
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Eirik Rismyhr

Graph Representation of DNS-related
Data for Detecting Malicious Actions

Master’s thesis in Information Security

Supervisor: Marios Anagnostopoulos

June 2020

Eirik Rismyhr

Graph Representation of DNS-related
Data for Detecting Malicious Actions

Master’s thesis in Information Security
Supervisor: Marios Anagnostopoulos
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Acknowledgements

I would like to thank Dr. Håkon Gunleifsen for his help in collecting the anonym-
ized Eidsiva DNS dataset. I would also like to thank my supervisor, Dr. Marios
Anagnostopoulos, for providing guidance and feedback through each stage of the
process.

iii

Abstract

Malware is an increasing problem in the cyber security domain. Recent research
indicates that almost all malwares exploit DNS to carry out their malicious pur-
poses. The DNS protocol was not originally designed with security in mind, which
has made it a natural choice for malware authors. Recent and notorious security
incidents have shown that DNS is used for the coordination of botnets, specifically
for locating command-and-control servers and disseminating commands from the
botmaster, for data exfiltration through DNS tunnelling, and for redirecting net-
work traffic to rogue servers by hijacking the user’s DNS request.

The MSc thesis at hand utilizes the Neo4J graph database solution to repres-
ent DNS related data in a graph data model, and uses this to reveal historical
relations between malicious domain names and IP addresses involved in security
incidents that cannot be trivially extracted with other traditional methods. In ad-
dition, structuring the DNS traffic in a graph database presents a way to discover
relations between domain names where data can be extracted faster and easier
than in traditional relational databases. The outcome of this thesis is a mechanism
that can operate at the level of the local DNS recursive resolver, e.g., ISP, in order
to detect malicious domain names and block the related traffic.

v

Sammendrag

Skadevare er et økende problem innen cybersikkerhet. Forskning viser at en stor
andel av skadevaren benytter seg av DNS-protokollen for å utføre ondsinnede
handlinger. Da DNS-protokollen først ble utviklet var ikke sikkerhet et fokusom-
råde. Derfor har DNS blitt et naturlig valg for skapere av skadevare. Nylige alvor-
lige sikkerhetshendelser har vist at DNS brukes i koordinering av botnets for å
lokalisere sentrale styrende noder og sende kommandoer til klienter i botnettet.
I tillegg brukes DNS for å eksfiltrere data fra infiserte klienter, og omdirigere
nettverkstrafikk til usikre servere ved å kapre brukerens DNS-spørringer.

Denne masteroppgaven bruker grafdatabasen Neo4j for å representere data
knyttet til DNS i en grafdatamodell. Modellen kan brukes for å å avdekke his-
toriske relasjoner mellom ondsinnede domenenavn og IP-addresser involvert i IT-
sikkerhetshendelser som ikke enkelt kan hentes ut med tradisjonelle metoder. Ved
å strukturere DNS-trafikk i en grafdatabase skapes også en metode for å oppdage
koblinger mellom domenenavn hvor data kan hentes ut på en raskere og enk-
lere måte enn i tradisjonelle relasjonsdatabaser. Resultatet av dette arbeidet er
et verktøy for innsamling og klassifisering av DNS-trafikk i lokale navnetjenere,
som kan analysere logginformasjon og oppdage domenenavn knyttet til ondsinnet
aktivitet.

vii

Contents

Acknowledgements . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Topics covered by the Thesis . 1
1.2 Keywords . 1
1.3 Problem Description . 1
1.4 Justification, Motivation and Benefits 2
1.5 Research Questions . 2
1.6 Contributions . 2

2 Background . 3
2.1 DNS Overview . 3

2.1.1 DNS Query Types . 5
2.1.2 DNS Name servers . 5
2.1.3 DNS Resource Records . 5

2.2 DNS Security . 7
2.3 DNS Vulnerabilities . 8

2.3.1 Botnets . 8
2.4 Detecting Malicious Domains . 9

2.4.1 Data Sources . 9
2.4.2 Collection Methods . 10

2.5 Graph Representation of DNS Data . 12
2.6 Domain Features . 13

3 Choice of Methods . 15
3.1 Requirements . 15
3.2 Technical Design . 15
3.3 Implementation . 16

3.3.1 Python Libraries . 16
3.3.2 Deployment . 17

ix

x E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

3.4 Data Analysis . 17
3.5 Experiments . 17
3.6 Graph Database Models . 18

3.6.1 Neo4j . 18
3.7 Data Collection . 20

3.7.1 Datasets . 20
3.7.2 Enrichment Data . 23

3.8 Graph Data Model . 24
3.8.1 Nodes . 24
3.8.2 Relationships . 29

4 Results . 31
4.1 Importing Log Data . 31
4.2 Eidsiva Dataset Findings . 31

4.2.1 Querying the Eidsiva Database 32
4.3 CTU-13 Dataset Findings . 37

4.3.1 Querying the CTU-13 Database 37
5 Discussion . 45

5.1 RQ1: Graph Data Model . 45
5.2 RQ2: Incorporating External Data . 46
5.3 RQ3: Detecting Malicious Domains . 46
5.4 Potential issues . 46
5.5 Ethical and Legal Considerations . 46

6 Conclusion and Future Work . 49
6.1 Conclusion . 49
6.2 Future Work . 49

Bibliography . 51
A Source Code . 55

A.1 Python Functions . 55

Figures

2.1 Domain Name Space Example . 4
2.2 DNS Query Process . 6
2.3 DNS Graph Data Model Example . 13

3.1 Architecture Overview . 16
3.2 Neo4j Browser . 19
3.3 Example Cypher Graph Result . 21
3.4 Example DNS Query . 21
3.5 CTU-13 Scenarios . 22
3.6 CTU-13 Example Graph . 25
3.7 Graph Data Model . 26

4.1 Eidsiva Example Graph . 32
4.2 Similar Queries . 33
4.3 Top Domains . 33
4.4 Queried Blacklisted Domain . 36
4.5 CTU-13 Node Types . 38
4.6 Same Registrar . 39
4.7 Same IP . 39
4.8 Several IPs . 40
4.9 Suspicious Domain Names . 41
4.10 Suspicious Nodes . 42
4.11 Suspicious Registrars . 43
4.12 ISP Clusters . 43

xi

Tables

3.1 Nodes and Properties . 24
3.2 Relationships . 27

xiii

Code Listings

3.1 Cypher Query Example . 20
3.2 Eidsiva Record Example . 23
3.3 Maxmind GeoLite2 . 24
4.1 Eidsiva Cypher Query 1 . 32
4.2 Eidsiva Cypher Query 2 . 32
4.3 Eidsiva Cypher Query 3 . 32
4.4 Eidsiva Cypher Query 4 . 34
4.5 Eidsiva Cypher Query 3 . 36
4.6 Eidsiva Cypher Query 5 . 36
4.7 CTU-13 Cypher Query 1 . 37
4.8 CTU-13 Cypher Query 2 . 38
4.9 CTU-13 Cypher Query 3 . 38
4.10 CTU-13 Cypher Query 4 . 41
4.11 CTU-13 Cypher Query 5 . 41
4.12 CTU-13 Cypher Query 6 . 41
4.13 CTU-13 Cypher Query 7 . 41
4.14 CTU-13 Cypher Query 7 . 42
A.1 create_graph . 55
A.2 log_to_dict . 56
A.3 check_whitelist . 58
A.4 check_blacklist . 58
A.5 check_whois . 58
A.6 check_ip . 59
A.7 check_geo . 59
A.8 txt_to_csv . 60

xv

Acronyms

DNS - Domain Name System
IP - Internet Protocol
C&C - Command and Control
IDS - Intrusion Detection System
UDP - User Datagram Protocol
TCP - Transmission Control Protocol
IETF - Internet Engineering Task Force
RFC - Request for Comments
NIC - Network Information Center
FTP - File Transfer Protocol
RR - Resource Record
TLD - Top-level Domain
FQDN - Fully Qualified Domain Name
CNAME - Canonical Name
DNSSEC - DNS Security Extensions
DoH - DNS over HTTPS
HTTPS - Hypertext Transfer Protocol Secure
TSIG - Secret Key Transaction Au-thentication for DNS
DDoS - Distributed Denial of Service
MDN - Malware Distribution Networks
DHCP - Dynamic Host Configuration Protocol
DDNS - Dynamic DNS
RAT - Remote Access Tool
APT - Advanced Persistent Threat
AS - Autonomous System

xvii

Chapter 1

Introduction

1.1 Topics covered by the Thesis

The main topic for this project is detection of malicious domains using DNS related
data. The data is stored in a graph database with the use of the Neo4j graph
platform. This is done to make it easier to reveal historical relations and known
associations between the domains and IP addresses in the data set.

1.2 Keywords

DNS, malware domain name, botnet, malicious domain detection, network traffic
analysis, data labeling, network monitoring, graph analysis

1.3 Problem Description

Computer malware is a big and increasingly important issue. The Cisco 2016 An-
nual security report indicates that 91.3% of malwares exploit DNS to carry out
their malicious purposes [1]. The exploitation allows malwares to establish Com-
mand & Control (C&C) channels, to exfiltrate data and redirect traffic [2]. In
recent and notorious security incidents, we have seen that DNS has been utilized
to coordinate botnets, specifically for locating the C&C server and disseminating
the botmaster’s commands, as well as data exfiltration through DNS tunneling,
as in the case of Equifax1. DNS was also used to redirect network traffic to rogue
servers by hijacking the user’s requests.

1https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-
happened-who-was-affected-what-was-the-impact.html

1

https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html

2 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

1.4 Justification, Motivation and Benefits

It is challenging to monitor and detect the malicious DNS traffic using the tra-
ditional intrusion detection systems (IDS). Evasion methods utilized by malware,
such as domain flux and IP flux, makes signature based detection methods insuffi-
cient. A data model based on graph database technology could provide improved
performance and help IT administrators protect their systems. By analyzing not
only the malicious nodes in the graph, but also their connected nodes, there is
the possibility to find additional domain names and IP addresses that are related
to malicious activities. In particular, this will be useful for detecting botnets and
malware distribution networks that utilize the aformentioned evasion techniques
to avoid network security monitoring tools such as IDSs. Graph databases such as
Neo4j can be queried with easily formatted queries, and query results are returned
faster than in relational databases.

1.5 Research Questions

In order to achieve the desired results, the following research questions were
defined:

• RQ1: How can DNS data be represented in a graph database?
• RQ2: How can data from external sources be incorporated into the graph

structure?
• RQ3: How can graph databases be used to detect malicious domains?

1.6 Contributions

The main contributions of this thesis project can be summarized as follows:

• Graph database representation of DNS related data from captured network
traffic using the Neo4j Graph Platform [3].
• Algorithm that determines the maliciousness of a domain
• Monitoring tool that can operate at the level of the local DNS recursive

resolver. The main goal of this tool is to detect internal devices trying to
connect to malicious domain names, as well as identifying access requests
from malicious servers.

Chapter 2

Background

2.1 DNS Overview

Domain Name System (DNS) is a protocol implemented in all IP-based networks.
It works by converting human readable domain names, such as www.google.com,
into computer readable IP addresses, such as 8.8.8.8. This removes the need to
know the IP address of the service that one wants to connect to. It is a hierarchical
decentralized system, and a fundamental part of the Internet infrastructure. DNS
requests and responses can be sent using both the User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP), but UDP is normally used because it has
a lower overhead requirement than TCP. DNS is an open protocol, and the Internet
Engineering Task Force1 (IETF) oversees changes made to the standard. The initial
version and all later additions are described in IETF Request for Comments (RFC)
standard documents. The most important concepts are described in RFC 1034 [4]
and RFC 1035[5]. Subsequent RFCs have added additional features, including
more resource record types and security improvements.
In the early days of the Internet, mappings between host name and addresses
were maintained by the Network Information Center (NIC) in a single file named
HOSTS.TXT. This file was transferred to all hosts via the file transfer protocol
(FTP). This worked well when the number of hosts was small. However, when
the number of hosts increased, the size and update frequency of the HOST.TXT
file was complicated to a level where it became hard to manage. One of the main
motives for the development of the DNS protocol was to mitigate this problem by
storing domain name mappings in a distributed hierarchical system.
The DNS consists of three major components:

• Domain name space and resource records specify the name space, which
is a tree-structure where each node and leaf represents a set of information.
Query operations are performed when specific types of information are to be
retrieved from a set. Each query contains a domain name and the requested
resource information.

1https://www.ietf.org/

3

www.google.com
https://www.ietf.org/

4 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

• Name servers contain information about the domain name space and the
information in each set. These servers generally contains complete informa-
tion about a subset of the domain space, and can also contain cached struc-
ture or set information. In addition, each server stores pointers to other
name servers that might contain the requested information, if it is not present
in this particular server. If a server contains complete information about a
part of the domain tree, it is an authority for this data set. This authoritative
information is divided into zones, which can be automatically distributed to
the name servers. Each name server has local copies of a number of zones.
• Resolvers respond to client request by retrieving the desired information

from name servers.

Each node in the domain name space tree structure has a label and represents a set
of resource records (RR). Domain names are built up by traversing the path from
a node to the root of a tree. Each level in the tree is separated by a dot character
while the root node is represented by a label of zero length. The domain name is
built from left to right. Figure 2.1 is taken from RFC 1034 [4] and shows a part of
the domain name space as it were at the time of writing in November 1987. The
three subdomains of the root (MIL, EDU and ARPA) are known as top-level do-
mains (TLD), and the domains in the next level below are known as second-level
and third-level domains. A domain name can consist of a maximum of 127 levels
or 253 characters. Many different domain names can be created by traversing this
tree from the leaves to the root node. A complete domain name such as A.ISI.EDU
is known as a fully qualified domain name (FQDN).

Figure 2.1: Domain name space example [4]

Chapter 2: Background 5

2.1.1 DNS Query Types

There are two types of queries:

Recursive Query

In recursive queries, a DNS client provides a domain name to the resolver, which
performs the complete transaction. The recursive query process starts at the DNS
root server and finishes when an authoritative name server that contains the re-
quested information is found. The complete answer to the query must be returned.

Non-Recursive Query

A non-recursive (or iterative) query is a query where a DNS client provides a
domain name and the resolver returns the requested information, if it is stored
in its cache memory. If the resolver does not have the information, it provides a
referral to authoritative name servers that might have it.

2.1.2 DNS Name servers

There are three types of DNS servers, all of which are involved when a domain
name is resolved: stub resolvers (end-user), recursive resolvers, and authoritative
nameservers.The root nameservers are the authoritative nameservers for the root
zone, while the TLD nameservers are the authoritative nameservers for the TLDs,
such as .com, .org or .no.
The following steps take place in the case when a domain name, for instance
example.com, is resolved:

1. A program on the user’s computer, such as the browser, sends a DNS request
for a resource record (RR) to the stub resolver.

2. The stub resolver on the client sends the query to the DNS recursive resolver.
3. If the RR is not contained in the resolver’s cache, the recursive resolver sends

the query to one of the authoritative servers for the root zone.
4. If the queried authoritative name server is not authoritative for the reques-

ted information, it sends the query to the TLD name server that is authorit-
ative. In this case it is sent to the .com TLD authoritative nameserver.

5. The original query is sent until it reaches the authoritative name server for
the example.com zone. This server then finally provides the answer.

Figure 2.2 shows an overview of the process that occurs when a query is sent.

2.1.3 DNS Resource Records

Contents in DNS zone files are known as resource records (RR). Each DNS query
contains a request for a specific RR type.

6 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 2.2: The process that takes place when a DNS query is sent

Record Content

Each RR has certain fields:

• Owner: Domain name that the RR belongs to.
• Type:A 16-bit values that specifies the type of this particular RR. Many types

exist, as shown in section 2.1.3
• Class: Similar to the type field, but specifies a protocol family or instance

of a protocol.
• Time to live (TTL) How long (in seconds) a RR can be cached.
• RDATA: Content of each type.

There are defined many DNS record types, but some of them are more commonly
used. Some of these record types are used in the graph data model developed in
this project. These were specifically chosen because of their prevalence in DNS
traffic, and the usefulness of the information they contain. The most common
record types are:

DNS Record Types

• IP version 4 address (A): The IPv4 Host address for the requested domain
name.
• IP version 6 address(AAAA): The IPv6 Host address for the requested do-

main name.
• Canonical name (CNAME): Canonical name for a a domain alias. One do-

main can have several CNAME values, meaning that several domain names
point to the same A or AAAA record.
• Mail exchange (MX): Name for the mail exchange server related to the

domain.
• Text (TXT): It was originally intented to contain human-readable text, but

often contains machine-readable code. It can be used for ownership verific-

Chapter 2: Background 7

ation or to determine the trustworthiness of the source using Sender Policy
Framework (SPF) codes.
• Name server (NS): The authoritative name server for the domain.
• Start of Authority (SOA) It is located a the start of a DNS zone file. It

contains information about the zone, such as the Authoritative Name Server,
email address for the domain administrator, and how often this information
should be updated.
• Service location (SRV) It specifies the host and port for different commu-

nication protocols.
• Reverse-lookup Pointer (PTR): It is used for reverse DNS lookup queries

and shows the mapping between an IP address and a domain name.

2.2 DNS Security

When the DNS protocol was initially designed, security was not a primary con-
cern. Therefore, DNS by itself is not a secure protocol. When a query is sent from
a recursive resolver to an authoritative name server, there is no way to check the
authenticity of the data in the response. The source of the response packet can be
found by checking the IP address. However, IP addresses can be forged by attack-
ers who can then pretend to be the authoritative server. This can be exploited to
redirect users to malicious sites without their knowledge.
Another security issue is DNS cache poisoning [6], where an attacker sends forged
DNS response packets to a recursive resolver. If the resolver accepts and caches
the response, the cache is considered poisoned and other end-users that request
the same domain name will receive DNS responses with forged data.
To improve the security of DNS, DNSSEC was introduced with RFC 4033 [7], RFC
4034 [8] and RFC 4035 [9] in 2005, which has later been updated with addi-
tional features such as stronger encryption algorithms. DNSSEC introduced the
ability for DNS data to be digitally signed by the owner using public key crypto-
graphy. Each group of RRs with the same type is grouped into RRsets, which is
then digitally signed.
Several DNS record types were added:

• RRSIG: Contains a cryptographic signature
• DNSKEY: Contains a public key
• DS: Contains the hash of a DNSKEY record
• NSEC and NSEC3: Used for denial-of-existence of a DNS record
• CDNSKEY and CDS: Used when a child DNS zone requests updates to DS

records in the parent zone.

When combined, this data can be used to provide two important security features:

• Data origin authentication allows resolvers to verify the zone which the
response data originated from.
• Data integrity protection allows resolvers to verify that the data received

has not been modified in transit.

8 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

DNSSEC by itself has not been enough to mitigate all of the security issues in the
DNS protocol. DNS over HTTPS (DoH) is a another security feature introduced
in 2018 with RFC8484 [10] where DNS traffic is sent via Hypertext Transfer Pro-
tocol Secure (HTTPS). This has been implemented in recent years by popular web
browsers such as Mozilla Firefox and Google Chrome, and is gradually being rolled
out in more and more regions.
To secure the communication between DNS servers, Secret Key Transaction Au-
thentication for DNS (TSIG) was introduced in 2000 with RFC2845 [11]. TSIG
uses shared private keys to provide a secure method to perform zone updates. It
is normally used to update dynamic DNS servers or secondary DNS servers.

2.3 DNS Vulnerabilities

Even after the introduction of DNSSEC, TSIG and DoH, there exists weaknesses
in the DNS protocol. They are continually being discovered, and in May 2020
Shafir et. al. [12] discovered a flaw in the way that recursive resolvers handle
NS referral responses that contain the domain name but not the corresponding IP
address. This creates a potential for amplification attacks where a single malicious
packet could be amplified up to 1620 times, causing the resolver to be overloaded.
In this thesis, we focus on attacks that use features in the DNS protocol to build
more resilient botnets and malware distribution networks. These types of threats
are serious and often challenging to detect and prevent. Domain names and IP
addresses used in botnets are often changed rapidly to make the botnet more
resilient against detection.

2.3.1 Botnets

Botnets [13] are networks of computers that have been compromised by malware
and taken over by criminals. The botnets can reach sizes of up to millions of infec-
ted devices, where all of them are controlled by a botmaster. The size allows them
to carry out large-scale attacks such as spam campaigns or Distributed Denial of
Service (DDoS) attacks [14].
The bot members receive commands from the botmaster through command and
control servers, also known as C2 or C&C servers, to receive orders and exfiltrate
data. These servers rely on DNS to get the correct mappings between the domain
names and IP address of each C&C server. Without this, the computers in the
botnet cannot communicate with the servers.
Domain names and IP addresses used by botnets are continuously being blocked
by security systems as they are discovered. To avoid detection, botnets often em-
ploy evasion techniques. If a C&C server goes down, another one takes its place
in the network. This both makes the botnet traffic harder to detect and harder to
stop. It used to be common for malware to use hardcoded IP addresses. This prac-
tice was abandoned, as it allowed the botnets to be easily shut down. The two
main techniques used to achieve agile behaviour are Domain-Flux and IP-Flux,

Chapter 2: Background 9

also known as Fast-Flux [15]. The Domain-Flux strategy involves having several
FQDNs associated with one IP address. New domain names are dynamically gen-
erated using Domain Generation Algorithms (DGA). To main goal is to generate a
large number of domain names to make the botnet more resilient against attempts
to take down the C&C servers or filter out the traffic.
Malware distribution networks (MDN) are another type of threat that has seen
increased severity in the last years. A large amount of domains are used to trick
users into installing malicious software. A main attack vector is drive-by download
attacks where victims are lured into visiting malicious web pages that exploits
weaknesses in the users’ web browsers and their components. A number of articles
investigate MDNs, including research by Wang et. al. [16] and Invernizzi et. al.
[17], who analyze features of domains in MDNs.
IP addresses are usually assigned by ISPs dynamically using the Dynamic Host
Configuration Protocol (DHCP). The addresses are typically assigned on a lease
with a limited duration, meaning that a registered domain name will resolve to
different IP addresses over time. Dynamic DNS (DDNS) services automatically up-
date DNS records, and is provided by many registrars, for example Cloudflare2.
This service makes dynamic DNS a useful evasion technique for bots, trojans and
other Remote Access Tools (RAT) that depend on command and control servers.
Zhao et. al. [18] investigate network traffic generated by advanced persistent
threat (APT) malware and find that dynamic DNS is often used by attackers,
and that several features found in the DDNS traffic could be used in detection
algorithms. Some DDNS providers provide their services for free, which makes
them a natural fit for malware.

2.4 Detecting Malicious Domains

As shown in the survey by Zhauniarovich et al. [19], there are many different
approaches that attempt to detect malicious domain names by analyzing DNS
data. A large share of the approaches in this survey use similar methodologies
and are quantified using the following features:

• DNS data collection
• Data enrichment
• Detection methods
• Evaluation strategies

2.4.1 Data Sources

Sources of DNS-related data can be divided into two classes. Multiple locations in
the DNS infrastructure can be used to collect DNS queries and replies.
The first type of data source is the resolver, where queries from end clients can be
collected. One of the advantages with this is that it contains detailed information

2https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/

https://www.cloudflare.com/learning/dns/glossary/dynamic-dns/

10 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

about the queries and responses related to each client. This can be analyzed to find
suspicious patterns in the traffic. However, only the traffic in a single network can
be observed. This could be a challenge when analyzing malicious patterns. Also,
privacy concerns often makes data from public resolvers difficult to access for
researchers.
The second type of data source is traffic between DNS servers. Traffic can be col-
lected at DNS servers such as authoritative name servers or TLD servers in order
to see DNS requests from several organisations. However, there are several issues
with this approach. Logs from these types of servers are usually not available to
researchers, and often contain fewer features than data captured at resolvers.

2.4.2 Collection Methods

DNS data can be collected either actively or passively. Active data collection is
done by sending DNS queries and monitoring the responses [20]. The queried
domains are based on lists of popular domains such as the Alexa Top Sites3 and
The Majestic Million4, as well as domains from blacklists and authoritative zone
files. This methods works well when retrieving RRs, but do not reflect normal DNS
traffic. There is also a potential for data bias due to factors such as the geo-location
of the querying clients.
Passive data collection is done by monitoring the traffic at DNS servers or invest-
igating server logs [21]. Sensor can be placed in several locations, which could
lead to a more comprehensive set of features than in network logs that have been
actively collected. However, publicly available datasets of this type usually only
contain aggregated information about the traffic due to privacy concerns.

Data Enrichment

External data sources can be used to improve the accuracy when detecting mali-
cious domains. The most widely used information types are [19]:

• Blacklists/whitelist for IPs and domain names are often used. As described
in section 2.4.2, a variety of blacklists exist.
• Registration Records contain information about domain registrars, and

temporal information such as creation/expiration time. They can be used
to find relations between malicious domain names, as they are often re-
gistered by the same registrar in the same time period. Registration records
are accessed through the WHOIS protocol [22], but parsing of the data can
be challenging due to the lack of a standard format.
• Autonomous System Numbers (ASN) provide information about the dis-

tribution of IPs. An autonomous system is a single network or a group of
networks that is controlled by a common network administrator. Malicious

3https://www.alexa.com/topsites
4https://majestic.com/reports/majestic-million

https://www.alexa.com/topsites
https://majestic.com/reports/majestic-million

Chapter 2: Background 11

domains often change ASNs to evade detection, while legitimate domains
remain mostly static.
• Additional Network Data such as HTTPS logs can be used to gain a better

understanding of the domains.
• Geo-location can be retrieved from sources such as the Maxmind GeoLite2

database5. Features such as the reputation or geographical distances between
hosting countries can be used to improve classifier performance [23].

Ground Truth

Most of the approaches described in this thesis and in the survey [19] utilize ma-
chine learning algorithms. Supervised and semi-supervised detection algorithms
require a set of trustworthy ground truth for training and validation. The result of
the evaluation phase depends on how the ground truth is processed and applied.
The most popular way to gather a ground truth for the maliciousness of domains
is to extract information from public blacklists. There exists a large amount of
blacklists both for domain names and IP addresses. Some are based on specific
types of activities, e.g. phishing (PhishTank6, OpenPhish7) or spam (Spamhaus8),
and others are more general (Malwaredomains9, Malware Domain List10). There
also exists proprietary reputation systems developed by security companies such
as Symantec. However, these systems are often not available for research usage.
Most of the algorithms used to detect malicious domain are data-driven, and use
machine learning to improve accuracy. These algorithms require a ground truth
of malicious and domain traffic that can be used for training and evaluation of the
machine learning methods. A simple semi-manual labeling for agile DNS domains
is presented in Stevanovic et. al. [23]. DNSMap is used to provide mapping of agile
domains names. Automated analysis as well as cluster analysis is performed before
a human operator performs manual validation. A case study confirms that the
semi-manual approach achieves better coverage than approaches relying solely
on domain black/whitelists as it can discover malicious domains based on their
association with other malicious domains and IP addresses. The proposed method
is also time efficient.
DFBotKiller [24] is an online negative reputation system that detects botnets using
domain-flux. This is done by analyzing traffic logs to find suspicious domain group
activities and suspicious domain failures. This solution has a good detection rate,
and a low false positive rate when provided with the history of suspicious domain
activities.

5https://dev.maxmind.com/geoip/geoip2/geolite2/
6https://www.phishtank.com/
7https://openphish.com/
8https://www.spamhaus.org/
9https://www.malwaredomains.com/

10https://www.malwaredomainlist.com/mdl.php

https://dev.maxmind.com/geoip/geoip2/geolite2/
https://www.phishtank.com/
https://openphish.com/
https://www.spamhaus.org/
https://www.malwaredomains.com/
https://www.malwaredomainlist.com/mdl.php

12 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

2.5 Graph Representation of DNS Data

Berger et al. [25] show that the mappings between FQDNs and IP addresses can
be used to establish a DNS activity profile. These profiles can be used for the
detection of abnormal activities. DNS mappings not conforming with the normal
profiles could be considered suspicious and should be further analyzed. Following,
DNSMap [26] is used to detect agile DNS mappings. This is a methodology used
to track observed mappings between FQDNs and IP addresses. The resulting set
of mappings are used to create a bipartite graph which shows an overview of the
observed mappings. After filtering, the final graph contains a set of agile groups.
These groups are classified using the following features:

• Number of FQDNs per agile groups
• Number of IP addresses per agile group
• Number of different Autonomous Systems (ASs) per agile group

Peng et al. [27] explore the use of DNS CNAME resource records to construct
an alias-canonical graph. This is used to determine if each domain in the dataset
is malicious or benign. This approach can process large amounts of DNS traffic
and identify malicious domains in near real time. This approach uncovered a set
of malicious domains that other approaches were unable to find. The process of
identifying malicious domains consist of three main steps:

• Removing CNAME RRs from public domains (web hosting, CDNs etc.) and
building an alias-canonical graph G from the remaining RRs.
• Classifying domain nodes in G as malicious, benign or unknown with the

help of blacklists and whitelists.
• Using a Belief Propagation (BP) algorithm to compute the marginal prob-

abilities for each node based on the association with other nodes.

The dataset used to train and test the model consists of passive DNS traffic collec-
ted at 217 DNS server distributed in 14 large Chinese ISP networks. It contained
over 2.5 billion DNS A records and 1.1 billion DNS CNAME records, and was col-
lected over a period of 1530 days from February 2012 to June 2016. Testing of
this classifying technique on the real-world dataset yielded a true positive rate of
97.25% and a false positive rate of just 0.027%.
Several approaches for DNS monitoring use spatial and temporal attributes to
determine the maliciousness of domains. Lee et. al. [28] propose the use of se-
quential correlation, namely the correlation between domains queried before or
after each other. The degree of the sequential correlation is determined with a cli-
ent sharing ratio (CSR). The CSR is estimated using the Jaccard similarity of the
IP addresses belonging to querying clients. The main advantage of using sequen-
tial correlation is the sensitivity of the detection method. This detection method
gathers temporally scattered traffic from each client and unsynchronized traffic
between clients on a graph structure called Domain Name Travel Graph (DNTG).
Another advantage is the accuracy of the detection, which is achieved by filtering
out the noise created by traffic to legitimate domain names. When the DNTG has

Chapter 2: Background 13

been constructed, related domain names are grouped together in clusters to detect
which malware domains work together. Malicious domains are then detected us-
ing a domain blacklist. The DNS data used was captured from DNS servers in large
ISP networks in the U.S and South Korea, containing between 1713K and 8661K
queries. Experiments with GMAD resulted in a detection accuracy and sensitivity
superior to other detection methods available at the time.
A recent attempt at using graph databases to analyze network log files is described
in Diederichsen et. al. [29]. Zeek11 is used to capture traffic from various proto-
cols and generate log files in real time. The log files are then entered into a Neo4j
graph database in order to facilitate efficient analysis of relations within the net-
work traffic. Figure 2.3 shows the graph data model used when creating the DNS
database.

Figure 2.3: An example of a graph data model for DNS logs [29].

2.6 Domain Features

This section describes the features used by the different approaches to classify and
define relations between domain names. The features used vary greatly, and most
of the approaches use data from external sources such as the ones described in
section 2.4.2.

11https://zeek.org/

https://zeek.org/

14 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

The automated analysis performed by Stevanovic et al. [23] is used for character-
izing the graph components that remain after the filtering is performed. A number
of features are extracted for each of the graph components, based on theoretical
knowledge and empirical evidence. They can be grouped into 6 categories:

1. Graph analysis
2. FQDN analysis
3. IP analysis
4. FQDN whitelist analysis
5. FQDN blacklist analysis
6. IP blacklist analysis

Zou et al. use both a DNS Query Response Graph (DQRG) and a Passive DNS
Graph (PDG) in order to detect malicious traffic. [30]. The PDG uses A and CNAME
records. Prior knowledge of both domains and hosts is used to determine the mali-
ciousness of domains. Domain prior knowledge consists of well-known legitimate
domains, known malicious domains, and domain reputation gathered from Alexa
Top Sites12 and freely registerable subdomains. The sources of known malicious
domain includes several well-known domain blacklists. Domain suffixes for DDNS
providers are also gathered. Host prior knowledge is gathered in a similar way.
Khalil et al. [31] use passive DNS replication to capture inter-server DNS mes-
sages. It focuses on A records where each record contains information about the
domain name, IP address, first observation, last observation and the number of
observations.
Yadav et al. [32] analyse IP-addresses and determine if they belong to a botnet.
Benign addresses are filtered out using the following measures:

• Degree of each IP-address: The number of domains that map to this IP.
• Correlation metric: Analyses the correlation between DNS successes and

failures in a given time window. It is computed as the probability of ob-
serving at least one failed DNS query in a time window, given that the IP
was returned as an answer to a successful DNS query in the same window.
• Succeeding Domain Set Entropy: Measures the edit distance between do-

main names in successful DNS queries
• Failing Domain Set Entropy: Measures the edit distance between domain

names in DNS failures. To compute the entropy of failed domain names,
failing queries that occur in the vicinity of a successful DNS query are ana-
lysed.

Jiang et al. [33] create a graph based on failed DNS queries and use this to discover
traffic to malicious domains. This work focuses on DNS type A request, which
contain the IPv4 address of the domains. All queries that contain other response
codes than "NOERROR" are considered failed queries and could be indicators of
malicious traffic.

12https://www.alexa.com/topsites

https://www.alexa.com/topsites

Chapter 3

Choice of Methods

This section describes the technical design of our implementation, the design pro-
cess and the graph data model used to import log files into Neo4j.

3.1 Requirements

The main part of the workload in this project involved creating a program that
could extract the DNS resource records needed to create the graph data model.
In order to have a clear understanding of what needed to be done, a certain set
of functionality was required:

• Parse DNS RRs from log files in PCAP, TXT and CSV file formats.
• Load external data into Cypher queries.
• Collect and parse WHOIS data.
• Collect and parse ASN and ISP data.
• Check blacklists and whitelists.
• Ability to run Cypher queries in Python.

3.2 Technical Design

Figure 3.1 shows the general design of the software that creates the graph data
model used in this project. The Python program import_pcap.py extract inform-
ation from log files (either in PCAP or TXT format) and combines this with data
from external sources, including WHOIS, RIPE and several domain filtering lists.
This data is then stored in a Python dictionary, which is passed to the official Neo4j
Python driver. The driver links the Python program with the local Neo4j server,
and creates the data model based on several Cypher queries. A complete list of
the Python functions can be found in appendix A.

15

16 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 3.1: Overview of the log import process

3.3 Implementation

The software for importing DNS log files was developed in Python 3 using Pycharm1.
Python was chosen for several reasons. Its simple syntax allowed for more time
to focus on developing the graph data model. There also exists an official Neo4j
Python driver, and several libraries for analyzing network traffic and gathering
the necessary enrichment data to be used in the database.

3.3.1 Python Libraries

Several Python libraries were used to extract and process log data:

• PyShark2 is a Python wrapper for tshark that allows networks packets to be
parsed using wireshark dissectors.
• whois3 is a wrapper for the Linux whois command. In this implementation,

the whois command directly queries the WHOIS server for each domain
name and retrieves information about the registrar and creation date for
each domain name.
• Neo4j Python Driver4 provides a connection between Python programs and

local Neo4j databases.

1https://www.jetbrains.com/pycharm/
2https://github.com/KimiNewt/pyshark
3https://github.com/DannyCork/python-whois/
4https://neo4j.com/docs/driver-manual/current/

https://www.jetbrains.com/pycharm/
https://github.com/KimiNewt/pyshark
https://github.com/DannyCork/python-whois/
https://neo4j.com/docs/driver-manual/current/

Chapter 3: Choice of Methods 17

3.3.2 Deployment

The entire source code and database dumps are available online5. The database
dump files can be loaded6 into Neo4j in order to reproduce the results of this
project. The following software is required to run and reproduce the results in
this thesis:

• Ubuntu 18.04 or later
• Python 3.6 or later with packages:

◦ Neo4j Python Driver 4.0 or later
◦ PyShark 0.4.2.9 or later
◦ whois 0.9.7 or later

• Neo4j 4.0 or later

3.4 Data Analysis

An exploratory study was performed in order to find or collect the data needed
for this project [34]. The dataset needed to contain relevant features for domain
classification and be extensive enough to be used for both testing and evaluating
a machine learning algorithm. We considered collecting the data manually from a
DNS-resolver, but this was found to be too challenging for several reasons. Getting
access to a resolver is difficult due privacy concerns. Active data collection was also
ruled out because it would likely lead to a sparse or biased datasat that would not
reflect normal DNS traffic. Instead, datasets were collected online at DNS database
repositories. Eidsiva also kindly provided a dataset of DNS traffic captured at their
local resolver.

3.5 Experiments

The implementation follows the scheme presented in [19] closely. Since the out-
come was a graph data model, and not a machine learning classifier, the evaluation
strategy was different.

1. Data collection

• Collect and select appropriate DNS datasets that can be stored in a
graph database and evaluated.
• Enrich the DNS data using data from external sources.
• Establish a ground truth of data that can be used to train and test the

classifier.

2. Detection

5https://github.com/eirikrismyhr/MIS4900
6https://neo4j.com/docs/operations-manual/current/tools/dump-load/

https://github.com/eirikrismyhr/MIS4900
https://neo4j.com/docs/operations-manual/current/tools/dump-load/

18 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

• Select features in the dataset that are suitable for classification al-
gorithms.
• Develop a graph data model based on the selected features.
• Import dataset along with enrichment data into Neo4j.

3. Evaluation

• Evaluate various use cases for the graph data model.

3.6 Graph Database Models

Graph databases present an alternative to relational database management sys-
tems (RDBMS). There are several advantages with graph databases that have mo-
tivated an increasing number of companies to start using them. Some of the ad-
vantages include performance, flexibility and agility [35]. This provides a data-
base solution that can be used to store and retrieve data quickly.

3.6.1 Neo4j

Neo4j7 is a transactional, ACID-compliant database. ACID represents four goals
that many database management systems strive to accomplish [36]:

• Atomicity: Transactions only happen when all parts of the transaction com-
plete successfully.
• Consistency: Only valid data can be entered into the database, meaning that

it has to follow to database schema. However, Neo4j implements an optional
schema, meaning that the consistency rules are looser than in relational
databases.
• Isolation: If multiple transactions are executed on the database at the same

time, they cannot impact each other. For example, if one write transaction
is writing to the database, read transactions must wait until the write oper-
ation is complete. This is to ensure that the data stays in the correct state.
• Durability: Committed transactions cannot be lost. This is ensured with per-

sisted storage and transaction commit logs.

There are several reasons why Neo4j was chosen as the Database Managements
System (DBMS) to be used in this project. One of the main reason is its scalability.
More specifically, this includes

• Capacity
• Latency
• Throughput

Another main reason for choosing Neo4j is that it is a graph database. This makes
it easier to find relations between entries in the database than in traditional re-
lational databases which only return query results in tables. In addition, graph

7https://neo4j.com/

https://neo4j.com/

Chapter 3: Choice of Methods 19

databases such as Neo4j can be queried with easily formatted queries, and query
results are returned faster than in relational databases.
Nodes and relations in the graph database were created using the official Python
driver, which allows for easy data import. Neo4j also includes a desktop client
known as Neo4j Desktop8 that was used to manage the local instances of the
databases in this project. Included in Neo4j Desktop is the Neo4j Browser that
can be used to run Cypher queries, see the results both in graph and text format,
and gain an overview of all node label, relationship types and property keys in the
database that is currently running.

Figure 3.2: Neo4j Browser user interface

Nodes

Each node in the graph represents one data type in the database. Nodes have
unique labels to differentiate them from other nodes. They also have attributes,
for instance, Domain nodes have a name attribute.

Relationships

Nodes are usually connected to other nodes through relationships, in the same
way that vertices are connected by edges in graph theory. The relationships also
have unique labels and can contain properties such as timestamps. Each relation-
ship is either directed or undirected.

8https://neo4j.com/developer/neo4j-desktop/

https://neo4j.com/developer/neo4j-desktop/

20 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Cypher

Cypher [37] is the query language used to store and retrieve data from the Neo4j
graph database. Its syntax is designed to be simple and human-readable, and is
inspired by ASCII art. The queries in Cypher constitute the CRUD operations (Cre-
ate, Read, Update, Delete), which are the basic functions Cypher supports. Cypher
is also used in other property graph databases and is made open source through
the openCypher9 project.
The query structure is similar to the one used in SQL, where queries are built using
several clauses. The most used clauses are the following:

• MATCH: Selects a graph pattern based on a certain pattern. Similar to SE-
LECT in SQL.
• WHERE: Adds constraints to the pattern used in MATCH. Similar to WHERE

in SQL.
• RETURN: Defines what data is returned.
• SET: Updates node labels and properties on nodes and relationships.
• CREATE: Creates nodes and relationships.
• MERGE: Creates a pattern in the graph if it does not already exist. Can be

used to create both nodes and relationships in the same way as CREATE.

The simple query shown in 3.1 creates a subset of the data model described in
section 3.8. A computer with the IP address 192.168.2.1 sends DNS requests for
the domain names google.no and nrk.no, which resolves to 172.217.21.131 and
91.135.34.18 ,respectively.

Code listing 3.1: Cypher Query Example

CREATE (src:IP_HOST {ip: ’192.168.2.1’})
CREATE (g:Domain {name: ’google.no’})-[:RESOLVES_TO]->(:IP {ip:’172.217.21.131’})
CREATE (nrk:Domain {name: ’nrk.no’})-[:RESOLVES_TO]->(:IP {ip:’91.135.34.18’})
CREATE (src)-[:HAS_QUERY]->(g)
CREATE (src)-[:HAS_QUERY]->(nrk)

3.7 Data Collection

The log files used in this thesis were in different file formats, and therefore re-
quired different data parsing methods. Figure 3.4 shows an example of a DNS
query from the CTU-13 dataset [38], captured in PCAP format. The dataset provided
by Eidsiva was in the format shown in code listing 3.2.

3.7.1 Datasets

CTU-13 Dataset

The CTU-13 dataset consists of 13 network traffic captures from different bot-
net samples in the CTU University, Czech Republic, in 2011 [38]. Each capture

9https://www.opencypher.org/

https://www.opencypher.org/

Chapter 3: Choice of Methods 21

Figure 3.3: The resulting graph of the query in code listing 3.1

Figure 3.4: DNS query example from the CTU-13 dataset

22 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

contains botnet traffic mixed with normal traffic and background traffic.
Due to the large size of the complete dataset, we chose to use only scenario 2 when
testing the model. This scenario10 contains traffic from a malware sample known
as Neris. The capture file used in this thesis project contains only the botnet traffic
from the infected machine. The background and normal traffic contains private
information and has not been made public. The botnet traffic does not reflect
normal DNS traffic, but it contained sufficient data to properly test our model. It
is also a traffic volume that could be imported to our model in an acceptable time.

Figure 3.5: Data in each botnet scenario in the CTU-13 dataset [38]

Eidsiva Dataset

The second dataset used in this project was provided by Eidsiva and is in a differ-
ent format than the CTU-13 dataset. It is in the TXT file format where the follow-
ing fields will be used from each record: Date, timestamp, anonymized client IP
address and queried domain name. It contains 5,457,344 DNS requests captured
over a period of 52 minutes. The content of the DNS responses are not included
so the model only contains the domain name, date and timestamp for each DNS
query. IP addresses for the queried domain names are not available because this
log file only contains the traffic between the client and resolver.
In the first version of the import program, the values necessary for creating the
nodes and relationships were retrieved directly from the TXT file. When running
the program on the first 10000 lines of the file, 13,241 nodes and 9,790 rela-
tionships were created in the database. The processes was completed in 879.56
seconds (14.65 minutes). This runtime was deemed unsatisfactory, and a new

10https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-43/

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-43/

Chapter 3: Choice of Methods 23

import method which used the LOAD CSV Cypher command was created. In ad-
dition, a function named txt_to_csv.py was developed to convert the dataset into
the necessary comma-separated values (CSV) file format. The complete function
in shown in code listing A.8 Importing the first 10000 lines using LOAD CSV resul-
ted in a large improvement of the runtime, down to 74.93 seconds. However, this
method was not used in the final version due to difficulties in importing external
data.

Code listing 3.2: Example record from the Eidsiva dataset

04-May-2020 10:01:37.943 client 2bfc07a5afe8fc8d4242763c3fb55b761e0115c4
(tenor.googleapis.com): view ntp-stealth: query: tenor.googleapis.com IN A
+ (82.147.40.12)

3.7.2 Enrichment Data

Blacklists

The blacklists contain domain names or IP addresses that have been marked as
malicious based on a reputation system where a reputation score is calculated
based on a set of knowledge. These lists are the main method of determining if an
Domain or IP node in the graph is malicious. The following blacklists are utilized
in this project:

• Cybercrime Tracker11

• Phishtank12

• Malwaredomainlist13

• Urlhaus14

• Firehol15

• CINS Score16

Whitelists

As described in section 2.4.2, the Alexa Top Domain list is often used to get a
ground truth of legitimate domains. The list is no longer available to download
for free, but there exists alternatives. We decided to use The Majestic Million17, a
list of the million domains with the most referring subnets. It contained a largely
similar set of features as the Alexa Top Domain list. The list is available to down-
load for free in CSV format. To reduce the likelihood of whitelisting malicious
domains, only the top 1000 domain names are included in our implementation.

11https://cybercrime-tracker.net/
12https://www.phishtank.com/
13https://www.malwaredomainlist.com/
14https://urlhaus.abuse.ch/
15http://iplists.firehol.org/
16http://www.cinsscore.com/
17https://majestic.com/reports/majestic-million

https://cybercrime-tracker.net/
https://www.phishtank.com/
https://www.malwaredomainlist.com/
https://urlhaus.abuse.ch/
http://iplists.firehol.org/
http://www.cinsscore.com/
https://majestic.com/reports/majestic-million

24 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

IP Geolocation

Information about the corresponding AS number and ISP for each IP address was
gathered from the Maxmind GeoLite2 free downloadable database18. Each record
in the database contains a subnet, its AS number and the ISP that controls the AS.

Code listing 3.3: Record example from the Maxmind GeoLite2 database

1.1.1.0/24,13335,CLOUDFLARENET

3.8 Graph Data Model

The graph data model used for the databases in this thesis project is shown in
figure 3.7. The nodes and relationships in the model were chosen based on how
useful the information would be when trying to detect malicious network traffic.
Table 3.1 shows all nodes and their properties, while table 3.2 shows the relation-
ships between the nodes.

Table 3.1: Nodes and properties in the graph data model

Node Property
IP ip, blacklisted
Domain name, blacklisted, whitelisted
Registrar name
AS number
ISP name
Text content
IP_HOST ip
Mail_server name, blacklisted
NXDOMAIN

Figure 3.6 shows a subset of the nodes and relationships created from the CTU-13
dataset. An IP_HOST (yellow) has sent DNS request for several Domain nodes
(red) which in turn have an assigned IP address (light blue) and a Registrar
(green). Each IP node is connected to an AS (dark blue) which is administered by
an ISP (grey).

3.8.1 Nodes

Table 3.1 shows the nodes that are created for each analyzed DNS query or re-
sponse. This sections describe the information provided by each node type.

18https://dev.maxmind.com/geoip/geoip2/geolite2/

https://dev.maxmind.com/geoip/geoip2/geolite2/

Chapter 3: Choice of Methods 25

Figure 3.6: Sample graph from the CTU-13 dataset

26 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 3.7: The graph data model used in this thesis

Chapter 3: Choice of Methods 27

Table 3.2: Relationships in the graph data model

Relationship Property From ->To
RESOLVES_TO Domain ->IP
REQUEST first_seen, last_seen IP_HOST ->Domain
REGISTERED_BY creation_date Domain ->Registrar
IN_NETWORK IP ->AS
ADMINISTERS ISP ->AS
POINTS_TO IP ->DOMAIN
HAS_ALIAS Domain ->Domain
IS_AUTHORITATIVE_FOR Domain ->Domain
NOT_EXIST Domain ->NXDOMAIN
HAS_MAILSERVER Domain ->Mail_server
HAS_DESCRIPTION Domain ->Text

IP

The IP node contains the IP address that the requested domain resolves to. The IP
attribute is the A(IPv4) or AAAA(IPv6) record returned in the DNS query response.
Since one domain name can resolve to several IP addresses, one IP node is created
for each address. This way, it will be easier to see if several domains resolve to the
same IP address, or if they did in the past. Each IP node also contains a blacklisted
attribute that indicates whether the IP has been found in an IP blacklist.

Domain

The Domain node represents the requested domain name. Each node has a black-
listed attribute that indicates if the domain name has been found in any of the
blacklists.

Registrar

A domain name registrar manages the use of domain names. Each Domain node
is connected to a Registrar node if the information is available. Domain registry
information is not always available, so not all Domain nodes are connected to a
Registrar node. A recent report19 by Awake Security reveals that certain registrars
host a large number of malicious domains. It shows that 60% of the reachable do-
mains registered through GalComm are malicious or suspicious. Domain registrar
information can therefore be a useful indicator of malicious activity.

19https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-
domain-registrars/

https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/
https://awakesecurity.com/blog/the-internets-new-arms-dealers-malicious-domain-registrars/

28 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

AS

Each IP is a part of a routing prefix. An autonomous system is a collection of rout-
ing prefixes controlled by a common network administrator on behalf of a single
administrative entity. Each IP node is therefore connected to an AS node. Each
node has an AS number which a unique identifier assigned to each AS. By invest-
igating if several IP nodes connect to the same AS node, we can potentially find
relations between malicious domains that are not evident from the DNS request
solely.

ISP

Each AS node is connected to an ISP node. An internet service provider (ISP)
provides internet access to their customers. Each ISP controls one or more Autonom-
ous Systems (AS).

Text

The Text node represents the DNS TXT record, which contains text that describes
the domain it is connected to. The TXT record is frequently exploited for dissem-
inating the commands of the botmaster, therefore the analysis of this record can
reveal malicious actions.

IP_HOST

The IP_HOST represents the IP address of the client that send the DNS query for
the domain name in the Domain node. If this node has issued many queries for
blacklisted domains, there is a a possibility that the host is infected.

Mail_server

MX-Records specify the Mail Exchange servers for a given domain name. Each
Mail_server node contains a name attribute. Mail servers connected to known
malicious domains are often involved in spamming campains, namely they send
large amounts of phishing mails. Thus this feature is a useful indicator for mali-
cious actions.

NXDOMAIN

If a queried domain name does not exists, an NXDOMAIN response is returned. All
Domain nodes containing non existant domain names are connected to a single
NXDOMAIN node. Malicious domains are often taken down and re-hosted on dif-
ferent domain names. A large amount of DNS queries to Domain nodes connected
to the NXDOMAIN node is considered suspicious behaviour.

Chapter 3: Choice of Methods 29

3.8.2 Relationships

The nodes themselves and their attributes provide resourceful data, but this only
becomes useful after the nodes have been connected based on some of the rela-
tionships. These relationships allow us to easily get an overview of the domain
names and IP addresses, and how these are connected to each other. Most of the
relationships in this data model represents connections between DNS RR types
described in section 2.1.3.

REQUEST

The REQUEST relations represents a DNS request for a domain name. It connects
the IP_HOST node (client) and the Domain node, and is characterized by the
timestamps of the first and last observation of a DNS request for a given domain
name.

RESOLVES_TO

If a domain name exists, it resolves to one or more IP addresses. This relation-
ship represents the A (IPv4) or AAAA (IPv6) records returned in the DNS query
response, and connects the Domain and IP nodes.

NOT_EXIST

When a queried domain name does not exist, an NXDOMAIN response code is
returned. All Domain nodes that represent non-existent domain names have a
NOT_EXIST relationship to the same NXDOMAIN node.

REGISTERED_BY

Connects each domain name to its registrar if the WHOIS information is available.

IN_NETWORK

Each IP address belongs to an Autonomous System (AS). All IP nodes are therefore
connected to an AS node if this information is available.

ADMINISTERS

Each AS is administered by an Internet Service Provider (ISP), therefore each AS
node is connected to an ISP node.

POINTS_TO

The POINTS_TO relationship represents the DNS PTR resource record, which are
used to map IP addresses to domain names. The PTR resource record does not

30 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

necessarily return the same domain name resolved by the DNS request, but it can
reveal useful information about the IP address, for example if it is a DSL host that
is possibly infected.

HAS_ALIAS

The HAS_ALIAS relationship represents the CNAME records for each domain name.
These records are domain name aliases, and allow several domain names to point
to the same domain name. Analyzing CNAME records is useful because domain
names are often changed rapidly. If one domain name is found in a blacklist the
other CNAME records connected to the same domain should be investigated.

IS_AUTHORITATIVE_FOR

This relationship represents the NS-record, which specifies which DNS server is
responsible for a zone. Several malicious Domain records might have the same
Authoritative name server, which makes this a useful relationship.

HAS_MAILSERVER

This relationship represents the MX record for a given domain name, and connects
Domain and Mail_Server nodes.

HAS_DESCRIPTION

This relationships connects each Domain node with its corresponding TXT node.

Chapter 4

Results

This chapter presents the outcomes of our research after creating the databases
of the graph data model, and running queries on the databases to find potentially
malicious domain names and IP addresses. We also show how our model can be
used to detect potential clusters of malicious activity by examining graph nodes
related with blacklisted nodes or other malicious nodes.
The log files were imported into Neo4j using the Python program described in
section 3.2. The evaluations were performed on a computer with the following
specifications:

• Desktop computer with AMD Ryzen 5 3600X, 16GB RAM and Ubuntu 18.04
as operating system.
• Neo4j version 4.0.1 and Neo4j Desktop version 1.2.9

4.1 Importing Log Data

The values necessary for creating the nodes and relationships were retrieved dir-
ectly from the Eidsiva log file, which was a plain text file (TXT). When creating
the database from the CTU-13 dataset, a different approach was used since the
log file was in pcap file format. Each packet from the packet capture file was read
using PyShark, where only the DNS traffic was retrieved. The necessary resource
record fields from each packet were extracted and stored in a Python dictionary.
Registrant data from WHOIS was also added, in addition to the Autonomous Sys-
tem (AS) and ISP related to each IP address. The dictionary was then fed to the
official Neo4j Python driver, which executed transactions based on several Cypher
queries.

4.2 Eidsiva Dataset Findings

The Eidsiva dataset only contains the DNS traffic between each host and the re-
solver. Therefore the graph data model looked different than the one created from
the CTU-13 dataset. It contains Domain, IP_HOST and Registrar nodes, as well as

31

32 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

the HAS_QUERY and REGISTERED_BY relationships. While this meant that we
were unable to see what IP addresses each domain name resolved to, there was
still a large amount of useful information to be found in the queries between each
host and domain name. An example graph is shown in figure 4.1 with all of the
available node types in this database:

• IP_HOST (yellow)
• Domain (red)
• Registrar (green)

Figure 4.1: Example graph from Eidsiva database with all node types

4.2.1 Querying the Eidsiva Database

Figure 4.2 shows a graph generated by the query found in code listing 4.1. It
shows 20 Domain nodes that have queried the same domain (red), in this case
www.google.com. This particular domain name is well known and therefore whitel-
isted, meaning that this graph cluster is certainly benign.

Code listing 4.1: Finds all clients that have sent DNS queries for ’google.com’

MATCH (i:IP_HOST)-[q:HAS_QUERY]->(d:Domain{name:"www.google.com"})
RETURN i,q,d
LIMIT 20

Since this dataset contains the time and date of each DNS query, it is possible to
use this to search for queries made in specific time intervals. One possible use case
is to search for the most queried domains in a given day:

Code listing 4.2: Cypher code used to find most queried domain names on May
4, 2020

MATCH(src:IP_Host)-[hq:HAS_QUERY {date: "04-May-2020"}]->(d:Domain)
RETURN DISTINCT d.name as dns_query, COUNT(hq) AS total ORDER BY total DESC
LIMIT 10

Code listing 4.3: Cypher query that returns all blacklisted domain names

MATCH (n:Domain {blacklisted:true}) return n.name

Chapter 4: Results 33

Figure 4.2: Queries from 20 different hosts to the same domain in the Eidsiva
dataset

Figure 4.3: Top domains queried on May 4, 2020

34 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Each domain has a "blacklisted" attribute which is generated by checking if the
associated domain name is found in any of the blacklists described in 3.7.2. By
running the query in code listing 4.3 we can find all domain names that have been
blacklisted:

• .
• lan
• t.co
• m.me
• UBNT
• io
• ath6
• dev
• t.me
• null
• com
• no
• g.co
• net
• HPPC
• a.co
• wpad

Code listing 4.4: Cypher query that returns all domain names that are both black-
listed and whitelisted

MATCH (n:Domain {blacklisted:true, whitelisted:true}) return n.name

Most of the domain names found are clear false positives, and some are popu-
lar URL shorteners. By running the query shown in 4.4 we found that all of the
following were found in both a blacklist and a whitelist:

• t.co
• m.me
• t.me
• g.co

The fact that the domain names were found in the whitelist means that they are
widely used. Therefore, they are most likely not malicious. If we want to find
domain names that might be related to the ones that are blacklisted, we can run
queries to find relations between them. One possibility is to see if several hosts
have sent DNS request for the same domain name, like in figure 4.2. We can also
find out what other domains the same hosts have visited. Figure 4.4 was generated
by the query in code listing 4.6 and shows two other hosts that have queried the
same domain name, in this case t.co. Since they all have requested a blacklisted
domain name, there is a possibility that all of the host have been infected. Each
host in this graph is also the center of a cluster of queried domain names that are
potentially malicious.

Chapter 4: Results 35

If one host has queried several malicious domain names, it might have down-
loaded malware. Another type of malicious activity is cases where blacklisted sites
are visited frequently. This can mean that the host has been infected and is part of a
botnet or malware distribution network, and is sending and receiving data from an
external server such as a C&C server. By running a the query in code listing 4.5 we
found that a client with address 48a3db8e7657277aee70a496d0413241f956cbd2
had sent 246 queries to t.co. This abnormally high number indicated that this
client should be investigated further to see if it has been infected.

36 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Code listing 4.5: Cypher query that returns the 10 IP_HOST nodes that have sent
the most queries for t.co

MATCH (src:IP_HOST)-[:HAS_QUERY]->(:Domain {name: "t.co"})
MATCH (src)-[hq:HAS_QUERY]->(d:Domain)
RETURN DISTINCT src.ip AS dns_query, count(hq) AS total ORDER BY total DESC
LIMIT 10

Code listing 4.6: Queried domain names for clients that have queried blacklisted
domain name

MATCH (src:IP_HOST)-[:HAS_QUERY]->(:Domain {name: "t.co"})
MATCH (src)-[:HAS_QUERY]->(d:Domain) RETURN src, d LIMIT 25

Figure 4.4: Hosts that have sent DNS queries for the same blacklisted domain
name

Another useful feature, especially for security analysts, is the ability to find the
time stamps for the first and last request to a given domain name. Also, domain

Chapter 4: Results 37

names related to malicious activity are often used only for limited periods. Bot-
nets usually use many different domain names for their C&C servers in order to
have redundancy. The large amount means that they are expendable and can be
changed frequently. In the case of a computer infected by malware, this is a useful
indicator of malicious activity. If the last query was sent recently, the machine is
most likely still infected.

4.3 CTU-13 Dataset Findings

The CTU-13 dataset contains data about DNS RR types and content for each cap-
tured network packet. This allowed us to fully utilize our graph data model and
display packet data combined with data from external sources. Figure 4.5 shows
an example of a single DNS query where all of the node types are present. The
different node types are color coded to make them easily distinguishable:

• IP_HOST (orange)
• Domain (red)
• IP (light blue)
• AS (dark blue)
• ISP (gray)
• Mail_Server (light brown)
• Registrar (green)

The data model also contains Text nodes, but no DNS TXT RRs were found in
this dataset. Also, there are no NXDOMAIN nodes present due to the absence of
NXDOMAIN responses in the logs.

Code listing 4.7: Returns all available node types in the CTU-13 dataset

MATCH(src:IP_HOST)-[:HAS_QUERY]-(d:Domain)
MATCH(d)-[:RESOLVES_TO]->(i:IP)
MATCH(i)-[:IN_NETWORK]->(as:AS)<-[:ADMINISTERS]-(isp:ISP)
MATCH(d)-[:HAS_MAIL_SERVER]->(mx:Mail_Server)
MATCH(d)-[:REGISTERED_BY]->(r:Registrar)
RETURN src,d,i,as,isp,mx,r LIMIT 2

4.3.1 Querying the CTU-13 Database

Same Registrar

Domains names that are planned to be used as C2 servers in botnets are often
bulk registered in advance. Normally, all of the domain names are registered by
the same registrar.
If one of the Domain nodes in this cluster represents a blacklisted domain name,
the other Domain nodes in the cluster might be malicious as well. Each
REGISTERED_BY relationships contains a creation_date attribute, which shows
when the domain name was first registered. By comparing the different creation
dates in the cluster, we can potentially find domain names that are related to the

38 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 4.5: Example DNS query that contains all available node types

same type of activity. The Cypher query in code listing 4.8 finds domain nodes
that have been queried by a single host, and their registrar. The resulting graph
is shown in figure 4.6. As described in section 2.3.1, domain names related to
botnets and malware distribution networks are often registered by the same re-
gistrars. Registrars are therefore a useful feature when analyzing performing DNS
log analysis. If one of the domain names are malicious, there is a chance that
others with the same registrar are also malicious.

Code listing 4.8: Queried domain names for clients that have queried blacklisted
domain names

MATCH (src:IP_HOST)-[hq:HAS_QUERY]->(d:Domain)-[rb:REGISTERED_BY]-(r:Registrar)
RETURN src,hq,d,r LIMIT 10

Same IP Addresses

As described, malicious domain names are often changed rapidly. Therefore it is
useful to see all of the domain names that resolve to each IP address. The Cypher
query in code listing 4.9 returns domain names and the IP addresses they resolve
to. Figure 4.7 shows a subset of the resulting graph, where several domain names
resolve to the same IP addresses. Figure 4.8 shows another subset where a single
domain name (smtp.aol.com) resolves to several IP addresses.

Code listing 4.9: Finds mappings between domain names and IP addresses

MATCH (d:Domain)-[r:RESOLVES_TO]->(i:IP) RETURN d, i LIMIT 100

Chapter 4: Results 39

Figure 4.6: Queried domain names with the same registrar

Figure 4.7: Domain names (red) that resolve to the same IP address (blue)

40 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 4.8: Single domain name (red) that resolves to several IP addresses (blue)

Malicious IP Addresses

This dataset contains not only domain names, but also the IP addresses they re-
solve to. No domain names in this dataset were blacklisted, but the query in code
listing 4.10 returned the blacklisted IP addresses 74.220.207.177 and 127.0.0.1.
The query in code listing 4.11 returned the graph in figure 4.9, which gave two
starting points for an investigation. The left graph shows that the domain name
realto-house.ru resolved to the IP 74.220.207.177. The two node clusters have
significant differences. The right cluster contains a number of domains with a .ru
country code top-level domain (ccTLD), which means that they are registered in
Russia. Russian domain names are sometimes used for malicious activity, so this
is a reason for further investigation. A suspicious detail is that all of the domain
names resolve to 127.0.0.1, which is the loopback IP address also known as local-
host. This address is used when connecting to the same computer the end user is
on. Malware can use this to avoid suspicion, for example by resolving to it before
or after malicious activities in order to appear legitimate.
The left cluster shows that the only domain names that has resolved to the IP
address 74.220.207.177 is "realto-house.ru". By running the query in code list-
ing 4.12, we found all nodes that were connected to the IP node with address
74.220.207.177. The result is shown in graph 4.10, where we found additional
nodes that were potentially malicious. The complete set of information found can
be summarized as:

• realto-house.ru resolves to 74.220.207.177. No other domain names re-
solved to this particular IP.
• realto-house.ru has a mail server with the same name.
• ns1.vega-host.com is the authoritative name server for realto-house.ru.
• A host with IP 147.32.84.165 has sent queries for realto-house.ru

Chapter 4: Results 41

Code listing 4.10: Returns all blacklisted IP addresses

MATCH(i:IP) WHERE i.blacklisted = TRUE RETURN i

Code listing 4.11: Returns all domain names that resolve to blacklisted IP ad-
dresses

MATCH(i:IP) WHERE i.blacklisted = TRUE
MATCH (d:Domain)-[:RESOLVES_TO]->(i)
RETURN i,d

Figure 4.9: All domain names that resolve to the blacklisted IP addresses

Code listing 4.12: Returns all nodes that are connected to the IP node with ip =
74.220.207.177

MATCH(i:IP) WHERE i.ip = "74.220.207.177"
MATCH (d:Domain)-[:RESOLVES_TO]->(i)
MATCH (n)-[r]-(d)
RETURN i,d,n

Malicious Domain Registrars

Malicious domain names that are used for the same type of activity are often
registered by the same domain registrar. Going back to the right cluster in 4.9, we
ran the query in code listing 4.13 and found that many of the domain names were
registered by the same registrar, as shown in figure 4.11.

Code listing 4.13: Returns all Domain and Registrar nodes connected to the IP
node with ip=127.0.0.1

MATCH(i:IP) WHERE i.blacklisted = TRUE
MATCH (d:Domain)-[:RESOLVES_TO]-(i)
MATCH (d)-[:REGISTERED_BY]->(r:Registrar)
RETURN i,d,r

42 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Figure 4.10: All nodes connected to blacklisted IP

AS and ISP Information

In order to find information about a subset of IP, AS and ISP nodes, we ran the
query in code listing 4.14. The result was the two clusters shown in figure 4.12.
The right cluster shows domain names and IPs related to a subnet controlled
by Google. This cluster can therefore be considered benign. The ISP in the right
cluster is CT-HangZhou-IDC. None of the domain names or IPs in this cluster were
blacklisted, but open-source intelligence (OSINT) revealed that this ISP is known
to host malware. Therefore, this cluster can be considered malicious.

Code listing 4.14: Returns all Domain and Registrar nodes connected to the IP
node with ip=127.0.0.1

MATCH(ip:IP)-[:IN_NETWORK]->(as:AS)<-[:ADMINISTERS]-(isp:ISP)
RETURN ip,as,isp
LIMIT 10

Chapter 4: Results 43

Figure 4.11: Registrars related to potentially malicious domain names

Figure 4.12: IP addresses owned by two ISPs

Chapter 5

Discussion

This chapter includes a discussion of the findings for each of the research questions
defined for this thesis project. Potential issues related to the methodology and
findings are also discussed. Lastly, ethical and legal considerations are described.

5.1 RQ1: Graph Data Model

The first research question, How can DNS data be represented in a graph database?,
aimed to create a graph data model which could be used to store both typical
network features of malicious domain names and explore the usefulness of new
ones. During the problem investigation phase, related works were studied to find
out what types of graph models had been developed. We also wanted to investigate
the usefulness of the domain features used in each approach. We found that a
majority of the existing works in this area of study use only the contents of DNS
RRs in their models. Also, only a few approaches used graph databases such as
Neo4j to store the data. We saw a potential to use graph database technology to
store both contents of RRs and enrichment data from various sources.
A set of DNS RRs were based on their prevalence in normal and malicious traffic
patterns. The main challenge was to find DNS datasets that contained all of the
necessary RRs and were available for research purposes. This was challenging,
largely due to the personal information contained in DNS traffic. Client IP ad-
dresses and queried domain can be used to build profiles of end users. Because of
this, we used datasets that were anonymized or cleared of personally identifiable
information.
Developing and importing data into the graph data model was the main object-
ive of this thesis project. Our final model shows that it is possible to create graph
representations of DNS data in a reasonable time frame, mainly due to the de-
veloper resources available in Neo4j and easily formatted Cypher queries. The
temporal and spatial properties were suitable for use in a graph representation.
Through several experiments we found that our model performed well as a tool
for detection and threat hunting.

45

46 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

5.2 RQ2: Incorporating External Data

The second research question, How can data from external sources be incorporated
into the graph structure?, builds upon the first and presented a similar set of chal-
lenges and findings. Domain registrar information proved to be a useful feature
when determining the maliciousness of a domain. When shown together with do-
main names and IP addresses, it resulted in relations that were not apparent in
the original DNS traffic. Analysis of AS and ISP nodes showed promising results
that could be used to find malicious clusters of IPs based on AS or ISP information.

5.3 RQ3: Detecting Malicious Domains

Like many related works described in chapter 2, our detection algorithm relies
on enrichment data from blacklists and whitelists. Our experiments show that the
model can detect both malicious domain names and IPs, and use this to infer re-
lationships to other nodes in the graph. These relationships often formed clusters
of suspicious domains that could reveal evasion techniques used by malware to
avoid network security monitoring tools such as IDSs. The set of features in our
graph data model could also be suitable for machine learning techniques such
as deep learning or clustering. However, this was outside the scope of this thesis
project.
One issue with this approach is that the data import process is time consuming.
Thus, not all domain names in the datasets could be analyzed. More malicious
domain names and IPs might have been discovered if the entire dataset could
have been analyzed. Also, a different set of blacklists might have resulted in a
different set of suspicious domains.

5.4 Potential issues

DNS over HTTPS (DoH) has become more popular lately, and popular web browsers
such as Firefox have started rolling out DoH as the default setting in certain re-
gions1. While this improves privacy, it poses several issues for security information
and event management (SIEM) systems that monitor DNS traffic [39]. When DoH
is enabled, the DNS traffic is sent over port 443 and secured via TLS. This means
that important information such as DNS RRs are unavailable to network security
monitoring tools.

5.5 Ethical and Legal Considerations

Careful consideration was taken when collecting DNS traffic logs. Personally iden-
tifiable information was removed or anonymized. Freely available datasets were

1https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-
over-https-by-default-for-us-users/

https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/

Chapter 5: Discussion 47

checked to ensure that they contained no such information. Information from each
end user, such as IP addresses, was anonymized. This did lead to less represent-
ative datasets with fewer features, but it was still possible to test our model.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we explored the use of graph databases to analyze DNS traffic logs
and find relations between malicious domain names and IP addresses. A graph
data model was built using commonly used DNS resource records and enrichment
information from resources such as WHOIS and Maxmind. DNS traffic logs were
retrieved from two different sources and used to create two versions of the graph
data model, to see how the model would work on different log formats.
Botnets and malware distribution networks are increasing threats in the cyber
security domain. The DNS protocol is used to develop evasion techniques such as
fast flux, that are designed to make malicious traffic and malware more difficult
to detect and stop. Domain names and IP addresses are changed rapidly, which is
hard to detect with signature-based intrusion detection systems. Graph databases
present the ability to see how the domain names and IP addresses are connected.
The data model can be used to both detect malicious activity, and analyze logs.
When testing our graph data model in several scenarios, we found that it was
possible to discover new relations within the DNS logs. This makes it useful in
environments such as Security Operations Centers (SOC) where log file analysis
is an important part of detecting malicious activity. The Neo4j database can be
queried quickly with queries that are easy to understand and write. In addition,
answers to queries are received quicker than in relational database.

6.2 Future Work

While the graph databases created in this work have potential for use in both net-
work security monitoring and malware analysis, there exists possibilities to extend
the work. The performance of the implemented log file import program proved
to be sufficient for smaller datasets of a limited time span and with few querying
hosts. However, when used on a dataset provided by Eidsiva, with a large amount
of DNS queries, it proved to be too inefficient for real-time analysis of network

49

50 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

packets. To be able to monitor large networks, the code needs to be optimized.
This work used only a single instance of Neo4j when creating the graph databases.
One possibility for performance improvement is to cluster several instances to im-
port data from several sources in parallel. Operational security (OPSEC) could
also be improved by changing the way information is retrieved from external data
sources. This could prevent malware authors from being alerted that their activity
has been detected. There is also a possibility to include data from other sources,
such as HTTP logs, and correlate them with DNS logs. This has the potential to
provide a better understanding of malware behaviour and infection methods.

Bibliography

[1] Cisco, ‘Cisco 2016 annual security report’, 2016.

[2] M. Anagnostopoulos, G. Kambourakis and S. Gritzalis, ‘New facets of mo-
bile botnet: Architecture and evaluation’, International Journal of Informa-
tion Security volume, vol. 15, pp. 455–473, 2016.

[3] N. Inc., ‘Neo4j graph platform’, 2019. [Online]. Available: https://neo4j.
com/.

[4] P. V. Mockapetris, Rfc1034: Domain names-concepts and facilities, 1987.

[5] P. V. Mockapetris, Rfc1035: Domain names-implementation and specification,
1987.

[6] M. Anagnostopoulos, G. Kambourakis, E. Konstantinou and S. Gritzalis,
‘Dnssec vs. dnscurve: A side-by-side comparison’, in. IGI Global, 2012, p. 201.

[7] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose, ‘Dns security in-
troduction and requirements’, RFC 4033 (Proposed Standard), Tech. Rep.,
2005.

[8] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose, ‘Resource records
for the dns security extensions’, RFC 4034 (Proposed Standard), Tech. Rep.,
2005.

[9] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose, ‘Protocol modific-
ations for the dns security extensions’, RFC 4035, March, Tech. Rep., 2005.

[10] P. Hoffman and P. McManus, ‘Dns queries over https (doh)’, Internet Requests
for Comments, IETF, RFC, vol. 8484, 2018.

[11] P. Vixie, O. Gudmundsson 3rd and B. Wellington, Rfc2845: Secret key trans-
action authentication for dns (tsig), 2000.

[12] L. Shafir, Y. Afek and A. Bremler-Barr, ‘Nxnsattack: Recursive dns ineffi-
ciencies and vulnerabilities’, arXiv preprint arXiv:2005.09107, 2020.

[13] S. S. Silva, R. M. Silva, R. C. Pinto and R. M. Salles, ‘Botnets: A survey’,
Computer Networks, vol. 57, no. 2, pp. 378–403, 2013.

[14] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis and S.
Gritzalis, ‘DNS Amplification Attack Revisited’, Computers & Security, vol. 39,
Part B, pp. 475–485, 2013.

51

https://neo4j.com/
https://neo4j.com/

52 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

[15] J. Nazario and T. Holz, ‘As the net churns: Fast-flux botnet observations’, in
Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd International
Conference on, 2008, pp. 24–31.

[16] G. Wang, J. W. Stokes, C. Herley and D. Felstead, ‘Detecting malicious land-
ing pages in malware distribution networks’, in 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), IEEE,
2013, pp. 1–11.

[17] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel, S. Saha, G. Vigna, S.-J.
Lee and M. Mellia, ‘Nazca: Detecting malware distribution in large-scale
networks.’, in NDSS, Citeseer, vol. 14, 2014, pp. 23–26.

[18] G. Zhao, K. Xu, L. Xu and B. Wu, ‘Detecting apt malware infections based
on malicious dns and traffic analysis’, IEEE access, vol. 3, pp. 1132–1142,
2015.

[19] Y. Zhauniarovich, I. Khalil, T. Yu and M. Dacier, ‘A survey on malicious do-
mains detection through dns data analysis’, ACM Computing Surveys (CSUR),
vol. 51, no. 4, p. 67, 2018.

[20] D. Chiba, T. Yagi, M. Akiyama, T. Shibahara, T. Yada, T. Mori and S. Goto,
‘Domainprofiler: Discovering domain names abused in future’, in 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), IEEE, 2016, pp. 491–502.

[21] L. Bilge, E. Kirda, C. Kruegel and M. Balduzzi, ‘Exposure: Finding malicious
domains using passive dns analysis.’, in Ndss, 2011, pp. 1–17.

[22] L. Daigle, ‘Whois protocol specification’, RFC 3912 (Draft Standard), 2004.

[23] M. Stevanovic, J. M. Pedersen, A. D’Alconzo, S. Ruehrup and A. Berger,
‘On the ground truth problem of malicious dns traffic analysis’, computers
& security, vol. 55, pp. 142–158, 2015.

[24] R. Sharifnya and M. Abadi, ‘Dfbotkiller: Domain-flux botnet detection based
on the history of group activities and failures in dns traffic’, Digital Invest-
igation, vol. 12, pp. 15–26, 2015.

[25] A. Berger, A. D’Alconzo, W. N. Gansterer and A. Pescapé, ‘Mining agile dns
traffic using graph analysis for cybercrime detection’, Computer Networks,
vol. 100, pp. 28–44, 2016.

[26] A. Berger and W. N. Gansterer, ‘Modeling dns agility with dnsmap’, in 2013
IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), IEEE, 2013, pp. 387–392.

[27] C. Peng, X. Yun, Y. Zhang, S. Li and J. Xiao, ‘Discovering malicious domains
through alias-canonical graph’, in 2017 IEEE Trustcom/BigDataSE/ICESS,
IEEE, 2017, pp. 225–232.

[28] J. Lee and H. Lee, ‘Gmad: Graph-based malware activity detection by dns
traffic analysis’, Computer Communications, vol. 49, pp. 33–47, 2014.

Bibliography 53

[29] L. Diederichsen, K.-K. R. Choo and N.-A. Le-Khac, ‘A graph database-based
approach to analyze network log files’, in International Conference on Net-
work and System Security, Springer, 2019, pp. 53–73.

[30] F. Zou, S. Zhang, W. Rao and P. Yi, ‘Detecting malware based on dns graph
mining’, International Journal of Distributed Sensor Networks, vol. 11, no. 10,
p. 102 687, 2015.

[31] I. Khalil, T. Yu and B. Guan, ‘Discovering malicious domains through passive
dns data graph analysis’, in Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ACM, 2016, pp. 663–674.

[32] S. Yadav and A. N. Reddy, ‘Winning with dns failures: Strategies for faster
botnet detection’, in International Conference on Security and Privacy in
Communication Systems, Springer, 2011, pp. 446–459.

[33] N. Jiang, J. Cao, Y. Jin, L. E. Li and Z.-L. Zhang, ‘Identifying suspicious
activities through dns failure graph analysis’, in The 18th IEEE International
Conference on Network Protocols, IEEE, 2010, pp. 144–153.

[34] T. W. Edgar and D. O. Manz, Research methods for cyber security. Syngress,
2017.

[35] B. M. Sasaki and J. Chao, Graph Databases for Beginners. Neo4j, 2018.

[36] R. V. Bruggen, Learning Neo4j. Packt Publishing, 2014.

[37] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S.
Plantikow, M. Rydberg, P. Selmer and A. Taylor, ‘Cypher: An evolving query
language for property graphs’, in Proceedings of the 2018 International Con-
ference on Management of Data, 2018, pp. 1433–1445.

[38] S. Garcia, M. Grill, J. Stiborek and A. Zunino, ‘An empirical comparison
of botnet detection methods’, computers & security, vol. 45, pp. 100–123,
2014.

[39] A. Fidler, ‘Potential isp challenges with dns over https’, 2019. [Online].
Available: https://indico.uknof.org.uk/event/46/contributions/
668 / attachments / 898 / 1109 / UKNOF43 _ Potential _ ISP _ challenges _
with_DNS_over_HTTPS_Issue_1A_050419.pdf.

https://indico.uknof.org.uk/event/46/contributions/668/attachments/898/1109/UKNOF43_Potential_ISP_challenges_with_DNS_over_HTTPS_Issue_1A_050419.pdf
https://indico.uknof.org.uk/event/46/contributions/668/attachments/898/1109/UKNOF43_Potential_ISP_challenges_with_DNS_over_HTTPS_Issue_1A_050419.pdf
https://indico.uknof.org.uk/event/46/contributions/668/attachments/898/1109/UKNOF43_Potential_ISP_challenges_with_DNS_over_HTTPS_Issue_1A_050419.pdf

Appendix A

Source Code

This section contains all Python functions that were used to create the graph data-
bases.

A.1 Python Functions

Code listing A.1: Creates nodes and relationships in Neo4j

def create_graph(tx, cap):
tx.run("MERGE (d:Domain {name: $host, blacklisted: $in_blacklists,
whitelisted: $whitelisted}) ",

{"host": cap[’host’], "src": cap[’src’],
"in_blacklists": cap[’in_blacklists’],
"whitelisted": cap[’whitelisted’]})

if cap[’cname’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (a:Domain {name: $cname}) "
"MERGE (d)-[:HAS_ALIAS]->(a)",
{"host": cap[’host’], "cname": cap[’cname’]})

if cap[’ns’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (n:Domain {name: $ns}) "
"MERGE (n)-[:IS_AUTHORITATIVE_FOR]->(d)",
{"host": cap[’host’], "ns": cap[’ns’]})

if cap[’src’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (i_src:IP_HOST {ip: $src}) "
"MERGE (i_src)-[p:HAS_QUERY]->(d)",
{"src": cap[’src’], "host": cap[’host’]})

if cap[’txt’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (t:TXT {content: $txt})"
"MERGE (d)-[:HAS_DESCRIPTION]->(t)",
{"host": cap[’host’], "txt": cap[’txt’]})

if cap[’nxdomain’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (n:NXDOMAIN) "
"MERGE (d)-[:NOT_EXIST]->(n)",
{"host": cap[’host’]})

if cap[’dst’] is not None:

55

56 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

tx.run("MATCH (d:Domain {name: $host}) "
"MERGE (i:IP {ip: $dst, blacklisted: $blacklisted}) "
"MERGE (d)-[:RESOLVES_TO]->(i)",
{"host": cap[’host’], "dst": cap[’dst’],
"blacklisted": check_ip(cap[’dst’])})

if cap[’dst’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MATCH (i:IP {ip: $dst}) "
"MATCH (d)-[p:RESOLVES_TO]->(i) "
"SET p.time = $time",
{"host": cap[’host’], "dst": cap[’dst’], "time": cap[’time’]})

if cap[’ptr’] is not None:
tx.run("MATCH (i:IP {ip: $ip}) "

"MERGE (d:Domain {name: $ptr}) "
"MERGE (i)-[:POINTS_TO]->(d)",
{"ip": cap[’dst’], "ptr": cap[’ptr’]})

if cap[’registrar’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (r:Registrar {name: $registrar}) "
"MERGE (d)-[p:REGISTERED_BY]->(r) "
"SET p.creation_date = $creation_date",
{"registrar": cap[’registrar’], "host": cap[’host’],
"creation_date": cap[’creation_date’]})

if cap[’mx’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MERGE (m:Mail_Server {name: $mx}) "
"MERGE (d)-[:HAS_MAIL_SERVER]->(m)",
{"host": cap[’host’], "mx": cap[’mx’]})

if cap[’timestamp’] is not None:
tx.run("MATCH (d:Domain {name: $host}) "

"MATCH (i:IP_HOST {ip: $src}) "
"MATCH (i)-[p:HAS_QUERY]->(d) "
"SET p.last_seen = $time",
{"host": cap[’host’], "src": cap[’src’], "time": cap[’timestamp’]})

tx.run("MATCH (d:Domain {name: $host}) "
"MATCH (i:IP_HOST {ip: $src}) "
"MATCH (i)-[p:HAS_QUERY]->(d) WHERE NOT EXISTS(p.first_seen) "
"SET p.first_seen = $time",
{"host": cap[’host’], "src": cap[’src’], "time": cap[’timestamp’]})

if cap[’asn’] is not None:
tx.run("MATCH (i:IP {ip: $dst}) "

"MERGE (as:AS {number: $asn}) "
"MERGE (i)-[:IN_NETWORK]->(as) "
"MERGE (isp:ISP {name: $isp}) "
"MERGE (isp)-[:ADMINISTERS]->(as)",
{"dst": cap[’dst’], "asn": cap[’asn’], "isp": cap[’isp’]})

Code listing A.2: Creates dictionary with values from log file and passes it to
create_graph

def log_to_dict(filename):
cap = pyshark.FileCapture(filename)
filetype = filename.split(".")[1]
if filetype == ’pcap’:

for packet in cap:
if ’DNS’ in packet:

src = None
if packet.dns.flags_response == ’0’:

src = packet.ip.src

Chapter A: Source Code 57

whois_result = check_whois(packet.dns.qry_name)
geo_result = None
packet_dict = {’trans_id’: packet.dns.id, ’src’: src, ’dst’: None,

’host’: packet.dns.qry_name,
’qry_type’: packet.dns.qry_type,
’qry_class’: packet.dns.qry_class,
’registrar’: None, ’creation_date’: None,
’in_blacklists’:
check_blacklist(packet.dns.qry_name),
’whitelisted’: check_whitelist(packet.dns.qry_name),
’ns’: None, ’mx’: None, ’cname’: None, ’txt’: None,
’time’: None, ’ptr’: None, ’timestamp’: None,
’asn’: None, ’isp’: None, ’nxdomain’: None}

try:
geo_result = check_geo(packet.dns.a)
packet_dict.update({’dst’: packet.dns.a})
packet_dict.update({’ns’: packet.dns.ns})
packet_dict.update({’mx’: packet.dns.mx_mail_exchange})
packet_dict.update({’cname’: packet.dns.cname})
packet_dict.update({’txt’: packet.dns.txt})
packet_dict.update({’ptr’: packet.dns.ptr_domain_name})
packet_dict.update({’time’: packet.dns.time})
packet_dict.update({’nxdomain’: packet.dns.nxdomain})

except AttributeError:
print("Resource type not found in packet")

if whois_result:
packet_dict.update({’registrar’: whois_result[’registrar’]})
packet_dict.update({’creation_date’:
whois_result[’creation_date’]})

if geo_result:
packet_dict.update({’asn’: geo_result[’asn’]})
packet_dict.update({’isp’: geo_result[’isp’]})

update_db(create_graph, packet_dict)
elif filetype == ’txt’:

with open(filename, "r") as logfile:
i = 0
for line in logfile:

fields = line.split(" ")
domain_name = remove_chars(fields[4])
whois_result = check_whois(domain_name)
try:

packet_dict = {’timestamp’: fields[0] + ’ ’ + fields[1],
’src’: fields[3], ’host’: domain_name,
’in_blacklists’: check_blacklist(domain_name),
’registrar’: None, ’creation_date’: None, ’whitelisted’:
check_whitelist(domain_name), ’ns’: None, ’mx’: None,
’cname’: None, ’txt’: None, ’time’: None, ’ptr’: None,
’dst’: None}
if whois_result:

packet_dict.update({’registrar’: whois_result[’registrar’]})
packet_dict.update({’creation_date’:
whois_result[’creation_date’]})

update_db(create_graph, packet_dict)
except AttributeError:

print("Resource type not found in packet")
elif filetype == ’csv’:

load_csv()
else:

print("Filetype not supported")

58 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

Code listing A.3: Checks if domain names in log files are known legitimate do-
mains

def check_whitelist(domain_name):
in_list = False
whitelist = csv.reader(open("Whitelists/majestic_1000.csv", "r"), delimiter=",")
for line in whitelist:

if line[2] == domain_name or (’www.’ + line[2]) == domain_name:
in_list = True
break

return in_list

Code listing A.4: Checks if domain names are found in any domain blacklists

def check_blacklist(domain_name):
in_list = False
malwaredomainlist = open("Blacklists/malwaredomainlist_hosts.txt", "r")
urlhaus = open("Blacklists/urlhaus.txt", "r")
phishtank = csv.reader(open("Blacklists/verified_online(phishtank).csv", "r"),
delimiter=",")
cybercrime_tracker = open("Blacklists/CYBERCRiME-06-03-20.txt", "r")
blacklists = [malwaredomainlist, urlhaus]
for bl in blacklists:

domains = []
for line in bl:

line = line.split(" ")
if line[0] == ’127.0.0.1’:

domains.append(line)
for line in domains:

if line[1] == domain_name or (’www.’ + line[1]) == domain_name:
in_list = True
break

for line in phishtank:
variations = [str(domain_name) + "/", "www." + str(domain_name),
domain_name[4:]]
if line[1][7:] in variations or line[1][8:] in variations:

in_list = True
break

for line in cybercrime_tracker:
variations = [str(domain_name) + "/", "www." + str(domain_name),
domain_name[4:]]
if line in variations:

in_list = True
break

for f in blacklists:
f.close()

cybercrime_tracker.close()
return in_list

Code listing A.5: Finds registrar info for a specific domain name

def check_whois(domain):
result = None
try:

whois_query = whois.query(domain)
cached = False
if whois_query is not None:

if whois_query.registrar is not ’’:
with open(’datasets/whois_cache.csv’, ’r’) as cache:

reader = csv.reader(cache, delimiter=’,’)

Chapter A: Source Code 59

for line in reader:
if domain == line[0]:

cached = True
result = {"registrar": line[1],

"creation_date": line[2]}
break

if not cached:
with open(’datasets/whois_cache.csv’, ’a’) as out_file:

writer = csv.writer(out_file)
writer.writerow((domain, whois_query.registrar,
whois_query.creation_date))

result = {"registrar": whois_query.registrar,
"creation_date": whois_query.creation_date}

except whois.exceptions.UnknownTld:
print("Unknown TLD")

except whois.exceptions.WhoisCommandFailed:
print("Command timed out")

except (whois.exceptions.FailedParsingWhoisOutput, ValueError):
print("Error in output")

except KeyError:
print("Key error")

except whois.exceptions.UnknownDateFormat:
print("Unknown date format")

return result

Code listing A.6: Checks if a resolved IP address is found in any IP blacklists

def check_ip(ip):
in_list = False
firehol = open("Blacklists/firehol_level1.netset", "r")
malwaredomainlist_ip = open("Blacklists/malwaredomainlist_ip.txt", "r")
cinsscore = open("Blacklists/ci-badguys.txt", "r")
blacklists = [firehol, malwaredomainlist_ip, cinsscore]
for blacklist in blacklists:

for line in blacklist:
if line[0] is not ’#’:

if line is ip or ipaddress.IPv4Address(ip)
in ipaddress.IPv4Network(line.strip(’\n’)):

in_list = True
break

for file in blacklists:
file.close()

return in_list

Code listing A.7: Finds ASN and ISP for each IP

def check_geo(ip):
ip_version = ipaddress.ip_address(str(ip))
if ip_version.version == 4:

with open(’datasets/GeoLite2-ASN-Blocks-IPv4.csv’, newline=’’) as ipv4_list:
reader = csv.reader(ipv4_list, delimiter=’,’)
next(reader, None)
for line in reader:

if ipaddress.IPv4Address(ip) in ipaddress.IPv4Network(line[0]):
return {"asn": line[1], "isp": line[2]}

else:
with open(’datasets/GeoLite2-ASN-Blocks-IPv6.csv’, newline=’’) as ipv6_list:

reader = csv.reader(ipv6_list, delimiter=’,’)
next(reader, None)

60 E. Rismyhr: Graph Representation of DNS-related Data for Detecting Malicious Actions

for line in reader:
if ipaddress.IPv6Address(ip) in ipaddress.IPv6Network(line[0]):

return {"asn": line[1], "isp": line[2]}

Code listing A.8: Converts dataset from TXT to CSV format

import csv

def import_dataset(filename):
with open(filename, ’r’) as in_file:

stripped = (line.strip() for line in in_file)
lines = (line.split(" ") for line in stripped if line)
unwanted = [’"’, ’""’]
with open(’datasets/eidsiva_test.csv’, ’w’) as out_file:

writer = csv.writer(out_file)
writer.writerow((’date’, ’time’, ’user’, ’src’, ’domain_par’,
’view’, ’ntp-stealth’, ’query’, ’domain_name’,

’in’, ’rr_type’, ’+’, ’dst’))
for line in lines:

write = True
for field in line:

for char in unwanted:
if char in field:

write = False
if write:

writer.writerow(line)
else:

print(line)

import_dataset("datasets/anon_dns_records.txt")

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Eirik Rismyhr

Graph Representation of DNS-related
Data for Detecting Malicious Actions

Master’s thesis in Information Security

Supervisor: Marios Anagnostopoulos

June 2020

	Acknowledgements
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Topics covered by the Thesis
	Keywords
	Problem Description
	Justification, Motivation and Benefits
	Research Questions
	Contributions

	Background
	DNS Overview
	DNS Query Types
	DNS Name servers
	DNS Resource Records

	DNS Security
	DNS Vulnerabilities
	Botnets

	Detecting Malicious Domains
	Data Sources
	Collection Methods

	Graph Representation of DNS Data
	Domain Features

	Choice of Methods
	Requirements
	Technical Design
	Implementation
	Python Libraries
	Deployment

	Data Analysis
	Experiments
	Graph Database Models
	Neo4j

	Data Collection
	Datasets
	Enrichment Data

	Graph Data Model
	Nodes
	Relationships

	Results
	Importing Log Data
	Eidsiva Dataset Findings
	Querying the Eidsiva Database

	CTU-13 Dataset Findings
	Querying the CTU-13 Database

	Discussion
	RQ1: Graph Data Model
	RQ2: Incorporating External Data
	RQ3: Detecting Malicious Domains
	Potential issues
	Ethical and Legal Considerations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Source Code
	Python Functions

