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Abstract

The well known clustering algorithm k-means is quite naive in its operation and
many of the distance calculations it performs are unnecessary. Earlier research has
shown that by exploiting the triangle inequality theorem the majority of distance
calculations can be avoided, while still providing the same clustering result. In
this thesis we aim to adjust k-means exploiting triangle inequality to operate on
the parallel processing framework Apache Flink. Additionally, we evaluate the
performance of both k-means and k-means with triangle inequality in an intrusion
detection system environment.

The performance is evaluated by using a quantitative research approach where
we apply a within-subjects research design to collect data. In the experiment we
utilize the well known NSL KDD intrusion detection dataset. Two main experi-
ments were performed. One where we kept the number of iterations static and
varied the number of clusters, and a second experiment where we kept the num-
ber of clusters static and varied the number of iterations. Both experiments were
repeated with a varying degree of parallelism.

Our results show that for a large number of clusters there are no increase in
performance when clustering with k-means exploiting triangle inequality. A large
number of clusters caused a large overhead in the iteration function of Apache
Flink. However, with a lower amount of clusters and when performing the clus-
tering over many parallel instances, a performance increase of up to 8.8% is ob-
served. Furthermore, when evaluating the algorithms with a varying number of
iterations we observed that there was a performance increase for all iteration val-
ues. The increase was most significant for a lower number of iterations. In an
intrusion detection setting where a low number of clusters are used, the results
are promising, but further research is needed in order to reduce the overhead and
increase the performance further.
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Sammendrag

K-means er en av de mest brukte kluster-algoritmene, men den fungerer pa en
relativt naiv mate og majoriteten av distansekalkulasjonene den utfgrer er ungd-
vendige. Tidligere forskning har bevist at ved & utnytte triangelaksiomet er det
mulig & unnga majoriteten av disse distansekalkulasjonene og samtidig ende opp
med de samme Kklustrene. I denne avhandlingen justerer vi k-means algoritmen
slik at den kan fungere med et rammeverket for parallell prosessering kalt Apache
Flink. I tillegg til dette vil vi evaluere ytelsen til bade den originale k-means algo-
ritmen og k-means som utnytter triangelaksiomet, fra et inntrengings og detek-
sjonssystem perspektiv.

Ytelseevalueringen blir gjennomfgrt ved & folge kvantitative forskningsme-
toder og vi bruker et oppsett under eksperimentene hvor vi tester begge algo-
ritmene pa det samme datasettet. Under eksperimentene bruker vi et datasett
med nettverkstrafikk laget for & evaluere inntrengings og deteksjonssystemer kalt
NSL KDD. To eksperimenter ble gjennomfgrt. Ett eksperiment hvor vi holdt antall
iterasjoner likt, men endret pa antall kluster. I det andre eksperimentet holdt vi
antall kluster likt, men endret pa antall iterasjoner. Begge disse eksperimentene
ble gjennomfgrt med varierende grad av parallellisme.

Resultatene viser at ndr man bruker k-means med triangelaksiomet og bruker
mange klustre finnes det ingen ytelsesforbedringer, snarere tvert imot. Et stort
antall klustre fgrte til mye ekstraarbeid for iterasjonsfunksjonen i Apache Flink.
Ved & bruke et mindre antall klustre og kjgre programvaren med flere parallelle
instanser sa observerte vi en pkning i ytelse pa 8.8% med k-means med triangelak-
siomet i motsetning til den originale k-means algoritmen. Videre, nar vi evaluerte
k-means med triangelaksiomet med et varierende antall iterasjoner observerte vi
bedre ytelse for alle testede verdier i forhold til den originale k-means algoritmen.
Fra et inntrengings og deteksjonssystem perspektiv er dette lovende, da det ofte
er et mindre antall klustre som brukes. Vi anbefaler likevel videre forskning for &
minimere ekstraarbeidet i iterasjonsfunksjonen og dermed gke ytelsen ytterligere.
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Chapter 1

Introduction

In today’s society vast amounts of information are being generated every day.
Data from a huge number of applications, systems and networks are retained for
a long period of time. With this increase in data volume, analysing the data for
unwanted or malicious events becomes increasingly computationally demanding
as well. During the last decade within the information technology sphere big data
has emerged as a field to handle the vast amount of data that are being generated
as efficiently as possible. In the security field enormous amounts of information
are also being analyzed and traffic is being monitored for malicious activity. Ma-
chine learning methods have been introduced to extract anomalies that should be
handled in order to avoid damages to an organization or an individual.

In this first chapter we introduce the topics covered in this thesis, together
with a problem description. Moreover, research questions are presented and the
scope and contributions for this thesis are given. Lastly, the structure of the thesis
is described.

1.1 Keywords

A set of keywords is compiled for this project in order to describe the scope and
make it easier to locate this project after its completion.

unsupervised machine learning, clustering, anomaly detection, intrusion detec-
tion, k-means, triangle inequality, apache flink

1.2 Problem description

K-means is one of the most used clustering algorithms used for unsupervised learn-
ing problems, or in other words, learning problems that does not rely on labeled
data in order to make decisions. The original implementation of k-means is quite
naive, as the algorithm calculates the distance for every object in the dataset to
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each of the centroids. These calculations are being performed every iteration, but
a large majority of these calculations are redundant when it comes to the final
outcome of the clusters.

Triangle inequality has been proven to decrease the computational require-
ment with great success. In other works, k-mean has been implemented on dis-
tributed computing platforms such as Apache Hadoop and Apache Spark. How-
ever, to the best of our knowledge, such an implementation has not been adjusted
to work with another up and coming platform called Apache Flink. One goal of
this project is to adjust the k-means algorithm with triangle inequality on the
Flink platform. Then we will research how this can be applied in intrusion de-
tection use-cases. Thereafter, a study of the efficiency of the implementation can
be performed. Circumstances where the clustering does perform well or does not
perform well will be identified as well.

1.3 Research questions

Research questions have been formulated for this thesis and are forming the base
of what is researched in this project.

e How could k-means clustering with triangle inequality be adjusted to oper-
ate with Apache Flink?

e How can we apply k-means clustering with triangle inequality on Apache
Flink in intrusion detection applications?

e How much can k-means clustering with triangle inequality be optimized
compared to regular k-means?

e Under what circumstances could the implementation of k-means with tri-
angle inequality thrive?

Our hypothesis is that k-means with triangle inequality can be adjusted for
Apache Flink. Furthermore we hypothesize that the average speedup for k-means
with triangle inequality on Apache Flink compared to regular k-means on Apache
Flink is greater than 50%, since the vast majority of the distance calculations being
performed will be skipped.

1.4 Scope and contributions

The main focus of this thesis is to research how the performance of the k-means
algorithm with triangle inequality can be increased when utilizing the Apache
Flink framework. Additionally, we will investigate how any performance increases
can be exploited in an intrusion detection system environment.
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By the end of this project the contribution of this thesis will be a k-means algo-
rithm employing triangle inequality that is adjusted in order to utilize the Apache
Flink API for parallel processing. Furthermore, a comparison of the performance
between k-means with and without triangle inequality will presented.

1.5 Thesis structure
The remainder of this thesis is structured as follows.

In chapter 2 we cover background material relating to the scope of this thesis.
First we present intrusion detection and prevention methods and then cover
the topic of machine learning. Lastly, we present how modern cyber attacks
are carried out by threat actors.

In chapter 3 we present related work that this thesis is built upon, which include
how the k-means algorithm work, how triangle inequality can be exploited
decrease the number of distance calculations performed in said algorithm
and then research on how this has been performed in other parallel frame-
works.

With chapter 4 we explain and discuss the choice of methods used in this thesis.
This includes methods for how the software was developed and how the
experiment is designed. Actions taken to ensure the validity of the research
and dealing with bias is discussed as well. Additionally, we introduce the
dataset used to evaluate the applications and a description of the experi-
mental environment is also included.

In chapter 5 we present the theoretical contribution of this thesis. With this
chapter we introduce key concepts and methods we utilized to answer the
research questions.

In chapter 6 we present the results from the experiment. We evaluate the perfor-
mance of regular k-means, versus the performance of k-means with triangle
inequality. Only a subset of the full results are presented in this chapter, the
full set of results can be found in the appendices.

In chapter 7 we discuss and interpret the results presented in the previous chap-
ter. Furthermore, we discuss the limitation and drawbacks of the selection
solution.

With chapter 8 a conclusion is given and and we end the thesis with suggestions
for further work.






Chapter 2

Background

In this chapter we will present relevant background material to the reader of this
thesis. The sections of this chapter will introduce different topics touched upon
in the coming chapters. Topics presented here are not comprehensive, however a
broad overview will help the reader put the subject of this thesis in to a broader
context. We begin with presenting intrusion detection and prevention methods
and then we introduce the topic of machine learning. Then we detail the com-
position of a cyber attack and end with discussing parallel processing and the
MapReduce programming model.

2.1 Intrusion detection and prevention

Intrusion detection is a research field that have been studied quite a lot throughout
the last couple of decades. With the ever growing amount of network traffic and
security related events researchers in this field are still faced with new challenges
as this increase continue. In this thesis we derive the definition of an intrusion
[1] from the US agency NIST (National Institute of Standards and Technology),
which states that an intrusion is:

"[.. ] any set of actions that attempt to compromise the integrity, confi-
dentiality, or availability of a resource."

Furthermore, we derive NISTs definition of the term intrusion detection [2],
which states that an intrusion detection is:

"[.. ] the process of monitoring the events occurring in a computer system
or network and analyze them for signs of possible incidents"

Systems with intrusion detection or prevention capabilities are often referred
to as Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS).
These are software systems that are designed to automate the process of detecting
security incidents, and in some cases attempt to block these security incidents in
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real-time. IDS and IPS include a feature set that is mostly overlapping with each
other.

The main objective for such systems is to monitor and detect malicious activity,
performed by a malicious actor. For instance, a malicious actor may compromise
and gain access to a system within a monitored network by brute-forcing (the act
of trying to log on using multiple passwords for an account) an account in the
system. The IDS is designed to detect this incident and report it to a security re-
source within an organization (an analyst, system administrator, etc.), which will
initiate the necessary actions in order to minimize damage to the compromised
system.

There exists a wide variety of IDS and IPS implementations such as Snort!,
Suricata?, Zeek (formerly Bro)®, Fail2Ban* and many more. These are usually
classified by both their detection method and the scope of protection (where the
IDS or IPS are located). These two classes are outlined below.

2.1.1 Detection method

One can structure the detection method of an IDS/IPS into one of two main cat-
egories: signature-based detection and anomaly-based detection. The main dis-
tinction between those two categories is that the first one is best suited to detect
known attacks, while the latter one is suited for detection unknown attacks. How-
ever, none of the methods are strictly constrained to detect either known or un-
known attacks. This will be further detailed in the following subsections. In certain
cases in the literature a third detection approach is mentioned and that is stateful
protocol analysis detection [2]. With this approach the protocols themselves are
profiled and any deviations from how the protocol normally intended to be used
is alerted. Having said that, we deem this detection method more obscure and is
therefore omitted from this overview.

Signature-based detection

An IDS/IPS with a signature-based detection approach tries to match the incoming
events with a pre-defined set of signatures. This approach is sometimes in the
literature called misuse detection. A signature is a pattern that is written prior to
the analysis in order to match on and detect known attacks. Some examples of
signatures could be:

A HTTP request that contains the characters "’0R 1=1 --". This could indicate a
SQL injection attack, where the attacker exploits inadequate string sanita-
tion of an application and gains direct access to the database.

WWW.Snort.org
www.suricata-ids.org
www.zeek.org

1
2
3
“www.fail2ban.org
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A Windows Security log event with the ID 4719, which means that the audit
policy on the system was changed. This could indicate that a malicious actor
is trying to cover their tracks by disabling the auditing mechanism.

In general, signature-based detection has a higher accuracy and precision rate
than anomaly-based detection approaches. Both the examples of signatures above
can quickly detect an attack that consists of what the signature pattern is written
to match with, by utilizing efficient search algorithms. One example of such a
search algorithm is the Aho-Corasick search algorithm, that is included with the
well known open-source network IDS Snort [3, 4]. This algorithm constructs a
finite state pattern matching machine from the keyword to be searched. A finite
state pattern matching machine will process the characters of the search string
and when a exact string match is found, it is reported as a match.

However, the downside of using a signature-based detection approach is that
only known attacks can be detected, if a signature have been written to detect the
attack. Unknown attacks or so called zero-day attacks are very hard to detect with
this approach. In addition to this, only small changes in the payload can render the
signature useless. This is because the finite state machine will not report a match
even with a one bit difference in the keyword and the payload, and thus make it
possible for the attacker to avoid detection. For instance, an attack could simply
add a space right before and after the equals sign in the first signature to avoid de-
tection. The SQL injection attack would still work as intended with such a change.

If the signatures above were to match on certain events it does not necessarily
mean that a real attack has been detected. Both of the signatures could trigger on
benign events as well, for instance with the latter signature a system administrator
could have changed the audit policy in order to perform maintenance. Such an
alert will be deemed a false-positive.

Anomaly-based detection

An IDS/IPS with a anomaly based detection approach a profile or baseline of nor-
mal activity on the system or in the network must be established before monitoring
can begin. The period that is used to record normal activity is often referred to
as the training period. This training period should include as much normal and
benign activity as possible, while avoiding malicious activity. Recording malicious
activity in the training period will skew the profile and attacks may not be alerted
as an intrusion. A profile may include the following metrics as a baseline:

User A does only log in to a specific system from the IP range 192.168.20.0/24.
Any deviations from that will be alerted.

Host 1 only utilize 50% or less of the available CPU processing power. Any devi-
ations from that will be alerted.
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Activity that is deemed to be too far from the metrics collected in the training
period will be alerted as an intrusion. This detection approach allows for the de-
tection of so called zero-day attacks or attack that are not researched and written
signatures for detection. However, by using this approach one assumes that all
activity outside the regular baseline is an intrusion, which is an assumption that
does not often hold in the real world with complex systems and networks.

Anomaly-based detection systems can further be grouped in to one of the fol-
lowing groups, based on the approach it uses to determine what is anomalous
events or benign events. These approaches are either statistics-based, knowledge-
based or machine learning-based [5]. An anomaly-based detection mechanism
with machine learning methods is the approach that is explored in this thesis.

2.1.2 Scope of protection

When discussing the scope of protection of and IDS/IPS it is often structured in to
one of two main categories: network-based or host-based. These categories are the
most prevalent in the literature, however in some research application-based and
target-based is covered as well. Application-based protection methods monitor a
specific application for anomalies, while target-based methods monitor a specific
file for unauthorized changes or verifies its integrity. In the following sections we
are only going to cover the two most prevalent methods, network-based and host-
based.

Network-based IDS/IPS

As the name implies, network-based IDS/IPS monitor network packets and its con-
tents within a network. The IDS/IPS can either be installed in the network in a
physical appliance designed to monitor network traffic or install a software version
of the network-based IDS/IPS on a pre-existing host residing in the network. A
network-based IDS/IPS requires a network card that support promiscuous mode,
which essentially means that the card will accept all packets, even the packets
that are not addressed to that card. Furthermore, the IDS/IPS can be configured
in one of two ways, either with an inline deployment or as a passive deployment.

Inline deployment is a design where all the traffic has to pass trough the ID-
S/IPS on its route toward the final destination. This approach makes for a more
efficient prevention of malicious traffic as the time between detection and re-
sponse is lower than if the detection solution had to communicate with a third
party prevention mechanism to block the traffic. However, placing a network sen-
sor inline can greatly impact the latency of the traffic when the solution has to
analyze large amounts of traffic [6, p. 174].

In contrast to an inline deployment, a passive deployment only receives a copy
of the network traffic and the original traffic is being transmitted without any
delays caused by the passive IDS/IPS solution. This copied traffic could be derived
from a span port, which is a port on a network switch that outputs all traffic
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passing the switch. Other solutions for sending the traffic to an inline IDS/IPS are
to utilize a network tap which is a device that copies all traffic directly from the
network media or to utilize a load-balancer that deliver that traffic to a sensor and
the destination [2]. Passive deployments do not cause the same latency as inline
deployments [6, p. 174].

Host-based IDS/IPS

Host-based IDS/IPS solutions reside on specific hosts and monitor it for malicious
or unwanted activity. In order to monitor a fleet of hosts in an environment, one
IDS/IPS is required to be installed on each host. The detection is usually based on
data from either logs, contents found in the memory or the system calls that the
various applications are making via the operating systems API [6, p. 55].

2.1.3 Challenges in intrusion detection

Different detection methods touched upon above all have their flaws and which
method to be used in a ICT environment depends on a lot of factors. As already
mentioned signature-based systems can produce alerts with few false positives,
but are not able to detect novel attacks. With anomaly-based systems the false
positive rate is often higher, but such systems are able to detect novel attacks.
Furthermore, anomaly-based systems still suffer from low throughput because a
high volume of traffic and data to analyze. [7] Advanced threat actors often per-
form their operations in a slow and steady manner as well, forcing the analysis
of data from a even greater timeframe. Therefore research into optimizing the
performance of anomaly-based detection system is important.

Additionally, a greater percentage of the traffic than earlier is encrypted which
is positive for confidentiality of information, but an issue when analyzing the traf-
fic for unwanted activity. [7] This makes the placement of network sensors even
more crucial for detecting malicious activity. Host-based IDS/IPS systems will also
become important.

2.2 Machine learning

Machine learning, which can be considered as a branch of artificial intelligence
[8], is a research field that have gained a lot of traction in the last couple of
years with the increase of available computational power. In the information se-
curity sphere it is being utilized to detect anomalous or unwanted events. Machine
learning algorithms are usually split into two main categories; unsupervised al-
gorithms and supervised algorithms. Supervised algorithms compile models that
can be used to make a decision based on earlier data that has been collected and
labeled with a correct outcome. Unsupervised algorithms on the other hand take
in an unlabeled dataset and try to find patterns or a hidden structure in the data.
In both categories there exists a plethora of algorithms and techniques that are
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suitable for various learning problems. In the subsections below we provide some
examples of the techniques that can be utilized.

2.2.1 Supervised learning

With supervised learning algorithms, pre-labeled data is used in order to infer a
model that can be applied to non-labeled data. [8] The quality of the pre-labeled
dataset is important in order to obtain a well generalized model and satisfactory
results. Classification is one of the most well known problems that are often solved
by using supervised learning algorithms. A classifier assigns objects in a dataset
to a finite set of classes. The object, which can be seen as the dependent variable
is analyzed in order to determine which class this object or independent variable
belongs to. With regards to information security a common example often used
to illustrate classification is mail filtering. Based on a set of attributes or features
from the mail itself, it is classified either as spam or not spam. Such a problem
where there are two classes is referred to as binary classification, while in cases
that there are more than two classes it is referred to as multinomial classification.
Well known classification algorithms include decision trees, k-nearest neighbours
and Bayesian classifiers.

Besides classification, regression is another well known supervised learning
technique. Instead of assigning each object to a class, regression is often used
when predicting continuous values, sometime known as forecasting [8]. The in-
dependent variables can still be either continuous or discrete, but the dependent
variable or target is continuous. This continuous variable is determined as a func-
tion of the independent variables, also known as the attributes. The function is
inferred from the independent variables that is given in advance. Well known
regressional methods are support vector machines, regression trees and linear re-
gression. [9, p. 9]

When developing and evaluating machine learning algorithms with a pre-
labeled dataset, the dataset is often split up in to two parts. One dataset used
for training the algorithm, called the training set, and one dataset for evaluating
the algorithm, called the testing set. Using the same data in the training phase as
in the evaluation phase would skew the results and provide an inaccurate eval-
uation of the algorithm. In some cases where there are not a huge amount of
labeled data, a technique called k-fold cross validation can be applied in order to
utilize the whole dataset in training and testing. The dataset is first split into k
subsets and then the machine learning algorithm is evaluated k times. For each
time the algorithm is evaluated one new unique subset is utilized as the testing
dataset, while the others are used as the training dataset. The final evaluation is
then reported as the mean scores from the k evaluation iterations.

2.2.2 Unsupervised learning

Contrary to supervised learning, unsupervised learning takes in data that has not
been assigned any labels. Instead of using the knowledge of these labels, unsuper-



Chapter 2: Background 11

vised algorithms try to find structures or relationships within the dataset that are
given. Clustering is often the technique that comes to mind when first discussing
unsupervised learning, as this method does not require the data to be pre-labeled.
Clustering aims to find objects within the data that are as similar as possible, deter-
mined by a certain dissimilarity function. Some clustering algorithms determines
the number of clusters as a part of the computation, while other algorithms such
as k-means use a predetermined number of clusters before arranging the objects
in to a number of clusters. When using a predefined number of clusters, this is of-
ten chosen based on domain knowledge for the problem at hand. However, there
exists methods that can aid in selection of the number clusters. The elbow method
is a well known technique for choosing the number of cluster for a given dataset.
With this method the explained variance for an increasing number of clusters is
plotted against the number of clusters. [10] The explained variance is a ratio that
is calculated by taking the sum of squares between the cluster and dividing it by
the sum of squares total.”

In order to be able to use clustering in a classification tasks, labeling of the
clusters is required. This labeling can simply be performed by extracting the car-
dinality of the cluster and deriving some information from that or the utilization
or more complex cluster evaluation methods. [11]. However, such labeling is not
covered in this thesis.

The two most popular techniques when it comes to clustering are either hi-
erarchical clustering or partitional clustering. [9, p. 15] Hierarchical clustering
can either be performed in a bottom-up manner or in a top-down manner. When
using a bottom-up approach each object in the dataset initially belongs to their
own cluster with one object. The most similar clusters, based on some dissimilar-
ity function, are then merged together. With the top-down manner, this process is
reversed and the clustering begin with one large cluster of all the objects. Then for
each iteration the cluster is split up into sub-clusters. [12] The correct number of
clusters can then be selected, either by the algorithm itself or by a person with do-
main knowledge. Advantages of hierarchical clustering is that is can handle data
with an arbitrary shape, as well as it support for arbitrary types of attributes. The
disadvantage of these techniques is that the time complexity is relatively high,
which is especially disadvantageous with large datasets. [12]

Partitional clustering techniques need to have the number of clusters c set in
advance, before starting the clustering process. Then, based on some similarity
metric the algorithm searches for the optimal solution objects are partitioned in
to ¢ clusters. The clustering process initially starts with ¢ clusters that can either
be randomly selected or selected by some selection algorithm and then the clus-
ters are recomputed iteratively until the iteration outputs no new clusters that
is improved with regards to the similarity metric. [9, p. 14] K-means is a parti-
tional clustering algorithm and is very similar to what is described here. It will
be explained more in depth in chapter 3.1. Advantages of partitional clustering

Swww.davidmlane.com/hyperstat/B160638.html
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techniques are the relatively low time complexity and the algorithms that fall into
this category are quite efficient in general. When it comes to the disadvantages,
as opposed to hierarchical clustering that can handle any data, partitional cluster-
ing cannot handle non-convex data. Furthermore, outliers in the data could easily
impact the clustering result and the number ¢ of cluster that is chosen will also
heavily impact the end result. Partitional clustering techniques will also frequently
output a local optimum, as opposed the global optimum that is desired. [12]

2.2.3 Challenges in machine learning

It is very rarely possible to apply some machine learning method on a dataset and
retrieve the desired results. The fact that no single machine learning algorithm can
be applied to any problem and yield usable results are illustrated with the no free
[unch theorem. This theorem states that no single algorithm can beat a random
guessing of the results for every given data. [ 13] Therefore, with machine learning
we have a plethora of algorithms and parameters to differentiate on, based on the
problem at hand.

However, there still exist many challenges that can negatively affect the end
result that researchers and developers must be aware of. Overfitting is a common
problem with supervised learning algorithms. This phenomenon occurs when the
model is not generalized well enough and it will yield a very high accuracy in the
training phase. However, when evaluating the model on test data the accuracy is
considerably lower than in the training phase. The model is too tightly fit to the
training data. k-fold cross validation, as described above, is a technique that can
be utilized to overcome overfitting. On the contrary side, we also have underfitting
where the trained model is too generalized and does capture the structure of the
data in a satisfactory manner. [13]

Furthermore, we have the problem known as curse of dimensionality. It is easy
to believe that more dimensions in the a dataset will yield better results, as there
are more information. This is in many cases quite opposite of the truth and hav-
ing more dimensions will often produce worse results than using fewer features
or dimensions. Obtaining generalized models get exponentially harder with the
number of dimensions used. [13] Distance metrics such as the Euclidean distance
also suffers from this and the metric becomes less meaningful with the increasing
number of dimensions. [14] More dimensions can cause a lot of noise and then
the distance metric between each point becomes equally distant from each other.
Lastly, whichever solution is chosen to solve a problem and especially with regards
to classifying malicious events from a computer security perspective, there will al-
ways be some false positives and false negatives. When it comes to classification
of such events is is important to assess the trade-off between a high false positive
rate vs. a high false negative rate.
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2.3 Composition of a cyber attack

Early on when research into the intrusion detection research field began, malware
and computer worms were the main threat that defenders was worried about. It
was widely believed that the threat actors were individuals, pursuing unautho-
rized access to computer networks in order to earn respect in technical hacking
communities they were a part of. The consequence of attacks performed by such
threat actors was mostly downtime, loss of data and the time and money spent to
reinstall compromised systems [15].

In the last decade more motivated and skilled threat actors have emerged that
pose a much greater threat to organizations than the threat actors mentioned
above. Such threat actors are often referred to as Advanced Persistent Threats,
or APTs for short. The characteristics that separate APTs from more traditional
threat actors such as opportunists or script-kiddies is that APTs have clear objec-
tives and targets for their attacks [16]. Often, the targets are organizations with
valuable intellectual property or government organisations with classified infor-
mation. Furthermore, APTs structure their attacks in a highly organized manner
in order to maximise the possibility of successfully reaching their objective and it
is mostly believed that such threat actors work in organized groups that are well
financed. This financing often comes from governments, the military or in some
cases private companies [ 16]. As these groups are well funded, they do not aim for
short-term monetary gain. This means that their attack campaigns can be carried
out over an extended period of time, while utilizing stealthy tools, techniques and
procedures to avoid detection. APTs have the capacity to do a lot of research and
development as well and therefore find and leverage zero-day vulnerabilities in
their attacks.

Considering the great threat such highly organized attacks pose, it is important
that defenders can engage with breaches in way that efficiently can terminate
attacks as early as possible. In 2011, Hutchins et. al. [17] published a model called
the Intrusion Kill Chain model, which aims to describe advanced attacks as an
integrated process where each phase is dependent on the prior phase in order to
succeed. For defenders, the main goal is to break this chain of events to terminate
the attack. Early detection is key to reach this goal and intrusion detection systems
is an important tool to facilitate this detection.

The seven different phases included in the intrusion kill chain model, is dis-
played in figure 2.1. Below follows a list of the phases with a corresponding ex-
planation of actions performed in the phase, that is discussed in [17].

Reconnaissance In this first phase a threat actor will attempt to collect as much
information as possible regarding the specified target. This information col-
lection could for instance be performed by utilizing human intelligence gath-
ering techniques (HUMINT), open-source intelligence techniques (OSINT)



14 Ringdalen: Applying K-means with Triangle Inequality on Apache Flink

Reconnaissance
¥
Weaponization
¥
Delivery
¥
Exploitation
¥
Installation
¥
Command and Control
¥
Actions on Objectives

Figure 2.1: The intrusion kill-chain model

or technical reconnaissance tools used to map out the network and finger-
printing of systems used by the target.

Weaponization A threat actor use the information obtained in the reconnais-
sance phase to craft a specialized package that can exploit one or more
vulnerabilities in the victims environment. This package can for instance
consist of a remote access trojan (RAT), hidden within a Microsoft Office
document or some other file that a victim is tricked in to opening.

Delivery In this phase the threat actor delivers the weaponized package crafted
in the last phase to one or more victims. The transmission can either occur
directly or indirectly [16]. With direct methods the threat actor often utilize
e-mail or similar communication methods to deliver the package. While,
with indirect methods the threat actor first compromise a trusted third party
and utilize this third party when delivering the package. A third party could
for example be a software company that regularly serves the threat actors
target with patches for software and the malicious package could be hidden
within such an update.

Exploitation After delivery of the package the malicious code inside is executed
by some means. The execution could either be performed manually by trick-
ing a user into executing it or a legitimate feature could be utilized in order
to execute the code automatically.

Installation With successful exploitation in the last phase threat actors install
malicious code in the system and ensure that this code is persistent on the
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system, even after reboots. This persistence can be obtained by utilizing
what is referred in the literature as Auto-Start Extensibility Points, which is
features in a system used to run code at startup without any user interaction
[18].

Command and Control After successful exploitation and installation the threat
actors need to establish a communication channel in order to issue com-
mand to the installed RAT. This communication channel could be as sim-
ple as a regular SSH tunnel, however, more covert channels could be used
instead. An example of such a covert channel is when threat actors leave
pre-configured commands on social media sites and the RAT is then pulling
the commands from those sites in order to determine what action should be
performed [16].

Actions on Objectives In this final phase the threat actors perform the necessary
actions in order to achieve their objectives. As mentioned above, the objec-
tives often consist of exfiltrating intellectual property or classified informa-
tion. An objective may also include to move laterally in the environment, to
locate the desired information or goal. If that is the case, this whole process
of reconnaissance to actions on objectives is performed again until the final
goal is reached.

2.4 Parallel processing & MapReduce

Big Data is a term that has been used loosely over the past couple of years when
discussing the influx of new data sources and the substantial volume of data de-
rived from those sources. The data volume exceeds the capabilities of traditional
technologies, both in terms of storage capacity and analysis. [19] As a result
of those limitations within traditional technologies new models and frameworks
have been developed in order to handle the large volume. These novel models
and frameworks include distributed filesystems and parallel programming mod-
els such as MapReduce, which is discussed below. Distributed file systems are
storage solutions that can be spread across hundreds of nodes. Distributing this
storage need can therefore provide more reliable storage for large quantifies of
data as well as cost-effective storage, compared to traditional single node storage
solutions. [19]

In the sphere of information security, the claim that there is an influx of data
holds true as well with large organizations onboard more employees and ICT sys-
tems. In order to comply with regulatory compliances and being able to monitor
these systems for malicious activity event logging is enabled. Furthermore, the
traffic from those systems and employees are captured and analyzed as well. At
the beginning of the last decade it was estimated that, depending on the size of
the organization, 10 to 100 billion events are generated by ICT systems every day.
[20] One can safely assume that this number have risen significantly in the last
ten years.
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The following two section provide a brief overview of MapReduce and the
Apache Flink framework utilized in this project work.

2.4.1 MapReduce

MapReduce is a programming model that has been proven to be efficient in use
when dealing with large volumes of data in a parallelized environment spread
across multiple nodes. [21] The programming paradigm is heavily utilized at
Google in their processing operations of huge quantities of data. As the name
implies, a MapReduce program consists of two operations; the map operation and
then the reduce operation. The map operation take a key/value pair as the input
and perform some type of custom operation on the value provided as input. The
map operation then emits one or more key/value pairs as output. This output is
referred to as a intermediate key/value pair as this is then used as input for the
reduce operation. In the reduce operation all these pairs provided as input is pro-
cessed and in most cases aggregated to a smaller set of key/value pairs than was
provided as input to the reduce function.

Say for instance that there is a need to identify how many times a set of users
has logged in to some system within the span of the last year. All this information
exists in the retained log files, however the amount of data is to large in order to
use traditional methods for analyzing. With a MapReduce program this task can be
split up into smaller subtasks, in a parallel environment. The log files would then
be split up into n partitions, which is processed by n nodes. A map function written
for the purpose will emit a key/value record for each line of the log file where
a user that existed in the set of desired users. These output key/value records
from the map function would look something like (userl, 1), (userl, 1) and
(user2, 1). The records will then be used as input for the reduce function, that
will accumulate records with equal keys, resulting in an output of (userl, 2) and
(user2, 1).

2.4.2 Apache Flink

Apache Flink is an open source project that stems from research and develope-
ment at the Technical University of Berlin and is now managed by the Apache
Software Foundation. Flink is a processing framework that can work with both
stream and batch data, which in terminology used by Flink is referred to as un-
bounded and bounded streams. The framework is designed to be employed in
a distributed manner over a large number of nodes, in order to process large
amounts of data. Furthermore, the architecture of Apache Flink revolves around
using in-memory structures, when performing computations which in turn offer
better performance than writing and reading to disk.® The architecture of Flink
differs from other similar frameworks, such as Apache Spark or Apache Hadoop,
in that it use a true streaming engine for its execution, as opposed to treating

Shttps://flink.apache.org/flink-architecture.html
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Transformation Explanation

The map transformation takes one element as input, ap-
plies the custom transformation and provides one ele-
ment as output, a so called one-to-one mapping. This is
performed for each element in the DataSet.”

The filter transformation takes on element as input
Filter and only output the element if the custom transforma-
tion function returns true.”

The distinct transformation takes element from a
DataSet and removes duplicate elements.”

The aggregate transformation provides built-in function
Aggregate to sum all elements or find the min / max of all the ele-
ments in the DataSet.”

Map

Distinct

Table 2.1: Overview of some Apache Flink transformations

streaming data as micro-batches. For both bounded and unbounded streams this
streaming approach is used. [22] The programming model of Apache Flink is sim-
ilar to the MapReduce model described above. However, Apache Flink includes
additional transformation as well, besides the Map and Reduce transformation.
Some of these transformations are detailed in table 2.1.

Apache Flink offer several APIs that can be used to make applications for a
range of different use-cases. The applications, written in either Java or Scala, are
compiled into a JAR file and then executed in a parallel environment. This envi-
ronment consists of one jobmanager (master) and multiple taskmanagers (slaves)
that work together in order to execute the application. [22] The APIs offered by
Apache Flink is structured in three layers, where the lowest layer provide high
expressiveness but it is not very concise. APIs at the top of this layered structure
offer concise functions, but with lower expressiveness.® This top layer consists of
two relational APIs, namely a SQL and Table API that can be used to make queries
in the data that flows trough the Flink engine, much like in database systems. In
the middle of the layered APIs we find the DataStream and DataSet API, which
handle unbounded and bounded data respectively. We utilize the DataSet API in
this thesis. The DataSet class in Flink is a special class which can be considered an
immutable collection of the data the application is working with.® An important
distinction to bear in mind in this thesis is the difference between dataset (lower-
case letters) and DataSet (with capital letters). When using the latter we refer to
the DataSet class, while using the former it refers to the dataset used to evaluate
the algorithms.

’https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/batch/dataset_transformations.html
8https://flink.apache.org/flink-applications.html
°https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/api_concepts.html
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When executed the data-flow of the application follows a directed acyclic
graph (DAG), that begin with a data source, then transformations are applied
the data and then the data is written to a datasink.!? A datasink is where data
is written to at the end of execution, such as to a web socket or a distributed
filesystem.!! Even though the data-flow follows a DAG, special forms of itera-
tions are allowed. Unlike other similar frameworks such as Apache Spark and
Hadoop, Flink include some custom operators that handle iterations. The two op-
erators are named bulkIteration and deltaIteration. With the first operator
the whole dataset is used in each iteration, while with the latter iteration operator
this dataset is divided in to a working set and a solution set. [23] The working
set contains data that is actively being worked with and forwarded to the next
iteration, while the solution set contains data that no longer require any transfor-
mations.

Ohttps://ci.apache.org/projects/flink/flink-docs-stable/concepts/programming-model.html
Uhttps://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/
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Related Work

In this chapter we present the reader with related research that built the founda-
tion for this thesis. First we present the original k-means algorithm and then we
present the work of optimizing this algorithm by exploiting the triangle inequal-
ity theorem. Furthermore, research on parallel implementation of k-means with
triangle inequality will be introduced as well.

3.1 K-means

k-means, is one of the most well known and used algorithms for clustering data.
It is used within many different areas as it is not as complex as other algorithms
and it is quite fast. The algorithm was published by two researchers independently
in 1965 and 1982 by Edward W. Forgy and Stuart Lloyd respectively [24, 25]. In
some cases the k-means goes by the name of these two inventors, and is therefore
sometimes referred to a as the Lloyd-Forgy algorithm. In this thesis we simply
refer to this algorithm as k-means or normal k-means, as we also use a modified
version of the algorithm which is explained later.

As mentioned earlier k-means is categorized as a partitional clustering method,
as the algorithm use a predefined number of clusters and iterates in a way to ei-
ther minimize or maximize a numerical criterion. [9, p. 338] The k in k-means
indicates the number of pre-defined clusters, while the means illustrates that the
centroid for each cluster is the mean of all samples within that cluster. The centroid
is the arithmetic mean point of a cluster and at the first iteration these centroids
often are selected at random or pre-selected by some algorithm. It is important to
remember that the end result of the clustering will vary depending on the initial
centroids that was selected. Even though k-means is regarded as a fast algorithm
the time complexity grows fast with very large datasets. Its time complexity can
be described by O(n?), where n is the number of points to cluster. [26] This means
that the time complexity is proportionate to the number of input points to group
in to clusters.

19
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In the steps below we illustrate in detail how k-means iterates in order to
output the final cluster results of any given dataset.

1.

First, k is pre-determined and given as an input parameter, either based on
domain knowledge or based on some analysis performed beforehand. Addi-
tionally, the number of total iterations i is also given as an input parameter.
In some cases a limit is set to determine when the algorithm has converged
as well, meaning how small of a distance the centroids move between iter-
ations.

Then initial centroid selection is performed. Initial centroids can either be
picked randomly from the set of input points, be given in advance or deter-
mined by some other method such as k-means++.

Each point is assigned to the nearest centroid and becomes a part of the
cluster for the given iteration. The distance between a point and a centroid
is defined by a distance metric. Euclidean distance is most commonly used
and this is what is shown in equation 3.1 with n dimensions.

d=/(x;=y1)2 + (X3 = y2)2 + ...+ (X3 — ¥p)? (3.1)

When all points are assigned to a centroid, new centroids are calculated.
This is performed by taking arithmetic mean of the whole cluster. [9, p. 341]

. A check is then performed to determine that the total amount of iterations

has not been reached and that at least one centroid has moved more than
the convergence limit. If both of these statements are true, the clustering
process continues and the process repeats itself from step 3. If one of these
statements is false, the clustering process ends and outputs k clusters.

3.2 K-means with triangle inequality

In any true triangle the length of one side is less than the length of the sum of the
two other sides. This is known as the triangle inequality theorem. Phillips [27]
published an article in 2002 that propose some modifications to the k-means clus-
tering algorithm in order to reduce the computation time. In this article Phillips
exploit the triangle inequality theorem to avoid provable redundant distance cal-
culations. In an article by Elkan from 2003 [28], using the k-means with triangle
inequality is once again proposed. In this article two lemmas are provided to show
how the triangle inequality theorem is exploited to obtain both upper and lower
bounds used to skip redundant distance calculations.
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In these two lemmas x represent a point and c; represents a centroid. d()
is a distance function which returns the distance between any two given points.
Lemma 1, shown in equation 3.2, allows us to skip a distance calculation between
x and ¢; when d(x,¢;) < 0.5d(cq,¢c5), as illustrated by Elkan in [28].

If d(cq,cy) = 2d(x,cq) then d(x,c;) = d(x,cq) (3.2)

With lemma 2, shown in equation 3.3 we can skip some distance calculations
for a point to a new centroid, based on knowledge of how much the centroid has
moved compared to the last iteration.

d(x,cy) = max{0,d(x,cq)—d(cq,c9)} (3.3)

Experiments performed in the article from Elkan [28] are using datasets with
up to 1000 dimensions, while still benefiting from excluding the redundant dis-
tance computations and achieving better performance.

3.3 Parallel k-means with triangle inequality

Research performed by Al Ghamdi et. al. [29] in 2017, use this improved k-means
clustering algorithm on the distributed computing framework Apache Hadoop.
As the framework does not natively support the use of iterations, an iteration
driver is used to control the iterative element. Two approaches are suggested in
order to adjust k-means with triangle inequality to operate on Hadoop. In the
first approach, an extended vector with the points and all necessary information
for the triangle inequality to be exploited is included. These vectors are written
to the Hadoop Distributed Filesystem (HDFS) at the end of an iteration and are
read from the same filesystem again at the start of the iteration. With the second
approach, the researchers use a method in which they only write the necessary
information to Bounds Files in between iterations. With a parallelism of 16 the
researchers observe a relative speedup, compared to normal k-means, of up to
6.8 times.

Lastly, what inspired this master thesis project is the research conducted by
Chitrakar and Petrovic [30, p. 133]. K-means with triangle inequality, also re-
ferred to as k-meansTI, was in this work implemented on Apache Spark with the
goal of analyzing digital evidence. They present a framework where the points
are extended with the upper bound and lower bounds inside a resilient distributed
dataset for Spark. The implementation was measured against a regular implemen-
tation of k-means included in Spark, and was evaluated with multiple datasets.
These datasets had a number of attributes ranging from 41 up 962. One of the
datasets they used was the KDDCup99, with both benign and malicious network
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traffic from a military network environment. With this dataset no increase in per-
formance was observed when using k-meansTI and the performance dropped
drastically even though many distance calculations was skipped. For the larger
dataset KDDCup98-Big, which they produced by doubling the amount of features
by copying the dataset, a larger performance increase of 1.5 times was observed
with k-meansTI when they utilized a cluster size of 500. None the experiments
in the study was performed with a varying degree of parallelism. They concluded
with that a performance increase is most likely to be observed when the data
consisted of many dimensions and was not sparse in nature.
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Choice of Methods

This chapter describes the methods utilized to answer the research questions
stated in 1.3, and justify the selection of these methods. The process followed in
order to develop the applications used in the experiments are described first and
then the selection of the dataset is justified. Furthermore, we describe how this
dataset was pre-processed. In the end, the research approach and design utilized
to collect and analyse data is laid out, as well as the environment we performed
the experiments in.

4.1 Software development

In order to perform the experiment two applications were required, namely an
application that can perform regular k-means clustering and an application that
can perform k-means clustering with the triangle inequality. An agile development
method was used in order to create these applications. In the book Software En-
gineering [31, p. 76] five principles define an agile development process. The first
principle is user involvement, which states that the user of the application should
be involved in the development process to provide requirements and evaluate
each new iteration of the application. In our case, the user is the researcher which
used the software to answer the research questions. Principle number two spec-
ifies that change should be embraced in the process as requirements often change
trough out the development cycle. Third, the development should focus on in-
cremental delivery. This means that for each iteration of the application should
include a small number of new requirements. Furthermore, the fourth principle
focus on maintaining simplicity and one should strive to eliminate as much com-
plexity as possible. Lastly, the fifth principle say to focus on people, not process.
This is an important principle forming an agile process, as it allows the people
working on the software to use their own knowledge and experience without be-
ing impeded by processes.

For this research project an agile development method was suitable because
only one person was involved when developing the software. In addition to this

23



24 Ringdalen: Applying K-means with Triangle Inequality on Apache Flink

—

Requirements engineering Design and implementation

S~

Figure 4.1: The agile development process

the project was relatively small compared to larger software systems, and the
developed applications was not tightly coupled to other systems. This agile process
we followed is illustrated in figure 4.1. The figure illustrates the cyclic process
where requirements are being set and then implemented. After implementation
testing was performed in order to verify that the features were implemented and
worked as intended. Testing was performed manually by running the application
and comparing the output to the expected output. Then this process began again,
with further requirements until all requirements for the application was fulfilled.

Apache Flink includes several examples® of applications in their code base.
One of these examples is a Java application performing k-means clustering. This
example application served as a base for the development and was extended heav-
ily with more features required for this research. First the application with normal
k-means was developed, then the application with k-meansTI was developed fur-
ther by forking the normal k-means application and extending it. This was done
in order to ensure that the two applications were as similar as possible. The ex-
perimental work and setup is described in full in chapter 5.

4.2 Dataset

The dataset that was chosen for this research was the NSL KDD dataset, which is
introduced in [32]. This dataset consists of records from the well known KDD Cup
19992 dataset. The authors [32] analyzed the original KDD Cup 1999 dataset and
pointed out some inherent flaws in it that could affect classifiers that were using
the dataset and therefore affecting the results of the classification. First, and most
importantly a large percentage of the records was redundant. This duplication of
records could cause a bias towards the records that occur more frequently in the
training phase of a classifier. Secondly, in the original KDD dataset the test set did
not reflect the training set in terms of distribution of records with different lev-
els of difficulty. In the NSL KDD dataset these issues were resolved by removing
redundant records and re-generating the training and testing sets. The full NSL
KDD dataset consists of 41 different features.

lgithub.com/apache/flink/tree/master/flink-examples
2kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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4.2.1 Pre-processing

In order to utilize the dataset for the application written, pre-processing steps
were performed on the dataset. These pre-processing steps are outlined in the
sections below.

Removing categorical features

Euclidean distance is the distance metric we utilized in the k-means algorithm for
this work. This distance metric only support the use of continuous attributes [9,
p- 326]. In the NSL KDD dataset there are some values that are discrete. The values
that are two-valued (either O or 1) can be ordered and treated as a special case
of continuous feature, according to Kononenko [9, p. 188]. Those are therefore
kept. When it comes to the features that are discrete and consists of more than two
values, are removed from the dataset. In this case that means that three features
are removed, namely the protocol type, service type and the flag.

Label encoding

The applications that are written can only handle integers as labels for the records.
Therefore class labels are translated to integers, where class 0 is normal traffic,
and class 1 is abnormal traffic.

4.3 Experiment design

In order to answer the research questions for this project we applied a quanti-
tative research approach. With this approach we aim to find explanations and
make predictions from collected data that is inherently numerical of nature. Fur-
thermore, as stated by Leedy and Ormrod [33, p. 98], the intent of quantitative
research is to "identify relationships among two or more variables and then, based on
the results, to confirm or modify existing theories or practices". This means that we
are interested in finding a cause-and-effect relationship between some variables.
To identify this relationship we used a true experimental design called within-
subjects design which allowed us to compare the effectiveness of two different
treatments on our selected dataset. In order to measure the effects we control the
independent variable, while measuring the dependent variable. An independent
variable is a variable that we as researchers can tweak in order to change the out-
come of an experiment. The dependent variable is therefore the variable that is
affected by any change in the independent variable. [33, p. 59]

In a within-subjects research design, which sometimes is also referred to as
repeated measures design, different treatments are administered to the same sub-
jects. The treatments should preferably be administered as close to each other in
time as possible. Furthermore, treatments should be applied to the subject in a
repeated manner, in a randomized order. An illustration of the experiment design
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Subject Time —

Dataset Txk—means Obsk—means

Txk—meansTI Obsk—meansTI

Figure 4.2: Within-subjects design

is displayed in figure 4.2, where Tx indicates the treatment applied, while Obs
indicates the observation / collection of the dependent variable.

In our case when we say the subject, we mean the dataset that we are perform-
ing the calculations on and the treatment is either normal k-means or k-means
with triangle inequality applied. We performed two different variations of the ex-
periment in order to measure any change in speedup for the clustering. In the first
experiment we varied the number of clusters (k), while using the same number
of iterations (i). In the second experiment we varied the number of iterations (i),
while using the same number of clusters (k). In both experiments we measured
the total runtime in milliseconds that the algorithms used in order to cluster the
data. This means that the independent variable in each of our experiments were
the treatment, either normal k-means or k-means with triangle inequality. Addi-
tionally, the k and i can be seen as independent variables as well that we tweak
and observe the results. The dependent variable was the execution time. In both
experiments we also recorded the number of total distance calculations each time
the algorithms was executed, and this measurement is also an dependent vari-
able. For both the first and the second experiment we executed the the algorithms
ten times, and alternated between the treatments. Besides this, all experiments
where replicated running varying levels of parallelism (p), meaning the number
of nodes that the Apache Flink application was allowed to utilize. p can be seen
as a independent variable as well, that we control.

4.3.1 Validity and bias

Validity in research describes how reliable, accurate and meaningful the results
of an experiment is. Validity can be divided in to two categories, internal validity
and external validity.

In order to be able to draw reliable conclusions from our data and establish a
cause-and-effect relationship it is important that the experiment has a high degree
of internal validity. [33, p. 59] We primarily do two actions in order to maximise
the internal validity, randomizing the order of the experiments and restarting the
Apache Flink process between each execution. Randomizing the order of the ex-
periments allows us to rule out any degradation of the system over time. Say for
instance that we executed the experiments with an increasing number of k and
some of the memory was not released after execution. This could lead us to a
wrong conclusion than with a larger k, the execution time is greater, when in fact
the application executed slower because of less memory. Furthermore, between
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every execution we restarted the Apache Flink process in order to avoid any mem-
ory issues and to perform all experiments under as similar conditions as possible.

External validity say something about the extent the research can be gener-
alized and replicated in a different setting. For this research project the external
validity relies on the dataset utilized. It can be argued that the NSL KDD dataset
mostly consists of traffic not found in modern networks and therefore is not ap-
plicable to most organizations traffic pattern today. However, when it comes to
traffic patterns of different networks today there are no correct answer, as most
networks are unique with various kinds of traffic. It would therefore be hard to
find a dataset that could be generalized to any network. Furthermore, the main
focus of this research is to measure the efficiency of the clustering and in a similar
setting with the same amount of features the results can be generalized.

Bias is another element which can affect the result and conclusions drawn.
Both instrumentation bias and researcher bias can come in to play. When it comes
to the instrumentation bias we use Apache Flink’s built in history server to collect
the total execution time. Conclusions are drawn based on the assumption that this
metric is accurate.

Moreover, when it comes to researcher bias, two elements can be considered.
The researchers expectations of the outcome and programming competency on
the platform. A researchers expectations and knowledge of previous results from
the literature can influence the researchers objectivity. In order to counteract this
bias, it is important that the conclusions is tightly coupled with the statistical
observations. When considering the researcher programming competency a situ-
ation could emerge where certain optimization techniques are not utilized as the
researcher is not aware of the techniques. However, this will not affect the results
in a major way when comparing the two applications as measures are taken to
make them as identical as possible. This is accomplished by first developing the
first application, and then developing the second application by extending on a
fork (identical copy) of the first one, as described in section 4.1

4.4 Collection of metrics

The metrics we collect for analysis is the execution time of the application, the
total amount of distance calculations and the number of bytes transferred trough
the iteration function (partial solution function), but only for the k-meansTI ap-
plication. Very few bytes are transferred by the iteration function in the normal
k-means application, as the points and their upper and lower bounds are not trans-
ferred to the next iteration.

After an execution of the application, called a job, metrics are stored in a JSON-
file which can be retrieved via an API at a later stage. Both the execution time and
the total amount of bytes sent through the iteration function for each specific job
are collected via this API. Custom functionality, such as information about the dis-
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Type Number | RAM | Disk | Virtual CPUs
Master 1 8 GB | 40 GB 2
Slave 8 4GB | 30GB 2

Table 4.1: Overview of virtual machines

tance functions, are as default not included in the JSON-file. To overcome this
and collect information about the number of distance calculations performed, ac-
cumulators were introduced in the source code. Accumulators are simple counters
provided in Apache Flink that have an add operation and a final accumulated re-
sult. The add operation of these accumulators was executed each time a distance
calculation was performed, making it possible to keep track how many distance
calculations the two applications performed.

4.5 Logical experiment environment

Apache Flink was deployed in an OpenStack environment provided by NTNU. The
full setup consisted of one master node and seven slave nodes. A full specification
of the virtual machines that was deployed is displayed in table 4.1. These specifi-
cations were chosen in order to maximise the RAM for each host, while efficiently
utilizing the available quota. All the machines used CentOS version 7.6 (x86 64-
bit instruction set) as the operating system. The Java version on all machines was
the OpenJDK version 1.8.0_242. Both the master node and the slave node uti-
lized Apache Flink version 1.9.1, which was the latest version available when this
project began.
We configured the environment with the following settings;

the jobmanager.heap.size was set to 6144mb, while the taskmanager.heap.size
was configured with 3072mb. Slave hosts were built by first configuring one ma-
chine with the software mentioned above, and then a snapshot of this machine
was taken. All the slave hosts were then replicated by using this snapshot.



Chapter 5

Theoretical Contribution

In the last chapter the overall process and method used to develop the two appli-
cation were described. With this chapter we define key concepts and provide an
explanation of the theoretical contribution of this thesis. Both applications are de-
scribed and it is explained how they produce the output based on the input given.
First we describe the inner workings on the extended regular k-means application,
then we describe the inner workings of the k-meansTI application.

5.1 Adjusting k-means for Apache Flink

Apache Flink includes several example applications with the source code. One
of these examples is a simple k-means implementation that support clustering of
points with two dimensions, and a fixed number of iterations. In order to per-
form the experiments support for an arbitrary number of dimensions was added.
Furthermore, support for stoppage of the algorithm when it had converged was
added as well.

5.1.1 Support for n dimensions

We adjusted the application to allow for n dimensions as the input. The number
of dimensions is given as an argument before the application is executed. Both
the Point and Centroid, which are custom data types, are read from the rows of
two separate files. These two classes extend a Base class, which includes common
functionality of the two data types such as string representation and calculation of
the distance between the point and any other point. These two data types are then
stored in one DataSet containing points and one DataSet containing centroids.

5.1.2 Support for convergence criteria

Apache Flink offers two methods of terminating an iteration function, either when
a pre-defined number of iterations is reached or if a specific DataSet is returned

29
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Figure 5.1: Illustration of the iteration process

empty. We utilize the latter method when executing the application with a spe-
cific convergence criterion. The iteration function of Apache Flink is illustrated
in figure 5.1, and the dashed lines indicates how the data flows. This illustration
is taken from the Apache Flink documentation.! In the first step of the iteration
process the function takes a IterativeDataSet as input. Then one or more transfor-
mations are applied to this IterativeDataSet in each step of the iteration. After the
transformations are applied, the data is then used as input for the next iteration,
illustrated in figure 5.1 as the next partial solution. When the iteration reaches its
termination point a final dataset is given as the output.

In this application, when executing a regular k-means algorithm, the next par-
tial solution between each iteration consists of the centroids that was computed.
Additionally, we also include an object named COI (Carry Over Information) in the
next partial solution. In this object we store the euclidean distance between the
centroids from the previous and current iteration. A check is performed at the end
of each iteration if each of those distances are greater than the convergence crite-
ria. In a situation where all the centroids have moved less than the convergence
criteria, an empty DataSet is returned and the iteration process is halted.

5.2 Adjusting k-meansTI for Apache Flink

Using the application with regular k-means as a base, we adjusted it further in
order to exploit the triangle inequality in the clustering process. In order to achieve
this, the points with their respective upper and lower bounds from an iteration
had to be transferred to the next iteration, along with the centroids as well. The
iteration functionality in Apache Flink is limited in the sense that it only supports
the transfer one dataset between each iteration. To overcome this we introduce
an approach where a tagged tuple is utilized. Details regarding this approach is
described in the sections below. The outline of the main function of the application
is illustrated with pseudo-code in algorithm 1. In this code the while loop represent
the iteration functionality of Flink, so the while loop does not function as a regular

lwww.ci.apache.org/projects/flink/flink-docs-release-1.9/dev/batch/iterations.html
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loop that one might expect. i represent the value of the iteration parameter and
i; represent counter that increases for each iteration. In Flink this is all handled
by the iteration function itself. The full source code for the application with the
adjusted k-meansTI can be found in appendix B.

Algorithm 1: Pseudocode of main method in k-meansTI application

Read.pointsFromFile();
Read.CentroidsFromFile();

ComputeCOI();

SelectInitialNearestCenter();
ProduceNewCentroids();
ComputeCOI();

AppendPointsToTaggedTuple();
AppendCentroidsToTaggedTuple();
AppendCOIToTaggedTuple();

while i; <i and Iconverged do
SeparatatePointsFromTaggedTuple();
SeparatateCentroidsFromTaggedTuple();
SeparatateCOIFromTaggedTuple();

SelectNearestCenter();
ProduceNewCentroids();
ComputeCOI();

AppendPointsToTaggedTuple();
AppendCentroidsToTagged Tuple();
AppendCOIToTaggedTuple();

end

FilterOutFinalPointsFromTaggedTuple()

5.2.1 Constructing the tagged tuple

To transfer all required data from one iteration to the next the Tuple7 datatype
included with Apache Flink was utilized. A Tuple in Apache Flink is a class that
can contain a fixed number of fields where objects can be stored and each tuple
length is described in its own class, with the integer at the end of the class name
designating the fixed length. This tuple is represented in table 5.1, illustrating the
datatype stored in each field.
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Field F, F, F, Fy F, Fs Fe
Datatype | Integer | Integer | Point | Double | Double[k] | Centroid | COI

Table 5.1: Overview of the tagged tuple (tuple7)

The first field, F,, in the tuple contains an integer indicating what kind of
information is stored in the tuple. This is the key of the tuple and is also why we
refer to this tuple as a tagged tuple. A value of 0 in the first field indicates that
the tuple contains a centroid, 1 indicates a point, while 2 indicates that the tuple
contain a custom COI (Carry Over Information) object.

Fields Fy , 5 4 stores information regarding which cluster the point is currently
assigned to, the point itself and the upper and lower bounds. Field F5 holds the
centroid, while field Fg hold the COI object. When a certain type of information
is stored in the tuple, the fields not in use are set to null. For instance, a key of 2
indicates that the tuple holds a COI object. In this case the fields F; 5 5 4 are set to
null, and only Fg holds any information.

All these tuples are stored in one single DataSet in order to be transferred
between iterations. At the beginning of an iteration, the points, centroids and the
COI object is extracted to their respective DataSets. This extraction is performed
by custom filter transformations. A filter transformation applies a custom function
to each element in a DataSet and if the function return true the item is stored in
a new DataSet. In our case the filter function return true only if the key of the
tuple is equal to what the function is configured to extract. Then a custom map
function is applied to the DataSets in order to remove all fields consisting of null
in the tuple. As far as we know, this method for transferring multiple DataSets
between iterations have not been mentioned in the literature.

5.2.2 Constructing the COI object

As mentioned earlier the COI object, short for Carry Over Information, hold in-
formation used when computing the upper bound and the lower bounds. This
information is the distance between each centroid, minimum distance between
any two centroids and the distance between centroids from the last and current
iteration. In the DataSet transferred between iterations there is always one, and
only one tagged tuple that contain the COI object.

All this information is calculated in a custom reduceGroup transformation.
This transformation is utilized in order to collect all information on a single node.
The transformation is applied on the DataSet with the centroids from the current
iteration, while the centroids from the last iteration is included as a broadcast set.
A broadcast set in Apache Flink allows us to transfer a DataSet to all active nodes
in a Flink cluster. In this case, it is only one single node that receives the broadcast
set.

In this custom reduceGroup transformation the centroid inter distances are
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computed for every k where k # k’ in a nested loop. For each centroid the dis-
tance to its closest centroid is also determined within this nested loop. As the cen-
troids from the last and current iteration is also available in the transformation
these distances are computed. These distances are used later in order to determine
convergence, but also in the triangle inequality theorem.

5.2.3 Mapping points to centroids

When executing the application, process of mapping a point to its nearest centroid
is performed in two different transformations. For the initial mapping, outside of
the loop, a transformation is applied for all points. Inside the loop, each iteration,
a transformation re-configures the centroid to which a point is assigned to, only
if required. These two transformations is described in detail below.

Mapping initial points

With the SelectInitialNearestCenter() class we initially map the points to the
nearest centroid, while using the triangle inequality to avoid as many distance cal-
culations as possible. This class extends the RichMapFunction provided by Apache
Flink and allows us to apply the custom map function for all points in a DataSet.
The RichMapFunction is required, as opposed to the MapFunction, it provides the
ability to get the centroids and COI object from the runtime context. Full source
code of this function can be found in appendix B.1. In order to execute this func-
tion only one time at the beginning of the execution, it is placed outside the iter-
ation. The function take a tuple4 as input which consists of the point itself, upper
and lower bounds that are not set and which centroid the point is assigned to.
Points are assigned to a centroid with ID -1 (which does not exist) when read
from file before being assigned to a real centroid. Output of the function is a simi-
lar tuple4, but with the correct values for the bounds and nearest centroid set. The
initial centroids provided before execution that is utilized by SelectInitialNear-
estCenter() function is broadcasted to all parallel instances. Additionally the COI
object is broadcasted in its own broadcast set.

An initial lower bound is set to the distance between the point received by the
function and a centroid. These lower bounds are stored in an array referenced by
the ID of the centroid, meaning that centroid with and ID of 1, place the lower
bound in the first tray (tray 0) of the array. Then for each centroid the distance
between the point and the centroid are calculated and compared to current low-
est distance to any centroid. A distance calculation is skipped if 0.5d(c;,¢y) < 1,
where ¢, is the current closest centroid, ¢, is the centroid to which the distance cal-
culation may be skipped and [ is the current minimum distance to any of the cen-
troids looped trough. Inter-centroid distance d(cq, ¢,) is precomputed and fetched
from the COI object. At the end the upper bound is set as the minimum distance
between the point and a centroid.
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Mapping points inside the iteration process

When all points are assigned to their initial centroid and both upper bound and
lower bounds are calculated outside the iterations, the SelectNearestCenter()
class operates inside the iterations in order to re-assign points to the nearest cen-
troids if necessary. This class also extends the RichMapFunction. Full source code
for this function is also appended in appendix B.1.

For each point received by the function new lower bounds are calculated such
that for each centroid the lower bound is set to max{0,1b—d(c,c’)}, where b is
the current lower bound, c is the centroid from the current iteration and ¢’ is the
centroid from the last iteration. d(c,c’) is precomputed before each iteration and
stored in the COI object. This calculation is derived from lemma 2 (see section
3.2), which was introduced by Elkan. [28]

The upper bound is only updated if the current centroid that the point is
mapped to has moved. If the centroid has moved, the upper bound is set to
ub + d(c,c”) where ub is the upper bound. A flag is set to indicate that the upper
bound has changed.

When these bounds are updated, the function proceeds to map each point to
the nearest center. In this process as many distance calculations as possible are
avoided. This is similar to the work presented by Ghamdi et. al. [29] with Apache
Hadoop and Chitrakar [30] with Apache Spark.

Before looping trough all centroids and calculating the distances, a check is
performed to determine if the whole loop can be skipped. If the upper bound for
the point is greater than half of the distance between the currently assigned cen-
troid and the second closest centroid, the point is not re-assigned to any centroid.
If however, upper bound is less than that, we begin to loop through all centroids.
Three main conditions must hold true in order to calculate a new distance be-
tween the point and a centroid. First, we check that c; # c;, where c; is the cen-
troid currently assigned to a point and c; is the centroid for a given iteration in
the loop. Measuring the distance between the same centroid twice is unnecessary.
Secondly, we check that the ub > [b;, where ub is the upper bound and [b; is
the lower bound for centroid i in the loop. The lower bounds used are the ones
calculated and mentioned above. Third and lastly we check that ub > 0.5d(cj, ¢;),
where c; is the centroid currently assigned to the point and ¢; is the centroid for a
given iteration in the loop. If one of these conditions is false, we skip the distance
calculations and move on to the next point.

If all are true, we proceed to calculate the distance between point and c; (cur-
rently assigned centroid) if the upper bound has been updated and update the
upper bound and lower bound for the respective centroid with this distance. If
the upper bound has not been updated, we already know the distance, which is
equal to the upper bound. Then in the last if statement we have two conditions,
and one of them must hold true in order to calculate the distance between the
point and the current centroid for the iteration. First, we check that d(p, c;) > b;,
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where p is the point, ¢; is the currently assigned centroid to this point as already
described and 1b; is the lower bound for centroid i in the loop. Second, we check
that d(p,c;) > 0.5d(cj,c;). If one of these hold true, we calculate the d(p,c;),
which is the distance between the point and the current centroid for the iteration.
The point is only re-assigned if d(p, ¢;) < d(p, c;). Which translates to that the dis-
tance between the i-th centroid of the loop is closer than the currently assigned
centroid, and then the upper bound is updated to d(p, ¢;) and the flag, indicating
the upper bound is updated, is flipped.






Chapter 6

Results

In this chapter we provide the results from the experiments performed. The perfor-
mance results are split up in to two parts, one where we vary the value k (number
of clusters) and one where we vary the value i (number of iterations). We present
the quantitative data collected with some values of parallelism. A complete set of
all the results executing with a parallelism from 1 to 8 can be found in appendix
A.

6.1 Performance results

In this section we show the performance of the two adjusted k-means clustering
algorithms for Apache Flink, detailed in chapter 5. As in the work of Chitrakar
[30] and stated in the introduction, we compare the two versions in order to
investigate any changes in performance. The data for comparison are collected
in two executions, by increasing the number of clusters k and by increasing the
number of iterations i. These two executions are run multiple times, as described
in chapter 4. Additionally, we document the change in the number of total distance
calculations. The relative speedup is calculated by dividing the mean execution
time of k-means by the mean execution time of k-meansTI, as shown in equation
6.1. Therefore the speed of normal k-means is considered as the baseline. In the
equation, t represents the execution time. In this chapter we only include the
results from executing with a parallelism of 1, 4 and 8.

t
Relative speedup = —Kmeans (6.1)

KmeansTI

6.1.1 Performance results when varying k

When executing with a varying k the iteration is configured as i = 15 and con-
vergence stoppage is not considered. i was set to this value as testing showed
that the algorithms converged at around that value. Having the algorithm stop at
convergence would yield very inconsistent results and make it hard to compare
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Figure 6.2: Change in distance calculations with an increasing k

the execution times as it would converge at different iterations with a varying k.
We utilized the same initial centroids at each k for both normal k-means and k-
meansTI.

In figure 6.1a we see that when using a parallelism of 1, the performance of k-
meansTI is far slower than normal k-means for every k. At k = 2 the performance
of k-meansTI has decreased 47.7% relative to the performance of k-means. As k in-
creases the performance degradation becomes even more prominent. At k = 1000
the performance has decreased with 95.2%.

In figure 6.1b, when the parallelism is increased to 4 we see that the per-
formance is slightly better at k = 2 with an increase in performance of 1.8%.
However, when increasing k the performance degrades rapidly. At k = 1000 the
performance has decreased with 88.4%, which is slightly better than when using
a parallelism of 1.

When executing the algorithms with a parallelism of 8, as shown in figure 6.1c
we see that for both k = 2 and k = 10 k-meansTI outperforms normal k-means.
At k = 2 there is an 8.8% increase in performance, while at k = 10 there is a 6.2%
increase in performance. We still see a significant drop off in performance after a
further increase of k and at k = 1000 the performance decrease is 82%.

In figure 6.2, we see the decrease in distance calculations for k-meansTI rel-
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Figure 6.3: GB transferred between iterations, when increasing k

ative to normal k-means. At k = 2 about 90% of the total distance calculations
are skipped compared to normal k-means. As k increase the amount of skipped
distance calculations decrease and at k = 1000 only 44% of the distance calcula-
tions are skipped. The percentage of skipped distance calculations are calculated
with the equation shown in 6.2, with d representing the total number of distance
calculations.

d —d
%sklpped d = Kmeans KmeansTI %100 (62)

dK means

Figure 6.3 shows the increasing amount of data that is being sent trough the
partial solution function, when executing k-meansTI. This is the total amount of
bytes that is being transferred between each iteration. When k = 1000 we see
that the total amount being transferred is 55.6 GB. The total amount of data being
transferred is growing linearly, with respect to k.

6.1.2 Performance results when varying i

In the second batch of executions, we modified the number of i iterations and kept
the number of clusters at k = 2. This value was chosen, as in a intrusion detection
and prevention setting two classes are mostly used. One class for malicious events
and one for benign.
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In figure 6.4a we see the performance with an increasing number of iterations,
using a parallelism of 1. When k-meansTI iterates for two iterations, it performs
about the same as normal k-means. When increasing the number of iterations, the
performance quickly drops by around 50% to 60%.

Increasing the parallelism to 4 we see that k-meansTI outperforms normal k-
means when the number of iterations are less than about 20, as shown in figure
6.4a. With i = 2, k-meansTI performs 13.2% better than normal k-means. When
k-meansTI iterates over 20 times, its performance is slightly worse than normal
k-means.

When executing the applications with a parallelism of 8, k-meansTI outper-
forms normal k-means for every i that is included in these experiments. This is
shown in figure 6.4c. When i = 4 k-meansTI performs 14.6% better than regular
k-means and with an increasing number of iteration the performance gradually
declines towards the benchmark performance that is k-means.

In figure 6.5 the decrease in distance calculations is plotted in a bar graph. We
see that k-meansTI omits an increasingly larger number of distance calculations
with the increase of i. With i = 2, 42% of the distance calculations are skipped,
while at i = 64, 97.3% of the distance calculations are skipped when comparing
to the number of distance calculation performed by k-means.



Chapter 6: Results 43

10

Total GB sent from partial solution function

k=2 k=10 k=50 k=100 k=500 k=1000
Number of iterations

Figure 6.6: GB transferred between iterations, when increasing i

The total amount of bytes being transferred between iterations with different
values of i when executing k-meansT], is displayed in figure 6.6. We see from the
figure that with i = 64 a total of 9.5 GB of data is transferred between iterations.
Here the amount of data being transferred grows linearly as well, with with respect
to 1.






Chapter 7

Discussion

In this chapter we first provide a concise summary of the theoretical contribution
presented in chapter 5 and the results in chapter 6. We then interpret what these
results indicate and discuss how the results relate to the research questions posed
in the beginning of this thesis. Lastly the limitations of this works are discussed,
as well as the implications.

We have adjusted the normal k-means algorithm in such a way that with
Apache Flink we were able to transfer data between iterations in order to uti-
lize the triangle inequality theorem. This transfer of data was accomplished by a
so called tagged tuple, where multiple DataSets was agglomerated in to a single
DataSet and sent to the next iteration. Both the normal k-means algorithm and the
adjusted k-means algorithm with triangle inequality was evaluated using a dataset
consisting of network traffic, both benign and malicious. The execution time, as
well as the number of distance calculations for both algorithms was recorded and
evaluated. We saw an increase in execution time when the dataset was clustered in
a low number of clusters, together with using a high number of parallel instances.
Besides this, we saw that for executions with a larger number of iterations there
are some performance benefit as well, if there are enough parallel instances.

7.1 Interpretations of the results
In this section we address the research questions individually and based on the
results we provide an answer for the questions posed. At the end we re-visit the

hypothesis stated in the introduction.

“How could k-means clustering with triangle inequality be adjusted to operate
with Apache Flink?”

With the work presented in this thesis we show that it is in fact possible to
adjust the k-means clustering algorithm with triangle inequality to operate on
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Apache Flink by employing the DataSet API. Apache Flink offer native iterations,
however with the drawback that only one DataSet can be transferred to the next
iteration and made it harder to transfer all necessary information between itera-
tions. This obstacle was solved by utilizing the tagged tuple, as outlined in chapter
5.2.1. The DataSet of tagged tuples was used to collect all necessary information
in one DataSet, transfer it to the next iteration and then split it up to perform
transformations on the points, centroids and the COI object individually. When
introducing this tagged tuple a suspicion was that the overhead of collecting mul-
tiple DataSets into one and then unpacking it in the next iteration would be large,
and have a huge impact on the overall performance. The results did not indicate
that these operations did contribute to the the main performance degradation.
This will be discussed further with research questions number three.

“How can we apply k-means clustering with triangle inequality on Apache Flink
in intrusion detection applications?”

For the evaluation of k-means with triangle inequality we utilized a well known
dataset used to evaluate intrusion detection applications. The NSL-KDD dataset
consists of features collected from network connection, both malicious and be-
nign. In an intrusion detection setting, the k-means algorithm can be configured
to cluster the data in two clusters, one cluster for benign connections and one
cluster for malicious or suspicious connections. Both network traffic or logs col-
lected from systems in a large environment can be collected and then regularly
analyzed by this clustering. In such a use-case the cluster with the largest amount
of events would consist of mostly benign events.

“How much can k-means clustering with triangle inequality be optimized com-
pared to regular k-means?”

The results indicate that the overhead of k-meansTI when having a large k
is very high and even when executing the application with multiple parallel in-
stances to distribute the overhead, no performance increase is detected. A rather
large decrease in performance is detected instead. Only when executing the k-
meansTI application with a low number of clusters and a high number of parallel
instances, the overhead becomes manageable and we see a small performance
increase. By only clustering with a k = 2, we see at most a 8.8% increase in per-
formance. Furthermore, we see that with a low value of k the number of distance
calculations are reduced drastically by up to 90% when k = 2, but this large reduc-
tion is just enough to see a performance increase with a large number of parallel
instances that can distribute the overhead between multiple nodes. With an in-
creasing k we see that the reduction in distance calculations drops to about 50%
for when k is very large. This makes sense as there are more centroids that are
placed within the range of the upper and lower bounds, forcing the algorithm to
calculate the distances.
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In the second experiment where the applications were executed with an in-
creasing value of i, meaning that we tested with different number of iterations,
a performance increase was detected as well for some configurations. When only
iterating two times, and with a parallelism of 1 there where basically no changes
in performance. With a higher number of iterations, the performance dropped.
However, with a parallelism of 8 there was a performance increase up to 64 itera-
tions. At most with an i = 4 there was an increase in performance of 14.6%. With
the increase of i the number of distance calculations that are skipped also grows.
This is because that the algorithm fully converges after about 14-15 iterations,
and the centroids are then not moving as much as in the first iterations.

Only when using these parameters, k-means with triangle inequality is more
optimal to use than normal k-means.

“Under what circumstances could the implementation of k-means with triangle
inequality thrive?”

As the results show, even with a large number of skipped distance calculations,
any large performance increase is absent. This attest that the distance calculations
performed are not very computationally expensive. Instead the overhead of trans-
ferring the extra information from iteration to iteration becomes unmanageable
for the infrastructure and the performance drops. In a circumstance where the
distance calculation was in fact very computationally expensive, a larger increase
in performance would likely have been detected with the use of k-means with tri-
angle inequality. The distance calculations may become more expensive with an
increase in total dimensions. K-means with triangle inequality will thrive with a
low k and an i close to the convergence point.

Contrary to the hypothesis stated in chapter 1.3 we did not see a performance
increase of greater than 50% when evaluating normal k-means against k-means
with triangle inequality. However, we did show that is was possible to adjust the
k-means algorithm with triangle inequality to operate on the Apache Flink frame-
work.

7.2 Limitations and drawbacks

The results from this study only stems from the evaluation of one dataset with a
set of features from network connections. Other datasets with more or different
features may cause a greater change in performance. Using a dataset more aimed
towards host intrusion events that may include more features, could be interesting
to see. However, as discussed in chapter 2.2.3 the curse of dimensionality may
become an issue and interfere with the usefulness of the clustering.

One inherent flaw with the solution chosen when the algorithm was adjusted
to operate on Apache Flink is that the full points are being sent between iterations.
These points are not altered in the clustering process, and therefore serve as "dead
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weight" when transporting information from one iteration to the next. A better
approach would have been to only transfer the upper and lower bounds relating
to the points, while using the same points for each iteration.

Furthermore, the way the centroids are calculated is not ideal. When calculat-
ing the centroids all points are reduced and added to a single large point based
on the centroid ID each point is assigned to. This large point is then divided by
the number of points that was added. In cases where no points are assigned to
a specific centroid, this centroid would become empty and disappear in the next
iteration. This method of calculating centroids stems from the regular k-means
example used a base. When adjusting the algorithm to operate on Flink with tri-
angle inequality, the centroid ID referenced the place in the array where the lower
bounds were stored. This means that with a missing centroid the k-meansTI appli-
cation would crash, and that limited the evaluation of multiple intrusion detection
datasets.

Lastly, a batch approach for analysing data is not ideal in a intrusion detection
setting where the intrusions should be detected in real time or as close to it as
possible.

7.3 Implications

Further research of methods to reduce the overhead is required before a this ap-
proach with k-means with triangle inequality can be utilized to cluster a large
amount of security events in a shorter amount of time, than with normal k-means.
However, with the results from the experiments performed we see that executing
k-means with triangle inequality with a high degree of parallelism, overhead can
be dealt with to a certain degree.

Also one should focus more on the real-time detection, instead of the bounded
stream approach that was taken in this work. As the engine of Apache Flink treat
bounded and unbounded streams similarly, the process of migrating the methods
used here with the DataSet API, should be possible to migrate to the DataStream
API that Flink offer to handle unbounded streams and continuous detection.



Chapter 8

Conclusion

This research aimed to investigate any increase or decrease in performance when
executing k-means with triangle inequality compared to regular k-means, and how
these algorithms can be applied in a intrusion detection setting. First the two ap-
plications was developed by employing the DataSet API provided by Apache Flink.
One application utilizing the regular k-means algorithm and one application uti-
lizing the k-means algorithm with triangle inequality. With respect to the first re-
search question we provided a method to adjust k-means with triangle inequality
for Apache Flink. A tagged tuple with all necessary information needed to exploit
the triangle inequality was used to transfer information between iterations. This
necessary information included the points, an upper bound and lower bounds.
The inter centroid distances and the centroids themselves, was transferred by a
special object we named Carry-Over-Information.

In the experiments we employed a within-subjects research design in order to
collect quantitative data for analysis and answer research questions two and three.
These questions revolved around applying the algorithms in an intrusion detec-
tion setting and how much we could improve the performance. Evaluation was
performed with a dataset consisting of benign and malicious network connections.
The applications was executed repeatedly every other time, with a predefined set
of parameters. The order of which we executed the applications with the different
parameters was randomized. An average of the execution time for each parame-
ter set was recorded. Additionally, between each execution we restarted the Flink
process on each of the slave nodes to assure that the memory was cleared between
each run. These steps were taken in order to ensure the validity of the qualitative
data.

Based on an analysis of the quantitative data collected we see that a perfor-
mance increase is present for some configurations, but not greater than fifty per-
cent as hypothesized. When it comes to research question number four, relating
to under which circumstances the adjustment of the improved algorithm would
thrive, we observed the following. For configurations often utilized in a intrusion
detection application (low number of clusters, and a number of iterations close to
the convergence point) the performance increase is at its best, which is promising.
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This shows that with further work to reduce the overhead of dealing with transfer-
ring information that is static in the execution, k-means with triangle inequality
can be used to increase the performance in an intrusion detection setting.

8.1 Further work

We suggest that future studies and research should work towards only transferring
the information that possibly can be altered in an iteration, not the information
that is kept static. The points themselves are not altered during execution and will
only cause a large overhead when being transferred between iterations. Further-
more, it may be possible to avoid the splitting of the tagged tuple and instead just
omit records in the transformations that does not handle a specific record.

In an intrusion detection setting where dealing with unbounded streams of
data, an online version of k-meansTI using the DataStream API of Apache Flink
is more preferable. Methods introduced in this work should be used to adjust
the k-means algorithm with triangle inequality for an online version. It should
be feasible to utilize the same approach when transferring information between
iterations, as the engine Apache Flink use is the same for bounded and unbounded
streams. Such a version would fit better for a intrusion detection application.

As already mentioned k-meansTI should be evaluated with multiple datasets,
in order to further evaluate use-cases where it will perform well. Especially a
dataset consisting used to evaluate host intrusion detection systems. Before this
is performed for larger datasets however, the applications need to be adjusted
further to handle empty centroids without having them disappear in the following
iteration.

Additionally, a study on how various similarity measures affect the perfor-
mance of clustering algorithms should be performed as well. In this work we only
utilized the euclidean distance metric, however with a more computationally ex-
pensive distance function k-means with triangle inequality would benefit even
more from a large percentage of skipped distance calculations.
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Appendix B

Source Code

B.1 KMeansTI.java

Code listing B.1: KMeansTI.java

package com.ringdalen.kmeansti;

import
import
import

import

import
import
import
import
import
import
import
import
import
import
import
import

import

/**

* This code is an extended version of the K-Means clustering algorithm provided as

com.
com.
com.

com.

org.
org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

ringdalen
ringdalen
ringdalen

ringdalen

apache.
apache.
apache.
apache.
apache.
apache.
apache.
apache.
apache.
.apache.
apache.
.apache.

flink.
flink.
flink.
flink.
flink
flink.
flink.
flink.
flink.
flink.
flink.
flink.

java.util.*;

—

* X X X X X X

*/

Usage: KMeansTI

.kmeansti.datatype.DataTypes.Centroid;
.kmeansti.datatype.DataTypes.Point;
.kmeansti.datatype.DataTypes.COI;

.kmeansti.util.Read;

api.common.JobExecutionResult;
api.common.accumulators.IntCounter;
api.common.functions.*;
api.java.DataSet;

.api.java.ExecutionEnvironment;

api.java.functions.FunctionAnnotation.ForwardedFields;
api.java.operators.IterativeDataSet;

api.java.tuple.*;

api.java.utils.ParameterTool;
configuration.Configuration;

core.fs.FileSystem;

util.Collector;

an example with Aapche Flink.

--points <path>

--centroids <path>

--output <path>
--iterations <n iterations>
--d <n dimensions>

@SuppressWarnings("serial")
public class KMeansTI {
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public static void main(String[] args) throws Exception {

// Fetching input parameters
final ParameterTool params = ParameterTool.fromArgs(args);

// Set up execution environment. getExecutionEnvironment will work both in
— a local IDE as well as in a

// cluster infrastructure.

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// make parameters available in the web interface
env.getConfig().setGlobalJobParameters(params);

// Read both points and centroids form files

DataSet<Tupled<Integer, Point, Double, Double[]>> points = Read.
— PointsFromFile(params, env);

DataSet<Centroid> centroids = Read.CentroidsFromFile(params, env);

// Fetching max number of iterations loop is executed with
int iterations = params.getInt("iterations", 10);
double convergence = params.getDouble("convergence", 0.0001);

////// Initial mapping of points and computation of new centroids //////

// Computing the COI information
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
— firstCoiTuple = centroids
.reduceGroup(new computeCOI())
.withBroadcastSet(centroids, "oldCentroids");

DataSet<CO0I> coi = firstCoiTuple.map(new ExtractCOI());

// Select the initial cluster the point is assigned to
DataSet<Tuple4<Integer, Point, Double, Double[]>> initialClusteredPoints =
— points
.map(new SelectInitialNearestCenter())
// Broadcast data that is needed in the initial clustering to each
“— node
.withBroadcastSet(centroids, "centroids")
.withBroadcastSet(coi, "coi");

// Producing new centroids based on the initial clustered points
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
initialCentroidsTuple = initialClusteredPoints
// Count and sum point coordinates for each centroid
.map(new CountAppender()).groupBy(0).reduce(new CentroidAccumulator
= ()
// Compute new centroids from point counts and coordinate sums
.map(new CentroidAverager());

// Extracting centroids for use in calculation of COI
DataSet<Centroid> initialCentroids = initialCentroidsTuple.filter(new
— CentroidFilter()).map(new ExtractCentroids());

// Computing new COI information after new centroids have been produced
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
— coiTuple = initialCentroids
.reduceGroup(new computeCOI())
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.withBroadcastSet(centroids, "oldCentroids");
////// Initial mapping of points and computation of new centroids //////

// Expand the points into a Tuple7 in order to union it with the other
— DataSets
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
initialPointsTuple = initialClusteredPoints.map(new
— ExpandPointsTuple());

// Combine the points and centroids DataSets to one DataSet
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
unionData = initialPointsTuple.union(initialCentroidsTuple.union(
— coiTuple));

// K 3k 3K >k 5k oK K K K >k 5k >k K >k K >k K >k K >k 3k >k 3k >k 3k 5k 3k 5k 3k ok 3k 5k ok 5k >k ok K 5k K 5k >k K >k koK K Kk ok kK kK kok ok

// Loop begins here

// K 3K 3K 3K 5K oK K 3K 5k >k 5k >k K >k K >k K >k K >k 3k >k 3k >k 3k 5k 3k 5k 3k ok 3k 5k 3k 5k 3K 5k K 5k K 5k K K >k koK K Kk >k kK kK koK >k

// Use unionData to iterate on for n iterations, as specified in the input
— arguments. This is the beginning

// of the loop

IterativeDataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid
— , COI>>

loop = unionData.iterate(iterations);

// Separate points in a DataSet in order to use it later in the iteration
DataSet<Tupled4<Integer, Point, Double, Double[]>>
pointsFromLastIteration = loop.filter(new PointFilter()).project(1,
— 2, 3, 4);

// Separate centroids in a DataSet in order to use it later in the
— iteration
DataSet<Centroid>
centroidsFromLastIteration = loop.filter(new CentroidFilter()).map(
— new ExtractCentroids());

// Separate COI in a DataSet in order to use it later in the iteration
DataSet<COI>
coiFromLastIteration = loop.filter(new COIFilter()).map(new
— ExtractCO0I());

// Asssigning each point to the nearest centroid
DataSet<Tupled<Integer, Point, Double, Double[]>> partialClusteredPoints =
— pointsFromLastIteration
// Compute closest centroid for each point
.map(new SelectNearestCenter())
.withBroadcastSet(centroidsFromLastIteration, "centroids")
.withBroadcastSet(coiFromLastIteration, "coi");

// Producing new centroids based on the clustered points
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
< centroidsToNextIteration = partialClusteredPoints
// Count and sum point coordinates for each centroid
.map (new CountAppender())
.groupBy(0) .reduce(new CentroidAccumulator())
// Compute new centroids from point counts and coordinate sums
.map(new CentroidAverager());
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// Expand the tuples with points from a Tuple4 to a Tuple7 in order to
< union it with other datasets
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
pointsToNextIteration = partialClusteredPoints.map(new
— ExpandPointsTuple());

// Separate out centroids in order to be used in calculation for COI
DataSet<Centroid> singleNewCentroids = centroidsToNextIteration.filter(new
— CentroidFilter())
.map(new ExtractCentroids());

// Computing the new COI information
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
coiToNextIteration = singleNewCentroids.reduceGroup(new computeCOI
= ())
// Broadcast data that is needed in the initial clustering to each
<~ node
.withBroadcastSet(centroidsFromLastIteration, "oldCentroids");

// Check if the algorithm has converged. If no centroids has moved more
— than 0.001, an empty DataSet will be
// returned and that will halt the iteration.

DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
— converged = coiToNextIteration.filter(new checkConvergenceFilter(
< convergence));

// Combine points, centroids and coi DataSets to one DataSet
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
toNextIteration = pointsToNextIteration.union(
— centroidsToNextIteration.union(coiToNextIteration));

// Ending the loop and feeding back DataSet
DataSet<Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>>
— finalOutput = loop.closeWith(toNextIteration, converged);

/] RFRRRRsRkskokskok stk ok ok ok ok ok ok ok ok ok skok kol stok ok skokoskokokoskokokokoskok ko ook

// Loop ends here. Feed new centroids back into next iteration
// 3k >k 3k >k Sk >k ok >k Sk >k Sk >k Sk >k Sk >k Sk >k Sk ok 3k ok 3k ok 3k ok 3k ok 3k ok >k ok >k ok >k ok >k ok >k ok >k Sk >k Sk >k Sk >k ok ok kR kR kok ok

// Only preserve the information (ID of cluster point is assigned to and
— the point itself) that will be
// printed to file or the console
DataSet<Tuple2<Integer, Point>> clusteredPoints = finalOutput
.filter(new PointFilter())
.project(l, 2);

// Print the results, either to a file of the console
if (params.has("output")) {
clusteredPoints.writeAsCsv(params.get("output"), "\n", "_,", FileSystem.
< WriteMode.OVERWRITE);

// Calling execute will trigger the execution of the file sink (file
— sinks are lazy)
JobExecutionResult executionResult = env.execute("KMeansTI");

} else {
System.out.println("Printing,resultto,stdout. Use,--output,to,specify,,
— output_path.");
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clusteredPoints.print();

}

[/ ARk ok sk ok stk stk ok ko skokok ok kokokok ok ok ok stk ok ok stk ok ok ok ok kol ok stokskokskokokoskokoskokoskok ok ok k

// USER FUNCTIONS

[/ HRRSR ok ok ok stk stk ok stk sk kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kol ok stokskokskokok sokoskok ok ok ook

/**
* This class implements the FilterFunction in order to filter out Tuple7’s
— with Centroid
*/
public static class CentroidFilter implements FilterFunction<Tuple7<Integer,
— Integer, Point, Double, Double[], Centroid, COI>> {

/**
* Filter out Tuple7 that does not have the key 0, whcih means that the
— Tuple does not contain a

* Centroid object.
*
* @param unionData Tuple7 with all unionData
* @return boolean True if f0-field (key) is equal to 0, else return False
*/
@Override

public boolean filter(Tuple7<Integer, Integer, Point, Double, Double[],
— Centroid, COI> unionData) {
return (unionData.f0@ == 0);
}
}
/**

* This class implements the FilterFunction in order to filter out Tuple7’s
— with Point
*/
public static class PointFilter implements FilterFunction<Tuple7<Integer,
— Integer, Point, Double, Double[], Centroid, COI>> {

/**
* Filter out Tuple7 that does not have the key 0, whcih means that the
— Tuple does not contain a

* Point object.
*
* @param unionData Tuple7 with all unionData
* @return boolean True if f0-field (key) is equal to 1, else return False
*/
@Override

public boolean filter(Tuple7<Integer, Integer, Point, Double, Double[],
< Centroid, COI> unionData) {

return (unionData.f0 == 1);
}
}
/**
* This class implements the FilterFunction in order to filter out Tuple7’s
— with COI
*/

public static class COIFilter implements FilterFunction<Tuple7<Integer, Integer
< , Point, Double, Double[], Centroid, COI>> {
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/**
* Filter out Tuple7 that does not have the key 2, which means the Tuple
< does not contain a COI object.
*
* @param unionData Tuple7 with all unionData.
* @return boolean True if f0-field (key) is equal to 2, else return False.
*/
@Override
public boolean filter(Tuple7<Integer, Integer, Point, Double, Double[],
< Centroid, COI> unionData) {
return (unionData.f0 == 2);

}

/**
* This class implements the FilterFunction in order to filter out a COI object
— based on convergence. A returned
* COI object means that the algorithm has not converged.
*/
public static class checkConvergenceFilter extends RichFilterFunction<Tuple7<
— Integer, Integer, Point, Double, Double[], Centroid, COI>> {

// Accumulator used to track the total number of iterations
private IntCounter numIterations = new IntCounter();
double convergence criteria;

public checkConvergenceFilter(double converge){
this.convergence criteria = converge;

}

/**

* Fetched the accumulator from the runtime context

* @param parameters The runtime parameters

*/
@Override
public void open(Configuration parameters) {

// Registering the accumulator object and defining the name of the
— accumulator

getRuntimeContext().addAccumulator("numIterations", this.numIterations)
[N

’

}

/**
* Filter out and return the COI object if not all centroids has converged
— (meaning that they have moved more
* than 0.01). A returned object will allows the iteration to continue. If
— no object is returned and the
* DataSet is empty, the iteration will stop.
*
* @param COITuple Tuple7 with one COI object.
* @return boolean True if not converged, False if it has converged
*/
@Override
public boolean filter(Tuple7<Integer, Integer, Point, Double, Double[],
— Centroid, COI> COITuple) {

double[] oldNewCentroidDistances = COITuple.f6.distMap;

boolean hasConverged = false;
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//System.out.println("Convergence criteria is: " + convergence criteria
= );

// Add one to the number of iterations
this.numIterations.add(1);

// Loop trough all oldNewCentroidDistances to check for convergence
for (double distance : oldNewCentroidDistances) {

// Checking if one of the centroids has moved more than 0.01.
// If one has, the algorithm has not converged
if (distance > convergence criteria) {

hasConverged = true;

// Jump out of the loop and return result
break;

}

return hasConverged;

}

/**
* This class implements the MapFunction to extract the COI object from a tuple
*/
public static class ExtractCOI implements MapFunction<Tuple7<Integer, Integer,
<~ Point, Double, Double[], Centroid, COI>, COI> {

/**
* Takes a Tuple7 that includes the COI object and return only this object.
<~ In this implementation no more
than one COI object should exist at any time.

*

*

* @param COITuple Tuple7 with a COI object

* @return COI, should only be one object that is returned.

*/

@Override

public COI map(Tuple7<Integer, Integer, Point, Double, Double[], Centroid,
— (COI> COITuple) {
return COITuple.f6;

}

/**
* This class implements the MapFunction to extract all Centroids objects from
— the tuples
*/
public static class ExtractCentroids implements MapFunction<Tuple7<Integer,
— Integer, Point, Double, Double[], Centroid, COI>, Centroid> {

/**
* Takes a Tuple7 with all information and extracts only the Centroid
— object. Multiple centroids exists,
however the number of centroids is usually relatively low.

@param unionData Tuple 7 with all information

*
*
*
* @return Centroid

*/
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@Override

public Centroid map(Tuple7<Integer, Integer, Point, Double, Double[],
— Centroid, COI> unionData) {
return unionData.f5;

}

/**
* This class implements the MapFunction to expand the points tuple
*/
public static class ExpandPointsTuple implements MapFunction<Tuple4<Integer,
<~ Point, Double, Double[]>, Tuple7<Integer, Integer, Point, Double,
< Double[], Centroid, COI>> {

/**
* Takes a Tuple4 and return a Tuple7 where the fields that are not used by
— points is empty. This Tuple7
* is used to union all data at the end of the iteration.
*
* @param point A Tupled4 with the ID the point is assigned to, the point
— itself, the upper bound and the lower
* bounds
* @return Tuple7 with correct key identifier (1) and the rest of the
<~ information.
*/
@Override
public Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>
map(Tupled4<Integer, Point, Double, Double[]> point) {

return new Tuple7<>(1l, point.f0@, point.fl, point.f2, point.f3, null,
— null);

}

/**
* This class implements the RichMapFunction to initially select the nearest
<~ centroid to a point. This class
* function is utilized once before the loop begins. Field fl is forwarded to
— improve efficiency, as this field
* is not changed in the function.
*/
@ForwardedFields("f1")
public static final class SelectInitialNearestCenter extends RichMapFunction<
— Tupled4<Integer, Point, Double, Double[]>, Tupled4<Integer, Point, Double
— , Double[]>> {
private Collection<Centroid> centroids;
private Collection<COI> coiCollection;

// Accumulator used to track the total number of distance calculations
— performed
private IntCounter distCalcSelectInitialNearestCenter = new IntCounter();

// DEBUGGING
private IntCounter initAss = new IntCounter();

Ve
* Reads the centroid values from a broadcast DataSet and reads the COI
— value from a broadcast DataSet
*

* @param parameters The runtime parameters
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*/
@Override
public void open(Configuration parameters) {
this.centroids = getRuntimeContext().getBroadcastVariable("centroids");
this.coiCollection = getRuntimeContext().getBroadcastVariable("coi");

// Registering the accumulator object and defining the name of the
< accumulator

getRuntimeContext().addAccumulator(“distCalcSelectInitialNearestCenter"
— , this.distCalcSelectInitialNearestCenter);
// DEBUGGING
//getRuntimeContext().addAccumulator("initAss", this.initAss);
}
/**

* This function select the initial centroids each point is assigned to. It
— also calculates the lower bounds

* and the upper bound.

*

* @param tuple A Tupled4 with 0 as the initial centroid ID the point is
— assigned to. This 0 will be overwritten

* @return A Tupled4 with nearest centroid ID

*/

@Override
public Tupled<Integer, Point, Double, Double[]> map(Tupled<Integer, Point,
— Double, Double[]> tuple) {

// DEBUGGING
//this.initAss.add (1)

// The COI object is extracted to a single object
COI coi = new ArraylList<>(coiCollection).get(0);

Point point = tuple.fl;
Double[] lb = tuple.f3;

Centroid c = centroids.iterator().next();

// Calculating the distance between the first centroid in the
— collection and this point

double minDistance = point.euclideanDistance(c);

// Increasing the accumulator for number of distance calculations
this.distCalcSelectInitialNearestCenter.add(1);

double dist;
int closestCentroidId = c.id;

//System.out.println(this.initAss + ": Setting closestCentroidID to " +
— closestCentroidId);

1b[closestCentroidId-1] = minDistance;

// Loop trough all cluster centers
for (Centroid centroid : centroids) {
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if((0.5 * coi.iCD[closestCentroidId-1][centroid.id-1]) <
— minDistance) {

// Calculating the lower bound for this centroid and saving the
— distance between the centroid

// and this point

lb[centroid.id-1] = dist = point.euclideanDistance(centroid);

// Increasing the accumulator for number of distance
— calculations
this.distCalcSelectInitialNearestCenter.add(1);
if(dist < minDistance) {
minDistance = dist;
closestCentroidId = centroid.id;
}
Double ub = minDistance;
// Emit a new record with the current closest center ID and the data

<~ point.
return new Tupled4<>(closestCentroidId, point, ub, 1lb);

* This class implements the RichMapFunction to select the nearest cluster

— center for a point. This class function

* is utilized within the iteration. Field fl is forwarded as this is not

*/

<~ changed.

@ForwardedFields("f1")
public static final class SelectNearestCenter extends RichMapFunction<Tupled<

< Integer, Point, Double, Double[]>, Tuple4<Integer, Point, Double,
< Double[]>> {

private Collection<Centroid> centroids;

private Collection<COI> coiCollection;

// Accumulator used to track the total number of distance calculations
— performed
private IntCounter distCalcSelectNearestCenter = new IntCounter();

/**
* Reads the centroid values from a broadcast DataSet and reads the COI
<~ value from a broadcast DataSet
* @param parameters The runtime parameters
*/
@Override
public void open(Configuration parameters) {
this.centroids = getRuntimeContext().getBroadcastVariable("centroids");
this.coiCollection = getRuntimeContext().getBroadcastVariable("coi");

// Registering the accumulator object and defining the name of the
— accumulator
getRuntimeContext().addAccumulator("distCalcSelectNearestCenter", this.
< distCalcSelectNearestCenter);
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/**
* This function takes a clustered point and assigns it to a new centroid
— if a centroid is deemed to be
* closer than the already assigned centroid. The lower bounds and the
— upper bound is updated as well.

*

@param tuple A Tuple4 with an ID for assigned centroid, the point itself
— , upper bound and the lower bounds
* @return A Tupled4 with possibly new ID for assigned centroid, the point
— itself, upper bound and the
* lower bounds
*/
@Override
public Tupled<Integer, Point, Double, Double[]> map(Tupled4<Integer, Point,
~— Double, Double[]> tuple) {

// Unpacking the COI object
COI coi = new ArraylList<>(coiCollection).get(0);

// Unpacking the centroids and sorting them
Centroid[] centroidArray = centroids.toArray(new Centroid[0]);

Arrays.sort(centroidArray);

Point point = tuple.fl;

Integer closestCentroidId
boolean upperBoundUpdated

tuple.f0;
false;

Double[] currentLb = tuple.f3;
Double currentUb = tuple.f2;

Double[] newlLb = currentLb;
Double newUb = currentUb;

// Calculating k new lower bounds

for (int 1 = 0; i < coi.k; i++) {
newLb[i] = Math.max((currentLb[i] - coi.distMap[i]), 0.0);
//System.out.println("Lower bound nr. " + i + " is " + newlLb[i])

}

// Checking if the upperBound need to get updated
if (coi.distMap[closestCentroidId - 1] > 0.0) {

// Updating the upperBound by adding the distance the currently
— assigned centroid has moved
newUb = currentUb + coi.distMap[closestCentroidId - 1];
upperBoundUpdated = true;
}

double distl;
double dist2;

if (newUb > coi.minCD[closestCentroidId - 1]) {

// check all cluster centers
for (Centroid centroid : centroids) {

// Check if this centroid ID is not current assigned centroid
— ID
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// Check if upper bound is greater than this points lower bound
— for centroid
// Check if DISTANCE(THIS CENTROID AND P’S CURRENT ASSIGNED
< CENTROID) =>= 2 * MIN DIST
if ((centroid.id != closestCentroidId) && (newUb > newlb]
— centroid.id-1]) && (newUb > (0.5*coi.iCD[
< closestCentroidId-1][centroid.id-11))) {
// Do only this if upper bound is updated
if (upperBoundUpdated) {
distl = point.euclideanDistance(centroidArray|
— closestCentroidId-1]);
// Increasing the accumulator for number of distance
— calculations
this.distCalcSelectNearestCenter.add(1);
newUb = distl;
newLb[closestCentroidId-1] = distl;
upperBoundUpdated = false;
} else {
distl = newUb;
}
if (distl > newLb[centroid.id-1] || (distl > (0.5 * coi.iCD
— [closestCentroidId-1][centroid.id-1]))) {
dist2 = point.euclideanDistance(centroid);
// Increasing the accumulator for number of distance
— calculations.
this.distCalcSelectNearestCenter.add(1);
newLb[centroid.id-1] = dist2;
if(dist2 < distl) {
closestCentroidId = centroid.id;
newlb = dist2;
upperBoundUpdated = false;
}
}
}
}
}
// emit a new record with the center id and the data point.
return new Tupled4<>(closestCentroidId, tuple.fl, newUb, newlLb);
}
}
/**

* This class implements the MapFunction to append an integer to each point,
<— which is used to count total
* occurrences of points assigned to one centroid. Field f0 (the ID of the
— cluster) and field fl (the point)
* is forwarded directly to the input.
*/
@ForwardedFields("f0;f1")
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public static final class CountAppender implements MapFunction<Tuple4<Integer,
— Point, Double, Double[]>, Tuple3<Integer, Point, Long>> {

/**
* Takes in a Tuple4 with all point information and return a Tuple3 with
— the ID of the cluster the point is
* assigned to, the point itself and a counter variable. The upper and
— lower bounds are removed since they are
* not needed in the calculation of the new centroids (it would complicate
— the use of the reduce
* function later if they were preserved also)
*
* @param pointData A Tuple4 with all point information
* @return A Tuple3 with only necessary data and a counter
*/
@Override
public Tuple3<Integer, Point, Long> map(Tupled4<Integer, Point, Double,
< Double[]> pointData) {
return new Tuple3<>(pointData.f0, pointData.fl, 1L);

}

/**
* This class implements the ReduceFunction in order to take in two points and
< reduce them to one, by adding the
* points and the counters. Field 0 is forwarded as this does not change.
*/
@ForwardedFields("0")
public static final class CentroidAccumulator implements ReduceFunction<Tuple3<
— Integer, Point, Long>> {

/**
* Takes two points and add them together, in addition to adding the
<~ counters together. When all points are
* accumulated the new centroid can be calculated in a later function using
<~ output from this function.

@param pointl First point to be reduced to one

@param point2 Second point to be reduced to

@return A single Tuple3 is returned with the total values from the two
<~ points.

* ¥ ¥ %

*/
@Override
public Tuple3<Integer, Point, Long> reduce(Tuple3<Integer, Point, Long>
— pointl, Tuple3<Integer, Point, Long> point2) {
return new Tuple3<>(pointl.f0, pointl.fl.add(point2.f1l), pointl.f2 +
— point2.f2);

}

/**
* This class implements the MapFunction in order to compute a new centroid
— based on a fully accumulated point
*/
public static final class CentroidAverager implements MapFunction<Tuple3<
— Integer, Point, Long>, Tuple7<Integer, Integer, Point, Double, Double
— [], Centroid, COI>> {

/**
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* Takes in a fully accumulated point and return the centroid which is the
— average of all current points
* assigned to the centroid.
*
* @param value The accumulated point
* @return Tuple7 with all centroid field filled and all other fields
— contain dummy data. The key for the tuple
* is also set to 0, indicating that it holds a centroid.
*/
@Override
public Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI> map
— (Tuple3<Integer, Point, Long> value) {
Centroid centroid = new Centroid(value.f0, value.fl.div(value.f2));

// Initilazing empty values to put in the tuple
Double emptyDouble = 0.0;
Double[] emptyDoubleArray = {0.0};

return new Tuple7<>(0, 0, null, emptyDouble, emptyDoubleArray, centroid
— , null);

}

/**
* This class implements the RichGroupReduceFunction in order to compute the
< COI (Carry-Over-Information) object.
* The COI object contains information about the inter-centroid distances (
< distances between each centroid),
* how much each centroid has moved between last and current iteration, the
< minimum distance between each centroid,
* and what K is.
*/
public static class computeCOI extends RichGroupReduceFunction<Centroid, Tuple7
<~ <Integer, Integer, Point, Double, Double[], Centroid, COI>> {
private Collection<Centroid> centroidCollection;

// Accumulator used to track the total number of distance calculations
— performed
private IntCounter distCalcComputeCOI = new IntCounter();

/**
* Reads the centroid values from a broadcast DataSet into a collection.
*
* @param parameters The runtime parameters
*/
@Override
public void open(Configuration parameters) {
this.centroidCollection = getRuntimeContext().getBroadcastVariable("
— oldCentroids");

// Registering the accumulator object and defining the name of the
— accumulator
getRuntimeContext().addAccumulator("distCalcComputeCOI", this.
— distCalcComputeC0I);
}

/**
* This function use the centroid from the last iteration and the centroids
<~ from this iteration in order to
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*/
@0v
pub

produce the COI (Carry-Over-Information) object. The old centroids are
— passed to this function via a

broadcast variable, while the new centroids are passed directly to the
— function trough its input (since

it is a GroupReduceFunction that reduce the input from a whole group).

@param iterable This is the centroids from the current iteration, all
— sent to the group reduce function

@param collector Tuple7 where the COI object is stored, the correct key
— 1is set and returned

erride
lic void reduce(Iterable<Centroid> iterable, Collector<Tuple7<Integer,
— Integer, Point, Double, Double[], Centroid, COI>> collector) {

// Instantiate list to store current / new centroids
List<Centroid> newCentroids = new ArraylList<>();

// Convert Collection centroidCollection to ArraylList
List<Centroid> oldCentroids = new ArrayList<>(centroidCollection);

// Convert Iterable iterable to ArrayList by adding to existing list
— instantiated above

for(Centroid c : iterable) {
newCentroids.add(c);

}

// Store the size of the List, which is used in allocation of array
— below
int dims = newCentroids.size();

// Ensure that the centroids are sorted in ascending order on their ID
— 1in order to be able to use

// them in the for-loop below.

Collections.sort(newCentroids);

Collections.sort(oldCentroids);

// Allocate the multidimensional array
double[][] matrix = new double[dims][dims];
double[] minCD = new double[dims];

double[] distMap = new double[dims];

// Computes the distances between every centroid and place them in List
— 1

for(int i = 0; i < newCentroids.size(); i++) {
double minVal = Double.MAX VALUE;

// This represents the outer centroid
Centroid ci = newCentroids.get(i);

for(int j = 0; j < newCentroids.size(); j++) {

// Check that k != k’
if (1 !=13) {
// This represents the inner centroid

Centroid cj = newCentroids.get(j);

// Calculate the distance between the two centroids
double dist = ci.euclideanDistance(cj);
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// Increasing the accumulator for number of distance
— calculations
this.distCalcComputeCOI.add(1);

// Update the matrix with the distance
matrix[i][j] = dist;

// Look for the smallest value and update if smaller
if (dist < minVal) {
minVal = dist;

}

} else {
// If k == k', distance is automatically 0
matrix[i][j] = O;

}

// Update minCD with 0.5 of minVal
minCD[i] = (minVal / 2);
}

// Produce the distMap
for (int 1 = 0; i < dims; i++) {
distMap[i] = newCentroids.get(i).euclideanDistance(oldCentroids.get
— (1));

// Increasing the accumulator for number of distance calculations
this.distCalcComputeCOI.add(1);
}

// Make the new COI object
COI coi = new COI(matrix, minCD, distMap);

// Initilazing empty values to put in the tuple
Double emptyDouble = 0.0;
Double[] emptyDoubleArray = {0.0};

Tuple7<Integer, Integer, Point, Double, Double[], Centroid, COI>
— coiTuple = new Tuple7<>(2, 0, null, emptyDouble,
< emptyDoubleArray, null, coi);

// Add it to the collector which will return it
collector.collect(coiTuple);

B.2 Read.java

Code listing B.2: Read.java

package com.ringdalen.kmeansti.util;

import com.ringdalen.kmeansti.datatype.DataTypes.Centroid;
import com.ringdalen.kmeansti.datatype.DataTypes.Point;
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import
import
import
import
import

import

public

org.apache.flink.
org.apache.flink.
org.apache.flink.
org.apache.flink.
org.apache.flink.

java.util.Arrays;

class Read {

81

api.common.functions.MapFunction;
api.java.DataSet;
api.java.ExecutionEnvironment;
api.java.tuple.Tuple4;
api.java.utils.ParameterTool;

/**
* Function to map data from a file to Centroid objects
*/
public static DataSet<Centroid> CentroidsFromFile(ParameterTool params,
— ExecutionEnvironment env) {

DataSet<Centroid> centroids;

// Parsing d features, plus the ID (thats why the +1 is included) from file
— to Centroid objects
centroids = env.readTextFile(params.get("centroids"))
.map (new ParseCentroidData(params.getInt("d")));

return centroids;

}

/**
* Function to map data from a file to Point objects
*/
public static DataSet<Tuple4<Integer, Point, Double, Double[]>> PointsFromFile(
— ParameterTool params, ExecutionEnvironment env) {

DataSet<Tupled<Integer, Point, Double, Double[]>> points;

// Parsing d features from file to Point objects
points = env.readTextFile(params.get("points"))
.map(new ParsePointData(params.getInt("d"), params.getInt("k")));

return points;

}

/** Reads the input data and generate points */
public static class ParsePointData implements MapFunction<String, Tupled<
— Integer, Point, Double, Double[]>> {
double[] row;
int k;
int trueClass;

public ParsePointData(int d, int k){
this.row = new double[d];
this.k = k;
this.trueClass = 0;

}

@Override
public Tupled<Integer, Point, Double, Double[]> map(String s) {
String[] buffer = s.split(",");

// Setting the true class for this point, used to check accuracy of
— clustering later
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trueClass = Integer.parselnt(buffer([0]);

// Extracting values from the input string
for(int 1 = 0; i < row.length; i++) {
row[i] = Double.parseDouble(buffer[i+1]);

}

// Declaring the initial upper bound
Double ub = -1.0;

// Declaring the initial lower bounds
Double[] 1b = new Double[k];
Arrays.fill(lb, 0.0);

return new Tupled4<>(-1, new Point(trueClass, row), ub, 1b);

}

/** Reads the input data and generate centroids */

public static class ParseCentroidData implements MapFunction<String, Centroid>
= {
double[] row;

public ParseCentroidData(int d){
row = new double[d];

}

@Override
public Centroid map(String s) {
String[] buffer = s.split(",");
int id = Integer.parselnt(buffer[0]);

// buffer is +1 since this array is one longer
for(int i = 0; i < row.length; i++) {
row[i] = Double.parseDouble(buffer[i+1]);

}

return new Centroid(id, row);

B.3 DataTypes.java

Code listing B.3: DataTypes.java

package com.ringdalen.kmeansti.datatype;
import java.io.Serializable;

public class DataTypes {
/**
* A n-dimensional point.
*/
public static class Base implements Serializable {

public double[] features;
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public int dimension;

/** A public no-argument constructor is required for P0JOs (Plain Old Java
— Objects) */
public Base() {}

/** A public constructor that takes the features, represented as an array
— of doubles as the argument */

public Base(double[] features) {
this.features = features;
this.dimension = features.length;

}

/** Function that divides this point with a given value */
public Base div(long val) {
for(int i = 0; i < dimension; i++) {
features[i] /= val;
}
return this;

}

/** Function that return the euclidian distance between this point and any
< given point */

public double euclideanDistance(Base other) {
double dist = 0;

for(int i = 0; i < dimension; i++) {
dist += Math.pow((features[i] - other.features[i]), 2.0);
}

return Math.sqrt(dist);
}

/** Function to represent the point in a string */
@Override
public String toString() {

StringBuilder s = new StringBuilder();

for(int i = 0; i < dimension; i++) {
if (i < dimension-1) {
s.append(features[i]).append(",");
} else {
s.append(features[i]);
}
}

return s.toString();

}

public static class Point extends Base implements Serializable {
public int trueClass;

/** A public no-argument constructor is required for P0JOs (Plain Old Java
— Objects) */
public Point() {}

public Point(int trueClass, double[] features) {
super (features);
this.trueClass = trueClass;
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}

/** Function that adds this point with any given point */
public Point add(Point other) {
for(int i = 0; i < dimension; i++) {
features[i] += other.features[i];

}

return this;

}

/**
* Function to represent the point as a string
*
* @return String with true class, as well as string from base class
*/
@Override
public String toString() {
return (trueClass + "_," + super.toString());
}
}

/**
* A n-dimensional centroid, basically a point with an ID.
*/
public static class Centroid extends Base implements Comparable<Centroid>{

/** The ID of an centroid, which also represents the cluster */
public int id;

/** A public no-argument constructor is required for P0JOs (Plain Old Java
— Objects) */
public Centroid() {}

/** A public constructor that takes an id and the features, represented as
— an array as the arguments */

public Centroid(int id, double[] features) {
super(features);
this.id = id;

}

/** A public constructor that takes an id and a Point as the arguments */
public Centroid(int id, Base p) {

super(p.features);

this.id = id;
}

public Integer getID() {
return id;

}

/** A method to allow for comparing the ID of two different centroids. Used
— for sorting */

public int compareTo(Centroid c) {
return this.getID().compareTo(c.getID());

}

/** Function to represent the point in a string */
@Override
public String toString() {
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return id + "_" + super.toString();

}

/**
* A class used to store information that will be carried over to the next
< iteration.
* COI is an abbreviation of "Carry-Over-Information"
*/
public static class COI implements Serializable {
public double[][] iCD;
public double[] minCD;
public double[] distMap;
public int k;

public COI(double[][] iCD, double[] minCD, double[] distMap) {
this.iCD = iCD;
this.minCD = minCD;
this.distMap = distMap;
this.k = distMap.length;
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