing environment consisted
of seven servers in total, which ran different OS or different versions. To deploy the
testing environment we had chosen to use HOT-templates. The biggest argument
to use HOT-templates is that they provide consistency and re-usability across de-
ployments, which results in the exact same test environment being deployed each
time as long as the deployer has access to OpenStack.
When the stack is deployed, it starts up the new instances and runs a startup script
on the VM’s to prepare them for Ansible. The Playbook is then run by the manager
node, provisioning the worker nodes to the desired configuration. This includes
setting up user accounts for Ansible, downloading and installing needed software
and changing the software configuration to the desired state.

6.1.2 Topology

As seen in figure 6.1 the test environment consists of two networks. This was
necessary when testing if the scanner was able to detect open Ports and OS’ across
the different networks.

44

Chapter 6: Testing 45

Figure 6.1: Topology of test environment

Table 6.1 lists the different Images we used in the test environment. We included
some Debian-based OS’ and two different Windows versions. Having different OS’
was important to see if the scanner could distinguish between the different OS’
and their CPEs. Since the servers were running different applications, we deployed
them by using a couple of different Flavors.

Instance
name

IP Address Image Flavor

Manager Dynamic Ubuntu Server 20.04 LTS m1.large
Ubuntu20 192.168.1.4 Ubuntu Server 20.04 LTS m1.tiny
Win1 192.168.1.5 Windows Server 2019 Standard m1.small
Ubuntu18 192.168.1.6 Ubuntu Server 18.04 LTS m1.tiny
Win2 192.168.1.10 Windows Server 2016 Standard m1.small
Kali 192.168.1.12 Kali Linux 2018.2 xfce m1.small
ubuntu-
net2

192.168.2.2 Ubuntu Server 20.04 LTS m1.tiny

Table 6.1: Instances in OpenStack test environment

Chapter 6: Testing 46

6.1.3 Services

To be able to verify that the scanner worked as intended, the VMs in the test
environment had to be configured with a couple of different services (table 6.2)
that could be picked up by the scanner. With the exception of OpenSSH1 on all
Linux based machines, we installed and configured different services on each of
the VMs. Some of the installed services in the test environment were deliberately
chosen because they had known vulnerabilities. This was crucial, as we would
have to test that our service was able to find CVEs in the network.

Instance
name

Port Service/Product

Ubuntu20 22 OpenSSH 8.2p1 Ubuntu 4
80 Apache httpd v2.4.46

Win1 80 Microsoft IIS httpd v10.0
443 Microsoft IIS httpd v10.0
3389 Microsoft Terminal Services (RDP)
5985 Microsoft HTTPAPI httpd v2.0 (WinRM)
5986 Microsoft HTTPAPI httpd v2.0 (WinRM)

Ubuntu18 21 vsftpd v2.3.4
22 OpenSSH 7.6p1 Ubuntu 4ubuntu0.3
23 Linux telnetd
139 Samba smbd 3.X - 4.X
445 Samba smbd 3.X - 4.X

Win2 80 Apache httpd v2.4.46
135 Microsoft Windows RPC
445 Microsoft Windows Server 2008 R2 - 2012 microsoft-ds
3389 Microsoft Terminal Services (RDP)
5985 Microsoft HTTPAPI httpd v2.0 (WinRM)
5986 Microsoft HTTPAPI httpd v2.0 (WinRM)
49669 Microsoft Windows RPC
49731 Microsoft Windows RPC

Kali 22 OpenSSH 7.7p1 Debian 2
5901 VNC protocol 3.8
6001 X11

ubuntu-
net2

22 OpenSSH 8.2p1 Ubuntu 4

Table 6.2: Services running on the instances

1Utility to enable SSH-access on a machine, https://www.openssh.com/

https://www.openssh.com/

Chapter 6: Testing 47

6.1.4 Roles

The roles described in table 6.3 are roles we found on GitHub or Ansible Galaxy.
The rest of the roles (listed in table 6.2) were implemented manually. The whole
code was based on the official Ansible documentation2. The roles we found on
GitHub and Galaxy are listed in table 6.3.

Name Description
dwva-ansible [65] Installs and configures DVWA, alongside with apache2,

mysql and php.
ansible-role-samba [66] Installs and configures Samba file server. The installed

version of Samba is prone to CVE-2017-7494
ansible-role-docker [67] Installs and configures Docker and Docker-compose

Table 6.3: Roles used in project

6.1.5 Deployment

The test environment can be deployed to SkyHiGh by running the commands
listed in listing 6.1. Figure 6.2 illustrates the process that will be explained in the
next paragraph.

Figure 6.2: Flowchart deployment of test environment

2https://docs.ansible.com/

https://dvwa.co.uk/
https://www.cvedetails.com/cve/CVE-2017-7494/
https://docs.ansible.com/

Chapter 6: Testing 48

After running the command, OpenStack creates the requested Heat stack based
on the provided template (E.1) and environment variables (E.2). During the de-
ployment of the Windows VMs, a startup script (E.4) is injected to create a user
account with administrator privileges which is to be used by Ansible. A script is
also injected into the Manager node (E.3). This script installs the prerequisites for
Docker, Ansible and the scanner itself. Following that, Ansible takes control and
runs the Playbooks (D.2, D.2). The required services are installed (table 6.2) and
configured into the desired state.

Code listing 6.1: Bash-commands to launch test environment

git clone https://github.com/asm492/auto
cd auto/heat/
openstack stack create -t heat.yaml -e env.yaml AutoEnumStack

6.2 Testing

We used our test environment a lot during Autoenum’s development. The advant-
age of choosing a microservice architecture and an agile development model, was
that we could write a small amount of code that could be tested and changed im-
mediately. Whenever we added functionality or changed the code, we ran a test
right away. Testing was done in parallel with the development to catch any errors
at an early stage. The tests were comprised of three parts:

• Unit test: Whenever we added a new component to Autoenum, we per-
formed a unit test. Since all of Autoenum’s components are running in sep-
arate Containers, testing each of them individually was simple and effort-
less. In the case of the API, CVE search and screengrabber we performed the
unit tests by making API calls through Postman3.
• Integration test: After verifying that the component worked individually

we integrated the respective component with the existing ones. We then
tested the components to see if they worked correctly.
• System test: If the integration tests went as planned we proceeded with

a full system test. We did this by starting the scanner and watching the
output as it scanned. When the scan was finished, we checked the data in
the database by calling all the API endpoints (section 5.2.3) and ensuring
that the data was displayed correctly on the web interface.

6.3 Beta test

By the end of March 2021, we were almost done with Autoenum. We had some
minor bug fixes to implement, but the main functionalities of the service were
done. We therefore arranged a meeting with our Taskgiver. During the meeting we
gave the Taskgiver a live demo of the system. After the presentation the taskgiver

3Application for building and testing APIs, https://www.postman.com/

https://www.postman.com/

Chapter 6: Testing 49

suggested that they wanted to test Autoenum in NTNU SOC’s own environment.
This would be beneficial for both parties, as the group gets valuable feedback on
how the system performs in a larger, real-world environment, and the employer
get the opportunity to check if Autoenum fulfills their requirements. We promptly
accepted the taskgivers request. After the demo they proposed some changes that
had to be implemented before the test. The taskgiver also wanted concise doc-
umentation on how to deploy and run Autoenum, along with Playbook and the
code.
We made the requested changes, wrote the documentation and Playbook over
easter and gave the taskgiver access to the code. Our plan was to improve Au-
toenum based on the feedback from the beta test, however that fell through. Un-
fortunately the taskgiver did not have time to perform a beta test before the dead-
line of report, however he might be able to perform the test before the presentation
of the project.

7. Discussion

This chapter discusses some of the decisions we made and reflect on the potential
usefulness of Autoenum, as in trying to see the significance of Autoenum in re-
lation to detection and incident management. This section will also relate to the
theory chapter (2), previous reflections and project results.

7.1 Decisions

As with every project there will be decisions and discussions on what are the best
ways to solve problems. In our case they often related to specifying the require-
ments, what technology to use and what the architectural design should look like.

7.1.1 Docker

Our initial plan was to Dockerize every component, but after a meeting with the
taskgiver during the planning phase, we were advised not to do so as that would
involve opening many ports in Docker to allow the traffic related to the scanner to
pass through. It would introduce some latency as well when redirecting the traffic
from the host to the container. We therefore settled on running the scanner script
on the host itself, and dockerize everything else as figure 4.2 depicts.

7.1.2 Scanner

Prior to writing the code for the scanner it was clear that Autoenum would be used
in large networks. Scanning a large network is time consuming. To reduce the
time needed to complete a scan we had to reduce the number of IP addresses that
would be scanned. We separated the scanning process into seven stages, where
Stage 1.0 is performing a host discovery. The host discovery is done by sending
multiple packets as mentioned in chapter 5.2.1. Only the hosts which respond are
then written to a file used by the next stage. After the discovery is done, the host
that were found are passed on to Stage 2.0 where a port scan of common open
ports is performed. At this point we discovered a flaw in Autoenum. The flaw
was that hosts might have open ports which are not a part of Nmap’s common
open port list1, meaning that the IP would be ignored by the subsequent stages.

1https://nmap.org/book/nmap-services.html

50

https://nmap.org/book/nmap-services.html

Chapter 7: Discussion 51

To avoid discarding hosts that might have uncommon ports open, we added an
optional argument (see chapter 5.2.1) to the scanner. Using this option comes with
a significant time penalty, as it skips the host discovery and common port scan.
Meaning that every single IP address (network and host) specified in the target
file will be scanned for all TCP ports, without checking if the respective host is up
or not. However, the scanner will likely find more hosts when using this option.

7.1.3 Database

Before we started writing the code for Autoenum, we decided to use MySQL as
our database service. This was mainly because throughout our course of study,
we only had experience using and deploying database services using MySQL. But
when we added more functionality in each sprint, we spent a lot of time rewriting
the code parsing and inserting the scan results into the database. This amounted
to a lot of time wasted adapting the parser for each sprint. Another challenge we
faced was that we had to perform many complex queries to the database when
viewing the data. We would have to join the data from the different tables.
After a meeting with the taskgiver we settled on MongoDB, which had some big
advantages over a relational database. The biggest advantage of using MongoDB
over a relational database is that there was no need to update the schema and
rewrite the code for every sprint. Using MongoDB also allowed us to sort the data
by a Host object where all details about a host would be stored in one document
rather than spread out in different tables. When retrieving the data from Mon-
goDB, the response is a key-value pair, which makes the data easy to parse both
when using it with Python in the API and when using it with NodeJS in the web
interface.

7.1.4 Structure

Our report structure was often discussed and changed. Some inspiration was taken
from past reports, suggestion document from NTNU and the typical SDLC. The
discussion was often related with the chapters requirements, design and imple-
mentation. Even though it seems easy to separate and delegate what part fits
the different chapters, no report follows a predefined structure perfectly. Based
on what Autoenum was going to provide to the Taskgiver, and the given require-
ments, we decided to merge requirements and design. This was mainly done based
on the lack of a end-user and use-case functionality. We felt these elements did
not add any useful information as Autoenums functionality was described in the
design chapter. This was also based on that Autoenum is a service that does not
have a typical end user, but is rather managed by an administrator.

Chapter 7: Discussion 52

7.2 Purpose and usefulness

Network scanners and other similar technologies are very useful utilities. If used
with the wrong intentions, legal issues and concerns may arise. One of the main
concerns about network scanning is when a third party scans a network without
the owners consent. Using Nmap to port scan is not illegal, because it does not
have an official law that forbids it. If port scanning is legal or not, it often depends
on the context, i.e using these kind of tools to disrupt systems and scan networks
to find vulnerabilities that is not under ones responsibility and control.
To prevent concerns and consequences, it may be wise to follow some rules and de-
velop some precautions before using these kind of tools as mentioned by Lyon[68]:

• Permission: It is important to ensure that one has permission. Although
what one is doing is not meant to be harmful or done with malicious inten-
tions, it is always best to get written consent and ensure one has permission
to do so.
• Specify: Always try to specify and limit what information is gathered. Try to

be specific with ports and limit full scans. This will both save time, reduce
the intrusion of the scan and limit complaints from network owners.
• Reason: Make sure one has a reason for using these kind of tools. Try to have

a clear and concise justification for the activity one is performing. Doing a
port scan might not be a signal of malicious intentions, but if it is followed
with the use of an exploit, the intentions becomes very clear.

Network scanning in itself is pretty harmless, but if used with malicious intent,
it can lead to catastrophic consequences on the network. If a threat agent gets
control over Autoenum, the agent can use the results from the scan to map out
the network. This information can be later used to execute an attack, because the
attacker has access to the network architecture and addresses. This is why it is
important for Autoenum to be secure and to be placed in a controlled and heavily
surveilled area of the NTNU SOC.

7.2.1 Detection and incident management

The usefulness by having a network scanner on your own network can be sig-
nificant. It is important to know this is only a tool in a series of preparations.
Managing incidents includes everything from preparing, preventing and having
detection systems in place before incidents happen. It is important to find out
how your company reacts and responds when a incident occurs.
Having a network scanner such as Autoenum can be beneficial in a incident man-
agement context. It can establish a baseline[69] of the hosts connected to the
network, and more importantly update the baseline over time. The baseline can
later be used to compare against when irregularities are detected to verify if some-
thing is to be classified as an incident or not. Having a baseline for system and
network activity can be found listed under Incident Analysis Resources[70]. This
is a list of tools and tips on how to prepare for incidents. Possessing the right data

Chapter 7: Discussion 53

at the right time can make the subsequent step, detection and analysis easier, as
the incident responder can study the deviations between the historical baselines
and the current situation to determine if i.e. Ports have been opened or new hosts
have appeared on the network since the last scan.

7.3 Results

After working with the project for almost five months, we feel we have been able
to achieve the goals for the project (1.7). After writing the report we feel that it
provides a good documentation on Autoenum.

• Make a usable system that has the functionality the taskgiver needs
and has requested. We are confident in that Autoenum fulfills all of the
requirements stated by the taskgiver.
• Improving the security of the NTNU network. If Autoenum is used as in-

tended, we believe it will help improve the level of security of the NTNU
network. With the functionalities we have implemented, and if used cor-
rectly, it should at the very least improve the level of security slightly.
• Provide a report that acts as supporting literature for the system. We feel

that the report we provided presents a complete overview of the product.
It contains a balanced mix between practical and theoretical knowledge.
The report is written in such a way that a non-technical person could easily
understand the project and even use Autoenum, using the technical docu-
mentation.
• The report and Autoenum should be relevant for future work. We feel

that our report has documented our thoughts behind Autoenum well, why
we did the things we did and how. The report should be relevant for the
members of our target group 1.3. Autoenum as a system will also be relevant
for those who want to try it in their networks to increase the level of security.

7.4 Deviations

As discussed in the risk assessment part of our preliminary report (5.1 in appendix
L) one of our primary concerns were that we might be delayed because of im-
proper planning. Despite our concerns we were able to finish much of coding long
before we initially planned to. On the other hand, there have also been moments
where we have done some drastic changes to the code (i.e. changing from SQL to
MongoDB). Being a bit ahead of the sprints has proven to be a good idea.
In addition to the task (appendix A) given by the Taskgiver we expanded our
scope by implementing the CVE search as described in chapter 5.2. We were also
able to develop a functional web interface. One of the risks mentions that the
test environment does not simulate the a production environment well enough.
This might be a limiting factor in our project, as we have not been able to test
Autoenum on a network with more than seven hosts. This also leads us to discuss

Chapter 7: Discussion 54

risk number 6, which was described as decreased level of quality as a result of poor
communication with taskgiver. As mentioned in chapter we held a presentation
for the taskgiver at the end of March. During the meeting we were told that the
taskgiver wanted to run a beta test of Autoenum after easter. This was a great
opportunity for us to see if Autoenum could handle what it was made for. Our
plan was to spend the last two sprints to improve or fix Autoenum based on the
results from the beta test. Unfortunately the taskgiver has not had time to run the
test, and therefore been unable to provide us with any feedback. This resulted in
submitting Autoenum without improving it.
As mentioned in the methodology chapter 3 we have followed the software de-
velopment framework Scrum during the project period. We had set up a total of
seven sprints 3.2 at the start of the project. We found out after the first and second
sprint, we were progressing a lot faster than planned. We made an overall quality
check on what we had previously done and found nothing wrong with the work
we had done. Then we continued our pace throughout the project, which led to
us finishing Autoenum during sprint 4.

7.5 Project criticism

While the group is satisfied with the outcome of the project, there are some things
we would do differently if we have had the time.

• The system is handling sensitive data that should be kept away from a po-
tential intruder. The API should have used an API key.
• The system is lacking a way of easily configuring settings and parameters.

This could i.e. have been done by using a YAML-file or through the web
interface.
• To scale better, the cache in the API should have been implemented by hav-

ing a separate container running Memcached or Redis, just like the one used
in CVE search.
• Autoenum only works with IPv4. We should have implemented support for

IPv6.
• Our test environment is very small and limited, and it may not properly

imitate a real environment. It should have included other non-Debian based
OS’. They were omitted as writing Playbooks would have taken a long time.

8. Conclusion

This chapter concludes our project and address some concluding topics. These
include our work ethic, further work, concluding our work and closing statement.

8.1 Work ethic

We had a good work ethic throughout the project period. We managed to work
from Monday to Friday every week during the writing period. With some excep-
tions, we accomplished to keep that work schedule. There is a graph of the total
hours worked during the project for the whole group, that can be found in ap-
pendix M. Throughout the whole process of designing Autoenum and writing the
report, we were highly motivated and focused on completing the task. The task
itself was interesting and challenged what we had learned throughout our course
of study. That is why we chose it out of the many task proposals for our bachelor
project.
Our division of labour throughout the project has been quite clear. Two of our
group members did most of the technical work, with the coding, setting up Au-
toenum and so on. The other two worked mostly on the report, trying out differ-
ent structures, adding or removing more theory and so on. This division of labour
has worked great for us, as we managed to have a report that followed the sys-
tem throughout the project, rather than writing the report at the very end of the
project.

8.2 Further work

Despite the fact that the project fulfills all of the taskgivers requirements, the
group members agree that we could have extended the project to include more
functionality:

• Our first priority would be to fix and implement the changes in chapter 7.5.
• Add more functionality to the web interface. i.e.: The functionality to define

scan targets and start scans manually from web interface or by making a
POST-request to the API.
• Refactor and optimize the code, as it could be too slow when scanning a

larger network.

55

Chapter 8: Conclusion 56

• Add a service that notifies SOC-staff when a new CVE is found in the net-
work.

8.3 Conclusion of the work

Our Taskgiver wanted a service which automatically discovers and enumerates
hosts, open ports and running services on a network. We feel confident that we
have delivered a product that meets their demands and expectations. As discussed
in chapter 7.3, we have achieved and fulfilled the project goals listed in chapter
1.7. The task has provided us with the opportunity to go more in depth into and
use technologies and methodologies we were already familiar with, as well as
learning new technologies and combining them with our prior knowledge.
After working on this project for 5 months, we can finally say that we are done.
The task has provided us with a great learning experience and tested our skills
and knowledge. The group is very satisfied with the outcome of both Autoenum
and the report, even though there were things that we could have done better. We
hope that both Autoenum and the report can be of value to the members of our
target groups.

Bibliography

[1] R. Shirey, Internet security glossary, version 2, https://tools.ietf.org/
html/rfc4949, [Online; accessed 27-April-2021].

[2] Wikipedia contributors, Cloud computing — Wikipedia, the free encyclope-
dia, https://en.wikipedia.org/w/index.php?title=Cloud_computing&
oldid=1016481284, [Online; accessed 9-April-2021].

[3] NIST, Official common platform enumeration (cpe) dictionary, https://
nvd.nist.gov/products/cpe, [Online; accessed 02-March-2021].

[4] Red Hat, What is a cve? https://www.redhat.com/en/topics/security/
what-is-cve, [Online; accessed 05-March-2021].

[5] Docker, What is a container? https://www.docker.com/resources/what-
container, [Online; accessed 23-March-2021].

[6] Docker, Dockerfile reference, https://docs.docker.com/engine/reference/
builder/, [Online; accessed 24-March-2021].

[7] OpenStack, Heat, https://wiki.openstack.org/wiki/Heat, [Online;
accessed 24-February-2021].

[8] T. Berners-Lee, Html - living standard, https://html.spec.whatwg.org/
#is-this-html5?, [Online; accessed 28-April-2021].

[9] Wikipedia contributors, System image — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=System_image&oldid=
973253530, [Online; accessed 22-March-2021], 2020.

[10] Wikipedia contributors, Internet control message protocol — Wikipedia, the
free encyclopedia, https://en.wikipedia.org/w/index.php?title=
Internet_Control_Message_Protocol&oldid=1014631093, [Online; ac-
cessed 6-April-2021].

[11] Wikipedia contributors, Library (computing) — Wikipedia, the free encyc-
lopedia, https://en.wikipedia.org/w/index.php?title=Library_
(computing)&oldid=1017253221, [Online; accessed 16-April-2021].

[12] RedHat, What are microservices? https://www.redhat.com/en/topics/
microservices / what - are - microservices, [Online; accessed 03-May-
2021].

57

https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1016481284
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1016481284
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://www.redhat.com/en/topics/security/what-is-cve
https://www.redhat.com/en/topics/security/what-is-cve
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://wiki.openstack.org/wiki/Heat
https://html.spec.whatwg.org/#is-this-html5?
https://html.spec.whatwg.org/#is-this-html5?
https://en.wikipedia.org/w/index.php?title=System_image&oldid=973253530
https://en.wikipedia.org/w/index.php?title=System_image&oldid=973253530
https://en.wikipedia.org/w/index.php?title=Internet_Control_Message_Protocol&oldid=1014631093
https://en.wikipedia.org/w/index.php?title=Internet_Control_Message_Protocol&oldid=1014631093
https://en.wikipedia.org/w/index.php?title=Library_(computing)&oldid=1017253221
https://en.wikipedia.org/w/index.php?title=Library_(computing)&oldid=1017253221
 https://www.redhat.com/en/topics/microservices/what-are-microservices
 https://www.redhat.com/en/topics/microservices/what-are-microservices

Bibliography 58

[13] Microsoft, Onedrive, https://www.microsoft.com/nb-no/microsoft-
365/onedrive/online-cloud-storage, [Online; accessed 31-March-2021].

[14] Wikipedia contributors, Openstack — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=OpenStack&oldid=1006548754,
[Online; accessed 24-February-2021].

[15] Overleaf, Overleaf, https://www.overleaf.com/, [Online; accessed 31-
March-2021].

[16] Red Hat, What is an ansible playbook? https://www.redhat.com/en/
topics/automation/what-is-an-ansible-playbook, [Online; accessed
24-February-2021].

[17] A. Josey, Posix™ 1003.1 frequently asked questions (faq version 1.18), http:
//www.opengroup.org/austin/papers/posix_faq.html, [Online; ac-
cessed 24-March-2021].

[18] SSH, Ssh protocol, https://www.ssh.com/ssh/protocol/, [Online; ac-
cessed 23-March-2021].

[19] Wikipedia contributors, Soap — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=SOAP&oldid=1013240336,
[Online; accessed 23-March-2021].

[20] Wikipedia contributors, Cloud computing — Wikipedia, the free encyclope-
dia, https://en.wikipedia.org/w/index.php?title=Systems_development_
life_cycle&oldid=1014869490, [Online; accessed 10-April-2021].

[21] Oracle, What is a database, https://www.oracle.com/database/what-
is-database/, [Online; accessed 24-February-2021].

[22] P. Fox, Transmission control protocol (tcp), https://www.khanacademy.
org/computing/computers- and- internet/xcae6f4a7ff015e7d:the-
internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-
control-protocol--tcp, [Online; accessed 16-April-2021].

[23] P. Fox, User datagram protocol (udp), https://www.khanacademy.org/
computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/
xcae6f4a7ff015e7d:transporting-packets/a/user-datagram-protocol-
udp, [Online; accessed 16-April-2021].

[24] Microsoft, What is a virtual machine? https://azure.microsoft.com/
en-us/overview/what-is-a-virtual-machine/, [Online; accessed 22-
March-2021].

[25] yaml, What it is, https://yaml.org/, [Online; accessed 23-March-2021].

[26] I. Sommerville, Software Engineering. Pearson, 2016, p. 45.

[27] K. Schwaber and J. Sutherland, The scrum guide™, https://scrumguides.
org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf, [Online; ac-
cessed 09-March-2021].

https://www.microsoft.com/nb-no/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/nb-no/microsoft-365/onedrive/online-cloud-storage
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=1006548754
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=1006548754
https://www.overleaf.com/
https://www.redhat.com/en/topics/automation/what-is-an-ansible-playbook
https://www.redhat.com/en/topics/automation/what-is-an-ansible-playbook
http://www.opengroup.org/austin/papers/posix_faq.html
http://www.opengroup.org/austin/papers/posix_faq.html
https://www.ssh.com/ssh/protocol/
https://en.wikipedia.org/w/index.php?title=SOAP&oldid=1013240336
https://en.wikipedia.org/w/index.php?title=SOAP&oldid=1013240336
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=1014869490
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=1014869490
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp
https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/
https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/
https://yaml.org/
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

Bibliography 59

[28] Scrum Framework, https://scrumorg- website- prod.s3.amazonaws.
com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf, [On-
line; accessed 16-May-2021].

[29] K. Morris, Infrastructure as Code. O’Reilly Media, 2016, pp. 3–13.

[30] S. J. Bigelow, It automation, https://searchitoperations.techtarget.
com/definition/IT-automation, [Online; accessed 24-February-2021].

[31] D. Kaplan, What is Vulnerability Management? https://www.siemplify.
co/blog/vulnerability-management/, [Online; accessed 18-May-2021].

[32] Kaspersky, The Human Factor in IT Security: How Employees are Making
Businesses Vulnerable from Within, https://www.kaspersky.com/blog/
the-human-factor-in-it-security/, [Online; accessed 08-May-2021].

[33] Puppet, Overview of puppet’s architecture, https://puppet.com/docs/
puppet/5.5/architecture.html, [Online; accessed 23-March-2021].

[34] Chef, Chef infra client (executable), https://docs.chef.io/ctl_chef_
client/, [Online; accessed 23-March-2021].

[35] Red Hat Ansible, Overview how ansible works, https://www.ansible.com/
overview/how-ansible-works, [Online; accessed 23-March-2021].

[36] Ansible, Roles, https://docs.ansible.com/ansible/latest/user_
guide/playbooks_reuse_roles.html, [Online; accessed 23-March-2021].

[37] Ansible, Setting up a windows host, https://docs.ansible.com/ansible/
latest/user_guide/windows_setup.html/#windows-ssh-setup, [On-
line; accessed 23-March-2021].

[38] G. Lyon, Nmap Network Scanning. Insecure.Com LLC, 2008, p. 1.

[39] Geeksforgeeks, Tcp 3-way handshake process, https://www.geeksforgeeks.
org/tcp-3-way-handshake-process/, [Online; accessed 24-March-2021].

[40] G. Lyon, Port scanning techniques, https://nmap.org/book/man-port-
scanning-techniques.html, [Online; accessed 06-April-2021].

[41] NIST, Vulnerabilities, https://nvd.nist.gov/vuln, [Online; accessed
24-February-2021].

[42] K. Morris, Infrastructure as Code. O’Reilly Media, 2016, pp. 70–79.

[43] K. Lane, What exactly is an api? https://blog.postman.com/intro-to-
apis-what-is-an-api/, [Online; accessed 27-April-2021].

[44] R. T. Fielding, ‘Architectural styles and the design of network-based soft-
ware architectures,’ p. 76, 2000. [Online]. Available: https://www.ics.
uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

[45] K. Lange, THE LITTLE BOOK ON REST SERVICES. Kenneth Lange, 2016,
pp. 5–8. [Online]. Available: https://www.kennethlange.com/books/
The-Little-Book-on-REST-Services.pdf.

 https://scrumorg-website-prod.s3.amazonaws.com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf
 https://scrumorg-website-prod.s3.amazonaws.com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf
https://searchitoperations.techtarget.com/definition/IT-automation
https://searchitoperations.techtarget.com/definition/IT-automation
 https://www.siemplify.co/blog/vulnerability-management/
 https://www.siemplify.co/blog/vulnerability-management/
https://www.kaspersky.com/blog/the-human-factor-in-it-security/
https://www.kaspersky.com/blog/the-human-factor-in-it-security/
https://puppet.com/docs/puppet/5.5/architecture.html
https://puppet.com/docs/puppet/5.5/architecture.html
https://docs.chef.io/ctl_chef_client/
https://docs.chef.io/ctl_chef_client/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/windows_setup.html/#windows-ssh-setup
https://docs.ansible.com/ansible/latest/user_guide/windows_setup.html/#windows-ssh-setup
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/book/man-port-scanning-techniques.html
https://nvd.nist.gov/vuln
https://blog.postman.com/intro-to-apis-what-is-an-api/
https://blog.postman.com/intro-to-apis-what-is-an-api/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.kennethlange.com/books/The-Little-Book-on-REST-Services.pdf
https://www.kennethlange.com/books/The-Little-Book-on-REST-Services.pdf

Bibliography 60

[46] Rest url explanined, https://avaldes.com/wp-content/uploads/2017/
08/REST_URL_structure.png, [Online; accessed 28-April-2021].

[47] REST API, HATEOAS Driven REST APIs, https://restfulapi.net/hateoas/,
[Online; accessed 30-April-2021].

[48] Mozilla Corporation and contributors, Http request methods, https : / /
developer.mozilla.org/en-US/docs/Web/HTTP/Methods, [Online; ac-
cessed 27-April-2021].

[49] MongoDB, What is mongodb? https://www.mongodb.com/what- is-
mongodb, [Online; accessed 03-March-2021].

[50] Express, Express, https://expressjs.com/, [Online; accessed 03-May-
2021].

[51] M. Eernisse, What is ejs? https://ejs.co/, [Online; accessed 29-April-
2021].

[52] G. Lyon, Nmap Public Source License Version 0.93, https://nmap.org/
npsl/npsl-annotated.html, [Online; accessed 12-May-2021].

[53] nmmapper, python3-nmap, https://pypi.org/project/python3-nmap/,
[Online; accessed 12-May-2021].

[54] J. Truelsen and A. Kulkarni, wkhtmltopdf, https://github.com/wkhtmltopdf/
wkhtmltopdf, [Online; accessed 12-May-2021].

[55] C. Dolphin and O. College, IMGKit: Python library of HTML to IMG wrapper,
https://pypi.org/project/imgkit/, [Online; accessed 12-May-2021].

[56] D. Lord, flask, https://github.com/pallets/flask/tree/0.12.x,
[Online; accessed 12-May-2021].

[57] M. Dirolf and B. Hackett, pymongo, https://github.com/mongodb/
mongo-python-driver/tree/v3.11, [Online; accessed 12-May-2021].

[58] GitHub user P-T-I, CVE Search Docker, https://github.com/cve-search/
CVE-Search-Docker/tree/v1.4, [Online; accessed 12-May-2021].

[59] A. Diyan, pywinrm, https://github.com/diyan/pywinrm/tree/v0.1.x,
[Online; accessed 12-May-2021].

[60] Nmap, Chapter 15. Nmap Reference Guide: Host discovery, https://nmap.
org/book/man-host-discovery.html, [Online; accessed 04-May-2021].

[61] Cybersecurity and infrastructure security agency, Udp-based amplification
attacks, https://us-cert.cisa.gov/ncas/alerts/TA14-017A, [Online;
accessed 28-April-2021].

[62] M. Majkowski, Reflections on reflection (attacks), https://blog.cloudflare.
com/reflections-on-reflections/, [Online; accessed 28-April-2021].

[63] ntp.org, http://www.ntp.org/, [Online; accessed 06-May-2021].

[64] smb.org, Just what is SMB? https://www.samba.org/cifs/docs/what-
is-smb.html, [Online; accessed 06-May-2021].

 https://avaldes.com/wp-content/uploads/2017/08/REST_URL_structure.png
 https://avaldes.com/wp-content/uploads/2017/08/REST_URL_structure.png
https://restfulapi.net/hateoas/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
 https://expressjs.com/
https://ejs.co/
https://nmap.org/npsl/npsl-annotated.html
https://nmap.org/npsl/npsl-annotated.html
https://pypi.org/project/python3-nmap/
https://github.com/wkhtmltopdf/wkhtmltopdf
https://github.com/wkhtmltopdf/wkhtmltopdf
https://pypi.org/project/imgkit/
https://github.com/pallets/flask/tree/0.12.x
https://github.com/mongodb/mongo-python-driver/tree/v3.11
https://github.com/mongodb/mongo-python-driver/tree/v3.11
https://github.com/cve-search/CVE-Search-Docker/tree/v1.4
https://github.com/cve-search/CVE-Search-Docker/tree/v1.4
https://github.com/diyan/pywinrm/tree/v0.1.x
 https://nmap.org/book/man-host-discovery.html
 https://nmap.org/book/man-host-discovery.html
https://us-cert.cisa.gov/ncas/alerts/TA14-017A
https://blog.cloudflare.com/reflections-on-reflections/
https://blog.cloudflare.com/reflections-on-reflections/
http://www.ntp.org/
https://www.samba.org/cifs/docs/what-is-smb.html
https://www.samba.org/cifs/docs/what-is-smb.html

Bibliography 61

[65] J. Townsend, dvwa-ansible, https://github.com/L1ghtn1ng/dvwa-ansible/
tree/master/roles, [Online; accessed 15-May-2021].

[66] B. V. Vreckem, ansible-role-samba, https://github.com/bertvv/ansible-
role-samba, [Online; accessed 15-May-2021].

[67] J. Geerling, ansible-role-docker, https://github.com/geerlingguy/ansible-
role-docker, [Online; accessed 15-May-2021].

[68] G. Lyon, Chapter 1. getting started with nmap, https://nmap.org/book/
legal-issues.html, [Online; accessed 26-April-2021].

[69] C. Christianson, Baselines and incident handling, https://www.sans.org/
reading-room/whitepapers/incident/baselines-incident-handling-
2068, [Online; accessed 20-April-2021].

[70] P. Cichonski, T. Millar, T. Grance and K. Scarfone, ‘Computer security in-
cident handling guide,’ pp. 21–23, 2012. [Online]. Available: https://
nvlpubs . nist . gov / nistpubs / SpecialPublications / NIST . SP . 800 -
61r2.pdf.

https://github.com/L1ghtn1ng/dvwa-ansible/tree/master/roles
https://github.com/L1ghtn1ng/dvwa-ansible/tree/master/roles
https://github.com/bertvv/ansible-role-samba
https://github.com/bertvv/ansible-role-samba
https://github.com/geerlingguy/ansible-role-docker
https://github.com/geerlingguy/ansible-role-docker
https://nmap.org/book/legal-issues.html
https://nmap.org/book/legal-issues.html
https://www.sans.org/reading-room/whitepapers/incident/baselines-incident-handling-2068
https://www.sans.org/reading-room/whitepapers/incident/baselines-incident-handling-2068
https://www.sans.org/reading-room/whitepapers/incident/baselines-incident-handling-2068
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

A. Task description

62

AUTOENUM: Automatisk kartlegging og ekponeringsanalyse av
enheter på nett

Prosjektet går up på å designe og implementere en tjeneste som skanner et nettverk
periodisk i fra internett og/eller internt nett og lagrer resultatene samt metadata om
tjenester funnet i en database for videre analyse. Databasen må kunne eksponeres via et
REST API for integrasjon med andre tjenester. Omfang av oppgaven kan diskuteres med
gruppen, da dette er et prosjekt som kan skaleres opp og ut i fra interesseområder innen
skanning, kartlegging og penetrasjonstesting.

Oppdragsgiver

Seksjon for Digital sikkerhet ligger under IT-avdelingen og har det helhetlige ansvaret for
digital sikkerhet ved NTNU. Seksjonen arbeider proaktivt, aktivt og reaktiv med digital
sikkerhet/informasjonssikerhet på flere nivåer i organisasjonen og består av en faggruppe
og en rådgivertjeneste. Faggruppen NTNU SOC (Sikkerhetsoperasjonssenter) har ansvaret
for deteksjon, sikkerhetsanalyse og hendelseshåndtering mens rådgivertjenesten
(Governance, Risk and Compliance - GRC) arbeider med proaktiv sikkerhetsrådgivning,
risikostyring og sikkerhetsarkitektur.

Kontaktperson:

Navn: Christoffer Vargtass Hallstensen Tittel: Gruppeleder SOC
Email: christoffer.hallstensen@ntnu.no Tek: 611 35 145 / 481 35 180

Oppgavens mål

Målet med oppgaven er lage en løsning som periodisk kartlegger et nettverk og lagrer
dataene i en database (RDBMS eller NoSQL) for videre bruk i deteksjonsanalyse,
eksponeringsanalyse og statistisk analyse på tilgjengelige tjenester over tid. Dataene er
tenkt benyttet for både operativ sikkerhet og strategisk sikkerhetsarbeid på NTNU, blant
annet for sikkerhetsanalyse og måling av etterlevelse av styringssystem for
informasjonssikkerhet.

Systemet bør implementeres med flere forskjellige løst integrerte verktøy for datakolleksjon
og analyse og å bygge en datakolleksjon og analyse-pipeline. Det bør utvikles støttescript
som gjør enkel enrichment av tjenester funnet som for eksempel automatisk screen-
grabbing, IP-lookup, MAC-adresse søk osv.

Oppgavens krav

• Tjenesten skal settes opp og konfigureres med Ansible (Automasjon)
• Tjenesten skal benytte åpen kildekode
• Tjenesten skal støtte mikrotjeneste arkitektur, gjerne med kontainere (REST API)
• Kode/Script skal ha åpen kildekode lisens
• Tjenesten bør ha et enkelt webgrensesnitt for søk i dataene (Proof of Concept)

B. Scanner code

B.1 scanner.py

Code listing B.1: scanner.py

import nmap3
import json
import socket
import sys
import os
import requests
import requests.packages
import urllib3
from datetime import datetime
import cve_lookup
import time
import argparse
import logging
import pymongo
import uuid
import ast

DB_URL = 'mongodb://localhost:27018/'
DB_NAME = "mydb"
COLLECTION_NAME = "scans"
TARGETFILE = "target.txt"
LOG_FORMAT = "%(name)s %(asctime)s - %(message)s"
FILENAME = "/var/lib/docker/volumes/files_log-volume/_data/Scanner.log"

def exclude_self():
#https://stackoverflow.com/questions/166506/finding-local-ip-addresses-using-

pythons-stdlib
host_ip = ([l for l in ([ip for ip in socket.gethostbyname_ex(socket.

gethostname())[2] if not ip.startswith("127.")][:1], [
[(s.connect(('8.8.8.8', 53)), s.getsockname()[0], s.close()) for s

in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]])
if l][0][0])

f = open("exclude_ip.txt", "w")
f.write(host_ip + "\n")
f.close()

def has_target():
Checks if target.txt exists and is populated
logging.debug('[TARGETS] checking')
try:

f = open("target.txt", "r")

64

Chapter B: Scanner code 65

except FileNotFoundError as e:
logging.debug(e)
logging.debug("\t[TARGETS] File missing!")
sys.exit(1)

else:
if os.path.getsize(TARGETFILE):
Ergo file is not empty

logging.debug("\t[TARGETS] OK")
return 0

else:
File empty
logging.debug("\t[TARGETS] File empty!")
sys.exit(1)

f.close()

def copy_file():
Target.txt ok
if not has_target():

os.system('cp target.txt ips_to_scan.txt')

def find_interesting_ip(result):
logging.debug('\t[INTERESTING IP] started')
output_list = open("ips_to_scan.txt", "w")
for ip_addr in result:

logging.debug("\t\t" + ip_addr)
for i in range(len(result[ip_addr]['ports'])):

if result[ip_addr]['ports'][i]['state'] == "open" or result[ip_addr]['
ports'][i]['state'] == "filtered":
output_list.write(ip_addr + "\n")
logging.debug("\t\t\t" + result[ip_addr]['ports'][i]['portid'])
break

output_list.close()
logging.debug("\t[INTERESTING IP] done")

def perform_host_discovery():
Stage 1
logging.debug('[HOST DISCOVERY] started')
nmap = nmap3.NmapHostDiscovery()
res = nmap.nmap_no_portscan(

None, args="-sn --excludefile exclude_ip.txt -iL target.txt")
logging.debug('Output of host discovery: ')
res = remove_keys(res)
logging.debug(res)
f = open("ips_to_scan.txt", "w")
for ip in res:

logging.debug('Found IP: ' + ip)
if res[ip]['state']['state'] == "up":

f.write(ip + "\n")
f.close()
logging.debug('[HOST DISCOVERY] done')

def perform_portscan():
Stage 2
logging.debug('[FAST PORTSCAN] started')
nmap = nmap3.NmapHostDiscovery()
res = nmap.scan_top_ports(None, args="-F -iL ips_to_scan.txt")
res = remove_keys(res)
logging.debug(res)

Chapter B: Scanner code 66

find_interesting_ip(res)
logging.debug('[FAST PORTSCAN] done')
return res

def perform_tcp_scan():
Stage 3
logging.debug('[TCP SCAN] started')
nmap = nmap3.Nmap()
result = nmap.nmap_version_detection(

None, "-sV -p- --script ssl-cert -vv -O -iL ips_to_scan.txt")
remove_keys(result)
print(result)
logging.debug(result)

logging.debug('[TCP SCAN] done')
return result

def perform_udp_scan():
Stage 4
logging.debug('[UDP SCAN] started')
nmap = nmap3.NmapScanTechniques()
result = nmap.nmap_udp_scan(

None, "-iL ips_to_scan.txt -p53,67,68,123,137,138,161,445,5000")
remove_keys(result)
logging.debug('[UDP SCAN] done')
return result

def remove_keys(res):
logging.debug('[KEYS] deleting')
res.pop('stats', None)
res.pop('runtime', None)
logging.debug(res)
logging.debug('[KEYS] done')
return res

def take_screengrab(ip):
Stage 6
url = 'http://localhost:3000/takescreengrab/'
url += ip
urllib3.disable_warnings()
requests.packages.urllib3.disable_warnings()
logging.debug(url)
try:

resp = requests.get(url, verify=False, timeout=1).json()
except requests.exceptions.HTTPError as errorHTTP:

logging.debug("[SCREENGRAB] Http Error: ", errorHTTP)
except requests.exceptions.ConnectionError as errorConnection:

logging.debug("[SCREENGRAB] Error Connecting: ", errorConnection)
except requests.exceptions.Timeout as errorTimeout:

logging.debug("[SCREENGRAB] Timeout Error: ", errorTimeout)
except requests.exceptions.RequestException as errorRequest:

logging.debug("[SCREENGRAB] ERROR: ", errorRequest)

return resp

def merge_results(t, u, start):
#Stage 5
logging.debug("[MERGE RESULTS] start")
starttime = start.strftime("%H%M%S")
startdate = start.strftime("%Y%m%d")

Chapter B: Scanner code 67

for i in t:
os = t[i]['osmatch']
t_ports = t[i]['ports']
ports = t_ports
if i in u:

u_ports = u[i]['ports']
ports += u_ports

for j in t[i]['osmatch']:
if 'cpe' in j:

if j['cpe']:
oscve = []
oscpe = j['cpe']
oscve = cve_lookup.find_cve(oscpe)
logging.debug(oscve)
j['cve'] = oscve

for port in ports:
cve = []
for script in port['scripts']:

s = script['data']
s.pop(0, None)
if "pem" in script['data']:
cert = script['data']['pem']
script['data']['pem'] = cert.rstrip("\n")

if 'cpe' in port:
if 'cpe' in port['cpe'][0]:

cpe = port['cpe'][0]['cpe']
cve = cve_lookup.find_cve(cpe)
port['cpe'][0]['cve'] = cve

screengrab = take_screengrab(i)
if 'Filename' in screengrab:

port['screengrab'] = screengrab
hostname = t[i]['hostname']
macaddress = t[i]['macaddress']
state = t[i]['state']
stats = {'scandate': startdate, 'scantime': starttime}

uid = str(uuid.uuid4())
host = {'uuid': uid, 'ip': i, 'hostname': hostname, 'macaddress':

macaddress,
'osmatch': os, 'ports': ports, 'state': state, 'scanstats': stats}

insert_db(host)

logging.debug("[MERGE RESULTS] done")

def insert_db(res):
Stage 7
myclient = pymongo.MongoClient(DB_URL)
mydb = myclient[DB_NAME]
mycol = mydb[COLLECTION_NAME]
mycol.insert_one(res)

if __name__ == "__main__":
Get current time
now = datetime.now()
start = now.strftime("%H%M%S")

Chapter B: Scanner code 68

parser = argparse.ArgumentParser(
description="USAGE: python3 scanner.py [options]")

parser.add_argument(
"-v", "--verbose", help="Enable output to screen, no output by default",

action="store_true")
parser.add_argument(

"-t", "--test", help="Enable test mode. Does not perform a scan, reads from
attached file", action="store_true")

parser.add_argument(
"-w", "--write", help="Writes result to separate tcp.json and udp.json

files", action="store_true")
parser.add_argument(

"-s", "--skip", help="Skips host discovery and fast portscan, starts from
the full scan stage", action="store_true")

args = parser.parse_args()
level = logging.DEBUG
handlers = [logging.FileHandler(FILENAME)]

Always output to file. To screen if -v
if args.verbose:

handlers.append(logging.StreamHandler())

logging.basicConfig(level=level, format=LOG_FORMAT, handlers=handlers)
logging.debug('[SCRIPT] started')
MAIN:

if not args.test:
if not args.skip:

has_target()
exclude_self()
perform_host_discovery()
perform_portscan()

else:
copy_file()
logging.debug('[SKIP] host discovery and fast port scan')

result_tcp = perform_tcp_scan()
result_udp = perform_udp_scan()

if args.write:
For testing:
f = open("tcp.json", "w")
f.write(str(result_tcp))
f.close()

f = open("udp.json", "w")
f.write(str(result_udp))
f.close()

if args.test:
logging.debug("*****[TEST MODE ENABLED]*****")
with open('tcp.json') as f:

data = f.read()
f.close()
result_tcp = ast.literal_eval(data)

with open('udp.json') as f:
data = f.read()

f.close()
result_udp = ast.literal_eval(data)

Chapter B: Scanner code 69

merge_results(result_tcp, result_udp, now)
logging.debug('[SCRIPT] done')

B.2 cve_lookup.py

Code listing B.2: cve_lookup.py

import requests
import requests.packages
import urllib3
import json

Default LIMIT = 30
LIMIT = "10"
PARAM = "?limit="
MAX_TIMEOUT = 5

def find_cve(cpe):
url = 'https://localhost:443/api/cvefor/'
url = url + cpe + PARAM + LIMIT
urllib3.disable_warnings()
requests.packages.urllib3.disable_warnings()
cve = []
try:

resp = requests.get(url, verify=False, timeout=MAX_TIMEOUT)
except requests.exceptions.HTTPError as errorHTTP:

print("Http Error:", errorHTTP)
except requests.exceptions.ConnectionError as errorConnection:

print("Error Connecting:", errorConnection)
except requests.exceptions.Timeout as errorTimeout:

print("Timeout Error:", errorTimeout)
except requests.exceptions.RequestException as errorRequest:

print("General Error", errorRequest)
else:

r = []
r.append(resp.json())
result = {}
for i in range(len(r)):

result[i] = r[i]
for i in result[0]:

if 'id' in i:
cve.append(i['id'])

return cve

C. Docker

C.1 Screengrabber

Code listing C.1: Screengrabber - app.py

1 from flask import Flask
2 from flask import jsonify
3 import datetime
4 import imgkit
5 import os
6 import random
7
8 app = Flask(__name__)
9

10 @app.route("/")
11 def hello():
12 m = {}
13 m['Message:'] = "Screenshot works!"
14 m['Port'] = "3000"
15 m['Endpoint'] = "/takescreengrab/<ip>/"
16 return jsonify(m)
17
18 @app.route("/takescreengrab/<string:ip>/", methods=['GET'])
19 def takescreengrab(ip):
20 t = datetime.datetime.now()
21 filename=str(random.randint(100000,999999))
22 filename += "-"
23 date = t.strftime("%Y%m%d")
24 filename += date
25 filename += "-"
26 time = t.strftime("%H%M%S")
27 filename += time
28 filename += ".jpg"
29 path = "/pictures/" + filename
30
31 imgkit_options= { 'quiet' : ''}
32 response = {}
33 response['date'] = date
34 response['time'] = time
35
36 try:
37 imgkit.from_url(ip, path, options=imgkit_options)
38 except ConnectionRefusedError:
39 response['Message'] = "Connection refused"
40 except IOError:
41 response['Message'] = "IOError on"

70

Chapter C: Docker 71

42 else:
43 response['Filename'] = filename
44
45 return jsonify(response)
46
47
48 if __name__=="__main__":
49 app.run(host='0.0.0.0', port=3000)

C.2 API

Code listing C.2: API - app.py()

1 from flask import Flask
2 from flask import jsonify
3 import datetime
4 import imgkit
5 import os
6 import random
7
8 app = Flask(__name__)
9

10 @app.route("/")
11 def hello():
12 m = {}
13 m['Message:'] = "Screenshot works!"
14 m['Port'] = "3000"
15 m['Endpoint'] = "/takescreengrab/<ip>/"
16 return jsonify(m)
17
18 @app.route("/takescreengrab/<string:ip>/", methods=['GET'])
19 def takescreengrab(ip):
20 t = datetime.datetime.now()
21 filename=str(random.randint(100000,999999))
22 filename += "-"
23 date = t.strftime("%Y%m%d")
24 filename += date
25 filename += "-"
26 time = t.strftime("%H%M%S")
27 filename += time
28 filename += ".jpg"
29 path = "/pictures/" + filename
30
31 imgkit_options= { 'quiet' : ''}
32 response = {}
33 response['date'] = date
34 response['time'] = time
35
36 try:
37 imgkit.from_url(ip, path, options=imgkit_options)
38 except ConnectionRefusedError:
39 response['Message'] = "Connection refused"
40 except IOError:
41 response['Message'] = "IOError on"
42 else:
43 response['Filename'] = filename
44

Chapter C: Docker 72

45 return jsonify(response)
46
47
48 if __name__=="__main__":
49 app.run(host='0.0.0.0', port=3000)

C.3 Web interface

Code listing C.3: index.js/server.js

1 const hostsRouter = require('./routes/hosts')
2 const express = require('express')
3 const app = express()
4 const Scan = require('./models/scan')
5 const mongoose = require('mongoose')
6 const port = 8080;
7
8 const MongoClient = require('mongodb').MongoClient;
9 const { urlencoded } = require('body-parser')

10 app.use(express.urlencoded({ extended: false }))
11
12 const uri = "mongodb://autoenum-mongodb:27017/"
13 app.set('view engine', 'ejs')
14 app.get('/', async (req, res) =>{
15 //Link til views/index.ejs
16 const client = new MongoClient(uri, { useNewUrlParser: true, useUnifiedTopology

: true });
17 try{
18
19 await client.connect();
20 const database = client.db('mydb');
21 const collection = database.collection('scans');
22 var hosts = [];
23 hosts = await collection.find().toArray();
24 console.log(hosts)
25 res.render('index', {hosts: hosts});
26
27 }catch(err){
28 console.log("Feil" + err)
29 }finally{
30 await client.close();
31 }
32
33 });
34
35 app.use('/hosts', hostsRouter)
36
37 app.listen(port, () =>{
38 console.log('Example app listening at http://localhost:${port}')
39 });

Code listing C.4: hosts.js

1 const express = require('express')
2 const { urlencoded } = require('body-parser')
3 const router = express.Router()

Chapter C: Docker 73

4 const MongoClient = require('mongodb').MongoClient;
5 const uri = "mongodb://autoenum-mongodb:27017/"
6 const ObjectID = require('mongodb').ObjectID;
7
8 require('../models/scan');
9

10 router.get('/list_view', async (req, res) => {
11
12 const client = new MongoClient(uri, { useNewUrlParser: true, useUnifiedTopology

: true });
13 try{
14
15 await client.connect();
16 const database = client.db('mydb');
17 const collection = database.collection('scans');
18
19 var hosts = [];
20 hosts = await collection.find().toArray();
21 console.log(hosts)
22 res.render('./../views/list', {hosts: hosts})
23
24 }catch(err){
25 console.log("Feil" + err)
26 }finally{
27 await client.close();
28 }
29
30 })
31
32 router.get('/details/:id', async (req, res) => {
33 var img = ''
34 var req_url = req.headers.referer
35 var cve_url = req_url
36
37 req_url = req_url.replace("8080/","5001/")
38
39 cve_url = cve_url.replace("http://", "https://")
40 cve_url = cve_url.replace("8080/", "443/cve/")
41
42 var hostId = req.params.id
43 console.log(hostId)
44 const client = new MongoClient(uri, { useNewUrlParser: true, useUnifiedTopology

: true });
45 try{
46
47 await client.connect();
48 const database = client.db('mydb');
49 const collection = database.collection('scans');
50 var query = {'uuid': hostId}
51 console.log(query)
52
53 var host = await collection.findOne(query);
54
55
56 for(var i = 0; i < host['ports'].length; i++){
57 if('screengrab' in host['ports'][i]){
58 var view_img = req_url
59 view_img += "viewpicture/"
60 img = req_url
61 img += "picture/"

Chapter C: Docker 74

62 img += host['ports'][i]['screengrab']['Filename']
63 view_img += host['ports'][i]['screengrab']['Filename']
64 }
65 }
66
67 res.render('./../views/details', {host: host, image: img, viewimage: view_img

, cve_url :cve_url})
68 }catch(err){
69 res.send(err)
70 }finally{
71 await client.close();
72 }
73
74
75 })
76
77 router.get('/getjson/:id', async (req, res) => {
78
79
80 var hostId = req.params.id
81 console.log(hostId)
82 const client = new MongoClient(uri, { useNewUrlParser: true, useUnifiedTopology

: true });
83 try{
84
85 await client.connect();
86 const database = client.db('mydb');
87 const collection = database.collection('scans');
88
89 var query = {'uuid': hostId}
90 console.log(query)
91
92 var host = []
93 host = await collection.findOne(query);
94 console.log(host)
95 return res.json(host)
96
97 }catch(err){
98 console.log("Feil" + err)
99 return res(err)

100 }finally{
101 await client.close();
102 }
103
104
105 })
106
107
108 router.post('/search', async function(req, res) {
109
110 const client = new MongoClient(uri, { useNewUrlParser: true, useUnifiedTopology:

true });
111
112 var query = req.body.all_query
113 var ip_q = {ip : query};
114 var mac_q = {"macaddress.addr" : query}
115 var date_q = {"scanstats.scandate" : query};
116 var os_cpe_q = {"osmatch.cpe" : query };
117 var ports_cpe_q = {"ports.cpe.cpe" : query };
118 var uuid_q = {"uuid" : query}

Chapter C: Docker 75

119 var q = {"$or": [ip_q, mac_q, date_q, os_cpe_q, ports_cpe_q, uuid_q]}
120
121 try{
122
123 await client.connect();
124 const database = client.db('mydb');
125 const collection = database.collection('scans');
126
127 var hosts = []
128 hosts = await collection.find(q).toArray();
129 res.render('./../views/searchresults', {hosts: hosts, query: query});
130
131 }catch(err){
132 console.log("Feil" + err)
133 return res(err)
134 }finally{
135 await client.close();
136 }
137
138 })
139
140 router.get('/search', async (req, res) => {
141
142 res.render('./../views/search')
143
144 })
145
146 module.exports = router

C.4 docker-compose

Code listing C.5: Docker compose

version: "3.2"
services:
autoenum-api:
container_name: autoenum-api
hostname: autoenum-api
restart: always
build: ./api
ports:
- '5001:5001'

networks:
- autoenum-network

volumes:
- "screengrab-volume:/pictures"
- "log-volume:/log"

autoenum-mongodb:
container_name: autoenum-mongodb
restart: always
image: mongo
ports:
- '27018:27017'

volumes:
- "mongo-docker-volume:/data/db"

networks:
- autoenum-network

Chapter C: Docker 76

autoenum-screengrab:
container_name: autoenum-screengrab
restart: always
build: ./screengrab
ports:
- '3000:3000'

networks:
- autoenum-network

volumes:
- "screengrab-volume:/pictures"

autoenum-webgui:
container_name: autoenum-webgui
restart: always
build: ./website
depends_on:
- autoenum-api

ports:
- '8080:8080'

networks:
- autoenum-network

cve_search:
image: cve_search
build:
context: .
dockerfile: docker/images/cve_search/dockerfile-cve_search
args:
- REPO=cve-search/cve-search
- BRANCH=master

hostname: cve_search
depends_on:
- redis
- mongo

restart: always
environment:
- PYTHONUNBUFFERED=TRUE

ports:
- 443:5000

networks:
- autoenum-network

redis:
image: cve_search-redis
hostname: redis
restart: always
build:
context: .
dockerfile: docker/images/redis/dockerfile-redis

volumes:
- "./.cve_search_data/cve_search_redis:/data"

expose:
- 6379

networks:
- autoenum-network

mongo:
image: cve_search-mongo
hostname: mongo
restart: always
build:
context: .
dockerfile: docker/images/mongodb/dockerfile-mongo

volumes:

Chapter C: Docker 77

- "./.cve_search_data/cve_search_mongodb:/data/db"
expose:
- 27017

networks:
- autoenum-network

volumes:
mongo-docker-volume:
external: false

screengrab-volume:
external: false

log-volume:
external: false

networks:
autoenum-network:
driver: bridge

D. Playbooks

D.1 Setup and deploy Autoenum

Code listing D.1: Main playbook to setup Autoenum

- name: Installing autoenum locally
hosts: localhost
connection: local
become: true
become_method: sudo

roles:
- autoenum

Code listing D.2: Main playbook to setup Docker

- include_tasks: setup-RedHat.yml
when: ansible_os_family == 'RedHat'

- include_tasks: setup-Debian.yml
when: ansible_os_family == 'Debian'

- name: Install Docker.
package:
name: "{{ docker_package }}"
state: "{{ docker_package_state }}"

notify: restart docker

- name: Ensure Docker is started and enabled at boot.
service:
name: docker
state: "{{ docker_service_state }}"
enabled: "{{ docker_service_enabled }}"

- name: Ensure handlers are notified now to avoid firewall conflicts.
meta: flush_handlers

- include_tasks: docker-compose.yml
when: docker_install_compose | bool

- include_tasks: docker-users.yml
when: docker_users | length > 0

- git:
repo: https://github.com/cve-search/CVE-Search-Docker.git

78

Chapter D: Playbooks 79

dest: /etc/ansible/roles/autoenum/files/cve-search
clone: yes

- name: Install the package "nmap"
apt:
name: nmap
state: present

- pip:
requirements: /etc/ansible/roles/autoenum/files/scanner/requirements.txt

- name: running docker compose
shell: docker-compose -f /etc/ansible/roles/autoenum/files/docker-compose.yml up

-d

D.2 Playbooks for test environment

Code listing D.3: Playbook for Windows machines in test environment

- hosts: Win1
gather_facts: no
tasks:
- name: Install IIS Web-Server with sub features and management tools
ansible.windows.win_feature:
name: Web-Server
state: present

register: win_feature
- name: Reboot if installing Web-Server feature requires it
ansible.windows.win_reboot:
when: win_feature.reboot_required

- name: Install rest
ansible.windows.win_feature:
name: Web-WebServer
name: Web-Mgmt-Tools
name: Web-Mgmt-Console
state: present

register: win_feature
- name: Reboot if installing Web-Server feature requires it again
ansible.windows.win_reboot:
when: win_feature.reboot_required

- name: Create website
win_copy:
src: websites/index1.html
dest: C:\Inetpub\wwwroot\index.html
remote_src: no

- name: Run IIS web server
win_service:
name: W3Svc
state: started

- name: Copy SSL cert to Windows
win_copy:
src: websites/cert.pfx
dest: C:\Users\ansibleuser\Desktop\cert.pfx
remote_src: no

- name: Import cert to IIS
ansible.windows.win_certificate_store:

Chapter D: Playbooks 80

path: C:\Users\ansibleuser\Desktop\cert.pfx
state: present
password: "@nsib1epaSsw0rd"

become: yes
become_method: runas
become_user: ansibleuser

- name: Add a HTTPS binding
community.windows.win_iis_webbinding:
name: Default Web Site
protocol: https
port: 443
ip: "*"
certificate_hash: 8978622c9ddcf0e9f6e1f6b3955295359cab7915
state: present

- name: Install RPC
ansible.windows.win_feature:
name: RPC-over-HTTP-Proxy
state: present

- name: Install SMB 1
ansible.windows.win_feature:
name: FS-SMB1
name: FS-SMB1-SERVER
state: present

- name: SNMP-Service
ansible.windows.win_feature:
name: SNMP-Service
state: present

- hosts: Win2
gather_facts: no
tasks:
- name: Install DNS and DHCP
ansible.windows.win_feature:
name: DNS
name: DHCP
state: present

- name: Install IIS
ansible.windows.win_feature:
name: Web-Server
state: present

register: win_feature
- name: Reboot if installing Web-Server feature requires it
ansible.windows.win_reboot:
when: win_feature.reboot_required

- name: Install rest
ansible.windows.win_feature:
name: Web-Mgmt-Tools
name: Web-Mgmt-Console
name: Web-Ftp-Server
name: Web-Ftp-Service
state: present

register: win_feature
- name: Reboot win2
ansible.windows.win_reboot:
when: win_feature.reboot_required

- name: Configure and start FTP
win_shell: |
Import-Module WebAdministration
$ftpsitename = "FTPfolder"
$path = "C:\Users\ansibleuser\Desktop\FTPfolder"
mkdir $path

Chapter D: Playbooks 81

New-WebFtpSite -Name $ftpsitename -Port 21 -PhysicalPath $path
$param = @{

Path = 'C:\Users\ansibleuser\Desktop\FTPfolder'
Name = 'ftpserver.security.authentication.basicauthentication.

disabled'
Value = $true
Verbose = $True

}
- name: Make sure IIS webserver not running
win_service:
name: W3Svc
state: stopped

- name: Run FTP
win_service:
name: ftpsvc
state: started

- name: Download Apache 2.4.46
win_get_url:
url: https://www.apachelounge.com/download/VS16/binaries/httpd-2.4.46-win64-

VS16.zip
dest: C:\Users\ansibleuser\Desktop\Apache.zip

- name: Unzipping Apache
community.windows.win_unzip:
src: C:\Users\ansibleuser\Desktop\Apache.zip
dest: C:\
delete_archive: yes

- name: Install Apache
script: InstallApacheOnWindows.bat

- name: Deleting Apache default index.html
ansible.windows.win_file:
path: C:\Apache24\htdocs\index.html
state: absent

- name: Create new website
win_copy:
src: websites/index2.html
dest: C:\Apache24\htdocs\index.html
remote_src: no

- name: Open firewall
community.windows.win_firewall_rule:
name: Allow Apache (by Ansible)
description: Created by Ansible.
program: C:\Apache24\bin\httpd.exe
localport: 80
action: allow
direction: in
protocol: tcp
state: present
enabled: yes

- name: Run Apache service
win_service:
name: Apache2.4
state: started

Chapter D: Playbooks 82

This is only the main playbook for Linux. It uses roles defined in other files which
are not included in the report. All files are available in the repository for test
environment configuration, see table 5.1.

Code listing D.4: Main playbook Linux based machines in test environment

- name: Installing DVWA
hosts: 192.168.1.4
remote_user: ansible
become: true
become_method: sudo

roles:
- common
- web
- db
- php

- name: Install Additonal services and samba
hosts: 192.168.1.6
remote_user: ansible
become: true
become_method: sudo

roles:
- additional
- samba

#- name: Installing autoenum locally
hosts: localhost
connection: local
become: true
become_method: sudo

#roles:
#- autoenum

E. Code for test environment

E.1 heat.yaml

Code listing E.1: heat.yaml - HEAT template test environment

heat_template_version: 2013-05-23

description: >
HOT template to deploy the test environment needed for Autoenum.
Creates 2 new neutron networks plus one router to the public
network, and deploys 7 servers into the new network.
Quota needed: 7 instances, 14 VCPUs, 36 GB RAM, 1 FloatIP, 3 security-groups.

parameters:
key_name:
type: string
description: Name of keypair to assign to servers

image:
type: string
description: Name of image to use for servers

flavor:
type: string
description: Flavor to use for servers

public_net:
type: string
description: >
ID or name of public network for which floating IP addresses will be

allocated
private_net_name:
type: string
description: Name of private network to be created

private_net_cidr:
type: string
description: Private network address (CIDR notation)

private_net_gateway:
type: string
description: Private network gateway address

private_net_pool_start:
type: string
description: Start of private network IP address allocation pool

private_net_pool_end:
type: string
description: End of private network IP address allocation pool

private_subnet_name:
type: string

private_net_name2:
type: string

83

Chapter E: Code for test environment 84

description: Name of private network to be created
private_net_cidr2:
type: string
description: Private network address (CIDR notation)

private_subnet_name2:
type: string
description: Name of private network to be created

private_net_gateway2:
type: string
description: Private network gateway address

private_net_pool_start2:
type: string
description: Start of private network IP address allocation pool

private_net_pool_end2:
type: string
description: End of private network IP address allocation pool

REMOTE_IP:
type: string
default: 0.0.0.0/0

resources:
private_net:
type: OS::Neutron::Net
properties:
name: { get_param: private_net_name }

private_net2:
type: OS::Neutron::Net
properties:
name: { get_param: private_net_name2 }

private_subnet:
type: OS::Neutron::Subnet
properties:
network_id: { get_resource: private_net }
cidr: { get_param: private_net_cidr }
gateway_ip: { get_param: private_net_gateway }
allocation_pools:
- start: { get_param: private_net_pool_start }
end: { get_param: private_net_pool_end }

private_subnet2:
type: OS::Neutron::Subnet
properties:
network_id: { get_resource: private_net2 }
cidr: { get_param: private_net_cidr2 }
gateway_ip: { get_param: private_net_gateway2 }
allocation_pools:
- start: { get_param: private_net_pool_start2 }
end: { get_param: private_net_pool_end2 }

router:
type: OS::Neutron::Router
properties:
external_gateway_info:
network: { get_param: public_net }

router_interface:
type: OS::Neutron::RouterInterface
properties:

Chapter E: Code for test environment 85

router_id: { get_resource: router }
subnet_id: { get_resource: private_subnet }

router_interface2:
type: OS::Neutron::RouterInterface
properties:
router_id: { get_resource: router }
subnet_id: { get_resource: private_subnet2 }

server1:
type: OS::Nova::Server
properties:
name: Manager
image: Ubuntu Server 20.04 LTS (Focal Fossa) amd64
flavor: m1.large
key_name: { get_param: key_name }
user_data_format: RAW
user_data: { get_file: lib/manager_boot.bash }
networks:
- port: { get_resource: server1_public_port }

server1_public_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- subnet_id: { get_resource: private_subnet }

security_groups:
- default
- { get_resource: manager_security_group }

server1_floating_ip:
type: OS::Neutron::FloatingIP
properties:
floating_network: { get_param: public_net }
port_id: { get_resource: server1_public_port }

server2:
type: OS::Nova::Server
properties:
name: Ubuntu20
image: Ubuntu Server 20.04 LTS (Focal Fossa) amd64
flavor: m1.tiny
key_name: { get_param: key_name }
networks:
- port: { get_resource: server2_port }

server2_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- ip_address: 192.168.1.4

security_groups:
- default
- { get_resource: manager_security_group }

server3:
type: OS::Nova::Server
properties:

Chapter E: Code for test environment 86

name: Win1
image: Windows Server 2019 Standard [Unlicensed]
flavor: m1.small
key_name: { get_param: key_name }
user_data_format: RAW
user_data: { get_file: lib/windows_boot.ps1 }
networks:
- port: { get_resource: server3_port }

server3_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- ip_address: 192.168.1.5

security_groups:
- default
- { get_resource: windows_security_group }

server4:
type: OS::Nova::Server
properties:
name: Ubuntu18
image: Ubuntu Server 18.04 LTS (Bionic Beaver) amd64
flavor: m1.tiny
key_name: { get_param: key_name }
networks:
- port: { get_resource: server4_port }

server4_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- ip_address: 192.168.1.6

security_groups:
- default
- { get_resource: manager_security_group }

server8:
type: OS::Nova::Server
properties:
name: Win2
image: Windows Server 2016 Standard [Unlicensed]
flavor: m1.small
key_name: { get_param: key_name }
user_data_format: RAW
user_data: { get_file: lib/windows_boot.ps1 }
networks:
- port: { get_resource: server8_port }

server8_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- ip_address: 192.168.1.10

security_groups:
- default
- { get_resource: windows_security_group }

Chapter E: Code for test environment 87

server10:
type: OS::Nova::Server
properties:
name: Kali
image: Kali Linux 2018.2 xfce amd64
flavor: m1.small
key_name: { get_param: key_name }
networks:
- port: { get_resource: server10_port }

server10_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net }
fixed_ips:
- ip_address: 192.168.1.12

security_groups:
- default
- { get_resource: manager_security_group }

server20:
type: OS::Nova::Server
properties:
name: ubuntu-net2
image: Ubuntu Server 20.04 LTS (Focal Fossa) amd64
flavor: m1.tiny
key_name: { get_param: key_name }
networks:
- port: { get_resource: server20_port }

server20_port:
type: OS::Neutron::Port
properties:
network_id: { get_resource: private_net2 }
fixed_ips:
- ip_address: 192.168.2.2

security_groups:
- default
- { get_resource: manager_security_group }

manager_security_group:
type: OS::Neutron::SecurityGroup
properties:
name: manager-security-group
description: >
SG for manager and other Linux based machines.
Allows tcp: 21-25, 80, 8080, 443, 3000, 3389, 5000-5001, 67-68, 53

rules:
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: icmp }
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 21, port_range_max: 25}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 80, port_range_max: 80}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: tcp, port_range_min: 80, port_range_max: 80}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 8080, port_range_max: 8080}

Chapter E: Code for test environment 88

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 443, port_range_max: 443}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 3000, port_range_max: 3000}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 3389, port_range_max: 3389}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 5000, port_range_max: 5001}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 1688, port_range_max: 1688}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,
protocol: udp, port_range_min: 67, port_range_max: 68}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: udp, port_range_min: 67, port_range_max: 68}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 53, port_range_max: 53}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: udp, port_range_min: 53, port_range_max: 53}

windows_security_group:
type: OS::Neutron::SecurityGroup
properties:
name: windows-security-group
description: >
SG for Windows servers

rules:
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: icmp }
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 21, port_range_max: 22}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 80, port_range_max: 80}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: tcp, port_range_min: 80, port_range_max: 80}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 443, port_range_max: 443}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 3306, port_range_max: 3306}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 3306, port_range_max: 3306}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 3389, port_range_max: 3389}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: udp, port_range_min: 3389, port_range_max: 3389}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: tcp, port_range_min: 3389, port_range_max: 3389}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: udp, port_range_min: 3389, port_range_max: 3389}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: tcp, port_range_min: 5985, port_range_max: 5986}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: udp, port_range_min: 5985, port_range_max: 5986}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: tcp, port_range_min: 5985, port_range_max: 5986}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: udp, port_range_min: 5985, port_range_max: 5986}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: egress,

protocol: udp, port_range_min: 67, port_range_max: 68}
- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,

protocol: udp, port_range_min: 67, port_range_max: 68}

Chapter E: Code for test environment 89

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 1688, port_range_max: 1688}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: tcp, port_range_min: 53, port_range_max: 53}

- { remote_ip_prefix: { get_param: REMOTE_IP }, direction: ingress,
protocol: udp, port_range_min: 53, port_range_max: 53}

outputs:
server1_private_ip:
description: IP address of server1 in private network
value: { get_attr: [server1, first_address] }

server1_public_ip:
description: Floating IP address of server1 in public network
value: { get_attr: [server1_floating_ip, floating_ip_address] }

server2_private_ip:
description: IP address of server2 in private network
value: { get_attr: [server2, first_address] }

server3_private_ip:
description: IP address of server3 in private network
value: { get_attr: [server3, first_address] }

server4_private_ip:
description: IP address of server4 in private network
value: { get_attr: [server4, first_address] }

server8_private_ip:
description: IP address of server8 in private network
value: { get_attr: [server8, first_address] }

server10_private_ip:
description: IP address of server10 in private network
value: { get_attr: [server10, first_address] }

server20_private_ip:
description: IP address of server20 in private network
value: { get_attr: [server20, first_address] }

E.2 env.yaml

Code listing E.2: env.yaml - Environment variables

parameters:
key_name: newkey
image: Ubuntu Server 18.04 LTS (Bionic Beaver) amd64
flavor: m1.small
public_net: ntnu-internal
private_net_name: net1
private_net_cidr: 192.168.1.0/24
private_net_gateway: 192.168.1.1
private_net_pool_start: 192.168.1.20
private_net_pool_end: 192.168.1.100
private_subnet_name: subnet1
private_net_name2: net2
private_net_cidr2: 192.168.2.0/24
private_subnet_name2: subnet2
private_net_gateway2: 192.168.2.1
private_net_pool_start2: 192.168.2.20
private_net_pool_end2: 192.168.2.100

Chapter E: Code for test environment 90

E.3 manager_boot.bash

Code listing E.3: manager_boot.bash

#!/bin/bash -v
export DEBIAN_FRONTEND=noninteractive

sudo apt update -y

Prerequisites
sudo apt-get install jq -y
sudo apt install nmap -y
sudo apt install python3-pip -y
sudo apt-get install ansible -y

sudo pip3 install python3-nmap
sudo pip3 install "pywinrm>=0.3.0"
sudo pip3 install pymongo

ansible-galaxy collection install ansible.windows
ansible-galaxy collection install community.windows

#Docker and Docker compose
sudo apt-get update -y
sudo apt-get install -y \

apt-transport-https \
ca-certificates \
curl \
software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint 0EBFCD88
sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

sudo apt-get update -y
sudo apt-get install -y docker-ce
sudo apt install docker-compose -y

sudo timedatectl set-timezone Europe/Oslo

cat <<EOF > /etc/ansible/key
-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAxeNN8Qmou5ar72deuhQcew50FSuW2wwiv7jVzJOXmQV5O8lS
9HxSiyxVtN3VIFjw37bUL9rmY2/QePlRYS3K1mJA4EeYv1mqdW+8lGi2Z8LuroTT
r9lgypfwnrY1JAuLOlHXY/Tmpd574aryw6QmSpsdl4TI5S13M7d4+aVTiTBISd2C
93ZILunkf/duT1pUfUhc2bivfszeU0JAYy1Vy2qeWhRNxiTbeDzXBVPL8wio62Of
O2PiVZ7LIDr14fuI7ZCPTwS1ogz/U+GIej473gE2HHvpDiK3TnCYlVyihAHtfMZ2
k7mTdOKXH72FA//5OFU2yx0P2j5cnagyotnGjwIDAQABAoIBAQCSNNgwX8eYGcGc
104Iw7UrQkmIHrWN0BCYgJMOXHnkaEPjZWLyGizOgQot4LyH8s69K5LobJ5OF536
05JJ75BvBxcR3jRAJJqpu82kBR3H2iGJNcBFq6E07j+ss8jdgd3zT+aJBrenE5OJ
70kAPXbBJowdl9DqasYoosUyBfGLaKDhPjukEkqotspUhWYhOIHHcaHrR5vFO9nL
SaTHDOcGmnoUvp9TYEIyzEBk3ArUin39g+hawH31fGlj+2tQinOasGt0IQrCFh5j
EfkaBz8FrCoK/HcIkcvly8Q8MSNVBOBqwynNGsV+PvUp+voGC5vgj9hrypuD8mAK
RRfNTHSJAoGBAO1OrMC8yB/x1U+ta2WuclRuhFnR0BezE2KIA5mZi5goJHAKP31G
UH/xAyVFirWEFdeGa9DT9GiYKX+M8Oxba/uerf3waPGYovyvfYhcuR2JcMN/F2yo
Cd9pQztxKQ8GpLEUOWostvqW9rQjvXD/X9Mhvl+jUkQr/wKWo3IPg9HVAoGBANV5
u7ok0wkA0TWXj9IuHMOcsoE50eq6WSphFz39tyGkruAADB2eyXE0WDWslLjPDEQ+
OGs+W0fnwH4JjeTQLB/mJRfK/8ei8rkvIRJnJPbXqgBIkNlGUsPL3XDPIzcq/gKb

Chapter E: Code for test environment 91

osUEMvbihMnp9zpRE7YsRGlY3vKp7biWLEWb+oTTAoGAXwoeR8aTg6+v1YxHsd5u
rX/hg7Ny2rr+bXy5rF+BN7wD89c23C43+TWGI/w49D9lG/8a2PS6MtWV8R56Mr7e
fVRsrIIHFZMi235RETbJcJnlznXs5Lhb09ztbzX/0qO/e6f04p/r3GpvfW++5C1y
rDUccGMRhHn2VIwOA5VRHs0CgYEAtg7/vxywrjj4M1By47lX5qu4wOTi1eDfMnlj
LQc4K4UbbwYbTxegjN8ra3snywUpXPoDe9LOXmCTlenoDYBMYVgRwlzqDwQ1JSHA
fsVgjPQYk+1POz3yT/GJhS/ixKXxw5+gDY4rOMqunNTgd+e1e+P85Cta2HF7v7Sz
RRplaOkCgYEAwjW0V04MwMUDFc+/r265iPJ3EWNQXJ76RYO6+XZ868Khyin8sXAm
kRQAt8YObHEm6NNrlnxvaGC7Zb5TgvKfuJ8P0WiopgjAY1zoLGvtFTqNJL4Jj+jF
ZnYmdO3AJMQfWW65mFje5CFxfsaeHJd6cnQAaw0BT3br5ljDIF3ZL5M=
-----END RSA PRIVATE KEY-----
EOF
chmod 500 /etc/ansible/key

Configure test environment
git clone https://github.com/Monastyr/autoenum-TestENV.git
mv autoenum-TestENV/* /etc/ansible/
cd /etc/ansible
ansible-playbook main.yml
ansible-playbook windows.yaml

Setup Autoenum
git clone https://github.com/asm492/autoenum
cp -r autoenum/autoenum /etc/ansible/roles
ansible-playbook /etc/ansible/autoenum/example-playbook.yml

E.4 windows_boot.ps1

Code listing E.4: windows_boot.ps1

#ps1_sysnative

#Make new user:
$usrname = "ansibleuser"
$password = ConvertTo-SecureString "@nsib1epaSsw0rd" -AsPlainText -Force
New-LocalUser $usrname -Password $password -FullName "Ansible User" -Description "

Ansible account with admin privileges"
Add-LocalGroupMember -Group "Administrators" -Member $usrname

#Bypass SSL
[Net.ServicePointManager]::SecurityProtocol = [System.Net.SecurityProtocolType]::

Tls12

#Fixes winRM memory bug in Powershell v3.0
$url = "https://raw.githubusercontent.com/jborean93/ansible-windows/master/scripts/

Install-WMF3Hotfix.ps1"
$file = "$env:temp\Install-WMF3Hotfix.ps1"
(New-Object -TypeName System.Net.WebClient).DownloadFile($url, $file)
powershell.exe -ExecutionPolicy ByPass -File $file -Verbose

#WinRM setup
$url = "https://raw.githubusercontent.com/ansible/ansible/devel/examples/scripts/

ConfigureRemotingForAnsible.ps1"
$file = "$env:temp\ConfigureRemotingForAnsible.ps1"
(New-Object -TypeName System.Net.WebClient).DownloadFile($url, $file)
powershell.exe -ExecutionPolicy ByPass -File $file

F. Sample API response

Requested API endpoint: /ip/192.168.1.4/

Code listing F.1: Sample API response

1 {
2 "35feebc6-cc01-4361-abf1-aedfc34e00c2": {
3 "uuid": "35feebc6-cc01-4361-abf1-aedfc34e00c2",
4 "ip": "192.168.1.4",
5 "hostname": [
6 {
7 "name": "host-192-168-1-4.openstacklocal",
8 "type": "PTR"
9 }

10],
11 "macaddress": {
12 "addr": "FA:16:3E:3F:BE:B8",
13 "addrtype": "mac"
14 },
15 "osmatch": [
16 {
17 "name": "Linux 2.6.32",
18 "accuracy": "96",
19 "line": "55173",
20 "osclass": {
21 "type": "general purpose",
22 "vendor": "Linux",
23 "osfamily": "Linux",
24 "osgen": "2.6.X",
25 "accuracy": "96"
26 },
27 "cpe": "cpe:/o:linux:linux_kernel:2.6.32",
28 "cve": [
29 "CVE-2018-5703",
30 "CVE-2018-20961",
31 "CVE-2017-7895",
32 "CVE-2019-15505",

92

Chapter F: Sample API response 93

33 "CVE-2019-15504",
34 "CVE-2016-9555",
35 "CVE-2019-14896",
36 "CVE-2019-15292",
37 "CVE-2016-7117",
38 "CVE-2015-8812"
39]
40 },
41 {
42 "name": "Linux 3.2 - 4.9",
43 "accuracy": "96",
44 "line": "65105",
45 "osclass": {
46 "type": "general purpose",
47 "vendor": "Linux",
48 "osfamily": "Linux",
49 "osgen": "4.X",
50 "accuracy": "96"
51 },
52 "cpe": "cpe:/o:linux:linux_kernel:4",
53 "cve": [
54 "CVE-2016-10150",
55 "CVE-2016-7117",
56 "CVE-2019-15292",
57 "CVE-2016-10229",
58 "CVE-2018-12714",
59 "CVE-2016-3955",
60 "CVE-2016-9555",
61 "CVE-2019-14901",
62 "CVE-2015-8812",
63 "CVE-2019-10125"
64]
65 },
66 {
67 "name": "Linux 2.6.32 - 3.10",
68 "accuracy": "96",
69 "line": "56381",
70 "osclass": {
71 "type": "general purpose",
72 "vendor": "Linux",
73 "osfamily": "Linux",
74 "osgen": "3.X",
75 "accuracy": "96"
76 },

Chapter F: Sample API response 94

77 "cpe": "cpe:/o:linux:linux_kernel:3",
78 "cve": []
79 },
80 {
81 "name": "Linux 3.4 - 3.10",
82 "accuracy": "95",
83 "line": "65366",
84 "osclass": {
85 "type": "general purpose",
86 "vendor": "Linux",
87 "osfamily": "Linux",
88 "osgen": "3.X",
89 "accuracy": "95"
90 },
91 "cpe": "cpe:/o:linux:linux_kernel:3",
92 "cve": []
93 },
94 {
95 "name": "Synology DiskStation Manager 5.2-5644",
96 "accuracy": "95",
97 "line": "101159",
98 "osclass": {
99 "type": "storage-misc",

100 "vendor": "Synology",
101 "osfamily": "DiskStation Manager",
102 "osgen": "5.X",
103 "accuracy": "95"
104 },
105 "cpe": "cpe:/a:synology:diskstation_manager:5.2",
106 "cve": [
107 "CVE-2018-1160",
108 "CVE-2018-13284",
109 "CVE-2017-12075",
110 "CVE-2017-15889",
111 "CVE-2018-8920",
112 "CVE-2018-8919",
113 "CVE-2018-7184",
114 "CVE-2018-7185",
115 "CVE-2017-9554",
116 "CVE-2017-5753"
117]
118 },
119 {
120 "name": "Linux 3.1",

Chapter F: Sample API response 95

121 "accuracy": "95",
122 "line": "62708",
123 "osclass": {
124 "type": "general purpose",
125 "vendor": "Linux",
126 "osfamily": "Linux",
127 "osgen": "3.X",
128 "accuracy": "95"
129 },
130 "cpe": "cpe:/o:linux:linux_kernel:3.1",
131 "cve": [
132 "CVE-2018-5703",
133 "CVE-2018-20961",
134 "CVE-2017-7895",
135 "CVE-2019-15505",
136 "CVE-2019-15504",
137 "CVE-2016-9555",
138 "CVE-2019-14901",
139 "CVE-2019-15292",
140 "CVE-2016-7117",
141 "CVE-2015-8812"
142]
143 },
144 {
145 "name": "Linux 3.2",
146 "accuracy": "95",
147 "line": "64455",
148 "osclass": {
149 "type": "general purpose",
150 "vendor": "Linux",
151 "osfamily": "Linux",
152 "osgen": "3.X",
153 "accuracy": "95"
154 },
155 "cpe": "cpe:/o:linux:linux_kernel:3.2",
156 "cve": [
157 "CVE-2018-5703",
158 "CVE-2018-20961",
159 "CVE-2017-7895",
160 "CVE-2019-15505",
161 "CVE-2019-15504",
162 "CVE-2016-9555",
163 "CVE-2019-14901",
164 "CVE-2019-15292",

Chapter F: Sample API response 96

165 "CVE-2016-7117",
166 "CVE-2015-8812"
167]
168 },
169 {
170 "name": "AXIS 210A or 211 Network Camera (Linux 2.6.17)",
171 "accuracy": "94",
172 "line": "61606",
173 "osclass": {
174 "type": "webcam",
175 "vendor": "AXIS",
176 "osfamily": "embedded",
177 "accuracy": "94"
178 },
179 "cpe": "cpe:/h:axis:211_network_camera",
180 "cve": []
181 },
182 {
183 "name": "Linux 2.6.32 - 2.6.35",
184 "accuracy": "94",
185 "line": "56153",
186 "osclass": {
187 "type": "general purpose",
188 "vendor": "Linux",
189 "osfamily": "Linux",
190 "osgen": "2.6.X",
191 "accuracy": "94"
192 },
193 "cpe": "cpe:/o:linux:linux_kernel:2.6",
194 "cve": [
195 "CVE-2009-0065",
196 "CVE-2008-4395",
197 "CVE-2009-1385",
198 "CVE-2009-3613",
199 "CVE-2009-2844",
200 "CVE-2009-1439",
201 "CVE-2009-3726",
202 "CVE-2008-4576",
203 "CVE-2009-1389",
204 "CVE-2010-0008"
205]
206 },
207 {
208 "name": "Linux 2.6.32 - 3.5",

Chapter F: Sample API response 97

209 "accuracy": "94",
210 "line": "56585",
211 "osclass": {
212 "type": "general purpose",
213 "vendor": "Linux",
214 "osfamily": "Linux",
215 "osgen": "3.X",
216 "accuracy": "94"
217 },
218 "cpe": "cpe:/o:linux:linux_kernel:3",
219 "cve": []
220 }
221],
222 "ports": [
223 {
224 "protocol": "tcp",
225 "portid": "22",
226 "state": "open",
227 "reason": "syn-ack",
228 "reason_ttl": "64",
229 "service": {
230 "name": "ssh",
231 "product": "OpenSSH",
232 "version": "8.2p1 Ubuntu 4",
233 "extrainfo": "Ubuntu Linux; protocol 2.0",
234 "ostype": "Linux",
235 "method": "probed",
236 "conf": "10"
237 },
238 "cpe": [
239 {
240 "cpe": "cpe:/o:linux:linux_kernel",
241 "cve": [
242 "CVE-2019-8069",
243 "CVE-2019-7096",
244 "CVE-2020-9633",
245 "CVE-2019-8255",
246 "CVE-2019-8070",
247 "CVE-2018-4944",
248 "CVE-2018-4937",
249 "CVE-2018-4935",
250 "CVE-2018-5703",
251 "CVE-2018-4920"
252]

Chapter F: Sample API response 98

253 }
254],
255 "scripts": [],
256 "screengrab": {
257 "Filename": "968575-20210406-104744.jpg",
258 "date": "20210406",
259 "time": "104744"
260 }
261 },
262 {
263 "protocol": "tcp",
264 "portid": "80",
265 "state": "open",
266 "reason": "syn-ack",
267 "reason_ttl": "64",
268 "service": {
269 "name": "http",
270 "product": "Apache httpd",
271 "version": "2.4.46",
272 "extrainfo": "(Ubuntu)",
273 "method": "probed",
274 "conf": "10"
275 },
276 "cpe": [
277 {
278 "cpe": "cpe:/a:apache:http_server:2.4.46",
279 "cve": []
280 }
281],
282 "scripts": [
283 {
284 "name": "http-server-header",
285 "raw": "Apache/2.4.46 (Ubuntu)",
286 "data": {}
287 }
288],
289 "screengrab": {
290 "Filename": "194452-20210406-104745.jpg",
291 "date": "20210406",
292 "time": "104745"
293 }
294 },
295 {
296 "protocol": "udp",

Chapter F: Sample API response 99

297 "portid": "53",
298 "state": "closed",
299 "reason": "port-unreach",
300 "reason_ttl": "64",
301 "service": {
302 "name": "domain",
303 "method": "table",
304 "conf": "3"
305 },
306 "scripts": []
307 },
308 {
309 "protocol": "udp",
310 "portid": "67",
311 "state": "closed",
312 "reason": "port-unreach",
313 "reason_ttl": "64",
314 "service": {
315 "name": "dhcps",
316 "method": "table",
317 "conf": "3"
318 },
319 "scripts": []
320 },
321 {
322 "protocol": "udp",
323 "portid": "68",
324 "state": "open|filtered",
325 "reason": "no-response",
326 "reason_ttl": "0",
327 "service": {
328 "name": "dhcpc",
329 "method": "table",
330 "conf": "3"
331 },
332 "scripts": []
333 },
334 {
335 "protocol": "udp",
336 "portid": "123",
337 "state": "closed",
338 "reason": "port-unreach",
339 "reason_ttl": "64",
340 "service": {

Chapter F: Sample API response 100

341 "name": "ntp",
342 "method": "table",
343 "conf": "3"
344 },
345 "scripts": []
346 },
347 {
348 "protocol": "udp",
349 "portid": "137",
350 "state": "closed",
351 "reason": "port-unreach",
352 "reason_ttl": "64",
353 "service": {
354 "name": "netbios-ns",
355 "method": "table",
356 "conf": "3"
357 },
358 "scripts": []
359 },
360 {
361 "protocol": "udp",
362 "portid": "138",
363 "state": "closed",
364 "reason": "port-unreach",
365 "reason_ttl": "64",
366 "service": {
367 "name": "netbios-dgm",
368 "method": "table",
369 "conf": "3"
370 },
371 "scripts": []
372 },
373 {
374 "protocol": "udp",
375 "portid": "161",
376 "state": "closed",
377 "reason": "port-unreach",
378 "reason_ttl": "64",
379 "service": {
380 "name": "snmp",
381 "method": "table",
382 "conf": "3"
383 },
384 "scripts": []

Chapter F: Sample API response 101

385 },
386 {
387 "protocol": "udp",
388 "portid": "445",
389 "state": "closed",
390 "reason": "port-unreach",
391 "reason_ttl": "64",
392 "service": {
393 "name": "microsoft-ds",
394 "method": "table",
395 "conf": "3"
396 },
397 "scripts": []
398 },
399 {
400 "protocol": "udp",
401 "portid": "5000",
402 "state": "closed",
403 "reason": "port-unreach",
404 "reason_ttl": "64",
405 "service": {
406 "name": "upnp",
407 "method": "table",
408 "conf": "3"
409 },
410 "scripts": []
411 }
412],
413 "state": {
414 "state": "up",
415 "reason": "arp-response",
416 "reason_ttl": "0"
417 },
418 "scanstats": {
419 "scandate": "20210406",
420 "scantime": "124408"
421 }
422 }
423 }

G. Database

G.1 Schema

’{ }’ indicates an object/subdocument. An object can consist of other objects, num-
bers, strings and arrays. ’[]’ indicates an array. An array can consist of objects,
numbers and strings.

Code listing G.1: Sample database schema

1 {
2 "_id" : "ObjectId",
3 "uuid" : "String/UUID v4",
4 "ip" : "String",
5 "hostname" : [
6 {
7 "name": "String",
8 "type": "String"
9 }

10],
11 "macaddress" : {
12 "addr" : "String",
13 "addrtype" : "String",
14 "vendor": "String"
15 },
16 "osmatch" : [
17 {
18 "name" : "String",
19 "accuracy" : "String",
20 "line" : "String",
21 "osclass" : {
22 "type" : "String",
23 "vendor" : "String",
24 "osfamily" : "String",
25 "osgen" : "String",
26 "accuracy" : "String"
27 },

102

Chapter G: Database 103

28 "cpe" : "String",
29 "cve" : []
30 }
31],
32 "ports" : [
33 {
34 "protocol" : "String",
35 "portid" : "String",
36 "state" : "String",
37 "reason" : "String",
38 "reason_ttl" : "String",
39 "service" : {
40 "name" : "String",
41 "product" : "String",
42 "version" : "String",
43 "extrainfo" : "String",
44 "ostype" : "String",
45 "method" : "String",
46 "conf" : "String"
47 },
48 "cpe" : [
49 {
50 "cpe" : "String",
51 "cve" : []
52 }
53],
54 "scripts" : []
55 }
56],
57 "state" : {
58 "state" : "String",
59 "reason" : "String",
60 "reason_ttl" : "String"
61 },
62 "scanstats" : {
63 "scandate" : "String",
64 "scantime" : "String"
65 }
66 }

Chapter G: Database 104

G.2 Document

Code listing G.2: Sample database document

1 {
2 "_id": ObjectId("606c3c578e1b559ea9930e2e"),
3 "uuid": "145b6ae9-835c-4b6d-9aad-d3bf8066bd6b",
4 "ip": "192.168.1.6",
5 "hostname": [
6 {
7 "name": "host-192-168-1-6.openstacklocal",
8 "type": "PTR"
9 }

10],
11 "macaddress": {
12 "addr": "FA:16:3E:32:7B:C7",
13 "addrtype": "mac"
14 },
15 "osmatch": [
16 {
17 "name": "Linux 2.6.32",
18 "accuracy": "96",
19 "line": "55173",
20 "osclass": {
21 "type": "general purpose",
22 "vendor": "Linux",
23 "osfamily": "Linux",
24 "osgen": "2.6.X",
25 "accuracy": "96"
26 },
27 "cpe": "cpe:/o:linux:linux_kernel:2.6.32",
28 "cve": [
29 "CVE-2018-5703",
30 "CVE-2018-20961",
31 "CVE-2017-7895",
32 "CVE-2019-15505",
33 "CVE-2019-15504",
34 "CVE-2016-9555",
35 "CVE-2019-14896",
36 "CVE-2019-15292",
37 "CVE-2016-7117",
38 "CVE-2015-8812"
39]
40 }

Chapter G: Database 105

41],
42 "ports": [
43 {
44 "protocol": "tcp",
45 "portid": "21",
46 "state": "open",
47 "reason": "syn-ack",
48 "reason_ttl": "64",
49 "service": {
50 "name": "ftp",
51 "product": "vsftpd",
52 "version": "2.3.4",
53 "ostype": "Unix",
54 "method": "probed",
55 "conf": "10"
56 },
57 "cpe": [
58 {
59 "cpe": "cpe:/a:vsftpd:vsftpd:2.3.4",
60 "cve": []
61 }
62],
63 "scripts": []
64 },
65 {
66 "protocol": "tcp",
67 "portid": "22",
68 "state": "open",
69 "reason": "syn-ack",
70 "reason_ttl": "64",
71 "service": {
72 "name": "ssh",
73 "product": "OpenSSH",
74 "version": "7.6p1 Ubuntu 4ubuntu0.3",
75 "extrainfo": "Ubuntu Linux; protocol 2.0",
76 "ostype": "Linux",
77 "method": "probed",
78 "conf": "10"
79 },
80 "cpe": [
81 {
82 "cpe": "cpe:/o:linux:linux_kernel",
83 "cve": [
84 "CVE-2019-8069",

Chapter G: Database 106

85 "CVE-2019-7096",
86 "CVE-2020-9633",
87 "CVE-2019-8255",
88 "CVE-2019-8070",
89 "CVE-2018-4944",
90 "CVE-2018-4937",
91 "CVE-2018-4935",
92 "CVE-2018-5703",
93 "CVE-2018-4920"
94]
95 }
96],
97 "scripts": []
98 }
99],

100 "state": {
101 "state": "up",
102 "reason": "arp-response",
103 "reason_ttl": "0"
104 },
105 "scanstats": {
106 "scandate": "20210406",
107 "scantime": "124408"
108 }
109 }

H. Web interface screenshots

Figure H.1: Web interface: Detailed view 1/3

107

Chapter H: Web interface screenshots 108

Figure H.2: Web interface: Detailed view 2/3

Figure H.3: Web interface: Detailed view 3/3

Chapter H: Web interface screenshots 109

Figure H.4: Web interface: List view

Figure H.5: Web interface: Search

I. Gantt diagram

110

10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30
1/21 2/21 3/21 4/21 5/21

Bachelor start end

 Preliminary project 11/01/21 31/01/21
 Meeting with employer 22/01 22/01
 Meeting with supervisor 27/01 27/01
 Writing preliminary report 11/01 31/01

 Main project 01/02/21 20/05/21
 Working on the report 01/02 19/05
 Sprint 1: Prepare test environment 01/02 12/02
 Sprint 2: Make a prototype of scanner 15/02 26/02
 Sprint 3: Scanner improvements 01/03 12/03
 Sprint 4: Handling output, DB design 15/03 26/03
 Sprint 5: Analysis pipeline + containe... 29/03 16/04
 Sprint 6: Web app/GUI and final test 19/04 30/04
 Sprint 7: Polishing code and report 03/05 19/05
 DEADLINE 20/05 20/05

 Presentation 20/05/21 31/05/21
 Working on the presentation 20/05 31/05

Writing preliminary report

Working on the report

Sprint 1: Prepare t

Sprint 2: Make a p

Sprint 3: Scanner

Sprint 4: Handling

Sprint 5: Analysis pipeline +

Sprint 6: Web app

Sprint 7: Polishing code a

D

Working on the pr

Powered by TCPDF (www.tcpdf.org)

J. Repository structure

Omitted output of /autoenum/autoenum/files/website/node_modules

Code listing J.1: Directory

.
`-- autoenum

|-- CHANGES.md
|-- LICENSE
|-- README.md
|-- autoenum
| |-- defaults
| | `-- main.yml
| |-- files
| | |-- api
| | | |-- Dockerfile
| | | |-- app.py
| | | |-- display.html
| | | `-- requirements.txt
| | |-- docker-compose.yml
| | |-- scanner
| | | `-- requirements.txt
| | |-- screengrab
| | | |-- Dockerfile
| | | |-- app.py
| | | `-- requirements.txt
| | `-- website
| | |-- Dockerfile
| | |-- models
| | | `-- scan.js
| | |-- node_modules [...]
| | |-- package-lock.json
| | |-- package.json
| | |-- routes
| | | `-- hosts.js
| | |-- server.js
| | `-- views
| | |-- banner.png
| | |-- banner_red.jpg
| | |-- banner_white.jpg
| | |-- details.ejs
| | |-- head_white.png
| | |-- header.ejs
| | |-- index.ejs
| | |-- list.ejs
| | |-- search.ejs
| | `-- searchresults.ejs
| |-- handlers

112

Chapter J: Repository structure 113

| | `-- main.yml
| `-- tasks
| |-- docker-compose.yml
| |-- docker-users.yml
| |-- main.yml
| |-- setup-Debian.yml
| `-- setup-RedHat.yml
|-- checklist.md
|-- example-playbook.yml
`-- scanner

|-- cve_lookup.py
|-- requirements.txt
|-- scanner.py
`-- target.txt

K. Sprint reviews

114

Sprint Review 1
Dato
01.02.2021 - 12.02.2021

Hva vi skulle gjøre
- Rapport: Begynne på rapporten

- Kode: Sette opp testmiljø, første versjon

Hva som er blitt gjort
- Rapport: Sette opp dokument i LaTeX

- Rapport: Begynne på teori

- Rapport: Begynne på introduksjon

- Rapport: Begynne på testmiljø diagram

- Kode: Sette opp testmiljø, første versjon

Hva som IKKE har blitt gjort
- …

Diskusjon rundt sprint
Gruppen føler at vi har jobbet bra under Sprint 1. Alle møter opp til de daglige arbeidsøktene/møtene

våre og vi føler at vi har fått en god start på bacheloren.

Sprint Review 2

Dato
15.02.2021 - 26.02.2021

Hva vi skulle gjøre
- Kode: Lage prototype av scanner

- Rapport: Fortsette på rapporten

Hva som er blitt gjort

- Kode: Lage prototype av skanner

- Kode: Lagde en SQL database

- Rapport: Fortsatte på punktene fra Sprint 1

- Rapport: Begynte på kapittel implementation

- Rapport: Begynte på kapittel Technology

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
Vi føler vi har fått en god start på bacheloroppgaven etter de to første sprintene, da vi allerede ligger litt

foran skjema. Samtidig har vi forsikret oss om at hastigheten vi jobber i ikke har påvirket kvaliteten på

produktet så langt.

Sprint Review 3
Dato
01.03.2021 – 12.03.2021

Hva vi skulle gjøre
- Kode: Legge til mer funksjonalitet på scanneren

Hva som er blitt gjort

- Kode: Lagt til mer funksjonalitet på scanneren (SSL-grab)

- Kode: Gikk fra MySQL database til mongoDB database

- Kode: Laget Docker compose

- Kode: Delvis implementert CVE søk

- Kode: Lagde dockerisert API

- Kode: Flyttet database til docker

- Kode: Begynt arbeidet på web grensesnitt

- Rapport: La til methodology kapittel

- Rapport: Flyttet innholdet fra technology kapittel til methodology.

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
Vi har klart å gjøre alt vi skulle ha gjort hittil. Etter sprint 3 ligger vi nesten en hel sprint foran det vi

egentlig skulle. Ettersom vi ligger foran skjema er arbeidsmoralen og motivasjonen på topp!

Sprint Review 4
Dato
15.03.2021 – 26.03.2021

Hva vi skulle gjøre
- Kode: Håndtere output fra nmap

- Kode: Designe databasen

Hva som er blitt gjort

- Kode: Lagt til flere endpoints på API

- Kode: Endret litt på API response (fortsatt JSON)

- Kode: Web grensesnitt funker slik det skal

- Rapport: Begynte på kapittelet conclusion

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
På dagen da sprinten sluttet, hadde vi møte med oppdragsgiveren vår Christoffer. Vi presenterte det

tekniske vi hadde gjort i løpet av sprintene 1-4 og han ville at vi skulle ha en beta-test av Autoenum på

NTNU-nettverket i sprint 5 en gang. Sprinten gikk fint på koden og det tekniske, men vi begynner å slite

litt med strukturen av rapporten vår. Det er mye informasjon som vi føler enten ikke hører hjemme i

noen kapittler eller hører hjemme i for mange.

Sprint Review 5
Dato
29.03.2021 – 16.04.2021

Hva vi skulle gjøre
- Kode: Analyse pipeline

- Kode: Containerization

Hva som er blitt gjort

- Kode: Testest og klargjort kode for oppdragsgivers beta test

- Kode: Laget Ansible Playbook og sjekket at denne har fungert

- Kode: Feilsøke problemer som dukket opp under deployment.

- Kode: Lagt til CVE, linker til CVE DB og CPE på web grensesnitt

- Kode: Endret søkefunksjonen på web grensesnitt

- Kode: Lagt til UUID etter konkret ønske fra oppdragsgiver

- Kode: Lagt til UUID som endpoint på API

- Kode: Laget eget repo for beta test

- Rapport: Utarbeidet dokumentasjon for oppdragsgiver

- Rapport: Endret strukturen på rapporten

- Rapport: Er i mål med kapittel 1 og 2 i rapporten

- Rapport: Tokk inspirasjon fra SDLC da vi endret strukturen til rapporten

- Rapport: Skrevet mye på implementation og methodology

-

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
Denne sprinten har vært en uke lengre enn de andre sprintene, grunnet påsken. Vi jobbet med

oppgaven i virkedagene i påsken. Vi misforsto oppgaven før vi satte i gang, og trodde at analyse

pipelinen det referreres til i oppgaveteksten skulle skje etter selve scannen var utført. Dette punktet falt

bort, da oppdragsgiver avklarte for oss at scannen vår oppfylte kravene i analyse pipelinen. Vi var også

ferdige med å containerize alt som skulle være det.

Da vi nesten var ferdig med koden kontaktet vi oppdragsgiver for å vise han en live demo. Oppdragsgiver

ønsket å teste systemet i eget miljø, og vi ble bedt om å utarbeide dokumentasjon og en Playbook. Da vi

allerede var ferdige med alt vi skulle gjøre i løpet av sprinten før sprinten begynte, valgte vi å takke ja til

beta testen.

Sprint Review 6
Dato
19.04.2021 – 30.04.2021

Hva vi skulle gjøre
- Kode: Lage web interface

- Kode: Test av Autoenum

Hva som er blitt gjort

- Rapport: Diskusjon

- Rapport: Omstrukturering

- Rapport: Lagt til flere figurer

- Rapport: Fjernet overflødig kode i rapporten

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
- Vi var ferdige med web interface før vi begynte på sprinten, og har for det meste jobbet med

rapporten og tilbakemeldigene fra veileder. I skrivende stund (30.04) venter vi fremdeles på

resultater fra beta test

Sprint Review 7
Dato
03.05.2021 – 19.05.2021

Hva vi skulle gjøre
- Finpusse kode og rapport

Hva som er blitt gjort

- Kode: Lagt til cache på API

- Kode: Endringer i web interface for feilhåndtering

- Rapport: Gramatikk, skrivefeil

- Rapport: Jobbet med kommentarer fra Erjon

Hva som IKKE har blitt gjort
-

Diskusjon rundt sprint
- Vi har brukt siste sprint på å gjøre ferdig rapporten og koden.

L. Preliminary report

120

Preliminary report bachelor thesis

DCSG2900

Avleen Singh Marjara, 505092
Jarl Tengesdal Lygre, 505100

Sander Høgli, 484191
Wojciech Malecki, 505075

January 2021

0

Contents

1 Goals 2
1.1 Background . 2
1.2 Limitations . 2
1.3 Project goals . 2

2 Scope 3
2.1 Subject area . 3
2.2 Task description . 3
2.3 Clarification of scope . 3

3 Participants and roles 3
3.1 Group roles . 3
3.2 Taskgiver and supervisor . 4

4 Resources 4
4.1 Needed resources . 4

5 Risk assessment 5
5.1 Risks . 6
5.2 Risk matrix . 6
5.3 Counter measures . 7
5.4 Risk matrix with measures . 7

6 Progress plan 8
6.1 Scrum . 8
6.2 Sprints . 8

A Project agreement 10

B Group rules 15

1

1 Goals

1.1 Background

The group is tasked with creating and implementing a solution which periodically scans a network
and saves the results and metadata about running services. The data is stored in a database.
The database will have to be exposed through a REST API for integration with their existing
services. The data is to be used in detection and exposure analysis. Furthermore the system
should be integrated with several tools for data collection and a pipeline for analytics.

1.2 Limitations

The taskgiver have given us some specific constraints which we have noted below. We also
mention some of our own limitations in terms of experience, knowledge and deadlines.

• Configuration is to be done through Ansible

• The code we produce has to be open source

• The service has to use open source code

• The service has to support microservice architecture

• As a proof of concept, the service should include a basic webGUI which enables the user
to search for the stored data

• Output of script should be in JSON

• The given time to finish the project

• Our ability to acquire new knowledge in the give time periode

1.3 Project goals

Our goal is to produce a product in line with the specification and constraints given by the client
of our bachelor thesis.

The desired effects of the project is to:

• Make a usable system that has the functionality the taskgiver needs.

• The code base should be easily maintainable and modifiable by the taskgiver.

• The data collected by the system should be able to be used by the taskgiver to improve
operational security. The data should also be useful for strategic security work.

• Improving security of the NTNU network

2

2 Scope

2.1 Subject area

This project touches on several subject areas. Our group is familiar with some of areas from
previous courses. These include automation, microservices, programming, databases and sys-
tems engineering. Although we are familiar with the areas, this project forces us combine the
knowledge obtained in the previous courses. Even though we are familiar with some of the areas,
we still have to learn new technologies and languages such as Python and Ansible, so that the
final product is in line with the taskgivers requirements.

2.2 Task description

The goal of the thesis is to create a solution that periodically maps the network and stores the
data in a database (RDBMS or NoSQL) for further use in detection analysis, exposure analysis
and statistical analysis of available services over time. The data is intended to be used for both
operational security and strategic security work at NTNU, including for security analysis and
measuring compliance with management systems for information security. The system should be
implemented with several different integrated tools for data collection and analysis and to build
a data collection and analysis pipeline. There should be development support script that makes
easy enrichment of services found such as automatic screen-grabbing, IP lookup, MAC address
search etc.

2.3 Clarification of scope

After a session with the taskgiver we have extended and clearified the scope. In addition to what
the taskgiver required we are going to add a vulnerability scan. The scan will be divided into
three levels:

• Level 1: Host discovery

• Level 2: Port scan, screen-/bannergrabs

• Level 3: Vulnerability scan on a subset of the scanned machines.

3 Participants and roles

3.1 Group roles

We have agreed on giving each group member their distinct role. However, in the event where a
member is absent, his role will be fulfilled by his deputy.

Name Role(s)
Avleen Group leader
Sander Secretary
Jarl Deputy leader and secretary
Wojtek Scrum master

Table 1: Roles

3

3.2 Taskgiver and supervisor

The taskgiver is NTNU SOC. Our contact person is Christoffer Vargtass Hallstensen. We aren’t
planning to have meetings regularly, but we will have meetings as required. Erjon Zoto is our
supervisor. We have planned weekly meetings with him. If there is no need for a meeting, it will
be pushed back another week or two.

4 Resources

The group members have agreed to use the following tools/resources:

• Toggl: Time tracking

• Trello: Light project organization, scrum board and to-do list

• TeamGantt: Project organization

• OneDrive: Sharing and saving files between group

• Teams: Meetings with taskgiver and supervisor

• Discord: Group meetings and work sessions

• GitHub: Code sharing and version control

4.1 Needed resources

The group needs access to resources in SkyHigh (NTNU’s OpenStack implementation) to be able
develop and test the service. At the time of writing we have been allocated adequate resources
in SkyHigh.

4

5 Risk assessment

As part of the preliminary project, we will find out what risks we face when carrying out the
main project. Here we will briefly and concretely describe the main risks we have found. The
completion of the project depends on the collaboration between participants and their capacity
to work. Each team member has a unique set of skills, that as a team, we value and depend
on. Based on the group and project characteristics, we have managed to outline the risks we
face. We will be using the ROS veiledning with some changes that makes it more suitable for
our assignment. It will be used for the risk assessment in the preliminary project:

Likelihood

Level of possibility Description Description of likelihood Frequency Interval (P)
1 UNLIKELY One time every other year 0,9/365 to 0,5/365
2 LESS LIKELY One time every other month 11.9/365 to 6/365
3 LIKELY More than once per month P>12/365
4 VERY LIKELY Once a week 52/365

Table 2: Likelihood table

Impact

Impact will be assessed from a scale from 1 to 4, where 1 is insignificant and 4 is critical. Table
3 describes these intervals.

Level of impact Description of level of impact Description of impact
1 INSIGNIFICANT No damage done to the project
2 SMALL Small damage done to the project
3 SERIOUS Serious damage done to the project
4 CRITICAL Critical damage done to the project

Table 3: Impact table

5

5.1 Risks

The group has identified the following risks:

Risk
no.

Description Likelihood Impact Countermeasure

1 Run out of time due to poor planning 1 4 Yes
2 Scope of the project is too comprehen-

sive which causes delays or setbacks
2 2 Yes

3 Absence due to mild disease 2 1 No
4 Misunderstanding the project 2 3 Yes
5 Loss of availability/data (Overleaf,

GitHub)
1 3 Yes

6 Poor communication between the group
and taskgiver leads to decreasing level
of quality

1 3 Yes

7 Focus on/prioritize things that are not
essential for the project

4 2 Yes

8 Test environment doesn’t simulate the
real world environment well enough

2 3 No

9 The project is too complex for the
group

2 3 Yes

10 Running out of time during a sprint 2 2 Yes

5.2 Risk matrix

Impact/Likelihood 1 2 3 4
1 3
2 2, 10 7
3 5, 6 4, 8, 9
4 1

Table 4: Risk matrix before implementing counter measures

6

5.3 Counter measures

We have defined counter measures as a measure that decreases the likelihood or the impact of
the risks. In cases where we are not able to decrease the likelihood or the impact, we have not
made any countermeasures as they simply wouldn’t reduce the risk.

Risk no. Description Likelihood Impact
1 Detailed planning in advance (Gantt) and ensure

that product is potentially shippable at the end of
each sprint

1 3

2 Detailed planning in preliminary project so that su-
pervisor/consultant can share his opinion about the
scope.

1 2

4 Frequent communication with taskgiver and super-
visor

1 3

5 Local backup of code and report 1 1
6 Arrange regular meetings with taskgiver and discuss

ongoing matters
1 2

7 Have a common understanding of what the task de-
mands. Create good user stories in the scrum process

2 2

9 Define project requirements and limitations, so it is
at a reasonable level of complexity

1 3

10 Having a two extra days between each sprint which
can be used for catch up

2 1

5.4 Risk matrix with measures

Impact/Likelihood 1 2 3 4
1 5 3*, 10
2 2,6 7
3 1,4,9 8*
4

Table 5: Risk matrix after implementing counter measures. *No counter measure

7

6 Progress plan

6.1 Scrum

We have identified that our service can easily be broken down into smaller parts, as the taskgiver
is requiring that the service should be able to run in a microservice architecture. As the service
can easily be ”potentially shippable” at the end of each sprint, we have chosen scrum. The scrum
model will also allow us easier adapt to new changes during the project period.

6.2 Sprints

All sprints start of by having a sprint review of the previous sprint. As we have an agile approach
to this project, we will be testing while coding. This is done to ensure that the product is
shippable at the end of each sprint. Our sprints begin on Mondays and end on Friday the week
after the beginning, making each sprint 12 days. The weekend between sprints is used as a buffer
that can be used to extend the sprint if there are any delays or extra time is needed.

Our plan is to write much of the report while we work on the technical part. This enables us
to better document the choices we make.

• Sprint 1: Prepare test environment: This includes making HEAT templates for consistent
and repeatable deployment of our test infrastructure in SkyHigh, setting up Ansible to
install dependencies on machines in infrastructure

• Sprint 2: Make a prototype of scanner which includes the most basic functionalities and
outputs the result to a file in JSON format.

• Sprint 3: Scanner improvements: after testing the prototype we will add more features
to the scanner.

• Sprint 4: Handling output, DB design: After adding additional functionality to the scan-
ner we will know what data the scanner outputs. We will then design the database and
implement a JSON parser and insert the data to the database

• Sprint 5: Analysis pipeline + containerization: All gathered data need to be thoroughly
analysed, to make it more scalable, we are going to containerize the process and implement
REST API. This sprint is one week longer to account for lost working time due to easter.

• Sprint 6: Web app/GUI and final test: Making a small web app as a proof of concept.
This webGUI will primarily includes functions for searching the saved data in the database.
After making the webGUI we will test to see if the whole service works as intended

• Sprint 7: Polishing code and report: The last sprint will be used to polish the code (if
needed) and make the finishing touches to the report.

8

10 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30
1/21 2/21 3/21 4/21 5/21

Bachelor start end

 Preliminary project 11/01/21 31/01/21
 Meeting with employer 22/01 22/01
 Meeting with supervisor 27/01 27/01
 Writing preliminary report 11/01 31/01

 Main project 01/02/21 20/05/21
 Working on the report 01/02 19/05
 Sprint 1: Prepare test environment 01/02 12/02
 Sprint 2: Make a prototype of scanner 15/02 26/02
 Sprint 3: Scanner improvements 01/03 12/03
 Sprint 4: Handling output, DB design 15/03 26/03
 Sprint 5: Analysis pipeline + containe... 29/03 16/04
 Sprint 6: Web app/GUI and final test 19/04 30/04
 Sprint 7: Polishing code and report 03/05 19/05
 DEADLINE 20/05 20/05

 Presentation 20/05/21 31/05/21
 Working on the presentation 20/05 31/05

Writing preliminary report

Working on the report

Sprint 1: Prepare t

Sprint 2: Make a p

Sprint 3: Scanner

Sprint 4: Handling

Sprint 5: Analysis pipeline +

Sprint 6: Web app

Sprint 7: Polishing code a

D

Working on the pr

Powered by TCPDF (www.tcpdf.org)

A Project agreement

10

B Group rules

15

Gruppekontrakt for DSCS2900

Denne kontrakten regulerer samarbeidet mellom gruppemedlemmene i DSCS2900 våren 2021. Alle

gruppemedlemmer forplikter seg til å overholde følgende bestemmelser:

1. Gruppemedlemmer
• Avleen Singh Marjara

• Jarl Tengesdal Lygre

• Sander Høgli

• Wojtek Malecki

2. Mål for prosjektet
1. Gjøre en god faglig innsats

2. Oppnå tverrfaglighet

3. Lære å jobbe godt som et team

3. Orden
1. Det forventes at alle medlemmer møter til avtalt tidspunkt.

2. Dersom et medlem er forsinket, skal han varsle de andre.

3. Hver arbeidsøkt/gruppemøte starter med en oppsummering av hva som er gjort siden sist,

dersom medlemmene har jobbet hver for mellom øktene og gå igjennom dagens agenda.

4. Hver arbeidsøkt/gruppemøte avsluttes med å skrive møtereferat. Her skal følgende noteres:

Hvem som var til stede, hva som ble gjort, hva som skal gjøres (til) neste møte.

5. Gruppen har avtalt faste arbeidstider. Disse er Mandag-fredag: 11-16, med noen unntak pga

forelesninger. Dette er kun et minimum, og alle er innstilt på å øke arbeidstiden utover

semesteret.

6. Som gruppemedlem er man forpliktet til å holde seg oppdatert på, og skaffe seg generell

forståelse for hva de andre arbeider med.

4. Beslutningsregler
1. Alle avgjørelser skal være oppe til diskusjon og besluttes i fellesskap

2. Ved ugyldig fravær mister man sin rett til innflytelse og må rette seg etter det som vedtas

3. Dersom det etter gjentatte forsøk ikke oppnås enighet, skal det søkes råd hos veileder.

5. Arbeidsprosess
1. Gruppen skal sette konkrete delmål med klare tidsrammer underveis i arbeidet. Dette gjøres som

en del av forprosjektet.

2. Gruppen skal dele oppgavene slik at det blir en rettferdig fordeling. Et medlem skal ikke sitte

med flere oppgaver enn det han klarer å håndtere, mens andre gjør mye mindre eller ingen ting.

3. Rapporten skal skrives underveis.

4. Gruppemedlemmene må loggføre arbeidstiden.

6. Miljø
1. Gruppemedlemmene skal opprettholde en god tone internt i gruppen.

2. Det er lov å komme med kritikk, men den skal være konstruktiv og saklig.

3. Det forventes at alle har like mye eierskap til oppgaven, slik at hvert enkelt medlem føler at det

er deres ansvar å ta tak i problemer som dukker opp underveis.

Signatur: 19.01.2021

M. Time report

139

Summary Report
01/01/2021 – 12/31/2021

TOTAL HOURS: 1402:47:04

361:06:40

288:53:20

216:40:00

144:26:40

72:13:20

0:00:00

94:17:56

323:21:4
8

353:24:1
5 335:55:1

9
295:47:4

6

Jan

2021

Feb

2021

Mar

2021

Apr

2021

May

2021

Jun

2021

Jul

2021

Aug

2021

Sep

2021

Oct

2021

Nov

2021

Dec

2021

USER DURATION

AS Avleen S. Marjara 470:05:42

WM Wojciech Małecki 316:15:48

JA Jarltl 314:06:00

SH Sander Høgli 302:19:34

TIME ENTRY DURATION

Without description 1383:23:40

Other time entries 19:23:24

Page 1/2Jarltl's workspace

AS Avleen S. Marjara 470:05:42

b 3:15:00

bachel 1:31:00

dokumentasjon 0:19:03

Dokumentasjon for beta test 5:14:34

Gjøre klar til beta test 1:01:47

Utarbeide dokumentasjon og teste kode før beta test 1:02:00

Without description 457:42:18

JA Jarltl 314:06:00

bac 5:00:00

Without description 309:06:00

SH Sander Høgli 302:19:34

Lese gjennom 2:00:00

Without description 300:19:34

WM Wojciech Małecki 316:15:48

Without description 316:15:48

Created with toggl.com Page 2/2

USER - TIME ENTRY DURATION

Jarltl's workspace

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

H
øgli, Lygre, M

ałecki, M
arjara

Autoenum

Høgli, Sander
Lygre, Jarl Tengesdal
Małecki, Wojciech
Marjara, Avleen Singh

Autoenum

Automatic mapping and exposure analysis of
network endpoints

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erjon Zoto

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Project Background
	Purpose
	Target groups
	Group background and competence
	Constraints
	Roles
	Project goals
	About the report

	Theory
	Software Development Life Cycle
	Scrum
	Infrastructure as code
	Automation
	Ansible

	Network mapping
	Scanning
	Scan types
	Vulnerability

	Databases
	Containers
	RESTful API

	Methodology
	Digital workspace
	Scrum
	Similar projects
	Report structure
	Technology

	Design
	Requirements
	Scanner

	Architecture
	Components
	Licence

	Implementation
	Github repository
	Open source tools

	Overview
	Scanner
	Autoenum MongoDB
	Autoenum API
	Autoenum screengrabber
	Autoenum web interface
	CVE database
	CVE API and search
	CVE Redis
	Volumes

	Setup and deployment
	Recommendations

	Testing
	Test environment
	Overview
	Topology
	Services
	Roles
	Deployment

	Testing
	Beta test

	Discussion
	Decisions
	Docker
	Scanner
	Database
	Structure

	Purpose and usefulness
	Detection and incident management

	Results
	Deviations
	Project criticism

	Conclusion
	Work ethic
	Further work
	Conclusion of the work

	Bibliography
	Task description
	Scanner code
	scanner.py
	cve_lookup.py

	Docker
	Screengrabber
	API
	Web interface
	docker-compose

	Playbooks
	Setup and deploy Autoenum
	Playbooks for test environment

	Code for test environment
	heat.yaml
	env.yaml
	manager_boot.bash
	windows_boot.ps1

	Sample API response
	Database
	Schema
	Document

	Web interface screenshots
	Gantt diagram
	Repository structure
	Sprint reviews
	Preliminary report
	Time report

