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Problem description

The arrival of small-scale quantum computers has heightened the threat to existing
internet security systems, specifically, the Public Key Infrastructure (PKI). The
standards bodies such as the National Institute of Standards and Technology (NIST)
are calling for quantum-resistant cryptosystems that can be considered for long-term
replacement of current public-key cryptosystems. Digital signatures have been for
decades, a very important part of critical sectors like governance and banking and
common sectors like education, corporate organizations and so on. With the increase
in usage of remote devices and Internet of Things (IoT) in these sectors, it would be
prudent to consider the recent developments in communication networks and security,
as it is becoming a growing concern with more and more applications moving to the
cloud.

In this work, we aim to identify loopholes and mount possible attacks on current
state-of-the-art post-quantum digital signature schemes, such as the recently designed
Picnic. Picnic is based on symmetric key primitives and has been shown to be
vulnerable to multi-target attacks. Moreover, various optimizations have been made
to the LowMC block cipher implementation about its linear layers. Some of the
other symmetric key candidates are the hash-based SPHINCS scheme, the 5-pass or
3-pass identification schemes based on multivariate quadratic equations, the lattice-
based TESLA scheme. A detailed and comparative study of the available schemes
and related attacks will give a comprehensive understanding of the post-quantum
algorithms designed to withstand the quantum threat.

Note: The title of the thesis is updated based on feedback received during the presentation
of the results at the faculty. The problem description and the scope remain unchanged.

Date approved: 2020-02-21
Supervisor: Prof. Danilo Gligoroski, IIK, NTNU
Co-supervisor: Mattia Veroni, IIK, NTNU





Abstract

Security and privacy in the internet as we know today, is under threat
from the emerging technology of building larger and commercial quantum
computers. Even though the quantum computers built are relatively
small, and not very effective to disrupt the Public Key Infrastructure,
nevertheless, it is important to recognize the imminent threat. Besides,
the famous quantum algorithms due to Shor, Grover and Brassard-Høyer-
Tapp, have shaken the classical foundations of public-key cryptography.
These reasons have triggered NIST to spearhead the Post-Quantum Cryp-
tography (PQC) Standardization project, to enable quality development
and faster deployment of quantum-safe cryptosystems. This is currently
in the third round with 7 finalists and 8 alternative candidates - both
key-exchange mechanisms and digital signature schemes.

To understand the future of public-key cryptography in the post-
quantum world, the natural approach would be to explore different math-
ematical problems that cannot be solved by quantum computers, yet.
Built on this premise, this thesis presents a theoretical study of crypto-
graphic hard problems that are allegedly quantum-resistant, and the NIST
round 3 PQC signature schemes constructed from them. Additionally, in
order to understand the practical implications of these schemes, a holistic
evaluation in terms of security assurance and performance has been done
as part of this work. Open source tools, such as the Open Quantum Safe
(OQS) project and PQClean, have been used in conjunction with Docker
containers to evaluate these schemes quantitatively.

To address the first part of the above research questions, the cate-
gories of quantum-resistant cryptographic systems have been studied,
namely, (i) Lattice-based (ii) Multivariate quadratic (MQ) polynomials
based (iii) Hash-based (iv) Code-based and (v) Isogeny-based. In the
second part, the six signature schemes have been studied, which are
(a) Hash/Symmetric-primitive based - Picnic and Sphincs+ (b) MQ
polynomials based - GeMSS and Rainbow (c) Lattice-based - Crystal-
s-Dilithium and Falcon.

Initially inspired by the simple construction of Picnic, the 3 alternate
candidates (i.e. Picnic, Sphincs+ and GeMSS) in NIST Round III have
been studied in more detail compared to the finalists (i.e. Dilithium,
Falcon and Rainbow) as part of this work. Later, this decision was also
guided by the progression in the NIST PQC standardization, and the
curiosity about why Picnic and the two other schemes did not make it as



finalists. Along with the cryptographic constructions, the robustness of
the schemes through their proofs of security, and their vulnerabilities in
terms of different attacks have also been discussed.

Furthermore, during the quantitative analysis of the schemes, it was
realized that GeMSS is not currently in the Liboqs library of OQS.
Therefore, integrating GeMSS into Liboqs, to allow for evaluation of all
six schemes on a common platform and in cryptographic protocols such as
TLS became one of the objectives of this work. However, due to a recent
serious key recovery attack [Din20] on the underlying problem of GeMSS,
this task has been deemed irrelevant for now. The partial implementation
done upto the point of knowing about the attack has been presented.
Nevertheless, a comprehensive comparison of all six schemes has been
done taking into consideration, the software and hardware implementation
complexities of these schemes.

The observation from the quantitative analysis of the schemes has
been that, in software implementations, Dilithium is by far the best
algorithm in terms of performance and sizes of the components (keys and
signatures). However, Rainbow seems to have very good performance
in high-speed hardware implementations. In this regard, despite being
constructed from simpler cryptographic primitives, Picnic and Sphincs+
have average performances compared to other schemes in either platforms.
As for the qualitative analysis, each scheme is vulnerable to various
attacks, and the strength and security of a scheme is determined by its
ability to counter powerful attacks. Though symmetric-based schemes are
generally believed to be quantum-resistant, needing only to double their
parameters to be secure, they are still vulnerable to multi-target attacks.
The MQ-polynomial based schemes on the other hand, are subject to
attacks that exploit their mathematical constructions. While the lattice-
based schemes are robust in terms of construction, their implementations
can be complicated and subject to generic fault and side-channel attacks
like any other scheme.



Sammendrag

Sikkerhet og personvern på internett som vi kjenner i dag, er truet av
den nye teknologien for å bygge større og kommersielle kvantecomputere.
Selv om kvantecomputere som er bygget er relativt små, og ikke veldig
effektive for å forstyrre Public Key Infrastructure, er det likevel viktig å
gjenkjenne den forestående trusselen. Dessuten har de berømte kvanteal-
goritmene på grunn av Shor, Grover og Brassard-Høyer-Tapp, rystet de
klassiske grunnlagene for kryptografi med offentlig nøkkel. Disse årsakene
har utløst NIST til å stå i spissen for PQC Standardiseringsprosjektet,
for å muliggjøre kvalitetsutvikling og raskere distribusjon av kvantesikre
kryptosystemer. Dette er for tiden i tredje runde med 7 finalister og 8
alternative kandidater - både nøkkelutvekslingsmekanismer og ordninger
for digital signatur.

For å forstå fremtiden for offentlig nøkkelkryptografi i post-quantum-
verdenen, ville den naturlige tilnærmingen være å utforske forskjellige
matematiske problemer som ennå ikke kan løses av kvantecomputere. Byg-
get på denne forutsetningen presenterer denne avhandlingen en teoretisk
studie av kryptografiske harde problemer som angivelig er kvantebestan-
dige, og NIST runde 3 PQC signaturskjemaer konstruert av dem. For
å forstå de praktiske implikasjonene av disse ordningene, er det i til-
legg gjort en helhetlig evaluering av sikkerhetssikring og ytelse som en
del av dette arbeidet. Open source-verktøy, som Open Quantum Safe
(OQS) -prosjektet og PQClean, har blitt brukt i forbindelse med Docker-
containere for å evaluere disse ordningene kvantitativt.

For å adressere den første delen av de ovennevnte forskningsspørsmå-
lene, har kategoriene av kvantebestandige kryptografiske systemer blitt
studert, nemlig (i) Latticebasert (ii) Multivariate kvadratiske (MQ) poly-
nomer basert (iii) Hash-basert (iv) Kodebasert og (v) Isogeny-basert. I den
andre delen har de seks signaturskjemaene blitt studert, som er (a) Hash
/ Symmetric-primitive based - Picnic og Sphincs + (b) MQ polynomials
based - GeMSS og Rainbow (c) Latticebasert - Crystals-Dilithium og
Falcon.

Opprinnelig inspirert av den enkle konstruksjonen av Picnic, har de 3
alternative kandidatene (dvs. Picnic, Sphincs + og GeMSS) i NIST Round
III blitt studert mer detaljert sammenlignet med finalistene (dvs. Dilithi-
um, Falcon og Rainbow) som en del av dette arbeidet. Senere ble denne
avgjørelsen også styrt av utviklingen i NIST PQC-standardiseringen,
og nysgjerrigheten rundt hvorfor Picnic og de to andre ordningene ikke



gjorde det som finalister. I tillegg til de kryptografiske konstruksjonene,
har robustheten til ordningene gjennom deres sikkerhetsbevis og deres
sårbarhet i forhold til forskjellige angrep også blitt diskutert.

Videre ble det under den kvantitative analysen av ordningene innsett
at GeMSS for øyeblikket ikke er i Liboqs-biblioteket til OQS. Derfor
ble integrering av GeMSS i Liboqs, for å tillate evaluering av alle seks
ordningene på en felles plattform og i kryptografiske protokoller som
TLS, et av målene med dette arbeidet. På grunn av et nylig alvorlig
nøkkelgjenopprettingsangrep [Din20] på det underliggende problemet med
GeMSS, har denne oppgaven blitt ansett som irrelevant for nå. Den delvise
implementeringen som er gjort til det punktet å vite om angrepet, har
blitt presentert. Likevel er det gjort en omfattende sammenligning av alle
de seks ordningene under hensyntagen til programvaren og maskinvarens
implementeringskompleksitet i disse ordningene.

Observasjonen fra den kvantitative analysen av skjemaene har vært at
Dilithium i programvareimplementeringer er den klart beste algoritmen
når det gjelder ytelse og størrelse på komponentene (nøkler og signatu-
rer). Imidlertid ser Rainbow ut til å ha veldig god ytelse i høyhastighets
maskinvareimplementeringer. I denne forbindelse, til tross for at de er
konstruert av enklere kryptografiske primitiver, har Picnic og Sphincs +
gjennomsnittlig ytelse sammenlignet med andre ordninger i begge platt-
formene. Når det gjelder den kvalitative analysen, er hver ordning sårbar
for forskjellige angrep, og styrken og sikkerheten til en ordning bestemmes
av dens evne til å motvirke kraftige angrep. Selv om symmetrisk baserte
ordninger generelt antas å være kvantebestandige, og bare trenger å doble
parametrene for å være sikre, er de fremdeles sårbare for angrep med
flere mål. MQ-polynombaserte ordninger er derimot utsatt for angrep
som utnytter deres matematiske konstruksjoner. Mens de latticebaserte
ordningene er robuste når det gjelder konstruksjon, kan implementeringe-
ne være kompliserte og utsatt for generiske feil og sidekanalangrep som
alle andre ordninger.
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Chapter1Introduction

Communication has evolved over time from the physical methods to analog commu-
nication through wired devices up to the digital age of computers. Along with the
progress in telecommunication, the challenges in protecting the information from
untrusted parties also became increasingly sophisticated. To address these challenges,
mathematical problems were used to develop techniques that protected the leakage
of information, giving rise to the field of cryptography.

In this regard, though classical digital computers were able to solve most of the
computational problems in mathematics, there were some categories of problems that
could not be solved efficiently (i.e. in terms of the time and resources required). It was
this set of mathematical problems that classical cryptography relied on, to safeguard
information and the identities of the communicating parties. However, the advances
in the field of quantum computing have brought in newer but exciting challenges
to the world of communication and cryptography. Thus, protecting individual and
collective privacy and integrity, notwithstanding the quantum threat is the goal of
the cryptographic community for the next decade.

Quantum computing is an entirely new way of computation that is different
from the traditionally known binary classical computing. It uses the principles of
quantum mechanics to perform efficient computations, even at large sizes, impossible
by largest/fastest available classical computers. Quantum mechanics deals with the
duality of matter i.e. wave-like nature and particle-like nature. Based on these two
fundamental principles, the main concepts of quantum computing “superposition” and
“entanglement” are exploited to develop exponentially faster computing algorithms
that solve many classical problems [Qis20b].

While classical computers operate on bits or binary states of 0 and 1, quantum
computers operate on the quantum bit or qubit, the quantum state which represents
both 0 and 1 or linear combinations of 0 and 1. This linear combination is called
superposition, which allows for the simultaneous processing of exponentially many

1
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logical states. The other concept entanglement refers to the combined state of multiple
qubits, which contain more information than that contained in each individual qubit.
Such multi-qubits that are well entangled, are also known to be useful for generating
high-entropy pseudo-random strings [Qis20b].

All quantum algorithms are implemented on quantum circuits. A quantum circuit
consists of quantum gates that are constructed differently than classical logic gates,
but do perform similar logical operations as their classical counterparts. They also
have a set of instructions and control logic as classical logic gates, but operate on
a superposition of quantum states in the input and output wires. For the circuit
evaluation, a superposition of all possible quantum states is created and given as input
to the quantum circuit. Then, according to the defined instructions, the quantum
circuit causes selective interference of the amplitudes and phases of the input states,
giving the solution of the computation which can be measured at the output [Qis20b].
The final measurement of the result collapses all the information contained in the
superposed output of the quantum circuit to a single classical output state.

IBM being one of the leaders in building larger and faster quantum computers,
has also developed QisKit [AAB+19], an open source software development kit
(SDK) based on python for quantum computing. It allows users to design quantum
circuits, run optimized quantum algorithms on classical simulators, create high-level
models of problems and also run optimized algorithms on real and different types of
quantum hardware. It also provides support and has code packages for applications
in finance, physical chemistry and machine learning algorithms.

Having had a glimpse of what quantum computing means and how it works at a
very high level, it would be interesting to look at some of the quantum algorithms
developed in the 1990’s, and gain a deeper understanding of the problems that
they can solve efficiently and to see why they are considered a threat to classical
cryptography.

Shor’s Algorithm

The most famous quantum algorithm that shook the foundations of classical (i.e.
public-key) cryptography was Peter Shor’s [Sho94] Quantum Factoring algorithm,
developed in 1994. Shor showed that quantum computers can very effectively break
integer factorization and discrete log problems in polynomial time unlike classical
computers. The algorithm run time is O((logN)2(log logN)(log log logN)), where
N is the number of input bits, against O(exp [c (logN)1/3(log logN)2/3]) of best
known classical algorithms [Sho99]. This Period Finding algorithm of Shor is briefly
explained below.

Period Finding Problem: ([Qis20c]) Given a periodic function f(x) = ax
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(mod N), where 0 < a < N and gcd(a,N) = 1, find the period r such that ar ≡ 1
(mod N). The period r is the smallest non-zero integer that satisfies the above relation.
Using the order r, and the relation ar − 1 = 0 (mod N), the gcd(ar/2 ± 1, N) gives
one of the factors of N .

The basic idea of Shor’s algorithm is to use quantum phase estimation to solve
the period finding problem. The quantum phase estimation is used on the unitary
operator, given by,

U |y〉 ≡ |ay mod N〉 =⇒ U |1〉 = |a〉 → · · · → Ur|1〉 = |1〉

where, every successive application of U , will multiply the state by a (mod N), giving
the state of |1〉 again, after r iterations, which gives the required period.

Grover’s Algorithm

The other famous quantum algorithm is the equivalent of the classical brute force
attack or exhaustive search, developed by Lov Grover [Gro96] in 1996. Although it
was initially designed to be an algorithm for efficiently searching databases, it has
found many other applications, the significant one being the Quantum Exhaustive
Search problem, briefly explained below. However, this algorithm only gives a
quadratic speed-up over similar classical algorithms, and does not solve NP-Complete
problems in polynomial time. The algorithm run time is O(

√
N) where N is the

number of input bits, as opposed to O(N) for classical algorithms [Aar05].

Exhaustive Search Problem: ([Qis20a]) Given a function f : K → {0, 1} where

f(k) =
{

1 , if k = k0

0 , otherwise
; find k0 such that f(k0) = 1.

The core idea of Grover’s algorithm is based on the concept of amplitude amplifi-
cation. The algorithm solves the search problem by converting it into an oracle that
adds negative phase to the marked solution in the system state.

Uω|x〉 =
{
|x〉 , if x 6= ω

−|x〉 , if x = ω

Given a function f as below, an oracle O for f can be described as

f(x) =
{

0 , if x 6= ω

1 , if x = ω
; O ← Uω|x〉 = (−1)f(x)|x〉

thus, enabling easy identification of the search value. This can be used in applications
where we need to find the input value for an output obtained as the result of evaluation
of some function f .
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Brassard-Høyer-Tapp (BHT) Algorithm

Another important quantum algorithm is the Brassard-Høyer-Tapp (BHT) algorithm
[BHT97], developed in 1997 and named after its inventors. This algorithm uses the
classical birthday paradox and the quantum search algorithm by Grover to achieve the
combined cubic-root speed-up against equivalent classical algorithms. The collision
finding problem is briefly explained below:

Collision Problem: ([BHT97]) Given a many-to-one function f : X → Y where
y = f(x) ∈ Y , find x0, x1 ∈ X such that f(x0) = f(x1) and x0 6= x1.

In general, the above collision finding problem implies that an r-to-1 function
has distinct r pre-images for every image i.e., for every yi there exist r distinct xj .
Given that this function is modeled as a black-box, the BHT algorithm needs only
O( 3
√
N/r) expected evaluations of the function. This is faster than the best known

classical algorithms, which need O(
√
N) evaluations [BHT97].

Research efforts on quantum algorithms have mostly focused on solving the
so-called Hidden Subgroup Problem (HSP), to which most other problems can be
reduced to. For instance, problems based on (a) finite or countable groups - like
factoring and discrete-log, and (b) uncountable groups - like Pell’s equation, reduce
to the HSP for abelian groups, and therefore, have been efficiently solved by quantum
algorithms. On the other hand, for problems based on non-abelian groups, like graph
isomorphism and unique shortest lattice vector problem, there are no known efficient
quantum algorithms to solve them [HV09]. This is the vital point that post-quantum
cryptography seeks to take advantage of, in order to construct cryptosystems that
are resistant to attacks by quantum algorithms. In this regard, the following section
outlines the current efforts taken by the cryptographic community towards moving
in the direction of quantum-safe cryptography.

1.1 Scope

The National Institute of Standards and Technology (NIST) 1 is a standards orga-
nization, with its headquarters located in Maryland, USA. It is a non-regulatory
agency under the Department of Commerce of the US Government [NIS21]. An
agency founded in 1901 and mainly meant to be a physical science laboratory has
progressed over the years, today expanding its scope from physical sciences to infor-
mation technology and beyond. The main focus areas of NIST are: “measurement
sciences, rigorous traceability, and development and use of standards”. Though NIST
establishes standards for technology and measurements to be adopted across USA, it
is also widely accepted internationally.

1originally called the National Bureau of Standards (NBS)
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As part of its standardization efforts, NIST has initiated many projects over the
years, to standardize information security products and services. These standards
are published through a set of documents, such as, Federal Information Processing
Standard(s) (FIPS), Special Publication(s) (SP), and NIST Interagency or Internal
Report(s) (NIST-IR). The Information Technology Laboratory (ITL) under NIST is
the body responsible for developing cryptography standards. Some of these projects
to standardize different areas of cryptography are [Moo19]:

• Block-Ciphers
Advanced Encryption Standard (AES)
15 candidates, 2 rounds, 5 finalists (1997 - 2000)

• Hash Functions
Secure Hash Algorithm 3 (SHA-3)
14 candidates, 2 rounds, 5 finalists (2007 - 2012)

•
Post-Quantum
Cryptography
(PQC)

General purpose quantum-resistant cryptosystems
15 candidates, 3 rounds, 7 finalists and 8 alternate candidates
(2016 - Present – 3rd round ongoing)

•
Lightweight
Cryptography
(LWC)

Light-weight cryptosystems
32 candidates, 2 rounds
(2018 - Present – 2nd round ongoing)

1.1.1 PQC standardization

As mentioned above, NIST started the PQC standardization process with a formal
call for proposals, in December 2016. The process focuses on standardizing Key
Exchange Mechanism (KEM) or Public Key Encryption (PKE) schemes and Digital
Signature scheme (SIG). NIST received around 82 submissions from around the
world, for all three categories of schemes, out of which 69 candidates (49 PKE/KEM
and 20 SIG schemes) were accepted as they met the submission requirements.

Round 1

The criteria for minimum acceptance and evaluation in Round 1 were [AASA+19]:

1. Reference and Optimized C/C++ implementations

2. Known-Answer Tests (KATs)

3. Algorithms to be implementable on a wide variety of hardware and software
platforms
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4. Written specification

5. Required Intellectual Property statements

The shortlisted Round 1 candidates according to the post-quantum family of
mathematical assumptions/constructions are given in Table 1.1. Out of the 69
shortlisted candidates from round I, five of the schemes were withdrawn from the
competition and/or merged with other schemes submitted to the standardization
process.

Round 1 Selected Candidates

PQ family PKE/KEM SIG PKE/KEM & SIG Total

Lattices 21 5 – 26

Multi-variate 2 7 DME
SRTPI*

11

Code-based 17 + 1* 2 + 1* – 21

Hash/Symmetric-based –
Gravity-Sphincs
Sphincs+
Picnic

– 3

Isogeny-based SIKE – – 1

Other 2 + 2* WalnutDSA pqRSA KEM
pqRSA SIG

7

Table 1.1: Round I Selected Candidates (the starred (*) algorithms were withdrawn
from the process and/or merged with other schemes)

Round 2

The evaluation criteria for the second round were [AASA+20]:

1. Security
– PKE/KEM: Semantic security w.r.t adaptive chosen ciphertext attack ≡ IND-
CCA2 and Semantic security w.r.t chosen plaintext attack ≡ IND-CPA
– SIG: Existential Unforgeability w.r.t adaptive chosen message attack ≡ EUF-
CMA
– Classification of proposed parameter sets w.r.t NIST’s security levels
– Perfect Forward Secrecy, resistance to side-channel and multi-key attacks, and
resistance to misuse
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2. Cost and Performance
– Computational efficiency of operations, transmission costs of artifacts, and
implementation costs in terms of RAM or gate counts

3. Algorithm and Implementation Characteristics
– Constant-time implementations, protection against power analysis attacks,
performance in internet protocols, and simple, elegant and royalty-free designs
for wide-spread adoption

The Round 2 candidates are shown in Table 1.2. From Round 1, 26 candidates
were selected to progress into Round 2, with 17 PKE/KEM schemes and 9 SIG
schemes. A few algorithms submitted as separate schemes in round 1, were merged
and re-submitted as a single scheme for round 2.

Round 2 Selected Candidates

PQ family PKE/KEM SIG PKE/KEM & SIG Total

Lattices 9† 3 – 12

Multi-variate – 4 – 4

Code-based 7† – – 7

Hash/Symmetric-based – Sphincs+
Picnic

– 2

Isogeny-based SIKE – – 1

Table 1.2: Round 2 Selected Candidates († =⇒ 2 or more schemes from the PQ
family were merged into one scheme)

Round 3

The Round 3 finalists and alternate candidates were announced by NIST in July
2020, which are listed in Table 1.3:
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Round 3 Finalists

PQ Family PKE/KEM SIG

Lattices
Crystals-Kyber
NTRU
Saber

Crystals-Dilithium
Falcon

Multi-variate – Rainbow

Code-based Classic McEliece –

Round 3 Alternate Candidates

PQ Family PKE/KEM SIG

Lattices FrodoKEM
NTRU Prime

–

Multi-variate – GeMSS

Code-based BIKE
HQC

–

Hash/Symmetric-based – Sphincs+
Picnic

Isogeny-based SIKE –

Table 1.3: Round 3 Finalists and Alternatives

The alternate candidates have been announced to keep diverse constructions in
the standardization process and possibly, NIST will declare more than one scheme
as the standard for a variety of applications, such as general-purpose encryption and
signature schemes, for ephemeral (i.e. one-time) use cases, and so on.

1.2 Motivation

Digital communication today happens over the internet using classical computing
devices. However, the improved knowledge on how to build larger and commercially
viable quantum computers has threatened the security and privacy of information as
we know today on the internet. Although large enough quantum computers have
not yet been built that can break, for instance a 3072-bit RSA modulus, the threat
is real and impending. Thus, recognizing this threat, NIST has started efforts to
standardize cryptosystems that are claimed to be quantum-resistant. Even so, there
are pertinent challenges to standardizing and adopting post-quantum cryptosystems,
i.e. (i) efficiency (ii) confidence and (iii) usability. While classical cryptosystems
have stood the test of time and overcome these challenges to a significant extent, the
same evaluation needs to be done for the post-quantum cryptosystems before they
can be deployed and widely used in the internet.

Thus, it is important to first understand what “post-quantum cryptosystems” are
and how are they able to resist quantum attacks. Based on this understanding, it
becomes much easier to gain more confidence in their security, evaluate how efficient
they are in terms of performance and memory usage, and also to ascertain their
usability for different applications. Therefore, this forms the motivation for the study
and survey of quantum-safe cryptosystems in this thesis. Based on this, the below
research questions have been formulated along with a brief explanation of the specific
motivation behind each question.
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Research Question 1:
What are the different cryptographic hard problems that are believed to be resistant
to quantum attacks?

As stated previously, there are certain sets of hard mathematical problems that
are allegedly quantum-resistant and many cryptosystems have been constructed
based on these problems. Therefore, a study of these mathematical problems and
the different baskets into which they are categorized forms the first objective of this
thesis. In this regard, Chapter 2 addresses the same and also contains the formal
definition of a digital signature, which lays the foundation for all further discussions
in this thesis.

Research Question 2:
Which are the signature candidates considered for the NIST standardization so far?
What are the different quantum-safe constructions they are based on? Are these
schemes secure enough?

Although NIST is standardizing both Key Exchange Mechanisms (KEMs) and
Digital Signature schemes (SIGs), the community has mainly focused on the eval-
uation of KEMs for deployment considerations in the Public Key Infrastructure
(PKI). Several evaluations have been made across literature in different settings and
environments for the PKE/KEM schemes [DFA+20]. However, there has not been
much evaluation of the SIG schemes as it is not considered to be an immediate need
compared to the PKE/KEM schemes [SKD20]. Therefore, this thesis work focuses
on the study and evaluation of signature schemes over PKE/KEM schemes. This
question also becomes relevant in terms of fixing the scope of the current work.

Addressing this research question, the chapters 3 through 6 contain a detailed
description of the six signature schemes that have progressed to the third round of
the NIST PQC standardization, along with a discussion of their security and related
attacks.

Research Question 3:
How do these schemes fare against each other qualitatively and quantitatively? What
are the performance metrics of these schemes on different platforms? How well do
these signatures fit-in into cryptographic protocols?

As a consequence of studying the mathematical constructions and security of the
signature schemes as part of RQ2, the study naturally leads to the next step, that is,
a qualitative and quantitative comparison of the schemes. A quantitative comparison
includes performance evaluations across different platforms (software and hardware),
and evaluation in networking and cryptographic protocols. For instance, GeMSS
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was not included in the open source test-bed platform like OQS for evaluation in
cryptographic protocols and therefore, integrating GeMSS into OQS for a more
complete evaluation was also one of the objectives of this thesis. Chapters 7 and 8
contain the methodology followed by the performance results and a comprehensive
discussion of all the six schemes.



Chapter2Background

Cryptography is a branch of mathematics and computer science, that deals with
protecting data and communication between two or more parties without allowing any
form of misuse or violation of privacy. Historically, the development of cryptography
has been very interesting, and it mainly focused on encryption, that is protecting
sensitive information from unwanted third parties or eavesdroppers. Today the
definition has expanded to include many other applications such as digital signatures,
identity authentication, interactive proofs, and so on.

Ancient cryptography mainly focused on traditional characters like letters and
numbers, while the advent of computers allowed to encrypt any form of data that
is representable in binary format. Some of the early forms of encryption include
Substitution ciphers, Transposition ciphers, Polyalphabetic ciphers and so on. The
famous German Enigma machines were very sophisticated rotor machines developed
and used extensively for encrypting confidential information, during World War II.
It is also well known that it took years of combined effort from mathematicians in
the UK to break the Enigma cipher.

Early forms of cryptography were mostly based on a symmetric approach. In
this approach, the sender and receiver both share a mutually-agreed secret key prior
to actual communication, and the same secret key is used for both encryption and
decryption. Hence, it becomes mandatory for the involved parties to have known each
other and trust each other, to agree on an encryption scheme and a corresponding
secret key.

However, this is not always possible, and there are many applications where two
unknown parties who cannot trust each other, will need to communicate without a
shared secret key. For instance, a bank is a trusted organization with which individuals
need to communicate securely. It would be impractical and inefficient if the bank had
to establish and maintain individual shared secret keys with each customer. This
drawback of the symmetric approach was the motivation for Diffie-Hellman [DH76]

11
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to propose the idea of Asymmetric or Public-key cryptography. The Diffie-Hellman
key exchange protocol was a significant breakthrough in cryptography, as it very
efficiently solved the biggest problem of secure key generation and management
present in symmetric cryptography.

In the asymmetric approach, each party involved in the communication generates
two related keys - public key and private key - using mathematical problems. As the
names suggest, one of the keys is made known publicly while the other one is kept
secret. Although they are related, it is computationally infeasible to obtain the secret
private key only from the public key. In this method, the sender takes the public key
of the receiver and applies his secret key to it, in order to generate a shared secret
key known only to him and the receiver. Similarly, the receiver applies his secret key
to the sender’s public key, in order to generate the same shared secret key as the
sender. Now both communicating parties have obtained the same secret key value,
despite the use of an insecure channel. Using the newly computed shared secret key,
the parties can now communicate using the symmetric method.

Symmetric and asymmetric approaches in cryptography have their own pros and
cons. Symmetric cryptography is faster due to simpler operations and shorter key
lengths, but have poor key management due to the need of having distinct secret keys
between every pair of communicating parties. Asymmetric cryptography solves the
key management problem efficiently but since it is based on computationally expensive
mathematical operations, it is slower than symmetric cryptosystems. Therefore, a
hybrid approach is often used, wherein the message itself is encrypted using symmetric
ciphers, while the secret key for the symmetric ciphers is generated and encrypted
using the asymmetric ciphers.

The CIA Triad is a well-known model for security design principles, which stands
for Confidentiality, Integrity and Availability. (a) Confidentiality aims to protect
sensitive data from unwanted parties, (b) Integrity provides assurance that the
data has not been tampered with, and (c) Availability provides a guarantee that
the information is accessible when required by authorized individuals. In general,
the cryptosystems which offer confidentiality in the symmetric setting are called
encryption schemes (ENC), and the ones offering data integrity are called Message
Authentication Codes (MACs). Similarly, their asymmetric counterparts are called
PKE schemes for confidentiality and SIGs for data integrity. An overview of these
schemes using the traditional sender (Alice) and receiver (Bob) are shown in Figure 2.1
and Figure 2.2.
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Symmetric and Asymmetric Cryptosystems

Figure 2.1: Symmetric Cryptosystems with confidentiality and integrity

Figure 2.2: Asymmetric Cryptosystems with confidentiality and integrity



14 2. BACKGROUND

2.1 Mathematical concepts

In this section, some of the fundamental mathematical concepts necessary to construct
cryptosystems are defined. This is followed by a discussion on modern cryptography
and its principles.

Definition 2.1. Abelian Group
An abelian (or commutative) group (G, ∗) is a set of elements G with a binary
operation ∗, satisfying the below properties ([Sma16, Sho09]):

i) Associative: ∀ a, b, c ∈ G : a ∗ (b ∗ c) = (a ∗ b) ∗ c

ii) Identity: ∀ a ∈ G ∃ e ∈ G : a ∗ e = e ∗ a = a

iii) Inverse: ∀ a ∈ G, ∃ a′ ∈ G : a ∗ a′ = a′ ∗ a = e

iv) Commutative: ∀ a, b ∈ G : a ∗ b = b ∗ a

The abelian group G contains an identity and only one inverse for every element
of G. Some well-known examples for abelian groups are the set of integers under
addition (Z,+) and the set of rationals under multiplication (Q,×).

Definition 2.2. Commutative Ring
A commutative ring (R, ∗, ◦) is a set R with two binary operations, ∗ and ◦,
satisfying the below properties ([Sma16, Sho09]):

i) (R, ∗) must be an abelian group

ii) Associative under ◦: ∀ a, b, c ∈ R : a ◦ (b ◦ c) = (a ◦ b) ◦ c

iii) Identity under ◦: ∀ a ∈ R ∃ i ∈ R : a ◦ i = i ◦ a = a

iv) Distributive: ∀ a, b, c ∈ R : a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c)

v) Commutative under ◦: ∀ a, b ∈ R : a ◦ b = b ◦ a

Some well-known examples for commutative rings are the set of rationals under
addition and multiplication (Q,+,×) and the set of complex numbers under addition
and multiplication (C,+,×).

Definition 2.3. Field
A Field (F, ∗, ◦) is a set F with two binary operations, ∗ and ◦, satisfying the below
properties ([Sma16, Sho09]):

i) (F, ∗, ◦) must be a commutative ring
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ii) Inverse under ◦: ∀ a, a′ 6= 0 and a ∈ F, ∃ a′ ∈ F : a ◦ a′ = a′ ◦ a = i

(i.e. every non-zero element must have a multiplicative inverse)

Some well-known examples for fields are the set of integers modulo a prime
number p, under addition and multiplication (Zp,+,×) and the set of reals under
addition and multiplication (R,+,×).

Modern Cryptography

Traditional cryptography was mostly based on ad-hoc constructions that were de-
signed as reactions to newer attacks mounted on existing ciphers. One of the
assumptions was that information is protected when the ciphers are designed in such
a way that no adversary is able to break them. In contrast, modern cryptography
stresses on the importance of viewing cryptography as a rigorous science rather
than an art of hiding information. It has been developed with the learnings and
experience from classical cryptography, and ensures that no ad-hoc designs are either
constructed or widely used. Modern cryptography does not assume that the cryp-
tosystems are unbreakable, but relaxes the requirement to ensure that cryptosystems
are computationally unbreakable. That is, an adversary does not attempt to break
the cryptosystem because it is computationally expensive.

The three main principles of modern cryptography are [KL20] :

1. Formulating rigorous and precise definitions of security

2. Precisely stating minimal, unbroken assumptions

3. Rigorous proof of security w.r.t the definition and relative to the assumption

Developing formal and exact definitions of security is very essential, as it gives
clarity about the security goals to be achieved for the cryptosystem being designed.
With a clear understanding of the need, design efforts can be focused towards
achieving those goals in the most efficient way. Features that are not relevant or do
not add security enhancements to the cryptosystem can be filtered out, once precise
security definitions are outlined. Also, the cryptosystem must be easy to use, while
giving the required security at the same time. If it has redundant processes, or does
not apply to a particular use case, or has no scalability, then the scheme would be
quite useless even if it is very secure. Having accurate definitions of security also
gives the flexibility of a efficiency-security trade-off, and helps to achieve the best
possible balance between the two in different scenarios.

Since modern cryptography relies on computational complexity theory for the
security of cryptosystems, the security is based on mathematical assumptions on
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problems that are so difficult to become almost unsolvable by computers. Therefore,
the assumptions need to be clearly stated right at the beginning before providing
the security proof. When these assumptions have been studied and tested for long
enough with no provable contradictions, then we can claim some level of soundness
on them. Stating the assumptions also helps to compare and evaluate two different
cryptographic constructions on the basis of the assumptions. Security based on a
weaker assumption which is simpler or well-studied, maybe preferred over a new
but stronger assumption, as it may turn out to be false at a later point of time.
Different security proofs can be based on the same assumption, allowing to study (i.e.
cryptanalyse) the proof and the assumption to evaluate if the cryptosystem meets
the security definitions.

With the definitions and assumptions stated explicitly, the final most important
step is providing the proof of security. Proof of security and correctness are absolutely
necessary in cryptography as unlike other software, cryptographic algorithms are
targeted by attackers using sophisticated resources and techniques with the sole intent
to break them. Thus, a rigorous security proof assures that it will not be possible
to mount such attacks by definition, and also avoids the potential damage of using
insecure systems. Security proofs in modern cryptography follow the reductionist
approach, where the proof is given by reducing the problem of the mathematical
assumption to the problem of breaking the cryptographic construction. A security
proof consists of a series of sound arguments showing that an adversary who can break
the cryptosystem can be used as a sub-routine to break the underlying mathematical
assumption.

2.2 Signatures and EUF-CMA

A digital signature is different from a physical signature in many aspects. For instance,
while a physical signature is the same on all documents irrespective of their content,
a digital signature is constructed based on the content of every message to be signed.
The formal definition of a digital signature is given in Definition 2.4, while a list of
the basic requirements that it must fulfill are stated below [McA16, KL20].

• Authentication: assurance to the receiver/verifier V that the signed message
has in fact come from the sender/signer S

• Unforgeability: assurance that the signature has been generated by the
claimed signer S

• Non-Reusability: malicious actors cannot reuse the signature on other mes-
sages that are not originally signed by the signer S
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• Unalterability: the signature assures that the message has not been altered
in transit

• Non-Repudiation: if the signature is valid, the signer S cannot later deny
having signed the document

• Public Verifiability: the signature can easily be verified by anyone who has
access to the public key pk of the signer S

• Transferability: the signature is transferable to third parties for verification
and/or for solving disputes.

Note ([Sho09]) An algorithm A is called polynomial-time if its running time is
bounded by the polynomial nc + d in the input length n, where c and d are constants.
The polynomial-time algorithm is probabilistic or randomized if its outputs are
random variables that take values from a probability distribution.

Definition 2.4. ([KL20, Kat10]) A digital signature (SIG) scheme consists of
a tuple of three probabilistic, polynomial-time (PPT) algorithms (Gen, Sign, Vrfy)
that are defined as below:

Key Generation (Gen(1λ)): Given a security parameter λ, Gen outputs a keypair
(sk, pk)← Gen(1λ), where sk is a private signing key and pk is public verification
key.

Signature Generation (Sign(sk,m)): Given a message m ∈ {0, 1}∗, i.e. an
arbitrary length message or hash of the message, Sign takes the signing key sk
as input and produces a valid signature σ ← Sign(sk,m).

Verification (Vrfy(pk,m, σ)): Vrfy takes in input a message m ∈ {0, 1}∗, a signa-
ture σ and a verification key pk and outputs a bit b := Vrfy(m,σ, pk) such that
b = 1 if σ is VALID and b = 0 implies σ is INVALID.

Gen and Sign are randomized algorithms while Vrfy is usually a deterministic one.
Additionally, the Correctness property must be satisfied, that is, for a given security
parameter λ and ∀ (sk, pk)← Gen(1λ), and ∀ m ∈ {0, 1}∗

Vrfy(pk,m, Sign(sk,m)) = 1

The security of signature schemes is summarized through the notion of Existential
Unforgeability under adaptive Chosen Message Attack (EUF-CMA), defined formally
in Definition 2.5. The term adaptive means that an adversary can choose and adapt
his queries to the signing oracle by analysing the previously obtained oracle responses.
This is illustrated through a security game as shown in Figure 2.3.
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Definition 2.5. ([KL20, Kat10]) A signature (SIG) scheme, Π =(Gen, Sign, Vrfy)
is Existentially Unforgeable under adaptive Chosen Message Attack, if for
all probabilistic, polynomial-time (PPT) adversaries A, the probability that A can
forge a valid signature (m′, σ′) is negligible, i.e.

Pr[AΠ(Vrfy(pk,m′, σ′) = 1)] ≤ negl(λ)

Note ([KL20]) A function ε : N→ [0, 1] is negligible, if ∀ c ≥ 0, ∃ kc ≥ 0 such that

ε(k) < 1
kc

; ∀ k > kc

.

Figure 2.3: EUF-CMA Security of a Signature scheme

1. The Challenger (Ch) simulates the SIG scheme, generating the key-pair,
(sk, pk)← Gen(1λ) and giving the public key (pk) to the adversary A

2. The adversary (A) queries the Signing Oracle (i.e. Ch) with chosen messages
mi and gets back corresponding signatures σi. The adversary is allowed at most
q queries to the oracle.
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3. Having obtained the set of signature-message pairs from the signing oracle,
Q = {(m1, σ1), . . . , (mq, σq)}, the adversary (A) outputs a new message-
signature pair (m′, σ′) /∈ Q

4. The adversary (A) wins the game if and only if, Ch outputs
b := Vrfy(pk,m′, σ′) = 1 and (m′, σ′) /∈ Q

2.3 Post-Quantum Cryptographic categories

The different families of mathematical hard problems that are believed to be resistant
to quantum attacks, are discussed in this section, which also addresses one of the
objectives of this thesis. There are mainly five categories that have been explored
over the last decade w.r.t quantum-resistant hard mathematical problems. Each of
these categories is briefly explained in the sub-sections below.

1. Lattice-based cryptography

2. Multivariate-polynomials based cryptography

3. Hash-based cryptography

4. Code-based cryptography

5. Isogeny-based cryptography

2.3.1 Lattice-based cryptography

A lattice can be visualized as a grid-like structure in an n-dimensional space. It is
constructed using integer points that are usually elements of a group. A set of vectors
called basis vectors are used to generate the lattice. Lattices have been studied
extensively over the last decade, to explore new problems or problem instantiations
that can be resistant to quantum attacks. This intractability of lattice-based problems,
or absence of efficient algorithms to solve them, is what forms the basis of post-
quantum cryptosystem constructions. A formal definition of a lattice and its basis
vectors are given below [Pei16, Ant17].

Definition 2.6. An n-dimensional lattice L is any subset of Rn that is both [Pei16]:

1. an additive subgroup: for every x,y ∈ L, ∃ −x ∈ L such that x + (−x) = 0 ∈ L
and also x + y ∈ L

2. discrete: every x ∈ L has a neighbourhood in Rn in which x is the only lattice
point.
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Definition 2.7. Every non-trivial lattice L, finite or infinite, is generated by the
integer linear combinations of linearly independent basis vectors B = {b1, . . . , bk}
([Pei16]) i.e.

L = L(B) := B · Zk =
{ k∑
i=1

zibi : zi ∈ Z
}

where k is the rank of the basis. If k = n, such lattices are called full-rank lattices.

Given the formal definitions of lattices, a few of the important problems in lattices
that are conjectured to be resistant to quantum attacks are defined below. Post-
quantum encryption and/or signature schemes are constructed based on different
instantiations of these problems.

Problem 2.8. Shortest Vector Problem (SVP) ([Pei16])

• The minimum distance of a lattice L is the length of the shortest non-zero
lattice vector:

λ1(L) := min
v∈L\{0}

‖v‖

• Given an arbitrary basis B of some lattice L = L(B), find a shortest non-zero
lattice vector v ∈ L, for which ‖v‖ = λ1(L).

Lattice Basis Reduction (LBR) and Closest Vector Problem (CVP) are some of
the problems that can be seen as variants or extensions of the SVP. A lattice has
something called “Good” and “Bad” basis vectors, which determine how the lattice
structure “looks like”, i.e. each lattice has many basis, and a good basis is formed by
vectors that are close to be the shortest and orthogonal. The lattice structure defines
how the key-pair is generated for cryptosystems. Therefore, this set of problems aim
to find an efficient algorithm to find the shortest length vector that can reconstruct
the lattice and thus recover the private key.

Problem 2.9. Short Integer Solution (SIS) ([Pei16])
Given m uniformly random vectors ai ∈ Znq , which are the columns of a matrix
A ∈ Zn×mq , find a non-zero integer vector z ∈ Zm of norm ‖z‖ ≤ β, where β > 0,
such that

fA(z) := Az =
∑
i

ai · zi = 0 ∈ Znq

The SIS problem serves as the basis for one-way functions, collision-resistant hash
functions, digital signatures and other cryptographic protocols.

Problem 2.10. Decision Ring-Learning With Errors (D-RLWE) ([Pei16])
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• Given a (cyclotomic)1 quotient ring Rq = R/qR and an error distribution χ
over R, for a secret s ∈ Rq, the R-LWE distribution As,χ, with a

$←− Rq and
e

$←− χ, is given by As,χ = {(a, b = s · a+ e (mod q))}.

• Given m independent samples (ai, bi) ∈ Rq × Rq, the Decision Ring-LWE
problem is to distinguish whether the samples have been taken from the R-
LWE distribution As,χ or the Uniform distribution U .

The D-RLWE problem serves as the basis for encryption schemes and acts as
the dual of the SIS problem. This is a particular instantiation of the decision LWE
problem over a ring, the other one being the search problem in Ring-LWE.

2.3.2 Multivariate-polynomial based cryptography

The linear system of equations is a well-known problem that can be solved efficiently,
at least for some instances. However, it is also a fact that as the degree of the
polynomials increase, and there are many variables, the solution to such a system is
either not known to exist or the solution is hard to obtain. Based on this premise,
the multivariate polynomial system of equations have been widely studied by the
cryptographic community to exploit the hardness of this problem and construct
quantum-resistant cryptosystems.

The definition of multivariate cryptography, specifically the structure of the public
and private keys, is given below and summarized in Figure 2.4, where the parameters
(i) m is the number of equations, (ii) n is the number of variables and (iii) d is the
degree of the polynomials. To construct efficient cryptosystems, it is required that
m� n for encryption schemes and m < n for signature schemes.

Definition 2.11. MPKC ([Pet17, DP17])
The multivariate public-key cryptosystem (MPKC) is characterized by a system of
quadratic polynomials defined over a finite field F with q elements, given by,

p1(x1, . . . , xn) =
n∑
i=1

n∑
j=1

α
(1)
ij xixj +

n∑
i=1

β
(1)
i xi + γ(1)

p2(x1, . . . , xn) =
n∑
i=1

n∑
j=1

α
(2)
ij xixj +

n∑
i=1

β
(2)
i xi + γ(2)

...

pm(x1, . . . , xn) =
n∑
i=1

n∑
j=1

α
(m)
ij xixj +

n∑
i=1

β
(m)
i xi + γ(m)

1nth cyclotomic field is obtained by adjoining the primitive nth root of unity ξn to the rationals
Q [Hø13]
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The public key P of an MPKC consists of an invertible quadratic map F : Fn →
Fm, which is masked or scrambled using two linear or affine maps S : Fm → Fm and
T : Fn → Fn. Thus, the public key is the composition of all these three maps, i.e.
P = S ◦ F ◦ T , and the private key is the set of individual maps (S,F , T ).

Figure 2.4: Cryptosystems constructed using MPKC [DP17, Pet17]

An MPKC is based on the Multi-variate Quadratic equations (MQ) problem which
is believed to be hard to solve on average, for both classical and quantum computers.
Since two of the signature schemes (GeMSS and Rainbow) discussed in this thesis
are based on the MQ problem, it has been described in detail in Section 5.2. The
MQ problem has been proven to be non-deterministic polynomial-time (NP)-hard
over any field [DP17]. There are two instantiations of the MQ problem in MPKCs
(a) Unbalanced Oil and Vinegar (UOV) schemes and (b) Hidden Field Equation (HFE)
schemes. These are also called the Small field and Big field schemes, respectively, due
to the fields over which they are defined and the level of operations involved. The
UOV design can be represented by the blue portion in Figure 2.4 while the additional
red portion represents the HFE design, where the operations are performed over a
degree n extension field E of the base field F.

2.3.3 Hash-based cryptography

One of the essential primitives in cryptography is the hash function. The output of a
hash function computed on a message or plaintext is called the digest. The digest
serves as a sort of a digital fingerprint of the message and therefore, specifically for
digital signatures, signing the digest ensures message integrity instead of signing the
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actual message. This also speeds up the signing and verification processes since hash
functions are deterministic and usually have a fixed output length. The definition
of a cryptographic hash function and important security notions related to hash
functions are described below.

Definition 2.12. Hash-function families ([Hül19])
A cryptographic hash function family is a set of hash functions that take arbitrary
length messages and a random key k as input, producing fixed length output, and is
given by,

Hn := {hk : {0, 1}n × {0, 1}m → {0, 1}n}

where m ≥ n and k $←− {0, 1}n. hk is called a keyed hash function and the value k is
not secret, but a publicly known value such as an initialization vector.

In order for the hash function to be cryptographically secure, it must satisfy the
following properties.

One-Wayness / Pre-Image Resistance (OW):
Given a hash function family Hn and the challenge yc, a PPT adversary A
cannot find a value x′ ← {0, 1}N such that, yc ← hk(x′), where hk

$←− Hn is a
hash function sampled randomly from Hn for key k.

Collision Resistance (CR):
Given a hash function family Hn, a PPT adversary A cannot find two distinct
input values x1 6= x2 to the function hk such that, hk(x1) = hk(x2).

Second Pre-Image Resistance (SPR):
Given a hash function family Hn, an input value x1 and corresponding challenge
y1 = hk(x1), a PPT adversary A cannot find another distinct value x2, i.e.
x2 6= x1 such that, hk(x2) = hk(x1).

Undetectability (UD):
Given a hash function family Hn and the challenge yc, a PPT adversary A
cannot distinguish between the digest yc ← hk(x), where x $←− {0, 1}m, and a
random string yc

$←− {0, 1}n.

Pseudo-Randomness (PR):
Given access to a random oracle g (i.e. a black-box function), a PPT adversary
A cannot distinguish the output of g, i.e. the outputs between the pseudo-
random function g $←− hk where k $←− {0, 1}n, and a truly random function
g

$←− FN,n for a queried input x to the oracle.
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Table 2.1 lists the bounds (or limit) on the number of queries that can be allowed to
an adversary to break the security properties of a hash function as defined above.

Generic
Security

OW SPR CR UD* PRF*

Classical Θ(2n) Θ(2n) Θ(2n/2) Θ(2n) Θ(2n)
Quantum Θ(2n/2) Θ(2n/2) Θ(2n/3) Θ(2n/2) Θ(2n/2)

Table 2.1: Query bounds for the security notions in classical and quantum settings
(* represents conjectured bounds) [Hül19]

Definition 2.13. Birthday Paradox ([KL20])
Let N > 0, and let q elements y1, . . . , yq, where q ≤

√
2N , be chosen uniformly and

independently at random from a set of size N . Then the probability that there exist
distinct i, j with yi = yj is at least q(q − 1)/4N and at most q2/2N i.e.

q(q − 1)
4N ≤ coll(q,N) ≤ q2

2N

The Birthday Paradox defines the bounds on the collision resistance of a hash
function. It is called the birthday problem because of the analogy to finding the
number of people to be filled in a room (in this case, 23 people), to get two persons
having matching birthdays with a probability ≥ 1/2.

2.3.4 Code-based cryptography

Code-based cryptography is an interesting alternative that has been studied for
a few decades now to provide secure cryptographic constructions. The exchange
of data in the binary format of 0’s and 1’s in digital communication also made
the detection and correction of transmission errors possible. Proper encoding and
decoding of information at the sending and receiving sides respectively was made
possible through the use of error-correcting codes. Using the same concept behind
error-correcting codes, the difference in the complexities of decoding the received
word for induced errors (especially for large parity check matrices) has been used
to construct cryptosystems (i.e. encryption schemes). Some important concepts
of information theory and code-based cryptography are discussed in this section
([Lan16]).

Entropy (H(X)): ([McA16])
Entropy can be defined as the measure of uncertainty of an outcome or the
amount of information obtained from an outcome, given by H(X) = − log2 p,
where p is the probability of the outcome. The entropy associated with a random
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variable X with k outcomes, each with different probabilities p1, p2, . . . , pk is
given by

H(X) = −
k∑
i=1

pi log2 pi and H(X,Y) ≤ H(X) + H(Y)

.

Hamming Weight (wt(x)):
The Hamming Weight of a codeword x ∈ C is the number of non-zero elements
in x.

e.g. wt(x = (11010)) := 3

Hamming Distance (d(x,y)):
The Hamming Distance between two code-words is the number of elements (or
co-ordinates) by which they differ. The hamming distance between x and y is
equal to the hamming weight of x+ y i.e.

d(x,y) = wt(x+ y)

e.g. d(x,y) = ((11010), (10110)) = 2

Systematic Generator Matrix G:
A matrix of the form G = (Ik|Q), where Ik → (k × k) Identity matrix and
Q→ k × (n− k) redundant matrix, is called the Systematic Generator matrix
which is used to generate the codeword C.

Parity Check Matrix H:
A matrix given by H = (−QT |In−k), where QT → (n− k)× k is the transpose
of Q and In−k → (n− k)× (n− k) Identity matrix, is called the Parity Check
matrix that, as the name suggests, checks the parity of the received word
(crudely, how many bits have been flipped during transmission).

The above definitions set the premise to define the Linear Codes in coding theory.

Definition 2.14. Linear Codes ([Lan16])
A binary linear code C of length n and dimension k is defined as a k-dimensional
subspace of Fn2 . C is defined in one of two ways:

a) as the row space of the generating matrix G ∈ Fk×n2 where C = {mG : m ∈ Fk2}

b) as the kernel space of the parity-check matrix H ∈ F(n−k)×n
2 where

C = {c : HcT = 0, c ∈ Fn2}.
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Note ([Lan16]) Theminimum distance of a linear code b ∈ C is the smallest Hamming
weight of a non-zero code-word c ∈ C. i.e.

dmin = min
c 6=0
{wt(c)} = min

b 6=c
{d(b, c)}

Problem 2.15. Decoding Problem: ([Lan16]) Given a vector x = c+ e with
wt(e) ≤ t, find the closest code-word c ∈ C that is unique, i.e. has minimum distance
dmin = 2t+ 1. In this process, finding the error vector e is an equivalent decoding
problem.

The Decoding problem is the basis on which cryptographic constructions are
developed in code-based cryptography. A number of other different complex codes
like the Reed-Solomon codes and binary Goppa codes are also used in the code-based
cryptographic constructions.

2.3.5 Isogeny-based cryptography

Isogeny-based cryptography (IBC) is a relatively recent area of cryptography, specif-
ically a branch of Elliptic Curve Cryptography (ECC), that has gained popularity
over the last decade. Compared to ECC and its other branches, IBC is conjectured
to have quantum-resistant properties, and therefore has gained the attention of the
cryptographic community. There are many key-exchange and public encryption
schemes built using IBC, one of them being SIKE that has been submitted to the
NIST PQC standardization. For signature schemes though, zero-knowledge protocols
are used to construct signatures using isogeny assumptions, but even so, constructing
signature schemes is an open problem. A few basic IBC concepts and problems are
discussed in this section [DF17].

Note Let k be a field, with characteristic p 6= 2 or 3, and let k̄ be its algebraic
closure 2. A projective space of dimension n, when there exists λ ∈ k̄ with an
equivalence relation xi ∼ yi, is given by Pn(k̄) := {(x0, . . . , xn) | xi 6= 0 ∧ xi =
λiyi ∀ i}. The set of k-rational points is defined as Pn(k) := {(x0 : · · · : xn) ∈
Pn | xi ∈ k ∀ i}, and fixing an arbitrary xn = 0 gives the space and its points at
infinity. ([DF17])

Elliptic Curves (E): An elliptic curve over a finite field k, can be defined in an
equivalent affine form as the locus (in P2(k̄)) of the equation E : y2 = x3+ax+b,
with a, b ∈ k and 4a3 + 27b2 6= 0, along with the point at infinity O = (0 : 1 : 0)
for the elliptic curve.

2GF (p∞) is the algebraic closure of GF (pe) for any e ≥ 1. [MM+74]
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The graphs in Figure 2.5 illustrate two types of elliptic curves, one defined over
R and the other over a finite field k, along with the geometric representation
of the group operations.

Figure 2.5: An elliptic curve defined over a finite field GF (11) (right), along with
the group operations of addition (left) and doubling (middle)

Supersingularity: For elliptic curves defined over a field of characteristic p > 0,
the case where E [p] ' Z/pZ is called the ordinary pth-torsion group, while
E [p] ' {O} is called the supersingular pth-torsion group.

j-invariant (j(E)): The j-invariant of an elliptic curve E : y2 = x3 + ax + b is
given by

j(E) = 1728 · 4a3

4a3 + 27b2

Two curves are said to be isomorphic over k̄ if they have the same j-invariant.

Isogeny (ϕ): An isogeny of elliptic curves over the field k is a non-zero group
morphism ϕ : E → E ′ (i.e. a map of curves preserving the group laws), that
preserves the identity (i.e. the point of infinity O of an elliptic curve) and is
given by rational maps. An isogeny is also a surjective algebraic map between
two elliptic curves. Two curves are said to be isogenous if there exists an
isogeny between them.

Isogeny Graphs: An isogeny-graph is a multi-graph whose nodes are the j-
invariants of isogenous curves and the edges are the isogenies between them.
The expansion property of large isogeny graphs are known to have special
properties suitable for cryptography.

Problem 2.16. Explicit Isogeny ([MP, DF17]) Given two elliptic curves E , E ′
defined over a finite field k and isogenous of known degree d, find such an isogeny
ϕ : E → E ′ of degree d.



28 2. BACKGROUND

The problem of finding explicit (ordinary or supersingular) isogenies and/or
isogeny paths, and variants thereof, is used to construct isogeny-based cryptosystems.
Secure key exchange protocols and encryption schemes are built using the concept of
random walks in an isogeny graph to provide different instantiations of the Decisional
Diffie-Hellman problem [Mar17, MP, DF17].

There are a few other schemes that were submitted to the NIST PQC stan-
dardization, which cannot be strictly categorized into any of the above described
post-quantum families, such as, WalnutDSA - based on what is called “Braid
groups” and pqRSA - seems like a futile attempt to revive RSA cryptosystem in the
post-quantum setting.

As part of addressing the first of the research questions, the current state-of-
the-art post-quantum families of mathematical problems were explored, and a basic
understanding of such problems was obtained in this chapter. Particularly, the
post-quantum cryptographic categories that are used to construct the signature
schemes described in the next part of this thesis, have been given preference over
the other categories. With this, the second research question has been addressed in
the next few chapters (Ch. 3 - Ch. 6), which describe the post-quantum signature
schemes that have progressed into the third round of the NIST PQC standardization.



Chapter3Picnic

Picnic [CDG+17] is a novel signature scheme developed by Microsoft Research in
collaboration with other research groups. It is entirely based on symmetric primitives
and the interesting concept of Zero-knowledge proofs, which basically means that this
signature scheme does not rely on any cryptographic hard problems for its security.

Well studied symmetric primitives like block ciphers and cryptographic hash
functions with special properties, believed to make them secure against quantum
attacks, are used to construct Picnic. The core of Picnic is what is called a Non-
Interactive Zero-Knowledge (NIZK) protocol, which essentially means that no secret
information is leaked during the protocol run to anybody, including the verifier of
the signature, but provides enough information (proof ) to check the validity of the
generated signature. As part of the signature generation process, Picnic uses a variant
of the Multi-Party Computation (MPC) [IKOS07] paradigm, which is a method of
secretively1 computing the result of a shared function between many parties. The
NIZK proof is computed as an evaluation of a function on an underlying boolean
circuit, based on the ZKB++ protocol [CDG+17, GMO16].

The signature scheme has two variants, Picnic-FS (Fish) and Picnic-UR (Picnic),
based on Fiat-Shamir Transform (FST) [FS86] and Unruh Transform (URT) [Unr15]
respectively, used to make the underlying protocols non-interactive. The signature
scheme for both the variants is analysed and proved secure in the Random Oracle
Model (ROM) and Quantum-accessible Random Oracle Model (QROM). These
random oracles are mathematical abstractions of the cryptographic hash functions,
that help to construct and provide rigorous security proofs for any cryptosystem.

The rest of the chapter is organized as follows: Section 3.1 describes the key
concepts and building blocks of Picnic, Section 3.2 gives a detailed description of the
signature scheme and finally, the Section 3.3 discusses the security of the scheme.

1i.e. without revealing the individual private inputs to the function

29
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3.1 Key Concepts

The attractive feature of Picnic is that it is not constructed using any additional
number-theoretic or algebraic hardness assumptions unlike other schemes [CDG+20].
This section gives a detailed description of the various building blocks of Picnic and
the mathematical background for those building blocks.

LowMC Block Cipher

LowMC is a family of block ciphers that have low multiplicative complexity (MC)
and low AND-depth, specifically designed for applications such as secure MPC, Fully
Homomorphic Encryption (FHE) and Zero-Knowledge (ZK) protocols. The terms
MC and AND-depth, mean the minimum number of AND gates in the underlying
circuit required to represent a boolean function, and the number of multiplications
(AND operations) that can be performed, respectively [ARS+16]. LowMC is used in
Picnic as a one-way, pseudo-random function that generates the key-pair required
for signing and verifying a given message.

LowMC is a Substitution-Permutation Network (SPN) based block cipher, which
consists of 4 stages: LowMC = KeyAdd ◦ ConstAdd ◦ LinLayer ◦ Sbox. The Sbox
is a layer of m 3-bit substitution look-up tables whose entries are computed as:
Sbox(a, b, c) := (a⊕ bc, a⊕ b⊕ac, a⊕ b⊕ c⊕ab). After the initial key whitening step,
the four layers of LowMC, as described in the Algorithm 3.1, are applied successively
for each round r. The components used in each stage are a regular matrix Li, a
constant vector Ci and a key matrix Ki used to generate the round key (Ki · km) for
each round.

Algorithm 3.1 LowMC block cipher LowMC(n, k, r,m) [ARS+16, CDG+17]
Require: plaintext p ∈ Fn2 and master key km ∈ Fk2 . n - block size; k - key size

Ensure:
Li ∈ Fn×n2
Ci ∈ Fn2 for i ∈ [1, r]
Ki ∈ Fn×k2 for i ∈ [0, r]

. r - number of rounds

1: s← K0 · km + p . key whitening
2: for i ∈ [1, r] do
3: s← Sbox(s) . m 3-bit S-boxes
4: s← Li · s . LinLayer
5: s← Ci + s . ConstAdd
6: s← Ki · km + s . KeyAdd
7: end for
8: return s
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Multi-Party Computation

Secure Multi-Party Computation (MPC) 2 is a method of computing a shared function
by many parties with their secret inputs, producing a shared result without leaking
any information about the secret values to anyone, including the other participants in
the protocol. The so-called millionaires problem is a common example of MPC, where
two or more players compute a (boolean) function to determine the richest person
among the group, without revealing their actual wealth. There are two types of MPC
protocols, one based on garbled binary circuits [Yao86] and the other based on secret
sharing (e.g. [Sha79]) using arithmetic circuits. For the secret sharing mechanism
using arithmetic circuits, the function is evaluated through a set of addition and
multiplication gates defined over a finite field Fq [Sma16].

Specifically in Picnic, the MPC-in-the-head paradigm [IKOS07] is employed in
the sub-routine Decomp(x, k) as part of the signing process. This can be seen as
a preprocessing step, where the prover simulates 3 parties in the protocol, that are
each given their corresponding private shares xi of the witness x. These shares are
then used to compute the function y = φ(x) using the arithmetic circuit in the
Decomp(x, k) algorithm.

Commitments

Commitments are generally used in Σ-protocols by the prover, to prove the knowledge
of a secret, by enabling him to produce a value that contains some information about
the secret, which can be verified by the verifier. Specifically, it is used in the signing
process in Picnic to generate the commitment in the non-interactive Σ-protocol.

Definition 3.1. Commitment scheme ([MWK18])
A commitment scheme is defined by the algorithms Commit and Open as described
below:

Commit: (C,D) := Com(m, r); given a message m ∈ {0, 1}n and random value r, an
output C, called commitment, is computed such that it masks the message m
and it is hard to find m′, r′ such that Com(m′, r′) = Com(m, r) = C. And, D is
the de-commitment string that contains the values (m, r) and is kept secret.

Open: V := Open(C,D); given the values C and D, the message m and randomness
r are obtained by opening D, and the algorithm returns true if and only if
C == Com(m, r) and outputs message m, else it returns false and outputs
invalid or ⊥.

2parts of the relevant definitions in this section are taken from the specialization project report
[Sri19]
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The commitment scheme must satisfy the following properties: (i) Correct-
ness: a valid commitment always verifies correctly and outputs the message m
(i.e. Open(Com(m, r)) == m) (ii) Binding: given a commitment C, it is hard to
find different message-random pairs that give the same commitment value. This
ensures that once committed to a message m, it cannot be opened to a different
value m′ (iii) Hiding: given only the commitment C, it should be hard to compute
any information about m.

Sigma Protocols and Zero-Knowledge proofs

Sigma (Σ) Protocols and Zero-Knowledge (ZK) proofs are widely used in cryptography
to conceal a secret while communicating, revealing only enough information so as
to assure the validity of the information exchange and the authenticity of the
communicating entities. Specifically, the Picnic signature scheme is built using the
ZKB++ protocol ([CDG+17]) which is essentially a Σ-protocol that gives a ZK proof
of knowing the input to an arbitrary boolean circuit.

Definition 3.2. Σ-protocol ([Dam02, CDG+17])
A Σ-protocol is a three-move interactive protocol between a PPT prover P and
PPT verifier V, where P proves the correctness of a binary relation R, such that
for (x,w) ∈ R, w is a witness for an instance x of some computational problem.
It consists of the 3-moves commit-challenge-response, described by the algorithms
below

Commit: The prover selects a random value r and computes a commitment a =
Com(r,m) that is sent to the verifier.

Challenge: The verifier randomly selects a challenge e $←− {0, 1}t, which is sent to
the prover.

Response: The prover responds to the challenge by computing a value z, which
contains the proof of knowing the secret witness w, and sends it to the verifier.
The verifier checks if the commitment is valid based on the received transcript
(a, e, z), accepts the proof if valid and rejects otherwise.

A Zero-Knowledge (ZK) proof protocol is one, where a prover who knows a secret
w convinces the verifier that he knows w without actually revealing it. Generally,
since Σ-protocols do not reveal any information about the secret value or witness,
they also become ZK proofs. ZK proofs (Σ-protocols) must satisfy the following
properties: (i) Completeness: an honest verifier will always accept a proof
produced by an honest prover. (i.e. Pr[V(x) == 1|P(x,w)] = 1) (ii) Soundness: A
cheating prover cannot convince an honest verifier about a false statement, and the
cheating probability, called soundness error, must be negligible (because probability
to cheat in one round is 0.5). This error is reduced to a negligible value through
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multiple iterations of the protocol. (iii) Zero-knowledge: The honest verifier must
not gain any knowledge about the secret value except for the fact that the prover
is aware of the secret value. (iv) s-Special Soundness: Given a set of s valid
transcripts {(a, ei, zi)}∀i, j ∈ [s], i 6= j : ei 6= ej with respect to input x, there exists
a PPT extractor E who can efficiently recover a valid witness w with non-negligible
probability. (v) Special Honest-Verifier Zero-Knowledge (HVZK): There
exists a PPT simulator S with input x and challenge e, which produces a valid
transcript (a, e, z) that is computationally indistinguishable from the transcripts
generated from an honest protocol run. Specifically, the last 2 properties are of
higher significance for the Picnic scheme, as they ensure correctness and security of
the signature scheme.

Non-Interactive Zero-Knowledge Proofs

The term non-interactive in a ZK proof implies that the prover publishes the state-
ments to be proved along with the proofs and anybody can verify it, without the need
of any interaction with a verifier. Two well-known techniques (described subsequently
in this section): (a) Fiat-Shamir Transform (FST) (b) Unruh Transform (URT), are
used to convert any Σ-protocol into a NIZK proof. In the Picnic scheme, the signing
and verifying processes instantiate a NIZK protocol using both the FST and URT
methods, producing two variants of the signature scheme, that is, Picnic-FS and
Picnic-UR respectively.

NIZK proof schemes are defined by three functions, Setup, Prove and Verify,
described as [MWK18]: (i) Setup: {params} ← Setup(1λ) generates the parameters
required for the proof system, where λ is the security level (i.e. the number of required
bits of classical or quantum security). (ii) Prove: p← Prove(x,w) is the proof of
knowledge of a secret w, which is, for example, the solution for a computationally
hard problem instance x. (iii) Verify: b ← Ver(x) outputs 1 if the proof is valid,
and 0 if it is invalid.

(a) Fiat-Shamir Transform
Fiat-Shamir Transform (FST) converts any Σ-protocol into a non-interactive
proof system [FS86]. The algorithm works similarly to the Σ-protocol, except
that the challenge is computed by the prover itself, instead of receiving it from
the verifier. The challenge e is computed as the hash of the commitment a,
that is e $←− H(a, (m)) (and the message m in case of a signature scheme).
Based on the value of the challenge, the corresponding response z is computed
and the tuple (a, e, z) is published. The verifier extracts the commitment a′
from the proof (e, z), re-computes the challenge e′ as the hash of the recovered
commitment and checks if e′ == e and a′ == a to either accept or reject the
proof. FST is illustrated in the Figure 3.1 below.
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Figure 3.1: The Fiat-Shamir Transform

Figure 3.2: The Unruh Transform
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(b) Unruh Transform
Unruh Transform (URT) is another method to convert a Σ-protocol into a
non-interactive proof system [Unr15]. Similar to FST, URT also generates the
challenge as the hash of the commitment but in a slightly different manner.
The prover creates a number of proofs (i.e. p := {(com, ch, rsp)}) for a set of
commitments {com}, selects distinct challenges {ch} and computes correspond-
ing responses {rsp}. All such obtained responses are given as input to a random
permutation G (i.e. h := G(rsp)) to obtain the commitments of these responses.
Next, the challenge e is obtained by hashing these committed responses ({h}),
individual challenges ({ch}), original commitments ({com}) and the message
(m), to obtain and publish the final proof set z := ({com}, {ch}, {rspe}, {h}),
which contains a subset of the responses ({rsp}e) that will be revealed. During
the verification process, the challenge value e′ is recalculated as the hash of
the message m and the response set z (excluding {rspe}). Additionally, each
of the individual extracted challenge values {ch} are verified if they are mutu-
ally distinct, the committed responses {h} are re-computed and verified (i.e.
h

?= G(rspe′)), and finally, the verification algorithm checks if e′ == e. The
Ver(m, (p)e) outputs 1 if it accepts the proofs and outputs 0 otherwise. URT is
illustrated in the Figure 3.2 above.

3.2 Scheme

By definition, a signature scheme consists of three parts: key generation, signing
and verifying. This section outlines the details of these three algorithms as defined
in the Picnic signature scheme. The algorithms also give an overview of how the
various building blocks, defined in the previous section, are used to compose the
entire scheme.

Key Generation

The key generation (Alg. (3.2)) in Picnic is different from general public-key crypto-
graphic schemes because the public key is obtained through a symmetric primitive,
that is, a block cipher. The block cipher used, is the LowMC block cipher (Sec. (3.1))
that has been chosen due to its special properties.

Random tapes (values) κ ∈ {0, 1}λ and a secret value x ∈ {0, 1}c·λ are chosen
randomly, where c is a constant such that c = 1 for classical security and c = 2 for
quantum security. The witness x, from which y = fκ(x) is computed, becomes the
pre-image of a one-way (pseudorandom) function fκ, where {fκ}

$←− F (κ, ·) such that
κ ∈ Kλ. Or in other words, fκ is chosen randomly from a family of one-way functions
based on the random key κ, and F (κ, ·) is a family of one-way functions that are
instantiated as a block cipher. The LowMC block cipher is used to instantiate the
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function fκ, where the secret x is used as the key for encrypting a single block of the
random tape κ giving the image y.

y ← fκ(x) := Enc(x, κ) (3.1)

Here, the public or signing key, pk = y and the secret or verification key sk = x.

Algorithm 3.2 Key Generation Gen(1λ) [CDG+17]
1: procedure KeyGen(λ) . λ - security parameter
2: κ

$←− Kλ . public random tapes
3: x

$←− Dλ . secret witness
4: fκ

$←− F (κ, ·) . sampled uniformly from family of OWFs
5: function LowMC(x, κ) . refer Algorithm 3.1
6: y ← fκ(x) := Enc(x, κ)
7: end function
8: pk ← (y, κ) . public key
9: sk ← (pk, x) . private/secret key
10: return (pk, sk)
11: end procedure

Signature Generation

The signature generation is based on the ZKB++ protocol [CDG+17], an improved
version of the Zero-knowledge for Boolean circuits (ZKBoo) protocol [GMO16]. The
ZKB++ protocol essentially generates a NIZK proof of the secret key, that is a
proof where the verifier does not learn anything about the witness x, except for the
correctness of the function y = φ(x). The main component of the ZKB++ protocol
is the function decomposition, which is realized through an n-gate arithmetic circuit
that consists of addition-by-constant, multiplication-by-constant, binary addition and
binary multiplication gates [GCZ16].

The (2,3)-Decomposition (illustrated in Figure 3.3) simulates the MPC protocol
(MPC-in-the-head paradigm [IKOS07]) to generate the secret shares for 3 players,
while computing the decomposition of the function φ(x) = y. The (2,3) in the name
implies the properties of 2-privacy and 3-special soundness. The 2-privacy property
ensures that revealing 2 out of 3 secret shares does not reveal the witness, while the
3-special soundness property ensures that without some information about all the
3 secret shares, it will not be possible to recover the witness. The witness x and
random tapes kj for each player Pj , are given to the Share function that generates
input shares xj for the 3 players. The Update function recursively updates the views
wj of each player at every gate in the circuit φ. The Output function takes the final
views of the circuit to generate the output shares yj , while the Reconstruct function
combines all the output shares to reconstruct the image y such that y = φ(x).
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Figure 3.3: The (2,3)-Decomposition function [GMO16]

Coming to the Algorithm 3.3, the ProveH function has two main components: an
adapted version of the MPC-in-the-head paradigm, that is, the (2,3)-Decomposition
and the non-interactive Σ-protocol (NIZK), with commitment, challenge and response
messages. The Σ-protocol is made non-interactive using FST in the ROM, and using
URT in the QROM.

Once the decomposition function generates the respective output shares yj of the
3 simulated MPC players, the non-interactive Σ-protocol is instantiated by applying
the Fiat-Shamir transform where the standard hash function (H : {0, 1}∗ → {0, 1}n)
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is modeled as a random oracle. Here, the prover P generates commitments (Cj) as
the hash (HC ≡ SHA-256) of the random tapes kj and the views wj of the player Pj .
The challenge e is obtained by querying the random oracle, giving the commitments
and output shares of the players as inputs. Based on the challenge e, the prover opens
2 out of 3 views and sends the challenge and the 2 opened views as part of the proof
p. While computing the challenge, the message m to be signed is also given as input
along with a random value salt3, thus incorporating the message into the eventual
proof. This proof p is itself the signature, which is essentially zero-knowledge, not
revealing any information about the signing key x. At the end of the signing process,
the prover outputs the signature in transcripts of the form (a, e,z).

Algorithm 3.3 Signature Generation Sign(sk,m) [CDG+17]
1: procedure ProveH(x)
2: require: x $←− Dλ
3: for 1 ≤ i ≤ t do . number of iterations
4: (k1, k2, k3) $←− Kλ
5: function (2, 3)−Decomp(x, kj) . refer Figure 3.3

. MPC protocol simulated for
3 players

6: (x1, x2, x3)← Share(x, k1, k2, k3)
7: for j ∈ [1, 2, 3] do
8: wj ← Update(. . . Update(xj , kj , xj+1, kj+1) . . . ) . wj ≡ Viewj
9: yj ← Output(wj)
10: [Cj , Dj ]← [HC(xj , kj , wj), kj‖wj ] . HC ≡ SHA-256
11: y ← Reconstruct(y1, y2, y3)
12: end for
13: ai ← (y1, y2, y3, C1, C2, C3)
14: return (ai, y)
15: end function
16: end for
17: a := {a1, . . . ,at}
18: e← H(a,m, salt) . challenge
19: for 1 ≤ i ≤ t do
20: ei ∈ [1, 2, 3]
21: bi ← (yei+2, Cei+2)

22: zi ←

{
(kei , kei+1, wei+1), if ei = 1
(kei , kei+1, wei+1, x3), otherwise

. response

23: end for
24: p := [e, (b1, z1), . . . , (bt, zt)] . zero-knowledge proof
25: return σ ← Ser(p) . signature (serialized)
26: end procedure

3the addition of salt is to mitigate multi-target attacks
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Verification

The verifying process (as given by Algorithm 3.4) is composed of similar operations
as in the signing process, as some of the values are computed again at this end. This
does not additionally increase the computational cost but makes the signature size
smaller.

Algorithm 3.4 Verification Verify(pk,m, σ) [CDG+17]
1: procedure Verify(y, p) . p← (a, e,z)
2: for 1 ≤ i ≤ t do . t - number of iterations
3: [e, {(bi, zi)}]← DeSer(p) . proof/signature (de-serialized)
4: ei ∈ [1, 2, 3]

. run MPC protocol to recompute
explicitly unsent values

5: xei ←

{
x3, if ei = 3
G(kei), otherwise

6: xei+1 ←

{
x3, if ei = 2
G(kei+1), otherwise

7: wei
?= Update(. . . Update(xei , kei , xei+1, kei+1) . . . ) . w() ≡ View()

8: yei
?= Output(wei), yei+1

?= Output(wei+1) . wei+1 ← zi

9: yei+2
?= y ⊕ yei ⊕ yei+1 . check if y is indeed

sum of yj
10: for j ∈ [ei, ei + 1] do
11: [Cj , Dj ]← [HC(xj , kj , wj), kj‖wj ] . (yei+2, Cei+2)← bi
12: end for
13: a′i ← (y1, y2, y3, C1, C2, C3)
14: end for
15: a′ := {a′1, . . . ,a′t}
16: e′ ← H(a′)
17: if e′ == e then
18: return ACCEPT
19: else
20: return REJECT
21: end if
22: end procedure

The verifier V obtains the transcript (a, e,z) and simulates the MPC protocol
to generate the missing shares (xe, xe+1), not given in the response z. The shares
thus generated, are verified whether they satisfy the decomposition function when
reconstructed. Once this is verified, the challenge is recomputed using the obtained
shares and commitments, and verified if it matches with the challenge computed
by the prover P. If the multiple steps of verification within the Decomp(x, k)
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succeed, then the signature is accepted as valid, otherwise it is rejected. Accepting
the signature as valid also implies that the signature is a valid zero-knowledge proof
of the witness known to P, and that V knows nothing about it except that it is a
witness to the statement being proved by P.

3.3 Security

Some important notions necessary to argue the post-quantum security of Picnic and
any signature scheme in general are briefly discussed here ([KL20]).

Pseudo Random Generator (PRG):
A Pseudo Random Generator is a deterministic polynomial-time algorithm G

that, for a given security parameter λ, takes as input a truly random seed
s

$←− {0, 1}n and produces a pseudo-random output string x := G(s) ∈ {0, 1}λ·n,
where λ · n� n. Specifically, G is a PRG if for all PPT distinguishers D, the
below holds: ∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]

∣∣ ≤ negl(n),

where r $←− {0, 1}λ·n. A PRG must also satisfy the property of unpredictability
where a distinguisher is not able to predict the next output bits of a given
PRG.

Pseudo Random Function (PRF):
Let Funcn be a set of all functions mapping n-bit strings to n-bit strings.
Let F $←− Funcn be a randomly chosen function from this set. A function
fk : {0, 1}n × {0, 1}n → {0, 1}n for a randomly chosen key k (k $←− {0, 1}n),
which is length-preserving (i.e. |fk| = |k| = |x|) is efficient if there exists
a deterministic PPT algorithm that computes fk(x) given k and x. Such a
function fk is called a Pseudo Random Function if for all PPT distinguishers
D, the below holds:∣∣Pr[Dfk(·)(1n) = 1]− Pr[DF (·)(1n) = 1]

∣∣ ≤ negl(n).

One-Way Function (OWF):
A function f : {0, 1}∗ → {0, 1}∗ is a One-Way Function if there exists a
polynomial-time algorithm that computes f(x) ∀ x and for every PPT algorithm
A, computing the inverse of f is hard or

Pr[Af
−1

(n) = 1] ≤ negl(n).
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Security proof in the ROM

A random oracle can be defined as a black-box that accepts any arbitrary-length input
and provides a fixed-length random output. An adversary can query the random
oracle with any input string and obtain a completely random output. Since the oracle
models a truly random function, the output is chosen uniformly at random and is
independent of the input string. Hence, it is also not possible to predict the output
for a different input string other than the ones already queried. This also means that
the random oracle is deterministic, that is, every time it is queried with the same
input, it produces the same output. In practical applications, cryptographic hash
functions are usually modeled as random oracles, also called idealized hash functions,
to argue their security based on this assumption. Such a model for defining security
is called a Random Oracle Model (ROM) [Dam02].

Since the hash functions in Picnic are modeled as random oracles, the security of
the key generation process is evaluated in the ROM. Thus, to prove the security of
the key generation process, we use the definition of a hard instance generator.

Hard Instance Generator: An algorithm G is a Hard Instance Generator (HIG)
for a relation R, if it satisfies the below properties:

1. for negligible function ε1(·) and security parameter λ

Pr[ (y, x)← G(1λ) : (y, x) ∈ R ] ≥ 1− ε1(λ)

- the PRG G outputs the values (i.e. keys) (x, y) such that (y, x) ∈ R with
non-negligible or high probability

2. for every PPT algorithm A and negligible function ε2(·)

Pr[ (y, x)← G(1λ), x′ ← A(y) : (y, x′) ∈ R ] ≤ ε2(λ)

- given that G outputs (x, y), the probability that A takes input y and produces
a pre-image x′ such that (y, x′) ∈ R is negligible

The relation between the keys (x, y) is established as a one-way function through
the LowMC block cipher, such that (y, x) ∈ R ⇐⇒ y = fk(x), which instantiates a
HIG suitable for key generation. Below is the proof of security for the key generation
process in ROM.

Let {fk} where k ∈ Kλ, be a family of PRFs, and hence y = fk(x) is efficiently
computable ∀k ∈ Kλ and ∀x ∈Mλ. Then {fk} is also a family of OWFs, that is,

P := Pr[ k $←− Kλ,

k∗ ← A(1λ, fk(x)) : fk(x) = fk∗(x) ] ≤ ε(λ)
(3.2)
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In essence, we have to prove that, given a security parameter λ, and a PRF fk, the
probability (P ) that an adversary A can output a pre-image (or key) k∗ for that
function such that fk(x) = fk∗(x) is negligible. For this, we consider the probabilities
P1, P2 and P3 as stated below, and show that they are all negligible (probability P
can be re-written as P1).

P1: Probability that fk(x) = fk∗(x) and k∗ 6= k

P = P1 :=
∑
y

|keyset(y)|
|Kλ|

· ty (3.3)

where (i) B := keyset(y) is the set of keys such that ∀ k ∈ B, fk(r) = y for
random r (ii) ty is the probability that given y, A will output k∗ such that
fk∗(r) = y (iii) Kλ is the keyspace

P2: Probability that fk(x) = fk∗(x) and k∗ = k

P2 := 1
|Kλ|

∑
y

ty (3.4)

Figure 3.4 shows a distinguisher to prove that the probability P2 is negligible.

P3: Probability that when y ←Mλ, adversary A outputs k∗ such that Fk∗(r) = y

P3 := 1
|Mλ|

∑
y

ty (3.5)

where (i) F is a truly random function (ii)Mλ is the message space

Since |Mλ| ≥ |Kλ|, it can be shown that |P1 − P3| is negligible. Also, P2 ≤ P3
and therefore, |P1 − P2| is negligible. Since P2 and |P1 − P2| are both negligible, P1
is also negligible [CDG+17]. This proves that the function family {fk} is one-way
since it is also pseudorandom. This ensures the security of the key generation process
because

fk(x) := Enc(x, k) (3.6)
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Figure 3.4: Security Proof of the Key Generation in the ROM

Quantum-accessible Random Oracle Model (QROM)

Quantum-accessible Random Oracle Model (QROM) is a random oracle model defined
in the quantum setting, that is, it accepts input queries in the form of quantum bits
or qubits. This means it allows an adversary to query the oracle on a superposition of
input values, and the black-box function is computed on this superposition producing
an output that is also a superposition of the resultant values. However, unlike the
ROM, this property of the QROM does not allow to observe the adversary’s inputs
without disturbing them (because measuring the input will collapse the state to
a single value which may not be the actual input value queried by the adversary).
Hence, recording or reprogramming the quantum random oracle is not possible. Due
to this, schemes that are deemed secure in the ROM need not be secure in the QROM.
Nevertheless, the schemes are not insecure unless the underlying construction itself
has been broken [BDF+11, DFG13, DFMS19].
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Figure 3.5: Security Proof of the scheme in the QROM

Game 1: honest protocol run using random oracles

Game 2:

e∗
$←− {1, 2, 3}

Hchal(a, h) := e∗

gj = G(kj , wj)
h = (g1, g2, g3)

Game 3: Hcom(ke∗ , we∗)
$←− {0, 1}∗

G(ke∗ , we∗)
$←− {0, 1}∗

Game 4: ki
$←− {0, 1}λ

Game 5: replace honest protocol by simulator
SIM(j 6= e∗i ) = {w}

Game 6: random oracle replaced by
random polynomials of d ≥ 2q − 1

Table 3.1: Security Games for Picnic scheme in the QROM

The Figure 3.5 represents the first part of a collection of security games that
are used to give a non-tight security proof of the signature scheme in the QROM.
Each of these games are mutually, computationally indistinguishable thereby giving
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the necessary proof of security of the scheme. These games are summarized in the
Table 3.1.

For the scheme to be secure in the QROM, we need to ensure that an adversary
cannot produce a valid forgery on a new message. This is given in terms of the
advantage (i.e. probability of succeeding) of the adversary A against the scheme Π,
which must be negligible [DFMS19].

Adv[A,Π] :=
∣∣ Pr[b = 1 : b← VrfyΠ((a, e, z))]
− Pr[b = 1 : b← VrfySim,A((a′, e′, z′))]

∣∣ ≤ negl(λ)

The security is proved through a series of games, as described here. (i) Game
1: the game is in the real model, where all the hash functions (Hcom, Hchal, G) in
the scheme Π are modeled as quantum random oracles. Since, cryptographic hash
functions are modeled as random oracles, this change makes Game 1 indistinguishable
from the actual scheme Π. (ii) Game 2: the prover is modified to randomly choose
e∗ := {e∗i }

$←− {1, 2, 3}, i ∈ [1, t] and the oracle Hchal is programmed to return the
value e∗. Game 1 and Game 2 are indistinguishable since the method of choosing e
does not alter the success probability of the adversary. (iii) Game 3: the outputs
of Hcom and G are replaced by random strings. The probability that a random
jth query made by A to the oracle H, measures to a value x′ = x is negligible,
leading to Game 2 and Game 3 being indistinguishable. (iv) Game 4: instead
of randomly choosing ki as the seed and expanding it via the PRG, the value ki
is chosen uniformly at random. Game 3 and Game 4 are indistinguishable by the
pseudo-randomness property of the PRG function. (v) Game 5: a PPT simulator
Sim is now used to generate without a witness, the views (for j 6= e∗) which will be
opened. The perfect privacy property of the circuit decomposition function ensures
that Game 4 and Game 5 are identical. (vi) Game 6: the random oracles are
replaced by random polynomials of degree d greater than the maximum number of
queries q allowed to the adversary. Since random polynomials are indistinguishable
from a random function, the probability that the adversary A can produce a valid
transcript (a′, e′, z′) accepted by the verifier, such that an extractor E cannot extract
a valid witness is negligible. In each of these games, subsequent changes made to the
real scheme Π, are proved to be computationally indistinguishable from instances of
random functions and/or random values [CDG+17, Unr15]. This proves the security
of the scheme in the QROM.
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A Stateless, Practical, Hash-based, Incredibly N ice C ryptographic S ignature
(SPHINCS+) is described in detail in this chapter. The name is quite attractive
and suggests some of the most important features of the scheme. However, before
getting into the details of SPHINCS+ or any hash-based signatures in general, it is
important to know the significance of Stateful and Stateless schemes.

All hash-based signatures are built from the primitive of a One-Time Signature
(OTS) scheme. OTS is secure, similar to a one-time-pad, as it can be used only once
to sign a single message. Any other approaches, like Few-Time Signature (FTS),
Many-Time Signature (MTS), Merkle trees and so on, are built on this fundamental
block. When used multiple times as in FTS or MTS, it becomes necessary to
remember the key-pairs that have already been used to generate valid signatures.
Due to this reason, most of the early designs of hash-based signature schemes were
stateful, requiring efficient storage management to store the state.

As a workaround to this, and to circumvent the storage constraints, stateless
schemes have been developed in recent times. Such schemes employ two methods to
achieve statelessness. One possible solution is to utilize a huge-enough keyspace, such
that the probability of signing 2 or more messages with the same key is negligible.
Another way is to randomize the process of selecting a key-pair to sign a given
message, which ensures that, even though the same key-pair is used to sign more than
one message, the randomness used with the key-pair ensures perfect secrecy [BDS09].

The Sphincs+ signature scheme is significant because it is stateless and practical
enough for applications in the internet. It uses OTS to sign and certify the key-
pairs of MTS, which form the nodes of a certification tree of MTS signatures. The
certification tree (or hypertree) consists of a set of binary hash trees at its bottom
layer. This layer of hash trees at the bottom consist of FTS key-pairs that are used
to sign the actual message digests. Sphincs+ is able to use the advantages of all the
three types of signatures to achieve a good trade-off between security and efficiency,

47
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for a practical hash-based signature scheme.

4.1 Key Concepts

Sphincs+ and any signature scheme in general makes use of a secure cryptographic
hash function to produce unforgeable signatures. In this regard, it is important to
understand some basic constructions of such hash functions and the mathematics
behind them.

Merkle - Damgård Construction

One such significant construction is the Merkle-Damgård [BS17] construction, which
is shown in Figure 4.1. It is an algorithm that uses a compression function h

iteratively, to compute the hash of long messages. The message is split into L blocks
as per the block-size of the compression function h. The message m is padded with
a padding block if it is not a multiple of the block-size. Even if the message is a
multiple of the block-size, the padding block is added as a dummy block to facilitate
proper decoding at the receiver.

Figure 4.1: Cryptographic Hash functions: Merkle - Damgård Construction

The function takes a fixed Initialization Vector (IV) H0 and the message block
m0, producing the output H1 for the next stage. Hi are called the chaining variables.
The compression function maps the arbitrary length input from the message space
M to a fixed-length output in the tag (or digest) space T .
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There are different ways in which the compression function h can be instanti-
ated. For instance, Davies-Meyer [BS17] compression function, given by h(H,m) :=
E(m,H)⊕H using a block cipher E, is of common use.

Sponge Construction

The Sponge construction [BDPVA07] is another iterated hash function like the
Merkle-Damgård. This is shown in Figure 4.2. The construction has two phases,
namely, the Absorbing and Squeezing phase. The system state consists of a block of
b = r + c bits initialized to 0, where r is the bit-rate, c is the capacity and r ' c. A
padding function is used to appropriately extend the input message to be a multiple
of the r-bits of the state.

Figure 4.2: Cryptographic Hash functions: Sponge Construction; Source:
[BDH+08]

In the absorption phase, the r-bits of the state and successively r-bits of the
padded message are XOR-ed and given as input to function f . The capacity c is not
directly affected by the input message, which is fed as-is to function f . It is different
from the compression function h used in the Merkle-Damgård construction discussed
above. The function f is a pseudo-random permutation (or a transformation) applied
many times to the system state in multiple rounds. This is done until the complete
message has been “absorbed” or transformed to an intermediate output block of
b-bits.

In the squeezing phase, an output of desired length is chosen from the upper part
of r-bits of the state successively until the required length of the digest is obtained.
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This makes the Sponge construction an eXtendable Output Function (XOF) as the
output is “squeezed” out of the system state. The capacity c, though does not play
a direct role in the generation of the message hash, it plays a very important role
in ensuring the security of the construction. Depending on the distribution of bits
for bitrate r and capacity c, in order to avoid internal collisions in the state, the
capacity 1 should never take the same value twice (limits to 2c/2 blocks). Therefore,
the sponge construction claims to provide a security of c-bits due to the bound by
the birthday paradox.

Merkle Tree

One-time signature schemes are the most fundamental form of digital signatures,
whose security is based on secure one-way functions. However, the disadvantage of
OTS is that they can be used to sign only a single message, which may not be desired
in some applications. The Merkle Binary Hash Tree [BDS09] (shown in Figure 4.3) is
an efficient way of extending the OTS to sign more than one message, while balancing
the security vs efficiency trade-off. The Merkle Tree is built upon and agnostic to,
the one-time signature (e.g. Lamport OTS, Winternitz OTS) and the cryptographic
hash function used (e.g. based on Merkle-Damgård or Sponge).

Figure 4.3: Merkle Binary Hash Tree (of height H = 3) with signature and
authentication path [BDS09]

1[Exc14]
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Let f : {0, 1}n → {0, 1}n be a secure one-way function and g : {0, 1}∗ → {0, 1}n
be a secure cryptographic hash function. The secret and public keys of a given OTS,
respectively, may be computed as follows:

X = {xi : xi
$←− {0, 1}n} and Y = {yi : yi ← f(xi)};

2H key-pairs (Xj , Yj), 0 ≤ j < 2H =⇒ 2H one-time signatures

The nodes of the Merkle tree are denoted by νh[j] where 0 ≤ h ≤ H and 0 ≤ j < 2H−h.
Specifically, ν0[j] = g(Yj) and recursively, the other nodes are computed as follows:

νh[j] = g(νh−1[2j] ‖ νh−1[2j + 1])

For example,

ν1[1] = g(ν1−1[2 · 1] ‖ ν1−1[2 · 1 + 1]) =⇒ ν1[1] = g(ν0[2] ‖ ν0[3])

The tree shown has height H = 3 and consists of 2H leaves which are the digests
of the OTS public keys Yj . Each pair of leaves are concatenated together and hashed
to obtain the parent node in the tree. This is continued until the entire tree is
computed upto the root node of the tree. The root node of the Merkle tree forms
the public-key (pk) of the Merkle Tree signature scheme, while the OTS key-pairs
form the secret-key (sk).

In the Merkle signature generation, the signer computes the n-bit digest, d = g(M),
for the message M . Then he picks up one of the OTS signing key Xidx (i.e. one of
the leaves of the tree with index 0 ≤ idx ≤ 2H − 1) to generate the OTS signature
σOTS on the digest.

σOTS ← OTS(Xidx, d)

Along with this, the Merkle signature also includes the corresponding one-time
verification key Yidx and the Authentication Path (AUTH).

Aidx = {a0, . . . , aH−1} where ah =
{
νh[c− 1] , if bcc ≡ 1 mod 2
νh[c+ 1] , if bcc ≡ 0 mod 2

and c = idx/2h

The AUTH (Aidx) consists of a set of sibling nodes that are used to re-construct the
tree from the leaf (g(Yidx)) upto the root node (νH [0]) of the tree. These nodes
uniquely prove the authenticity of Yidx and are shown by the red dotted nodes in
the tree of Figure 4.3.

4.2 Scheme

An overview of the SPHINCS+ [BHK+19] signature scheme is shown in Figure 4.4.
It consists of a hyper-tree, which is a chain of binary hash trees that is used to certify



52 4. SPHINCS+

the Sphincs+ key pairs. The required parameters for the scheme are given in the
table below:

n ∈ N security parameter

w Winternitz parameter
h height of HyperTree
d number of layers in the hypertree
k number of trees in FORS
a height of each tree in FORS
t = 2a number of leaves in a FORS tree
m message digest

Figure 4.4: SPHINCS+ Hyper-Tree (HT) [BHK+19, ABD+20]

As seen in Figure 4.4, the Hyper-Tree (HT) is a huge N -ary hash tree of total
height h with d layers. Each sub-tree in the hypertree has height h′ = h/d, and it
is a simple instantiation of the Merkle Binary hash tree, which uses the Winternitz
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One-Time Signature (WOTS+) as the underlying OTS scheme. The lowest layer
of the hypertree is used to generate signatures for the Forest of Random Subsets
(FORS) key-pairs. The FORS key-pairs again form a set of binary hash trees of
height a = log2 t and there are k such trees. Here, the hypertree is basically a set of
Nd OTS signatures for the MTS key-pairs that in turn sign the FTS key-pairs.

WOTS+

The OTS scheme used in Sphincs+ is the Winternitz One-Time Signature+ (WOTS+).
The WOTS+ signature is obtained by using the chaining function f which is applied
iteratively many times to the secret key element seedsk. The hash chain output is
sampled randomly and concatenated to produce the WOTS+ signature, as shown
in Figure 4.5.

The WOTS scheme consisting of key generation, signature generation and verifi-
cation algorithms can be summarized as below:

KeyGen(n,w) : (sk, pk)← ((xi
$←− {0, 1}n), (yi := f2w−1(xi)))

Sign(sk,m) :


d = g(m) =⇒ d′ = 0‖d; c = checksum(d) =⇒ c′ = 0‖c;
b = d′‖c′ = {bt−1, . . . , b0}; W = 2w − 1
f bt−1(xt−1), . . . , f b0(x0) σ ← {f bi(xi)}

Verify(pk,m, σ) :
{
vi = fW−bi(xi); W = 2w − 1; 0 ≤ i ≤ t− 1
if (ν := {vi}) == (Y := {yi}) accept else reject

Figure 4.5: WOTS+ Chaining function F [BDS09, ABD+20]
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FORS

The Forest of Random Subsets (FORS) is the FTS scheme used by Sphincs+ to
instantiate binary hash trees and sign the message digests. There are k binary hash
trees that are used to sign a few messages (of the order of tens of messages). The
FORS instances are shown in Figure 4.6.

Figure 4.6: FORS Tree Instances [ABD+20]

Key Generation

Key generation (Algorithm 4.1) in Sphincs+ is described below.

Algorithm 4.1 Key Generation Gen(1n) [BHK+19]
1: procedure KeyGen(n) . n - security parameter
2: seedsk

$←− {0, 1}n . private seed of n-bytes
3: prfsk

$←− {0, 1}n . PRF key, n-byte string
4: seedpk

$←− {0, 1}n . public seed of n-bytes
5: rootpk := PKGenHT(seedsk, seedpk) . Hypertree public key
6: pk ← (seedpk, rootpk)
7: sk ← (pk, seedsk, prfsk)
8: return (pk, sk)
9: end procedure

Given the security parameter n, the public key pk consists of an n-byte public
seed (seedpk) along with the root node (rootpk) of the top most layer sub-tree of
the hypertree. The secret key sk consists of a secret seed (seedsk), chosen uniformly
at random, and another “PRF key” that is used later to generate a random value
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during computation of the message digest. The secret seedsk is used to generate all
the private key (and/or random) elements required for the other building blocks (i.e.
WOTS+ and FORS) in the scheme.

Signature Generation

The Sphincs+ signature generation (Algorithm 4.2) has 3 main steps: (1) Random
value generation, (2) Message Digest and Context Address generation, and (3) FORS
and HT Signature generation with implicit verification.

In the first part, the n-byte string opt is initialized to 0 or set to a random
value (optionally). If this value is always set to 0, then the signature generation
in Sphincs+ will become deterministic and this is not desirable as it can lead to
side-channel attacks. If opt has high entropy, then the randomization value R also
has high entropy; otherwise, with opt set to 0, R becomes a pseudorandom value.

In the second part, the randomness R and the public key pk are used to hash the
message. The resulting digest is split into 3 parts: msg_digest (md), index of the
tree (treeidx) and index of the leaf node (leafidx) in the tree.

One of the most important features of Sphincs+ is the notion of Tweakable Hash
Functions, which ensures that every hash function call is unique/randomized. This
is done using the address of the call context for every hash function call. The ADRS
has a specific structure and is set according to the context in which a call is being
made to a cryptographic hash function. The ADRS is a 32-byte value with a defined
structure as shown below:

ADRS := Layer_Address || Tree_Address || TYPE || Word1 || Word2 || Word3

where the TYPE field determines what type of context address is to be appended
to the ADRS variable. The different values of TYPE and their corresponding address
values 2 are shown in the table below for convenience.

TYPE Word1 Word2 Word3 Comments
0 Key-pair address Chain address Hash address WOTS+ Hash Address
1 Key-pair address Zero Padding WOTS+ Public key Compression Address
2 Zero Padding Tree Height Tree Index Hash Tree Address (hypertree)
3 Key-pair address Tree Height Tree Index FORS Tree Address
4 Key-pair address Zero Padding FORS Tree Roots Compression Address

2Each Wordi is a 32-bit value or word. The Layer address takes one such 32-bit word and the
Tree address takes three such words.
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Algorithm 4.2 Signature Generation Sign(sk,M) [BHK+19]
1: procedure Sign(sk,M)
2: Step 1
3: Start
4: opt∗ $←− {0, 1}n . ∗opt is initialized to 0, but

can be a random value
5: R := PRFmsg(prfsk, opt,M)
6: End
7: Step 2
8: Start
9: digest := Hmsg(R,M, pk)
10: (md, treeidx, leafidx)← digest
11: ADRS← (0||treeidx||FORS_tree||leafidx) . address type is

FORS tree
12: SIGfors := Signfors(md, seedsk, seedpk, ADRS)
13: End
14: Step 3
15: Start
16: PKfors := PKGenFORS(SIGfors,M, seedpk, ADRS)
17: ADRS← (0||treeidx||TREE||leafidx) . address type is

hypertree
18: SIGht := Signht(PKfors, seedsk, seedpk, treeidx, leafidx)
19: End
20: SIG← (R||SIGfors||SIGht)
21: return SIG
22: end procedure

In the third part, the message digest, the tree and leaf indexes, and the ADRS
are used to generate the FORS FTS signature along with the public and secret seed
values. This FTS signature consists of the signature on the message and also the
authentication path from the leaf node to the root node of the FORS tree. The FTS
signature is implicitly verified in the signing process by using the FORS signature
to compute the corresponding FTS public key. This FORS public key is then used,
with the updated ADRS type pointing to the hypertree, to compute the HT MTS
on the FTS key-pairs. The final Sphincs+ signature is then a concatenation of the
randomness R, the FORS signature and the HT signature.

Verification

The verification algorithm (Algorithm 4.3) is similar to the signing algorithm.
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Algorithm 4.3 Verification Verify(pk,M, SIG) [BHK+19]
1: procedure Verify(pk,M, SIG)
2: Step 1
3: Start
4: (R||SIGfors||SIGht)← SIG
5: digest := Hmsg(R,M, pk)
6: (md, treeidx, leafidx)← digest
7: End
8: Step 2
9: Start
10: ADRS← (0||treeidx||FORS_tree||leafidx) . address type is FORS tree
11: PKfors := PKGenFORS(SIGfors,md, seedpk, ADRS)
12: End
13: Step 3
14: Start
15: ADRS← (0||treeidx||TREE||leafidx) . address type is hypertree
16: VERht := Verifyht(PKfors, SIGht, pk, treeidx, leafidx)
17: End
18: if VERht == 1 then
19: return ACCEPT
20: else
21: return REJECT
22: end if
23: end procedure

The Sphincs+ signature is parsed into its components, i.e. the randomness R,
the FORS signature and the HT signature. The message digest and the ADRS values
are computed as in the signing process. The FORS signature is implicitly verified
by computing the corresponding public key that matches the secret key used in the
FORS signature. The HT signature is similarly used to verify the FTS key-pairs
through the certification hypertree of Merkle-type signatures.

4.3 Security

The Sphincs+ scheme bases its security on the properties of cryptographic hash
functions such as Collision Resistance (CR), One-Wayness or Pre-image Resistance
(OW) and Second Pre-image Resistance (SPR) 3 (refer Section 2.3.3). Along with
these properties, the designers of Sphincs+ have introduced new notions of security
for hash functions, in order to prove the security of their scheme against classical and
quantum adversaries. Two of these new security notions are defined below (the other

3additionally, variant security notions of OW and SPR in the multi-target setting have been
described in Appendix A



58 4. SPHINCS+

security notions of EUF-CMA and PRF have been described in detail in Section 2.2
and Section 3.3).

Let
Hn = {HK : {0, 1}m → {0, 1}n} where K ∈ {0, 1}κ

be a family of hash functions. Let

MAP : {0, 1}n → {0, 1}h × [0, t− 1]k := {(I, i, Ji)}ki=1

be the function that maps n-bit strings to a set of k indexes {(I, i, Ji)} and let

G = MAP ◦ Hn

be defined as a random oracle O(·) that takes inputMi and outputsKi and G(Ki,Mi).

Definition 4.1. PQ-DM-SPR ([BHK+19, ABD+20])
Given a set of randomly chosen messages Mi, a set of distinct pre-defined functions
HKi (i.e. p targets as seen by the adversary), the Post-Quantum Distinct-function
Multi-target Second Pre-image Resistance (PQ-DM-SPR) is defined as the success
probability of an adversary A (allowed at most q queries) against the scheme Π,
to output an index j and another pre-image M ′, such that M ′ is not in the set
of queried messages {Mj}, but HKj (M ′) belongs to the set of received responses
{Yj = HKj (Mj)} (for the produced index j).

Succ
(PQ-DM-SPR)
Hn,p (AΠ) = Pr

[
(∀{Ki}q1 ⊂ ({0, 1}κ)q),Mi

$←− {0, 1}m, 0 < i ≤ p;

(j,M ′) $←− A((K1,M1), . . . , (Kp,Mp))

: M ′ 6= Mj ∧HKj (M ′) = HKj (Mj)
]

For the scheme to be secure, this success probability (or advantage) must be
negligible.

Definition 4.2. PQ-ITSR ([BHK+19, ABD+20])
Given access to a random oracle O(·) as defined above, the Post-Quantum Interleaved
Target Subset Resilience (PQ-ITSR) is defined as the success probability of the
adversary A (allowed at most q queries) against the scheme Π, to find different
(K,M) such that it does not belong to the already received responses from the oracle,
but G(K,M) belongs to the output set {G(Kj ,Mj)} of the oracle.

Succ
(PQ-ITSR)
H,q (AΠ) = Pr

[
(K,M)← AO(·)(1λ)

: G(K,M) ⊆
q⋃
j=1

G(Kj ,Mj) ∧ (K,M) /∈ {(Kj ,Mj)}q1
]
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Again, this probability must be negligible for the scheme to be secure.

The Theorem 4.3 states the EUF-CMA property of Sphincs+, which essentially
defines an upper bound on the success probability (or advantage) of an adversary to
produce a valid forgery.

Theorem 4.3. The Sphincs+ scheme Π is (Post-Quantum) Existentially Unforge-
able under adaptive Chosen Message Attack (PQ-EU-CMA)[BHK+19] if the below
assumptions hold:

PRF
PRFmsg

are post-quantum pseudo-random
function families (PQ-PRF)

PRFBM
is modeled as a quantum accessible
random oracle (Q-RO)

Hmsg
is a post-quantum interleaved target
subset resilience hash function family (PQ-ITSR)

F,H, T
are post-quantum distinct-function multi-target
second pre-image resistant function families (PQ-DM-SPR)

∀ y ∈ {IMG(Fk)}k∈{0,1}n
∃ x, x′ ∈ {0, 1}n

: x 6= x′ ∧ Fk(x) = Fk(x′)

every element in the image of F
has at least two pre-images

specifically, the insecurity function InSec(PQ-EU-CMA) of Π is the maximum success
probability over all q-query adversaries running in time ≤ ξ and is bounded by

InSec(PQ-EU-CMA)(Π, ξ, q) ≤

2 ·
{
InSec(PQ-PRF)(PRF, ξ) + InSec(PQ-PRF)(PRFmsg, ξ)

+ InSec(PQ-ITSR)(Hmsg, ξ) + InSec(PQ-DM-SPR)(F, ξ)

+ InSec(PQ-DM-SPR)(H, ξ) + InSec(PQ-DM-SPR)(T, ξ)
}

(4.1)

The insecurity functions InSec(PQ-*), define the probability in terms of the
insecurity of the scheme against an adversary (which is equivalent to the maximum
success probability of the adversary), who can break the defined security properties
of PRF, PQ-DM-SPR, PQ-ITSR and thus EUF-CMA. The scheme Π is secure, if the
success probability or the advantage of the adversary A, as bounded by Eq. (4.1), is
negligible.
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Game 0: PQ_EU_CMA experiment in the QROM

Game 1: PRF outputs replaced by truly random strings

Game 2: Signing Oracle PRFmsg replaced by
a truly random function

Game 3:
A wins if V er(SIG,M) 6= ⊥
for FORS secret values in previous SIG responses
from SIG Oracle

Game 4:

A wins if V er(SIG,M) 6= ⊥
if SIG contains second pre-image for input to
tweakable hash function as part of query response
(observed during verification of SIG)

Table 4.1: Security Games for SPHINCS+ scheme in the QROM [BHK+19]

The security proof is given through a series of games (5 games) described in Ta-
ble 4.1 to establish the security of this scheme. The games are described as follows:
(i) Game 0: this simulates the EUF-CMA game for Sphincs+ in the QROM, where
a quantum enabled adversary is allowed access to a classical random oracle (i.e.
limited to classical queries). (ii) Game 1: all the WOTS+ and FORS secret key
values (i.e. PRF outputs) are replaced by random strings, which implies indistin-
guishability by the pseudo-randomness property of the PRF (else A can be used
to build a distinguisher to break the pseudo-randomness of PRF). (iii) Game 2:
the signing oracle PRFmsg used to generate the message digest is replaced by a
truly random function. The pseudo-randomness property of the PRF again ensures
indistinguishability. (iv) Game 3: the adversary wins the game if he outputs a
valid forgery (M,SIG), containing only the secret values in the SIGFORS part of SIG,
as obtained from previous responses from the signing oracle. (v) Game 4: the
adversary wins the game if he outputs a valid forgery (M,SIG), containing the same
secret values as in the honestly generated SIGFORS part of SIG, but which was not
obtained from previous responses from the signing oracle. These games are mutually
indistinguishable by the cryptographic properties of the hash functions used and
thus, the success probability of the adversary in each of these games is bound to a
negligible value.



Chapter5GeMSS

Great Multi-variate Signature Scheme (GeMSS) is a signature scheme based on
the concept of solving non-linear multi-variate polynomial systems and belongs
to the class of multi-variate public key cryptosystems (MPKC). It is constructed
using the Hidden Field Equation (HFE) paradigm and comes under the so-called
Big Field family of multivariate schemes. The HFE paradigm involves masking a
central non-linear polynomial (F) with multiple variables, using two linear or affine
transformations (S and T ). Specifically, the big field family makes use of a degree
n extension field E of a base finite field Fq with q elements, to define the secret
quadratic map F .

The signature generation requires finding solutions to the system of quadratic
equations, by inverting the individual maps (S,F , T ) and applying them to the hash
of the message to produce a signature. The verification process is quite simple and
evaluates the public-key (or the composition of the individual maps P = T ◦F ◦S), at
the signature point to verify if it satisfies the set of equations, i.e. Verify() evaluates
if P(sig) == H(msg).

This chapter is structured as follows: (a) Section 5.1 and Section 5.2 describe the
scheme and the underlying hard problem of the construction (b) Section 5.3 discusses
the security of the scheme and related definitions (c) The additional Section 5.4
describes generic attacks on the SIG schemes discussed so far, including a recent
serious attack on GeMSS that indicates that the scheme is probably not secure
enough as per the NIST criteria.

5.1 Scheme

The GeMSS scheme is constructed using multi-variate quadratic (MQ) polynomial
equations having special algebraic structure. The complexity of solving such a system
of quadratic equations is the core idea to argue the post-quantum security of this
scheme.

61
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Key Generation

The parameters used in the key generation process are given in the below table.

λ security parameter

D = 2i, i ≥ 0
D = 2i + 2j ,
i 6= j ∧ i, j ≥ 0

degree of secret polynomial

K digest (hash output) length in bits
n degree of a field extension of F2

m number of equations in public key
v number of vinegar variables
a = n−m number of minus equations
κ > 0 number of iterations of Sign(·) and Verify(·)

The key generation process is described in Algorithm 5.1. This process involves
generating two linear maps S and T , which are used to conceal the central, quadratic
secret map F , a multi-variate polynomial in F2n . The structure of the secret
polynomial F , called the HFEv- shape is as shown below:

F :=
∑

0≤j<i<n
2i+2j≤D

Ai,jX
2i+2j +

∑
0≤i<n
2i≤D

βi(v1, . . . , vv)X2i + γ(v1, . . . , vv) (5.1)

where (i) v := (v1, . . . , vv) are the vinegar variables (ii) βi(v) : Fv2 → F2n is the set of
all linear terms in v variables (iii) γ(v) : Fv2 → F2n is the set of all quadratic terms
in v variables.

By fixing the vinegar variables, the Eq. (5.1) reduces to a univariate polynomial
with HFE shape as shown below:∑

0≤j<i<n
2i+2j≤D

Ai,jX
2i+2j +

∑
0≤i<n
2i≤D

BiX
2i + C ∈ F2n [X] (5.2)

This property of the HFEv- polynomial F is used as a trapdoor that allows to easily
compute the roots of F and thus, generate a signature.

Let (θ1, . . . , θn) be a basis of F2n over F2. The extension field E : F2n ∼=
F2[X]/〈g(X)〉1 and the isomorphism ϕ between F2n and Fn2 is defined as

ϕ : F2n → Fn2 ; E =
n∑
k=1

ek · θk → ϕ(E) = (e1, . . . , en)

1where g(X) is an irreducible polynomial of degree n
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The central map F of HFEv- is defined as a polynomial in the quotient ring
F2n [X,x1, . . . , xv]/〈x2

1 − x1, . . . , x
2
v − xv〉, giving the quadratic multivariate map

F̄ due to the special structure of F and the isomorphism ϕ defined above.

F̄ := ϕ−1 ◦ F ◦ ϕ

A set of multi-variate polynomials f := (f1, . . . , fn) derived from F (given
by Eq. (5.3)), are called the components of F over F2. The public key p (given
by Eq. (5.4)) is derived as the composition of the functions S, f and T , reduced
modulo the field equations 〈x2

j − xj〉, selecting only the first m of the generated
polynomials.

Algorithm 5.1 Key Generation Gen(1λ) [CFMR+20]
1: procedure KeyGen(λ) . λ - security parameter
2: S

$←− GLn+v(F2)
3: T

$←− GLn(F2)
4: F

$←− F2n [X, v1, . . . , vv] . HFEv- shape multivariate
polynomial of degree D

5: f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]n

f ← F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=

n∑
k=1

θkfk (5.3)

6: . θk =⇒ basis of F2n over F2
7: p = (p1, . . . , pn) ∈ F2[x1, . . . , xn+v]n

p :=
(
f1

(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T

mod 〈x2
1 − x1, . . . , x

2
n+v − xn+v〉 (5.4)

. P = T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S
8: pk ← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]m . the first m = n − a

polynomials
9: sk ← (F ,S,T )
10: return (pk, sk)
11: end procedure

Signature Generation

The signature generation is described in Algorithm 5.2. Given a message M to sign
and a hash function family H : {0, 1}∗ → {0, 1}K , the message digest is computed
recursively as d := {d1, . . . , dm}

≈←− H(M). The message digest d is embedded in
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the signing process by applying the inverse transformations of the maps in the secret
key to generate a signature σ.

Figure 5.1: Flowchart of the signing process in GeMSS

The 3 main components of Sign(·) (shown in Fig. (5.1)), as described in Alg. (5.2))
are (i) finding the roots of the polynomials, (ii) to invert the generated affine maps
and the central map, and finally (iii) to embed the message (or the message digest)
in the signing process as the constant term in the system of equations to find their
solution. Inverting the central map to fit the embedded message digest is the trickiest
part of the scheme and requires the central map to be surjective, so that every
message has a signature. If the system of equations do not have a solution, it means
that the roots cannot be found, and thus the message cannot be signed. In this case,
the signing process is repeated by sampling new values for the vinegar variables, to
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generate a new central map in HFE shape, that can satisfy the surjectivity property.

Algorithm 5.2 Signature Generation Sign(sk,m) [CFMR+20]
1: procedure Sign(sk,m)
2: function Sign(M, sk)
3: H : {0, 1}∗ → {0, 1}K . H =⇒ SHA3
4: require: Υ0 ← 0 ∈ Fm2 . where Υ is the system state
5: h←H(M)
6: for 1 ≤ i ≤ κ do . κ = 4 for GeMSS
7: Ωi ← h

∣∣∣
1,...,m

. where Ω stores the first m bits of digest
8: s← Inversion(Ωi, sk)
9: (Υi,Xi)← s(Ωi ⊕Υi−1)
10: h←H(h)
11: end for
12: σ ← (Υκ,Xκ, . . . ,X1)
13: end function
14: function Inversion(d, sk)
15: require: r $←− Fn−m2 , d ∈ Fm2 , d′ ← (d, r)
16: repeat
17: v

$←− Fv2
18: D′ ← ϕ−1(d′ × T−1) ∈ F2n

19: FD′(X)← F (X,v)−D′
20: (·,Roots)← FindRoots(FD′)
21: until Roots 6= ∅
22: Z

$←− Roots
23: s← (ϕ(Z),v)× S−1 ∈ Fn+v

2
24: return s
25: end function
26: function FindRoots(FD′(X))
27: X(n) ← X2n −X mod FD′

28: G← gcd(FD′ , X(n)) . if G = 1, then there is a
unique solution

29: if G ≥ 1 then
30: return Roots
31: else
32: return ∅ . empty or null set
33: end if
34: end function
35: return σ . size: m+ κ(n+ v)bits
36: end procedure

If the central map F has solutions, then it is possible to generate the signature.
First, the term D′ is computed by applying the inverse transformations ϕ−1 and
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T−1 on the message digest d′, to generate the set of equations FD′(X). The GCD
of (FD′ , X(n)) is computed using the Berlekamp algorithm [VZGG13, BS17], which
helps to check if the roots Z exist. If yes, an intermediate value s is computed
using Z, by applying the transformations ϕ(Z) and S−1. The value s satisfies the
equation p

∣∣
[1,m](s) = d

∣∣
[1,m], but since m is small, s cannot be used as the signature

directly, due to the birthday paradox. Therefore, the signing process is iterated κ
times, as outlined by the Fiestel-Patarin design [CFMR+20]. Thus, signing is done
by computing the hash of the message many times 2 and concatenating those multiple
signed versions of the hash outputs along with the final signature output.

Verification

The verification process is described in Algorithm 5.3, which is simpler and faster
than the signing process. To verify, one needs to compute the hash of the message and
use the signature as the point at which to solve the system of equations embedded in
the public key P. If these values are equal, i.e. if (w ← H(M)) == (w′ ← P(σ)),
the signature is valid and accepted, else it is rejected.

Algorithm 5.3 Verification Verify(pk,m, σ) [CFMR+20]
1: procedure Verify(pk,m, σ)
2: h←H(M)
3: (Υκ,Xκ, . . . ,X1)← σ
4: for

(
i = 1; i ≤ κ; i+ +

)
do

5: Ωi ← h
∣∣∣
1,...,m

. first m bits of digest
6: h←H(h)
7: end for
8: for

(
i = (κ− 1); i ≥ 0; i−−

)
do

9: Υi ← p(Υi+1,Xi+1)⊕ Ωi+1) . p is the public key
10: end for
11: if Υ0 == 0 then
12: return ACCEPT . or VALID
13: else
14: return REJECT . or INVALID
15: end if
16: end procedure

2in this case, κ times, where the hash is computed recursively on the truncated m bits of the
message digest
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5.2 Hard Problem

Multi-variate Quadratic equations Problem (MQP)

The signature schemes like GeMSS base their security on the difficulty of solving
multi-variate quadratic equations. TheMQ problem is stated below:

Problem 5.1. MQP ([Pet17])
Given m quadratic polynomials in n variables, p1(x), p2(x), . . . , pm(x), find a
vector x̃ = {x̃1, . . . , x̃n} such that, p1(x̃) = 0, p2(x̃) = 0, . . . , pm(x̃) = 0.

Informally, this problem is about finding the roots of the quadratic polynomials
that constitute this system of multivariate equations. This problem, also called
the Polynomial System Solving (PoSSo), is believed to be NP-hard for both
classical and quantum computers. However, there is no concrete or tight security
proof for this assumption that the MQ problem is quantum resistant.

Extended Isomorphism of Polynomials (EIP)

An isomorphism is a mapping that preserves the structure between the two constituent
sets. In group theory, a group isomorphism is a function that preserves the structure
of the group elements in accordance with the rules of the group operations. Similarly,
the isomorphism of polynomials is defined as follows:

Definition 5.2. ([Pet17]) The polynomial systems G : Fn → Fm and H : Fn → Fm

are called Isomorphic, if and only if, there exist linear or affine maps L1 and L2 such
that, H = L1 ◦ G ◦ L2.

The central map F and the public key P of a multi-variate quadratic cryptosystem
are isomorphic since P = T ◦ F ◦ S.

Problem 5.3. EIP ([Pet17])
Given the public key P of a multi-variate quadratic system, find linear (affine) maps
S̄ and T̄ , and invertible quadratic map F̄ , such that P = T̄ ◦ F̄ ◦ S̄.

The hardness of the EIP problem depends on how the central quadratic map F
is constructed. In general, it is conjectured that the security analysis of MPKCs is
harder. This is because of the uncertainty about the complexity of the problem and
also much lesser understanding of the multi-variate polynomial systems for larger
parameters (i.e. higher number of equations and unknowns).
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5.3 Security

Proving the security of MPKCs is an open problem, as there is no security proof
or theoretical reduction for the same. This is because, although the MQP and
EIP are believed to be NP-complete problems, it does not necessarily translate
into post-quantum security. However, practical results have been very close to the
theoretical estimates in terms of the security claimed for such schemes. The known
results about the provable security of GeMSS are described below.

Theorem 5.4. The number of iterations κ of the Sign(·) and Verify(·) algorithms
has to be chosen such that

2m· κ
κ+1 ≥ 2λ

where (i) λ is the security parameter and (ii) m is the number of MQ equations.

This bound on the number of iterations is important to protect the scheme from
generic hash collision attacks against the Feistel-Patarin approach of constructing
the signature. Another important security property of a signature scheme is the
Existential Unforgeability under adaptive Chosen Message Attack (EUF-CMA)
defined below for the GeMSS instantiation.

Definition 5.5. ([CFMR+17]) The GeMSS signature scheme is (ε, qh, qs, t)-secure
if there is no adversary A running in time t, with qh queries to the random oracle
and qs queries to the signing oracle, that can produce a valid forgery of (msg, sign)
pair with non-negligible probability ε.

The goal from the designer’s perspective is to reduce the provable security of
GeMSS to the hardness of the inversion problem, i.e. inversion of the public-key.
This is the crucial part in the signing process that can assure the unforgeability of
the scheme.

Definition 5.6. ([CFMR+17]) The GeMSS KeyGen(·) is (ε, t)-secure if there is
no adversary A running in time t, that given the public-key p and a challenge d, can
find a pre-image s, such that p(s) = d with non-negligible success probability ε.

To achieve this, a simple solution is to add a random salt ∈ {0, 1}` along with
the message and compute the hash of (msg ‖ salt). This prevents the adversary from
computing the inverses parallely for κ iterations, but makes the signing process costly
as this requires iterating the inversion phase as many times as the degree of the secret
polynomial. However, this has not been done in GeMSS due to efficiency concerns,
because the number of calls to the root-finding function is ∝ D : D ← degHFEv−(F ),
where typically, D ranges from 15 / D / 515 3.

3for this case, the number of iterations (κ) of Sign(·) is one
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5.4 Attacks on the signature schemes

Cryptography has two main branches: cryptology and cryptanalysis. The former deals
with the design and construction of efficient algorithms that provide confidentiality
and data integrity. The latter deals with the analysis of constructed cryptosystems to
look for loopholes and vulnerabilities that might be exploited by an attacker. Both
these branches are very essential to develop strong, robust and secure protocols that
safeguard data and communications.

Until now, we have discussed about some signature schemes that are believed
to be secure, based on cryptographic hard problems presumably hard to solve both
by classical and quantum computers. However, any cryptosystem is secure enough
only when it stands the test of time and continuous evaluation by the cryptographic
community. In the following sections, two major types of attacks on the three SIG
schemes have been presented. It contains a description of the nature of the attacks
and their variants as specifically applied to the schemes.

5.4.1 Multi-Target Attacks

Multi-Target Attack (MTA) is the most basic type of attack that is mounted against
cryptosystems based on symmetric primitives. This attack has been mounted on
Picnic and Sphincs+ as well, as they are symmetric primitive based schemes. Usually,
MTA is simple to mount due to efficient sort-and-match algorithms, which is used
to recover the secret key. However, this has not been the case with Picnic due
to its efficient design, requiring much cryptanalysis to be able to identify this
possibility [DN19]. For Sphincs+ though, it has been much simpler to mount such
attacks due to the frequent use of hash functions, possibly with the same keys [HRS16].

The attack consists in gaining as many targets as possible, say G, for a given
cryptosystem. A target is essentially the output of the cryptosystem evaluated at
different secret inputs (or keys). The data points (e.g. signatures) are created by
the users and may be associated with the short-term keys (e.g. random numbers)
or long-term keys (e.g. secret signing keys). The attacker guesses a key, evaluates
the cryptosystem to get an output, G′ and compares this with all the targets to see
if there is a match. The work required to make the correct guess, is reduced by a
factor ≥ G, due to the birthday paradox [DN19]. The different variants of MTA are
summarized at a high level in Table 5.1.
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Multi-User Single Target
(MUST)

Single-User Multi-Target
(SUMT)

Multi-User Multi-Target
(MUMT)

G = U Gi = Di for each user i ∈ [1, U ] G = D =
∑
Di

Long term keys
are vulnerable

Short term keys of each user U
are vulnerable

All short term keys
are vulnerable

Table 5.1: G: number of targets obtained by attacker; Di: the set of all data points
obtained for each user; U : number of users ([DN19])

Picnic

A brief outline of MTA [DN19] on Picnic is given in Algorithm 5.4. The computational
complexity of the attack is determined by the number of invocations of the PRG.
(e.g. 2λ−d for the case when d ≤ λ/2). For the security parameter λ, and for
the number of allowed MPC protocol runs to the attacker, D ≤ 2λ/2, the attack
complexity is T = 2λ/D. For example, with λ = 128 and D = 242 (≈ 235 signatures)
we would obtain T = 286. However, Picnic has addressed this attack and added
countermeasures in later versions by adding a random salt to the seed given as input
to the PRG.

Algorithm 5.4 Multi-Target Attack - Picnic [DN19]
Require: D = 2d and D′ = 2λ−d
1: for i ∈ [1, D] do
2: r ∈ [1, D];
3: {br} ← PRGu(r) . {br}|2d
4: Ri ← (r, {br})
5: for k ∈ [1, D′] do . seed values selected arbitrarily
6: {b′k} ← PRG(k) . {b′k}|2λ·d
7: if {br} == {b′k} then
8: compute witness x for each matching pair (r, k)
9: else
10: repeat from step 5 for different k
11: end if
12: end for
13: end for
14: return witness x

Sphincs+

MTA mounted on Sphincs+ is given in Algorithm 5.5. The idea of MTA for hash-
based schemes is simpler compared to Picnic. Generally, hash functions are used
multiple times in a cryptosystem. For instance, if a hash function with an output of
length n-bits is used d times, then the adversary A’s workload is reduced, as he only
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needs to find one pre-image out of the d hash outputs. This downgrades the attack
complexity to O(2n/d) as opposed to the assumed O(2n) [HRS16]. Similar to Picnic,
Sphincs+ has also addressed MTA by using the concept of “tweakable hash functions”
that have a different salt added for every function call based on the context.

Algorithm 5.5 Multi-Target Attack - Sphincs+ [HRS16]

1: Input: Message M $←− {0, 1}∗
2: Let H : {0, 1}∗ → {0, 1}n
3: while 1 ≤ i ≤ d do
4: hi ←H(M)
5: end while
6: for all hi : 1 ≤ i ≤ d do
7: Compute at least one pre-image mi ←H−1(hi)
8: end for
9: m′ ← mk : mk = H−1(hk) . mk → pre-image from kth ∈ [1, d] hash output
10: return m′

5.4.2 Key Recovery Attacks

The attacks on Multi-variate Public Key Cryptosystems (MPKCs) are of two main
types: direct and structural [DP17]. Direct attacks, as the name suggests, aim
to solve the public-key polynomial system of equations, P(z) = w where z ←
Sign(w) and w ← H(M), as an instance of the MQP. Structural attacks exploit
the special structure of the central map F i.e. HFEv- or UOV shape, to decompose
the public key as P = T ◦ F ◦ S.

Structural attacks have two subcategories: rank and differential attacks. The
MinRank attack is a structural attack that looks for a linear combination of the
quadratic forms4 of the public-key polynomials of low rank. This linear combination
corresponds to the central map, and the private key of the MPKC can be recovered by
finding such combinations of low rank. The Differential attack looks for symmetries
or invariants of the differential, defined as G(x, y) = P (x+ y)− P (x)− P (y) + P (0),
of the public key, which can help in analyzing the structure and thus, recovering the
private key [DP17].

GeMSS

An improved key recovery attack on HFEv- schemes, particularly GeMSS, has been
published recently by Ding et. al. [Din20]. The core idea of this attack is to find
equivalent keys of the public key composition P , such that P = T ◦F ◦S = T ′◦F ′◦S ′
where F and F ′ have the same algebraic structure. This allows the adversary to

4polynomials in which all the terms are quadratic
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use the equivalent maps T ′,F ′ and S ′, to easily forge a valid signature for any
message [Din20]. Based on this idea, Theorem 5.7 gives the number of equivalent
keys for a given HFEv- based MPKC.

Theorem 5.7. ([Din20]) Let P be the public key of HFEv- scheme over finite field
Fq with q elements, v be the number of vinegar variables, a be the number of minus
equations and n be the degree of the field extension. Then there exist

nqa+2n+vn(qn − 1)2
v−1∏
i=0

(qv − qi)
n−1∏

i=(n−a−1)

(qn − qi) (5.5)

equivalent keys for the public key P.

For instance, with the parameters (q, n, v,D, a) = (7, 7, 2, 14, 2), the number of
equivalent keys is ≈ c× 746 × (77 − 1)2, where c is a constant.

This key recovery attack on GeMSS is described in the Algorithm 5.6. The
attack essentially exploits the min-rank problem and builds on top of the available
algorithms to solve it and recover the secret key. The MinRank problem can be
solved using one of the below methods (a) linear algebra search (b) Kipnis-Shamir
modeling (c) minors modeling (d) support minors modeling [Din20].

Let (θ1, θ2, . . . , θn) be the basis vector of Fqn over Fq. Let M = (θq
k

1 , θq
k

2 , . . . , θq
k

n )
where 0 ≤ k < n, be the matrix with Frobenius powers 5 of the basis elements. The
matrix M̃ is defined as

M̃ =
(
M 0
0 Iv

)
; Iv → v × v Identity matrix (5.6)

The matrix F ∗0 represents the central map F as shown below:

F ∗0 =


F0 0 F1

0 0 0
F t1 0 F2

 =


αi,j 0 γi,j

0 0 0
γj,i 0 δi,j

 (5.7)

5a Frobenius map (x 7→ xp) is one which maps every element x to its pth power, where p is
prime. [CFMR+20]
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Algorithm 5.6 Key Recovery Attack - GeMSS [Din20]
1: function Recover Linear map S
2: Input: HFEv- parameters (q, n, v,D, a), d = dlogqDe, quadratic forms

(P0, . . . , Pn−a−1) of public-key polynomials, matrix M̃
3: Output: Equivalent Linear Transformation S ′
4:
5: set bi = (1, u1, . . . , un+v−1)Pi, 0 ≤ i < n− a

. bi forms the rows of
matrix Z

6: Z ← {bi} : Z ∈M(n−a)×(n+v)(Fqn) and rank(Z) ≤ d
7:
8: (u0, u1, . . . , un+v−1)← MinRank(Z)
9: . using minors modeling or support

minors modeling
10:

11: set U =
(
{uq

k

j }
{rij}

)
where


0 ≤ i < v

0 ≤ k < n

0 ≤ j < n+ v

. rij
$←− Fq : U is invertible

12: compute S ′ = (M̃U)−1

13: return S ′
14: end function

15: function Recover Linear and Central maps T and F
16: Input: HFEv- parameters (q, n, v,D, a), d = dlogqDe, quadratic forms

(P0, . . . , Pn−a−1) of public-key polynomials, Frobenius matrixM , recovered linear
map S ′

17: Output: Equivalent Maps F ′ and T ′
18: Let {wk} be unknowns with w0 = 1, solve the set of equations

n−a−1∑
k=0

wkUPkU
t =

a∑
i=1

liF
∗i + F ∗0 and find solution {w′k} (1)

19: Solve bilinear equations and univariate polynomial equations obtained from
(1) to recover F ∗0

20: Obtain equivalent central map

F ′ = (Xqk , xi)F ∗0(Xqk , xi)t and compute F ∗k, 1 ≤ k < n

21: Solve a set of linear equations to recover T ′

(P0, . . . , Pn−a) = (SMF ∗0M tSt, . . . , SMF ∗n−1M tSt)M−1T (2)

22: return F ′, T ′
23: end function
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First step: Recover the linear map S
A matrix U = M̃−1S−1 with n + v rows is selected such that, each of the n
rows, are set as the ith row vectors bi, that make up the rows of the low-rank
matrix Z. Then, the matrix Z is solved for the MinRank problem (using minors
modeling or support minors modeling methods) to obtain the solution vector u.
The last v rows of the matrix U are chosen randomly from Fq such that U is
invertible. Thus, an equivalent map S ′ := U−1M̃−1 is recovered.

Second step: Recover the central map F
For this, a set of d(n− d− a) linear equations in (n− a− 1) variables wi, are
solved to obtain the solution vector w given by Eq. (1). From this, a set of
(d+ a)(n+ v) bilinear equations and

(
v+1

2
)
univariate polynomials (each with

qd solutions) [
αli γ

li

]
= 0;

∑
λijδ

qd

ij + ηij := 0 (3)

are solved to obtain αij , γij , δij values. These values are used to compute the
matrix F ∗0 which in turn can be used to recover the equivalent central map F ′.

Final step: Recover the other linear map T
After computing F ∗0, F ∗k is also computed for k ∈ [1, n − 1]. Using these
values, and given that U−1 = SM , the Eq. (2) can be re-written as

Pk :=
(
U−1F ∗k(U−1)t

)
M−1T (2a)

which produces (n− a) linear system of equations in n variables, that can be
solved to obtain the equivalent map T ′. Thus, having recovered valid equivalent
secret keys S ′,F ′, T ′, it becomes easy for the adversary to forge signatures on
any messages of his choice.

This attack mounted recently (Nov 2020) on GeMSS, exploits the structure of
the underlying HFEv- construction, where the authors of [Din20] state that it would
be difficult to build secure signature schemes from the HFEv- design. They claim
that the attack complexity bounded exponentially by the parameter D, makes it
hard to choose an optimal value for D such that the signature scheme is secure, yet
efficient. Due to this serious key recovery attack, the road ahead seems to be closed
for GeMSS in the NIST standardization process.



Chapter6NIST Finalists

This chapter briefly discusses the other three digital signature schemes in the third
round of the NIST Standardization process, namely Crystals-Dilithium, Falcon
and Rainbow. Crystals-Dilithium and Falcon are lattice-based signatures, while
Rainbow is a multi-variate quadratic polynomial based signature (similar to GeMSS
discussed in Chapter 5).

Although any given post-quantum signature scheme can generally be categorized
into one of the cryptographic families such as lattice-based, MPKC-based, hash-based
or others, they most often employ concepts and techniques from each other, that are
proven to enhance performance and/or security. For instance, Dilithium uses the
Σ-protocol and the zero-knowledge framework like Picnic, Falcon uses polynomials
to instantiate the key-pair and the tree in Falcon is similar to the Merkle-trees in
hash-based signatures.

It might appear confusing to the reader that, in this thesis, the alternate candidates
have been analyzed in more detail than the finalists. This is due to the main reason
that, the aim of this thesis was to study and understand the signature schemes built
on simpler mathematical assumptions or cryptographic problems. In this regard, the
simple and innovative construction of Picnic seemed very attractive along with the
hash-based scheme Sphincs+. Later on, the progression of the NIST rounds also
influenced the direction and path of this thesis. Specifically, after the results of the
third round were announced, the added curiosity about why these two schemes did
not make it to the spot among the finalists became the drive to explore the alternate
candidates in more detail. Nevertheless, a basic understanding of the finalist schemes
has been obtained, and presented in this chapter, for adequate comparison with the
alternate candidates.

75
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6.1 Crystals-Dilithium

Crystals-Dilithium is a signature scheme, part of the Cryptographic Suite for
Algebraic Lattices [DKL+18]. It uses the Fiat-Shamir heuristic with Aborts over
module lattices, and thus has the framework of a zero-knowledge protocol. The
novelty of the scheme lies in the technique used to reduce the sizes of the public key
(pk) and signature (σ), where the low-order bits in pk are omitted and compensated
with minimal additional information (“hint”) in σ.

The Fiat-Shamir with Aborts [Lyu09] is a method by which a lattice-based
signature scheme can be constructed from an identification (ID) scheme. The Fiat-
Shamir heuristic is the same as described in Section 3.1, with a slight difference.
The ID scheme which uses a Σ-protocol is converted to a non-interactive signature
scheme using the Fiat-Shamir transform. However, it is essential that the response
“masks” the witness appropriately to ensure indistinguishability. For this reason, the
response computed by the prover is checked to be lying in a much larger range than
the ones of witness and challenge, or in other words, if the response is in some group
Gm. If not, then the protocol is aborted and restarted from the point of selecting and
committing to a random value. This is the idea behind the Fiat-Shamir with Aborts
technique. This is known to be one of the efficient ways of constructing lattice-based
signature schemes with small component sizes.

6.1.1 Scheme

Key Generation

The key generation algorithm (6.1) is given below. The public key (A, t) consists of
a matrix Ak×` with polynomial entries defined over the ring Rq = Zq[X]/(Xn + 1),
where q = 223 − 213 + 1 is prime and n = 256. It also consists of a vector t defined
as a linear combination of secret key vectors (s1, s2), whose coefficients are obtained
through uniform sampling. The vector t is split into high-order and low-order bits,
and only the high-order bits are stored in the public key, which reduces its size by
more than 50%. KeyGen also generates additional random seeds (tr,K) that are
used later during the signing process. The function CRH is a collision-resistant hash
function instantiated with SHAKE-256.
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Algorithm 6.1 Key Generation Gen(1λ) [DKL+18]
1: procedure KeyGen(λ) . λ - security parameter

2: require:

δ ← {0, 1}256 . secret random seed to generate
randomness for further use

(ρ, %,K) := H(δ) ∈ {0, 1}256×3 . random seeds used to generate
key-pair

(s1, s2) := H(%) ∈ S`η × Skη
. H → SHAKE-256 ≡ CRH
(hash function)

3: A := Expand(ρ) ∈ Rk×`q

4: (t1, t0)← t := As1 + s2 . t1 → high-order bits and
t0 → low-order bits

5: tr := CRH(ρ ‖ t1) ∈ {0, 1}384

6: pk ← (ρ, t1) . public key
7: sk ← (ρ, t0,K, tr, s1, s2) . private/secret key
8: return (pk, sk)
9: end procedure

Signature Generation

The signing algorithm (6.2) is essentially a Zero-Knowledge proof of the secret key.
It generates a polynomial vector y using the deterministic or randomized seed ρ′,
which masks the secret key s1. The value c̃ is computed as the hash of the message
concatenated with the high-order bits w1 of w (given by step 7). The signer then
computes the challenge c by giving c̃ as the input to an XOF. The initial signature
is given by z = y + cs1. In order to ensure that this does not leak information about
the secret key, rejection sampling is used to determine the coefficients of z. If the
coefficients of z are larger than γ1 − β or the coefficients of Az − ct are larger than
γ1− β, then the signing procedure is restarted 1. This is essentially the “Fiat-Shamir
with Aborts” method. These two conditions are necessary for the security and
correctness of the zero-knowledge signing algorithm. Since |pk| is reduced by ∼50%,
the signature includes a hint vector h that is used to recompute the entire public
key, and thus verify the signature. (|σ| +≈ 100 bytes)

1this may require from 4 to 7 repetitions
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Algorithm 6.2 Signature Generation Sign(sk,m) [DKL+18]
1: procedure Sign(sk,M)

2:

require: µ := CRH(tr ‖ M) ∈ {0, 1}384 . randomized message digest

or: ρ′ := CRH(K ‖ µ) ∈ {0, 1}384 . deterministic signing
ρ′

$←− {0, 1}384 . randomized signing
3: A := Expand(ρ) ∈ Rk×`q

4: κ = 0, (z,h) = ⊥
5: while (z,h) = ⊥ do
6: y := Expand(ρ′, κ) ∈ S`γ1
7: (w1,w0)← w := Ay . w1 ← High(w)
8: c̃ := H(µ ‖ w1) ∈ {0, 1}256

9: c← XOF (c̃) . eXtendable Output Function
10: z := y + cs1
11: (r1, r0)← r := w − cs2 . r0 ← Low(w − cs2)
12: if ‖z‖ ≥ (γ1 − β) or ‖r0‖ ≥ (γ2 − β) then . Fiat-Shamir with

Aborts
13: (z,h) = ⊥
14: else
15: h := MakeHint(−ct0,w − cs2 + ct0, 2γ2) . construct hint about

pk for sig
16: if ‖ct0‖ ≥ γ2 or (#1′s ∈ h) > ω then
17: (z,h) = ⊥
18: end if
19: end if
20: κ := κ+ `
21: end while
22: return σ ← (z,h, c̃)
23: end procedure

Verification

Since the signing algorithm is zero-knowledge, the verification algorithm (6.3) verifies
the zero-knowledge and correctness properties of the signature. The verifier computes
w′1 from the hint h and Az − ct, checks if c̃ is indeed the hash of the message
and w′1, same as the challenge. Along with verifying that the coefficients of z are
within the limit γ1−β, the verification checks if High(Az− ct) == High(Ay) ⇐⇒
High(Ay) == High(Ay− cs2) (this proves the correctness property). This is easily
seen as

Az − ct = Ay − cs2

A(z − y) = c (t− s2)
A(cs1) = c (As1)
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And also, High(w − cs2, 2γ2) = High(w − cs2 + cs2, 2γ2) = High(w, 2γ2) = w1,
thus w′1 == w1 and the verifier accepts the signature.

Algorithm 6.3 Verification Verify(pk,m, σ) [DKL+18]
1: procedure Verify(pk,M, σ)
2: µ := CRH(CRH(ρ ‖ t1) ‖ M) ∈ {0, 1}384

3: A := Expand(ρ) ∈ Rk×`q

4: c← XOF (c̃)
5: w′1 := UseHint(h,Az − ct1(·2d), 2γ2) . d ≈ 13
6: ν := [‖z‖ < (γ1 − β)] ∧ [c̃ := H(µ ‖ w′1)] ∧ [(#1′s ∈ h) ≤ ω]
7: if ν == TRUE then
8: return ACCEPT . or VALID
9: else
10: return REJECT . or INVALID
11: end if
12: end procedure

6.1.2 Security

Dilithium is constructed using module lattices, and the security is based on the
Module-LWE (MLWE), Module-SIS (MSIS) and its variant Self-Target MSIS prob-
lems. A basic description of the SIS problem and the LWE (Ring-LWE) problem is
given Section 2.9.

The MLWE problem is whether (A, t := As1 + s2) can be distinguished from
(A,u) where u is uniformly random. The MSIS problem is to find a vector z′ with
small coefficients such that Az′ = 0. The Self-Target MSIS problem is to find a vector[
z c v

]T
with small coefficients and message digest µ such that ([DKL+18])

H

(
µ ‖ [A | t | I] ·


z

c

v


)

= c, where I → Identity matrix

The above problems are believed to be hard as there are no known efficient
algorithms to solve them, neither classical nor quantum. Some of the common types
of attacks on Dilithium are algebraic attacks, dense sub-lattice attacks, specialized
`∞ − SIS attacks and so on. The scheme is proven secure in the ROM, but does
not have a tight reduction in the QROM. However, recent research [LZ19] has shown
that the special soundness and the collapsing properties of the Dilithium Σ-protocol
can be used to prove that the scheme is secure in the QROM. The special-soundness
property in the quantum setting implies that, given a pair of valid transcripts (a, c, r)
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and (a, c′, r′) such that c 6= c′, a quantum extractor can extract the witness x with
probability 1. The collapsing property is when a quantum adversary cannot detect if
the superposition of many valid responses for a given commitment-challenge pair has
been measured or not [LZ19].

6.2 Falcon

Falcon stands for Fast-Fourier Lattice-based Compact signatures over NTRU
[FHK+18]. It is built using the Hash-and-Sign paradigm, where the design makes
use of the GPV Framework [GPV08] instantiated on NTRU Lattices. A creative
concept is the use of Falcon Trees to generate the key-pair, while a Gaussian Rejection
Sampler is used to generate the components of the signature.

The Gentry-Peikert-Vaikuntanathan (GPV) framework describes a secure method
for constructing lattice-based signatures. It can be summarized as below (adapted
from [FHK+18, GPV08, Kle00]):

• Public key:
full-rank An×m → generating q-ary lattice Λ
(i.e. x ∈ Λ ⇐⇒ x (mod q) ∈ Λ)

• Private key:
Bm×m → generating lattice Λ⊥q
(orthogonal to Λ (mod q)) such that B ·At = 0

• Sign/Verify:
msg m, short s ∈ Zmq such that sAt = H(m)
where H → hash function

• Valid SIG:

- compute pre-image (not necessarily short) c0 ∈ Zmq : c0At = H(m)
- use B to compute v ∈ Λ⊥q close to c0

- compute v using randomized variant of nearest plane algorithm
- s is a valid signature ⇐⇒ s = c0 − v is short
- such that sAt = c0At − vAt = c− 0 = H(m)

6.2.1 Scheme

Key Generation

Falcon uses a cyclotomic (which is monic and irreducible) polynomial φ, a modulus
q, and real β > 0 for key generation, as described in Algorithm 6.4. For a positive
(prime) integer n, a cyclotomic polynomial is of the form

Φn(x) = 1 + x+ x2 + · · ·+ xn−1 =
n−1∑
k=0

xk = (x− ω1)(x− ω1) . . . (x− ωs)
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where ωi → primitive nth roots of unity [Por15].

Algorithm 6.4 Key Generation Gen(1λ) [FHK+18]
1: procedure KeyGen(λ) . λ - security parameter
2: require: monic polynomial φ ∈ Z[x], modulus q = 2n
3:
4: f, g, F,G← NTRUGen(φ, q)
5: . finding polynomials that satisfy NTRU eq.
6: function NTRUGen(φ, q)
7: repeat
8: f

$←− Z[x]/(φ)
9: g

$←− Z[x]/(φ)
10: until (IsInv(f, φ) == TRUE) . check that f is invertible mod q
11: F,G← NTRUSolve(f, g) : fG− gF = 1 mod φ
12: . computing F, G that satisfy NTRU eq.
13: return (f, g, F, G)
14: end function

15: B :=
[
g −f
G −F

]
16: B̂← FFT(B) . FFT → Fast Fourier Transform
17: G← B̂× B̂∗
18: TF ← ffLDL∗(G) . computing the Falcon (LDL*) Tree
19: σ ← 1.55√q . Std. Dev. for binary case φ := xn + 1
20: for all leaf ∈ TF do
21: leaf.value← σ√

leaf.value
. Normalization of Falcon Tree leaves

22: end for
23: h← gf−1 mod q
24: pk ← h . public key
25: sk ← (B̂, TF ) . private/secret key
26: return (pk, sk)
27: end procedure

The private key consists of four polynomials (f, g, F, G) that satisfy the NTRU
Equation, given by

fG− gF = 1 mod φ (6.1)

The public key is a polynomial h = gf−1 mod (φ, q). The public and private keys
also form the basis for a “2n”-dimensional lattice Λ,

A :=
[
−h In

qIn On

]
, B :=

[
g −f
G −F

]

where In - identity matrix and On - zero matrix, both of dimension n.
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KeyGen has two main steps: (1) Solving the NTRU equation and (2) Computing
the Falcon Tree. For the former (1), a “Tower-of-Fields” method is used to map the
NTRU equation from Z[x]/(φ), to smaller rings, and finally down to Z. The NTRU
equation is solved in Z and eventually lifted up the Tower-of-Fields upto Z[x]/(φ). For
the latter (2), a “LDL∗-Decomposition” is done on the matrix G := B̂×B̂∗ = LDL∗,
where L - lower triangular matrix with unity diagonal, D - diagonal matrix, and
L∗ - complex conjugate transpose of L. The non-trivial terms of L are stored
as the root of a Falcon Tree (TF ), followed by splitting of the matrix D into sub-
matrices Gi, that in turn are converted into sub-trees in TF through recursive
LDL∗-decomposition.

Signature Generation

Signature generation (Alg. (6.5)) uses a Trapdoor Sampler, i.e. Fast Fourier Sampling,
that outputs (rejection) samples as per a discrete Gaussian distribution, which form
the coefficients of z used to generate a short vector s. The message to be signed is
concatenated with a random salt and hashed to a polynomial c. A pre-image t of c,
given to the FFT Sampler, outputs two polynomials (s1, s2) such that s1 + s2h = c

mod q. The signature sig is the pair (r, s).

Algorithm 6.5 Signature Generation Sign(sk,m) [FHK+18]
1: procedure Sign(sk,m, β)
2: r $←− {0, 1}320 . r → random salt
3: c← H(r‖m)
4: t← (FFT(c), FFT(0)) · B̂−1

5: do
6: z ← ffSampling(t, TF ) . Fast Fourier Sampling
7: s := (t− z)B̂
8: while ‖s‖ > β
9: (s1, s2)← InvFFT(s)
10: s← Compress(s2) . encoding format
11: return sig← (r, s)
12: end procedure

Verification

The verification algorithm (6.6) is given below. It computes the hash of the message
concatenated with randomness r, and checks if c ?= H(m‖r). Next, given s, it checks
if the relation s1 + s2h = c (mod q) holds, provided that the signature s is short. If
these two conditions are satisfied, then the signature is accepted as valid, otherwise
rejected.



6.3. RAINBOW 83

Algorithm 6.6 Verification Verify(pk,m, σ) [FHK+18]
1: procedure Verify(pk,m, sig, β)
2: c← H(r‖m) . along with inputs q and n
3: s2 ← Decompress(s) . decoding the signature format
4: s1 ← (c− s2h) mod q
5: if ‖(s1, s2)‖ ≤ β then
6: return ACCEPT . or VALID
7: else
8: return REJECT . or INVALID
9: end if
10: end procedure

6.2.2 Security

Falcon is based on the hard problem of SIS over NTRU Lattices. The SIS problem
in lattices has been described in Section 2.9. For the NTRU equation (Eq. (6.1)),
computing the polynomials F and G is believed to be hard in general, and there are
currently no known algorithms that can efficiently solve these two problems. Some
of the common types of attacks on Falcon are combinatorial attacks, hybrid attacks,
high rank sub-lattice attacks and algebraic attacks. A recent one, BEARZ attack
[MHS+19] is a fault attack, that exploits the implementation vulnerabilities of Falcon.
The Basis Extraction by Aborting Recursion or Zeroing (BEARZ) attack introduces
faults in the signing process and exploits the recursion in the Gaussian Sampler or
sets the corresponding coefficients to zero, to effectively recover the secret signing
key.

Falcon is built using the GPV framework, which has been proven to be secure
both in the ROM [GPV08] and QROM [BDF+11]. However, due to the use of the
Gaussian Trapdoor Sampler, the scheme is vulnerable to fault and side-channel
attacks, which is the case for all schemes based on Gaussian sampling. Despite this,
the mathematical complexity and non-straightforward implementation of the Falcon
design has made it very difficult to mount such attacks. In terms of performance and
security, Falcon is still a good competitor to other lattice-based signature schemes.

6.3 Rainbow

The Rainbow signature scheme is a Multi-variate Public Key Cryptosystem (MPKC),
based on the UOV construction. The UOV design is inspired by the inherent unmixing
nature of oil and vinegar, extending it to construct non-linear polynomials with oil(o)
and vinegar(v) variables such that the number of vinegar variables is larger than the
oil variables.
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The public key in Rainbow consists of a composition of maps S,F and T , which
results in a system of multi-variable quadratic polynomial equations to be solved.
The private key is the set of the individual maps (S,F , T ) that allow to easily invert
the public key P and solve the system of equations to generate a signature.

6.3.1 Scheme

Key Generation

The Rainbow scheme can be defined as a multi-layered variant of the UOV paradigm.
It consists of u layers defined over a finite field Fq with q elements. The sets
Vi = {1, . . . , vi} and Oi = {vi, . . . , vi+1}, 1 ≤ i ≤ u, are defined where the integers
vi (0 < v1 < v2 < · · · < vu < vu+1), specify the set of multi-variate polynomials for
each of the u layers. The key generation algorithm (6.7) is given below.

Algorithm 6.7 Key Generation Gen(1λ) [DS05]
1: procedure KeyGen(λ) . λ - security parameter
2: ensure: m← o1 + o2 and n← m+ v1

3: cS
$←− Fm

4: cT
$←− Fn

5: repeat
6: MS ← Matm×m ∈ Fq . Mat()×() → matrix
7: MT ← Matn×n ∈ Fq
8: until (IsInv(MS) == TRUE) ∧ (IsInv(MT ) == TRUE)

. Aff()→ affine transformation
9: S ← Aff(MS , cS) := MS · x+ cS
10: S−1 ←M−1

S
11: T ← Aff(MT , cT ) := MT · x+ cT
12: T −1 ←M−1

T
13: F ← RnbwMap(v1, o1, o2) ∈ Fq . refer Eq. (6.2)
14: P ← S ◦ F ◦ T . P : Fn → Fm
15: pk ← P . public key
16: sk ← ((S−1, cS),F , (T −1, cT )) . private/secret key
17: return (pk, sk)
18: end procedure

The public key P is composed of a central, quadratic map F , which consists of
m quadratic polynomials in n variables, of the form

f (k)(x1, . . . , xn) =
∑
i,j∈V`
i≤j

α
(k)
ij xixj +

∑
i∈V`
j∈O`

β
(k)
ij xixj +

∑
i∈V`∪O`

γ
(k)
i xi + δ(k) (6.2)
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where k ∈ [v1 + 1, n] and there exists one ` ∈ [1, u] : k ∈ O` 2. The polynomial given
by Eq. (6.2) does not contain purely quadratic terms in the Oil variables and this
“unmixed” polynomial allows one to find solutions easily. Two invertible affine maps
S and T are used to scramble the UOV structure of the central map, thus, making
the system hard to solve.

Signature Generation

To generate the signature (Alg. (6.8)), we require m ≤ n (surjective), so that, every
message has a signature. Algorithm 6.8 illustrates the feature of the Rainbow scheme,
where similar to the seven colours in a natural rainbow, each of the u layers of
multi-variable polynomials are successively reduced to a linear system by selecting
(or fixing) random values for the vinegar variables.

The signature is computed on the message digest concatenated with a random
salt to achieve EUF-CMA security (see Section 2.2). The Gauss function returns a
boolean value t indicating whether the reduced system of linear equations, obtained
by guessing random values for the vinegar variables, is solvable or not. If yes, it
returns a random solution of the reduced linear system. If not, the process is repeated
again by guessing new values for the vinegar variables in F v1 (step 11).

2V` and O` are vinegar and oil sub-spaces respectively
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Algorithm 6.8 Signature Generation Sign(sk,m) [DS05]
1: procedure Sign((S,F , T ), d)
2: require: r $←− {0, 1}` . r → random salt
3: h← H(H(d)‖r) . H : {0, 1}∗ → Fm
4: x← S−1 · (h− cS) . S : Fm → Fm
5: y ← InvF(F ,x) := F−1(x) . F : Fn → Fn
6: function InvF(F ,x)
7: input: x ∈ Fm and RnbwMap F
8: output: y ∈ Fn, such that F(y) = x

9: let:
ŷ1 =⇒ {y1, . . . , yv1}
ŷ2 =⇒ {yv1+1, . . . , yv2}
ŷn =⇒ {yv2+1, . . . , yn}

10: repeat
11: ŷ1

$←− F
12:
13: {f̂ (v1+1), . . . , f̂ (n)} ← f (v1+1)(ŷ1), . . . , f (n)(ŷ1) . reducing |o1|

polynomials
using {ŷ1}
variables

14: t, ŷ2 ← Gauss(f̂ (v1+1) = xv1+1, . . . , f̂
(v2) = xv2)

15:
16: if t == TRUE then
17: {f̂ (v2+1), . . . , f̂ (n)} ← f̂ (v2+1)(ŷ2), . . . , f̂ (n)(ŷ2) . reducing |o2|

polynomials
using {ŷ2}
variables

18: t, ŷn ← Gauss(f̂ (v2+1) = xv2+1, . . . , f̂
(n) = xn)

19: end if
20: until t == TRUE
21: y ← (y1, . . . , yn)
22: return y
23: end function
24: z ← T −1 · (y − cT ) . T : Fn → Fn
25: return σ ← (z, r)
26: end procedure

Verification

The verification (Alg. (6.9)) is straightforward. The hash of the message is computed
as h, and the public key P i.e. the system of multi-variable quadratic equations, is
applied to the signature z to get the solution h′. If the two values are equal, then
the signature is accepted to be valid, otherwise discarded.
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Algorithm 6.9 Verification Verify(pk,m, σ) [DS05]
1: procedure Verify(P, d, σ)
2: h← H(H(d)‖r) . H : {0, 1}∗ → Fm
3: h′ ← P(z)
4: if h′ == h then
5: return ACCEPT . or VALID
6: else
7: return REJECT . or INVALID
8: end if
9: end procedure

6.3.2 Security

Since Rainbow is an MPKC, the security of the scheme relies on the same hard
problems as GeMSS (Ch. 5). Specifically, the security is based on the assumed
hardness of the MQ problem and the EI problem (Section 5.2). These two problems
are roughly based on finding the roots of the polynomials and finding equivalent maps
for the public key respectively. Some of the common attacks on the UOV construction
and Rainbow are OV attack, min-rank attack, Rainbow Band Separation (RBS)
attack and the most recent intersection attack and rectangular min-rank attack
[Beu20].

The goal of RBS attack is to find linear transformations S and T , that can reduce
the public key to the Rainbow form of polynomials (Eq. (6.2)). The idea is that this
system of polynomials is not a random quadratic polynomial system, but has two
groups of variables X and Y in which it is bilinear (i.e. linear with respect to both
variables). This makes it much easier to solve than a completely random system of
quadratic polynomials. The Intersection attack is essentially a key-recovery attack
that can be seen as a generalization of the RBS attack. The goal of this attack is
to find a vector x in the intersection

⋂
i∈[1,k] LiO2 (i.e. in the oil subspace O of the

structure where P(o) = 0,∀o ∈ O), that allows one to find a unique solution to the
system ([Beu20]). However, the best-known attack complexity is mostly exponential
in the input, and thus requires a marginal tweak of the Rainbow parameters in order
to meet the desired security level.





Chapter7Methodology

The most important contribution of this thesis is the study and comparison, both
qualitatively and quantitatively, of the various claimed quantum-safe digital signatures
explored in the previous chapters. In this direction, this chapter addresses the tools
and environment used, and the methods chosen to perform a quantitative analysis
and comparison of the signatures.

The structure of this chapter is as follows: (a) Section 7.1 and Section 7.2
describe the tools and platforms used for the quantitative analysis (b) Section 7.3
and Section 7.4 discusses the cryptographic protocol TLS v1.3 and evaluations in
Liboqs (c) Section 7.5 describes the additional integration of GeMSS into Liboqs.

7.1 Open Quantum Safe Project

Open Quantum Safe (OQS) is an open source project that aims at developing
and prototyping implementations of the post-quantum cryptographic algorithms,
to achieve security against quantum computers [SM16]. The project supports the
claimed quantum-resistant KEMs and SIGs, which have been submitted to the NIST
standardization process.

Since large-scale quantum computers are very likely to be built in the near future,
it is important to set up an appropriate environment to evaluate these algorithms in
the Public Key Infrastructure. Therefore, OQS is a significant step in this direction,
giving a real time evaluation of the variant implementations of individual algorithms,
flavoured with different parameters. There are two primary paths of work in the
OQS project: Liboqs and OQS OpenSSL. OQS OpenSSL has branched out from the
original OpenSSL toolkit with added quantum-safe capabilities.

89
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7.1.1 Liboqs

Liboqs [SM21] is an open source C library for cryptographic algorithms that uses the
current standard C11 [ISO11], and requires all its member algorithms to support it.
Liboqs serves multiple purposes: (a) contains a collection of clean and open-source
implementations of quantum-resistant KEMs and SIGs (b) provides an API for inte-
grating such algorithm prototypes into networking protocols and other applications
(c) serves as a test suite and benchmarking toolkit for these cryptographic algorithms.

This library also has different wrappers for specific implementations of the NIST
candidate algorithms, that can be easily used in other programming languages. Liboqs
makes use of another upstream project PQClean, and its clean C implementations to
automate the inclusion of such algorithms into Liboqs for its purposes.

7.1.2 PQClean

PQClean [KRS+21] is another (independent) open-source project that aims to provide
clean and portable implementations of post-quantum cryptographic algorithms to
enable integration into protocols and applications. PQClean follows the C99 [ISO99]
standard and requires that the standalone implementations of algorithms adhere
to it. The C99 or ISO/IEC 9899:1999 standard, contains features taken from C++
and enhancements of some existing constructs. The use of C99 seems to be due to
compatibility reasons in legacy platforms and portability reasons in varied platforms.

7.1.3 OQS OpenSSL

OpenSSL [Ope] is a commercial-grade toolkit and cryptographic software library for
secure communication over the internet. OpenSSL provides instantiations of the
Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is a
command-line tool that allows users to perform cryptographic operations such as:
(a) generate key-pairs for secure encryption and signing (b) generate trusted digital
certificates (X509 certificates) (c) generate Certificate Signing Requests (CSRs) for
certifying the generated public keys (d) verify the peer entity’s identity through the
certificate chain and so on.

Liboqs library of the OQS project enables the integration of post-quantum
cryptographic algorithms into TLS (v1.3) through their own version of OpenSSL,
called OQS OpenSSL, combined with quantum-resistant capabilities. OQS OpenSSL
has the additional feature of choosing between using only the quantum-safe algorithms
or taking a hybrid approach with classical algorithms to achieve authentication and
secure communication.
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7.2 Docker

Docker [Doc] is an open source product that provides platform as a service, making
use of virtualization at the OS-level, to develop and deliver software applications
in packages or containers. Containers are essentially isolated from each other and
include their own software, libraries and configuration files. It allows to create and
run applications separately from the underlying infrastructure enabling easy and
quick shipment of software.

In this evaluation, pre-built Docker images from OQS that support different
instances of a basic server-client setup, enabled with quantum-safe cryptographic
algorithms, have been used for testing and evaluation purposes. It has also been used
for the evaluation (Section 7.5) done as part of this thesis. This has made evaluation
much easier due to the inherent isolation offered by Docker, and therefore, has been
used as the primary platform to carry out all testing operations.

7.3 TLS v1.3

TLS [RFC8446] is a cryptographic protocol that establishes an encrypted channel for
secure communication between endpoints over the internet, for instance, between
web browsers and servers. Secure Sockets Layer (SSL) is its predecessor which has
now been deprecated. The core principles of TLS can be summarized as given below:

1. Connection is private or confidential due to the use of symmetric cryptography.
– A shared secret is negotiated for every session between the communicating
parties and the symmetric keys are generated from the secret uniquely for each
connection. The negotiation is ensured to be secure and reliable.

2. Identity of endpoints can be authenticated using public-key cryptography.
– A public key certificate signed by a trusted Certificate Authority (CA) is
provided as the proof of identity of the claimed entity.

3. Connection is reliable as it provides data integrity against tampering.
– A Message Authentication Code (MAC) is included with every message
transmitted to avoid tampering or loss of data.

TLS 1.3 consists of three high level protocols in its protocol stack: (i) TLS
Handshake protocol (ii) TLS Alert protocol (iii) TLS Record protocol. The hand-
shake protocol, as the name suggests, negotiates a secure session by selecting the
cryptographic suites that will be used between the communicating entities. The
record protocol defines the actual payload structure while the alert protocol defines
the structure of control signaling and warning messages.
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Figure 7.1: TLS 1.3 Illustrated - Handshake Protocol [DT19]
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Figure 7.2: TLS 1.3 Illustrated - Record Protocol [DT19]

The handshake procedure initiated to set up a TLS connection between a client
and a server is described below, while the figures Fig. (7.1) and Fig. (7.2) give a
graphical understanding of the TLS v1.3 handshake and record protocols respectively.

• Client Hello: Client sends a connection request to the server along with a
list of supported cipher suites, a nonce/random value and public keys.

• Server Hello: Server responds with a message that indicates the selected
cipher suites, a nonce and its public keys

• Encrypted Handshake: Client and Server calculate a symmetric handshake
key to exchange the handshake signaling messages
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◦ Server Handshake Finished: Server sends identity information through
a digital certificate signed by a trusted CA and server’s public encryption
key

◦ Client Handshake Finished: Client verifies the validity of the server
certificate and optionally provides its own identification information
through a self-signed certificate

• Encrypted Session: Client and Server calculate a symmetric application
session key to exchange the application data

◦ Session key generation: a suitable key exchange mechanism is used to
generate the random number and unique session key with the additional
property of forward secrecy

◦ Session Tickets: Server sends two unique session tickets or Pre-Shared
Keys (PSK) that can be used by the client later to start a new session
without re-negotiating the connection.

◦ Session Finished: Once the shared session keys are generated, an
encrypted channel is established for the parties to communicate and
terminated after the data exchange.

7.4 Evaluation

Liboqs and OpenSSL

So far, in the preceding chapters, the discussion about the six signature schemes in
NIST has been qualitative and theoretical, focusing on the mathematical construc-
tions, while OQS provides a testbed to evaluate them quantitatively. Specifically,
the Liboqs platform has automated test frameworks to test the performances of
the schemes. Particularly, (i) test_sig.c gives the performance metrics of the SIG
schemes, that is, the memory usage of the scheme in bytes. (ii) speed_sig.c gives
the speed metrics, that is, the number of operations per second of each algorithm.
In the process of evaluation in OQS, we discovered that GeMSS had not yet been
integrated into Liboqs or its collaborative project PQClean. Therefore, integrating
GeMSS into PQClean/Liboqs became one of the objectives in this thesis. The details
of this integration is presented in Section 7.5. Subsequently, the results obtained
by running these test suites for the rest of the schemes have been presented and
discussed in Section 8.1.

CMS and TLS

OQS OpenSSL (OQSL) allows to perform signing operations using the post-quantum
(PQ) signature schemes in applications like TLS and CMS. The PQ signatures have
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been used to generate certificates and validate the handshake in TLS, and used to
sign a sample message and verify it successfully in CMS using the OQSL commands.

For CMS, the main steps to generate a signature and verify it are: (i) genpkey
- generates the signing (private) and verification (public) keys. (ii) req (csr) -
generates a certificate signing request for the public key. (iii) x509 (cert) - generates
a signed X509 certificate that certifies the public key. (iv) cms (sign) - generates
the CMS signature on a sample message. (v) cms (verify) - verifies the generated
CMS signature. A sample CMS operation is shown in Listing 7.1 using the Picnic
signature scheme.

/home/oqs $
/home/oqs $ openssl genpkey -algorithm picnic311 -out picnic311_srv.key
/home/oqs $
/home/oqs $ openssl req —new —newkey picnic311 -keyout picnic311_srv.key -out

picnic311_srv.csr —nodes -subj "/CN=oqstest server" —config /opt/oqssa/ssl/openssl.cnf↪→
Generating a picnic311 private key
writing new private key to 'picnic311_srv .key'
-----
/home/oqs $
/home/oqs $ openssl xS09 -req -in picnic311_srv.csr -out picnic311_srv.crt -CA ecdsa_CA.crt

-CAkey ecdsa_CA.key -CAcreateseria1 -days 365↪→
Signature 0k
subject—CN = oqstest server
Getting CA Private Key
/home/oqs $
/home/oqs $ openssl cms -in inputfile -sign -signer picnic311_srv.crt -inkey picnic311_srv.key

-nodetach -outform pem -binary -out signedfile.cms↪→
/home/oqs $
/home/oqs $ openssl cms -verify -CAfi1e ecdsa_CA.crt -inform pem -in signedfile.cms -crlfeol

-out signeddatafile↪→
Verification successful
/home/oqs $
/home/oqs $

Listing 7.1: An illustration of signing operations in CMS

OpenSSL>
OpenSSL> s_client -groups kyber512 -CAfile /opt/oqssa/bin/CA.crt -verify_return_error -connect

localhost:4433↪→
CONNECTED(00000003)
Can't use SSL_get_servername
depth=0 CN = localhost
verify return:1
---
Certificate chain
0 s:CN = localhost
i:CN = oqstest CA

---
Server certificate
-----BEGIN CERTIFICATE-----
MIINPjCCBSoCFGVM3ZaV9c/PZTKIOWgNdn6V+0qEMA0GCysGAQQBAoILBgQDMBUx
EzARBgNVBAMMCm9xc3Rlc3QgQ0EwHhcNMjAxMjA1MjM1MTA5WhcNMjExMjA1MjM1
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.

.

.
v8HHzeLu8wALDRIWHUVqjZKam6Sw7wAAAAAAAAAAAAAAAAAAAAAJHjFAsZIMAAAK
UYAEUqQAKCAgA2CMDSjAIMwAoBhAEaMkEASxdCm/XS+fDg==
-----END CERTIFICATE-----
subject=CN = localhost

issuer=CN = oqstest CA

---
No client certificate CA names sent
Peer signature type: Dilithium-2
Server Temp Key: kyber512
---
SSL handshake has read 6474 bytes and written 1193 bytes
Verification: OK
---
New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
Server public key is 9472 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 0 (ok)
---

Listing 7.2: An illustration of TLS handshake and verification (client-side)

For TLS, after generating the key pair and the server certificates, similar to
CMS using the genpkey, req (csr) and x509 (cert), the additional steps at the
server-side to initiate a handshake are: (i) s_server - instantiates a TLS v1.3
server using the server certificate and the server key. (ii) s_client - instantiates a
TLS client that connects to the server along with a certificate chain to verify the
authenticity of the server. It receives the response from the server which contains
the handshake messages and two new session tickets sent by the server that can be
used for resuming connections later. An illustration of a typical TLS v1.3 handshake
is given in Listing 7.2, while the complete handshake for both server and client is
given in Appendix B.1 and Appendix B.2 respectively.

7.5 Integration of GeMSS into PQClean and Liboqs

As previously mentioned, the details of the integration of GeMSS into Liboqs/PQ-
Clean is presented in this section. While halfway through, we realized that there
has been a serious key-recovery attack [Din20] on GeMSS and its underlying HFEv-
construction. This showed that developing secure while still efficient cryptosystems
based on HFEv- paradigm, would probably be very difficult due to their inherent
properties. Due to this reason, integrating GeMSS into liboqs to test its functionality
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in TLS/CMS or other applications was not considered relevant for the time being.
Therefore, we decided against proceeding with completing the integration and instead
focus on the quantitative evaluation of the SIG schemes on different platforms using
external benchmarking results (described and discussed in detail in Chapter 8).

Nevertheless, the partial work1 of integrating GeMSS into Liboqs/PQClean has
been described in detail here, including some of the necessary changes that were
made as part of this idea. The file structure of the GeMSS-128 standalone reference
implementation has been shown in Figure 7.3 that gives an idea of some of the main
files that needed modification. The files (i) api.h - the header file that specifies
the details necessary to instantiate an API, (ii) parameters_HFE.h - the header file
that contains the different parameter sets of GeMSS for different security levels, and
other such header files were modified as required to be able to integrate them into
PQClean. From the clean version in PQClean, Liboqs has scripts that automates
easy integration of code into Liboqs [con20a].

Figure 7.3: GeMSS file structure of standalone implementation

name: GeMSS-128
type: signature
claimed-nist-level: 1
length-public-key: 352200
length-secret-key: 16
length-signature: 66
nistkat-sha256: 0fe2b0076528923e102465b2c1af09e2436a22c1fcee82d3bf6c980625a12c72
testvectors-sha256: aa7decd4ae85ede8270030d2417e1ef0a024187391fcd00b9ee395b8a4bbd8f5
principal-submitters:

- The GeMSS Team
auxiliary-submitters:

- Alice
- Bob

implementations:
- name: clean

1upto the point where we got to know about the attack in Nov 2020
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version: 20201103

Listing 7.3: Meta.yml file after integrating into PQClean

#ifndef PQCLEAN_GEMSS128_CLEAN_API_H
#define PQCLEAN_GEMSS128_CLEAN_API_H

#include <stddef.h>
#include <stdint.h>

#define PQCLEAN_GEMSS128_CLEAN_CRYPTO_SECRETKEYBYTES 16
#define PQCLEAN_GEMSS128_CLEAN_CRYPTO_PUBLICKEYBYTES 352190
#define PQCLEAN_GEMSS128_CLEAN_CRYPTO_BYTES 365
#define PQCLEAN_GEMSS128_CLEAN_CRYPTO_SEEDBYTES 48

#define PQCLEAN_GEMSS128_CLEAN_CRYPTO_ALGNAME "GeMSS-128"

int PQCLEAN_GEMSS128_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk);

int PQCLEAN_GEMSS128_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk);

int PQCLEAN_GEMSS128_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk);

int PQCLEAN_GEMSS128_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen,
const uint8_t *sk);

int PQCLEAN_GEMSS128_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen,
const uint8_t *pk);

#endif

Listing 7.4: Modified api.h file after integrating into PQClean

For this automated inclusion, a meta.yml (Listing 7.3) file was added in the
reference implementation of the source code. This contains information about the
entry points for the source code, the set of files that need to be imported, code version
and so on. In addition, the modified api.h has also been shown in Listing 7.4, that
contains necessary changes as part of the integration process into PQClean. The
changes from the GeMSS standalone version of api.h (included in Appendix B.3) to
the PQClean version of api.h (Listing 7.4), have been to retain the parameter sets
for security level I and remove the other parameter sets, and to remove the macro
definitions and other included header files.
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Along with these changes, some of the other header files that contained generic
macros to define function names, to set the parameters for each security level and so
on, were merged into a common header file to create a clean version of the original
implementation as per the requirements of the OQS APIs. As part of this, the
modified file structure in PQClean/Liboqs looks as shown in Figure 7.4.

Figure 7.4: Modified file structure in PQClean/Liboqs with GeMSS

Having made these changes, the integration also included creating new IDs as per
the Liboqs code structure for the reference implementation of the GeMSS algorithm,
so that OQS SIG IDs could be used in the Liboqs and OQS OpenSSL APIs. This
would also be needed for subsequent building and debugging of the modified GeMSS
algorithm to enable smooth integration and recognition of the algorithm within the
Liboqs/PQClean structure.





Chapter8Results and Discussion

Having understood the various types of cryptographic constructions for digital signa-
ture schemes, this chapter now addresses the final research question of weighing the
pros and cons of these schemes, in terms of design, performance in software/hardware,
and the security offered for different use cases.

There are three sets of measurements that form the basis for the evaluation of
the signature schemes. (1) Performance measurements on an Intel Core i7-8650U at
1.90 GHz (native desktop environment). (2) Performance measurements on an Intel
Xeon E3-1220 (306c3 - from SUPERCOP). (3) Hardware performance on FPGAs -
Artix-7, Kintex-7 and Virtex-7 (from ATHENA). The reason to include measurements
from external benchmarking platforms like SUPERCOP and ATHENA is to get a
complete picture of the performances of the schemes, since a few of the schemes were
not available for evaluation on specific platforms. An added motivation to include
these measurements is for a comprehensive analysis that is not limited to the native
desktop environment.

This chapter is organized as follows: (a) Sections 8.1, 8.2 and 8.3 present and
describe the results obtained from all the three platforms used for the quantitative
analysis (b) Section 8.4 presents a summary and discussion of all the six signature
schemes

8.1 OQS Comparisons

As described in Section 7.4, we made the performance measurements and analysis
on the native desktop environment using Liboqs library of the Open Quantum Safe
(OQS) project. The measurements were made using the OQS test nginx server 1

and the pre-built Docker curl client image 2. To start with, Table 8.1 shows the
sizes (in kB) of the public key (pk), corresponding secret key (sk) and the generated

1[oqs20]
2[doc20]

101
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signature (sig), for each of the six signature schemes considered. It can be seen
that the lattice-based schemes, Dilithium and Falcon, have balanced sizes for all
components, i.e. |pk|, |sk|, |sig|, unlike the multivariate counterparts, Rainbow and
GeMSS, which have very large public keys and very small signature sizes. Similarly,
the signatures based on symmetric primitives, Picnic and Sphincs+, have least key
sizes but largest signature sizes compared to the others.

Signature scheme Public key |pk| (kB) Secret key |sk| (kB) Signature |sig| (kB)
Dilithium 1.184 2.8 2.044
Falcon 0.897 1.281 0.690
Rainbow 148.992 92.96 0.064
Picnic3 0.035 0.052 12.491
Sphincs+ (128f)
Sphincs+ (128s)

0.032
0.032

0.064
0.064

17.088
7.856

GeMSS 352 0.016 ≈ 0.033

Table 8.1: The public/private key sizes for signing and length of the generated
signature for different schemes.

NIST has defined different security levels for all KEM/SIG schemes as given below,
based on the number of bits of security required for different applications [Moo19].

Security
Level

#bits of security
classical/quantum

Description

I 128-bit (AES) exhaustive key search
II 256-bit (SHA) collision search
III 192-bit (AES) exhaustive key search
IV 384-bit (SHA) collision search
V 256-bit (AES) exhaustive key search

Based on this, Figure 8.1 shows the time taken (in ms) for signature generation
and verification in OQS-OpenSSL for different security levels of all six schemes. We
observe that the two lattice-based schemes take the least time to sign and verify.
Picnic L1 and Rainbow Ia take minimal times for signing and verifying, while Picnic3
L1 and Sphincs+ Haraka take comparatively longer times. Rainbow Vc takes the
longest time for signing compared to all other schemes.
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Figure 8.1: An overview of the time taken by different signature schemes to sign a
message digest of 20 bytes.

A natural consequence of measuring the time taken for signature generation and
verification, is the number of possible signatures and verifications per second (see
Figure 8.2). It can be observed that the number of verifications per second is higher
compared to the number of signatures per second. This is due to the fact that
verification is usually much simpler and faster than signature generation for almost
all schemes, to which Rainbow is an exception. As mentioned before, though GeMSS
is not included in this measurement, it can be inferred that GeMSS might have the
same behaviour as Rainbow as they belong to the same category of MPKCs.



104 8. RESULTS AND DISCUSSION

Figure 8.2: Number of signatures and verifications per second for different security
levels of the SIG schemes.
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8.1.1 Evaluation in TLS

Along with the measurements in Liboqs, we also wanted to measure the performance
of the signature schemes in the Transport Layer Security (TLS) v1.3 cryptographic
protocol. Since TLS makes use of digital signatures to create and use public-key
certificates to ensure authenticity and integrity between the communicating parties,
it becomes relevant to evaluate how the different post-quantum SIG schemes perform
in this protocol.

Figure 8.3 shows the number of TLS connections possible per second, per user.
Here, a typical connection can be the request of a default page from the server
and the transfer of payload data within a specified time frame. OpenSSL allows
to calculate the time taken to establish one such basic connection in a given time
period. As observed, the number of TLS connections per second is proportional to
the number of possible verifications per second (from Figure 8.2), for each of the
SIG schemes. This is expected since TLS connections 3 typically require the client
and the server to mutually be able to verify their public key certificates, in order to
establish secure communication.

Figure 8.3: Number of TLS (v1.3) connections for each signature scheme

3see Section 7.3 for a detailed description of the TLS v1.3 protocol
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Listing 8.1 shows a typical http response of connecting an OQS enabled curl
client to an OQS enabled test nginx server for an example signature scheme. OQS
allows two approaches for testing the post-quantum signature schemes (a) full-fledged
post-quantum cryptography (b) hybrid (classical and post-quantum) cryptography.
That is, it provides an option to use the post-quantum cryptosystems together with
traditionally secure classical cryptosystems to ensure that the testing does not break
the application in which it is being used for evaluation. As can be seen below, Picnic
SIG scheme is used with the classical X25519 KEM scheme.

sahsridh@NTNU16393:~/DockerHub/test$
sahsridh@NTNU16393:~/DockerHub/test$ docker run -v `pwd`:/ca -it openquantumsafe/curl:0.4.0

curl --cacert /ca/CA.crt https://test.openquantumsafe.org:6694 --curves X25519↪→
<!DOCTYPE html>
<html>
<head>
<title>Open Quantum Safe interop test server for quantum-safe cryptography</title>
</head>
<body>
<h1 align=center>
Successfully connected using
picnic3l1-X25519
!
</h1>

Client-side KEM algorithm(s) indicated:
X25519
</body>
sahsridh@NTNU16393:~/DockerHub/test$

Listing 8.1: A typical response from the OQS enabled test server for one signature
scheme (i.e. picnic3-L1)

8.2 SUPERCOP Comparisons

The measurements considered so far are taken on an Intel Core i7-8650U processor
at 1.90 GHz (native desktop environment). However, since GeMSS could not be fully
integrated (due to reasons explained in Chapter 7) into the Liboqs library of the
OQS project, such measurements were not possible for GeMSS. Thus, an alternative
approach was to consider measurements from standard benchmarking toolkits like
SUPERCOP 4, that measures the performance of cryptographic algorithms (software
implementations) on different platforms. Besides, the NIST standardization process
has also considered the measurements of SUPERCOP in their preliminary evaluation
of the submitted candidate algorithms.

4System for Unified Performance Evaluation Related to Cryptographic Operations and Primitives
(SUPERCOP)
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SUPERCOP [BL18] measures the performance of the cryptographic primitives,
specifically with respect to SIG schemes, based on the below criteria:

• Time to hash and length of the digest
• Length of secret key and/or nonce used for the digest and signing
• Time to generate public and private keys and their lengths
• Time to sign and verify messages using private and public keys respectively

and the length of the signature

Figure 8.4 5 shows the performance of all the signature schemes on an Intel Xeon
E3-1220 (Hiphop - 306c3 (HW + AES)), taken from the standard benchmarking tool
SUPERCOP. The Intel 306c3 Core i5/i7 processor has been chosen as the target
platform to obtain the measurements, as it closely matches with the native desktop
environment. However, these measurements are given in terms of the number of
machine cycles taken to complete each of the operations (i.e. key generation, signing
and verification), as opposed to the time in milliseconds in previous measurements
(on the native desktop environment).

As seen from Figure 8.4, similar to the OQS measurements, Dilithium and
Falcon take lesser number of cycles for signing and verifying compared to other
schemes. However surprisingly, Rainbow Ia has the least signing and verifying times
compared to even the lattice-based schemes. In addition, GeMSS has average and
consistent verification times for different variants but takes very large number of
cycles for signing. All other schemes (Picnic, Sphincs+ and Rainbow Vc) have average
performance with respect to signing and verifying.

For the key generation, we observe that Picnic is the best as it takes the least
number of cycles. This is a natural consequence of using a symmetric block cipher
for key generation in Picnic’s design. Sphincs+ and Dilithium take average number
of cycles for key generation, while the remaining schemes (GeMSS, Rainbow and
Falcon) have worst performance in terms of key generation times.

5values on the x-axis are in the logarithmic scale (of #machine cycles) for visual convenience
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Figure 8.4: Performance of all signature schemes in Intel Xeon E3-1220 processor
for different security levels (logarithmic scale on x-axis)
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8.3 ATHENa Comparisons

Automated Tools for Hardware EvaluatioN (ATHENa)6 [GKA+10] is a toolkit to
automatically perform evaluations of post-quantum cryptographic algorithms on
hardware platforms. Specifically, the evaluation targets are Field Programmable
Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), and All
Programmable System on Chips (APSoCs).

At the time of this writing, 2 of the 6 signature schemes considered in this
work, Falcon and GeMSS, do not have hardware implementations. Out of the
remaining 4 schemes, Dilithium and Sphincs+ have a High-Level Synthesis (HLS)
based implementation while Picnic and Rainbow have a Register Transfer Level
(RTL) based implementation [DFA+20].

Figure 8.5: Resource usage of PQC signature schemes implemented on select FPGA
families [DFA+20, BSNK19, KRR+19]

The difference between these two approaches is that, in the HLS method, the
hardware implementation is synthesized from the high-level C implementation of
the cryptographic algorithms. On the contrary, in the RTL method the algorithm is
developed independently such that it is suitable for hardware implementation. Such

6named after the Greek Goddess “Athena” of Wisdom and Craftsmanship
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Figure 8.6: Time taken (in µs) for signature generation by different schemes on
selected FPGA families [DFA+20, BSNK19, KRR+19]

hardware implementations are usually written using Hardware Descriptive Languages
(HDLs) such as VHDL and Verilog.

Figure 8.5 shows the 4 signature schemes, Dilithium, Picnic, Sphincs+ and
Rainbow, implemented on one of 3 target FPGAs i.e. Artix-7, Kintex-7 and Virtex-7
[DFA+20]. Particularly, it shows the usage of resources such as Look-Up Tables
(LUTs), Flip-Flops (FFs), Slices, Digital Signal Processing units (DSPs) and Block
RAMs (BRAMs) by the four signature schemes. Picnic has a higher usage of LUTs
compared to other schemes, while Sphincs+ has the least resource usage.

Figure 8.6 shows the running times of the 4 signature schemes on selected hardware
platforms. We see that Rainbow 7 has reasonable usage of resources while still having
least timings for sign and verify operations. Meanwhile, Dilithium 8 and Sphincs+
have minimal resource-usage but very high signing and verification times. Although
Picnic uses a large number of LUTs, it has average signing and verification times
comparable across security levels in different FPGA families.

7the NIST round 1 version of Rainbow has been implemented in hardware [FG18]
8hardware implementation of Dilithium is also the most well-studied lattice-based signature

scheme across the literature [BUC19].
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8.4 Summary and Discussion

The observations made so far for all the SIG schemes on three different platforms
are summarized in this section, by comparing them based on the post-quantum
cryptographic family they belong to. This is followed by a detailed discussion
on the behaviour of these schemes that is influenced by the design, security and
implementation of the schemes.

Lattice-based schemes

Falcon:

1. Least sizes =⇒ |pk|+ |sk|+ |sig|.
2. Large number of cycles for key generation.
3. Hard to implement =⇒ no high-speed hardware implementations so far.

Dilithium:

1. Larger sizes =⇒ |pk|+ |sk|+ |sig| compared to Falcon.
2. Average number of cycles for key generation.
3. Many hardware implementations for all security levels, but performance

is very slow

Having seen how Falcon and Dilithium perform in terms of running times and sizes
(in software implementations), they are undoubtedly the best among the lot from both
perspectives. Falcon was designed with the sole intent to generate compact signatures,
which has been clearly achieved. To this extent, Falcon designers have used complex
mathematics like solving the NTRU equation in lattices and innovative techniques like
computation of the Falcon Tree for key generation. However, this affected the cost of
key generation in Falcon compared to Dilithium, which has a simpler key generation
process. Also, we conjecture that since Falcon is quite difficult to implement owing
to the complex mathematics, there are no known hardware implementations at the
time of this writing. Dilithium does have a hardware implementation, based on
HLS design, but the running time is very large compared to other non-lattice based
schemes.

In terms of design, Falcon requires high precision Floating Point Units (FPUs) for
the signing process, and it makes use of a Gaussian Rejection Sampler to generate
the signature components. This makes it vulnerable to fault attacks and side-channel
attacks that can effectively recover the secret key [MHS+19]. Therefore, widespread
adoption of Falcon may be an issue, since every implementation must be done carefully,
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requiring FPUs for both security and efficiency. On the other hand, Dilithium uses
a Uniform Sampler for the signature components, and is less vulnerable and easier
to implement securely. Nonetheless, it still needs to be protected from fault and
side-channel attacks.

In addition, Falcon is based on the GPV framework [GPV08], proven to be secure
in both the ROM and QROM, while Dilithium is based on a Fiat-Shamir heuristic,
proven secure in the ROM, and also recently in the QROM [DKL+18, LZ19] as well.
Since both schemes use a common ring and modulus (i.e. cyclotomic rings), for all
security levels for efficiency reasons, it might be possible to exploit the structure of
the ring to mount key-recovery attacks.

Multivariate based schemes

Rainbow:

1. Very large key size, very small signature size.
2. Least signing and verification times in software for one of the variants (i.e.

Rainbow Ia).
3. Hardware implementation of NIST Round 1 version =⇒ average usage

of resources with least running times.

GeMSS:

1. Largest public key size (' twice the size of Rainbow) but smallest signature
size

2. Longest time for signing and average time for verification.
3. No available high-speed hardware implementations so far.

For the multivariate schemes Rainbow and GeMSS, the sizes of the components
show an extreme behaviour due to the very nature of their constructions. Particularly,
the public-key sizes are unreasonably large, while the signature sizes are extremely
small. In terms of design, Rainbow and GeMSS are based on the UOV and HFEv−
paradigms respectively, where HFEv− is a “Big Field” scheme, and UOV operates
on “small fields”. In both cases, since the public key is a set of multivariate quadratic
polynomial equations, its large size is a natural consequence.

In terms of performance, Rainbow Ia has the optimum signing time than Rainbow
Vc and in general, is much better compared to GeMSS. Infact, Rainbow Ia has the
least signing and verifying times in comparison to all other schemes. We believe the
optimum times for Rainbow Ia is due to the fact that the set of parameters used for
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security level I, tend to have lesser number of operations performed over the defined
field. This can be substantiated by the observation that Rainbow Ia has consistently
performed better in all three measurement platforms. On the contrary, GeMSS at
security level I has the worst performance, which can be conjectured to be due to
the iterative operations in the extension field as part of the signing process.

In applications without space constraints, where the public key need not be
computed and transmitted frequently, Rainbow can be a huge advantage, since
signing is faster and the signature size is also very small. However, a major drawback
of MPKC schemes is that they have no tight security reductions. Besides, recent key
recovery attacks against both the variants, i.e. UOV and HFEv−, have exploited
the structure of the underlying mathematical constructions. These attacks have
shown that the computational cost of recovering the secret keys is much lower
than the claimed security of the schemes by the designers. The attacks have also
raised an important question of whether secure cryptographic constructions based on,
particularly HFEv−, are possible at all or not. This is an interesting new direction
in research for cryptographers and cryptanalysts alike.

Symmetric-primitives based schemes

Picnic:

1. Smallest key size with large signature size
2. Least number of cycles for key generation
3. RTL-based hardware implementation =⇒ higher resource usage (LUTs)

but average running times

Sphincs+ :

1. Smallest key size but largest signature size.
(more or less of the same order as Picnic)

2. Average number of cycles for key generation
3. HLS-based hardware implementation =⇒ least resource usage, but very

slow in signing

Coming to Picnic and Sphincs+, both have very small key sizes but larger
signature sizes. This is attributed to the fact that the designs of both schemes use
symmetric primitives which offer the advantage of shorter key lengths. This is again
substantiated by the number of key generation cycles in Picnic, which is a result of
using a block cipher (LowMC) for key generation. However, the performance of both
schemes in software implementations is average, owing to the fact that signature
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generation and verification processes are iterative (in the Decomposition function of
Picnic) and/or successively build on the signature (in the hypertree in Sphincs+).

Picnic is the only scheme that has a complete hardware implementation for
all security levels across different FPGA families among all the signature schemes
[DFA+20, KRR+19]. Even so, Picnic has higher resource usage compared to other
schemes but has good performance in hardware. Picnic uses a lot of look-up operations
as part of its LowMC cipher implementation that can roughly be considered to be a
set of substitutions and permutations, naturally leading to a higher usage of LUTs.
Sphincs+ on the other hand has minimum resource usage, as it involves only simpler
hashing operations.

Both schemes are proven secure in the ROM, and recently proven to be secure
also in the QROM [DFMS19, BHK+19, ABD+20]. Since their design is based on
simpler symmetric primitives, straightforward implementations are vulnerable to
fault and side-channel attacks, necessitating careful and tweaked implementations
that are secure. Despite having innovative designs, which are not based on hard
mathematical problems, the reasons for not selecting Picnic or Sphincs+ as the
finalists would be (1) LowMC block cipher used by Picnic is not standardized and
needs more thorough security analysis. (2) The design approach of Picnic is new
and requires more understanding and cryptanalysis. (3) Sphincs+ has very large
signature sizes and the time taken for signing and verifying are longer. (4) Deploying
Sphincs+ as a replacement to current classic public-key algorithms will introduce
significant latencies in communication.

Parameters Good Average Poor

Key sizes Picnic
Sphincs+

Falcon
Dilithium

Rainbow
GeMSS

Signature size GeMSS
Rainbow

Falcon
Dilithium

Picnic
Sphincs+

Resource usage
(hardware)

Sphincs+
Dilithium

Rainbow Picnic

Table 8.2: Summary of the component sizes and hardware resource usage in different
signature schemes
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Software Hardware

Parameters Good Poor Good Poor

Key Generation Picnic
Rainbow Vc
GeMSS
Falcon

Signing
Rainbow Ia
Falcon
Dilithium

GeMSS Rainbow Dilithium
Sphincs+

Verifying
Rainbow Ia
Falcon
Dilithium

Picnic
Sphincs+

Table 8.3: Summary of running times in software and hardware platforms of all
signature schemes

To sum up, each scheme can be categorized based on the different performance
indicators like sizes, running times and the resource usage, to evaluate them in a
comprehensive way. The above tables 8.2 and 8.3 summarize this comprehensive
evaluation giving the reader the key points to take away from each scheme. As
far as the NIST PQC standardization process is concerned, lattice-based schemes
are the best for general-purpose standard cryptosystems, since they have lower
signing and verifying times. Among them, though Falcon has lower sizes compared
to Dilithium, the latter’s easier implementation gives it an advantage over the
former. The multivariate schemes have poor sizes and performance, along with the
added serious attacks and uncertainty about their security, making them the worst
among the lot. However, Rainbow (Ia) is promising in terms of its best performance
across platforms despite its larger public key size. This seems to be the reason for
considering Rainbow as one of the finalists in NIST. Finally, Picnic and Sphincs+
seem to appear in between the extremes in sizes, performance and resource usage,
making them average among the other schemes. Even so, the innovative designs of
both these symmetric-primitive based schemes have been the reason to include them
as alternatives in NIST, and this may also lead to one of them being declared as an
alternate standard.





Chapter9Conclusion and Future work

9.1 Conclusion

In this thesis, the quantum threat to classical public-key cryptography was recognized,
leading to a comprehensive theoretical study and analysis of newer mathematical
hard problems that are allegedly quantum-safe. Specifically, digital signature schemes
based on such quantum-safe cryptographic constructions have been studied in detail,
based on the NIST PQC standardization process.

A survey of six signature schemes (three alternates and three finalists), from
the third round of the NIST process has been presented, with details of the mathe-
matical hard problems, design, security and related attacks for each of the schemes.
Complementary to this theoretical study, a quantitative and qualitative evaluation
of the six schemes has been done to get a holistic overview for different practical
use-cases. In this regard, we have done the quantitative performance evaluation
using the Open Quantum Safe project on the native desktop environment, as it has
all the schemes integrated except GeMSS. As part of this, we proceeded to integrate
GeMSS into OQS in order to be able to compare it on par with other schemes on
the same grounds. However, a recent serious attack put a hold on this, showing that
GeMSS and its construction is highly insecure. Nevertheless, for a comprehensive
evaluation of all schemes, external benchmarking measurements, both software and
hardware, have been considered and presented in this work.

To conclude, lattice-based signature schemes are indeed the best signature schemes
for general purpose use cases (only for software implementations). This is due to
the fact that lattices have simple linear operations and strong hardness assumptions,
and lattice-based cryptography has gained a lot of attention by the cryptographic
community over the last decade, producing some of the most attractive cryptographic
primitives and notions. For hardware implementations, Rainbow is very good in
terms of performance, while the utilization costs are acceptable. For the symmetric-
based schemes, their novel designs seem to be promising in terms of security and
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are future-proof, which is the most attractive feature, despite average performance
across both software and hardware platforms. Clearly, each of these six signature
schemes have their own pros and cons, that determine the use cases where these
schemes can be used.

9.2 Future Work

The study and evaluation of quantum-resistant digital signature schemes gives room
to explore new applications and possibilities where efficient and secure constructions
can be used for different use cases in the internet. In this direction, two of the
possible use cases for quantum-safe digital signatures are discussed briefly below.

Blockchain

A Blockchain (BC) is a type of database that can store different kinds of information
securely among a group of users, without the need for a trusted third party. It
consists of blocks of data that are chained together in chronological order. BCs
are mostly used as a ledger for transactions of cryptocurrency, and are transparent
and immutable (i.e. unchangeable). They can be implemented as centralized or
decentralized systems. The decentralized system ensures that transactions recorded
are irreversible and facilitates easy traceability of the cryptocurrency.

Digital signatures are used in BCs to authorize and verify transactions and assure
the authenticity of the transactions to others in the network. It might also become
necessary to mandate authentication of the users to prevent misuse and exploitation
of the BC technology for illicit activities. Since current signature schemes in the
internet are widely based on classical, pre-quantum hard problems, they would be
eventually broken and thus allow fraudulent transactions in blockchain, resulting in
heavy losses to the users. Therefore, it is evident that post-quantum digital signatures
will have to adapt to suit blockchain and similar applications in the future [Con20b].

Aggregate Signatures

Aggregate signatures have gained significant attention in the last few years, since they
have many useful applications in the public key infrastructure (PKI). An aggregate
signature is a way to combine multiple signatures on messages by multiple users.
It is similar to a digital signature scheme, with an extra algorithm Combine to
combine the individual signatures, and a modified Verify algorithm to verify the
aggregated signature. The Combine algorithm takes as input a set containing n
tuples of messages mi, corresponding public keys pki, and the individual signatures
σi computed on those messages. The Verify algorithm takes the n pairs (pki, mi)
and checks if the aggregate signature σ is actually generated from a combination of
n individual signatures σi.
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There are two ways of aggregating signatures - parallel and sequential. Parallel
aggregation requires that all users generate their individual signatures simultaneously,
and then these signatures can be aggregated by anyone without the need for any
secret key. In Sequential aggregation, a signer takes the aggregate signature from
the previous signer, computes his signature on the message to add to the aggregate
and passes this aggregate to the next signer who signs the message and so on. The
aggregate signature in this case, is sequentially and incrementally computed from
one signer to the next. However, in either case, the aggregate signature must have
the same length as a single signature on a message [Bon11].

Aggregate signatures have many application areas, a significant one being the
PKI Certificate chains, where the shorter lengths of aggregate signatures implies
reduced storage and possibly faster verification times. Since post-quantum digital
signatures need to be widely adopted soon, they can be studied further to find the
best ways to achieve aggregation, while maintaining a balanced trade-off between
security and efficiency. Also, another important research direction would be to
see which post-quantum signature constructions lend themselves to either form of
aggregation - sequential and/or parallel - for different applications.
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AppendixASphincs+ Security Notions

Some important security notions, required to establish the security of Sphincs+ and
hash-based schemes in general, are given in the two tables below (see Table A.1
and Table A.2). These security notions determine the bounds on the complexity of
mounting classical or quantum attacks on such schemes.

Pre-image Resistance (PR)
or One-wayness (OW)

K
$←− {0, 1}k;M $←− {0, 1}m

Y ← HK(M)
SuccOW

Hn (A) = Pr[M ′ $←− A(K,Y ) : Y = HK(M ′)]

Single-function, Multi-target
Pre-image Resistance (SM-OW)

K
$←− {0, 1}k;Mi

$←− {0, 1}m

Yi ← HK(Mi), 0 < i ≤ p
SuccSM-OW

Hn,p (A) = Pr[M ′ $←− A(K, (Y1, . . . , Yp))
: ∃ 0 < i ≤ p : Yi = HK(M ′)]

Multi-function, Multi-target
Pre-image Resistance (MM-OW)

Ki
$←− {0, 1}k;Mi

$←− {0, 1}m

Yi ← HKi(Mi), 0 < i ≤ p
SuccMM-OW

Hn,p (A) = Pr[(j,M ′) $←− A((K1, Y1), . . . , (Kp, Yp))
: Yj = HKj (M ′)]

Table A.1: Definitions of the security notion of pre-image resistance or one-wayness
for hash-based schemes; p - number of targets. [HRS16]

The security notions of OW and SPR have been defined in Section 2.3.3 but
given here again for ease of understanding MTA in hash-based schemes. The bounds
on the attack complexity are determined by the success probability of an adversary
A, against the scheme, to efficiently find a pre-image of a given hash function and
produce a valid forgery. (a) SM-OW defines the success probability of A to find at
least 1 pre-image, given p targets or images Yi, of the keyed hash function HK(·).
(b) MM-OW defines the success probability of A to find an instance j among many
keyed hash functions HKj (·) and a pre-image M ′, given p targets, such that it
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produces the jth image Yj . (c) SM-SPR defines the success probability of A to find
another pre-image M ′, given p targets or pre-images Mi of the keyed hash function
HK(·), which is not in the set of received pre-images but collides with one of Mi.
(d) MM-SPR defines the success probability of A to find an instance j among many
keyed hash functions HKj (·) and another pre-image M ′, given p targets, which is
not in the set of received pre-images but collides with one of Mj given as input to
the instantiated jth keyed hash function HKj (·). All the defined probabilities are
made to be negligible so that the attack complexity is very high, thus ensuring the
security of the scheme.

Second Pre-image
Resistance (SPR)

K
$←− {0, 1}k;M $←− {0, 1}m

SuccSPR
Hn (A) = Pr[M ′ $←− A(K,M)

: M ′ 6= M ∧HK(M) = HK(M ′)]

Single-function, Multi-target
Second Pre-image Resistance
(SM-SPR)

K
$←− {0, 1}k;Mi

$←− {0, 1}m, 0 < i ≤ p
SuccSM-SPR

Hn,p (A) = Pr[M ′ $←− A(K, (M1, . . . ,Mp))
: ∃ 0 < i ≤ p : M ′ 6= Mi ∧HK(Mi) = HK(M ′)]

Multi-function, Multi-target
Second Pre-image Resistance
(MM-SPR)

Ki
$←− {0, 1}k;Mi

$←− {0, 1}m, 0 < i ≤ p
SuccMM-SPR

Hn,p (A) = Pr[(j,M ′) $←− A((K1,M1), . . . , (Kp,Mp))
: M ′ 6= Mj ∧HKj (Mj) = HKj (M ′)]

Table A.2: Definitions of the security notion of second pre-image resistance for
hash-based schemes; p - number of targets. [HRS16]
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TLS Handshake - Server side

1 ~ $ openssl req -x509 -new -newkey dilithium3 -keyout dilithium3_CA.key -out dilithium3_CA.crt
-nodes -subj "/CN=oqstest_CA" -days 365 -config /opt/oqssa/ssl/openssl.cnf↪→

2 Generating a dilithium3 private key
3 writing new private key to 'dilithium3_CA.key'
4 -----
5 ~ $
6 ~ $ openssl genpkey -algorithm dilithium3 -out dilithium3_srv.key
7 ~ $
8 ~ $ openssl req -new -newkey dilithium3 -keyout dilithium3_srv.key -out dilithium3_srv.csr

-nodes -subj "/CN=oqstest_server" -config /opt/oqssa/ssl/openssl.cnf↪→
9 Generating a dilithium3 private key

10 writing new private key to 'dilithium3_srv.key'
11 -----
12 ~ $ openssl x509 -req -in dilithium3_srv.csr -out dilithium3_srv.crt -CA dilithium3_CA.crt

-CAkey dilithium3_CA.key -CAcreateserial -days 365↪→
13 Signature ok
14 subject=CN = oqstest_server
15 Getting CA Private Key
16 ~ $
17 ~ $ openssl s_server -cert dilithium3_srv.crt -key dilithium3_srv.key -www -tls1_3
18 Using default temp DH parameters
19 140380408016200:error:02006062:system library:bind:Address in use:crypto/bio/b_sock2.c:161:
20 140380408016200:error:20093075:BIO routines:BIO_bind:unable to bind

socket:crypto/bio/b_sock2.c:162:↪→
21 0 items in the session cache
22 0 client connects (SSL_connect())
23 0 client renegotiates (SSL_connect())
24 0 client connects that finished
25 0 server accepts (SSL_accept())
26 0 server renegotiates (SSL_accept())
27 0 server accepts that finished
28 0 session cache hits
29 0 session cache misses
30 0 session cache timeouts
31 0 callback cache hits
32 0 cache full overflows (128 allowed)
33 ~ $

Listing B.1: Complete TLS handshake - Server side
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TLS Handshake - Client side

1 TLS_DEFAULT_BASIC
2 / # openssl
3 OpenSSL>
4 OpenSSL> s_client -groups kyber512 -CAfile /opt/oqssa/bin/CA.crt -verify_return_error -connect

localhost:4433↪→
5 CONNECTED(00000003)
6 Can't use SSL_get_servername
7 depth=0 CN = localhost
8 verify return:1
9 ---

10 Certificate chain
11 0 s:CN = localhost
12 i:CN = oqstest CA
13 ---
14 Server certificate
15 -----BEGIN CERTIFICATE-----
16 MIINPjCCBSoCFGVM3ZaV9c/PZTKIOWgNdn6V+0qEMA0GCysGAQQBAoILBgQDMBUx
17 EzARBgNVBAMMCm9xc3Rlc3QgQ0EwHhcNMjAxMjA1MjM1MTA5WhcNMjExMjA1MjM1
18 MTA5WjAUMRIwEAYDVQQDDAlsb2NhbGhvc3QwggS0MA0GCysGAQQBAoILBgQDA4IE
19 oQD9SIs0uKB20pHhuttr8bOLqWf/n/Bh+I65Lia0cU3qxxbpyFu/hguocQrsysNV
20 tgMPNSSyE5VZlU+YOaXIrQowg0PwzogKKHbWdka2PBfrEePu/FOT5aUtR3RaScDN
21 F37uwCjZ1SJ1mowRYJsWgUPRoyzpsA26HfFFTAO8VfsyeEb/rn1jSGzG2mVoaDSV
22 GbLxS7mfUnPcXUrBqn0hpVyw+8uHeAR1fKOu844alolXppBRyUVXiLR1O8pPe87H
23 c6i/o28+LQAIjzjDTiIUrLGfcKvv5gKF1VIKuk4mVSxy8PI5hqRY5T+13bJkoU5+
24 OlscK4c1bthAOOSPvlzxgpmHeJp+kT7RfOYtowhJsVsdyBlkpHKZR7mwvqGEzpyp
25 YvLlqgqtAynwD6AaGFUALo1um41Uy0DEhZPcI3BB276L7gUNrRvSy3RJTcAcwNsa
26 Z/rw/JB2OSZVyA59nE6OwjFSLNyt+SppBdCTUS95LVbDRJGuJrqJEjTmKhgH+TPh
27 U0feCJkD2ZKaflB0ZYEu+Lj5sZh4wdzUW4LAum0kl2WmaVDbtJcgmOfMm5knD8k4
28 5vUvu5cOQmyNgeKCSC7OoCrURMUnWwdQrFGmwaNE7R74JpBf5FRamNPq6dmG8Yug
29 K4l6Xajmz0nEG7iTRo6VP+rn7LFo7s+qjmF5R44un5VDWpxaoHmi4V/0PkJbPBEP
30 XPdZFf7q2imr7O0kcbZ84kpD9JpstQIH+/cWaTzsXVLqGvNWGava64CAFmBGpXTo
31 NHgMuSlXF0OrRTp1w14NNjSenJ2ckYrkTumS2z/z20GN2ynZZ5Nt48nxplkEN9e7
32 NHfvafj9iYYMGLdMkCJ7tr1woJHQp41hT+jMk/XXdzoDnjNsFQlsUn5LyXNIB2tS
33 HwgtUBk+tmH5eB86vK2wwt5xllk6SGSahAHnwXn0QzBQUUbbRXilCBoBCcOYtSAO
34 059d2TpfUZ62qgmW1rrQ0Zry16AdfLNGD1TpwyuzBWy2CaWL1ui2gFZTdQsMK50q
35 2x4hNbbknnjjqRgxClEi5MuQ6JzJAewY0wkyskLYx8XlJEtryN5npPTSNANmIu0f
36 M48RdfBqyrslYTNaZ1lkr6xCcenHFP17iAZQ6k+Kik9weqFpWL93qtCcGvdbX3I/
37 1c6O1WOMPchXeyHne8KqFIuxqgDR7Co3t46RBgjSCmSoYm4nGrkUnftdu4+bcf7/
38 kxN964uSW9NpTOf20nUral+WXQC6dt/hoNmmf+Qu/9pHqSvbUIZIOQqIVI35NdOO
39 kTiU0ODrGDkgvsWRnR0ZMB1Tn28pUpf5F2yWn2dpXBzDxCNxb9Wx8Q63iyBw71SQ
40 oPo8evg9Ui3mVwkYzqcsO4bhqYVWcZ8nTckevmfSJurgohkaXwaO1zcBg+dF6CIW
41 JCAbyo0FqZ4b6AnE8OVRPhFQ+ogUmZ9Pdepa+x6y0ny0hWjVO9WhiGnw7WmJCpTw
42 YpNOnB7fzZOsXauTTM3sdy7p2E2O1trhjvHWqLtbienEKgXKVCJBhrtpk91cypD9
43 SyOfh1YsYBjF+OHIrawwZ4e+BzdjZRQt8sPi7g2qaAN3UjANBgsrBgEEAQKCCwYE
44 AwOCB/0A3/xOQNs2gLAQ8UsVOAGS+p7CEumkSrakuC1DCLJ6ot3sSBfOF9MWRYtq
45 ygCZOUPxoHKJp3aZXKBDCcvI4OX2KnskKzDHXlq4adTlLthLh7cFRZGbUjpqPDts
46 czMBNZ4LeVLmkqLziX6H57owv2FDk8RI0zzomvx5GhVTJuqqJ5IU7qO/xPuwbon1
47 uDFB88tO6Rk9IVkTOZ5HfQJBfo0+6S0CeUHNYDXFDHVKGxjY+Z2d3T5EAZi1F7fw
48 1yF5xs9RDh7wdYBgD+Uj7bt49tKZo1zb4fNBc0N8YlcsoPGptiSD/QxPhqHnOnV/
49 0IDOsHkyom9pWsZf51sNm8PdWXXnK4srHESpvR94wjnpEgoPQpk5nJTnLRDhn7vO
50 U4c2du1IU1SVdLXupOEIFNGlmk1o/oRzaqzEwXatiM0hRo/OmKT+rYWyLFgkEHDM
51 3a5gYimSSn+CLjX2XiZoc4FXy7rBubBogGsjTiePsyRPFsKs7QPyzZ/hpBe5DWuY
52 Dsza58PCMWGfvbTkZ9VCrcmqmSYV0gWgxcbfqU7cHaYPYogApwRnl9R/J+H0bLKH
53 aJ5ZEmIO49GpY0TO9I9Pc2rZkt3GyIu2+iJhk+tF3XY6mnDb98KTOxSK9TRFo65h
54 mA+pC8k9PDJ4OR3iWmohYsP8QERdkSUHOoREDzO1DcY7yUo32nEeR2/JcTl0TCzh
55 DMiM621oaFxQQ5l/e18f+PDgd5Ywf6nfL+wi0CNjOr2nU0rZiyMekBsd8j3T9ePh
56 SttKvYgVSDT319kZTXUw9vlrdeWfxmjTzwlWbdB/efq6Bl8MYBdAA/WDhwszPRGV
57 ZFdcjWa2ugr6Awh+lJtIsrOSatsg//+OKmD0a5alEdFY+QMnWPYNchoWvYNbf89y
58 JN2E6IY4uHu2/eCQDc+C3txSAF3+p4iv8Dhx1l3q8/5emkzA99EclKl+R+z/SXpW



133

59 Nl3/Srfb7RlugWYv5HVtDh9LxBIFd4pJL5i4fr625hdk1cUpuR48xG4q+BL/JeQu
60 Z7Co6sNJv53Om7CYbBEDHTCzO5w9oPiV4NMJofoXvvANTDK8js0Hl+CKMYBSFRU+
61 1j6xniILFmqp2BZla3yrZNL/vnq+6IEVtcxsIAHOGxxJ0HWgxiuoKuTe5H5s8Ec2
62 shoSulszrNuP7cjaW8Bw3GIwyvh3yHx9Mte3KOa+1fwuL7Y7ASFVtNCazVFcyDtq
63 4QdA1fEsCnepLxjxpaHu4HH7y3vvNuh5saOA+zEz8S/UeXzCtjIf7lLwZBN+shEH
64 OSn+hLcFBG3C3CQuxkdQD02+bqEJ62CT1eyPGtqJhT6RFnY/aiPxjD42ezIaBaGX
65 r4U19ZUSpzWGqilBl1p5a/K5ggNoYpIfOFmaDuAmQgVUtLTS3aTYblf/nEvqIgha
66 gzglWClJ+2SsAuXD5q21rCJs2Un7WzXPjxrH8nhL/vwFykr8epJaekbXPCQuMGmt
67 62OhmQ20nGBiAFdFtX985GIXj9pphheWvKolIwnG0Tsx99MkfqVWAIrMIonDzUZo
68 aq/xkvDvBZ3jye0mgmynldz6l0QehZHLVczO649JH3s/wxQBs0t5+/XXrO5cGIWT
69 bAtJO08Yn3BpgQotuJcCE+/p/cPEx/D95ZaNh86ZylrX1oNouO39zMicyzUCgPcK
70 Dn7GYjSaXZhzaV4YLY+Pv0XHoZca8/VS68leOKsZpBjVHLcefyo0egZpQ+F02+TT
71 sk9/UBS1Y0SYYsGd4t3EcfFC2XoHYH9/kCXrcMZXIiLOVI3v2KuJgFn5C+++U6Ob
72 +elGoCl9ePVYpXqRSbXRtZMJa7qhcvj78kcZRZVge5U/FLSBz5bUjLaWIIpVGwFP
73 RHShc+r1JMVnSUXsFZreXtXPJNOrpWrG2EVU/aT68tXXHxicQAh1QK8r6Vm57GgY
74 svhswj2Yex88RpqXuUD+L9r9N/SKLz1+nFz3G64P5O0fHZQjoO/hKo9RoVoXjHaj
75 Zl6a7xyqj9Aws56NzhmGCY2bLVRkvIUxXU9iBDCsHMcF0C6ecK8OkRHAVUUNj+Za
76 45RfZ4YOsP5RtPMAgm/TeoBJO7XxJuHhB/Bjo67WZ0QF3BPXcxsiT2xLMwKPxz56
77 sEHzGdcB0IY81g6mnh2k+rZtdHX6cDotmF48u0+wPbZlje5+BP8eJOzMTI7vkTw8
78 3RMV3GwMZ1WXHKZVMropIWhtxhbHscmV+McIOhRvtS0y6PTZ3iNDOn8JngdyrGWR
79 C9RCpYlGpaPvtf5cqBiHKj1iIBiFG19gMBX/422Q1kMQwMzibXUrFB9tkNCs2Wjx
80 zKlxmNDwac7VK3PbC+bLT7kwi20pyytcWNqqpDDUWTK0eQkvyZIM+v5ZyvTJd0D6
81 lkM4NA/OnRQK/T+VyOTBY7EBYSZRlN90px2biKcMoD9K/gGqi9VNsZ7xR44zpBDn
82 omfQay+K/IetFiHA8d0vxG7ZDdahQYkifeUHylB/MEiYFXwgGwuwT6g0Ly6ZBdi2
83 7riaXLS4O+hZNFzYWjfkNvs8fLUhaJiJo5ItR/NFKa82nKUSriShp2wYvblI1sXf
84 zjbQ2tf+BQgXTaaz6O35FycoNzlIVWBrgIeanqi50N3j5vX+AA0VIStOXGlzgYip
85 v8HHzeLu8wALDRIWHUVqjZKam6Sw7wAAAAAAAAAAAAAAAAAAAAAJHjFAsZIMAAAK
86 UYAEUqQAKCAgA2CMDSjAIMwAoBhAEaMkEASxdCm/XS+fDg==
87 -----END CERTIFICATE-----
88 subject=CN = localhost
89
90 issuer=CN = oqstest CA
91
92 ---
93 No client certificate CA names sent
94 Peer signature type: Dilithium-2
95 Server Temp Key: kyber512
96 ---
97 SSL handshake has read 6474 bytes and written 1193 bytes
98 Verification: OK
99 ---

100 New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
101 Server public key is 9472 bit
102 Secure Renegotiation IS NOT supported
103 Compression: NONE
104 Expansion: NONE
105 No ALPN negotiated
106 Early data was not sent
107 Verify return code: 0 (ok)
108 ---
109 ---
110 Post-Handshake New Session Ticket arrived:
111 SSL-Session:
112 Protocol : TLSv1.3
113 Cipher : TLS_AES_256_GCM_SHA384
114 Session-ID: C14C2B060A705FA053D0BAAEC1CA29A6F6888C87596E722BA2648673E37C40ED
115 Session-ID-ctx:
116 Resumption PSK:

E0073940105052225E1D18C2619AF42B69C070E283ACE9513EAE089ECC8C2DD34F509E5F55D28DA358A734332D7B50E4↪→
117 PSK identity: None
118 PSK identity hint: None
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119 SRP username: None
120 TLS session ticket lifetime hint: 7200 (seconds)
121 TLS session ticket:
122 0000 - dc b0 d3 ff a0 ed ca c9-20 69 73 82 17 f5 56 55 ........ is...VU
123 0010 - 84 58 f3 82 63 7a 35 00-29 97 cc ea f1 f5 03 cb .X..cz5.).......
124 0020 - 03 d8 98 95 2a 92 3c 9f-a2 ba 68 6b f6 ac b0 24 ....*.<...hk...$
125 0030 - ed 89 62 a5 53 b6 23 9a-bc d3 8b 9f e5 57 4b 41 ..b.S.#......WKA
126 0040 - 04 98 81 bd e9 25 83 11-63 c8 13 66 76 21 73 8d .....%..c..fv!s.
127 0050 - 5c 3d f5 01 b3 70 58 a0-32 76 2f 01 a1 4e a0 be \=...pX.2v/..N..
128 0060 - 12 29 c9 7b d7 d0 fd 06-0c a0 c0 cf bd 1e 06 a7 .).{............
129 0070 - 83 ab 9e 30 af 82 ef 7e-cf 9c 71 b2 c1 76 77 c8 ...0...~..q..vw.
130 0080 - 68 22 6f 8c 1a e2 1f ac-a9 01 48 8c 5b d9 76 d4 h"o.......H.[.v.
131 0090 - 55 24 2a 67 2a 64 c2 69-32 c0 e9 32 8f 4b 8b 7f U$*g*d.i2..2.K..
132 00a0 - 42 ab d6 f6 49 25 23 cb-ed 16 9d 07 7c 30 cc f0 B...I%#.....|0..
133 00b0 - 1f 5a 4c b6 7f 31 1e 48-6b b0 b2 c9 f7 dc a1 17 .ZL..1.Hk.......
134
135 Start Time: 1607278278
136 Timeout : 7200 (sec)
137 Verify return code: 0 (ok)
138 Extended master secret: no
139 Max Early Data: 0
140 ---
141 read R BLOCK
142 ---
143 Post-Handshake New Session Ticket arrived:
144 SSL-Session:
145 Protocol : TLSv1.3
146 Cipher : TLS_AES_256_GCM_SHA384
147 Session-ID: 0926D7EF572CA824DA4803FE7BD1B1D681327D7BCD7E69F9FFAB1F9CA5B38C56
148 Session-ID-ctx:
149 Resumption PSK:

3048689CAA813C0C03B38007FA85FF7E4C47462C60B0DF67EAEA9A90711BC809721DFDD43EFF4C11458CA7E1B72CB276↪→
150 PSK identity: None
151 PSK identity hint: None
152 SRP username: None
153 TLS session ticket lifetime hint: 7200 (seconds)
154 TLS session ticket:
155 0000 - dc b0 d3 ff a0 ed ca c9-20 69 73 82 17 f5 56 55 ........ is...VU
156 0010 - 8f b0 7e 8f 7c 0b 2d 94-08 e8 ca f7 e4 8a c0 0f ..~.|.-.........
157 0020 - 6b d7 5c ac f7 87 bb 01-95 9b 0b cd fc a6 f4 8c k.\.............
158 0030 - 0d 9e 6a 97 fe da 3f 14-22 67 36 37 67 cf 45 ab ..j...?."g67g.E.
159 0040 - f3 9e 61 bd 0a 80 8d c9-d7 3a 29 25 8b 53 71 b3 ..a......:)%.Sq.
160 0050 - a6 73 53 78 b0 71 81 67-9a 34 39 32 6c e1 cf c8 .sSx.q.g.492l...
161 0060 - ef 2b 3c 83 86 28 09 58-8d 08 9d 37 cb 9c eb 9d .+<..(.X...7....
162 0070 - ee 09 9a 61 c5 f7 f1 8b-55 c8 40 31 ff 20 f5 a5 ...a....U.@1. ..
163 0080 - 6d e3 41 13 98 53 60 e9-62 6b 37 79 41 1a aa 7c m.A..S`.bk7yA..|
164 0090 - 94 f3 3e 1d 05 3a c4 62-cc a4 24 3d 29 e7 70 42 ..>..:.b..$=).pB
165 00a0 - 2e 8c f2 d1 7b c4 64 00-8e 70 4b a1 3c 8f 44 ff ....{.d..pK.<.D.
166 00b0 - c1 49 47 16 e8 68 0a 36-9b 3d 92 2b 5c c5 91 13 .IG..h.6.=.+\...
167
168 Start Time: 1607278278
169 Timeout : 7200 (sec)
170 Verify return code: 0 (ok)
171 Extended master secret: no
172 Max Early Data: 0
173 ---
174 read R BLOCK

Listing B.2: Complete TLS handshake - Client side
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GeMSS api.h file

#ifndef _API_H
#define _API_H

/** Set to 1 if you want to use MQsoft in SUPERCOP. */
#define SUPERCOP 0

#include "prefix_name.h"
#include "parameters_HFE.h"
#include "sizes_HFE.h"
#include "choice_crypto.h"
#include "sizes_crypto.h"

/** Size of the secret-key in bytes. */
#define CRYPTO_SECRETKEYBYTES SIZE_SK
/** Size of the public-key in bytes. */
#define CRYPTO_PUBLICKEYBYTES SIZE_PK
/** Size of the signature (without the document) in bytes. */
#define CRYPTO_BYTES SIZE_SIGN

/** Name of the current used cryptosystem. */
#ifdef GeMSS

#define CRYPTO_ALGNAME "GeMSS"
#elif defined(BlueGeMSS)

#define CRYPTO_ALGNAME "BlueGeMSS"
#elif defined(RedGeMSS)

#define CRYPTO_ALGNAME "RedGeMSS"
#elif defined(WhiteGeMSS)

#define CRYPTO_ALGNAME "WhiteGeMSS"
#elif defined(CyanGeMSS)

#define CRYPTO_ALGNAME "CyanGeMSS"
#elif defined(MagentaGeMSS)

#define CRYPTO_ALGNAME "MagentaGeMSS"
#elif defined(FGeMSS)

#define CRYPTO_ALGNAME "FGeMSS"
#elif defined(DualModeMS)

#if INNER_DualModeMS
#define CRYPTO_ALGNAME "Inner_DualModeMS"

#else
#define CRYPTO_ALGNAME "DualModeMS"

#endif
#elif defined(QUARTZ)

#define CRYPTO_ALGNAME QUARTZ_
#elif defined(QUARTZ_V1)

#define CRYPTO_ALGNAME QUARTZ_V1_
#else

#define CRYPTO_ALGNAME "MQsoft"
#endif
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#if SUPERCOP
int
crypto_sign_keypair(unsigned char *pk, unsigned char *sk);

int
crypto_sign(unsigned char *sm, unsigned long long *smlen,

const unsigned char *m, unsigned long long mlen,
const unsigned char *sk);

int
crypto_sign_open(unsigned char *m, unsigned long long *mlen,

const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk);

#else
int
PREFIX_NAME(crypto_sign_keypair)(unsigned char *pk, unsigned char *sk);

int
PREFIX_NAME(crypto_sign)(unsigned char *sm, unsigned long long *smlen,

const unsigned char *m, unsigned long long mlen,
const unsigned char *sk);

int
PREFIX_NAME(crypto_sign_open)(unsigned char *m, unsigned long long *mlen,

const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk);

#define crypto_sign_keypair PREFIX_NAME(crypto_sign_keypair)
#define crypto_sign PREFIX_NAME(crypto_sign)
#define crypto_sign_open PREFIX_NAME(crypto_sign_open)

#endif

#endif

Listing B.3: Existing api.h file in GeMSS standalone reference implementation
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